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Abstract

Computational Geometry is a subfield of Algorithm Design and Analysis with a fo-
cus on the design and analysis of algorithms related to discrete geometric objects.
The Voronoi diagram is one of the most important structures in Computational
Geometry providing proximity information, which is applicable to many different
fields of science. For a given set of points in the plane – called sites – the classic
Voronoi diagram subdivides the plane into regions, such that all points within one
region have the same nearest site. Abstract Voronoi diagrams provide a unify-
ing model for various concrete Voronoi diagrams for different sites and different
metrics. For example the sites can be disjoint line segments or non-enclosing
circles, disjoint convex polygons of constant size and the metrics include all Lp

metrics, the Karlsruhe metric and other convex distance measures. In the ab-
stract framework the diagram is not defined via the sites and the distances, but
from a bisecting curve system satisfying certain properties.

Updating the classic Voronoi diagram of point sites, after deletion of one site,
can be done in linear time as it is well known since 1989. However, this problem
has remained open since then for generalized sites other than points and for
abstract Voronoi diagrams.

In this dissertation we present a simple, expected linear-time algorithm to
update an abstract Voronoi diagram after deletion of one site. To this aim we
introduce the concept of a Voronoi-like diagram, a relaxed version of a Voronoi
construct that has a structure similar to an abstract Voronoi diagram, without
however being one. In our algorithm Voronoi-like diagrams serve as intermediate
structures, which are considerably simpler to compute. We formalize the concept
of a Voronoi-like diagram and prove that it is well-defined and robust under an
insertion operation, thus, enabling its use in incremental constructions.

Further, we show that our randomized algorithm can be used to compute the
order-(k+1) subdivision within the face of an order-k abstract Voronoi region
in expected time linear in the complexity of the region’s boundary. Moreover,
our randomized algorithm can be adapted to compute the farthest abstract Vo-
ronoi diagram in expected linear-time, after the sequence of its faces at infinity
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is known.
Finally, we have investigated the possibility to apply Voronoi-like diagrams

also to a deterministic algorithmic framework for possible use in deriving deter-
ministic versions of the above mentioned randomized algorithms. We formulate
open problems, the solution of which will make progress towards this goal.
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Chapter 1

Introduction

Computational Geometry is a subfield of Algorithm Design and Analysis with
a focus on the design and analysis of algorithms related to discrete geometric
objects. One main objective is to design algorithms performing with the fastest
possible running time, in an asymptotic sense, with respect to the input size.
One of the most well-studied objects in Computational Geometry is the Voronoi
diagram.

The Voronoi diagram1 of a set S of n simple geometric objects in the plane,
called sites, is a geometric partitioning structure that reveals proximity informa-
tion for the input sites. Sites are usually points, line segments or polygons. In
case of the ordinary nearest-neighbor Voronoi diagram V(S) every point within a
Voronoi region has the same nearest site. More formally, the Voronoi region of a
site s ∈ S is defined as follows:

VR(s, S) = {x ∈ R2 | d(x , s)< d(x , s′)∀s′ ∈ S \ {s}},

where d(x , s) =min{d(x , y) | y ∈ s} is the minimum distance between the point
x and the site s. The Voronoi diagram V(S) is formally defined as

V(S) = R2 \
⋃

s∈S

VR(s, S).

Refer to Figure 1.1 for an example where the sites S are points, see Figure 1.2
where the sites are (disjoint) line segments and Figure 1.3 where the sites are
circles (and d(x , y) is the Euclidean metric, respectively). The latter is equivalent
to the additively weighted Voronoi diagram of points, where the weights are the
circle radii. In the last three cases the Voronoi diagram V(S) has combinatorial
complexity O(n).

1Named after the mathematician Georgy Feodosevich Voronoy (1868-1908).
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s

VR(s, S)

Figure 1.1. A nearest-neighbor Voronoi diagram V(S) (solid, blue) of point
sites S (black) in the Euclidean metric and a Voronoi region VR(s, S) (shaded,
grey). Its dual Delaunay triangulation is shown in dashed, red lines. The
circumcircle of each triangle (e.g., the gray circle) is empty of all point sites.

Common variants of the nearest-neighbor Voronoi diagram include the farthest-
site, and the order-k Voronoi diagram of S (1 ≤ k < n). Every point within an
order-k Voronoi region has the same k nearest sites. For k = 1 we have the
nearest-neighbor diagram and for k = n− 1 we have the farthest-site diagram.

More formally, the farthest Voronoi region of a site s ∈ S is

FVR(s) = {x ∈ R2 | d(x , s)> d(x , s′),∀s′ ∈ S \ {s}}

and the farthest Voronoi diagram is the subdivision of the plane defined by the
farthest Voronoi regions, see Figure 1.4. In the case of point sites, only those sites
lying on the boundary of the convex hull of S have non-empty farthest Voronoi
regions, all of which are unbounded. The sites in the interior of the convex hull
have empty farthest Voronoi regions. Moreover, the sequence of the sites along
the convex hull equals the sequence of the unbounded faces at infinity . The
farthest Voronoi diagram is a tree and its combinatorial complexity is O(n).

The order-k Voronoi region of a subset of sites H ∈ S, |H|= k, is

VRk(H, S) = {x ∈ R2 | d(x , h)< d(x , s),∀h ∈ H,∀s ∈ S \H}
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p q

Figure 1.2. A Voronoi diagram
V(S) of line segments as sites.

q

p

Figure 1.3. A Voronoi diagram
V(S) of circles as sites.

and the order-k Voronoi diagram is the subdivision of the plane defined by the
order-k Voronoi regions, see Figure 1.5. The combinatorial complexity of the
order-k Voronoi diagram is O(k(n− k)).

The concept of Voronoi diagrams finds numerous applications in many fields
of science like epidemiology, crystallography, meteorology, geography, social sci-
ences, ecology, biology, physics, in Shannon’s communication model, and many
more. In geometry, Shamos and Hoey [1975] presented applications of Voronoi
diagrams to compute the minimum spanning tree, the largest empty circle and
the smalling enclosing circle of a point set. They also gave the first O(n log n)
time construction algorithm for Voronoi diagrams of point sites. Other impor-
tant geometric applications are point location, roundness computation and re-
construction of curves and surfaces from point clouds. Other areas in computer
science that make use of Voronoi diagrams include robotics, computer graphics,
wireless networking and machine learning. Refer to the monograph of Okabe,
Boots, Sugihara and Chiu [2000] for a broad overview of applications.

Optimal O(n log n) construction algorithms are also well known for other
standard cases like the nearest or farthest Voronoi diagram of points and disjoint
line segments in various metrics, see e.g., Aurenhammer, Klein and Lee [2013]
for references, extensive information on Voronoi diagrams and their generaliza-
tions.

In case of a set of points as sites S, the dual structure of the Voronoi diagram
V(S), is the famous Delaunay triangulation2 DT(S), which is a triangulation of S,
such that the circumcircle of each triangle is empty of points from S, see the
dashed, red graph in Figure 1.1. The Delaunay triangulation is the straight line
dual graph of the Voronoi diagram V(S), i.e., two sites p, q ∈ S are connected by

2Named after the mathematician Boris Nikolaevich Delaunay (1890 - 1980).
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s

FVR(s, S)

Figure 1.4. A farthest Voronoi di-
agram FVD(S) (solid) of point-sites
and their convex hull (dashed).

p

q

r

Figure 1.5. An order-3 Voronoi di-
agram V3(S) of point-sites, where
VR3({p, q, r}, S) is shown shaded.

a line segment if and only if their corresponding Voronoi regions are adjacent.
See e.g., Aurenhammer et al. [2013] for references and more information. For a
triangulation of line segments, which is dual to the Voronoi diagram of line seg-
ments, see e.g., Chew and Kedem [1989] and Brévilliers, Chevallier and Schmitt
[2007].

Differences of point sites and generalized sites

There are some similarities, but also fundamental differences between point sites
and generalized sites, like line segments or circles, which we want to point out
in the following (see the monographs of de Berg, Schwarzkopf, van Kreveld and
Overmars [2000] and of Aurenhammer, Klein and Lee [2013]).

In case of points as sites, the bisector of two sites is a straight line and thus, all
the edges of the Voronoi diagram V(S) are straight line segments (or half lines)
and every Voronoi region is convex. Refer to Figure 1.1.

In the case of disjoint line segments as sites, the bisector between two sites
can consist of up to seven pieces, which are either line segments or parabolic
arcs. In the case of circles as sites, bisectors are hyperbolas. In both cases each
Voronoi region is simply connected and (weakly) star-shaped. Two regions can
be adjacent in Ω(n) edges, but the total complexity of the diagram is still O(n).
For example, in Figures 1.2 and 1.3 the Voronoi regions of the sites p and q are
adjacent in two Voronoi edges, respectively.
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Abstract Voronoi diagrams (AVDs)

Voronoi diagrams for different sites or metrics have often been treated separately,
but also several approaches of unifying them exist. Such frameworks allow to
establish properties and algorithms for a whole class of Voronoi diagrams at once.

Abstract Voronoi diagrams offer a unifying framework for various concrete
and well-known instances of Voronoi diagrams and were introduced by Klein
[1989]. For example the sites can be points (Figure 1.1), disjoint line segments
(Figure 1.2), non-enclosing circles or equivalently additively weighted point sites
with non-enclosing circles (Figure 1.3) or disjoint convex polygons of constant
size. The metrics include all Lp metrics, the Karlsruhe metric or other convex
distance measures.

In the abstract framework the diagram is not defined via the sites and dis-
tances, but from a bisecting curve system satisfying certain combinatorial prop-
erties. The bisectors are unbounded Jordan curves that partition the plane into
two domains of dominance and the abstract Voronoi regions are defined by inter-
sections of these domains (see Figures 2.1 and 2.2). The bisectors are assumed to
fulfill certain properties for every subset of sites, among them, most commonly,
that each Voronoi region is non-empty and connected and all Voronoi regions
together cover the plane. For details refer to the axioms in Section 2.1.

A set J of abstract bisectors fulfilling these axioms is called admissible. Assum-
ing an admissible bisector system, the nearest-neighbor abstract Voronoi diagram
can be computed in O(n log n) (deterministic or expected) time, see Klein [1989]
and Klein, Mehlhorn and Meiser [1993], respectively. Once it is shown that the
bisector system of a concrete Voronoi diagram fulfills the AVD axioms, combi-
natorial properties and construction algorithms for abstract Voronoi diagrams
become directly applicable to the concrete case. In Section 2.1 we review AVDs
in more detail.

1.1 Basic properties of Voronoi diagrams and algorithms

In this section we present the most common techniques to construct point-site
Voronoi diagrams in the Euclidean metric, and the general algorithmic paradigms
on which these techniques are based on.

We begin with a short review of the most basic properties of point-site Voro-
noi diagrams, see Aurenhammer et al. [2013] for proofs and more. From Euler’s
formula it can be concluded that the Voronoi diagram V(S) of n points S with n
Voronoi regions consists of at most 2n− 2 vertices and 3n− 6 edges. The com-
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binatorial complexity of V(S), which is defined as the sum of all vertices, edges
and faces is thus O(n). The number of edges bounding one Voronoi region is less
than 6 on average. Every Voronoi region of a site s ∈ S is convex and a Voronoi
region is unbounded if and only if s lies on the boundary of the convex hull of S.
Two sites p, q of S are connected by an edge in the Delaunay triangulation of S
if and only if their Voronoi regions VR(p) and VR(q) in V(S) share an edge.

For the following algorithms, it is important to know that there is anΩ(n log n)
lower bound for the construction time for the Voronoi diagram V(S), even if the
points S are already sorted according to their x-coordinates. This can be shown
by reductions from sorting n numbers and from the ε-closeness problem in the
horizontally sorted case.

Divide & Conquer. Shamos and Hoey [1975] give the first O(n log n) time con-
struction algorithm based on the Divide & Conquer paradigm. The sites S are di-
vided by a line into two sets L and R of about the same size, then their Voronoi di-
agrams V(L) and V(R) are computed recursively. In the Conquer phase V(L) and
V(R) are merged into V(S) in time O(|S|) by computing a merge curve, which is
the (vertically monotone) polygonal chain consisting of all Voronoi edges of V(S)
that border Voronoi regions from both L and R. The computation of the merge
curve is done by tracing the regions of the diagrams V(L) and V(R), respectively,
without revisiting parts twice, i.e., without so-called backtracking. This way of
computing the merge curve is often called clockwise-counterclockwise scan in the
literature.

Plane sweep. There is also a plane sweep algorithm for constructing V(S), first
found by Fortune [1987] and was later further developed. See Aurenhammer
et al. [2013] for a nice and detailed presentation of the following sketched al-
gorithm. The sweep line is a horizontal line H that moves from left to right over
the plane, where H is treated like an extra site. The beach line is the bisector
between the points left of the sweep line and the sweep line itself. The beach
line is a vertically monotone curve made up of parabolic arcs. One can imagine
the sweep line to move continuously, however, only at certain discrete events it is
necessary to update the Voronoi diagram that is computed so far up to the current
beach line. Those events are the sites S and the intersections of Voronoi edges
(giving rise to a Voronoi vertex). The events and the beach line must be stored
in dynamic data structures accordingly and must be updated at each event. The
size of the beach line can be shown to be O(n) and there are O(n) many events,
each of which can be handled in O(log n) time, yielding an O(n log n) algorithm.
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Lifting to R3. The Voronoi diagram V(S) can also be computed by an elegant
lifting transformation to the paraboloid P = {(x , y, z) ∈ R3 | x2 + y2 = z2} in
three-dimensional space. Each site (x , y) ∈ S in the plane is mapped to x2+ y2 on
P in R3, yielding the lifted sites SP . It can be shown that the vertical projection of
the (lower) convex hull of SP back to the plane equals the Delaunay triangulation
DT(S). The Voronoi diagram V(S) can be directly obtained in linear time from
DT(S), because it is its dual graph. Since the convex hull of n points in R3 can be
constructed in O(n log n) time (see, e.g., Preparata and Shamos [1985]), it can
be concluded that also V(S) can be constructed in O(n log n) time.

Randomized incremental construction (RIC). A Voronoi diagram can also be
constructed incrementally by adding one site after the other to the already com-
puted diagram. In a brute force manner, finding the location of the newly added
site takes O(n) time and tracing the Voronoi region of the new site again O(n),
which leads to a simple O(n2) time algorithm. However, considering that the
average size of a Voronoi region is only 6, a randomization of the insertion order
together with a smart way of point location can bring the running time down to
expected O(n log n), see Guibas, Knuth and Sharir [1992] and Boissonnat and
Teillaud [1993]. As usual, the algorithm is better described for the dual Delau-
nay triangulation. The point location can be realized with a history graph (also
influence graph or Delaunay tree), which is a rooted directed acyclic graph and
offers point location in expected O(log n) time. The nodes of the history graph
are all Delaunay triangles that have ever been created during the algorithm. A
triangle that has been destroyed in some step is connected by an edge to the
triangles that have been created in this step. The out-degrees and thus, the size
of the history graph can be sufficiently bounded, even though it contains many
more triangles than the final actual Delaunay triangles. Note that the expected
O(n log n) running time of this algorithm holds independently of the distribution
of the point sites. The expectation value is the average of all insertion orders.
Only a bad (and unlikely) insertion order can cause quadratic running time, not
the input point configuration. See Aurenhammer et al. [2013] for a more de-
tailed presentation of this algorithm.

1.1.1 Randomized incremental constructions - a general framework

The randomized algorithm for constructing Voronoi diagrams and Delaunay tri-
angulations that we have reviewed in the last paragraph (in the end of Sec-
tion 1.1) is only one example of a vast literature on randomized algorithms in
computational geometry.
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After Clarkson [1985] introduced his random sampling via the post office
problem, this technique was further developed by him and others into a general
framework, see Clarkson [1985], Clarkson [1987], Clarkson and Shor [1988],
Clarkson and Shor [1989], Sharir [2003]. This framework is based on ran-
dom incremental insertions of objects and uses a conflict graph, which stores the
(conflicting) relations between the so far constructed geometric objects called
ranges (e.g., Voronoi regions) and the objects that have not been inserted yet
(e.g., sites). Devillers [1996] compares in his survey the conflict graph and in-
fluence graph, reviews their properties and some algorithmic applications. See
also the monographs of Boissonnat and Yvinec [1998] and Mulmuley [1994] for
a detailed discussion. The framework has been modified and applied to vari-
ous randomized incremental constructions for geometric problems, of which the
following list is only a small subset: Boissonnat et al. [1990], Boissonnat and
Teillaud [1993], Boissonnat et al. [1992], Seidel [1990], Chew [1990], Guibas
et al. [1992], Clarkson et al. [1993], Klein et al. [1993], Mehlhorn et al. [2001].

Seidel [1993] gives an excellent overview of some of the existing RIC algo-
rithms, for which he shows how to analyze their running time with the simple
so-called backward analysis. We will review backward analysis in Section 2.3.2
in more detail on the example of Chew [1990], who was the first one to perform
this kind of analysis, constructing the Voronoi diagram of a convex polygon in
expected linear time.

1.2 Linear-time algorithms

As we have seen in Section 1.1, for many Voronoi diagrams there exist O(n log n)
construction algorithms e.g., for point sites and for abstract Voronoi diagrams.
On the other side, we have to keep in mind that there is an Ω(n log n) lower
bound for the construction time for the Voronoi diagram of points – even if the
points are already sorted according to their x-coordinates.

However, in some situations where even more information is already avail-
able Voronoi diagrams can be computed faster. For several tree-like Voronoi di-
agrams in the plane, linear-time construction algorithms have been well-known
to exist.

The first technique was introduced by Aggarwal, Guibas, Saxe and Shor [1989]
for the Voronoi diagram of points in convex position, which can be computed in
linear time if the order of points along their convex hull is given, see Figure 1.6.
Their technique can be used to derive linear-time algorithms for other funda-
mental tree-structured problems for point sites including the following.
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Figure 1.6. A Voronoi diagram of points in convex position and the boundary
of their convex hull (dashed).

Tree-like Voronoi problems:

(1) Updating a Voronoi diagram after deletion of one site in optimal time, i.e.,
linear in the number of the Voronoi neighbors of the deleted site, see Fig-
ure 1.7.

(2) Computing the order-(k+1) subdivision within an order-k Voronoi region,
i.e., to compute Vk+1(S) within VRk(H, S).

(3) Computing the farthest Voronoi diagram in linear time, after the sequence of
its faces at infinity is known (or after the convex hull of the sites is known).

There is also a much simpler randomized approach for the same problems
introduced by Chew [1990]. This technique can also be adapted to derive simple
expected linear-time algorithms for the same problems (1)-(3). The adaptation
for the farthest Voronoi diagram of a convex hull appears in more detail in the
monograph of de Berg, Cheong, van Kreveld and Overmars [2008].

For abstract Voronoi diagrams as well, there exist linear-time algorithms in
special cases. Klein and Lingas [1994] adapted the linear-time framework of Ag-
garwal et al. [1989] to abstract Voronoi diagrams, under restrictions, showing
that a Hamiltonian abstract Voronoi diagram can be computed in linear time,
given the order of Voronoi regions along an unbounded simple curve, which
visits each region exactly once and can intersect each bisector only once. This
construction has been extended recently by Bohler et al. [2014] to include for-
est structures under similar conditions, where no region can have multiple faces
within the domain enclosed by a curve.

Khramtcova and Papadopoulou [2017] gave an expected linear-time algo-
rithm3 for the concrete farthest-segment Voronoi diagram, in which case one has

3A preliminary version (Khramtcova and Papadopoulou [2015]) of their paper contained a
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to deal with disconnected Voronoi regions and they presented an innovative way
to treat the faces separately.

Recently, Barba [2019] has shown that the geodesic farthest-point Voronoi
diagram of points in a simple polygon is also computable in expected linear-
time. One issue in this case is the non-constant complexity of geodesic bisectors
of point-sites.

The medial axis of a simple polygon is another well-known problem to admit
a linear-time construction, shown by Chin et al. [1999] after it had been long-
standing open problem. They decompose the polygon in several stages, ending
up with x y-monotone histograms, for which they can compute the medial axis
in linear time using an extension of the framework of Aggarwal et al. [1989].

Updating the Voronoi diagram of point sites in three dimensions after deletion
of a site has been considered by Buchin et al. [2013]. They show how to delete
a vertex from the dual structure, the three-dimensional Delaunay triangulation,
and compute its update.

In Chapter 2 we review those of the above linear-time algorithms that are
most related to this thesis in more detail.

Open problem. For problems (1)-(3), deterministic linear-time solutions so far
only exist for points. For generalized (non-point) sites or for abstract Voronoi
diagrams, deterministic linear-time construction algorithms for problems (1)-(3)
are still unknown, despite serious efforts in the past. Neither for line segments
nor circles as sites deterministic linear-time solutions are known. Since 1989
problems (1)-(3) have been well-known open problems for non-point sites and
for abstract Voronoi diagrams.

Before the randomized algorithm of Khramtcova and Papadopoulou [2015]
for the farthest line-segment Voronoi diagram no expected linear-time solutions
for any non-point site Voronoi diagram was known for the above three problems.
Moreover, prior to this dissertation, for problems (1)-(3), no expected linear-time
solutions for abstract Voronoi diagrams were known.

non-trivial gap when considering the linear-time framework of Aggarwal et al. [1989], thus,
a deterministic linear-time construction for the farthest-segment Voronoi diagram remained an
open problem.
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VR(s, S)

s

V (S)

Figure 1.7. The update of V(S) to V(S \ {s}) can be obtained by computing
the red dashed tree V(S \ {s})∩VR(s, S). The Voronoi neighbors of site s are
shown as orange squares.

1.3 Focus of this dissertation: Linear-time algorithms
(in expected sense) for tree-like diagrams

In this dissertation the major problem we consider is the construction of cer-
tain tree-like (two-dimensional) Voronoi diagrams in expected linear time after
the sequence of their faces along an enclosing curve is known. A Voronoi dia-
gram within a simply connected domain D is called tree-like if its graph structure
within a bounded domain D is a tree, or a forest if the domain D is unbounded
(see Definition 1). We consider the framework of abstract Voronoi diagrams to
simultaneously address the various concrete instances under their umbrella. Our
main focus are simple randomized algorithms for the tree-like problems (1)-(3)
as inspired by the approach of Chew [1990].

1.3.1 Site deletion

The problem of site deletion (1) is probably the most important of the three
problems. To update the Voronoi diagram V(S) after the deletion of site s, we
need to compute the Voronoi diagram V(S \ {s}) ∩ VR(s, S), which in case of
point sites is a tree, see Figure 1.7; for abstract Voronoi diagrams, the diagram
V(S \ {s})∩ VR(s, S) is tree-like.
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The importance of fast site deletion becomes apparent when considering a dy-
namic setting, in which after having computed the Voronoi diagram V(S), either
sites are removed from the set S or additional sites are added to S and we want
to update the diagram after this removal or addition efficiently. Here we focus
only on the time for the insertion of the Voronoi region of s after the location of s
in the diagram is known and we do not discuss the problem of efficiently updat-
ing a data structure for point location, which is treated for example by Kaplan,
Mulzer, Roditty, Seiferth and Sharir [2017].

After the location of a new site is known, updating the diagram after adding
the new site can be done by very simple tracing in time linear in the size of the
added Voronoi region (see e.g., Aurenhammer et al. [2013]). In contrast, the
update after deletion of a site is significantly more difficult. Even in the simplest
case of point sites under the Euclidean metric the linear-time solution of Aggar-
wal et al. [1989] is an involved doubly recursive divide-and-conquer algorithm,
based on two sophisticated divide phases. However, Chew [1990] offers a much
simpler randomized version. For more general sites other challenging issues arise
for the problem of site deletion as we will point out in Section 1.3.2.

Site deletion in practice

In the C++ library CGAL [1995] for geometric algorithms, site deletion is imple-
mented via vertex removal in the dual Delaunay triangulation, which uses the
well-known triangle flip algorithm of Lawson [1977] to update the diagram af-
ter deletion of a site. This algorithm runs in quadratic time, i.e., in time O(h2),
where h is the number of Voronoi neighbors of the deleted site. For 3 ≤ h ≤ 7,
CGAL uses algorithms of Devillers [2011], who optimizes vertex removal for
small degrees that perform well in practice. He underlines the importance of
small degrees, because the average degree of a vertex in a Delaunay triangulation
is only 6. For segments or other generalized sites, deletion is not implemented
in CGAL.

1.3.2 Challenges in computing tree-like Voronoi diagrams of non-
point sites with disconnected regions

In the following we point out the difficulties that arise in computing tree-like
Voronoi diagrams of generalized (non-point) sites with disconnected regions.
We explain the main difficulties in the context of site deletion, however, the same
problems occur in the other tree-like Voronoi problems that we investigate in this
dissertation.
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s

VR(s, S)

p

Figure 1.8. A Voronoi diagram of a set of line segments S. The Voronoi region
VR(p, S \ {s}) of one site p (yellow, shaded) can have multiple disconnected
faces within VR(s, S), which is shown shaded, gray. The site p induces three
edges along ∂VR(s, S).

Consider the boundary of a Voronoi region VR(s, S), denoted ∂ VR(s, S). If
the set of sites S are points, then each edge along ∂ VR(s, S) is induced by exactly
one site in S, i.e., no repetition can occur. See e.g., the regions of the point sites
depicted as orange squares in Figure 1.7, where each site corresponds to exactly
one region in the dashed red graph and to exactly one blue Voronoi edge on
∂ VR(s, S).

In contrast, if V(S) is a Voronoi diagram of more general set of sites like
line segments, circles or an abstract Voronoi diagram, then the sequence of site-
occurrences along ∂ VR(s, S) can include repetitions, i.e, two Voronoi regions
VR(s, S) and VR(p, S) can be adjacent in several – even inΩ(n) – Voronoi edges, a
fact that we have illustrated already in Figures 1.2 and 1.3 in the beginning of this
chapter. In Figure 1.8 VR(s, S) and VR(p, S) are adjacent in three Voronoi edges.
The boundary ∂ VR(s, S) forms a Davenport-Schinzel sequence4 of order 2 with
respect to site occurrences. This repetition of sites constitutes a major difference
from the respective problem for points.

What else does this repetition of sites imply? As shown in the example in
Figure 1.8, the diagramV(S\{s})∩VR(s, S) contains disconnected Voronoi regions,
i.e., for a site p ∈ S \{s}, the region VR(p, S \{s})∩VR(s, S) can consist of several

4A finite sequence of elements is called a Davenport-Schinzel sequence of order d if no consec-
utive elements are the same and if it does not contain an alternating subsequence a, b, a, b, . . .
of length d + 2 of two distinct elements a 6= b. The length of a Davenport-Schinzel sequence of
order 2 on n distinct values is well known to be bounded by 2n−1, see, e.g., Sharir and Agarwal
[1995].
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P

VR(s, S)

DP

A(J)

Figure 1.9. A boundary curve P is a monotone path in the arrangement of
abstract bisectors A (J); its domain DP contains VR(s, S).

faces.
The fact of site repetition introduces serious complications. For example, the

diagram V(S′)∩VR(s, S′∪{s}) for a subset S′ ⊂ S \{s} may contain various faces
that are not related to the diagram V(S \{s})∩VR(s, S). Conversely, an arbitrary
sub-sequence of the Voronoi edges ∂ VR(s, S) need not correspond to any Voronoi
diagram. At first sight, a linear-time algorithm may seem infeasible.

1.4 Summary of the main results of this dissertation

The main contribution of this dissertation is the formulation of an abstract tree-
like diagram, within a simply connected domain, called a Voronoi-like diagram.
It is a relaxed version of a Voronoi diagram, it serves as an intermediate struc-
ture that is much simpler to compute and allows to derive simple randomized
linear-time techniques for the tree-like problems (1)-(3) (listed in Section 1.2)
for abstract Voronoi diagrams.

A Voronoi-like diagram is defined relative to a Voronoi region VR(s, S), s ∈ S
and it is a subgraph of the arrangement A (J) of the admissible bisector sys-
tem J. It allows to efficiently compute V(S \ {s}) truncated within VR(s, S), i.e.,
V(S \ {s}) ∩ VR(s, S). A Voronoi-like diagram is defined on a boundary curve P,
which confines a domain DP that is subdivided by the Voronoi-like diagram. In
Figure 1.9, the boundary curve is shown bold black and its domain shaded gray.
Given a subset of sites S′ ⊆ S, a boundary curve P is a monotone path in the ar-
rangementA (J), which encloses VR(s, S), but continues to share common edges
with ∂ VR(s, S) as related to S′ (see Definitions 3 and 5). Furthermore, there are
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many different boundary curves for S′, all enclosing ∂ VR(s, S′), but being simpler
to compute. The Voronoi-like diagram Vl(P) of a boundary curve P is defined
simply as a subgraph in the arrangement of the bisector system J whose faces are
bounded by monotone paths in this arrangement (see Definition 6). In contrast,
the boundary of a real Voronoi region is an envelope in the same arrangement.
Real Voronoi regions are enclosed in their Voronoi-like counterparts.

We prove that Voronoi-like diagrams are well-defined, i.e., for a given bound-
ary curve P, its Voronoi-like diagram Vl(P) exists and it is unique. We show that
Voronoi-like diagrams are robust under an insertion operation, thus, making pos-
sible a randomized incremental construction for V(S \ {s}) ∩ VR(s, S) in linear
time. This solves problem (1) in expected linear time, the update of a Voronoi
diagram after deletion of one site. Further, we design randomized linear-time
algorithms for computing the order-(k+1) subdivision within an order-k Voronoi
region (problem (2)) and computing the farthest Voronoi diagram in linear time,
after the sequence of its faces at infinity is known (problem (3)).

Formulating the definition of our Voronoi-like diagram, proving the correct-
ness of the algorithms and finding sufficient properties of the geometric struc-
tures has been a long, challenging and non-trivial process.

1.5 Dissertation Outline

After a literature review in Chapter 2, the remaining Chapters 3 – 7 of this disser-
tation comprise the following topics: the definition of our Voronoi-like diagram,
establishing the correctness of an insertion operation in this diagram, the ques-
tion of the existence and uniqueness of the Voronoi-like structure, its properties,
randomized algorithms and other generalizations, and finally the investigation
of a possible applicability in the deterministic algorithmic framework of Aggar-
wal, Guibas, Saxe and Shor [1989]. In the following we give a more detailed
overview of the chapters.

Chapter 2 – Literature review

In Section 2.1 we give the definition of Abstract Voronoi diagrams and their
higher-order versions and an overview of construction algorithms. In Section 2.2
we give a brief review of the notions of arrangements of Jordan curves and
related Davenport-Schinzel sequences. Finally, we give an overview of linear-
time algorithms (randomized and deterministic) for certain classes of Voronoi
diagrams, concrete and abstract. Among them there are linear-time algorithms
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for point-site Voronoi diagrams, the farthest line-segment Voronoi diagram (Sec-
tion 2.3), and for Abstract Voronoi diagrams in special cases (Section 2.3.3).

Chapter 3 – Voronoi-like diagrams

In Chapter 3 we introduce the concept of a Voronoi-like diagram, a relaxed version
of a Voronoi construct that has a structure similar to an abstract Voronoi diagram,
without however being one.

In Section 3.1 we give some preliminaries and show that the diagram V(S \
{s})∩VR(s, S) is tree-like. In Section 3.2 we introduce the concepts of a monotone
path, an envelope and a boundary curve. We present the definition of a Voronoi-
like diagram and give basic properties, e.g., that Voronoi-like regions are supersets
of real Voronoi regions. In Section 3.3 we prove that a Voronoi-like diagram is
robust under an insertion operation, therefore, enabling its use in incremental
constructions of Voronoi diagrams.

Chapter 4 – Existence and Uniqueness

In Chapter 4 we prove that Voronoi-like diagrams are well-defined. In Section 4.1
we prove that if a Voronoi-like diagram exists, then it is unique. Additionally
to its uniqueness, in Section 4.2 we prove that, for a given boundary curve
P, its Voronoi-like diagram Vl(P) always exists (via a proof by construction).
Combining existence with uniqueness establishes the Voronoi-like structure as a
well-defined geometric partitioning tool that can handle disconnected Voronoi
regions.

Chapter 5 – A randomized algorithm

In Chapter 5 we present an easy randomized algorithm for solving the funda-
mental tree-like problem (1) of site deletion in an abstract Voronoi diagram.
However, proving the correctness of the algorithm was a long and challenging
process, which includes the formulation of the definitions in previous chapters
and the various properties.

In Section 5.1 we show that our diagrams allow to solve the fundamental
problem (1) of updating an abstract Voronoi diagram, after deletion of one site,
in expected time linear in the number of changes in the diagram (Theorem 7).
In this construction algorithm Voronoi-like diagrams serve as intermediate struc-
tures, which are considerably simpler and faster to compute than their real Vo-
ronoi counterparts.
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In Section 5.2 we give the time analysis of the randomized algorithm by par-
titioning all possible insertion orders into groups of similar permutations and
analyze the average work of an insertion within one group.

Chapter 6 – Extensions of the algorithm

In Chapter 6 we extend the algorithm of Chapter 5 to solve the tree-like problems
(2) and (3) that we have presented in Section 1.3.

In Section 6.1 we consider problem (2) and we show how our randomized al-
gorithm can be adapted to compute the order-(k+1) subdivision within the face
of an order-k abstract Voronoi region in expected time linear in the complexity of
the region’s boundary. The non-trivial proof process established new properties
of the Voronoi-like structures that are interesting in their own right. First, in Sec-
tion 6.1.1 we point out the relation between different boundary curves and their
Voronoi-like structures and show how we can use one in the place of another to
end up with simple expected linear-time construction algorithms. Then, in Sec-
tion 6.1.2 we use the relations of the previous section in order to tackle problem
(2) for abstract Voronoi diagrams, resulting in a surprisingly simple algorithm
(Theorem 9). This reduces by a logarithmic factor the time complexity of the
iterative construction to compute the order-k abstract Voronoi diagram i.e., from
O(k2n log n) to O(k2n+ n log n) steps.

In Section 6.2, we show how our approach can be adapted to compute in
expected linear time the farthest abstract Voronoi diagram, after the sequence of
its faces at infinity is known (Theorem 10).

Chapter 7

In Chapter 7 we investigate the application of Voronoi-like diagrams in the linear-
time framework of Aggarwal, Guibas, Saxe and Shor [1989] to possibly solve the
problem of site deletion (and the other tree-like problems) in deterministic linear
time – a well-known and still open problem.

We formulate three challenges towards this application: the formulation of
a coloring rule for the first divide phase, establishing a combinatorial lemma for
the second divide phase and merging two Voronoi-like diagrams in linear time.

The solutions of these open problems would yield significant progress to-
wards a deterministic linear-time algorithm.
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1.6 Publications

The following is a list of papers that have been written within my time as a PhD
student.

• Kolja Junginger and Evanthia Papadopoulou. Deletion in Abstract Voronoi
Diagrams in Expected Linear Time. In 34th International Symposium on
Computational Geometry (SoCG 2018), Dagstuhl, Germany.

– Journal version is submitted and under review.

– Preliminary version:

Kolja Junginger and Evanthia Papadopoulou. Deletion in Abstract Vo-
ronoi diagrams in expected linear time. In 34th European Workshop
on Computational Geometry (EuroCG 18), Berlin, Germany, March 21
- 23, 2018.

– arXiv longer version (including the farthest abstract Voronoi diagram):

Kolja Junginger and Evanthia Papadopoulou. Deletion in abstract Vo-
ronoi diagrams in expected linear time, CoRR abs/1803.05372. URL:
http://arxiv.org/abs/1803.05372

This publication appears in Chapters 3, 4 and 5.

• Kolja Junginger and Evanthia Papadopoulou. Abstract tree-like Voronoi di-
agrams in expected linear time. In CGWeek Young Researchers Forum 2019,
Computational Geometry week, Portland, Oregon, 2019.

– Conference version ready for submission.

– Journal version in preparation.

This publication appears in Chapters 4 and 6.

• Kolja Junginger, Ioannis Mantas and Evanthia Papadopoulou. On Select-
ing Leaves with Disjoint Neighborhoods in Embedded Trees, Conference on
Algorithms and Discrete Applied Mathematics, Kharagpur, India, 2019.

– Journal version submitted to Discrete Applied Mathematics.

This publication is not part of this dissertation. However, we cite the main
result of this publication in Chapter 7 (Theorem 11).
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• Kolja Junginger, Ioannis Mantas, Evanthia Papadopoulou, Martin Suder-
land and Chee Yap. Certified Approximations Algorithms for the Fermat
Points and k-Ellipses. 36th European Workshop on Computational Geome-
try (EuroCG 18), Würzburg, Germany, March 16 – 18, 2020.

This publication is not part of this dissertation.
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Chapter 2

Literature review

In this chapter we review the most fundamental literature and definitions, which
form the basis for this dissertation.

In Section 2.1 we give the definition of Abstract Voronoi diagrams and their
higher-order versions and an overview of construction algorithms. These defi-
nitions are the basis for the rest of this thesis, since all results presented in this
dissertation are given in the setting of Abstract Voronoi diagrams.

In Section 2.2 we give a brief review of the notions of arrangements of Jordan
curves and related Davenport-Schinzel sequences. Our Voronoi-like diagrams
presented in Chapter 3 are defined on arrangements and thus make use of these
concepts.

Finally, in Section 2.3 we give an overview of linear-time algorithms (ran-
domized and deterministic) for certain classes of Voronoi diagrams, concrete
and abstract. We summarize linear-time algorithms for point-site Voronoi di-
agrams (Sections 2.3.1, 2.3.2) and the farthest line-segment Voronoi diagram
(Sections 2.3.4). In Section 2.3.3 we review linear-time algorithms for Abstract
Voronoi diagrams in special cases. This overview of the most important and most
related known linear-time algorithms allows the reader to classify the contribu-
tions of this dissertation. With the results given later in this thesis we further
contribute to the existing linear-time algorithms for Voronoi diagrams.

2.1 Abstract Voronoi diagrams

Abstract Voronoi diagrams (AVDs) were introduced by Klein [1989]. They offer
a unifying framework for various concrete and well-known instances of Voronoi
diagrams.

21
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D(p, q)
J(p, q)

p
qD(q, p)

Figure 2.1. A bisector J(p, q) and its
dominance regions; D(p, q) is shown
shaded.

J(p, r)

r
q p

p
r

q
J(q, r)

J(p, q)

Figure 2.2. The Voronoi diagram
V({p, q, r}) in solid lines. The
shaded region is VR(p, {p, q, r}).

Instead of sites and distance measures, they are defined in terms of a system
of bisecting curves, homeomorphic to unbounded lines, that satisfy some simple
combinatorial properties. Given a set S of n abstract sites (indices), the bisector
J(p, q) of two sites p, q ∈ S is an unbounded Jordan curve, homeomorphic to a
line, that divides the plane into two open domains: the dominance region of p,
D(p, q) (having label p), and the dominance region of q, D(q, p) (having label q),
see Figure 2.1.

The Voronoi region of p is

VR(p, S) =
⋂

q∈S\{p}
D(p, q).

The (nearest-neighbor) abstract Voronoi diagram of S is

V(S) = R2 \
⋃

p∈S

VR(p, S).

Following the traditional model of abstract Voronoi diagrams (see e.g. Klein
[1989]; Bohler et al. [2015]; Bohler, Liu, Papadopoulou and Zavershynskyi [2016];
Bohler, Klein and Liu [2016]) the system of bisectors is assumed to satisfy the
following axioms, for every subset S′ ⊆ S:

(A1) Each nearest Voronoi region VR(p, S′) is non-empty and pathwise con-
nected.

(A2) Each point in the plane belongs to the closure of a nearest Voronoi region
VR(p, S′).

(A3) After stereographic projection to the sphere, each bisector can be com-
pleted to a Jordan curve through the north pole.

(A4) Any two bisectors J(p, q) and J(r, t) intersect transversally and in a finite
number of points. (It is possible to relax this axiom, see Klein et al. [2009]).
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Assuming axioms (A1)-(A4), V(S) is a plane graph of structural complexity
O(n) and its regions are simply-connected. It can be computed in O(n log n)
expected time, with a randomized incremental construction, see Klein, Mehlhorn
and Meiser [1993]. Moreover, V(S) can be computed in deterministic O(n log n)
time, if acyclic partitions of S are available ([Klein, 1989, Chapter 3]), which
applies to many concrete cases, see [Klein, 1989, Chapter 4]. A partition (L, R)
of the abstract sites S is called acyclic, if the borderline consisting of Voronoi
edges separating the Voronoi regions of sites in L from the Voronoi regions of
sites in R does not contain any cycles.

Examples of concrete Voronoi diagrams that fall under the AVD umbrella
include: disjoint line segments and disjoint convex polygons of constant size
in the Lp norms, or under the Hausdorff metric; point sites in any convex dis-
tance metric or the Karlsruhe metric; additively weighted points that have non-
enclosing circles; power diagrams with non-enclosing circles. See Bohler, Liu,
Papadopoulou and Zavershynskyi [2016].

Higher-order and the farthest abstract Voronoi diagram

The above axiomatic framework can also be used to define the farthest abstract
Voronoi diagram, see Mehlhorn, Meiser and Rasch [2001], where it was investi-
gated for the first time.

The farthest abstract Voronoi region of a site p ∈ S is defined as

FVR(p, S) =
⋂

q∈S\{p}
D(q, p).

The farthest abstract Voronoi diagram of S is defined as

FVD(S) = R2 \
⋃

p∈S

FVR(p, S).

It is a tree of complexity O(n), however, regions may be disconnected and a
farthest Voronoi region may consist ofΘ(n) disjoint faces. It can be constructed in
expected O(n log n) time by a randomized incremental construction as Mehlhorn,
Meiser and Rasch [2001] have shown.

The order-k abstract Voronoi diagram was first introduced by Bohler, Cheilaris,
Klein, Liu, Papadopoulou and Zavershynskyi [2015]. For a subset of sites H ⊂ S,
|H|= k, the order-k abstract Voronoi region is defined as

VRk(H, S) =
⋂

q∈H,p∈S\H
D(q, p).
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The order-k abstract Voronoi diagram of S is defined as

Vk(S) = R2 \
⋃

H⊂S,|H|=k

VRk(H, S).

Note that V1(S) = V(S) and Vn−1(S) = FVD(S). The combinatorial complexity
of Vk(S) is O(k(n − k)). More precisely, Bohler et al. [2015] proved that the
number of faces of Vk(S) has an upper bound of 2k(n− k) and a lower bound of
n− k+ 1, which are both tight.

The order-k abstract Voronoi diagram can be computed with the iterative
construction of Lee [1982] in time O(k2n log n), by first computing V1(S), then
computing V2(S) by constructing in each face the order-2-subdivision, etc. until
Vk(S). Bohler, Liu, Papadopoulou and Zavershynskyi [2016] explain the adap-
tion of Lee’s algorithm to abstract Voronoi diagrams. The iterative construction
is particularly useful for small k and e.g., if the diagrams of all orders up to k are
needed.

For larger k, other algorithms might be preferred. Bohler, Liu, Papadopoulou
and Zavershynskyi [2016] show how the order-k abstract Voronoi diagram can be
constructed in expected O(kn1+ε) by a randomized divide-and-conquer algorithm
and Bohler, Klein and Liu [2016] give a randomized incremental algorithm with
O(k(n− k) log2 n+ n log3 n) expected running time.

2.2 Arrangements and Davenport-Schinzel sequences

Our Voronoi-like diagrams presented in Chapter 3 are defined on arrangements
of an admissible bisector system. In this chapter we review the more general
notion of arrangements of Jordan curves and Jordan arcs. Moreover, we give
a brief review of Davenport-Schinzel sequences, which are used to analyze the
complexity of the faces of such arrangements.

2.2.1 Davenport-Schinzel sequences

Davenport and Schinzel [1965] consider homogeneous linear differential equa-
tions, the solution of which are functions with bounded algebraic degree, and
they study the point-wise maximum of this set of functions. From a geometric
viewpoint the maximum that they analyze is the upper envelope of a set of n
x-monotone curves in the plane. They ask for the maximum length of such se-
quences (defined by the functions on the upper envelope), which can be studied
purely combinatorially and which have many geometric applications.
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More formally, for n, d ∈ N, they consider a sequence W over a set of symbols
A of size n. The sequence W is called Davenport-Schinzel sequence or short a DSS
of order d over n symbols, if it satisfies the following properties:

• No two consecutive elements are the same.

• There is no alternating subsequence of length d + 2, i.e., the sequence W
does not contain a subsequence . . . , a, . . . , b, . . . , a, . . . , b, . . . of length d+2
for any two symbols a, b ∈ A.

Denote by

λd(n) =max{|W | : W is a DSS of order d over n symbols} (2.1)

the maximum length of a DSS of order d over n symbols.
In the following we review some of the bounds of λd(n), which involves the

inverse Ackermann function α(n) (see e.g., Sharir and Agarwal [1995]). The
function α(n) is nondecreasing and unbounded, but extremely slowly growing.
For all practical values of n, it holds α(n) ≤ 4 (up to a value n, which is an
exponential tower of height 65536 made up of 2’s).

Clearly, λ1(n) = n, and further Davenport and Schinzel [1965] show that

λ2(n) = 2n− 1 and

λ3(n) = O(n log n).

Later, it was shown that

λ3(n) = Θ(n ·α(n)),

λ4(n) = Θ(n · 2α(n)).

Moreover, upper bounds for d ≥ 4 have been established, all of which are near
linear for fixed d, but a superlinear lower bound exists for d = 3,4 and all even
orders d ≥ 4, see Sharir and Agarwal [1995], Hart and Sharir [1986], Agarwal,
Sharir and Shor [1989].

2.2.2 Arrangements of Jordan curves

In a more general geometric setting, Sharir and Agarwal [1995] analyze a set
J = {γ1, . . . ,γn} of n Jordan arcs or Jordan curves, each pair of which intersect
transversally in at most d points. The Jordan curves can be closed or unbounded
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curves separating the plane into two domains. Jordan arcs are continuous pieces
of Jordan curves.

The arrangement A (J) of J is the planar subdivision induced by the arcs
of J (Sharir and Agarwal [1995]). More precisely, they define A (J) as a plane
graph consisting of the following vertices, edges and faces: its vertices are the
endpoints of the arcs of J and their pairwise intersection points, its edges are
maximal (relatively open) connected pieces of the arcs J that do not contain
a vertex, its faces are the connected components of R2 \ J. The combinatorial
complexity of a face is the number of vertices (or edges) on its boundary, and the
combinatorial complexity ofA (J) is the total complexity of all of its faces, which
is clearly O(dn2), see Sharir and Agarwal [1995].

However, the combinatorial complexity of a single face is much smaller. In
the general case of Jordan arcs it is O(λd+2(n)) (by [Sharir and Agarwal, 1995,
Theorem 5.3]) and in the case that J is a collection of closed or unbounded
Jordan curves it is O(λd(n)) (by [Sharir and Agarwal, 1995, Theorem 5.7]).

Applying the last result to the arrangement A (J(S)), where J(S) is an ad-
missible bisector system of unbounded Jordan curves from Section 2.1, and con-
sidering that related bisectors can intersect at most twice [Klein, 1989, Lemma
3.5.2.5]we can conclude that the boundary of an abstract Voronoi region VR(s, S)
forms a Davenport-Schinzel sequence of order d = 2. Thus, the complexity of
∂ VR(s, S) (the number of its Voronoi edges) is at most 2|Ss| − 1, where Ss is the
set of sites that induce Voronoi edges on ∂ VR(s, S).

2.3 Linear-time algorithms for Voronoi diagrams

In this section we give an overview of linear-time algorithms (randomized and
deterministic) for some classes of Voronoi diagrams, concrete and abstract. We
review (expected) linear-time algorithms for point-site Voronoi diagrams in Sec-
tions 2.3.1 and 2.3.2, the farthest line-segment Voronoi diagram in Section 2.3.4
and for Abstract Voronoi diagrams in special cases in Section 2.3.3.

2.3.1 A deterministic linear-time algorithm for points

In 1989 Aggarwal et al. [1989] introduced a technique to compute the Voronoi
diagram of points in convex position in linear time, given the order of points
along their convex hull. It can be used to derive linear-time algorithms for other
fundamental problems:



27 2.3 Linear-time algorithms for Voronoi diagrams

(1) updating a Voronoi diagram of points after deletion of one site in time linear
in the number of the Voronoi neighbors of the deleted site;

(2) computing the order-(k+1) subdivision within a face of an order-k Voronoi
region in time linear in the complexity of the region boundary.

(3) computing the farthest Voronoi diagram of point-sites in linear time, after
computing their convex hull;

Figure 1.7 illustrates problem (1): the update after deletion of a site s .

In the following we sketch the algorithmic framework for the application,
where the sites S are in convex position and their cyclic sequence along the con-
vex hull is known, see Figure 1.6. The linear-time algorithm is a doubly recursive
divide-and-conquer algorithm based on a colouring rule. In a first phase the sites
S are coloured into red R and blue B, such that the number of blue sites is roughly
equal to the number of red sites and such that the red sites fulfill the following
disjointness property: When inserting the Voronoi regions of each two consecu-
tive red sites r1, r2 in the blue diagram, their regions in V(B ∪ {r1, r2}) are not
adjacent. Then the Voronoi diagram of the blue sites (B = S \ R) is computed
recursively in linear time. With the help of the blue Voronoi diagram V(B) the
red sites are further subdivided into garnet and crimson such that the number
of crimson sites is at least a constant fraction of the red sites; and such that the
crimson sites have all pairwise disjoint regions when they are inserted into the
blue diagram. This second divide phase of the red sites is realized by a combina-
torial lemma. The disjointness of the crimson regions allows that all of them can
be inserted one by one into the blue diagram in total linear time. The diagram of
the garnet sites is again recursively computed in linear-time and finally merged
with the diagram of the blue and crimson sites in linear time. Since the combi-
natorial lemma ensures that the crimson sites are a constant fraction of all red
sites the runtime of the algorithm obeys the formula T (n) = T (qn)+O(n), q < 1,
and is thus linear in n= |S|.

In Chapter 7 we give pseudo-code for the above sketched linear-time frame-
work of Aggarwal et al. [1989].

The problems (1)–(3) of this section have been solved in deterministic linear
time only for point-sites. Neither for line segments nor circles as sites a deter-
ministic linear time algorithm is known. Since 1989 these fundamental problems
have remained open for non-point sites and for abstract Voronoi diagrams.
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2.3.2 A simple expected linear-time algorithm for points

Chew [1990] gave a much simpler randomized algorithm applicable to the same
problems (1)–(3) in Section 2.3.1. To analyze the runtime of his randomized
algorithm Chew is, according to Seidel [1993], probably the first one who uses
the famous backward analysis in computational geometry.

Chew’s algorithm for computing the Voronoi diagram of points in convex posi-
tion (given their convex hull) can be sketched as follows. Refer to Figure 1.6. The
initial cyclic sequence of Voronoi regions is given by the convex hull; in phase 1
the sites are deleted in a random order while the neighbor of the deleted site on
the current convex hull is stored at the time of deletion. In a second phase the
algorithm inserts the Voronoi regions of the sites in reverse order. When insert-
ing a site in phase 2, it is known from phase 1 where in the diagram its region is
located. See [de Berg et al., 2000, Chapter 7.4] for a more detailed description.

Let us analyze the running time of this algorithm. In the following we review
backward analysis in case of this algorithm and explain how this simple trick
serves to conclude that one insertion takes expected constant time. Seidel [1993]
gives a nice overview of backward analysis for the above algorithm as well as for
various applications to other problems in computational geometry.

Let’s say at step i during phase 2 we insert site s into the Voronoi diagram
V(S′ \ {s}) and obtain V(S′) (i = |S′|). Since the location of the inserted Voronoi
region is known in advance (from phase 1), the time for inserting one region
is proportional to its size, i.e., to the number of Voronoi edges bounding this
region. Now we focus on the question what the expected size of this region is. To
answer this, we view the algorithm backwards, going from step i to step i − 1.
In the backwards view we go from V(S′) to V(S′ \ {s}). The time needed for
step i is the expected size of VR(s, S′), which is the expected size of a region in
V(S′) that is chosen uniformly at random. Since the diagram V(S′) has linearly
many edges, to be precise 2i − 3 edges, the expected size of VR(s, S′) is twice
this number, divided by the number of Voronoi regions, which in turn is i = |S′|.
Thus, the expected size of VR(s, S′) is 2(2i − 3)/i < 4 = O(1). We conclude that
the expected time for one insertion step is constant and thus, the algorithm for
n sites runs in expected O(n) time.

2.3.3 Linear-time algorithms for abstract Voronoi diagrams in spe-
cial cases

In the setting of abstract Voronoi diagrams linear-time algorithms are known as
well, however, under restrictions. The first example is the Hamiltonian abstract
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Voronoi diagram by Klein and Lingas [1994] who adapted the linear-time frame-
work of Aggarwal et al. [1989] to abstract Voronoi diagrams, under the following
restrictions. They assume to be given an unbounded simple curve H, such that

• H visits each Voronoi region exactly once and intersects each bisector exactly
once.

Given the order of Voronoi regions along H they show that under these re-
strictions the Hamiltonian abstract Voronoi diagram within the domain enclosed
by H can be computed in deterministic linear time. The same result applies to
the case when H is a bounded simple curve with the above property.

Bohler, Klein, Lingas and Liu [2018] recently extended this construction to
forest-like abstract Voronoi diagrams under similar conditions. Within a domain
D enclosed by a simple closed curve they require the following property.

• V(S) ∩ D is a tree. For all S′ ⊆ S,V(S′) ∩ D is a forest and each Voronoi
region has exactly one face.

This condition implies properties similar to the Hamiltonian AVDs: Each bi-
sector intersects D exactly once and any two bisectors, J(p, q), J(p, r) with a
common site intersect at most once within D. Further, ∂ D visits each region
exactly once. No Voronoi region can have multiple faces within the domain D.

Open problem. Removing the above restrictions and still have a deterministic
linear-time algorithm is a highly non-trivial open problem and directly related to
the open problems (1)-(3) presented in Section 1.2.

In this dissertation we make progress towards this goal by designing an ex-
pected linear-time algorithm for the related problems (1)-(3) and abstract Voro-
noi diagrams, see Chapters 5 and 6.

2.3.4 A randomized algorithm for the farthest line-segment Voro-
noi diagram

Recently, Khramtcova and Papadopoulou [2017] adapted the expected linear-
time algorithm of Chew [1990] and made it applicable to the computation of the
farthest line-segment Voronoi diagram, if the sequence of its faces at infinity (or
a big enclosing circle) is known.

First, we define the farthest line-segment Voronoi diagram and give some ba-
sic properties. Here the sites are a set of line segments S (that are allowed to



30 2.3 Linear-time algorithms for Voronoi diagrams

s

t

FVR(s)

FVR(s)

p

q

r

FVR(r)

FVR(p)
FVR(q)

Figure 2.3. A farthest line-segment Voronoi diagram (blue) with a disconnected
Voronoi region FVR(s) (red, shaded) and an empty Voronoi region FVR(t).

touch and intersect)1. The distance between a point x and a line segment s is
d(x , s) =min{d(x , y) | y ∈ s} and the farthest Voronoi region of a segment s ∈ S
is FVR(s) = {x ∈ R2 | d(x , s) > d(x , s′), s′ ∈ S \ {s}}. The farthest line-segment
Voronoi diagram FVD(S) is the graph subdividing the plane into the farthest Vo-
ronoi regions. No feature of the intersections of the sites is part of the diagram
FVR(s). A single Voronoi region can have Ω(n) faces, but the complete diagram
is still of size O(n) and has a tree structure. The convex hull of the line segments
S is not related to the diagram and a segment can have an empty Voronoi region,
see Figure 2.3. The diagram FVD(S) can be constructed in time O(n log n), even
if the line segments S touch or intersect. Refer to Aurenhammer, Drysdale and
Krasser [2006] for details on these properties and algorithms.

Khramtcova and Papadopoulou [2017] contributed with their result further
to the existing linear-time constructions for points by handling non-point sites
and disconnected Voronoi regions2. In their algorithm, the (disconnected) faces
are inserted one-by-one in contrast to inserting complete (connected) Voronoi

1In case of intersecting line-segments, the farthest line-segment Voronoi diagram is not part
of the farthest abstract Voronoi diagram framework (their bisectors are not Jordan curves).

2The time analysis of their randomized algorithm is based on a questionable backward time
analysis. However, the expected linear running time is correct as we have shown recently (not
published yet). The algorithm of Junginger and Papadopoulou [2018a] for site deletion in Ab-
stract Voronoi diagrams referred to and was based on the time analysis of Khramtcova and Pa-
padopoulou [2017]. We revise this time analysis in Chapter 5.
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regions in the case of point-sites. The realization of the insertion of the faces is
an innovative feature. It creates tree-like diagrams in the intermediate steps of
the algorithm, which are not instances of any type of Voronoi diagram. These
intermediate diagrams are related to our Voronoi-like diagrams that we introduce
in Chapter 3.

However, in their case definitions are geometric, relying on star-shapeness
and visibility properties, which are specific to line-segment Voronoi regions and
do not extend to the model of abstract Voronoi diagrams that we consider.

2.4 Conclusion

In this chapter we have seen the definition of abstract Voronoi diagrams, which is
fundamental for the rest of this thesis, since all results are presented in the setting
of an admissible bisector system of Jordan curves. Our Voronoi-like diagrams
presented in Chapter 3 are defined on arrangements of these abstract bisectors,
and thus make use of the notion of arrangements of Jordan curves that we have
reviewed as well.

We have given an overview of (randomized and deterministic) linear-time
algorithms for certain classes of Voronoi diagrams, among them concrete point-
sites and the farthest line-segment Voronoi diagrams as well as abstract Voronoi
diagrams. We have again underlined the challenging long-standing open prob-
lem of a linear-time algorithm for tree-like abstract Voronoi diagrams without
further restrictions on the bisector system.

Being inspired by the ideas of the intermediate (non-Voronoi) tree structures
in the randomized algorithm of Khramtcova and Papadopoulou [2017], in Chap-
ter 3 we will generalize and adapt them to the abstract setting in order to define
the most important object of this thesis, the Voronoi-like diagram. Using this
diagram we will be able to further contribute to the existing linear-time algo-
rithms for Voronoi diagrams by designing randomized linear-time algorithms for
abstract Voronoi diagrams in Chapters 5 and 6.
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Chapter 3

The definition of Voronoi-like diagrams
and an insertion operation

In this chapter we introduce the Voronoi-like diagram, a relaxed version of a
Voronoi construct that has a structure similar to an abstract Voronoi diagram,
without however being one. A Voronoi-like diagram is defined on a boundary
curve enclosing a simply connected domain. A Voronoi-like diagram is defined
relative to a Voronoi region VR(s, S), s ∈ S and it is a subgraph of the arrange-
ment of the admissible bisector system. Voronoi-like regions are supersets of real
Voronoi regions, and their boundaries correspond to monotone paths in the ar-
rangement of related bisectors, rather than to envelopes as in a real Voronoi dia-
gram. It allows to efficiently compute V(S \ {s}) truncated within VR(s, S), i.e.,
V(S \ {s})∩ VR(s, S).

In Section 3.1 we give some preliminaries and analyze the structure of the
diagram V(S \ {s})∩ VR(s, S), showing that it is tree-like.

In Section 3.2 we introduce the concepts of a monotone path, an envelope and
a boundary curve. We present the definition of a Voronoi-like diagram and give
basic properties.

In Section 3.3 we prove that a Voronoi-like diagram is robust under an inser-
tion operation, therefore, enabling its use in incremental constructions of Voronoi
diagrams.

This chapter is based on the following publication:
Kolja Junginger and Evanthia Papadopoulou. Deletion in Abstract Voronoi

Diagrams in Expected Linear Time. In 34th International Symposium on Compu-
tational Geometry (SoCG 2018), Dagstuhl, Germany.

We also published a corresponding longer version with all proofs on arXiv:
Kolja Junginger and Evanthia Papadopoulou. Deletion in abstract Voronoi dia-
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Figure 3.1. V(S \ {s}) ∩ VR(s, S) in red, where VR(s, S) is unbounded (gray,
shaded) and its boundary is shown in black bold.

grams in expected linear time, CoRR abs/1803.05372. URL: http://arxiv.org/
abs/1803.05372

3.1 Preliminaries

Given a set S of n abstract sites (indices), the bisector J(p, q) of two sites p, q ∈ S
is an unbounded Jordan curve, which is homeomorphic to a line and divides the
plane into two open domains: the dominance region of p, D(p, q) (having label
p), and the dominance region of q, D(q, p) (having label q), see Figure 2.1.

Given such a system of bisectors the Voronoi region of site p is defined as the
common intersections of its corresponding dominance regions, i.e.,

VR(p, S) =
⋂

q∈S\{p}
D(p, q).

All the Voronoi regions together define a subdivision of the plane, the Voronoi
diagram of S, more formally defined as

V(S) = R2 \
⋃

p∈S

VR(p, S),

see, e.g., Figure 2.2.
We always assume that the system of bisectors J = {J(p, q) : p 6= q ∈ S}

is admissible, i.e., it satisfies axioms (A1)–(A4) of Section 2.1 for every subset
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Figure 3.2. VR(p, S \ {s})∩VR(s, S) cannot be connected because of J(p, q).

S′ ⊆ S. Let X denote the closure of a region X . For the complete chapter we
fix one site s ∈ S, of which we think of a site that we want to delete from the
diagram V(S).

To update V(S), after deleting site s ∈ S, we compute the diagram of the
remaining sites V(S \ {s}) within VR(s, S), i.e., we compute V(S \ {s})∩VR(s, S).
The structure of this diagram is tree-like (see the following definition), which is
proven in Lemma 1.

Definition 1. We call a Voronoi diagram V(S) in a simply-connected domain D
tree-like, if its graph structure is a tree, or if it is a forest and D is unbounded,
having exactly one distinct face for each arc of ∂ D \ V(S) while its leaves are the
vertices of ∂ D ∩V(S) and points at infinity.

Figure 3.1 illustrates V(S \ {s}) ∩ VR(s, S) (in red) for an unbounded region
VR(s, S), and Figure 3.8(a) illustrates the same for a bounded region, where the
region’s boundary is shown in bold.

Bisectors in J that have a site p in common are called p-related or simply re-
lated; related bisectors can intersect at most twice [Klein, 1989, Lemma 3.5.2.5].
When two related bisectors J(p, q) and J(p, r) intersect, bisector J(q, r) also in-
tersects with them at the same point(s), and these points are the Voronoi ver-
tices of V({p, q, r}), see Fig. 2.2. Since any two related bisectors in J intersect
at most twice, the sequence of site occurrences along ∂ VR(p, S), p ∈ S, forms a
Davenport-Schinzel sequence of order 2 (by [Sharir and Agarwal, 1995, Theorem
5.7]).

An alternative proof for the next lemma has recently appeared in [Bohler
et al., 2019, Lemma 4] and is based on the fact that the Voronoi region VR(s, S)
is simply connected.1

1 First, Bohler, Klein and Liu [2016] published the statement for bounded regions only (in-
cluding, however, a more general statement for order-k Voronoi regions). The complete proof
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Ds

∂Ds

Γ

Ds

Ds

Γ Γ

Figure 3.3. The domain Ds = VR(s, S) ∩ DΓ is shown gray and shaded. The
Voronoi region VR(s, S) can be bounded, unbounded or have several openings
to infinity, corresponding to several Γ -arcs of Ds (dashed).

Lemma 1. V(S\{s})∩VR(s, S) is tree-like, i.e., it is a forest having exactly one face
for each Voronoi edge of ∂ VR(s, S). Its leaves are the Voronoi vertices of ∂ VR(s, S),
and points at infinity if VR(s, S) is unbounded. If VR(s, S) is bounded then V(S \
{s})∩ VR(s, S) is a tree. See Figure 3.1.

Proof. Every face in V(S \ {s}) ∩ VR(s, S) must touch the boundary ∂ VR(s, S)
because Voronoi regions are non-empty and connected; this implies that the dia-
gram is a forest. Every Voronoi edge e ⊆ J(s, p) on ∂ VR(s, S) must be entirely in
VR(p, S \{s}). Thus, no leaf can lie in the interior of a Voronoi edge of ∂ VR(s, S).
On the other hand, each Voronoi vertex of ∂ VR(s, S)must be a leaf of the diagram
as its incident edges are induced by different sites.

Now we show that no two edges of ∂ VR(s, S) can be incident to the same face
of V(S \ {s}) ∩ VR(s, S). Consider two edges on ∂ VR(s, S) induced by the same
site p ∈ S \{s}. Then there exists an edge between them, induced by a site q 6= p,
such that the bisector J(s, q) has exactly two intersections with J(p, s) as shown
in Figure 3.2. The bisector J(p, q) intersects with them at the same two points.
Since the bisector system is admissible, and thus VR(p, {s, p, q}) is connected,
J(p, q) connects these endpoints through D(p, s)∩D(q, s) as shown in Figure 3.2,
thus, J(p, q)∩VR(s, {s, p, q}) consists of two unbounded connected components.
This implies that D(p, q) ∩ VR(s, S) must have two disjoint faces, each of which
is incident to exactly one of the two edges of p. Thus VR(p, S \ {s}) ∩ VR(s, S)
cannot be connected and the two edges of p must be incident to different faces
of V(S \ {s})∩ VR(s, S).

If VR(s, S) is unbounded, two consecutive edges of ∂ VR(s, S) can extend to
infinity, in which case there is at least one edge of V(S \{s})∩VR(s, S) extending

in [Bohler et al., 2019, Lemma 4] including unbounded regions has appeared later, after we
published our proof in Junginger and Papadopoulou [2018b] including both bounded and un-
bounded regions (however, only for the nearest case, k = 1).
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Figure 3.4. (a) A p-inverse cycle has the label p on the outside of the cycle.
(b) A p-cycle that is incident to Γ .

to infinity between them; thus, leaves can be points at infinity. If VR(s, S) is
bounded, all leaves of V(S \ {s})∩ VR(s, S) must lie on ∂ VR(s, S). Since no face
is incident to more than one edge of ∂ VR(s, S), in this case V(S \ {s})∩ VR(s, S)
cannot be disconnected, and thus is a tree.

We denote by ∂ VR(s, S) the boundary of a Voronoi region VR(s, S). Recall that
the sequence of site-occurrences along ∂ VR(s, S) can include repetitions and this
constitutes a major difference from the respective problem for points, where no
repetition can occur. V(S \ {s})∩VR(s, S) contains disconnected Voronoi regions,
i.e., for a site p ∈ S \ {s}, the region VR(p, S \ {s}) ∩ VR(s, S) can consist of
several faces – a fact that introduces serious complications. For example, V(S′)∩
VR(s, S′ ∪ {s}) for S′ ⊂ S \ {s} may contain various faces that are not related to
V(S\{s})∩VR(s, S), and conversely, an arbitrary sub-sequence of ∂ VR(s, S) need
not correspond to any Voronoi diagram.

Let Γ be a closed Jordan curve in the plane large enough to enclose all the
intersections of bisectors in J, and such that each bisector crosses Γ exactly
twice and transversally. Without loss of generality, we restrict all computations
within Γ .2 Let the interior of Γ be denoted as DΓ . Our domain of computation is
Ds = VR(s, S)∩ DΓ , see Figure 3.3 and we compute V(S \ {s})∩ Ds. The curve Γ
can be interpreted as J(p, s∞), for all p ∈ S, where s∞ is an additional site at
infinity.

In the following we make some observations regarding an admissible bisector
system, which are used as tools in proofs throughout this dissertation. Let Cp be
a cycle of p-related bisectors in the arrangement of bisectors J ∪ Γ . If for every
edge in Cp the label p appears on the outside of the cycle then Cp is called p-
inverse, see Figure 3.4(a). If the label p appears only inside Cp then Cp is called

2The presence of Γ is conceptual and its exact position unknown; we never compute coordi-
nates on Γ .
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Figure 3.5. In (a) the arcs α,β fulfill the p-monotone path condition. In (b)
and (c) they do not fulfill it.

a p-cycle, see Figure 3.4(b). Recall that Γ can be considered a p-related bisector,
for all sites p ∈ S, where the label p is in the interior of Γ . Thus, a p-cycle may
contain pieces of Γ , whereas a p-inverse cycle cannot contain any such piece.

Lemma 2. In an admissible bisector system there is no p-inverse cycle.

Proof. Suppose a p-inverse cycle exists in the admissible bisector system. Let
Cp denote a minimal such cycle, where no p-related bisector may intersect the
interior of Cp and let Dp denote the interior of Cp. Such a minimal cycle must
exist because if a bisector J(p, q) intersects Dp, then it defines another (smaller)
p-inverse cycle that is contained in Cp ∪ Dp and whose interior is not intersected
by J(p, q). Let S′ ⊆ S denote the set of sites that define the edges of Cp. Consid-
ering S′, the farthest Voronoi region of p is FVR(p, S′) =

⋂

q∈S′\{p} D(q, p). But by
its definition, Dp must be identical to one face of FVR(p, S′). Since farthest Vo-
ronoi regions must be unbounded (see e.g., Mehlhorn et al. [2001]), we derive
a contradiction.

The following transitivity lemma is a consequence of transitivity of dominance
regions [Bohler et al., 2015, Lemma 2] and the fact that bisectors J(p, q), J(q, r),
J(p, r) intersect at the same point(s).

Lemma 3. Let z ∈ R2 and p, q, r ∈ S. If z ∈ D(p, q) and z ∈ D(q, r), then z ∈
D(p, r).

We make a general position assumption that no three p-related bisectors in-
tersect at the same point. This implies that Voronoi vertices have degree 3.

3.2 Voronoi-like diagrams

In this section we first introduce the concepts of a monotone path, an envelope
and a boundary curve. Then, we present the Voronoi-like diagram based on these
concepts and give basic properties.
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Figure 3.6. (a) The envelope E = env(Jp,{q,r,t}). (b) A p-monotone path P in
Jp,{q,r,t}.

Let S denote the sequence of Voronoi edges bounding the Voronoi region
VR(s, S) within DΓ , along ∂ VR(s, S), i.e., S = ∂ VR(s, S) ∩ DΓ . We consider S as
a cyclically ordered set of arcs, where each arc is a Voronoi edge of ∂ VR(s, S).
Each arc α ∈ S is induced by a site sα ∈ S \ {s}, where α ⊆ J(s, sα).

A single site in S may induce several arcs on S. Recall, that the sequence of
site occurrences along ∂ VR(s, S) is a Davenport-Schinzel sequence of order 2 and
thus, the number of Voronoi edges in S is 2ns−1, where ns is the number of sites
neighboring s (i.e., inducing Voronoi edges on ∂ VR(s, S)).

We can interpret the arcs in S as sites that induce a Voronoi diagram V(S)
within the domain Ds = VR(s, S)∩DΓ such as V(S) = V(S\{s})∩Ds, see, e.g., Fig-
ure 3.8(a) illustrating S in bold black and the diagram V(S) in red. By Lemma 1,
each face of V(S \ {s})∩ Ds is incident to exactly one arc in S. In this respect, we
can define the Voronoi region of an arc α in S, denoted as VR(α,S), as the face
of V(S \ {s})∩ Ds incident to α. Then V(S) = Ds \

⋃

α∈S VR(α,S).
For a site p ∈ S and a subset of sites S′ ⊆ S, let Jp,S′ = {J(p, q) |q ∈ S′, q 6= p}

denote the set of all p-related bisectors involving sites in S′.

Definition 2. Consider the arrangement of bisectors Jp,S′ , S′ ⊆ S, which is denoted
as A (Jp,S′) (see Section 2.2). A path P in Jp,S′ is a connected sequence of alter-
nating edges and vertices of A (Jp,S′). An arc α of P is a maximally connected set
of consecutive edges and vertices of the arrangement along P, which belong to the
same bisector. The common endpoint of two consecutive arcs of P is a vertex of P.
An arc of P is also called an edge.

Two consecutive arcs in a path P are pieces of different bisectors. We use the
notation α ∈ P to refer to an arc α of P.

Definition 3. A path P in Jp,S′ , S′ ⊆ S, is called p-monotone if any two consecutive
arcs α,β ∈ P, where α ⊆ J(p, sα) and β ⊆ J(p, sβ), coincide locally with the Voronoi
edges of ∂ VR(p, {p, sα, sβ}) that are incident to the common endpoint of α,β , within
a neighborhood around this endpoint (see Figure 3.5).
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Figure 3.7. A boundary curve P for S′ that consists of five original arcs, each
of which contains an arc of S′ (shown in black, bold), one auxiliary arc, which
does not contain an arc of S′, and one Γ -arc (subset of Γ ).

A p-monotone path of interest is the envelope of Jp,S′ .

Definition 4. The envelope of Jp,S′ , with respect to site p, is env(Jp,S′) = ∂ VR(p, S′∪
{p}), which is also called a p-envelope, see Figure 3.6(a).

Figure 3.6 illustrates two p-monotone paths, where the path in Figure 3.6(a)
is a p-envelope.

The system of bisectors Jp,S′ may have an arrangementA (Jp,S′) that consists
of several connected components. For convenience, and in order to unify these
connected components, we include the curve Γ in the corresponding system of
bisectors. Then, env(Jp,S′ ∪ Γ ) is a closed p-monotone path that consists of the
connected components in env(Jp,S′), as interleaved by arcs of Γ .3

Definition 5. Consider a set of arcs S′ ⊆ S and let S′ = {sα ∈ S |α ∈ S′} ⊆ S \ {s}
be its corresponding set of sites. A closed s-monotone path P in Js,S′ ∪ Γ such that P
contains all arcs in S′ is called a boundary curve for S′, see Figure 3.7.

The part of the plane enclosed by a boundary curve P is called its domain, and
it is denoted by DP. Given P, let SP = S′.

A set of arcs S′ ⊂ S can admit several different boundary curves. One such
boundary curve is its s-envelope env(S′) = env(Js,S′ ∪ Γ ). The set S has only one

3Recall that we interpret the curve Γ as J(p, s∞), for all p ∈ S, where s∞ is an additional site
at infinity and D(p, s∞) = DΓ , (the interior of Γ ).
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Figure 3.8. (a) illustrates S = ∂VR(s, S) in bold (black) and V(S) in red;
S = (α,β ,γ,δ,ε,ζ,η,ϑ). (b) illustrates a boundary curve P for S′ ⊆ S in
blue and gray, and Vl(P) in red. The gray arc g is a Γ -arc, and the blue
arc β ′ is an auxiliary arc; the remaining arcs are original and their core parts
S′ = (α,β ,γ,ε,η) are illustrated in bold. Some bisectors illustrate their labels.

boundary curve, which is the s-envelope env(S) = ∂ (VR(s, S)∩DΓ ). Figure 3.8(b)
illustrates a boundary curve for S′ ⊆ S in Figure 3.8(a).

A boundary curve P in Js,S′∪Γ consists of bisector pieces in Js,S′ , called bound-
ary arcs, and pieces of Γ , called Γ -arcs. Γ -arcs correspond to openings of the do-
main DP to infinity. Among the boundary arcs, those that contain an arc of S′ are
called original and any others are called auxiliary arcs, see Figure 3.7. Original
boundary arcs are expanded versions of the arcs in S. To distinguish between
them, we call the elements of S core arcs and use an ∗ in their notation. In Fig-
ures 3.7 and 3.8, the core arcs are illustrated in bold. |P| denotes the number of
boundary arcs in P.

We now define the Voronoi-like diagram of a boundary curve P.

Definition 6. Given a boundary curveP on a set of arcs S′ ⊆ S, whose corresponding
set of sites is S′ = {sα ∈ S |α ∈ S′} ⊆ S\{s}, the Voronoi-like diagram of P is a plane
graph Vl(P) on the arrangement of J(S′) = {J(p, q) ∈ J | p, q ∈ S′} that induces a
subdivision on the domain DP as follows (see Figure 3.8(b)):

1. For each boundary arc α ∈ P, there is exactly one distinct face R(α) in Vl(P)
such that ∂ R(α) consists of the arc α plus an sα-monotone path in Jsα,S′ ∪ Γ .

2. The faces of the boundary arcs cover the entire domain of P:
⋃

α∈P\Γ R(α) =
DP.

The Voronoi-like diagram of P is Vl(P) = DP \
⋃

α∈P R(α). The Voronoi-like region
R(α) in Vl(P) is also denoted as R(α,P).
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If the boundary curveP coincides with the s-envelopeE of S′, then the Voronoi-
like diagram Vl(E) coincides with the real Voronoi diagram V(E) = V(S′) ∩ DE

(see Corollary 1 in the sequel). In the Voronoi diagram V(E), the face incident
to a boundary arc α ∈ E can be regarded as the Voronoi region of the arc α
which is denoted as VR(α,E). In the sequel we show that Vl(E) = V(E), i.e.,
VR(α,E) = R(α,E) for any arc α ∈ E. Furthermore, if P is an arbitrary boundary
curve on S′, the Voronoi-like regions in Vl(P) are related to the real Voronoi re-
gions of V(E) as supersets, for the original and any other common arcs between
P and E. In Figure 3.8(b) the Voronoi-like region R(η) in Vl(P) is a superset of
its corresponding Voronoi region VR(η,S), which is illustrated in Figure 3.8(a);
similarly for e.g., R(α,P) in Figure 3.8(b), R(α,P) ⊇ VR(α,S).

Lemma 4. Let α ∈ P be a boundary arc such that α̃ ⊆ α appears on the s-envelope
E. Then, R(α,P) ⊇ VR(α̃,E). Further, if α is original, then R(α,P) ⊇ VR(α̃,E) ⊇
VR(α∗,S).

Proof. By the definition of a Voronoi region, no piece of a bisector J(sα, ·) can
appear in the interior of a Voronoi region in V(S′)∩ DE. Thus no piece of J(sα, ·)
can appear in VR(α̃,E), for any α̃ ∈ E. Since α ⊇ α̃, by the definition of a
Voronoi-like region it follows that R(α,P) ⊇ VR(α̃,E). For an original arc α,
since S′ ⊆ S, by the standard monotonicity property of Voronoi regions, we also
have VR(α̃,E) ⊇ VR(α∗,S).

As a corollary to the superset property of Lemma 4, the adjacencies of the
real Voronoi diagram V(E) are preserved in Vl(P), for all the original arcs in P.
As a result, Vl(E) must coincide with the Voronoi diagram V(E) = V(S′)∩ DE.

Corollary 1. Vl(E) = V(E) = V(S′)∩ DE, for the s-envelope E of S′ ⊆ S.

In the following we derive some basic properties of Voronoi-like regions and
their interaction with the bisectors in J that we use throughout this dissertation.
The following property establishes that an s-bisector J(s, sα) can never intersect
R(α,P) in Vl(P).

Lemma 5. For any arc α ∈ P, R(α,P) ⊆ D(s, sα).

Proof. The contrary would yield a forbidden sα-inverse cycle defined by a com-
ponent of J(s, sα)∩ R(α,P) and the incident portion of ∂ R(α,P).

Lemma 6. For a boundary curve P, the domain DP may not contain a p-cycle of
J(SP)∪ Γ , for any site p ∈ SP.
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Figure 3.9. Illustrations for Lemma 7 – the cut property. The shaded gray
region Re(α) lies in D(sβ , sα).

Proof. Let p ∈ SP define an original arc along P. This arc is bounding VR(p, SP∪
{s}), thus, it must have a portion within the interior of VR(p, SP) in V(SP). Hence,
VR(p, SP) has a non-empty intersection with R2 \DP. But VR(p, SP)∩DΓ must be
enclosed within any p-cycle of J(SP)∪ Γ , by its definition. Thus, no such p-cycle
can be contained in DP. Refer to Figure 3.10.

Next, we give a key property of a Voronoi-like region, which we call the cut
property.

Suppose bisector J(sα, sβ) appears within a Voronoi-like region R(α,P), see
Fig. 3.9. Let e be a connected component of J(sα, sβ) ∩ R(α,P) and let Re(α)
denote the portion of region R(α,P) that is cut out by e, as shown in Fig. 3.9.
In particular, if e does not intersect α, then Re(α) is the portion of the region at
the opposite side of e as α (case (a), see Fig. 3.9(a)). Otherwise, let β̃ be the
component of J(s, sβ)∩ R(α,P) intersecting α at the same point as e. If e and β̃
have only one endpoint on α, let Re(α) be the portion of the region that contains
β̃ (case (b), see Fig. 3.9(b)). If e intersects α once but β̃ intersects it twice, then
there are two components of J(sα, sβ) ∩ R(α,P) incident to α; let Re(α) denote
the portion of R(α,P) between these two components (case (c), see Fig. 3.9(c)).
Otherwise, both e and β̃ intersect α twice, let Re(α) be the portion of the region
incident to ∂ R(α,P) (case (d), see Fig. 3.9(d)).

Lemma 7. Suppose bisector J(sα, sβ) appears within R(α,P) (see Fig. 3.9). For any
connected component e of J(sα, sβ)∩ R(α,P), it holds Re(α) ⊆ D(sβ , sα). Thus, if e
does not intersect α, the label sα must appear on the same side of e as α.

Note that ∂ Re(α) may contain Γ -arcs.

Proof. Let e be an arbitrary component of J(sα, sβ)∩R(α,P). Suppose for the sake
of contradiction that Re(α) 6⊆ D(sβ , sα). Then J(sβ , sα) must intersect the interior
of Re(α) with a component e′ of J(sβ , sα) ∩ R(α,P), which is different from e.
Among any such component let e′ be the first one following e along J(sβ , sα).
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Figure 3.10. A p-cycle
(possibly with Γ -arcs)
within DP does not exist.
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Figure 3.11. (a) Illustration for the proof of
Lemma 7: The component e′ has a contradic-
tory edge labeling.

Since e′ cannot intersect e, nor can it intersect β̃ (in cases (b) and (c) as a direct
implication of Lemma 5), it follows that e′ cannot intersect the arc α. But then
e′ creates an sα-cycle with ∂ Re(α) within DP (see Figure 3.11(a)), contradicting
Lemma 6

By Lemma 7, any component of J(sα, sβ)∩ R(α,P) must appear sequentially
along ∂ R(α,P). In addition, if any such component exists, then J(s, sβ) must
also intersect DP, indicating an arc of sβ that is missing from P. In particular, the
presence of any component of J(sα, sβ)∩R(α,P) implies that there is a component
of J(s, sβ) ∩ DP that is missing from P. We show this formally in Section 4.1
(Lemma 17).

In the following theorem we conclude that Vl(P) exists and is unique, thus,
it is well-defined. The proof is deferred to Chapter 4.

Theorem 1. Given a boundary curve P of S′ ⊆ S, Vl(P) exists and is unique.

The complexity of Vl(P) is O(|P|), as it is a planar graph with exactly one face
per boundary arc and vertices of degree 3 (or 1).

3.3 Insertion in a Voronoi-like diagram

Consider a boundary curve P for S′ ⊂ S and its Voronoi-like diagram Vl(P).
Unless noted otherwise, we assume a counterclockwise traversal of P.

Let β∗ be an arc in S \ S′. Since β∗ is a core arc, it must be contained in
the closure of the domain DP. We define an insertion operation ⊕, which inserts
arc β∗, in P deriving Pβ = P⊕ β∗. Let β ⊇ β∗ be the connected component of
J(s, sβ)∩ DP that contains β∗ (see Figure 3.12).

Given P and β∗, we define the original arc β ⊇ β∗ as the connected com-
ponent of J(s, sβ) ∩ DP that contains β∗ (see Figure 3.12). Let Pβ denote the
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β∗

Pβ

J(sβ , s)y
x

Psβ
s

Figure 3.12. Pβ = P⊕ β , core arc β∗ is bold, black. Endpoints of β are x , y.

boundary curve derived by P by deleting its portion between the endpoints of
β and substituting it with arc β (see Figure 3.12). We say that Pβ is obtained
from P by inserting the core arc β∗, or equivalently, by inserting the original arc
β . Thus, we define an insertion operation ⊕, which inserts the core arc β∗ in P,
deriving Pβ = P⊕ β∗ = P⊕ β .

The insertion operation ⊕ further computes the boundary ∂ R(β ,Pβ), inserts
R(β ,Pβ) in Vl(P), and derives the Voronoi-like diagram Vl(Pβ) = Vl(P) ⊕ β .
When the distinction is not important, we often slightly abuse notation and use
the notation β to refer interchangeably to either the original arc β or its core
portion β∗ in S \ S′.

Figure 3.13 enumerates all possible cases of inserting arc β in P and is sum-
marized in the following observation.

Observation 1. All possible cases of inserting arc β∗ ⊆ β in P (see Figure 3.13).
DPβ
⊆ DP.

(a) Arc β straddles the endpoint of two consecutive boundary arcs; no arcs in P are
deleted.

(b) Auxiliary arcs in P are deleted by β; their regions are also deleted from Vl(Pβ).

(c) An arc α ∈ P is split into two arcs by β; R(α) in Vl(P) will also be split.

(d) A Γ -arc is split in two by β; Vl(Pβ) may switch from being a tree to being a
forest.

(e) A Γ -arc is deleted or shrunk by inserting β . Vl(Pβ) may become a tree.

(f) P already contains a boundary arc β̄ ⊇ β∗; then β = β̄ and Pβ = P.

Note that Pβ may contain fewer, the same number, or even one extra auxiliary
arc compared to P.

Lemma 8. The curve Pβ = P⊕ β is a boundary curve for S′ ∪ {β∗}.



46 3.3 Insertion in a Voronoi-like diagram

Γ

P

PP

β
β

β

P

β

(a) (b) (c)

(d)

P

(e)

P

β

(f)

β

Figure 3.13. Insertion cases for an arc β .

Proof. Since P is a (closed) s-monotone path in Js,S′∪Γ , Pβ is also an s-monotone
path in Js,S′∪{sβ } ∪ Γ , by construction. Since every core arc in S appears on the
envelope env(Js,S∪Γ ), no core arc can appear in the portion of P that gets deleted
by the insertion of β . Thus, no original arc in P can get deleted, and Pβ contains
all core arcs in S′ ∪ β∗.

Given Vl(P) and β∗ ∈ S \ S′, we define a merge curve J(β), within Vl(P),
which delimits the boundary of the region R(β ,Pβ) for the original arc β ⊇ β∗.
We define J(β) incrementally, starting at an endpoint of β . Let x and y denote
the endpoints of β , where x ,β , y are in counterclockwise order around Pβ ; refer
to Figure 3.14.

Definition 7. Given Vl(P) and arc β ⊆ J(s, sβ), the merge curve J(β) is a path
(v1, . . . , vm) in the arrangement of sβ -related bisectors, Jsβ ,SP ∪ Γ , connecting the
endpoints of β , v1 = x and vm = y. Each edge ei = (vi, vi+1) is an arc of a bisector
J(sβ , ·), called a bisector edge, or an arc on Γ . For i = 1: if x ∈ J(sβ , sα), then
e1 ⊆ J(sβ , sα); if x ∈ Γ , then e1 ⊆ Γ . Given vi, vertex vi+1 and edge ei+1 are defined
as follows (see Figure 3.14). We assume a clockwise ordering of J(β).

1. If ei ⊆ J(sβ , sα), let vi+1 be the other endpoint of the component J(sβ , sα)∩R(α)
incident to vi. If vi+1 ∈ J(sβ , ·) ∩ J(sβ , sα), then ei+1 ⊆ J(sβ , ·). If vi+1 ∈ Γ ,
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Figure 3.14. The merge curve J(β) (thick,
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Figure 3.15. If β splits α,
J(β) ⊂ R(α) would yield a
forbidden sα-inverse cycle.
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Figure 3.16. J i
x and J j

y in
Section 3.3.1.

then ei+1 ⊆ Γ . (In Figure 3.14, see ei = e′, vi = z, vi+1 = z′.)

2. If ei ⊆ Γ , let g be the Γ -arc incident to vi. Let ei+1 ⊆ J(sβ , sγ), where R(γ) is
the first region, incident to g clockwise from vi, such that J(sβ , sγ) intersects

g ∩ R(γ); let vi+1 be this intersection point. (In Figure 3.14, see vi = v and
vi+1 = w.)

A vertex v along J(β), is called valid if v is a vertex in the arrangement of the
bisector system Jsβ ,SP ∪ Γ or v is an endpoint of β . The following theorem shows
that J(β) is well-defined and that it forms an sβ -monotone path. We defer its
proof to the end of this section.

Theorem 2. The merge curve J(β) is a unique sβ -monotone path in the arrange-
ment of sβ -related bisectors Jsβ ,SP∪Γ connecting the endpoints of β . If arc β splits a
single arc α ∈ P (Observation 1(c)) then J(β) must intersect R(α,P) in two differ-
ent components, e1, em−1 ⊆ J(sα, sβ). J(β) can intersect any other region in Vl(P)
at most once. J(β) cannot intersect R(α′,P) for any auxiliary arc α′ ∈ P \Pβ , nor
can it intersect arc β in its interior.

We define the region R(β) as the area enclosed between J(β) and β . Let
Vl(P)⊕ β be the subdivision obtained from Vl(P) by inserting J(β) and deleting
any portion of Vl(P) that is enclosed between J(β) and the portion of P deleted
by β . Formally, let Vl(P)⊕ β =

�

(Vl(P) \ R(β))∪ J(β)
�

∩ DPβ
.
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J(β,P)

R(γ)γ
sγ sβ

sβsα
vi

vi+1

Figure 3.17. Impossible configura-
tion of J(sβ , sγ). Scanning ∂ R(γ) from
vi counterclockwise, Lemma 7 assures
that vi+1 is the first encountered inter-
section of J(sβ , sγ) with ∂ R(γ).
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Figure 3.18. Illustration for the case
that β splits ω in two arcs ω1 and ω2.

Theorem 3. Vl(P)⊕ β is the Voronoi-like diagram Vl(Pβ).

Proof. By construction, Vl(P)⊕ β defines a subdivision of the domain DPβ
and

contains one face R(α) for each arc α ∈ Pβ .
By Theorem 2, J(β), and thus ∂ R(β)\β , is an sβ -monotone path. For any arc

α ∈ P such that J(β) passes through R(α,P), the updated boundary of R(α)\α in
Vl(P)⊕ β remains an sα-monotone path, by the definition of J(β). This includes
the case when β splits an arc α ∈ P in two arcs α1,α2 ∈ Pβ . In this case, by
Theorem 2, J(β) splits R(α,P) in two regions R(α1) and R(α2) in Vl(P)⊕ β ,
whose boundaries remain sα-monotone paths. Thus, for any arc α ∈ Pβ , the
boundary of the region R(α) in Vl(P)⊕ β , ∂ R(α) \ α, is an sα-monotone path,
satisfying the first requirement of Definition 6.

Since J(β) can enter a region in Vl(P) at most once (except from Observa-
tion 1(c) which is settled above) J(β) cannot cut out of any region some face in
the interior of DP. In addition, the regions of arcs in P \Pβ get entirely deleted
from Vl(P) as J(β) cannot pass through them, by Theorem 2. Thus, any face of
Vl(P)⊕ β must be incident to Pβ , and thus, the second requirement of Defini-
tion 6 is also satisfied. Hence, Vl(P)⊕ β satisfies the requirements of a Voronoi-
like diagram on the boundary curve Pβ . Since, by Theorem 1, the Voronoi-like
diagram of a boundary curve is unique, it follows that Vl(P)⊕ β = Vl(Pβ).

The tracing of the merge curve J(β) within Vl(P), given the endpoints of β ,
can be done similarly to any ordinary Voronoi diagram, see e.g., [Aurenhammer
et al., 2013, Ch. 7.5.3], thanks to Lemma 7. In particular, when computing J(β)
and we enter some region R(γ) at a point vi, we scan ∂ R(γ) counterclockwise
for the first intersection with J(sβ , sγ) to determine vi+1. This is possible in a
Voronoi-like diagram because of the cut property, Lemma 7, which assures that
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no other intersection of J(sβ , sγ) with ∂ R(γ) is possible, between vi and vi+1 as
shown in Figure 3.17. Thus, we derive the following lemma.

Lemma 9. Let ei = (vi, vi+1) be an edge of J(β) in R(γ). Given vi, we can determine
vi+1 by sequentially scanning ∂ R(γ) counterclockwise from vi (away from γ). No
intersection of J(sβ , sγ) with ∂ R(γ) is possible between vi and vi+1.

To identify the first edge of J(β), special care is required in cases (c), (d),
and (e) of Observation 1. In these cases, β may not overlap with any feature
of Vl(P), thus, a starting point for tracing J(β) is not readily available. Details
are given in the following lemma. The statement of this lemma is an adapta-
tion from a respective statement of Khramtcova and Papadopoulou [2017] for
the farthest-segment Voronoi diagram, in the more general environment of an
abstract Voronoi-like diagram.

Let P̃ denote a finer version of P derived by intersecting its Γ -arcs with Vl(P).
That is, any Γ -arcs of P may be partitioned into finer pieces by the incident faces
of Vl(P). Since the complexity of Vl(P) is O(|P|), it follows that |P̃| is also O(|P|)
(recall that | · | denotes complexity).

We first define some parameters for the time complexity analysis and fix a
ccw order throughout the definition.

Definition 8. Let α and γ denote the original arcs preceding and following β on
Pβ . We use the following parameters:

1. Let d1(β ,Pβ) denote the number of auxiliary arcs that appear on Pβ from α
to β (or equivalently from β to γ).

2. Let d2(β ,Pβ) denote the number of auxiliary arcs in P that get deleted by the
insertion of β .

3. In case (c) of Observation 1, where an arc ω is split by the insertion of β in
two arcs (ω1,ω2), let r(β ,Pβ) = min{|∂ R(ω1,Pβ)|, |∂ R(ω2,Pβ)|}. In all
other cases, r(β ,Pβ) = 0.

4. In case (d) of Observation 1, where β splits a Γ -arc, let d̃(β ,Pβ) denote the
number of fine Γ -arcs on P̃β from α to β (i.e., the number of faces in Vl(Pβ)
incident to Γ from α to β). In all other cases, d̃(β ,Pβ) = 0.

Lemma 10. Given α, γ, and Vl(P), in all cases of Observation 1, the merge curve
J(β) can be computed in time O(|J(β)|+d1(β ,Pβ)+d̃(β ,Pβ)+d2(β ,Pβ)+r(β ,Pβ)).
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Proof. We assume a ccw traversal. We first determine the endpoints of arc β , by
scanning sequentially the arcs in P from α to β , in time O(d1(β ,Pβ)+d2(β ,Pβ)).
This scan further determines which insertion case of Observation 1 is concerned.

Let T (β) denote the portion of Vl(P) that is enclosed by J(β) and P\Pβ , i.e.,
the portion deleted by the insertion of β . By Theorem 2, T (β) is a plane forest
that is incident to the following faces of Vl(P): (1) one face for each bisector
edge of J(β); (2) one face for each auxiliary arc α′ ∈ P \Pβ . We infer that T (β)
has complexity O(|J(β)|+ d2(β ,Pβ)).

To compute J(β)we essentially trace T (β) in time O(|T (β)|) as in an ordinary
Voronoi diagram, which is possible due to Lemma 9. However, we first need to
determine one leaf of T (β). The graph T (β) can have a leaf on P or not.

First, we consider the case that T (β) has a leaf on P. Then, in all cases except
in cases (d) and (e) a leaf is determined by sequentially scanning the arcs in P

from α to β , in time O(d1(β ,Pβ)+d2(β ,Pβ)). If β has exactly one endpoint on Γ
(which is possible in case (e)), then additionally fine Γ -arcs of P̃ \ P̃β have to be
scanned to find a leaf. Since these Γ -arcs are all part of T (β), this can be done
in time O(|T (β)|). Otherwise, β has both endpoints on Γ (case (d)) and all fine
Γ -arcs of P̃β between α and β have to be scanned to find a leaf, which adds the
term O(d̃(β ,Pβ)) to the time. In case (d) neither auxiliary arcs get deleted nor
does any boundary arc get split.

In the remainder of the proof we consider the special case that T (β) has no
leaf on P, i.e. β is enclosed in a single Voronoi-like region, which is possible in
cases (c)-(e) of Observation 1.

In case (c) of Observation 1, where the insertion of arc β splits arc ω in two
parts, ω1 and ω2, we sequentially scan ∂ R(ω), starting at both endpoints of ω
in parallel until we determine an intersection with J(sω, sβ), see Figure 3.18.
The scanned sequence of edges becomes a portion of ∂ R(ωi), where i ∈ {1,2}
determines the shorter of the two sequences. This adds the term r(β ,Pβ) =
min{|∂ R(ω1,Pβ)|, |∂ R(ω2,Pβ)|} to the overall time complexity. In case (c) no
auxiliary arcs get deleted by the insertion of β , i.e., d2(β ,Pβ) = 0.

In cases (d) and (e) (if T (β) has no leaf on P), arc β has at least one endpoint
on a fine Γ -arc and β lies entirely in a region R(δ). In this case J(β) has constant
length (m = 3 or m = 4), and thus, it can be computed in O(1) time (after
identifying δ). In particular, if β has one endpoint on Γ and one on δ (case
(e)), then δ is already identified and J(β) equals J(sδ, sβ) ∩ DΓ plus one Γ -arc,
see Fig. 3.19. Otherwise, β must have both endpoints on Γ (case (d)), and J(β)
consists of J(sδ, sβ)∩ DΓ plus the two incident Γ -arcs, see Fig. 3.20. In this case
we can identify δ in O(d̃(β ,Pβ)) time by scanning the fine Γ -arcs on P̃ from α
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Figure 3.19. Endpoint x lies on a fine
Γ -arc gδ bounding R(δ), and y ∈ δ.
If v2 ∈ gδ then J(β) = (x , v2, y).
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arc gδ bounding R(δ). If v2, vm−1 ∈ gδ
then J(β) = (x , v2, vm−1, y).

to β .

Lemma 10 expresses the time complexity necessary to insert arc β in Vl(P)
in terms of the resulting diagram Vl(Pβ), except from term d2(β ,Pβ).

3.3.1 Proving Theorem 2

We first establish that J(β) cannot intersect arc β , other than its endpoints. To
this aim we use Lemma 5.

First observe that the open portion of β is contained in DP, thus, it is parti-
tioned into smaller pieces by the regions of Vl(P). By Lemma 5 bisector J(sβ , sα)
cannot intersect J(s, sβ)within any region R(α) of Vl(P), because if it did, J(s, sα)
would also pass through the same intersection point in R(α) contradicting that
R(α) ⊆ D(s, sα). Thus, no edge of J(β) can intersect arc β in its interior.

We use the following observation throughout the proofs in this section.

Lemma 11. For any p ∈ S, D(s, p) ∩ DP is connected. Thus, any components of
J(s, ·)∩ DP must appear sequentially along P.

Proof. If we assume the contrary we obtain a forbidden s-inverse cycle defined
by J(s, ·) and P.

We now establish that J(β) cannot pass through any region of auxiliary arcs
in P \Pβ that are deleted by the insertion of β .

Lemma 12. Let α ∈ P but α 6∈ Pβ . Then R(α) ⊂ D(sβ , sα).

Proof. By Lemma 5, it holds that R(α) ⊆ D(s, sα). Let Rs = R(α) ∩ D(s, sβ) and
Rβ = R(α)∩D(sβ , s). By transitivity of dominance regions we have Rβ ⊆ D(sβ , sα).
By Lemma 11, Rs is not incident to α. Thus, if J(sβ , sα) intersected Rs then it
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Figure 3.21. Illustrations for Lemma 12.

would create a forbidden sα-cycle contradicting Lemma 6, see the dashed gray
line in Figure 3.21. This implies that also Rs ⊆ D(sβ , sα). Thus, R(α) = Rs ∪ Rβ ⊆
D(sβ , sα).

In the following we prove that J(β) is an sβ -monotone path connecting the
endpoints of β . To this aim we perform a bi-directional induction on the vertices
of J(β).

Let J i
x = (v1, v2, . . . , vi), 1≤ i < m, be the subpath of J(β) starting at v1 = x up

to vertex vi, including a small neighborhood of ei incident to vi, see Figure 3.16.
Note that vertex vi uniquely determines ei, however, its other endpoint is not yet
specified. Similarly, let J j

y = (vm, vm−1, . . . , vm− j+1), 1≤ j < m, denote the subpath
of J(β), starting at vm up to vertex vm− j+1, including a small neighborhood of
edge em− j. For any bisector edge e` ∈ J(β), let α` denote the boundary arc that
induces e`, i.e., e` ⊆ J(sα` , sβ)∩ R(α`).

Induction hypothesis: Suppose J i
x and J j

y , i, j ≥ 1, are disjoint sβ -monotone
paths. Suppose further that each bisector edge of J i

x and of J j
y passes through a

distinct region of Vl(P): α` is distinct for `, 1≤ `≤ i and m− j ≤ ` < m, except
possibly αi = αm− j and α1 = αm−1.

Induction step: Assuming that i + j < m, we prove that at least one of J i
x or

J j
y can respectively grow to J i+1

x or J j+1
y at a valid vertex (Lemmas 13, 14), and

it enters a new region of Vl(P) that has not been visited so far (Lemma 16). A
finish condition when i+ j = m is given in Lemma 15. The base case for i = j = 1
is trivially true.

Suppose that ei ⊆ J(sαi
, sβ) and vi ∈ ∂ R(αi). To show that vi+1 is a valid

vertex it is enough to show that (1) vi+1 can not be on αi, and (2) if vi is on a
Γ -arc then vi+1 can be determined on the same Γ -arc. However, we cannot easily
derive these conclusions directly. Instead we show that if vi+1 is not valid then
vm− j will have to be valid.

In the following lemmas we assume that the induction hypothesis holds.

Lemma 13. Suppose ei ⊆ J(sαi
, sβ) but vi+1 ∈ αi, that is, ei hits arc αi ∈ P, and

thus, vi+1 is not a valid vertex. Then vertex vm− j must be a valid vertex inA (Jsβ ,SP),
and vm− j can not be on P.
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Figure 3.22. The assumption that edge ei = (vi, vi+1) of the merge curve J i
x hits

a boundary arc of P as in Lemma 13.

Proof. Suppose vertex vi+1 of ei lies on arc αi as shown in Figure 3.22(a). Vertex
vi+1 is the intersection point of related bisectors J(s, sαi

), J(sβ , sαi
) and thus also of

J(s, sβ). Thus, v1, vm, vi+1 ∈ J(s, sβ). By the induction hypothesis, no other vertex
of J i

x nor J j
y can be on J(s, sβ). Vertices v1, vi+1, vm appear on P in clockwise order,

because J i+1
x cannot intersect β . Arc β partitions J(s, sβ) in two parts: J1 incident

to v1 and J2 incident to vm. We claim that vi+1 must lie on J2, as otherwise, J i+1
x

and J1 would form a forbidden sβ -inverse cycle, see the dashed black and the
green solid curve in Figure 3.22(a), contradicting Lemma 2. This cycle must be
sβ -inverse because J i+1

x ⊆ DP, and all components of J(s, ·) ∩ DP must appear
sequentially along P by Lemma 11.

Thus, vi+1 lies on J2. Further, by Lemma 11, the components of J2 ∩ DP ap-
pear on P clockwise after vi+1 and before vm, as shown in Figure 3.22(b), which
illustrates J(s, sβ) as a black dashed curve.

Now consider J j
y . We show that vm− j cannot be on P. First observe that vm− j

can not lie on P, clockwise after vm and before v1, since J j+1
y cannot cross β . Now

we prove that vm− j cannot lie on P clockwise after v1 and before vi+1. To see that,
note that edge em− j cannot cross any non-Γ edge of J i+1

x , because by the induction
hypothesis, αm− j is distinct from all α`,` ≤ i. In addition, by the definition of a
Γ -arc, vm− j cannot lie on any Γ -arc of J i

x . Finally, we show that vm− j cannot lie
on P clockwise after vi+1 and before vm. If vm− j lay on the boundary arc αm− j

then we would have vm− j ∈ J(s, sβ). This would define an sβ -inverse cycle Cβ ,
formed by J j+1

y and J(sβ , s), see Figure 3.22(b), similarly to the first paragraph
of this proof. If vm− j lay on a Γ -arc then there would also be a forbidden sβ -
inverse cycle formed by J j+1

y and J(s, sβ) because in order to reach Γ , edge ei

must cross J(s, sβ). See the dashed black and the green curve in Figure 3.22(c).
Thus vm− j 6∈ P.

Since vm− j ∈ ∂ R(αi+1) but vm− j 6∈ P, it must be a vertex ofA (Jsβ ,SP).

The proof for the following lemma is similar.
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Figure 3.23. The assumption that vi ∈ Γ and vi+1 of the merge curve J i
x cannot

be determined as in Lemma 14.

Lemma 14. Suppose vertex vi is on a Γ -arc g ∈ P but vi+1 cannot be determined
because no bisector J(sβ , sγ) intersects R(γ)∩ g, clockwise from vi. Then vertex vm− j

must be a valid vertex inA (Jsβ ,SP) and vm− j can not be on P.

Proof. We truncate the Γ -arc g to its portion clockwise from vi; let w be the end-
point of g clockwise from vi, see Figure 3.23(a). If no J(sβ , sγ)∩ R(γ) intersects
g, as we assume in this lemma, then R(γ) ∩ g ⊆ D(sβ , sγ), for any region R(γ)
incident to g. Thus, w ∈ D(sβ , s). However, vi ∈ D(s, sβ), since, by Lemma 5,
R(αi−1) ⊆ D(s, sαi−1

) and vi is incident to J(sβ , sαi−1
)∩R(αi−1). Thus, J(s, sβ) must

intersect g at some point z clockwise from vi. Arc β partitions J(s, sβ) in two
parts: J1 incident to v1 and J2 incident to vm. Lemma 11 implies that all compo-
nents of J2 ∩ DP appear on P clockwise after vi and before vm, as shown by the
black dashed curve in Figure 3.23(a); also z lies on J2.

Now we can show that vertex vm− j of J j
y cannot be on P analogously to the

proof of Lemma 13. The only difference is that we must additionally show that
vm− j cannot lie on P clockwise after vi and before w. But this holds already by
the assumption in the lemma statement. Refer to Figures 3.23(b) and (c).

We conclude that vm− j cannot lie on P and it is a valid vertex ofA (Jsβ ,SP).

Lemma 15 in the sequel provides a finish condition for the induction, when
J i

x and J j
y are incident to a common region or to a common Γ -arc. When it is

met, the merge curve J(β) is a concatenation of J i
x and J j

y .

Lemma 15. Suppose i + j > 2 and either (1) or (2) holds: (1) vi and vm− j+1 are
incident to a common region R(αi) and ei, em− j ⊆ J(sβ , sαi

), i.e., αi = αm− j; or (2)
vi and vm− j+1 are on a common Γ -arc g of P and ei, em− j ⊆ Γ . Then vi+1 = vm− j+1,
vm− j = vi, and m= i + j.

Proof. Letα= αi. Suppose (1) holds, then ei, em− j ⊆ J(sβ , sα), see Figure 3.24(a).
The boundary ∂ R(αi) is partitioned in four parts, using a counterclockwise traver-
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Figure 3.24. Illustrations for Lemma 15. (a) corresponds to condition (1) and
(b) to condition (2).

sal starting at αi: ∂ R1, from the endpoint of arc αi to vi; ∂ R2, from vi to vm− j+1;
∂ R3, from vm− j+1 to the next endpoint of αi; and arc αi. We show that ei and
em− j cannot hit any of these parts; thus, ei = em− j.

1. Edge ei cannot hit ∂ R1 and edge em− j cannot hit ∂ R3 by the cut property,
Lemma 7.

2. We prove that edge ei cannot hit ∂ R2. Analogously for edge em− j. Let ρ be
any edge on ∂ R2. (If vi ∈ ρ or vm− j+1 ∈ ρ, assume that ρ is truncated with
endpoint vi or vm− j+1 respectively).

(a) Suppose that ρ is a bisector edge, ρ ⊆ J(sα, sγ), see Figure 3.24(a).
Then at least one of J j

y , J i
x , or β must pass through R(γ). Suppose

that J j
y does, as shown in Figure 3.24(a). Then by the cut property

(Lemma 7) ρ ⊆ D(sβ , sγ). By transitivity (Lemma 3) it also holds
that ρ ⊆ D(sβ , sα). Thus, ei cannot hit ρ. Symmetrically for J i

x . If
only β passes through R(γ), then we can use Lemma 12 to derive that
ρ ⊆ D(sβ , sγ); the rest follows.

(b) Suppose that ρ ⊆ Γ . Then either ρ itself is part of an edge of J j
y or

of J i
x , or β passes through R(α) and ρ is at opposite side of it than α.

In the former case, ρ ⊆ D(sβ , sα) by the definition of a Γ -edge in the
merge curve. In the latter case, the same is derived by Lemma 5 and
transitivity (Lemma 3). Thus, ei cannot hit ρ.

3. Edge ei (resp. em− j) cannot hit ∂ R3 because if it did, ei and em− j would not
appear sequentially on R(αi) contradicting Lemma 7.
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Figure 3.25. Illustration for Lemma 16.

4. It remains to show that ei and em− j cannot both hit αi. But this is already
shown in Lemma 13.

Now suppose (2) holds, see Figure 3.24(b). Let R(γ) be a region in Vl(P)
incident to the Γ -arc g and let ρ = R(γ) ∩ g be the Γ -arc bounding R(γ), which
lies between vi and vm− j+1. At least one of J j

y or J i
x or β must pass through R(γ).

By the exact same arguments as before, ρ ⊆ D(sβ , sγ). We infer that there is no
bisector J(sβ , sγ) in R(γ), for any region R(γ) incident to g between vi and vm− j+1.
Thus, ei+1 = em− j+1 ⊆ g.

Thus, in both (1) and (2) vi+1 = vm− j+1, vm− j = vi, and m= i + j. J(β) is the
concatenation of J i

x and J j
y with ei+1 = em− j+1.

Lemma 16. Suppose vertex vi+1 is valid and ei+1 ⊆ J(sβ , sai+1
). Then R(αi+1) has

not been visited by J i
x nor J j

y , i.e., αi+1 6= α` for `≤ i and for m− j < `.

Proof. Let ek, k ≤ i, be a bisector edge of J i
x . Denote by ∂ R1

k the portion of
∂ R(αk) from αk to vk in a counterclockwise traversal, see the bold red part ∂ R1

i
in Figure 3.25. Analogously for a bisector edge em− j of J j

y , where ∂ R1
m− j is defined

in a clockwise traversal of ∂ R(αm− j). Recall that ∂ Rek
(αk), denotes the portion

of ∂ R(αk) cut out by edge ek, at opposite side from αk.
The cut property of Lemma 7 implies that vi+1 cannot be on ∂ Re`(α`) for any

`, ` < i and m − j < ` and that vi+1 cannot be on ∂ R1
i . This implies that vi+1

cannot be on ∂ R1
`

for any ` < i, because we have a plane graph in DP and by
its layout ∂ R1

`
is not reachable from ei without first hitting ∂ Re`(α`) or ∂ R1

i . See
Figure 3.25. Thus, vi+1 can not be on ∂ R(α`), ` < i. By Lemma 15 vi+1 cannot
be on ∂ R1

m− j. This implies, again by the layout, that vi+1 cannot be on ∂ R1
`

for all
` > m− j. Thus, vi+1 can not be on ∂ R(α`), for any ` > m− j. This implies that
αi+1 6= α`, for any `, `≤ i or ` > m− j.

By Lemma 16, J i+1
x and J j+1

y always enter a new region of Vl(P) that has not
been visited in any previous step. Thus, conditions (1) or (2) of Lemma 15 must
be fulfilled at some point of the induction. Thus, the induction in the proof of
Theorem 2 is complete.
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Completing the bi-directional induction establishes also the remaining prop-
erties for J(β). First, J(β) can never enter the same region twice (by Lemma 16),
except R(α1), if R(α1) = R(αm). This is Observation 1(c) where arc β splits a
single arc α ∈ P. In this case J(β) enters R(α,P) exactly twice and e1, em−1 ⊆
J(sα, sβ). This is because J(β) must intersect ∂ R(α,P) in this case, i.e., J(β) 6⊆
R(α,P). If J(β) ⊆ R(α,P), then J(β) = J(sα, sβ) contradicting the labeling of the
cut property (Lemma 7) (see Fig 3.11(b)).

Completing the induction for Theorem 2 establishes also that J(β) is unique
and that the conditions of Lemmas 13 and 14 can never be met. Thus, no vertex
of J(β), except its endpoints, can be on a boundary arc of P.

3.4 Conclusion

In this chapter we have introduced the Voronoi-like diagram. It is defined rela-
tive to a Voronoi region VR(s, S) and is a relaxed version of a Voronoi diagram.
Voronoi-like regions are supersets of real Voronoi regions. A Voronoi-like dia-
gram Vl(P) is defined for a boundary curve P, based on the notions of monotone
paths in the arrangement of abstract bisectors. A boundary curve P is defined for
a subset of arcs S′ ⊆ S, which are Voronoi edges of ∂ VR(s, S).

Moreover, we have introduced an insertion operation ⊕: given a Voronoi-like
diagram Vl(P), where P is a boundary curve for S′, we can insert an arc β ∈ S\S′

into Vl(P) in order to obtain a new Voronoi-like diagram Vl(P)⊕β . Establishing
the correctness of the insertion of a new Voronoi-like region was particularly
difficult (Section 3.3.1). Voronoi-like diagrams lack the standard monotonicity
property4 of real Voronoi diagrams, but instead we established the cut property
(Lemma 7), which gives a powerful tool to derive many of our proofs. The cut
property allows also to trace a newly inserted region efficiently as in ordinary
Voronoi diagrams (Lemma 9).

4The monotonicity property for Voronoi diagrams is the following: If S1 ⊆ S2, then VR(p, S2) ⊆
VR(p, S1), p ∈ S1. In Voronoi-like diagrams a corresponding statement is not true: Let S1 ⊂ S2 ⊆
S and let P1, P2 be two arbitrary boundary curves of S1 and S2 respectively. Then for α ∈ S1, it
is possible that R(α,P1) 6⊇ R(α,P2). See Section 7.1 for more details and examples.
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Chapter 4

Existence and uniqueness of
Voronoi-like diagrams

In this chapter we establish that given a boundary curve P, its Voronoi-like di-
agrams Vl(P) exists (Section 4.2), and Vl(P) is unique (Section 4.1) proving
Theorem 1 from Section 3.2.

Section 4.1 is based on the following publication:
Kolja Junginger and Evanthia Papadopoulou. Deletion in Abstract Voronoi

Diagrams in Expected Linear Time. In 34th International Symposium on Compu-
tational Geometry (SoCG 2018), Dagstuhl, Germany.

The corresponding longer arXiv version contains all proofs:
Kolja Junginger and Evanthia Papadopoulou. Deletion in abstract Voronoi dia-

grams in expected linear time, CoRR abs/1803.05372. URL: http://arxiv.org/
abs/1803.05372

Section 4.2 is based on the following paper:
Kolja Junginger and Evanthia Papadopoulou. Abstract tree-like Voronoi dia-

grams in expected linear time. In CGWeek Young Researchers Forum 2019, Com-
putational Geometry week, Portland, Oregon, 2019.

4.1 Uniqueness

In this section the notation β refers to some arc that is not included in P.
Consider an arbitrary region R(α) in Vl(P). The following lemma establishes

an essential property of Voronoi-like regions, and completes the cut property of
Lemma 7. It essentially states that if a bisector J(sα, ·) appears within R(α) (some-
thing that can never happen in a real Voronoi region) then we are missing an arc

59
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Figure 4.1. A component e of
J(sα, ·) in R(α) as in Lemma 17.
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Figure 4.2. A component e of
J(sα, ·) in R(α) with its endpoint v
on a Γ -arc g as in Lemma 17.

from P. Notation β refers to some arc that is not included in P and appears in
DP.

Lemma 17. Suppose there is a non-empty component e of J(sα, ·) intersecting R(α)
in Vl(P). Then J(s, ·) must also intersect DP. Further, there exists a component of
J(s, ·)∩ DP, denoted as β , such that the merge curve J(β) in Vl(P) contains e.

We say that boundary arc β is missing from P.

Proof. Suppose there is a non-empty component e of J(sα, sβ) ∩ R(α), however,
J(s, sβ)∩ DP = ;.

Since J(s, sβ)∩DP = ;, and thus, DP ⊆ D(s, sβ), and because of the transitivity
of dominance regions (Lemma 3), it follows that for any arc χ ∈ P, χ ⊆ D(sχ , sβ).
Let ∂ Re denote the portion of ∂ R(α) cut out by e (at opposite side from α); by
Lemma 7, ∂ Re ⊆ D(sβ , sα). Consider an endpoint v of e. We distinguish two cases
for v:

1. If v is on an edge ρ incident to regions R(α) and R(γ), then J(sβ , sγ) inter-
sects R(γ) by an edge eρ, incident to v, leaving ρ and γ at opposite sides,
because γ ⊆ D(sγ, sβ). See Figure 4.1.

2. If v is on a Γ -arc g, let R(γ) be the first region after v (towards D(sβ , sα))
with J(sβ , sγ) intersecting g ∩R(γ) at point u (see Figure 4.2). There exists
such R(γ) because for all boundary arcs χ ∈ P, χ ⊆ D(sχ , sβ), and this
includes the boundary arc that is incident to g. Let eg be the component of
J(sβ , sγ)∩ R(γ) incident to u.

Thus, given e and v, we derive an edge e′, either e′ = eρ or e′ = eg , with the same
properties as e, in another region of Vl(P). This process repeats and there is no
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Figure 4.3. Arc β ⊆ J(s, sβ) in DP; The merge curve J(β) contains e.

way to break it because for any arc χ ∈ P, χ ⊆ D(sχ , sβ). Thus, we create a closed
curve on Vl(P) consisting of consecutive pieces of J(sβ , .), possibly interleaved
with Γ -arcs, which has the label sβ in its interior. No two edges of this curve can
intersect because otherwise the bisector corresponding to such intersecting edges
would not be a Jordan curve. Furthermore, no vertex of this curve can repeat as
no three sβ -related bisectors can intersect at the same point, by our general posi-
tion assumption. Thus, the closed curve must be an sβ -cycle C that is contained
in DP, see Figure 4.1. This is a contradiction by Lemma 6. Thus, our assumption
that J(s, sβ) ∩ DP = ; was false, and thus, J(s, sβ) must intersect P. The above
process must encounter such an intersection as otherwise the forbidden sβ -cycle
C would exist. Let Je(β) denote the sequence of encountered edges eρ, starting
with the initial edge e and ending on the first intersection of an arc χ0 in P with
J(s, sβ). Let β be the component of J(s, sβ)∩ DP incident to χ0, see Figure 4.3.

By its definition, the path Je(β) fulfills the definition of the merge curve J(β)
(Definition 7). Since by Theorem 2 the merge curve J(β) on Vl(P) is unique, it
follows that J(β) includes Je(β), and thus it includes edge e.

We can now prove the uniqueness part of Theorem 1 from Section 3.2.

Theorem 4. Given a boundary curve P of S′ ⊆ S, Vl(P) (if it exists) is unique.

Proof. Let P be a boundary curve for S′ ⊆ S such that P admits a Voronoi-like
diagram Vl(P). Suppose there exist two different Voronoi-like diagrams of P,
V
(1)
l 6= V

(2)
l . Then there must be an edge e(1) of V(1)l bounding regions R(1)(α) and

R(1)(β) of V(1)l , where α,β ∈ P, such that e(1) intersects region R(2)(α) of V(2)l ,
since α is common to both R(1)(α) and R(2)(α).

Let edge e ⊆ J(sβ , sα) be the component of R(2)(α) ∩ J(sβ , sα) overlapping
with e(1), see Figure 4.4. From Lemma 17 it follows that there is a non-empty
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Figure 4.4. Illustrations for the proof of Theorem 1.

component β0 of J(s, sβ) ∩ DP such that J(β0) on V
(2)
l contains edge e. Since

J(β0) and ∂ R(1)(β) have an overlapping portion
�

e ∩ e(1)
�

and they bound the
regions of two different arcs β0 6= β of site sβ , they form an sβ -cycle C as shown
in Figure 4.4. But C is contained in DP, deriving a contradiction to Lemma 6.

4.2 Existence

Consider a Voronoi region VR(s, S) and let S denote the (ordered) set of Voronoi
edges on its boundary (S= ∂ VR(s, S)∩ DΓ ). In this section we prove that, given
any boundary curve P, for any S′ ⊆ S, its Voronoi-like diagram Vl(P) always
exists (Theorem 5). Let S′ ⊆ S denote the sites that induce the arcs in S′.

Definition 9. A boundary curve C for S′ ⊆ S is called plain if it contains no auxiliary
arc, i.e., each arc of C contains a core arc in S′ (see Figure 4.5).

Lemma 18. The plain boundary curve C of any S′ ⊆ S exists and is unique. It can
be constructed in time O(|S′|).

Proof. Refer to Figure 4.5. For every three consecutive arcs α,β ,γ ∈ S′, expand
β to β̄ along J(s, sβ) until reaching the first intersection with J(s, sα) (if sα 6= sβ)
and with J(s, sγ) (if sγ 6= sβ), or with Γ , respectively. If sα = sβ , then expand β̄
until α. Symmetrically if sγ = sβ . By construction, C is an s-monotone path in
the arrangement of Js,S′; it contains all the core arcs S′ and contains no auxiliary
arcs. The construction is done by going once around the cyclically ordered set S′

and thus, in time O(|S′|).
If C contained any additional arc to the above constructed original arcs, it

would be auxiliary and the curve would not be plain. Further, C cannot contain
less than these arcs, because a boundary curve must contain all arcs in S′. Thus,
C is unique.
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β γ
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Figure 4.5. (a) Three arcs S′ = {α,β ,γ} in black, and (b) their plain boundary
curve C in blue.

Definition 10. For arcs α,β ∈ S, we say that α splits β , if J(s, sβ)∩D(s, sα) consists
of two connected components, see Figure 4.6. This defines a binary split relation
on S.

From the fact that related bisectors intersect at most twice we infer that the
split relation is anti-symmetric and transitive; thus, it is also acyclic. The split
relation induces a partial order on S, where α < β iff α splits β .

Lemma 19. The Voronoi-like diagram of a plain boundary curve C always exists.
It can be constructed in time O(|S′|2).

Proof. Let o be the partial order on S′ inherited from S. Consider any linear
extension (topological ordering) of o (α1, . . . am), m = |S′|. We can construct C
and Vl(C) by inserting the core arcs in S′ in the order of any linear extension
(topological ordering) of o, using the insertion operation ⊕ of Section 3.3 and
applying Theorem 3. In particular, let P1 be the boundary curve derived by the
first core arc in o, i.e., P1 = ∂ D(s, sα1

) ∩ DΓ , Vl(P1) = ;. Then Pi = Pi−1 ⊕ αi,
where the arc insertion operation is defined in Section 3.3. Vl(Pi) is derived from
Vl(Pi−1) by first computing the boundary of the Voronoi-like region ofαi and then
inserting this region into Vl(Pi−1) to obtain Vl(Pi) Theorem 3. By the definition
of the split relation, which induces the insertion order o, no auxiliary arc can
be created by this arc insertion process. Thus, Pm = C and Vl(Pm) = Vl(C), as
the Voronoi-like diagram of a boundary curve is unique (Theorem 4). Since the
order o is fixed, the construction time is O(|S′|2).

Given a boundary curve P and arcs α,β ∈ P, let P[α,β] denote the portion
of P from α to β in a counterclockwise traversal, including α and β .

Lemma 20. Let P be a boundary curve of S′ and let α,β ∈ P be any two consecu-
tive original arcs. No s-related bisector in Js,S′ can split (intersect twice) an arc in
P[α,β].

Proof. Suppose for the sake of contradiction that bisector J(s, p) ∈ Js,S′ intersects
an arc γ ∈ P[α,β] twice, see Figure 4.7. Then J(s, p) could not appear an the
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Figure 4.6. An arc α splits arc β . In
the induced partial order on S, α < β .
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Figure 4.7. A bisector J(s, p) ∈ Js,S′

splitting an arc γ contradicts the ex-
istence of an original arc of site p.

s-envelope env(Js,S) = S as the s-related bisectors J(s, p), J(s, sγ) can intersect at
most twice. This contradicts the fact that there must exist an original arc of site
p on P.

Corollary 2. Any boundary curve P of S′ is enclosed by the plain boundary curve
C. That is, DP ⊆ DC.

Proof. Let α,β ∈ P be two consecutive original arcs such that α neighbors an
auxiliary arc α1 ∈ P. Since P is an s-monotone path, arc α1 lies at least partially
in DC. Suppose an auxiliary arc γ ∈ P exits DC at arc α, as shown in Figure 4.9.
Then the bisector J(s, sγ) must intersect α a second time, otherwise α ⊂ D(sγ, s),
which contradicts the fact that α is original. However, two intersections with α
contradict Lemma 20.

Corollary 2 implies that any auxiliary arc of any boundary curve P lies in the
interior of DC. We use this fact to derive an algorithm to construct Vl(P), given
Vl(C). Thus, we prove the following existence theorem.

Theorem 5. The Voronoi-like diagram of any boundary curve P on S′ ⊆ S always
exists.

Proof. The proof is by construction. Given a boundary curve P, we first construct
Vl(C) using Lemma 19. Given Vl(C), we incrementally construct Vl(P) by insert-
ing the remaining arcs of P (that are not in C), using the arc insertion operation
⊕ of Section 3.3. These remaining arcs are all auxiliary, however, by Corollary 2,
they all lie in DC, thus, it is possible to use the insertion operation ⊕. Theorem 3
requires that each arc under insertion lies in the interior of the current bound-
ary curve. We show how to maintain this invariant during a sequential insertion
process in the following. Then, Lemma 20 ensures that no arc split is possible by
the insertion order, and thus, no new auxiliary arc can be created.
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Figure 4.8. Inserting auxiliary arcs
δ1, . . . ,δ` between two consecutive
original arcs α and β .
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Figure 4.9. The assumption that
P exits DC yields a contradiction to
Lemma 20.

Let δ1, . . . ,δ` denote the auxiliary arcs in P between two consecutive original
arcs α,β in counterclockwise order. Let P0 = C. Denote by Pi, i = 1, . . . ,`, the
boundary curve after inserting arcs δ1, . . . ,δi to C. We define δ̄i as the connected
component of J(s, sδi

)∩ DPi−1
that contains δi. In the following we prove that δ̄i

on Pi is well-defined, that it contains δi and that it doesn’t split any arc. Let
β̃i denote the shrunk arc β on Pi. Let δ̄0 = α, δ0 = α and β0 = β . Note that
between two consecutive boundary arcs on Pi there can be a Γ -arc.

Following the order i = 1, . . . ,`, when we insert arc δ̄i its first endpoint lies
on δ̄i−1, which is then shrunk to δi−1 on Pi (or its first endpoint lies on a Γ -arc
after δ̄i−1). We prove that the second endpoint of δ̄i lies on β̃i−1 (or on a Γ -arc
before β̃i−1). If it did not lie on β̃i−1 (or on a Γ -arc next to β̃i−1), then δ̄i would
either follow β̃i−1 (and thus delete it) contradicting that β̃i−1 is original; or δ̄i

would have a second intersection with δ̄i (split it) contradicting Lemma 20. This
implies that δ̄i contains δi. Every time we insert an arc δ̄i we also insert its
region R(δ̄i) and compute the Voronoi-like diagram Vl(Pi) which is possible by
Theorem 3.

We insert all remaining arcs between each consecutive pair of original arcs
and in the end we obtain the Voronoi-like diagram Vl(P), since we inserted all
arcs of P and did not create any additional arc.

The plain boundary curve C of S′ is interesting in its own right. Its Voronoi-
like regions are supersets of the corresponding Voronoi-like regions of any bound-
ary curve P on S′, including the s-envelope E of S′. This is a direct corollary of
the last proof, stated in the following lemma.

Lemma 21. For any original arc α ∈ P, for any boundary curve P of S′, R(α,P) ⊆
R(ᾱ,C), where ᾱ ⊇ α is the corresponding arc in the plain boundary curve C.

Proof. From the proof of Theorem 5 it follows that we can construct Vl(P) from
Vl(C) by inserting the auxiliary arcs of P in a certain order. By Theorem 3, when
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E

DS′
S′

Figure 4.10. The domain DS′ = DE \
⋃

auxiliary α∈E R(α,E) is shown shaded
(green).

inserting an arc β to a Voronoi-like diagram, its initial regions can only shrink (or
remain the same) after inserting β . Thus, while inserting in Vl(C) the auxiliary
arcs of P, a region R(ᾱ,C) can only become smaller, ending up in R(α,P) ⊆
R(ᾱ,C). Since the diagram Vl(P) is unique the claim follows.

Consider the real Voronoi diagram V(S′) = V(S′ \ {s}) ∩ Ds, where Ds =
VR(s, S′)∩DΓ . It coincides with Vl(E), where E is the s-envelope of S′ (more pre-
cisely the s-envelope of Js,S′ ∪ Γ ). In contrast to Vl(C), the regions of Vl(E), are
subsets of Voronoi-like regions in Vl(P), for any boundary curve P (Lemma 4).

In contrast, the regions of Vl(E), which is a real Voronoi diagram, are subsets
of Voronoi-like regions in Vl(P), for any boundary curve P (Lemma 4). From this
subset/superset relation of Voronoi-like regions we can derive a relation between
the Voronoi-like diagrams of different boundary curves on S′, which is given in
the following lemma. Recall that any boundary curve P on S′ lies between the
plain curve C and the envelope E and they all share the same core arcs in S′.
Recall also that DE = V(s, S′)∩ DΓ .

The following lemma states that the Voronoi-like diagram always coincides
with the real Voronoi diagram within the domain DS′ = DE \

⋃

auxiliary α∈E R(α,E),
see Figure 4.10.

Lemma 22. Within domain DS′ , Vl(P)∩DS′ = V(S′)∩DS′ , for any boundary curve
P on S′ ⊆ S.

Proof. By the definitions, V(S′)∩ DS′ = Vl(E)∩ DS′ . So, it is enough to show that
Vl(P)∩ DS′ = Vl(E)∩ DS′ .

Let α∗ ∈ S′ and let α ⊇ α∗, ᾱ ⊇ α∗ denote the corresponding original arcs
in P and E respectively. Then R(ᾱ,E) ⊆ R(α,P), by Lemma 4. In addition,

DS′ =
�

⋃

α∈S′ R(α,E)
�◦

, i.e., DS′ contains all Voronoi-like regions of the original
arcs in Vl(E). Since each of these regions has a corresponding region in Vl(P)



67 4.3 Conclusion

P

α1

β1 γ
α2

β2

Figure 4.11. A boundary curve that does not form a Davenport-Schinzel se-
quence of order 2 w.r.t. site occurrences.

that is a superset of it, the two diagrams Vl(P) and Vl(E) coincide within DS′ .

The proof of Theorem 5 gives an algorithm to construct Vl(P) for any bound-
ary curve P of S′. However, this algorithm may require Θ(|P|2) time and this also
applies to the plain boundary curve C and the envelope E. Note that the latter
yields a real Voronoi diagram in time Θ(|E|2).

In this chapter we have established that for any boundary curveP the Voronoi-
like diagram Vl(P) exists and is unique and thus, it is well-defined. An open
problem is to establish the complexity of an arbitrary boundary curve P for S′ ⊆ S

and the thus, the complexity of Vl(P). Recall that the combinatorial complexity
|P| of P is the number of boundary arcs of P.

Remark 1. We remark that a boundary curve that is not an s-envelope is not nec-
essarily a Davenport-Schinzel sequence of order 2, with respect to site occurrences
in S \ {s}. See Figure 4.11 for an example of a boundary curve P, where the arcs
α1,β1,α2,β2 appear in this order as a subsequence along P and such that the sites
repeat as follows: sα1

= sα2
and sβ1

= sβ2
.

Question 1. What is the combinatorial complexity of an arbitrary boundary curve
P for S′. Can it be bounded by O(|S′|)?

Note that all boundary curves on a subset of arcs S′ that we compute in-
crementally by arc insertion in the following chapter can be easily bounded by
O(|S′|), see Lemma 23.

4.3 Conclusion

In this Chapter we have seen that the Voronoi-like diagram introduced in Chap-
ter 3 is well-defined. For a given boundary curve P, the diagram Vl(P) always
exists and there are no two different such diagrams for P, thus, Vl(P) is also
unique. These two properties are not directly obvious from the definition and
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it needed a long research process to end up with the correct conjectures, where
especially the existence property was a surprising result.

Combining existence with uniqueness this chapter establishes the Voronoi-like
structure as a well-defined geometric partitioning tool that can handle discon-
nected Voronoi regions.



Chapter 5

A randomized incremental algorithm

In this chapter we present an easy randomized incremental algorithm for solving
the fundamental problem of site deletion, i.e., problem (1) of the three the tree-
like problems listed in Section 1.3.

In Section 5.1 we give a simple randomized algorithm to update a Voronoi
diagram after deletion of one site in expected time linear in the number of the
neighbors of the deleted site. Given V(S) and a site s ∈ S, we compute V(S \
{s}) within VR(s, S) in expected time linear on the complexity of ∂ VR(s, S) using
Voronoi-like diagrams as intermediate structures. The time analysis is given in
Section 5.2.

This chapter is based on the publication:
Kolja Junginger and Evanthia Papadopoulou. Deletion in Abstract Voronoi

Diagrams in Expected Linear Time. In 34th International Symposium on Compu-
tational Geometry (SoCG 2018), Dagstuhl, Germany.

We also published a corresponding longer version with all proofs on arXiv:
Kolja Junginger and Evanthia Papadopoulou. Deletion in abstract Voronoi dia-

grams in expected linear time, CoRR abs/1803.05372. URL: http://arxiv.org/
abs/1803.05372

5.1 Updating an abstract Voronoi diagram after dele-
tion of one site

Consider a Voronoi region VR(s, S) and let S denote the (ordered) set of Voronoi
edges on its boundary (S= ∂ VR(s, S)∩ DΓ ).

Consider a random permutation o = (α1, . . . ,αh) of the set of core arcs S,
where |S| = h. For 1 ≤ i ≤ h, define set Si = {α1, . . . ,αi} ⊆ S to be the subset of

69
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the first i arcs in o, and permutation oi = (α1, . . . ,αi). Let Pi denote the boundary
curve of the set Si, which is derived by the arc insertion operation ⊕ in the order
of the permutation oi; let Di denote the corresponding domain enclosed by Pi.

Our randomized algorithm is inspired by the randomized, two-phase, ap-
proach of Chew Chew [1990] for the Voronoi diagram of points in convex po-
sition; however, the sites are boundary arcs, forming boundary curves, and the
algorithm constructs Voronoi-like diagrams within a series of shrinking domains
Di ⊇ Di+1. The domain D1 is D(s, sα1

)∩ DΓ , and Dh coincides with the Voronoi re-
gion VR(s, S) within Γ , i.e, Dh = VR(s, S)∩DΓ . The boundary curves are obtained
by the insertion operation ⊕, one at each step, starting with P1 = J(s, sα1

) ∩ DΓ
and ending with Ph = ∂ VR(s, S)∩ DΓ .

The approach works in two phases. In phase 1, the arcs in S get deleted one
by one, in reverse order of o, while recording the neighbors of each arc at the
time of its deletion. Let P1 = J(s, sα1

)∩ DΓ , R(α1,P1) = D1, and Vl(P1) = ;.
In phase 2, we start with Vl(P1) and incrementally compute Vl(Pi), i =

2, . . . , h, by inserting arc αi, where Pi = Pi−1 ⊕ αi, and Vl(Pi) = Vl(Pi−1) ⊕ αi.
When inserting an arc αi, we use the information of its recorded neighbors from
phase 1 to determine a starting point. At the end we obtain Vl(Ph), where Ph

is the unique boundary curve corresponding to the envelope of S, i.e., Ph =
env(S) = ∂ VR(s, S)∩ DΓ .

By Corollary 1, we have already established that Vl(env(S)) is the real Vo-
ronoi diagram V(S). Given the correctness of the insertion operation ⊕ that
was established in Section 3.3, the algorithm correctly computes Vl(Ph), where
Vl(Ph) = V(S) = V(S \ {s})∩ VR(s, S).

Lemma 23. Pi contains at most 2i − 1 arcs. Its auxiliary arcs are less than the
original. The complexity of Vl(Pi) is O(i).

Proof. By definition, |P1|= 1. At each step of phase 2, exactly one original arc is
inserted, and at most one additional auxiliary arc is created by a split in case (c)
of Observation 1, except from i = 1 and i = h. Thus, the total number of auxiliary
arcs is at most i − 1. The number of original arcs is at most i, since an original
arc may be merged with its neighbor in case (f) of Observation 1. Since in this
case no auxiliary arc is created, the claim follows. Since the complexity of Vl(Pi)
is O(|Pi|) and by the above we have |Pi| ≤ 2i − 1, the complexity of Vl(Pi) is
O(i).

By Lemma 23 the total number of auxiliary arcs that may be created up to
step i of the algorithm is less than i, which immediately implies for the term
d2(αi,P j) in the time complexity of step i, as expressed by Lemma 10, that
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level i

S

α1 α2 α3 αh. . .

. . . . . . . . .
. . .

...

. . .
α2 αh

α`

α4

π Πi . . .G(oi)

T

Figure 5.1. The decision tree T of all possible random choices: Each node at
level i corresponds to a unique choice of arcs (e.g. the blue path). There are
N = h(h− 1) · · · · · (h− i + 1) nodes at level i of T, which are partitioned into
�h

i

�

many blocks (e.g. Πi) and each block into (i − 1)! groups (e.g. G(oi)).

∑i
j=1 d2(α j,P j)< i. Independent of this argument, in the next section we bound

the expected values of all terms in Lemma 10.

Remark 2. Note that even though any boundary curvePi that is created by insertion
of i arcs has complexity O(i) by Lemma 23, it does not necessarily form a Davenport-
Schinzel sequence of order 2, with respect to site occurrences. For an example, see
the boundary curve P of Figure 4.11, which can be created by inserting the core
arcs in the order o = (β1,γ,α1,α2) and α1,β1,α2,β2 appear in this order as a
subsequence along P, where sα1

= sα2
and sβ1

= sβ2
.

5.2 Time analysis of the randomized incremental algo-
rithm

Consider the decision tree T of all possible random choices that can be made by
our incremental algorithm on the input set of core arcs S, h= |S|, see Figure 5.1.
T has h! leaves each corresponding to a unique permutation of the arcs in S.
At level-i, there are h!/(h − i)! nodes, and each node corresponds to a unique
permutation of i core arcs. Out of all nodes at level-i, i! nodes are associated
with the same set of i core arcs Si. We call this set of nodes the block of Si

and we have
�h

i

�

distinct such blocks at level-i. Although all nodes within one
block are associated with the same set of core arcs, their corresponding boundary
curves can vary considerably depending on the permutation order. Because of
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Diα1

α2

α3

α4

αi

Bj

B1

Bi

Si

Figure 5.2. Schematic differ-
ences between the boundary
curves B1, . . . ,Bi. The domain
Di is shown shaded.

B1 γ
α

β

α′

β′α̃

Figure 5.3. Illustration for Definition 11:
The core arc α ∈ Si is the source of α′ ∈ in1.
The expanded arc α̃ ⊇ α′ was created by
inserting α during the construction of B1,
where o1 = (β ,α,γ) and oi = (γ,β ,α). The
corresponding Bi is shown in Figure 5.4.

this order-dependent variation, we cannot easily apply backwards analysis as in
the original randomized incremental construction of Chew [1990]. Instead, we
establish the expected linear-time complexity of our algorithm by analyzing the
blocks of nodes at level-i of the decision tree1.

We use the following strategy. We partition the set of nodes in each block of
nodes at level-i of T into disjoint groups of i nodes each, and analyze the total
time complexity of the algorithm on the i nodes (permutations) of each group.
In particular, we show that step-i of our algorithm requires O(i) time in total on
each entire group of our partition. Thus, on average, the algorithm spends O(1)
time on each node of T. Since all permutations are equally likely, we obtain the
expected linear (O(h)) time complexity of our algorithm.

Let oi = (α1,α2, . . . ,αi) be an arbitrary permutation of Si. From oi we define
a group G = G(oi) of i permutations: for each 1 ≤ j < i, remove α j from its
position in oi and append it to the end of oi.

oi = (α1,α2, . . . ,α j−1, α j ,α j+1 . . . ,αi−1,αi) (5.1)

o j = (α1,α2, . . . ,α j−1, α j+1, . . . ,αi−1,αi, α j ), (5.2)

Let B j, 1 ≤ j ≤ i, denote the boundary curves derived by inserting the core
arcs in Si in order o j, see Figure 5.2. Bi is the base boundary curve derived
from oi, and its domain is denoted Di. In the following we establish the relation
between these boundary curves so that we can prove our objective regarding the

1The analysis outline in our paper Junginger and Papadopoulou [2018a] follows the back-
wards analysis framework of Chew [1990], however, its direct applicability is questionable as
our boundary curves are order-dependent. We revisit the analysis in this section.
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Bi
B1

γ
α

β

γ
α

β

α′

β′

(a) (b)

Figure 5.4. Left: Boundary curve Bi, where oi = (γ,β ,α). Right: B1, where
oi = (β ,α,γ), containing arcs α′,β ′ ∈ in1, because γ was inserted last.

time complexity of the ith step of the algorithm on all of them (Lemma 28). We
first introduce some terminology.

Definition 11. Let α′ be an auxiliary arc in B j and let α ∈ Si be a core arc of
the same site. We say that α′ is an auxiliary arc of the core arc α if there is an
expanded arc α̃ ⊇ α and α̃ ⊇ α′, such that α̃ was created by inserting α during the
construction of B j (see Figure 5.3). The core arc α is denoted as source j(α′) and it
is called the source of α′.

If α′ appears counterclockwise (resp. clockwise) from its source α along their
common s-bisector then α′ is called a ccw (resp. cw) auxiliary arc.

The boundary curves B j may get in and out of the domain Di for j < i (see
Figure 5.2). To identify their differences from Bi, let in j = B j ∩ Di and out j =
B j\Di denote the portion ofB j inside and outside of Di, respectively. We partition
the auxiliary arcs in in j into in+j and in−j , where in+j (resp. in−j ) includes the ccw
(resp. cw) auxiliary arcs of in j, see Figure 5.4. In the following we only consider
in+j as in−j is entirely symmetric.

Observation 2. The boundary curve B j, j 6= i, contains no auxiliary arcs of the
core arc α j (since α j appears last in o j). Furthermore, these are the only auxiliary
arcs of Bi that are missing from B j (since the insertion order of all other core arcs
is identical). Thus, any auxiliary arc α′ ∈ out j must be entirely below an auxiliary
arc α′j ∈Bi of the core arc α j (i.e., α′ ∈ R2 \ Di), see Figure 5.5.

Bi

γ
γ′

γ′′
α

β
δ B1

γ
α′

α′′

β
α δ

(a) (b)

Figure 5.5. Left: Boundary curve Bi, where oi = (γ,α,β ,δ). Right: B1

containing arcs in out1, where o1 = (α,β ,δ,γ).
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αj

Bi
J+
α s

sα

α′

αk

J−
α

Figure 5.6. The arc αk is the
source of the auxiliary arc α′ ∈
in j: (αk,α j,α

′) appear in ccw or-
der on B j.

αk

α`

αj

α′
β′ β′′

Bj

Figure 5.7. If α′,β ′ ∈ in+j , then j < k < `
and (αk,α`,α j,β

′,α′) appear in ccw order
on B j.

Observation 3. Consider a ccw arc α′ ∈ in+j and let αk be its source core arc (αk =
source j(α′)). Then αk must follow α j in oi, i.e., k > j. Further, (αk,α j,α

′) must
appear ccw in B j. Symmetrically for a cw arc in in−j .

Observation 4. Figure 5.7 indicates the structure of in+j . Suppose that core arcs
αk and α`, k < `, have auxiliary arcs α′ and β ′ in in+j respectively. Then j < k < `
and (αk,α`,α j,β

′,α′) appear in ccw order on B j. Further, all auxiliary arcs of α`
must appear before the auxiliary arcs of αk as we move counterclockwise from α j.

Since many auxiliary arcs of in+j can have the same source we define

N j = {source j(α
′) ∈ Si | α′ ∈ in+j }.

All arcs in N j are of pairwise different sites. It is possible that in+j ∩ in+k 6= ;
for k 6= j. Moreover it is possible that |in+j |= Ω(i) even if |N j|= 1. However, we
have the following disjointness property.

Lemma 24. N j ∩ Nk = ; for all k 6= j. Thus,
∑i

j=1 |N j|= O(i).

Proof. Suppose α` ∈ N j ∩ Nk and j < k, then α` = source j(α′), where α′ ∈ in+j
and α` = sourcek(α′′), where α′′ ∈ in+k . (The arcs α′ and α′′ may or may not be
equal.) By Observation 3, j < k < `, and (α`,αk,α j) must appear in ccw order
on Bi. However, since k < `, the arc αk must be inserted before α` in B j, and
thus, α′ cannot exist in B j, see Figure 5.8. Further, since j < `, the arc α j is
inserted before α` in Bk, and thus, α′′ cannot exist on Bk, see Figure 5.9. In both
cases we derive a contradiction.

We next establish that all parameters of the time complexity analysis for step i
(Lemma 10) sum up to O(i) on all boundary curves B j, j ≤ i.



75 5.2 Time analysis of the randomized incremental algorithm

αj

Bi
α′
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Figure 5.8. Illustration for the
proof of Lemma 24. The case
(α`,αk,α j) appear ccw.

αj

Bi

α′
r

J+
αr

αk

α′′
r

α`

Figure 5.9. Illustration for the
proof of Lemma 24. The case
(α`,α j,αk) appear ccw.

Lemma 25.
i
∑

j=1

d1(α j,B j) + d2(α j,B j) + d̃(α j,B j) = O(i).

Proof. Let α and γ denote the original arcs preceding and following α j respec-
tively in Bi (equiv. in B j). Let d(α j,Bk) = d1(α j,Bk) + d2(α j,Bk) denote the
auxiliary arcs on the boundary curve Bk, k = i, j.

We first observe that d(α j,B j) cannot contain any portion of out j as no aux-
iliary arc of α j may appear in Bi from α to γ (since there is no other core
arc from α to γ, except α j, and a different core arc is necessary to produce
an auxiliary arc). Thus, we only need to consider the auxiliary arcs of in j.
Next, we observe that no two auxiliary arcs in d(α j,B j) can have the same
source in N j for the same reason, i.e., there is no core arc from α to γ except
α j. Thus, we can bound |d(α j,B j)| ≤ |d(α j,Bi)| + |N j|. Then, by Lemma 24,
∑i

j=1 |d(α j,B j)| ≤ |Bi|+O(i) = O(i).
If d̃(α j,B j) > 0 we have case (d) of Observation 1. In this case both end-

points of α j are incident to Γ in both B j and Bi. Then, by Observations 2 and 4,
in j = ; and out j = ;, implying that B j = Bi; thus, d̃(α j,B j) = d̃(α j,Bi). Then,
∑i

j=1 |d̃(α j,B j)| ≤ |B̃i|= O(i).

Lemma 26. |R(α j,B j)| ≤ 2|R(α j,Bi)|+ |N j|.

Proof. We compare R(α j,B j) and R(α j,Bi) and bound differences in their ad-
jacencies. First, we observe that no arc in out j can have a region adjacent to
R(α j,B j). To see that, note that by Observation 2 any arc α′ ∈ out j lies below an
auxiliary arc α′j ∈Bi of the same site as α j. If the regions of α′ and α j were adja-
cent, then also R(α′j,B j ⊕α′j) would be adjacent to α j, which is not possible in a
Voronoi-like diagram, because α j and α′j are of the same site. Next, we observe
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Figure 5.10. Illustration for Lemma 26.

that any arcs common to both B j and Bi, whose regions are adjacent to R(α j,Bi),
they must also be adjacent to R(α j,B j). In particular, if an arc ε ∈B j∩Bi is adja-
cent to R(α j,B j) then it must also be adjacent to R(α j,Bi). This is clear, because
otherwise, their common Voronoi edge e in Vl(B j) (or a portion of it) would be
taken in Vl(Bi) by an arc that is missing from B j (Lemma 17), i.e., by an auxil-
iary arc of α j, α

′
j ∈ Bi. But if we insert this missing arc α′j to Vl(B j), the region

R(α′j, B j ⊕α′j) will be adjacent to R(α j, B j ⊕α′j), deriving a contradiction.
Let |R(α j,B j)|x denote the number of additional adjacencies that R(α j,B j)

may have over R(α j,Bi), that is, |R(α j,B j)| ≤ |R(α j,Bi)|+ |R(α j,B j)|x . We show
that |R(α j,B j)|x ≤ |R(α j,Bi)| + |N j|. Since auxiliary arcs of the same site can
never have adjacent regions, it follows that between any two possible new ad-
jacencies of |R(α j,B j)|x with arcs of in j that have the same site or source, there
must be an adjacency with at least one arc of Bi (see Figure 5.10(b)). Since by
Observation 4 auxiliary arcs of one source in N j must appear in a certain order
along B j and they cannot alternate, the bound follows.

Lemma 27. Consider case (c) of Observation 1 at the insertion of α j in B j. Suppose
that the insertion of α j splits an existing arc ω into two pieces ω1 and ω2. Then at
least one of these two arcs (say ω1) must also exist in Bi. Further, |R(ω1,B j)| ≤
2|R(ω1,Bi)|+ |N j|.

Proof. Suppose ω1α jω2 appear in B j in ccw order and ω2 6∈Bi. Then ω2 ∈ in+j ,
see Figure 5.11. We claim that ω1 must belong in Bi.

Let α` = source j(ω2). Then ` > j as ω2 ∈ in+j . Let ω̃ ⊃ α` (ω̃ ⊃ ω) denote
the expanded arc created at the insertion time of α`, following o j. Let ω̂ ⊃ α`
denote the expanded arc created at the insertion time of α`, following oi. Since
` > j, it follows that ω̂ can extend ccw at most until α j and ω̂ ⊂ ω̃. Since ω̃
extends ccw past α j, it follows that no other core arc αρ, with ρ < ` (except
α j), can prevent ω̃ from extending. Thus, ω̂ extends ccw to α j and ω̂ ⊃ ω2. In
addition, no αρ, with ρ > `, can delete ω1 at its insertion following either o j or
oi (since ω1 exists in B j). Thus, ω1 must exist in Bi.
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αj

ω1
ω2

α`
J+
ω

Bj

Figure 5.11. Illustration for the proof of Lemma 27. If ω1 6∈Bi, then ω2 ∈Bi.

The only additional argument needed for the fact that no arc in out j can have
a region adjacent to R(ω1,B j) is the observation that each arc in out j lies below
the sω-bisector, because arc α j splits arc ω (case (c) of Observation 1).

Let T (i, o j) denote the time required by the ith step of the algorithm following
permutation o j, i.e., the time required by the last arc insertion.

Lemma 28. The time the algorithm requires at step-i on the entire group G(oi) is

T (i, G) =
∑

o j∈G

T (i, o j) = O(i).

Proof. Lemmas 26 and 27 establish that |R(α j,B j)|+|R(ω j,B j)| ≤ 2(|R(α j,Bi)|+
|R(ω j,Bi)| + |N j|). Here, if case (c) of Observation 1 is concerned, ω j denotes
one of the two arcs that is split and belongs to Bi (see Lemma 27); otherwise,
|R(ω j,B j)| = 0. Since ω j is always an immediate neighbor of α j, we count it

at most twice and thus, the total complexity
∑i

j=1 |R(ω j,Bi)| is O(i). Together

with Lemma 24 this directly implies that
∑i

j=1 |R(α j,B j)| + r(α j,B j) = O(i).

Lemma 25 establishes that
∑i

j=1 d1(α j,B j)+ d2(α j,B j)+ d̃(α j,B j) = O(i). Then
by Lemma 10 the claim is derived.

Before stating the final result, we show that the partitioning of each block of
i! nodes (permutations) at level-i of T into (i−1)! groups of i permutations each,
is possible, if we follow the scheme we described in equation (5.2) for G(oi). Let
Πi denote such a block of all i! permutations of the set Si. The references for the
following lemma were provided by Stefan Felsner [2019].

Lemma 29 (Felsner [2019]). The partitioning of Πi into groups by the scheme
we defined in equation (5.2) is possible, i.e.: For all i ∈ N and any block Πi of
permutations on Si there exists a set F ⊂ Πi of (i − 1)! permutations such that
Πi = ˙⋃

o∈F G(o).

Proof. Following Levenshtein [1992] denote by bπc the set of all permutations
that are obtained from a permutation π by deleting one element. The following
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property is clearly an equivalent condition for a set F to satisfy Πi = ˙⋃
o∈F G(o):

For each π,σ ∈ F the sets bπc and bσc are disjoint. Levenshtein calls a family F
of (i−1)! permutations with this disjointness property a code capable of correcting
single deletions and proves that these codes exist for all i ∈ N [Levenshtein, 1992,
Theorem 3.1].

Since, by Lemma 29, it is possible to partition each block of i! nodes at level-i
of the decision tree into (i − 1)! groups following our scheme of equation (5.2),
and since, by Lemma 28, each group requires total O(i) time to perform step i,
we obtain the following theorem. Recall that the decision tree at level-i has

�h
i

�

distinct blocks of i! nodes each, and all nodes are equally likely.

Theorem 6. Step-i of the randomized algorithm is performed in expected O(1)
time.

Proof. For a subset Si ⊆ S, |Si|= i, let F(Si) denote a set of (i−1)! permutations
(F(Si) ⊂ Πi) satisfying Πi = ˙⋃

o∈F(Si)
G(o) (which exists by Lemma 29). Let T (i)

denote the running time of the randomized algorithm to perform step i.

E(T (i)) =
1
N

∑

π node at level i of T

T (i,π) (5.3)

=
1
N

∑

Si⊆S:|Si |=i

∑

π∈Πi

T (i,π) (5.4)

=
1
N

∑

Si⊆S:|Si |=i

∑

o∈F(Si)

∑

o j∈G(o)

T (i, o j) (5.5)

=
1
N

∑

Si⊆S:|Si |=i

∑

o∈F(Si)

O(i) (5.6)

=
1
N

�

h
i

�

(i − 1)!O(i) = O(1) (5.7)

From line (5.4) to (5.5) we use Lemma 29, from (5.5) to (5.6) we use Lemma 28.

Since there are h arcs to insert, the expected time of the algorithm is O(h).
We conclude with the following theorem.

Theorem 7. Given an abstract Voronoi diagram V(S), V(S \ {s}) ∩ VR(s, S) can
be computed in expected O(h) time, where h is the complexity of ∂ VR(s, S). Thus,
V(S \ {s}) can also be computed in expected time O(h), given V(S).
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5.2.1 An alternative way to partition the set of all permutations

The rule of (5.2) to partition the block of arcs Πi into (i − 1)! groups of i arcs is
only one of many partitionings. The purpose of this section is to present an alter-
native way to partition the block Πi into groups. With this way the analysis can
be done in a similar way as in the last section. As a side effect the understanding
of the differences of boundary curves is strengthened. This section can be seen
as a short appendix to the time analysis of the last section and is not necessary
for the results in this or other chapters.

Let oi = (α1,α2, . . . ,αi) be an arbitrary permutation of Si. This time, we
define a group of i permutations from oi as follows. For each 1 ≤ j < i we
exchange α j with the last element αi in oi (instead of appending it as in (5.2)):

oi = (α1,α2, . . . ,α j−1, α j ,α j+1 . . . ,αi−1, αi ) (5.8)

o j = (α1,α2, . . . ,α j−1, αi ,α j+1, . . . ,αi−1, α j ) (5.9)

Clearly, a partitioning of Πi into groups as defined above is possible.
Now we analyze the group of permutations G = G(oi) = {o1, o2, . . . , oi−1, oi},

which is created by the above exchange rule. Let B1,B2, . . . ,Bi−1,Bi be their
corresponding boundary curves.

Any two consecutive core arcs α,δ along the cyclically ordered set Si define
one gap (for any boundary curve on Si), thus, i gaps in total, see Figure 5.2. Any
boundary curve on Si may fill out these gaps by auxiliary arcs. Note that all arcs
in a gap are auxiliary arcs.

In contrast to the group in the last section, now there are four reasons for
the differences between B j and Bi manifesting themselves as in j and out j. From
now on we set β = αi.

1. Auxiliary arcs of β = αi, appearing inside Di, because arc β is considered
earlier in o j than the time it is considered in oi. Let in j(β ′) denote these
arcs, in j(β ′) ⊆ in j.

2. Auxiliary arcs α′, where αk = source j(α′) ∈ Si, sαk
= sα′ , k > j. These arcs

are included in in j(α j) = in j \ in j(β ′), see Figure 5.4.

3. Arcs in out j that lie below any missing auxiliary arcs of site sα j
in Bi as B j

may contain no auxiliary arcs of α j. Let these arcs be denoted as out j(α′j),
see Figure 5.4(b).

4. B j may be missing auxiliary arcs of site sαk
, k > j, if β splits αk. In their

place, B j contains auxiliary arcs of site sαk
, k < j, outside of Di, denoted
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B1

B

α1

α2

α3

α4
α5

β

B2 B3α′
1

gap g′ gap g

α′′
1

α′
2

Figure 5.12. In this example, oi = (α1,α2,α3,α4,α5,β) and o1 =
(β ,α2,α3,α4,α5,α1). For j = 1, 2, B j contains arcs of out j(β) (α1 =
source2(α′1) = source2(α′′1)).

as out j(β) = out j \out j(α′j), see Figure 5.12. Note that out j+1(β)\out j(β)
consists of auxiliary arcs of the site α j (if any), if β splits α j.

The auxiliary arcs of in j(α j) (2.) and out j(α′j) (3.) appear equally for the
group of Section 5.2. Observation 2 about out j(α′j) holds here as well. Observa-
tions 3 and 4 about the arcs in in j(α j) (2.) is exactly the same as in Section 5.2
and Lemma 24 holds for these arcs as well. The arcs in j(β) (1.) do not cause
any problem, because they add at most i arcs to the total sum in the group G.
However, the auxiliary arcs of out j(β) (4.) add two new terms to Lemma 26 that
have to be dealt with.

We now characterize the arcs in out j(β), 1 ≤ j < i and partition them into
substitution and new arcs. For 2 ≤ j ≤ i, let µ be an arc in out j(β) \ out j−1(β).
We call µ a substitution arc if the insertion of µ in B j−1 (B j−1 ⊕ µ) deletes at
least one arc in B j−1 (see Figure 5.13(b,c)), otherwise we call it a new arc (see
Figure 5.13(a)). For j = 1, all arcs in out1(β) are considered new arcs.

Let count( j) denote the number of all new arcs in out j, and let count(G) =
∑i

j=1 count( j).

Lemma 30. count(G) = O(i).

Proof. First note that count(1) = |out1(β)| < i as out1(β) is a subset of B1. As
before we only consider auxiliary arcs on J+

αk
, k > j, see Figure 5.12.

Since o j−1 = (α1, . . . ,α j−2,β ,α j, . . . ) and o j = (α1, . . . ,α j−1,β ,α j+1, . . . ), the
only possible difference between out j(β) and out j−1(β) are auxiliary arcs of the
site sα j−1

. Observe that for anyα′k ∈ out j(β) andα′
`
∈ outm(β), where k < ` < j, m

the arcs (αk,α`,β) appear in ccw order; otherwise the ccw order (α`,αk,β)
would prevent α′

`
to appear in outm(β), because αk is inserted before α` (in

both o j, om). Further, the auxiliary arcs (β ,α′
`
,α′k) (if any) appear in ccw order,
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α5

µ

gap g gap g′

Γ

α5

µ

gap g gap g′

Γ

α5
µ

gap g gap g′

Γ

(a)

(b)

(c)

Figure 5.13. In (a) arc µ is a new arc. In (b) and (c) µ a substitution arc,
because the B j−1 ⊕µ deletes at least one arc in B j−1.

because the related bisectors Jαk
and Jα` intersect at most twice. Thus, all aux-

iliary arcs of α j−1 along B j must appear before any auxiliary arc α′k, k < j − 1,
i.e., (β ,α j−1,α′k) appear in ccw order (similarly to Observation 4). As a result,
there can be only one gap where both an auxiliary arc α′j−1 and α′k can appear.
We conclude that α′j−1 ∈ out j(β) can be new in at most one gap that contains
already an arc α′k for k < j − 1. Since we only count new arcs in count( j), this
implies that

∑i
j=2

∑

g gap countg( j) = O(i), where countg( j) are the new arcs of
count( j) in gap g.

Given any boundary curve P, we define the contracted Voronoi-like diagram
Vc

l (P) by uniting the regions of all auxiliary arcs within each gap of P. By
|Rc(α j,P)| we denote the number of contracted arcs that have a region adja-
cent to Rc(α j). In the following we analyze the degrees of the core arcs Si on the
contracted graphs, (i.e., deg(α j,P) = |Rc(α j,P)|) and the degrees of the gaps,
deg(g,P), which is the number of contracted arcs in Vc

l (P) that have a region
adjacent to gap g.

To be able to consider the portions of B j in and out of the domain Di sepa-
rately we define a series of boundary curves L j, 1 ≤ j < i, where L j consists of
the pieces of B j outside the domain Di, connected by pieces of Bi, in particular,
L j = out j ∪ (P \ DB j

) (see Figure 5.14).

Lemma 31.
∑i

j=1 |Rc(α j, L j)|= O(i).

Proof. We show that
∑i

j=1 |Rc(α j, L j)| ≤ 2|Vc
l (Bi)|= O(i).
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P(o)
P(oj)

Lj

Do

Figure 5.14. The boundary curve L j (red) consists of the portion of B j outside
of Di connected by P.

When going from j = 1 to i, in the contracted Voronoi-like diagrams Vc
l (B j),

an adjacency of α j with another core arc α` can switch to an adjacency with a
gap, and this adjacency in turn can switch to an adjacency between this gap and
another gap. Thus, we can bound the total sum

∑i
j=1 |Rc(α j, L j)| to be less than

the sum of the degrees of all original contracted arcs in Vc
l (Li) plus the sum of

the degrees of all contracted gaps in Vc
l (Li). More formally,

i
∑

j=1

|Rc(α j, L j)|=
i
∑

j=1

deg(α j, L j)≤
i
∑

j=1

(a j, L j) +
∑

gaps g

deg(g, L1)

= deg(α1, L1) +
i
∑

j=2

deg(α j, L j) +
∑

gaps g

deg(g, L1)

≤ deg(α1, L2) +
i
∑

j=2

deg(α j, L j) +
∑

gaps g

deg(g, L2)

...

≤ deg(α1, Li) + deg(α2, Li) + · · ·+ deg(αi, Li) +
∑

gaps g

deg(g, Li)

= 2|Vc
l (Bi)|

In addition to the terms in Lemma (26), in the group defined by equation 5.9,
we have to take into account the additional auxiliary arcs out j(β)when bounding
|R(α j,B j)|. Thus, we have to add the possible additional contracted adjacencies
of α j, which is done by the term |Rc(α j, L j)| and the possible (uncontracted)
adjacencies within the gaps, which is done by the term count(G) for the entire
group. This yields the following bound for the group G defined by the exchange
rule of (5.9).
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Lemma 32. |R(α j,B j)| ≤ 2(|Rc(α j, L j)|+ |Rc(α j,Bi)|+ |N j|) + count(G).

The last lemma together with Lemmas 24, 30 and 31 allows to bound the total
adjacencies in the group G similarly as in the last section by

∑i
j=1 |R(α j,B j)| ∈

O(i).

5.3 Conclusion

In this chapter we have presented a randomized incremental algorithm that uses
Voronoi-like diagrams as intermediate structures. Since Voronoi-like diagrams
are simpler and can be computed faster than their real Voronoi counterparts, they
realize optimal linear running time (in an expected sense) for the fundamental
tree-like problem (1) of site deletion.

Thus, we have shown the usefulness and practicability of the Voronoi-like
structure that we introduce in this dissertation. The algorithm is simple, not more
complicated than their counterparts for point sites from Chew [1990]. However,
establishing correctness and bounding the running time was a long and challeng-
ing process and needed the development of new techniques.
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Chapter 6

Extensions of the randomized algorithm

In this chapter we present extensions of the randomized incremental algorithm
of Chapter 5 for solving the fundamental tree-like problems (2) and (3) that we
have listed in Section 1.3.

In Section 6.1 we design randomized linear-time algorithms for computing
the order-(k+1) subdivision within an order-k Voronoi region (problem (2)), i.e.,
for a face f of Vk(S) we compute Vk+1(S)∩ f .

In Section 6.2 we present an extension of our randomized algorithm to com-
puting the farthest Voronoi diagram in expected linear time, after the sequence
of its faces at infinity is known (problem (3)).

Section 6.1 is based on the following publication:
Kolja Junginger and Evanthia Papadopoulou. Abstract tree-like Voronoi dia-

grams in expected linear time. In CGWeek Young Researchers Forum 2019, Com-
putational Geometry week, Portland, Oregon, 2019.

Section 6.2 is based on the publication:
Kolja Junginger and Evanthia Papadopoulou. Deletion in abstract Voronoi dia-

grams in expected linear time, CoRR abs/1803.05372. URL: http://arxiv.org/
abs/1803.05372

6.1 Computing the order-(k+1) subdivision within an
order-k region

In this section we present randomized linear-time algorithms for computing the
order-(k+1) subdivision within an order-k Voronoi region (problem (2)). In par-
ticular, given a face f of VRk(H, S), we compute V(S f ) ∩ f in expected time
O(|∂ f |), where S f ⊆ S \ H denotes the set of sites inducing a Voronoi edge on

85
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∂ f , see Section 6.1.2. In the following we give the structure of this section.
In Section 6.1.1 we extend the algorithm of Section 5.1 for deletion of a site to

compute in expected linear-time a Voronoi-like diagram for any subset of Voronoi
edges S′ ⊆ ∂ VR(s, S), and refer to this problem as the extended deletion problem.
The Voronoi region VR(s, S) need not be known entirely. Given only a subset
S′ of its edges (or portions of them), we can compute in expected time O(|S′|),
the Voronoi-like diagram of some boundary curve P′, which contains the arcs in
S′, it has complexity O(|S′|), and Vl(P′) ∩ D = V(S \ {s}) ∩ D for some domain
D ⊆ VR(s, S).

The main complication in settling the order-k problem (k > 1), compared to
the deletion problem (k = 1), is the complexity of ∂ f , which depends on k = |H|
in addition to |S f |. We show how to deal with k > 1 (using the arc insertion
operation established in Section 3.3) through a reduction to the extended deletion
problem (Section 6.1.2).

Our expected linear-time algorithm to compute the order-(k+1) subdivision
reduces by a logarithmic factor (in the expected sense) the time complexity of
the iterative construction of Lee [1982] (see Bohler, Liu, Papadopoulou and Za-
vershynskyi [2016] for the adaption to AVDs) to compute the order-k abstract
Voronoi diagram i.e., from O(k2n log n) to O(k2n+ n log n) steps.

6.1.1 The extended deletion problem

In this section we show that given a boundary curve P of S′ ⊆ S, in expected time
O(|S′|), we can construct Vl(P′) for some other boundary curve P′, most likely
different from P. Combining it with Lemma 22 from Chapter 4, we derive an
expected linear-time algorithm to computeV(S′)within DS′ . Note that computing
Vl(P) for any fixed boundary curve P (including the envelope E or the plain curve
P) may require Θ(|P|2) time.

Recall that given a boundary curve P and arcs α,β ∈ P, we denote by P[α,β]
the portion of P from α to β in a counterclockwise traversal, including α and β .
To establish the next theorem we first need a key property on P[α,β] for any
two consecutive original arcs α,β that is stated in the following lemma. An arc
α partitions J(s, sα) in two parts (see Figure 6.1); let J+(s, sα) (resp. J−(s, sα))
denote the part incident to the clockwise (resp. counterclockwise) endpoint of α.

Lemma 33. Let P be a boundary curve of S′ and let α,β ∈ P be any two consecutive
original arcs. Then J+(s, sα) (resp. J−(s, sβ)) cannot intersect P[α,β]. Thus, no
auxiliary arc of sα on J+(s, sα) and no auxiliary arc of sβ on J−(s, sβ) can appear
on P[α,β].
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P

α α′χ′

J(s, sχ′)

J−(sα, s)

β
sαs J+(s, sα)

P[α, β]

Figure 6.1. Assuming that
J+(s, sα) intersects P[α,β] contra-
dicts α and β being consecutive
original arcs.

Pi−1

s
sαi

α̃i

α∗
i

α̃i
αi

J(s, sαi
)

Figure 6.2. When inserting an original
arc αi into Pi−1, we need to identify the
component α̃i. Core arc α∗i ∈ S′ is con-
tained in α̃i and in αi ∈ P.

Proof. Suppose J+(s, sα) intersects P[α,β] for the first time at arc χ ′ ⊆ J(s, sχ ′),
creating an auxiliary arc α′, see Figure 6.1. Since α is an original arc, and thus,
J(s, sχ ′) cannot cut out its core part, J+(s, sα) and J(s, sχ ′) must intersect twice
between α and α′, see the pink squares in Figure 6.1. Thus, all core arcs of
site sχ ′ must appear on J(s, sχ ′) between these two intersection points and there
must be at least one such arc. This contradicts the fact that α and β are two
consecutive original arcs on P.

We remark that component J−(s, sα) may still intersect P[α,β]. An example
is shown in Figure 6.3.

Theorem 8. Given a boundary curve P on S′ ⊆ S, in expected time O(|S′|), we can
compute Vl(P′), for some boundary curve P′ on S′ that depends on the random-
ization order. Thus, in expected linear time, we can obtain V(S′) within DS′ , i.e.,
V(S′)∩ DS′ = Vl(P′)∩ DS′ .

P is assumed to know its original arcs, however, it may not know where their
core portions in S′ are. (P is typically the plain boundary curve C.)

Proof. We apply the randomized approach of Chapter 5. Let π be a random per-
mutation of S′. Delete the original arcs in S′ in reverse order π−1, while register-
ing their neighboring original arcs at the time of deletion. Insert back the arcs one

α α′

Γ

P
s
sα

β
J−(s, sα)

s
sβ

Figure 6.3. In the situation in Lemma 33, in contrast to J+(s, sα), this example
shows that J−(s, sα) intersects P[α,β], where α,β are consecutive original arcs.
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VR(h, Sf ∪ {h})C

P

f – face of
VRk(H,S)

α

α̂

V(F)
V(S)

C f

∂VR(h)

(a) (b)

f

VR(h)

P

C

F

S′

S \ S′

Figure 6.4. Arcs F are shown in blue, arcs S in green, S′ as solid lines and S\S′

as dashed lines.

by one in the order π, while computing Vl(Pi), starting at P1 = ∂ (D(s, sa1
)∩ DΓ )

and Vl(P1) = ;. At the end, we obtain Vl(P′), which is some boundary curve of
S′. Which exactly boundary curve is P′ depends on the insertion order π. In all
cases |P′| is O(|S′|) as shown in Chapter 5. Thus, |Vl(P′)| is O(|S′|).

Lemma 33 resolves a technical issue that is associated with this construction,
since the core arcs α∗i need not be known. When considering arc αi ∈ P we
need to correctly identify the component α̃i of J(s, sαi

) ∩ DPi−1
that contains the

core arc α∗i , revealing the corresponding original arc in Pi, see Figure 6.2. By
Lemma 33, there can be only one relevant component of J(s, sαi

) ∩ DPi−1
with

endpoints between the stored neighbors of αi. Thus, we can easily identify this
component by scanning Pi−1, starting at one of the stored neighbors of αi until
its first intersection with J(s, sαi

) is found. Since αi is original, this component of
J(s, sαi

)∩DPi−1
must contain α∗i . Thus, by Lemma 33 this construction is possible.

By Lemma 22, Vl(P′), Vl(C), and V(S′), they all coincide within domain DS′ ⊆
DE. This fact can lead to very simple, expected-linear time algorithms for various
tree-like diagrams such as those considered in the following sections.

6.1.2 The order-k update

Let f be a face of the order-k Voronoi region VRk(H), H ⊂ S, |H| = k. Let S f ⊆
S\H denote the set of sites in S\H that induce the Voronoi edges on the boundary
of f , ∂ f . Our goal is to compute the order-1 Voronoi diagram of S f , truncated
within f , i.e., V(S f )∩ f . Clearly, V(S f )∩ f = V(S \H)∩ f = Vk+1(S)∩ f .

Lemma 34. Let f be a face of VRk(H). Then for any site h ∈ H, f ⊆ VR(h, S f ∪{h})
(see Figure 6.4).
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order-k arc of ∂f

V(Sf ) ∩ f
new vertices
old vertices
f – a face of Vk(H,S)

Figure 6.5. V(S f ) ∩ f , where f is unbounded. Order-k arcs are depicted as
thick black arcs.

Proof.

f ⊆ VRk(H, S) =
⋂

p∈H,s∈S\H
D(p, s) ⊆

⋂

p∈H,s∈S f

D(p, s) ⊆
⋂

s∈S f

D(h, s) = VR(h, S f ∪{h}).

Corollary 3. V(S f )∩ f is a subgraph of V(S f )∩ VR(h, S f ∪ {h}).

The Voronoi vertices along ∂ f are classified into new and old, see Bohler
et al. [2015]. Let v be an order-k Voronoi vertex incident to regions Vk(H1, S),
Vk(H2, S), Vk(H3, S), for sets H1, H2, H3 ⊆ S of cardinality k each. Vertex v is
called new if |H1 ∩ H2 ∩ H3| = k − 1 and old if |H1 ∩ H2 ∩ H3| = k − 2. A new
vertex in Vk(S) is an old vertex of Vk+1(S). The new vertices along ∂ f (see
Section 3.1) partition ∂ f into order-k arcs, see Figure 6.5. An order-k arc α is a
portion of the Hausdorff bisector between a site sα ∈ S f and H, which is defined as
J(sα, H) = ∂ FVR(sα, H ∪{sα}). We say that an order-k arc α is induced by site sα.

The following lemma shows that V(S f )∩ f is tree-like. For a bounded face f ,
it is a tree and the latter observation has also been stated by Bohler, Klein and
Liu [2016]. An alternative proof for it has recently appeared in [Bohler et al.,
2019, Lemma 4].1

Lemma 35. V(S f )∩ f is tree-like, i.e., it is a forest having exactly one face for each
order-k arc of ∂ f . Its leaves are the new vertices of ∂ f , and points at infinity if f
is unbounded. If f is bounded then V(S f )∩ f is a tree.

Proof. By Lemma 34, f ⊆ VR(h, S f ∪{h}) for any h ∈ H. By Lemma 1, every face
in V(S f ) ∩ VR(h, S f ∪ {h}) touches the boundary ∂ VR(h, S f ∪ {h}). Thus, every
face in V(S f ) ∩ f must touch the boundary ∂ f ; this implies that the diagram

1For more details on the order of the published results, see the discussion in the footnote on
page 35.
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does not contain cycles. Every order-k arc α̂ ⊆ J(sα̂, H) on ∂ f must be entirely
contained in VR(sα̂, S f ). Thus, no leaf can lie in the interior of an order-k arc of
∂ f . On the other hand, each new vertex of ∂ f must be a leaf of the diagram as
its incident order-k arcs are induced by different sites.

Now we show that no two order-k arcs of ∂ f can be incident to the same
face of V(S f ) ∩ f . Consider two order-k arcs α,β on ∂ f induced by the same
site p ∈ S f . Suppose these two order-k arcs are incident to the same face fα of
V(S f )∩ f as shown in Figure 6.6. Let J(h1, p) and J(h2, p) be two bisectors of one
of the Voronoi edges in α and β , respectively. The bisectors J(h1, p) and J(h2, p)
must intersect outside of f in a point I1, otherwise VR(p, {p, h1, h2}) would be
empty. If h1 = h2, then J(h1, p) = J(h2, p).

There exists an order-k arc γ between α and β on ∂ f , induced by a site
q 6= p. Since γ ⊂ VR(q, S f ) and the face fα ⊂ VR(p, S f ), we know that γ ⊂
D(q, p) and fα ⊂ D(p, q). Since the bisector system is admissible, and thus
VR(p, {p, q, h1, h2}) is non-empty, J(p, q) intersects D(p, h1)∩ D(p, h2) in a point
I2 as shown in Figure 6.6. W.l.o.g. I2 ∈ J(p, h1). Since the bisector J(p, q) is un-
bounded it intersects J(h1, p) in a second point I3, implying that VR(p, {p, q, h1})
is disconnected, which is a contradiction.

Thus VR(p, S f )∩ f cannot be connected and the two order-k arcs of p (α,β)
must be incident to different faces of V(S f )∩ f .

If f is unbounded, two consecutive order-k arcs of ∂ f can extend to infinity,
in which case there is at least one order-k arc of V(S f )∩ f extending to infinity
between them; thus, leaves can be points at infinity. If f is bounded, all leaves
of V(S f )∩ f must lie on ∂ f . Since no face is incident to more than one order-k
arc of ∂ f , in this case V(S f )∩ f cannot be disconnected, and thus is a tree.

We reduce the order-k problem of computing V(S f ) ∩ f to the problem of
Theorem 8. Consider the Voronoi region VR(h, S f ∪ {h}) ∩ DΓ , see Figure 6.4.
By Lemma 34 it entirely encloses f . Let S denote the sequence of the Voronoi
edges (order-k arcs) along the boundary ∂ VR(h, S f ∪{h})∩DΓ . The set S defines
the Voronoi diagram V(S), which is the portion of V(S f ) truncated within region
VR(h, S f ∪{h}), i.e., V(S) = V(S f )∩VR(h, S f ∪{h})∩DΓ . The face of this diagram
incident to an arc α ∈ S is considered its Voronoi region VR(α,S). Similarly, let
F denote the sequence of the order-k arcs along ∂ f ; the Voronoi diagram of F
is V(F) = V(S f )∩ f ∩ DΓ , see Figure 6.4(b). Let VR(α̂,F) denote the face of this
diagram incident to arc α̂.

From Corollary 3, we derive a 1−1 correspondence from the order-k arcs in
F to S. Let S′ ⊆ S denote the range of this correspondence.
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∂f

h1p

J(h2, p)

p
q

f

p

α β

h2

J(h1, p)

I1

γ

fα

I2

I3

Figure 6.6. The assumption of one face fα of V(S f )∩ f which is incident to two
order-k arcs α and β yields a contradiction to axiom (A1).

Lemma 36. There is a 1−1 correspondence from F to S, where each order-k arc
α̂ ∈ F (α̂ ⊆ J(H, sα)) corresponds to an arc α ∈ S (α ⊆ J(h, sα)). In addition,
VR(α,S)∩ f = VR(α̂,F).

Proof. Each order-k arc α̂ ∈ F has a face VR(α̂,F) that contains a face VR(α,S)
of V(S) by Corollary 3. Since V(S) is tree-like (Lemma 1) each face VR(α,S) of
V(S) has a unique owner, which is the corresponding arc α ∈ S.

By combining Lemma 36, Lemma 22, and because f ⊆ DS′ we establish:

Lemma 37. For any boundary curve P for S′, Vl(P)∩ f = V(F) = V(S f )∩ f ∩DΓ .

Proof. Recall that DS′ = DE \
⋃

auxiliary α∈E R(α,E). By Lemma 36 there is a core
arc α ∈ S′ for every region VR(α̂,F) such that Voronoi region R(α,E) ⊇ VR(α̂,F).
Thus, in the diagram Vl(E), the union of the (closure of the) regions of the orig-
inal arcs related to S′ contain the entire face f , and thus, we have f ⊆ DS′ . The
claim follows by Lemma 22.

Lemma 38. C can be computed from ∂ f in O(|∂ f |) time.

Proof. Refer to Figure 6.7. For every three consecutive order-k arcs α̂, β̂ , γ̂ ∈ F

define β to be the portion of J(h, sβ̂) between the first intersection with J(h, sα̂)
(if sα̂ 6= sβ̂) and J(h, sγ̂) (if sγ̂ 6= sβ̂), resp., or with Γ in case they don’t intersect. If
sα̂ = sβ̂ , and use α̂’s predecessor for finding the endpoint of the arc β . In the end,
C is the h-monotone path that we obtain by linking the consecutive arcs that are
incident to Γ by a Γ -arc. Clearly the running time is O(|∂ f |).

Lemma 37 (Lemma 22) and Theorem 8 imply a very simple approach to com-
pute V(S f ) ∩ f : Let C denote the plain boundary curve for S′, which is derived
from ∂ f in time O(|∂ f |) by applying Lemma 36 (see Lemma 38). Run the ran-
domized algorithm of Section 6.1.1 on C as modified by Theorem 8. It will com-
pute Vl(P′) for some boundary curve P′ for S′ (see Theorem 8). By Lemma 37,
output Vl(P′)∩ f , which is V(S f )∩ f ∩ DΓ .
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Cα

α̂

β̂

β

sβ
sα

h
sα

h
sβ

∂f

γ̂

Γ
γ

sβ
sγ

Figure 6.7. Constructing C from ∂ f .

Theorem 9. Given a face f of the order-k Voronoi region VRk(H, S), V(S f )∩ f can
be computed in expected O(m) time, where m is the complexity of ∂ f . Thus, we can
compute Vk+1(S)∩ f in expected time O(m).

6.2 The farthest abstract Voronoi diagram

In this section we show how to modify and simplify the algorithm for deletion of a
region of the previous sections to compute the farthest abstract Voronoi diagram,
after the sequence of its faces at infinity is known.

The farthest Voronoi region of a site p ∈ S is FVR(p, S) =
⋂

q∈S\{p} D(q, p)
and the farthest abstract Voronoi diagram of S is FVD(S) = R2 \

⋃

p∈S FVR(p, S).
FVD(S) is a tree of complexity O(n), however, regions may be disconnected and
a farthest Voronoi region may consist of Θ(n) disjoint faces, see Mehlhorn et al.
[2001]. Let D∗(p, q) = D(q, p); then FVR(p, S) =

⋂

q∈S\{p} D∗(p, q).
Unless otherwise noted, we adopt the following convention: we reverse the

labels of bisectors and use D∗(·, ·), in the place of D(·, ·), in most definitions and
constructs of Sections 3.2, 3.3. Under this convention the definition of an e.g., p-
monotone path remains the same but it uses ∂ FVR(p, ·) in the place of ∂ VR(p, ·).
The corresponding arrangement of p-related bisectors Jp,S′ , S′ ⊆ S, is consid-
ered with the labels of bisectors and their dominance regions reversed from the
original system J.

Consider the enclosing curve Γ as defined in Chapter 3, and let S be the se-
quence of arcs on Γ derived by Γ ∩ FVD(S). S represents the sequence of the
farthest Voronoi faces in FVD(S) at infinity. The domain of computation is DΓ .
For an arc α of S let sα denote the site in S for which α ⊂ FVR(sα, S). With respect
to site occurrences, S is a Davenport-Schinzel sequence of order 2. S can be com-
puted in time O(n log n) in a divide and conquer fashion, similarly to computing
the hull of a farthest segment Voronoi diagram, see e.g., Papadopoulou and Dey
[2013].
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αVR(α, S)

S

V(S)
sα

sα
sδ

sγ

γ

δ

Figure 6.8. The farthest Voronoi diagram V(S) = FVD(S)∩DΓ and the Voronoi
region VR(α,S). Bisector labels are shown in the farthest (reversed) sense.

We treat the arcs in S as sites and compute V(S) = FVD(S)∩DΓ . Let VR(α,S)
denote the face of FVD(S) ∩ DΓ incident to α ∈ S, see Figure 6.8. V(S) is a tree
whose leaves are the endpoints of the arcs in S.

For S′ ⊆ S, let S′ ⊆ S be the set of sites that define the arcs in S′. Let J(S′) =
{J(p, q) ∈ J | p, q ∈ S′, p 6= q}.

Definition 12. A boundary curve P for S′ is a partitioning of Γ into arcs whose
endpoints are in Γ ∩ J(S′) such that any two consecutive arcs α,β ∈ P are incident
to J(sα, sβ) ∈ J(S′), having consistent labels, and P contains an arc α ⊇ α∗, for
every core arc α∗ ∈ S′. We say that the labels of α, β are consistent, if there is
a neighborhood α̃ ⊆ α incident to the common endpoint of α and β such that
α̃ ∈ D∗(sα, sβ), and respectively for β .

There can be several different boundary curves for S′. The arcs in P that
contain a core arc in S′ are called original and any remaining arcs are called
auxiliary. The arcs in P, although they are arcs on Γ , they are all boundary arcs
and none is considered a Γ -arc in the sense of the previous sections. The endpoint
J(sα, sβ)∩ Γ on P separating two consecutive arcs α,β is denoted by ν(α,β).

The Voronoi-like diagram of a boundary curve P is defined analogously to
Definition 6. Since P consists only of boundary arcs, Vl(P) is a tree whose leaves
are the vertices of P. The properties of a Voronoi-like diagram in Section 3.2
remain the same (under the conventions of this section).

Given Vl(P) for a boundary curve P of S′ ⊂ S, we can insert a core arc β∗ ∈ S\
S′ and obtain Vl(P⊕β∗). The insertion is performed analogously to Section 3.3.
Let β ⊇ β∗ be defined as follows: let x , y denote the endpoints of β , and let
δ be the first arc on P counterclockwise (resp. clockwise) from β∗ such that
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Figure 6.9. Illustration for Lemma 40. Nearest labels are shown.

J(sβ , sδ) ∩ δ 6= ;; let x = ν(δ,β) (resp. y = ν(β ,δ)). Let Pβ = P ⊕ β be the
boundary curve obtained from P by substituting with β its overlapping piece. No
original arc of P can be deleted in Pβ . Observation 1 remains the same, except
from cases (d),(e) that do not exist.

The merge curve J(β), given Vl(P), is defined analogously to Definition 7; it is
only simpler as it does not contain Γ -arcs. Theorem 2 remains valid, i.e., J(β) is
an sβ -monotone path in Jsβ ,S′ connecting the endpoints of β . The proof structure
is the same as for Theorem 2, however, Lemma 13 now requires a different proof,
which we give in the sequel (see Lemma 40). Lemma 14 is not relevant; while
Lemma 15 and Lemma 16 are analogous.

In the following lemma we restore the labeling of bisectors to the original.

Lemma 39. In an admissible bisector system J (resp. J ∪ Γ ) there cannot be two
p-cycles, p ∈ S, with disjoint interior.

Proof. By its definition, the nearest Voronoi region VR(p, S) (resp. VR(p, S)∩DΓ )
must be enclosed in the interior of any p-cycle of the admissible bisector system
J (resp. J∪ Γ ). But VR(p, S) (resp. VR(p, S)∩DΓ ) is connected (by axiom (A1)),
thus, there cannot be two different p-cycles with disjoint interior.

Lemma 40. Consider the merge curve J(β). Suppose vi+1 is not a valid vertex
because vi+1 ∈ αi, i.e., ei hits arc αi. Then vertex vm− j can not be on P.

Proof. Suppose otherwise, i.e., vertex vm− j is on the boundary arc αm− j. Then
J i

x and J j
y partition DΓ in three parts: a middle part incident to β , and two parts

C1 and C2 at either side of J i
x and J j

y respectively, whose closures are disjoint,
see Figure 6.9. But the boundaries of C1 and C2 are sβ -cycles in the admissible
bisector system J∪Γ contradicting Lemma 39. Note that here we use the original
labels of bisectors, including Γ = J(sβ , s∞).
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The diagram Vl(P)⊕ β is defined analogously and the proof that Vl(P)⊕ β
is a Voronoi-like diagram for Pβ = P ⊕ β , Vl(Pβ), is analogous to the proof of
Theorem 3.

The randomized algorithm for computing V(S) = FVD(S) ∩ DΓ is the same
as in Section 5.1. Following the same analysis as in Section 5.2, the (expected)
linear time complexity can be established.

The sets in j and out j in the time analysis are defined analogously, however,
their exact definition is slightly different from Section 5.2. Here out j are the
auxiliary arcs in B j that overlap with the auxiliary arcs of α j in Bi. The set in j

are any remaining auxiliary arcs in B j \ out j that differ from the corresponding
auxiliary arcs in Bi. All observations of Section 5.2 remain intact under the
updated notion of in j and out j. Thus, all counting arguments remain also the
same, except from cases (d) and (e) of Observation 1 that do not occur, simply
setting their respective parameters to 0.

Theorem 10. Given the sequence of its faces at infinity (i.e., S), FVD(S) can be
computed in expected O(h) time, where h ∈ O(n) is the number of faces of FVD(S)
(h= |S|).

6.3 Conclusion

In this chapter we have extended the algorithm for site deletion of Chapter 5
to solve the fundamental tree-like problems (2) and (3) that we introduced in
Chapter 1: the order-k and the farthest problem.

Thus, we have shown uses of Voronoi-like diagrams as intermediate struc-
tures in various randomized incremental algorithms yielding optimal expected
linear running time for tree-like Voronoi problems.
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Chapter 7

Towards a deterministic linear-time
algorithm for Voronoi-like diagrams

Updating an abstract Voronoi diagram, after deletion of one site, in deterministic
linear time is still a well-known open problem. We have investigated the appli-
cability of Voronoi-like diagrams in the linear-time framework of Aggarwal et al.
[1989] in our research. However, results have not been conclusive.

In this chapter we present the idea how Voronoi-like diagrams might be used
in the deterministic linear-time framework of Aggarwal et al. [1989] and explain
the difficulties. We formulate open problems the solution of which would estab-
lish significant progress on the way to a deterministic linear-time algorithm for
the problem of deletion in an abstract Voronoi diagram based on Voronoi-like
diagrams.

First we summarize the linear-time framework of Aggarwal et al. [1989] for
points in convex position (which is also sketched in Chapter 2) on a high level
as follows:

Linear-time Algorithm (point sites) by Aggarwal et al. [1989]

Input: The sequence of a set of point-sites S along the convex hull of S, where
S is in convex position.
Output: The Voronoi diagram V(S).

1. Partition S into a red set R and a blue set B of almost equal size with a
Coloring rule.

2. Recursively compute the blue Voronoi diagram V(B).

97
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a
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c d
e

Figure 7.1. According to the coloring rule of step 1 site c is colored red, because
the Voronoi regions VR(b) and VR(d) are adjacent in the Voronoi diagram
V({a, b, c, d, e}).

3. Using V(B) apply the combinatorial lemma, which outputs a constant frac-
tion of crimson sites C ⊂ R such that no two crimson Voronoi regions inter-
sect the same edge.

4. Insert the (non-adjacent) crimson regions one-by-one to the blue diagram
V(B) in linear time.

5. Recursively compute the garnet Voronoi diagram V(G), G = S \ (B ∪ C).

6. Merge V(B ∪ C) with V(G) into V(S) in linear time O(|S|).

The coloring rule for points in convex position is the following (see Aggarwal
et al. [1989]; Klein and Lingas [1994]):

Coloring rule (step 1). Let a, b, c, d, e denote five consecutive sites of a subset
S′ ⊆ S according to the ordering of the convex hull of S. Site c is colored red
if in the Voronoi diagram V({a, b, c, d, e}) there is a Voronoi vertex incident to
VR(b), VR(c) and VR(d) or equivalently the regions VR(b) and VR(d) are adja-
cent in V({a, b, c, d, e}). See Figure 7.1.

Coloring properties. For a subset S′ ⊆ S, let R be all red colored sites by the
above rule and let the remaining sites B = S′ \ R be blue. Then the following
properties can be shown (see Aggarwal et al. [1989]; Klein and Lingas [1994]):

• No two consecutive sites of S′ belong in the red set.

• The number of red sites is roughly equal to the number of blue sites, i.e.,
R= Θ(|B|).
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• Let a, b ∈ R be two successive red sites. Then the Voronoi regions VR(a, B∪
{a, b}) and VR(b, B ∪ {a, b}) in V(B ∪ {a, b}) are not adjacent.

Idea for Voronoi-like diagrams

Recall that Voronoi-like diagrams are defined for boundary curves derived from
a subset of arcs S instead of sites S. The idea is to use this set of arcs S as input
to the linear-time algorithm and compute Voronoi-like diagrams for boundary
curves of subset of arcs.

We have identified three major challenges in order to realize the use of Voronoi-
like diagrams in the deterministic linear-time framework.

Challenges

C.1 Define a colouring rule for arcs instead of sites, see step 1 of the algorithm,
and prove its correctness.

C.2 Generalise the combinatorial lemma to be able to deal with the much more
complex situation when dealing with Voronoi-like diagrams, see step 3 of
the algorithm. This includes tree-like graphs instead of simple trees as in
the original case.

C.3 Merge two Voronoi-like diagrams in linear time, see step 6 of the algorithm.

In the following we explain the difficulties of these challenges in more detail.

7.1 Challenge C.1: A coloring rule

Generalizing the coloring rule of step 1 of the algorithm to the Voronoi-like set-
ting constitutes the main problem. Neither the coloring rule from Aggarwal et al.
[1989] nor from Bohler et al. [2014] can be applied. A new formulation is nec-
essary.

The reason for the particular difficulty of establishing the Colouring rule in
our setting is the following: Voronoi-like diagrams don’t have the standard mono-
tonicity property that real Voronoi diagrams have (illustrated in Figure 7.2):

S1 ⊆ S2 ⇒ VR(p, S2) ⊆ VR(p, S1), p ∈ S1. (7.1)

In contrast for Voronoi-like diagrams a subset relation of the arcs S1 ⊆ S2 does
not imply a subset relation for the regions R(α,P2) and R(α,P1) of a common arc
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p p

S1 S2

Figure 7.2. In a Voronoi diagram, S1 ⊆ S2 implies VR(p, S2) ⊆ VR(p, S1).

α, for two arbitrary boundary curves P1 and P2 on S1 and S2, respectively:

S1 ⊆ S2 6⇒ R(α,P2) ⊆ R(α,P1),α ∈ S1. (7.2)

See Figure 7.3 for an example, where S1 ⊆ S2, but R(α,P2) 6⊆ R(α,P1).
In the linear-time frame work for real Voronoi diagrams the monotonicity

property (7.1) is crucial for proving that the coloring rule implies the desired
adjacency properties (see the coloring properties on page 98). The lack of mono-
tonicity in the Voronoi-like setting makes the formulation of a coloring rule a
non-trivial challenge.

Question 2. Given a subset of Voronoi edges S′ ⊆ S, is there a way to partition S′

into blue and red arcs B and R in O(|S′|) time such that the following properties are
satisfied:

• No two consecutive arcs of S′ belong in the red set R.

• R= Θ(|B|).

• Let β ,δ ∈ R be two successive red arcs and P be a boundary curve for B ∪
{β ,δ}. Then the regions R(β ,P) and R(δ,P) in Vl(P) are not adjacent.

7.2 Challenge C.2: The combinatorial lemma

Generalizing the combinatorial lemma from the point-site setting to the abstract
Voronoi-like setting is the next challenge.

The combinatorial lemma of Aggarwal et al. [1989] takes as input the Voronoi
diagram V(B), which is an unrooted binary tree T embedded in the plane. Each
leaf of T is associated with a neighborhood, which is a subtree of T rooted at that
leaf with the property that consecutive leaves of T have disjoint neighborhoods.
A neighborhood of a leaf ` corresponds to the Voronoi region of a red site r ∈ R
when inserted in V(B), i.e., leaf ` corresponds to site r ∈ R if ` is contained in
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S1

S2

α

α

P1

P2

Figure 7.3. Two Voronoi-like diagrams Vl(P1) and Vl(P2) (in red), where
R(α,P2) ⊃ R(α,P1), even though S1 ⊂ S2. (P1 and P2 are boundary curves
for S1 and S2, respectively.) The core arcs S1 and S2 are black bold.

VR(r, B ∪ {r}) and the neighborhood of ` is V(B)∩VR(r, B ∪ {r}). The combina-
torial lemma outputs in linear time a constant fraction of the leaves (respectively
a subset of sites R) such that their neighborhoods are pairwise disjoint. These
leaves of the output correspond to the crimson sites in step 3 in the linear-time
Algorithm.

Some progress has been achieved in generalizing the combinatorial lemma
from the point-site setting to the abstract Voronoi-like setting, see Junginger,
Mantas and Papadopoulou [2019]. One part of the generalization is that not
every leaf of the tree has an associated neighborhood. Instead the leaves are
partitioned in two parts, the marked and the unmarked leaves, where only the
marked have a neighborhood. The following theorem is the main result of this
paper.

Theorem 11. Let T be an unrooted binary tree embedded in the plane with n leaves,
m of which have been marked. Each marked leaf of T is associated with a neigh-
borhood, which is a subtree of T rooted at that leaf; consecutive marked leaves in
the topological ordering of T have disjoint neighborhoods. Then, there exist at least
1

10 m marked leaves in T, with pairwise disjoint neighborhoods, such that no tree
edge has its endpoints in two different neighborhoods. We can select at least p of
these 1

10 m marked leaves in time O( 1
1−p n), for any p ∈ (0, 1).

In the Voronoi-like setting the marked leaves correspond to regions of original
arcs and the unmarked leaves to regions of auxiliary arcs. Here a challenge was
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to ensure the fraction p
10 of the m marked leaves in T with pairwise disjoint

neighborhoods without increasing the time complexity too much.
However, we emphasize that Theorem 11 only is able to deal with trees and

not with tree-like graphs (see Definition 1) as needed e.g., in case of the problem
of deleting a site in an abstract Voronoi diagram using Voronoi-like diagrams as
well as in the order-(k+1) subdivision within an order-k abstract Voronoi region.
We believe that further generalizing Theorem 11 to tree-like graphs is a non-trivial
task, even in the more specific case without allowing unmarked leaves, but with
marked leaves only.

Question 3. Can Theorem 11 be generalized for tree-like graphs in order to be
applicable to Voronoi-like diagrams as needed e.g., in the problem of site deletion?

7.3 Challenge C.3: Merging two Voronoi-like diagrams

Merging two Voronoi-like diagrams in linear time is the third challenge, for
which we have made the following observation: The property from [Klein, 1989,
Lemma 3.4.1.4] is the key that allows using the classic clockwise-counterclockwise
scan without backtracking and thus allows merging two AVDs in linear time.
However, an analogous statement of this lemma does not hold for Voronoi-like
diagrams. A new algorithm for merging two Voronoi-like diagrams is needed.
In Figure 7.4 we present an example showing that in some cases backtracking is
needed if we follow the standard clockwise-counterclockwise technique of merg-
ing two abstract Voronoi diagrams as described by Klein [1989].

Figure 7.4 shows two boundary curves P1 (black) and P2 (blue) in thick solid
lines together with their overlapping Voronoi-like diagrams Vl(P1) (gray) and
Vl(P2) (turquoise), thin lines, respectively. The example is based on an admis-
sible bisector system defined by disjoint line segments, which are shown in light
gray, and the site s is dashed. The start of the merge curve (red) is m1. In the
classic merging method in each step i we move in Vl(P1) counterclockwise and in
Vl(P2) clockwise along the boundaries of the current regions. The intersections
mi and m′i of the bisector of the current merge curve edge is computed in both
diagrams and the one being closer to the last merge curve vertex is the valid next
vertex. In the example, in step 4 in order to compute the intersection m4 one has
to backtrack on Vl(P1) in clockwise direction from m′3. This example shows that
the next question can not be answered easily by using known results for abstract
Voronoi diagrams from the literature.
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Question 4. Can two Voronoi-like diagrams Vl(P1) and Vl(P2) for S1 and S2,
respectively be merged in O(|Vl(P1)|+ |Vl(P2)|) time into a Voronoi-like diagram
for S1 ∪ S2?

We believe that Challenge C.1 and Challenge C.3 are very much related and
the solution of one will help to solve also the other.

We conclude this chapter by classifying the following natural and fundamen-
tal problem as highly non-trivial to solve.

Question 5. Does there exist a deterministic linear-time algorithm for updating an
Abstract Voronoi Diagram after deletion of one site?

The solutions of challenges C.1, C.2 and C.3, i.e., affirmative answers to Ques-
tions 2, 3 and 4 will bring significant progress towards its answer.

7.4 Conclusion

In this chapter we investigated the applicability of our Voronoi-like diagrams to
the deterministic linear-time framework of Aggarwal et al. [1989]. We gave the
idea how to apply them and pointed out three major challenges to overcome.
For each of them, we explained the difficulty or gave concrete reasons why their
solution will not be trivial.

We still believe that for future research it is worth to continue the investi-
gation, since realizing this application would solve a very long-standing open
problem: The design of a deterministic linear-time algorithm for tree-like Voro-
noi diagram of non point-sites, and in particular, the question: Can an abstract
Voronoi region be deleted in linear time?
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Chapter 8

Conclusion

In this dissertation we formalized the notion of a Voronoi-like diagram, given a
boundary curve consisting of arcs, which represent the relevant sites and which
are derived from the boundary of an (abstract) Voronoi region VR(s, S). The
Voronoi-like diagram is a relaxed Voronoi structure and we proved that it is well-
defined, and shown its usefulness by presenting algorithms, where the Voronoi-
like diagram can be much faster computed than the real one. The main part of the
research, which is summarized in this dissertation, was to formulate definitions
and establish the properties of this structure.

Using Voronoi-like diagrams as intermediate structures, we derived a simple
randomized algorithm to compute the subdivision V(S \ {s}) ∩ VR(s, S) in time
O(|∂ VR(s, S)|), and thus, to update an abstract Voronoi diagram V(S), after the
deletion of site s, in expected linear time. The Voronoi-like structure provides the
means to efficiently deal with the disconnected Voronoi regions that are present
in V(S \ {s})∩ VR(s, S) despite its tree-like simple structure. The approach itera-
tively computes Voronoi-like diagrams of boundary curves that are progressively
enclosed within one another, until it reaches ∂ VR(s, S).

We also extended the approach to compute the order-(k+1) subdivision within
a face of an order-k Voronoi region. Further, our approach can be adapted, in fact
simplified, to compute the farthest abstract Voronoi diagram in linear expected
time, after the order of its faces at infinity is known. In this case a boundary
curve represents an ordering of Voronoi regions at infinity.

A deterministic linear-time algorithm for constructing tree-like abstract Voro-
noi diagrams remains an open problem. We expect that the notion of Voronoi-like
diagrams will be useful in this direction as well. An interesting, however non-
trivial, task for future research is to realize the application of the Voronoi-like
structures introduced in this dissertation to the linear-time framework of Aggar-
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wal et al. [1989], aiming to a deterministic linear-time algorithm. We pointed
out challenges for this goal and formulated subproblems, the solutions of which
would yield significant progress towards the linear-time algorithm.
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