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Abstract

The ubiquity of digital sensors embedded in today’s mobile and wearable devices
(e.g., smartphones, wearable cameras, wristbands) has made technology more
intertwined with our life. Among many other things, this allows us to seamlessly
log our daily experiences in increasing numbers and quality, a process known
as “lifelogging”. This practice produces a great amount of pictures and videos
that can potentially improve human memory. Consider how a single photograph
can bring back distant childhood memories, or how a song can help us reminisce
about our last vacation.

Such a vision of a “memory augmentation system” can offer considerable ben-
efits, but it also raises new security and privacy challenges. Maybe obviously, a
system that captures everywhere we go, and everything we say, see, and do, is
greatly increasing the danger to our privacy. Any data breach of such a memory
repository, whether accidental or malicious, could negatively impact both our
professional and private reputation. In addition, the threat of memory manipu-
lation might be the most worrisome aspect of a memory augmentation system:
if an attacker is able to remove, add, or change our captured information, the re-
sulting data may implant memories in our heads that never took place, or, in turn,
accelerate the loss of other memories.

Starting from such key challenges, this thesis investigates how to design secure
memory augmentation systems. In the course of this research, we develop tools
and prototypes that can be applied by researchers and system engineers to de-
velop pervasive applications that help users capture and later recall episodic
memories in a secure fashion. We build trusted sensors and protocols to se-
curely capture and store experience data, and secure software for the secure and
privacy-aware exchange of experience data with others. We explore the suitabil-
ity of various access control models to put users in control of the plethora of data
that the system captures on their behalf. We also explore the possibility of using
in situ physical gestures to control different aspects regarding the capturing and
sharing of experience data. Ultimately, this thesis contributes to the design and
development of secure systems for memory augmentation.
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Chapter 1

Introduction

For millennia humans have been recording, storing, and passing on informa-
tion in order to advance knowledge, as well as to preserve our most valuable
memories. Whether carving on walls, painting on paper, taking a photograph,
storytelling, or writing, we have always attempted to create various memory aids
(or cues) that would allow us to conserve our fading memories over time. With
the dawn of the “information era”, exhibited by pervasive smart computers and
sensors that are connected all the timeE], we have seen remarkable changes to-
wards how we can capture, store, and share information. Taking a high-resolution
photograph, tracking our location, counting our steps, or going live on social me-
dia, are only a few examples of the digital memory aids that we can create and
disseminate in a very straightforward fashion nowadays.

However, the transition into an information and knowledge society has also
changed our lifestyle towards a more fast-paced and stressful one, requiring us
to handle more and more information at a time. Not surprisingly, this has had
a negative impact on our ability to remember and recall many aspects of our
mundane activities. A recent study [[1]] suggests that chronic stress might be one
of the reasons why we often fail to remember e.g., “where we left our car keys”,
or “if we have to pickup our kids from school today”. Despite such consequences,
technology might still be a means of supporting and augmenting our memories
in this rich-information era.

Early ideas to designing technological artifacts to support human memory
date back to the concept of the “Memex”, proposed by Vannevar Bush in his sem-
inal article ‘As we may think” from 1945 [2]]. Irritated by the fact that for years

! According to a report by Cisco IBSG 2011, the number of Internet-connected devices has seen
a massive growth in the last 13 years (going from 500 million in 2003, to 12.5 billion in 2010,
to 50 billion by 2020) clearly making the number of connected devices per person more than 5.



Introduction

inventors had focused on extending human’s physical powers rather than their
“powers of mind’, Bush urged scientists to design solutions that will improve the
accessibility of the bewildering store of knowledge of that time. His article in-
troduced a straw-man description of his Memex machine to both capture and
store knowledge from different scientific articles and books. Fast forward some
50 years, “lifelogging” pioneers Bell and Gemmell started “MyLifeBits” [3]], ini-
tially envisioning to create a modern Memex system that would capture archival
materials (e.g., computer files, scanned books, and digitized music), but later
also capturing real-time and continuous content streams (e.g., phone calls, meet-
ings conversations, and first-person photos as produced by wearable cameras).

Fast forward another 20 years, and we can take the idea of “augmented mem-
ory” to a completely different new level. We are able to capture more information
than MyLifeBits could, e.g., contextual information, location traces, physiolog-
ical state, to name but few. Recent advances in big data analytics (e.g., deep
learning), as well as in data visualization (e.g., ambient displays) provide us
with cutting-edge tools for designing novel approaches to memory augmenta-
tion. The principle idea is to use emerging unobtrusive capture technologies
(such as wearable and mobile devices) to capture a rich representation of our
everyday experiences. The casual review of such experiences will allow then
users to refresh and reinforce existing memories, a process known in psychology
as cued-recall.

Maybe obviously, a system that captures everywhere we go, and everything
we say, see, and do, is greatly increasing the danger to our privacy. Any data
breach of a such memory repository, whether accidental or malicious, could have
significant repercussions — starting with negatively impacting our (professional
and private) reputation, up to risking physical harm (e.g., targeted assaults).
Even more than prior pervasive systems, the design of such architecture requires
one to thoroughly include privacy consideration at design-time [4]].

The threat of infringing users’ privacy is not the only worrisome implication
of such systems. Research from the field of psychology has shown that the afore-
mentioned cued-recall process does not only allow us to reinforce our past memo-
ries but can also attenuate them [|5,6]]. In practice, this means that the cued-recall
process can be misused to reinforce a particular set of memories and decrease
the ability to recall other memories, hence manipulate our overall memory of
prior experiences. In fact, there is strong evidence that our memories can be ma-
nipulated almost at will. In a recently published book [[7]], UCL researcher Julia
Shaw, finds that “even the precious memories of our childhood can be be actu-
ally shaped and reshaped like a ball of clay”. Through a series of experiments,
Shaw was able to implant “full false memories” in 70% of her study participants,
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making them remember details of prior experiences that never took place [7].
Obviously, such memory manipulation attacks would be greatly amplified in the
context of our envisioned technology-based memory augmentation.

This thesis thus investigates how we design secure memory augmentation
systems. Particularly, we focus on the two above-mentioned challenges of user
privacy and manipulation of user memory. In the course of this research, we
develop tools and prototypes that can be applied by researchers and system en-
gineers to develop pervasive applications that help users capture and later recall
episodic memories in a secure fashion. We built trusted sensors and protocols
to securely capture and store experience data, and secure software for the se-
cure and privacy-aware exchange of experience data with peers. Regarding the
user privacy challenges, we focus in only one aspect of privacy, that is, the sup-
port for modifications of visual experience data (images). The other aspects of
“classical-privacy” such as confidentiality, anonymity, or data usage policies are
out of scope of this research. We furthermore explore the suitability of various
access control models to put users in control of the plethora of data that the sys-
tem captures on their behalf. We explore the possibility of abstracting most of
the control logic via simple-to-use and easy-to-remember physical gestures. Ulti-
mately, this thesis contributes to the design and development of secure systems
for memory augmentation.

1.1 Vision: Pervasive Memory Augmentation

The proliferation of sensors-rich mobile devices such as smartphones, smart-
watches, wristbands, wearable cameras has made technology more intertwined
with our life. This technological “invasion” gives the us possibility to digitally cap-
ture our daily experiences in increasing numbers and quality, a process known
as lifelogging [8]]. Its early adopters have created the quantified-self movement
— the quantification of one’s daily activities (e.g., steps taken, calories burned,
sleep patterns, heart rate, etc.) in order to better manage one’s life following the
old adage “You can’t manage what you can’t measure”.

Beyond such use, it is not hard to imagine that captured experiences can also
support and augment human memory. In this vein, lifelogging offers a powerful
new set of tools that can radically change the way how we can put technology
to support our overall memories. In the following, we map out the vision of per-
vasive memory augmentation systems and how they can be used to facilitate the
recollection of our prior memories.



Introduction

SN YN Y

(3 X E 2} &,
'/ \) ; <

< o) (3 .
B D4 & 7\
-/ = J

Experience Capture Storage and processing Presentation and Review

4

v

© icons by The Noun Project et al.

Figure 1.1. Three steps memory augmentation process.

We envision a memory augmentation system as a three step process [9]] (as
shown in Figure[1.I)). At the outset, one captures different aspects of daily activ-
ities (step 1) using unobtrusive capture technology, such as wearable cameras,
smartglasses, or smartphones. Activity data is then processed (step 2) in order to
build carefully selected memory triggers (memory cues) such as a set of photos
of the activity, the type of the activity, the environment where it happened, the
main conversation themes, the weather conditions, etc. The extracted memory
cues are then repeatedly and unobtrusively presented back to users in suitable
moments and through ambient displays (step 3), for instance on a mobile phone’s
lock screen, as a laptop’s screen saver, or on a picture frame in the living-room.

The casual review of memory cues will allow then users to refresh and re-
inforce existing memories. This process is known in psychology as cued recall.
In this respect, a memory cue is simply a piece of information that, when re-
viewed, can help one to retrieve the memories associated with it. Consider how
a photograph can bring back distant memories from childhood, how a song can
help one reminisce about a past vacation, or how a set of keywords can help one
remember details from a previous work meeting.

Many prior memory supporting approaches (e.g., Memex or MyLifebBits) are
designed as look-up data stores which one can then query in order to retrieve the
missing memories. Unlike this approach, we envision a system that would au-
tomatically deliver relevant memory cues based on user-defined goals regarding
what one would like to remember, e.g., remembering faces of new encounters, or
preparing for an upcoming exam. By constantly reviewing the presented mem-
ory cues, one can then train their memory, so that ultimately, those memories
can be recalled without the help of any tool.
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Users will predominantly will capture their daily activities using their own
capture devices. This means that the quality and the type of the cues will be
limited to what one’s own device has managed to capture. From our experience
working with wearable cameras, we have observed that images captured by them
do not lend well as memory cues. Very often, the camera lens gets obscured by
the wearer’s hair or clothes. Even when having a clear view, the camera’s narrow
field of view may fail to capture key moments of the activity. However, the wear-
able cameras of other users that are in close physical proximity, as well as any
infrastructure camera, could have captured those key moments. For instance,
while one’s own camera will fail to capture a person sitting right next to the user,
the camera of the person sitting in front can. Therefore, we envision a memory
augmentation system that will also exchange data it captures between co-located
peers and infrastructure sensors, so that ultimately the produced data stream will
capture a great amount of details.

In short, a memory augmentation system seamlessly captures a user’s daily
activities, extracts memory cues and other background contextual information
(e.g. type of event, or other users nearby), and considers the user’s memory
preferences (e.g., which memories would one like to reinforce or to attenuate),
before finally deriving a review schedule for such cues. It also automatically ex-
changes captured data with co-located users in order to deliver any information
that the user’s camera may have failed to capture. The system further provides
mechanisms that allow users to customize the capturing and sharing preferences
and support users in-situ according to their current situation.

1.1.1  Memory Cue Sources

In principle, almost anything can work as a memory cue that can help us remem-
ber: a written note can help us remember what was discussed in a meeting, a tied
knot on the finger can remind us to pickup our friends from airport, a glass of
sand can help us reminisce about the vacations at the beach, the smell of a cake
can bring back memories of our last birthday celebration, etc.

According to psychology research on human memory, visual information,
such pictures or videos, are of a particular interest for memory recall [[10]. Thanks
to their rich-level of information, visual data offer the most effective memory
cues. Given today’s capture technology (in particular body-worn cameras), vi-
sual memory cues live at the sweet spot of both ease of capture and recall power.
The work in this thesis, therefore, focuses on visual information as a central data
source for generating what we call primary memory cues.
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(c) As a slideshow on the living room TV (d) As picture frame content

Figure 1.2. Conceptual prototypes of ambient displays showing visual and/or
textual memory cues.

In certain applications, such as work-related meetings, seminar talks or lec-
tures, audio data can also provide valuable memory cues. Their memory-recall
power stems from the fact that they can provide topic-based memory cues (de-
rived through topic modeling techniques). These cues can then be combined
together with any visual memory cues captured during the same time, with a
goal of delivering more effective cues.

Beyond audio-visual data, there is a number of other data sources which can
generate what we call secondary memory cues. Common secondary cues can be
derived from context information that is available in most of today’s smartphones
and smartwatches, namely, time, location, acceleration, light levels, temperature,
blood pressure, or galvanic skin response. These secondary cues can either com-
plement the primary audio-visual cues (for instance to assess the significance of a
selected primary cue), or instead used as independent memory cues on their own.
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1.1.2 Cue Presentation

Once memories are captured and processed, they must be delivered back to users
at the right moment in useful and attractive visualizations. The proliferation
of ubiquitous displays via personal devices (e.g., smartphones, smartwatches,
or smartglasses), as well as in the environment (e.g., computer screens, photo
frames, or large-wall-mounted displays) provides new opportunities for display-
ing and reviewing memory cues. Figure|1.2]illustrates several conceptual designs
of such peripheral displays that can be used to show relevant memory cues ac-
cording to the users’ given context (i.e., time and location). By using such an
ambient review of experience data over a range of timescales, users should be
able to enhance memories of various past activities when needed, an effect that
should ultimately persist without the support of any visualization.

1.1.3 Sample Scenarios

In the following we provide two scenarios that attempt to illustrate how pervasive
memory augmentation systems can be used in real life. The scenarios also discuss
the motivation, use cases, benefits of sharing experience data with others, stake-
holders, as well as privacy concerns inherent in pervasive memory augmentation.

Reliving Past Experiences Through Digital Memories

Craig is an IT consultant working for an international company. During his job
he has to travel to different places in order to meet and talk to his clients. On
most of his trips, Craig takes his capturing gear with him which is composed
of a wearable camera that can both take geo-tagged pictures and record short
video snippets, as well as a wristband to record his bio-physiological responses.
In addition to his work activities, he enjoys exploring the places he visits and
engages himself in sightseeing activities. He has recently experimented with a
technique to automatically compile some highlights (out of the vast amount
of captured data) to help him review his memories of recent periods (e.g., last
days, weeks, months and even years). In order to further optimize the high-
lights selection, Craig would like to let the system know his memorization goals
(i.e., the things he wants to remember most). For instance he may like to see
more images captured while he was highly engaged on his job. Moreover, he
also likes to share some selected highlights with his co-workers and friends. In
this case, even though sharing some sight-seeing moments would not be a prob-
lem for him, clearly he wants the generated data share to be related to the
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work activities. He also wants to share the social facet of his travel experience
with his family and his online friends. In both cases Craig would not like to
share moments that he finds embarrassing (e.g., he ended up reading a knit-
ting magagzine during lunch time, as he was very bored but could not find any
other magazine) or sensitive (e.g., data showing his computer screen or images
showing bystander faces).

This scenario describes how Craig uses captured memories to re-experience pre-
vious activities and re-live positive feelings linked with those activities. Data that
Craig records is sourced from his personal wearables that capture images, audio,
video, location traces, and physiological responses. Finally, this scenario also
highlights the privacy issues that can emerge due to sharing potentially sensi-
tive data with the wrong audience (e.g., sharing data of a business pitch with
his friends), or sharing data of embarrassing moments (e.g., reading a knitting
magazine during lunch time).

Sharing Digital Memories with Co-located Others

Dorothee is an accountant working for a local company. She is an enthusi-
astic lifelogger, and she always has her wearable camera to capture her daily
activities. However, often she finds out that her camera has missed to cap-
ture various important situations, due to the camera lenses being covered by
her hair or obscured by clothes, or simply pointing out to the wrong direction.
Moreover, she never sees herself in those pictures. During the morning walk
to her working place, she stops at a local restaurant for a coffee. In order to
not miss much from these moments, she would like to access any infrastructure
camera (e.g., in the street and in the restaurant) that captures her walk in a
third-person perspective, yet preventing their owners from easily tracking her
location. While entering the department building she meets a colleague in the
hallway. Since they both want to have a more comprehensive capture of this per-
sonal encounter (compared to what their wearable cameras offer) they want to
exchange captured pictures with each other. In the afternoon Dorothee attends
a work meeting. In order to better remember this meeting, she wants access to
the data captured from the room’s built-in high-quality sensors (camera, mi-
crophone, board contents, etc.), as well as data captured from other colleagues.
However, people who simply pass by the meeting room should not have access to
this data. During the meeting break, Dorothee writes emails from her laptop.
She would not like her colleagues to get access to any data that shows content
from the laptop screen (both captured by the room’s sensors and her own wear-
able camera). After the meeting, while packing her bag, she has a chat with
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a colleague. Even though high-quality capture of the meeting room is stopped,
they still want to exchange data from their wearable cameras. Other colleagues
who have already left the room should not have access to this data.

Beyond data captured by her wearable camera, in this scenario, Dorothee is also
interested in accessing data sourced from infrastructure sensors capturing her ac-
tivities, e.g., pictures from the in-street fixed cameras or audio from the meeting
room’s microphone. Furthermore, she wants to seamlessly exchange pictures
captured from the wearable cameras of other co-located people. Data coming
from such “additional” sources can complement the data captured solely by user’s
personal devices in creating a more comprehensible representation of the cap-
tured experience. In light of this, this scenario highlights some privacy issues:
oversharing event-related data with people who were not part of the event and
were simply passing by or sharing highly-sensitive data, e.g., photos showing
laptop screen while writing a confidential email during the meeting break.

1.2 Research Questions

To investigate how we can design secure systems for human memory augmen-
tation, we considered two main aspects, namely, (i) the security of experience
data that constitutes users’ memories, and (ii) access and privacy controls of ex-
perience data when exchanging this data with others. In Table we list the
corresponding research questions which have driven the research presented in
this thesis.

A system that captures and stores different aspects of our everyday activities
can give us immediate access to a stream of information regarding our previous
experienced activities. Whilst reviewing any memory cue can help us in impart-
ing and “validating” our memories of past events, such process can be put to
wrong use in order to distort and manipulate our overall memories. This raises
significant security implications for any memory augmentation system. Imagine
that an attacker compromises our memory augmentation system and gets ac-
cess to our complete collection of captured data. Besides accessing personal and
sensitive information depicted in this data, the adversary can try to modify the
stored experiences, inject new fabricated data, delete existing data, control the
data selection process to ultimately attenuate some of our memories while rein-
forcing others, or even fabricate memory of events that we never experienced.
With the goal of addressing these risks of memory manipulation attacks, here
we focus on a technological solution that can ensure security aspects, namely,
authenticity, integrity and provenance of captured experience data (RQ1).
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No. Research Question

RQ1 How can we guarantee digital memory integrity and provenance to
prevent memory manipulation attacks?

RQ2  How can we seamlessly and securely share captured experiences with
co-located others, avoiding the risk of accidental oversharing, i.e., shar-
ing with the wrong audience, or sharing parts of a capture that we
would otherwise have kept to ourselves?

RQ3 How can we verify the integrity and provenance of experience data
which we obtain from others to detect the sharing of falsified experi-
ence captures?

RQ4  What interfaces and policy-based access control models can we use to
exercise control over data capture as well as to prevent the disclosure
of private and sensitive information when sharing experience data?

Table 1.1. Overview of research questions in this thesis.

While captured experience data is chiefly used for capturing personal mem-
ories, there are at least two benefits of sharing this data. Perhaps it comes to no
surprise that sharing experience data allows us to reminisce together with oth-
ers about an event, or to show others which were not there what they missed.
This is very similar to the practice of sharing pictures and videos on social media.
We refer to this process as explicit memory sharing. Another possibility is to im-
plicitly exchange captured memory experiences with co-located peers. Combin-
ing streams from co-located peers allows us to create more comprehensive data
streams that go beyond the physical capture limitations of our own sensors. Our
research thus focuses on an approach to first detect co-located experiences, and
then seamlessly and securely exchange data captured during that time among
co-located users (RQ2).

The possibility of receiving and reviewing any experience data shared from
others requires us to revisit the risks of memory manipulation. Memory sharing
may allow malicious peers to send us falsified data streams that do not present an
accurate reflection of the experienced event during which the shared data was
allegedly captured. Hence, we focus on a two-party protocol to verify shared
but modified experiences (RQ3). Such protocol would account for any modi-
fication carried on by the data sharer for privacy-preserving reasons, and sub-
sequently allow the recipient of such data to verify the claimed modifications
without accessing the original unmodified data.
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Regardless of how we share such data, either explicitly or implicitly, shar-
ing any sensitive information that may be depicted on them can infringe our
privacy. Therefore, we investigate the opportunities of controlling different as-
pects regarding the capturing and sharing of experiences through in situ physical
gestures. We furthermore investigate the use of policy-based control mechanism
in order to have finer-grained control on the practices of capturing and sharing
experience data (RQ4).

1.3 Research Context: The RECALL Project

The work presented in this thesis was carried out within the EU research project
RECALLﬂ The RECALL project was funded through the Future and Emerging
Technologies (FET) programme within the 7th Framework Programe for Re-
search of the European Commission, under FET grant number: 612933. Over the
course of three years (November 2013-October 2016), four consortium partners
(Lancaster University, University of Stuttgart, Essex University, and USI) collabo-
rated closely with the goal of rethinking and redefining the notion of technology-
driven human memory augmentation. The vision of pervasive memory augmen-
tation systems reported in this thesis is a fundamental part of the RECALL project
and is the result of joint effort from all partners. This collaboration resulted in
several joint publications [[1T], 12} [13] [14]], as well as a workshop on the topic of
“Mobile Cognition” at the 2015 International Conference on Human-Computer
Interaction with Mobile Devices and Services (MobileHCI’'15) [[15]].

1.4 Thesis Goals

Pervasive technologies allow us to already build systems that support and aug-
ment our memories of everyday experiences. In the course of this research, we set
out with the goal of investigating how we can design secure systems for human
memory augmentation. While challenges such as experience data confidentiality
and privacy are most likely the largest user-concerns of this kind of technology,
in this thesis we, however, focus on a potentially far more serious attack space:
risks of memory manipulation that stem from security related issues. A second
challenge that we aim to address is the design of efficient mechanisms for con-
trolling the practices of capturing and sharing of experience data with others.

2http:/ /recall-fet.eu
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We tackle these two challenges by utilizing and combining together several con-
cepts, namely, primitives from computer security and cryptography, pervasive
sensing, short-range communication technologies, and the concept of tangible
interfaces. In designing our solutions we conducted formative and summative
experiments, as well as security and performance evaluations. We also incorpo-
rated key design principles stemming from research efforts on secure pervasive
systems, namely 1) the socio-technical view of pervasive systems, 2) context-
awareness of these systems, and 3) resource-constrained operation environments
[[16,[17,18]]. Table[1.2) provides a summary of the contributions delivered in the
course of this research.

Contribution Publication
A trusted camera sensor coupled with storage protocol to [[19]
securely capture and store experience data

A mobile system to seamlessly and securely exchange experience [[14]
data with co-located peers

A two party protocol to verify integrity of shared but modified [[19]]
visual experience data

A tangible interface for controlling capture and sharing of [20]
experience data with in-situ gestures

A critical review of the suitability of policy-based access [21]]
control models with regard to requirements of pervasive
memory augmentation systems

Table 1.2. Overview of contributions of this thesis.

1.5 Methodology

In this section we describe the methodology we followed for addressing the afore-
mentioned thesis goals (see section[I.4)), that is, building and evaluating secure
systems for human memory augmentation. In principle we design and develop
security protocols and architectural components which we deploy on low-power
mobile devices. We then evaluate their security and performance, as well as
usability and user experience aspects. Therefore, our research methodology is
grounded in cross-disciplinary research methods from computer security, perfor-
mance evaluation of computer systems and user-centered research approach.
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Specifying security goals

Designing mechanisms

Threats and| ,| Adversary Percom Security Mechani
PEEEB attacks ™ model aspects requirement echanisms -+ Assurance
* V. /, ‘\ ’//

Figure 1.3. The process that we followed for designing the security mechanisms
as described in [23].

1.5.1

There are a plethora of definitions of what computer security is about, often at-
taching different meanings to it in different contexts. In the context of this work,
we borrow Ross Anderson’s view on security engineering:

Design of Security Mechanisms

“Security engineering is about building systems to remain dependable in the face
of malice, error, or mischance. As a discipline, it focuses on the tools, processes,
and methods needed to design, implement, and test complete systems, and to
adapt existing systems as their environment evolves.”

Ross Anderson [22]]

In this work we adopted a common viewpoint where security is perceived as
risk management [[16]]. To realize this viewpoint we followed a well-established
process for providing computer security [22}, 23, [24]]. Generally, this process re-
quires three things to come together: 1) defining security goals, 2) designing
protection mechanisms for mitigating such threats, and 3) evaluating the assur-
ance of the proposed solution (i.e., how much reliance you place on designed
mechanisms). However, many of the underlying security concepts to realize the
aforementioned viewpoint may not directly apply to pervasive memory augmen-
tation systems. Therefore, we also looked at security aspects applied to emerging
applications from pervasive computing domain [[16} (17, [18]].

Figure describes the process that we followed in designing the security
mechanisms. The first step is to develop the security policy, i.e., identifying as-
sets that need to be protected and understanding the threats and risks. Thus,
we identified memory cues as the most critical assets of a memory augmentation
system that need to be protected. Next, we analyzed each of the three stages
of the memory augmentation process individually (which we described in sec-
tion[I.1): 1) experience capture; 2) data storage and processing, and 3) memory
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cue presentation and review. For each stage we identified the following:

1.

Threats: represent possible danger that might exploit certain flows or weak-
nesses of a memory augmentation system in order to violate the security
of memory cues. For instance, capture experience data can be modified to
not necessarily reflect an actual experienced event.

2. Attacks: deliberate attempts that derive from threats in order to gain unau-

thorized access or to make unauthorized use of a memory cue asset. For
instance, a malicious person can compromise one’s capture gear or memory
repository in order to intentionally modify experience data streams.

3. Adversary model: assumptions of what resources an attacker has access to

and what attacks they can perform. For example, one envisioned adver-
sary could the service provider where experience data is stored. Such an
adversary could have access to one’s complete data stream.

4. Risks: the envisioned consequences should an attack happen. Typically, we

foresee two chief risks, i.e., manipulating users’ memories and infringing
their privacy.

For each threat and corresponding attack we then delineated a set of secu-
rity requirements in order to ensure three fundamental security properties of
memory cues:

1.

3.

Provenance: ensuring that memory cues reflect an actual representation of
an original experience;

Confidentiality: protecting the disclosure of memory cues to unauthorized
others; and

Integrity: ensuring that memory cues are not maliciously altered by others.

As part of our our research process, we also looked at research efforts related
to secure pervasive systems. During this step, we identified three key aspects
(but also opportunities) that are not easily captured through classical security
research frameworks, but that are relevant to our work [[17]]. Such aspects are
then used as additional input to the specification of threats, attack model, and
security requirements (see Figure [1.3). These aspects are the following:

1.

Socio-technical systems: the secure design of pervasive systems requires one
to consider issues such as usability and trust in the proposed solutions.
Unlike traditional systems which imply static trust relationships, here trust
is dynamic and changes from context to context.
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2. Context-awareness: context is a piece of information that can be attached to
users, devices, and the environment. Therefore, context can be considered
as the interface connecting both the social and technical aspects of such
systems. It provides additional information that can be used to address a
specific security action.

3. Resource-constrained environments: while pervasive systems are character-
ized as sensor-rich ecosystems, they are often limited in terms of computa-
tional resources. This limits the selection of security mechanisms (i.e., cryp-
tographic protocols) that can be used.

Once we had defined the attack model and elicited a set of security require-
ments, we then proceeded with the design of the necessary security mechanisms.
Throughout this phase we incorporated a combination of knowledge, best prac-
tices, and tools from computer security and cryptography, including tamper re-
sistance (trusted platform modules), public-key cryptography, digital signatures,
encryption, hash functions, and message authentication codes. We will introduce
these concepts and tools in more detail in chapters [3|and

Last, but not least, we evaluated the proposed security mechanisms with
respect to the security requirements. We analyze the proposed protocols and
present informal proofs and arguments why our solutions offer an acceptable
level of security.

1.5.2 Benchmarking and Performance Evaluation

To validate the practical feasibility of the proposed protocols, we follow common
methods and approaches for evaluating the performance of computer systems.
Many such methods consider three key factors that influence the performance
of a system: the system’s design, the system’s implementation, and the system’s
workload [25]]. Out of these three factors performance is dramatically affected by
the workload to which a system is exposed to. Furthermore, a good performance
evaluation methodology requires three things to come together, i.e., defining the
workload, the metric, and the goals of the test [26]].

The workload describes the type of the request submitted to a system (either
by a user or by a scheduled process). Consider for instance that we want to
benchmark a wearable camera. The camera’s load can be characterized by the
number of pictures it takes per second. If a camera also computes a cryptographic
hash of every image it captures, then these computations could probably take
a significant fraction of its overall load. In our analysis we generally employ
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similar workload patterns from other camera devices (e.g., the Narrative Clip or
Microsoft SenseCam wearable cameras).

Once we have a workload defined, we need to precisely specify the metrics,
that is, what quantities do we want to measure. For our evaluation, we typi-
cally use four kinds of metrics: power consumption (electricity consumed by the
system per time unit), system battery runtime (the amount of time the system
would run with a single battery charge), response time (time it takes to complete
the execution of a specific operation), and throughput (the number of operations
performed per time unit).

The next step requires the specification of the evaluation method. Gener-
ally there are three different approaches: 1) directly measuring the real system,
2) measuring a software-implemented simulation of the system, or 3) analyzing
a mathematical representation of a system. Since in our work any validation
should entail external validity, we follow the first approach, i.e., we deploy our
prototypes directly on low-power mobile devices. Therefore, we are able to col-
lect more accurate measurements that correspond to real-world deployments.

Note that our goal is to show that our solutions can run fast enough and
that it is feasible and acceptable to build them on resource constrained mobile
devices — we are not aiming to design (and implement) the most power efficient
and/or the fastest executable solutions.

1.5.3 Design of a Memory Control Interface

As part of this research, we also investigate empowering users with more control
over their captured experiences. To this end we design and build MemStone,
a TUI operated by five physical gestures that allows one to in-situ control different
aspects of the data capture and sharing practices.

We design, build, and evaluate this interface following a user-centered design
(USD) process [27]]. The UCD is a four stage iterative process guiding researchers
and designers in creating interactive products with a focus on usability. At the
outset, one envisions the context and the intended use of a system (stage 1),
which then leads to a set of user requirements (stage 2). Based on these re-
quirements, one develops a solution prototype (stage 3), and finally evaluates it
against the initial context and user requirements (stage 4).

We design our MemStone prototype based on challenges, requirements, and
design principles that we extract from prior research in the fields of lifelogging,
memory augmentation, and tangible interfaces. We administer a lab study with
a goal to evaluate the usability and perceived usefulness of the MemStone in-
terface, but also to investigate how our envisioned gesture interactions compare
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to a more traditional interaction alternative (i.e., a smartphone). We recruit 20
participants, and employ a within-subject design. Each participant uses both our
MemStone interface and a smartphone app in a meeting capture scenario. Par-
ticipants thus try to control different aspects related to the capturing and sharing
of memories of the meeting. Besides quantitative data including task efficiency,
effectiveness, perceived interface usability, and learnability, we also collect qual-
itative feedback by inviting participants to an open-ended discussion session in
order to unfold further concerns, factors, and opportunities that can improve the
design of the interface.

We also administer a follow-up study with the goal of evaluating participants’
long-term gesture memorability. Good and easily remembered gestures can re-
duce mistakes, frustration, and the time to learn them. At the same time such
gestures can increase enjoyment, usability, and hence lead to better device adop-
tion rates. We conduct this second study four months after the first primary
study, contacting all participants from the first study by email and inviting them
to participate in a short online survey.

1.6 Thesis Outline

This thesis consists of seven chapters and the bibliography, and is divided into
four parts. In Part 1 we describe the motivation and the vision behind pervasive
memory augmentation systems. Part 2 describes our system for capturing and
sharing of experience data with the goal of preventing human memory manipu-
lation attacks. In Part 3 we focus on access control of captured data in order to
address some of the privacy issues inherent in the practice of sharing experience
data. In Part 4 we summarize the work, describe our contributions, and present
directions for future research in the context of secure systems for memory aug-
mentation. Next we provide a brief description of each chapter.

Part 1 - Introduction and Background

* Chapter [1] - Introduction
In the first chapter we describe the motivation and vision for pervasive
memory augmentation systems. We the describe the research context in
which this thesis was conducted, list the research questions, state the con-
tributions made, provide an overview of the threat model, and describe the
research methodology that we followed.
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* Chapter [2|- Background
This chapter introduces the key concepts and technologies that this thesis is
structured in. We then briefly describe the structure of human memory and
highlighting how our memories can be manipulated with falsified images.

Part 2 — Manipulation Resistant Memory Capture and Sharing

* Chapter (3|- Secure Memory Capture and Storage
In this chapter we address the challenge of preventing human memory ma-
nipulation in pervasive memory augmentation systems. We explore the dif-
ferent ways how such attacks can be executed in practice. We then design
and build a systematic and practical solution based on a trusted wearable
camera that addresses the elicited threats.

* Chapter |4{— Secure Memory Sharing
Building on top of the results from the previous chapter, in this chapter
we investigate the possibility of securely sharing captured experiences with
others. Consequently, we propose a system that will implicitly and securely
exchange images among co-located peers, as well as a protocol to verify any
such shared but modified images obtained from others.

Part 3 — Memory Capture and Access Control

* Chapter [5|-A Tangible Interface for Controlling Memory Capture

and Sharing

In this chapter we investigate the feasibility of controlling the capture and
sharing of experience data through in-situ physical gestures. We present
MemStone, a prototype of a tangible user interface (TUI) that allows users
to control access to (and the sharing of) captured memories in-situ. We
report analysis of our user study with 20 participants with the goal of in-
vestigating the suitability of MemStone, as well as comparing the usability
and efficiency of MemStone with a mobile app user interface.

* Chapter [6]- Access Control for Memory Augmentation Systems
This chapter presents our analysis of evaluating the suitability of existing
context-aware access control models towards our security requirements for
memory augmentation systems. Our goal is to inform and motivate further
research on the design and development of access control solutions suitable
for this kind of systems.
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Part 4 — Conclusion and Future Work

* Chapter|7|- Conclusion and Future Work

In this chapter we summarize findings from previous chapters, state the
contributions of this thesis, and provide directions for future research.

1.7 Publication Overview

Parts of this thesis have been published in peer-reviewed conferences, magazines
and workshops. For a publication overview, see Table

No.
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Chapter 2

Background

Work presented in this thesis is structured in the field of ubiquitous and per-
vasive computing. The vision of a technological memory surrogate presented
in the previous chapter, furthermore benefits from the technical achievements
in the field of lifelogging. Beyond these fields of the computer science disci-
pline, we also look at research on human memory and memory manipulation
attacks stemming from the field of cognitive psychology. In this chapter, we
briefly describe such foundation blocks before concluding with a description of
the research methodology of this thesis.

2.1 Pervasive and Context-aware Computing

“The most profound technologies are those that disappear. They weave them-
selves into the fabric of everyday life until they are indistinguishable from it.”

Mark Weiser [33[]

In 1991, Mark Weiser published an article describing his vision on the com-
puter of the 21°' century. This vision has led to the creation of a new computing
paradigm that we know today as “ubiquitous” or “pervasive computing”.

Going back in the late 1950s, a single mainframe would provide computing
services to multiple users. In the 1980s, the computing norm moved closer to a
one-to-one relationship where typically one person owned a personal computer.

Weiser envisioned that technology will be pervasive and will “take into ac-
count the natural human environment and will allow the computers themselves
to vanish into the background” [[33]]. According to Weiser, technology will go
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beyond desktop computing, and will take many different forms, from laptops
and tablets, to a pair of glassess or a fridge.

Nowadays, thanks to advances in hardware (smaller form-factor with higher
transistor density), communication (fast wireless networks), as well as sensing
(different mobile and wearable sensors), we can realize most aspects of Weiser’s
vision. Computing of today has transformed into a many-to-one model, where
a single person has multiple devices. This includes laptops, phones, watches,
eyeglasses, or any other gadget with a computer in it.

The aim of pervasive computing is not only to add computing power to ev-
eryday objects, but also to make them “smart” and “context-aware”. According
to Abowd et al. [34] “when humans talk with humans, they are able to use im-
plicit situational information, or context, to increase the conversational bandwidth”.
Consequently, by rendering computers more context-aware we do not only en-
rich the human-to-machine dialogue, but we also help the realization of more
useful computational services.

Abowd et al. note that a context-aware application aims to encapsulate infor-
mation about the who’s, where’s, when’s, and what’s about an entity (whether this
is a person, place, or a relevant object of the environment). In general, context
can be categorized into location, identity, activity, and time. Dey [I35]] enumerates
further context categories such as the user’s physical, social, and emotional state.

Advances in sensing and inferring context have introduced a number of sys-
tems that make use of context. One example of such systems is the emerging
class of personal assistants such as Amazon Alexa, Apple Siri, or Google Now.
Based on a weather forecast fetched from the Internet, a digital assistant can re-
mind one to take their umbrella before leaving from home, or adjust the home
lighting considering the time of day and light conditions. Furthermore, by look-
ing at one’s online availability, a digital assistant can, for instance, schedule an
appointment to the dentist [36]]. The personal assistant presented above is just
one of the many examples of pervasive and context-aware systems that are now
part of our daily life. In fact, with the ubiquity of context-aware, mobile, and
wearable systems we can now build systems that can augment many aspects of
our life and activities, including human memory.

Pervasive computing has also changed the way how we interact with com-
puter systems. Novel interaction techniques are now expanding the traditional
approach, i.e., interaction with a desktop PC through a mouse and a keyboard
used to be the norm, this is slowly fading away. One can now interact with their
devices by speaking or touching them, as well as through physical gestures. As
part of this research, we investigated the use of physical gestures for controlling
how a system captures and shares data of one’s daily activities.
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2.2 Lifelogging

“Lifelogging is a form of pervasive computing consisting of a unified digital
record of the totality of an individual’s experiences, captured multimodally
through digital sensors and stored permanently as a personal multimedia
archive.”

Dodge and Kitchin [|37]

Lifelogging refers to the practice of indiscriminately recording the totality
of one’s life experiences. This leads to the creation of comprehensive lifelog
archives that document everything one has said, seen or heard, every action one
has performed, every place one has visited, to name but a few. The realization
of such concept is made possible thanks to achievements in the field pervasive
computing. In fact, Dodge and Kitchin consider lifelogging a form of pervasive
computing [|37]. This concept is fueled by achievements in several technological
strands [8] [37]]: firstly, smaller, cheaper, and more autonomous digital sensors
allow near-continuous recording of mundane activities; secondly, while capacity
of digital storage is constantly growing, storage disks are becoming physically
smaller, more power efficient, and cheaper, enabling almost infinite storage ca-
pabilities; thirdly, advances in data processing (i.e., big data) account for better
interpretation and more efficient retrieval of stored information, thus increasing
the utility of stored lifelogs

While the vision behind the Memex device could be considered a first concept
of a lifelogging system [22[], practical examples had to wait technology to catch-
up. Early prototypes of lifelogging capture devices were developed by pioneers
of this field such as Steve Mann and Gordon Bell. In 2005, Mann developed the
EyeTap digital glasses that had a built-in camera to continuously record experi-
ence data and an integrated display to visualize such data [38],[39]]. His approach
was relived later by the appearing of commercial digital glasses such as Google
Glass and Epson Moverio. On the other hand, the Microsoft SenseCam [[40, 41]],
developed in 2006, was arguably the first “lifelogging camera”: a neck-worn
front-facing device that captured images periodically (e.g., every 30 seconds) or
when the scene changed significantly (such as when moving to a different room).

These early systems intended to primarily record images and short videos,
however, the type of information that can be recored is almost limitless. The
lifelogging concept can be applied to all kinds of data sources, including audio
data, GPS location traces, fitness data, information on food intake, amount of
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liquid consumption, physiological data such as heart rate, level of excitement
or arousal, etc [[12]]. Of course, this also includes “digital traces” such as Inter-
net browsing history, bookmarks, emails, calendar entries, social media activity,
which serve as additional candidates for potential lifelogging data sources.

Lifeloggoing benefits a range of different applications and Gurrin [8]] di-
vides them into two categories: 1) personal applications where lifelogging is
performed by single entities for personal benefits, and 2) population-based appli-
cations where lifelogs from several users are combined and processed together
for some greater organizational or societal good. A vast majority of personal ap-
plications come from the quantified-self domain: the quantification of one’s life
(e.g., calories burned, steps taken, sleep patterns, smoking habits, emails sent)
in order to better manage one’s health, work, or private life [31), 42} [43[]]. On the
other hand, examples from population-based lifelogging applications include the
work from Hughes et al. [44]] which aims to analyze large collections of visual
lifelogs with the goal of informing market research. In this vein, authors propose
a system which can measure audience exposure to advertising campaigns, using
object recognition algorithms to detect the presence of specific brands and logos.
Another example of this kind of lifelogging is the work from Byrne et al. [45]].
Here, authors used SenseCam as a tool to collect observational data to better
understand the information needs of clinicians in a hospital setting.

2.2.1 Lifelogs as a Surrogate Memory

Beyond applications from the quantified-self domain, prior research has shown
that lifelogging can serve as human memory surrogate [46, 47, 41]]. It can offer
sufficient information about prior memories, thus supporting users in situations
of everyday memory failures. The user could review captured data and encode
from scratch information that otherwise has been missed from the experienced
event, but also re-encode existing aspects that are fading away. As a result, this
can support the recollection of those memories that had been completely inac-
cessible or partially accessible until that time.

From psychology research in human memory, it is well established that our
episodic memories can be supported by reviewing external stimuli or cues [|48]],
and that visual information (e.g., pictures, videos) account for the strongest such
memory cues which can maximize the elicitation of prior memories [[49]. Prior
researchers have showcased such premise and have observed that SenseCam-
like pictures and videos can support individuals diagnozed with specific mem-
ory problems (e.g., patients suffering from amnesia [41], limbic encephalitis
[50], Alzheimer’s disease [[51]], and other episodic memory difficulties [52]]).
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For a detailed survey of studies that use SenseCam images to help people with
memory impairments the reader is referred to the work by Harvey et al. [53]]. On
the other hand, little research attention has been devoted in understanding how
lifelogging data might be used to address memory difficulties of healthy individ-
uals in everyday settings. One such study involving 19 participants by Abigail et
al. [[46], offers strong evidence that SenseCam images provide efficient links to
experiences from people’s past. Their study not only shows that reviewing Sense-
Cam images can help healthy individuals to truly remember and relive past expe-
riences, but also to know and recognize what has occurred during a past event.
Abigail et al. believe that the ability to recognize what has happened in an event
from the past is due to their study participants utilizing schematic knowledge
about familiar places, people in their life, or general knowledge about their daily
routines. This means that lifelogging images should be able to assist people in
finding their lost car keys or to recall the name of the person they have met the
other day.

The availability of contextual information such as location traces, audio data,
or even bio-physiological responses can increase the efficiency of visual mem-
ory cues. Kalnikaite and her colleagues found that location traces combined
with visual cues offer further improvements in retrieving memories of past events
[54]]. Audio is yet another interesting data source candidate of such additional in-
formation. Niforatos et al. [29]] investigated the possibility of augmenting mem-
ories of work meetings using a combination of both lifelog images and keywords
that were extracted automatically from recorded audio conversations. From a
study conducted over a period of five weeks involving 12 participants, they ob-
served that such combination of data sources is capable of achieving memory
improvements of up to 15% on average.

Another parallel avenue of research in lifelogging investigates how this prac-
tice can be made more efficient in order to improve one’s memory recall. Work
in this field has shown promising evidence that bio-physiological responses play
a crucial role in identifying those moments that are of true significance to users.
In fact, a number of studies from psychology and neuroscience have found that
memory recall is correlated with arousal. Events for which a person manifests
an increased emotional arousal are more likely to be recalled than other neu-
tral events [55, [56]]. Based on such encouraging results, Sas et al. [57]] pro-
posed AffectCam, a wearable system integrating SenseCam and a wristband mea-
suring wearer’s Galvanic Skin Response (GSR) in order to filter the most rele-
vant pictures taken. Their initial results indicate that photos captured during
high arousal moments support a 50% improvement in memory recall over low
arousal photos. In this vein, Niforatos et al. [[30/]] proposed the design of a similar
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Figure 2.1. Commercial lifelogging devices: (a) SenseCam, (b) Narrative Clip,
(c) Autographer, (d) Google Clips', (e) Camera Glasses, and (f) Foscam?.
Image by Jason Cipriani, ZDNET: https://tinyurl.com/ybmrkzw9

2Image source: https://tinyurl.com/y54k4t38

system but that relies on a user’s heart rate as opposed to GSR, given that a user’s
heart rate can reflect almost instantaneous variations in their excitement levels.
Their initial PulseCam prototype consists of an LG G watch R smartwatch that
continuously measures the wearer’s heart rate, and a Nexus S phone for picture
taking, attached to the user’s body using an armband.

2.2.2 Lifelogging Devices

In the following we will present an outline of commercial lifelogging devices.
We will first look at visual recording devices, such as wearable cameras, camera
glasses, and infrastructure cameras. We will then present devices for capturing
audio data and other contextual information, such as smartwatches and bracelets.

Visual Recording Devices

A typical lifelogging camera is small, compact and light, allowing it to be carried
for long periods of time. Being small and compact can make the wearer forget
about its presence and also forget that her actions are being recorded.
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A lifelogging camera is commonly worn around the neck (e.g., on a lanyard),
clipped on the users’s body, or worn on the head (e.g., as glasses). It could also be
mounted on an object in the environment (e.g., the TV or on a shelf). Regarding
capture modality, most devices feature near continuous-capture mode, ranging
from cameras that are recording all the time, to cameras that capture images on a
fixed interval (e.g., every 30 seconds), to cameras that are triggered by sensors or
user actions. In previous work [[11]] we reviewed the most common commercial
lifelogging cameras, focusing on device form factors, picture quality and ethical
and privacy issues stemming from the use of such devices. In the following we
will briefly summarize our findings.

Camera Hardware

Figure shows a number of commercial lifelogging cameras that have become
available in recent years. Modern lifelogging cameras have extended the func-
tionality of the pioneering SenseCam (shown in Figure while offering an
increasingly compact format. For example, the 2016 Narrative Clip 2 wearable
camera (depicted in Figure[2.1b)) weighted less than 20g (the SenseCam weighed
several hundred), included WiFi connectivity (SenseCam needed a cable), fea-
tured 30h of battery life (the SenseCam lasted 12h), recorded 8MP images with
3264 x 2448 pixels (SenseCam did 640x480), and could record video (which the
SenseCam did not). The Narrative Clip sensed additional data such as time and
location. In fact, it offered partial access to location traces: to save battery, it only
captured raw GPS signal strength, which needed to be uploaded to the company’s
website should one be interested in obtaining the actual location coordinates.

The Autographer (Figure was a similar camera with a slightly larger
form factor than the Narrative Clip. It featured 5SMP camera with a 136-degree
wide angle, allowing it to capture more details of the wearers surrounding. How-
ever, this came with a cost: contrary to Narrative Clip, it produced distorted im-
ages (the Clip instead captured more “normal” looking pictures which were much
more “shareable” with others). Unlike the Narrative Clip, the Autographer had a
built-in GPS sensor providing direct support for GPS data. Both the Autographer
and the Narrative Clip are no longer available or produced.

The recently announced Google Clips (shown in Figure is a hands-free
camera with a similar size as the Narrative Clip. Unlike the Narrative Clip and
the Autographer (which are both body worn cameras), the Google Clips is not
intended to be clipped on the user’s body. Instead, it should be mounted to a fixed
object in the environment. However, the most notable difference with the other
cameras is in the way how the Google Clips takes a pictures. Google Clips has
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a built-in machine learning algorithm to recognize familiar people and to decide
which moments are worth capturing. It delivers short video clips (without audio)
of spontaneous moments that otherwise might have been hard to photograph.
It features a high resolution camera lens with a 130-degree field of view. The
battery allows for about 3 hours of smart capture.

Furthermore, a number of commercial camera glasses have become available
in recent years. They are usually labeled as “spy camera glasses” and can be
purchased for less than US$50. They do not differ much from normal glasses,
as shown in Figure Most camera glasses that we investigated can both
take pictures and record high-definition video (including audio), which are then
stored on internal storage, typically between 32-64GB, and downloaded from
the device via USB.

Besides such mobile cameras, fixed infrastructure cameras can also be used
to source experience data. In a previous data capturing experiment conducted in
the context of the RECALL research project, we investigated one such camera, the
Foscam IP camera shown in Figure2.1ff The experiment’s objective was to pro-
duce our own lifelogging dataset by placing a group of researchers from the RE-
CALL project (including the author of this thesis) in a heavily instrumented house
[58]. The experiment ran for 2.75 days and we used a range of wearable and
infrastructure camera sensors. The Foscam camera that we tested had a 0.3MP
image sensor capable of taking pictures with 640 x 480 pixels at a maximum
rate of 15 frames per second. It featured a 300-degree horizontal pan and 120-
degree vertical tilt to capture a great amount of environmental details. Thanks
to its integrated night-vision capabilities it captured decent quality images even
under poor light conditions. Unlike most wearable cameras, the Foscam also
sourced audio data. Furthermore, it could wirelessly stream its video stream
directly to any of the user’s devices. However, our prior experiment taught us
an important lesson: contrary to mobile cameras, infrastructure cameras require
a greater amount of time to install and calibrate (e.g., to ensure a good enough
coverage of the environment). Furthermore, despite our efforts to properly setup
the WiFi network, we still experienced network issues when streaming Foscam
data. Consequently, we could only stream at a much lower rate than expected
(4.04 frames per second instead of the advertised rate of 15fps).

Where to Position the Camera

When using visual lifelogs as memory cues, the quality of the captured images
is of great importance. It is essential that the camera captures high-resolution
images, but also that it has a fast shutter speed in order to capture clear images
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(a) (b)

Figure 2.2. Comparison of experience capturing using (a) Narrative Clip devices
clipped on users’ chest, and (b) a fixed infrastructure camera.

while in motion. But perhaps the most important aspect regarding image qual-
ity is where the camera is positioned or worn (in case of wearable cameras):
a choice that is usually driven by product design. For wearable cameras, differ-
ent camera positions produce different characteristics. For example, a camera
clipped to the chest (e.g., Narrative Clip) or worn around the neck (e.g., Sense-
Cam) will very often produce partially or totally occluded images (e.g., by partic-
ipants hands, arms, hair, or clothing, see Figure . In our experiment [|58]],
we observed that many shots from Narrative Clip cameras contained irrelevant
background objects (e.g., ceiling, floor, walls). We furthermore observed an in-
evitable amount of duplication among such images. Being close to the user’s eyes,
cameras embedded in glasses deliver the most natural images. However, such de-
vices usually produce unstable images due to users’ frequent head movements.

Fixed infrastructure cameras on the other hand can offer radically different
images from those of wearable cameras. The high vantage point of infrastructure
cameras allows them to capture more comprehensive scenes compared to the low
vantage scene of wearable cameras (see Figure [2.2b)). During our experiment
[58]], we observed that, unlike images produced by wearable cameras, none of
the images from the fixed cameras were blurred or occluded. However, as we
previously argued, such cameras require higher infrastructure support.

Triggered by the capture constraints of wearable cameras identified above,
in Chapter 4{ we present our work of a system for exchanging captured images
among peers that are experiencing the same event together. Wearable cameras
of others with whom we are socially interacting with (e.g., having a chat) can
often offer a more comprehensive view than our own camera. For instance, our
chest-worn camera may never capture the person sitting next to us, while the
camera of the person in front of us will. During such image exchange process,
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the system will also seamlessly obtain any images captured by a nearby infras-
tructure camera, as long as we are in close proximity with it.

Capturing Contextual Data

Beyond images, there is a number of additional data sources that can either assist
in the selection of the best image-based cues, or which can be used as memory
cues on their own. The spectrum of such additional data sources ranges from au-
dio data, to location traces, to fitness-related data such as number of steps taken
or stairs climbed, to physiological data such as heart rate, skin conductance, etc.

Among these, audio is probably the most interesting but at the same time the
most contested such data source. There are a number of devices that can record
audio information: starting from classical voice recorders such as dictaphones,
to digital voice recorders, to smartphones. However, recording audio in most
legislations is considered illegal unless all of the involved parties express their
consent to do so [[59]. Furthermore, in many circumstances this action can stir
issues that can hamper the social acceptability of such practice. A crowdfunding
effort raised in 2013E] attempted to tackle this problem by recording short audio
clips of only 60 seconds. Their wristband KaptureE] constantly listened in the
background but it only saved the last 60 seconds of audio when the user tapped
it twice, allowing the wearer to retroactively record the most interesting parts of
a discussion. It is not completely clear whether this kind of recording is legally
compliant or not, but for one thing, the act of visibly tapping the device to trigger
the recording may positively contribute to overcoming social issues around it.

Commercial products such as FitbitE] can capture different aspects of a user’s
daily activities including step counting, stair climbing, sleep tracking. Similar
measurements can also be found in one of the the latest “consumer trends” in this
field, i.e., the smartwatch. Furthermore, most smartwatch products are equipped
with sensors to capture user bio-physiological responses. For instance, an optical
sensor that touches the inner part of the user’s wrist can estimate wearer’s the
heart rate. Other sensors such as the Empatica E4 wristband?| can deliver the
same measurement but with a clinical quality level. The E4 can furthermore
measure Galvanic Skin Response (GSR), which can be used to derive levels of
stress, arousal, and excitement.

Thttps:/ /www.kickstarter.com/projects/ 1483824574 /kapture-the-audio-recording-
wristband

2https://www.bizjournals.com/cincinnati/blog/2015/08/i-tried-it-kaptures-audio-
recording-wristband.html

3https://www.fitbit.com

“https://www.empatica.com/research/e4
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2.2.3 Extracting Useful Information from Lifelogs

Human memory is driven by various triggers which are also known as memory
cues. As we previously described in Section |1.1, memory cues can be images,
sounds, location traces, smells, emotions, mood, etc. Therefore, extracting ef-
fective and useful memory cues from the sheer volume of captured lifelogs is
an essential operation of memory augmentation systems. By drawing a parallel
with how the human memory system functions, prior work [|8, [60] highlights
three major principles that need to be addressed in order to turn lifelogs into a
surrogate memory: 1) segmenting lifelogs into smaller episodes, 2) annotating
episodes with high-level information, and 3) retrieving memories. We will now
look at state-of-the-art with respect to each of those principles.

From Lifelogs to Segmented Episodes

The continuous stream of memories of one’s daily experiences are segmented into
discrete semantic events, often referred to as episodes [61, 162]]. Episodes form
the basis for later recall of a particular event. Harvey et al. highlight [|53]] that
sometimes episodes can be quite lengthy (for instance driving to work), but other
times they can be quite short featuring a single moment (for example greeting a
colleague in the hallway).

While it is not exactly clear how the mind creates such episodes, it seems
that it depends on several factors [[63,/64/]. These include the type of event being
recorded, physical changes in the environment (e.g., the movements of objects
or people), personal goals, and prior knowledge about the structure of the event.

Analogous to such memory segmentation into episodes, lifelogs should also
be segmented into semantic events for later retrieval. Event segmentation of
visual data is not a new concept. In general, it is based on the analysis of the
content. This has been applied in various scenarios: organizing photos in a se-
mantically meaningful way based on the context and purpose of taking the pho-
tos [65]], event detection in sports videos [66} 167]], and automatically indexing
surveillance data [|68,/69]]. Another early approach by Wang et al. [[70] segments
videos into shorter clips of fixed duration. However, this may not be that use-
ful, since real-live events are not always of a fix length. Furthermore, Zhang et
al. [71] propose a system that detects boundaries of events in video data. Their
approach is based on a set of difference metrics, and boundary positions are es-
timated based on the amount of difference between successive video frames. All
these approaches work reasonably well with video data, however, they cannot be
directly applied to lifelogs. A lifelog data stream usually features a much lower
frame rate, that goes even below one frame per second [|53]].
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The approach by Doherty and Smeaton [[72]] can be probably considered as
the most related and at the same time the most deployed lifelog event segmen-
tation solution that was using SenseCam images. This solution incorporates the
Heart’s and Plaunt’s Text Tiling algorithm [[73]]: instead of comparing a single
pair of adjacent images for similarity, they do so with a block of 5 images. Fur-
thermore, this system employes a sliding window approach across the complete
image stream. The authors also incorporate data from other sensors available in
the SenseCam, including accelerometer, temperature, and infrared sensor read-
ings. The code of this work has been also been released as open source [[74].
Irrespective of the wide adoption of this model, and de-facto being the baseline
standard, Gurrin [|8] expresses his concerns that Doherty’s and Smeaton’s seg-
mentation model can be generalized to suit all (or even many) use cases. Harvey
et al. [[53]] echo such concerns, suggesting that “these sophisticated methods may
still not be sufficiently powerful as even a small number of errors may be prob-
lematic”. They call for more sophisticated, dynamic and more powerful methods
to analyze lifelog data.

Annotating Segments

To make any memory augmentation system useful, it is necessary to tag the
segments with higher-level concepts. Such tags can be useful in retrieving the
right lifelog segment, and hence prompting the user to recall the corresponding
memory episode. Prior research exploring query patterns of email search has
shown that names of people can assist one in finding the email she is looking
for [75]]. For instance, while you may have difficulties in remembering when or
where an event took place, but nevertheless you may remember who else was
there present.

Manually tagging each single image (or even episode) can be a cumbersome
and time-consuming process. For instance, wearing a Narrative Clip camera dur-
ing the day and capturing two images every minute would result in about 1,500
images captured in only a single day. Clearly, this creates the need for automatic
annotation techniques.

There has been a considerable interest in trying to build semi-automatic or
even fully automatic image annotation solutions. For instance, Zhou et al. [[76]
have experimented with a web-based annotation system optimized for large data
archives. Given a set of user defined labels, their MemLog system will then run
a machine learning algorithm to propose the most likely labels for each derived
segment. Advances in the field of machine learning allow for fully automatic im-
age annotation solutions [[77,78]. There are even commercial image annotation
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services that provide fully integrated image recognition and annotation APIs,
such as the Google Vision AP or Imagga AP]ﬂ

Automatic annotation techniques have also been proposed for lifelogging im-
ages. For instance, Korayem et al. [[79] investigate the feasibility of automati-
cally detecting computer screens appearing in lifelog images. This work offers
promising results showing that it is possible to reliably detect computer screens
even from low quality, blurry and possibly occluded images captured by wear-
able cameras. Using a similar approach applied to lifelog images, Templeman et
al. [80]] developed a system that can reasonably well infer the location where an
image is taken. Iwamura et al. [81]] present a wearable system that, after rec-
ognizing the person in front of a user, shows videos of any previous encounters
with the same person.

In yet other work, researchers have been able to infer high-level informa-
tion from visual data captured by wearable cameras [82, [83], [84]]. For instance,
Castro et al. [83] propose a machine-learning approach to learn and predict
everyday activities from lifelog images. Their technique achieves a high over-
all accuracy in predicting among 19 different activity classes (such as working,
watching TV, reading, having a work meeting, cooking, eating, driving, etc.).
Fathi et al. [[84]] propose an approach for recognizing social interactions such
as discussion, dialogue and monologue from first-person perspective day-long
videos. Their method relies on two kinds of data sources: detected faces and
attention patterns. After detecting all faces appearing in one’s video and then
calculating their location and orientation, the system infers attention patterns
such as who looks at who or whether all users look at a common place. This was
shown to provide enough insights regarding the type of the social interaction
(e.g., whether is is a monologue or a dialogue).

Retrieving Memories

For any captured and annotated lifelog archive to be useful, it is essential to con-
sider how users can explore and ultimately retrieve the very small elements that
can trigger the recollection of a previous event from the whole archive [[85]]. This
creates the necessity for an intuitive interface for both managing and cataloging
lifelog archives. However, the development of any such interface can be partic-
ularly challenging. For instance, manually reviewing captured data can be very
slow, and often impossible, due to the large volume of captured data.

Shttps://cloud.google.com/vision/
https://imagga.com
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Therefore, to facilitate efficient browsing of the collected data, many sys-
tems exploit temporal and spatial information — allowing a particular image to
be found based on when and where it was taken [186), 87, [88]. It was found
that when using an interface that incorporats time and location information
participants needed significantly less amount of time to complete photo find-
ing tasks [88| [89]. Furthermore, the interface received higher user satisfaction
scores. In another study, Le and his colleagues investigate the possibilities for au-
tomatically summarizing large sets of image streams [[90]. Their study insights
echoe those benefits and lead to the following design guidelines that one can
consider for the automatic creation of video summaries:

* Produced summaries should be brief and concise, and their duration should
not exceed three minutes.

» Selected images should feature people, places, objects or actions. This im-
proves users’ understanding of the social context.

e Summaries should preserve the chronological order of images, which pro-
vides additional support for the memory recollection process.

The interface developed by Lee et al. [[91]] can be considered as the first inter-
face for tailored to lifelog archives captured by SenseCam cameras. It includes
an algorithm for segmenting an entire day of lifelogging data into approximately
20 events. Events are then grouped into a morning, afternoon, evenings, or night
cluster. Each such event is labeled with a uniqueness score and is represented
by a “representative keyframe”. The higher the uniqueness score, the larger the
keyframe of an event is. In a subsequent study using a lifelog collection captured
over the course of 2.5 years, Doherty et al. [[60] have found out that allowing
users to refine the search strategy using “who”, “what”, “when”, and “where”
queries reduces the average time to find a particular event to 127 seconds, as op-
posed to an average of 774 seconds when searching based on time and location
information only. However, 127 seconds is a significant amount of time to find
a particular event, and as authors stress “this still represents the single greatest
challenge of our (i.e., lifelogging) community”.

All these techniques and interfaces of displaying the sheer volume of data
require explicit input from the user. Browsing for about 2 minutes might be ac-
ceptable, very often also appreciated, if one wants to simply retrieve a specific
piece of information such as a document or an email. As Sellen and Whittaker
highlight in their constructive critique of lifelogging [I85/], the retrieval practice
might require us to remember something about the item we want to retrieve,
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for example when retrieving a document we might want to know when or where
we wrote it, or remember any keywords of the document. But this does not in-
volve remembering the complete experience about it. However, if the intended
use of a lifelogging system is to assist the recollection (thinking in detail of past
experiences) or reminiscing (recalling past experiences for emotional reasons)
[85] than a pro-active data presentation approach may be more suitable. In-
stead of using such system as a search engine to find the index of a particular
memory cue, the system would automatically deliver any relevant cues to a user
in an unobtrusive fashion. As we explained previously in Section this would
still require that users specify high-level memorization goals to inform the sys-
tem on what kind of memory cues they would like to see. But we envision that
user input should be minimal in this case, and there should be less effort in spec-
ifying such goals compared to the practice of manually browsing for memory
cues. The selected cues will then be delivered to users through ambient-fashion
displays, e.g., presented as screen-saver images, displayed on a living room TV,
or visualized in digital picture frames hanging on an apartment entrance hall.
By regularly reviewing key memory cues one can train her memories and conse-
quently may better recall prior experiences even when there is no support from
a memory aiding tool.

The overview presented in this section shows that much of the lifelogging
technology to develop human memory augmentation systems exists. Further-
more, we also highlight the necessity for novel presentation techniques tailored
to the practices of recollection and reminiscing of past memories. But beyond
such technical issues of how to best use such system and how to design visu-
alization interfaces, the practice of lifelogging raises a number of privacy and
security implications. In the following section we discuss what impacts might
this have on users’ privacy.

2.2.4 Legal and Ethical Issues

The practice of lifelogging inevitably “looks” outwards and captures other people
in the lifelogger’s vicinity including bystanders, family members, or friends. This
may disclose to the lifelogger many aspects of their persona such as appearances,
activities and whereabouts [|8,92[]. Therefore, traditional research into this field
has predominantly focused on privacy concerns of bystanders captured in camera
footage. In this section we provide an overview of such problems, looking at
both the legal and ethical aspects, prior to reviewing state-of-the art research
solutions to those problems. We conclude this section with an overview of the
privacy issues that lifelogging can also create for the lifeloggers themselves.
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Bystander Privacy

In many countries it is legal to take pictures and videos of identifiable people in
public spaces for personal use. However, the legal landscape varies widely across
countries. For instance, capturing others in public space in Italy and Sweden does
not require consent as long as the pictures are used for personal consumption —
for sharing with family or friends, but also for posting online for non-commercial
purposes. Laws in other countries such as Spain or Japan consider this as an il-
legal activity, unless consent has been given before. Switzerland also prevents
taking a picture of a person in a public space without the person’s consent, but
contrary to Spain and Japan this activity is permitted if the captured person ap-
pears incidentally and has nothing to do with the purpose of the image — which
is the case for lifelogging. A comprehensive overview of consent requirements
worldwide for photography can be found at https://commons.wikimedia.org/
wiki/Commons:Country_specific_consent_requirements.

It is unlikely that a user can obtain usage and sharing permissions from every-
one appearing on their lifelogs. Therefore, researchers have instead investigated
other alternatives to protect the privacy of bystanders. For instance, Gurrin et
al. [[93]] propose a privacy-aware lifelogging framework that utilizes a Google-
street like technique to blur any identified faces appearing on captured pictures.
Their solution embodies two design principles: privacy by design and privacy by
default. Captured images are stored in their original form (i.e., unblurred), how-
ever, when visualizing stored data the system’s default policy prevents the display
of any recognizable faces of others. Known contacts of the lifelogger can provide
their explicit consent to appear on her data. This is achieved by providing a set
of images featuring face models that can safely appear on the lifelogger’s images.
This system has, however, certain limitations. Firstly, the face blurring technique
is yet not completely reliable, and thus it might miss to “block” certain faces.
Secondly, to support a retroactive access of images, images are stored unblurred.
However, this may allow malicious others to break in and get unauthorized ac-
cess to the unblurred images.

Other researchers have looked at techniques to prevent a camera from cap-
turing privacy-sensitive situations in the first place. For example, Jung and Phili-
pose propose Courteous Glass [94]], the design of a wearable system combin-
ing an RGB camera sensor with a far-infrared (FIR) sensor. The infrared sensor
is used to monitor the lifelogger’s social environment when the camera is not
recording, and determines when it is acceptable to turn on the RGB sensor. On
the other hand, when the camera is recording, its feed is piggybacked to a com-
puter vision algorithm that detects when a new person enters the field of view or
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when someone performs a pre-defined off-recording gesture, and turns off the
RGB sensor accordingly. Schiff et al. [|95]] propose the Respectful Camera sys-
tem, which blurs faces of people that wear specific markers such as orange vests.
In yet another work, Truong et al. [96]] investigate the possibility of prevent-
ing covert recordings by creating “capture-resistant” environments. Their sys-
tem first detects the presence of mobile cameras in the environment (by tracking
light-reflections produced by CCD and CMOS camera sensors), and then directs
a localized pulsing light to each camera to distort its view.

All these solutions show that technology can help in overcoming legal barriers
of visual lifelogging. The fact that something is legal, however, does not make it
necessarily socially acceptable. The presence of a person with a wearable camera
can easily create significant social frictions. A camera that is always-on is per-
ceived as a threat to privacy, even if most lifeloggers do not try to hide their cam-
eras, and sometimes even employ self-censorship to avoid situations of unethical
recordings [97]]. In fact, several reports show that lifelooggers have often come
under social scrutiny. For instance, Steve Mann was assaulted in a restaurant
in Paris for wearing his Digital Eye Glass [|39] 98], while in another incident, a
blogger was taunted for wearing Google Glass in a bar in San Francisco [99]. Be-
cause of such social backslash, Google Glass was banned in several places [[100]].
In an attempt to avoid any further situation of such kind, Google published a set
of guidelines about the do’s and don’ts, suggesting not to be a “Glasshole” and
to respect the privacy of others when wearing the Glass in public [I01]]. Google
Glass has been since discontinued; these incidents might suggest that Glass failed
in part due to a strong culture of anti-surveillance [[102]].

Beyond such media attention, privacy issues with lifelogging devices were
also investigated in research experiments. Denning et al. [[103]] investigated by-
standers’ privacy perspectives regarding a co-located peer wearing augmented
reality (AR) glasses with a built-in camera sensor. After interviewing 31 by-
standers in 8 different cafés in Seattle, the authors found out that participants
were “predominantly split between having indifferent and negative reactions to
the device”. Furthermore, participants expressed an interest in being asked for
recording permissions and in having at hand an easy-to-use mechanism for block-
ing recording devices. In yet other studies [[104, [105]], researchers observed
somewhat higher levels of acceptability for SenseCam-like wearable cameras,
possibly because they are worn around the neck and look less obtrusive than
glass-like cameras.

Gurrin et al. [18,[93]] believe that increasing bystanders’ awareness of wear-
able cameras, and allowing bystanders to have their say on whether they would
like to be recorded or not, can do much to ameliorate social frictions regarding
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covert recordings. Koelle et al. [[106]] echo such observations, and explore design
strategies for privacy notices for wearable cameras that announce themselves and
their actions to bystanders. Throughout two co-design sessions involving both
design and UX experts, they delineated eight low-fidelity artifacts for status in-
dicators that go beyond having a simple LED light on the camera. The proposed
camera artifacts embody different concepts including (1) physical occlusion of
camera lenses, (2) indicating area of capture, (3) visualizing device actions and
usage intentions, (4) displaying the camera image (or a derived abstraction of
it), and (5) transfer control over the image to the bystander. For instance, the
idea of physically covering the lenses would prevent image capturing even if the
camera’s software would still be recording. This was rated by experts as highly
secure and trustworthy, as it can reassure the bystander what it is impossible to
be recorded through. Displaying to bystanders a preview of what the camera
is capturing was another explored design strategy. While this strategy obtained
high initial ratings regarding understandability of camera status and application
purpose, analysis revealed some potential issues with it. Experts were worried
that displaying the camera’s preview in remote locations such as the wearer’s
chest may break the “connection” of the camera and its image — a connection
that is otherwise obvious when operating with conventional digital cameras.

Results from this study show that all of the investigated design strategies can
significantly improve noticeability and understandability of body-worn cameras.
However, the authors’ analysis also revealed that the lack of security and trustwor-
thiness still remains an open issue, which can hinder the social acceptability of
lifelogging devices. In all but the physical occlusion strategy, experts were reluc-
tant to trust the camera’s operation — i.e., whether its software is executing what
otherwise would be communicated through the camera’s feedback mechanism.
For example, despite that the camera’s preview display could be paused, there
is no guarantee that its software is not recording. This resonates with Knowles’s
observation that “trustworthy data is data that isn’t simply accurate but is veri-
fiably accurate” [[107]]. In this context, the trust landscape can be shifted from
trust in lifeloggers to trust in their cameras, seeing the concept of trust as a ver-
ifiable technical property of a camera. Trust in systems can be established by
means of hardware-based solutions for secure firmware attestation. This would
still require the design of interactive protocols that would allow a bystander to
verify that a camera is not really recording. Obviously any such protocol needs
to be efficient and practical in order to be used every time one encounters others
with cameras.
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Privacy of Lifeloggers

Beyond privacy concerns of third parties appearing in someone’s we also fired
questions related to the privacy of the lifeloggers themselves. Unlike traditional
cameras, a lifelogging device is always on and automatically capturing images.
This can ultimately alter a lifelogger’s perception about the privacy of captured
images. From our own experiment on lifelogging [58]] (as reported in section
above), we observed that many images captured through this practice in-
cluded information that subjects consider private, which otherwise is very un-
likely to have been captured by users when using a legacy camera. Specifically
this included images of the lifelogger’s own laptop or smartphone screen (show-
ing contents of a private email), or images captured in private locations such as
bathrooms or bedrooms. Even though study administrators took care to remind
participants not to capture in private spaces by placing “do-not-capture” signs at
the entrance of such private spaces, very often lifeloggers were forgetting to stop
capturing in these areas.

The capture of such sensitive information would pose less issues if this kind
of data was never meant to be shared with others or uploaded to cloud services
(one would still need to protect their own repository from the prying eyes of a
hacker). By drawing a parallel with the already established practice of sharing
photos online [[108], any privacy issues stemming from sharing lifelogging data
would seem irrelevant at first. However, sharing online is predominantly done
manually and deliberately by the user. Instead, lifelogging photos will be often
shared seamlessly and automatically in order to capture a greater amount of
details (as we described in section above).

In this vein, Templeman et al. [[109]] have shown how such opportunistically
collected images pose new risks to users privacy and physical security. In their
work, the authors conceptualize a new attack vector where image data is used to
construct rich, three-dimensional models of a person’s environment, hence en-
abling a “virtual theft”. In another work, Hoyle et al. [[105]] seek to understand
privacy attitudes and perceptions of lifeloggers and shed some light on how will
users manage the capturing and sharing of their lifelogs. In their study, Hoyle
et al. asked their study participants (N=36) to wear a lifelogging camera and
capture their mundane activities for a week. At the end of the study, participants
were asked for a subset of the captured images about why they would or would
not share them. The results show that most participants expressed their willing-
ness to share captured images, but factors such as the presence of certain objects,
location, appearance of others, would most likely affect sharing decisions.
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To better understand what makes a lifelog photo sensitive, Hoyle et al. [[110]
conducted a follow-up study. Five researchers annotated and analyzed images
captured during the first study and combined their results with the reasons par-
ticipants gave for sharing or not sharing those images. Their analysis confirms
that computer screens pose a major concern for users. Beyond screens, many
images had text clearly visible, disclosing various private information including
credit card numbers, academic transcripts, exam answer sheets, etc. Impression
management was found to be yet another reason that affected the sharing de-
cisions of many participants. Authors observed that lifeloggers avoided sharing
images that showed a negative trait (e.g., smoking a cigarette or drinking alco-
hol). On the other hand, photos of positive traits (e.g., showing one working or
studying) were deemed as shareable in order to promote positive impressions.

That said, there are several approaches that can assist users in curating lifel-
ogging pictures prior to sharing them. In principle these approaches can be
grouped into three categories: (1) manual post review control, (2) in-situ control
and (3) automatic control. Clearly, given the amount of captured images in a day,
any manual and after-the-fact approach will be cumbersome and labour inten-
sive for the user. Furthermore, this may result in mistakenly disclosing sensitive
information or “misclosures” [111]].

Automated approaches on the other hand can mitigate user’s burden and offer
practical solutions in controlling the sharing of lifelogging images. Initial work
in this domain has investigated computer vision algorithms to scan for sensitive
places [[80]], particular objects [[112[], computer screens [[79]], or high-level activ-
ities [113]. In one such work, Jana et al. [114] present a privacy-protection sys-
tem that transforms visual data using computer vision algorithms before making
it available to other applications. However, the executed transformations pro-
duce image data that can only be understood by system applications and are not
viewable by humans. This clearly defeats the purpose of augmenting one’s mem-
ory through visual cues. In this vein, Thomaz et al. [[82]] seek to assess and quan-
tify the balance between privacy-sensitive information appearing in lifelogging
images versus salient information that can assist users in achieving a particular
task. Using their proposed framework, which they refer to as privacy-saliency
matrix, the authors evaluate the performance of four automated techniques for
protecting user’s privacy: face detection, image cropping, location filtering, and
motion filtering. Their analysis was conducted using a total of 14’422 images col-
lected by five participants over a course of three days. Their results show that all
of the tested techniques performed poorly, suggesting that more work is needed
for creating automatic solutions which can efficiently balance both privacy and
utility of lifelogging images. This resonates with Adams’ [115]] observation that
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privacy issues related to captured experiences often rely on users’ implicit as-
sumptions of its usage and the intended receiver, and as such they can vary with
person and context [|58]. For instance, an image that can infringe a user’s privacy
because it contains a computer screen can be the strongest memory cue. There-
fore, one way to improve the efficiency of automatic privacy-mitigating mecha-
nisms is to couple them with context-dependent user supplied privacy policies.
In Chapter [f] we provide a comprehensive review of state-of-the art approaches
on this topic.

In situ or momentary control mechanisms can provide an efficient and imme-
diate solution to the challenge of curating lifelogs. As an event is being experi-
enced, a user would control different aspects of how the experience is captured
and how such data is shared with others. For instance, the user could momentar-
ily pause the photo collection, indicate what moments of the experience can be
shared and with whom such sharing can take place, or delete the last captured
moments in case they were captured by mistake. This allows users to reason
about the capturing and sharing decisions using the experience context while
such context is still fresh in their mind. It also alleviates the burden of later
trying to manually find and remove problematic images without having a clear
representation of the context while such data was captured. A similar finding was
observed in the study of Hoyle and his colleagues [105]. Their study participants
used in situ pause and delete controls as a primary mechanism for managing their
privacy throughout photo collection study tasks.

In principle, such in situ controls can be embedded in the camera itself, can
run on a smartphone, or even be implemented in a dedicated physical device.
However, using the camera itself as a control interface might not be the most
optimal solution. Performing any interaction with the camera may well inter-
fere with the photo collection process and hence can miss capturing important
moments. For instance, one may need to unclip the camera for a moment and
interact with its touch screen interface in order to change the camera’s settings
regarding the capture and sharing process. Even if the camera would be oper-
ated by gestures, the user can block the sensor with their hand while performing
the gesture. Instead, using a separate control interface can better decouple these
two processes and offer a better user experience. In Chapter |5/ we investigate
how a dedicated device can be designed, how it can be used to control the prac-
tice of capturing and sharing of lifelog traces, and how does such an interface
compares to a smartphone application designed for the same purpose.
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2.3 Human Memory

Human memory has been widely studied in the fields of Neuroscience and Psy-
chology. This has resulted in the development of many models that describe what
human memory is and how it functions. In this section we will briefly present
memory and its workings, focusing on the most common and widespread models.
In a seminal work from 1968 [[116/], Atkinson and Shiffrin describe a memory
model that was a turning point in further developments and consolidation of
human memory theories. Their model consists of three structural components:

1. Sensory memory is constructed by what we see, hear, taste, or feel through-
out everyday experiences. As it is impractical (and useless) to remember
each and every detail of such moments, the brain will typically only retain
this information for less than half a second (but sometimes even up to 3
seconds) [[117]] — which is long enough to allow us to remember the most
relevant details about our surroundings. This information is processed in
a very quick fashion, following a pre-attentive process where changes are
detected because they violate predictions of a pre-built neural representa-
tion of the environment [[118, [119]. Research has found that only visual
stimuli is processed this way [[116]], allowing us to make sense of, e.g., the
shape and color of objects that we see around us.

2. Short-term memory is often regarded as one’s working memory. At any
given time it can hold between 5 and 9 items [[120]]. Its capacity can be in-
creased by first clustering similar information into bigger chunks, and then
storing only the chunks [[121]]. Information in this store is kept for a brief
period of time, i.e., between 15 and 30 seconds. However, rehearsed items
can be instead retained there for several hours [120]]. A characteristic of
short-term memory is that it does not necessarily store sensory information
in its original form. For instance, a word that was presented visually will
be registered by visual sensory input, however, the same information may
well be encoded in a short-term memory store as auditory information.

3. Long-term memory is the last component of the Atkinson’s and Shiffrin’s
model. Information stored in the two preceding components will eventu-
ally decay, whereas information in the long-term store is believed to remain
there for a lifetime. Experimental results show that we can recall names
and faces of classmates with an accuracy of 90% even 15 years after grad-
uation [[122[]]. This number declined by 60% when tested 48 years after
graduation. Transfer of information to the long-term store happens while
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such information is still available in the short-term store. Prior research has
found out that information on topics that we already have some knowledge
about is more more likely to be copied to this memory store. This is mainly
due to the fact that such information can be easily connected to other re-
lated information that is already in the long-term store. There is also a re-
verse flow of information, i.e., from the long-term store to the short-term
store, which is manifested when we usually think about something [[116]].

Long-term memory is divided into implicit (or procedural) memory and ex-
plicit (or declarative) memory [[123]]. Implicit memories relate to skills and the
unconscious act of “remembering” how to do things (e.g., knowing how to drive
a car or how to open a door). Explicit memory refers to knowledge of facts and
events that can be remembered later on. Tulving proposes a further distinction
of explicit memory into semantic and episodic memory [[124]:

1. Semantic memory is the memory of facts and knowledge and is independent
of the context when it was acquired. Tulving describes it as the precondi-
tion of using a language, and further notes that semantic memory ...“is a
mental thesaurus, organized knowledge a person possesses about words and
other verbal symbols, their meaning and referents, about relations among
them, and about rules, formulas, and algorithms for the manipulation of
these symbols, concepts, and relations.”. The act of retrieving a semantic
memory leaves its contents intact in the memory store. As a result, this

kind of memory is more robust to modifications than episodic memory is.

2. Episodic memory holds information about one’s personal experiences, which
are structured into smaller chunks of episodes or events. In addition to
information about individual episodes, this memory store also contains
contextual information such as the temporal-spatial relationship between
these episodes [[125]]. Information retrieved from this store is also used as a
special input back into the store itself. Thus, unlike the case with semantic
memories, retrieval of episodic memories can modify the memory system.

From the moment a memory is conceived, to the moment it can be retrieved,
the memory goes through five stages namely encoding, consolidation, storage,
recall and forgetting [[126]]. Two of these processes are most relevant to our work:

1. Recall: refers to the mental process of retrieving a particular event from the
past. To make this happen, our memory predominantly relies on contextual
information that was captured during the memory encoding (i.e., creation)
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phase but also on contextual information that is available at the time of re-
trieval — a process based on the theory of encoding specificity [|63]]. This
contextual information acts as a stimulus and triggers the recollection of
associated memories. Such information can be constructed implicitly (e.g.,
hearing a song playing in a bar) or explicitly (e.g., browsing a photo al-
bum). In principle, anything can act as a memory trigger, including pho-
tographs, music, smell, location, etc. These stimuli is what is known in
the field of Psychology as memory cues, and the process of replaying and
reviewing such memory cues is called cued recall. Evidence has shown that
cued recall can help both subjects with memory impairments [127]] and
healthy individuals [46]] in improving their recall of episodic memories.

. Forgetting: Contrary to recall, forgetting is the inability to partially or com-

pletely retrieve memories related to past episodes from the long-term mem-
ory store. This can result in very unpleasant and embarrassing situations.
For instance you may forget were you left your car keys, or you may strug-
gle to remember the name of a person that you met some time ago. Com-
monly, forgetting is considered as a negative feature of our memory pro-
cess. However, Bannon highlights that “forgetting is a feature and not a
bug” [[128]]. The ability to forget is equally important as our ability to
remember: it helps us to soften information overload, to unburden from
negative experiences [[129,130], but also to reconcile storage for acquiring
new knowledge [[131], [132]]. There are many factors that influence the act
of forgetting. This can happen due to the lack of necessary memory cues,
a mismatch between cues and encoded information, or simply because of
somewhat infrequent access to particular memories. Schacter [[133]] has
studied the act of forgetting and he delineated seven different causes why
we fail to recall: 1) information gets less accessible over time, 2) lack of
attention during the encoding of memories, 3) memory blocking, 4) misat-
tribution of memory context, 5) tendency to include information from oth-
ers, 6) bias from preexisting memories and 7) inability to forget unpleasant
episodes. One interesting observation that arises from reasons mentioned
in points 4 and 5 is that our memory system can become vulnerable to
false episodic memories. This would allow one to implant in our heads
fabricated memories of events that never occurred or that occurred differ-
ently compared to how we would recall them after the implant. There is
significant evidence to support the notion that such threats are real, which
we describe in the following section.
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2.3.1 Human Memory Manipulation

Apart from the challenge of keeping our memories safe from the prying eyes
of others, the threat of memory manipulation might be the most worrisome as-
pect of memory augmentation systems: if an attacker is able to remove, add, or
change our captured information, the resulting memory cues may implant mem-
ories in our heads that never took place, or, in turn, accelerate the loss of other
moments by ensuring that no memory cue will ever remind us of them.

Human memory manipulation has been subject to extensive experimental re-
search in psychology, with studies repeatedly demonstrating that human mem-
ory is easily manipulated. In a recent set of studies, Shaw [[7] shows how our
memories can be manipulated to make us pleasantly believe “that we had tea
with Prince Charles” or worse “that we committed crimes that never happened”.
Shaw explains how, through a social psychology process of six steps, carried out
in a lab-study over the course of few weeks with ordinary university students
(no hypnosis or torture involved), she could implant what she calls “full false
memories’ to 70% of the study participants.

In another experiment, Morgan et al. [134]] show how misinformation can
have an effect on the memory of a recently experienced and stressful event. By
introducing misinformation through a mugshot photo to military personnel, par-
ticipating in a mock prisoner-of-war camp, they could decrease the accuracy of
them remembering the interrogator of one of the (mock) prison sessions. More-
over, they could trigger participants to believe and hence report the presence of
items that didn’t exist in the interrogation room such as glasses or a telephone.

Many sources of misinformation have the potential to modify and manipu-
late our memories of an event [[7], e.g., viewing a set of photos, discussing with
others, reading news articles or reading what others are “tweeting” for an event.
In this thesis we particularly focus on photographs, since they are easy to cap-
ture and make for rich memory cues (see Section [2.2.2). Several studies have
demonstrated the role of photographs “overshadowing” our memories by creat-
ing other competing ones. Henkel et al. [135]] showed that even generic photos
(i.e., from a stock catalog) showing a particular task have the potential to trick
participants into thinking that they performed such a task (while they did not).
Brown and Marsh [[136]] were able to use photos of different places to manip-
ulate participants’ autobiographical experiences, making them believe that they
had visited them (while they have not). Other studies have experimented with

7Shaw defines full false memories of an event as memories in which (among others) 1) the
number of reported details by a participant is no less than ten and 2) participants explicitly saying
that they believe that the event really happened.
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lifelog-like photos (both unmodified and modified) of previous real events (e.g.,
family vacation or birthday celebration). In one such study, Wade et al. [[137]
were able to make participants recall details of a previous hot air balloon ride
experience (which never happened). To achieve this, they created a fake image
by photoshopping the participant in a balloon air ride. In another study, Lindsay
et al. [138] could incite participants to reminisce about a previous school-related
event (which they did not attend) by showing them pictures of the event obtained
from their class-mates and claiming participants had taken them.

The aforementioned studies on human memory manipulation highlight the
fact that our memories can be manipulated with fake image data. The security
implications this gives raise to are significatn. Imagine that an attacker compro-
mises our memory augmentation system and gets access to our complete digital
lifelog. By modifying the stored data or controlling the memory cue selection,
an adversary can attenuate some of our memories while reinforcing others, or
even fabricate memories of events that we never experienced. Data that we ob-
tain from others is yet another source of memory manipulation attack. We do
not know whether such lifelogs represent a true reflection of what really hap-
pened. Our “trusted friends” in this case can be the evil adversaries or maybe
their systems have been compromised in the first place by a different attacker.
The peculiarity of these sort of attacks is that the misinformation data need no
longer to be generic but can be sourced from the lifelog of each individual, po-
tentially making the attack more effective.

In Chapter 4 we present a systematic and practical solution for addressing
the threat of memory manipulations by ensuring the integrity and provenance
of digital memories. Our proposed solution is comprised of a secure and trusted
wearable camera, a storage protocol to link captured images in a secure chain,
and a zero-knowledge protocol for verifying shared but modified images obtained
from others.

2.4 The Envisioned Threat Model

The threat model that we consider in this work shares many aspects with threat
models of other applications in the field of lifelogging. Nevertheless, it differs in
at least four aspects with other lifelogging threat models.

Firstly, many lifelogging applications traditionally consider only the data con-
fidentiality aspect with the goal of protecting the privacy of the lifelogger (a per-
son capturing data for herself) when sharing captured data with others. If the
lifelogging application also captures visual data then such works extend their
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threat models to also account for privacy issues of bystanders (others that can
appear in one’s lifelogs). While data confidentiality is very important, in this the-
sis we focus on the aspects of data integrity and provenance. We show that lack
of integrity and provenance opens the door to another less obvious but equally
important problem as privacy, that is, the risk of human memory manipulation.

Secondly, when sharing data with others, we focus on threats and challenges
for both the sharer and the recipient of such data. Sharing sensitive data can
risk sharer’s privacy, while receiving modified data can endanger the recipient’s
memory, since such modified data can generate falsified memory cues.

Thirdly, many works from the field of lifelogging do not consider scenarios
where the lifelogging gear is compromised. This would permit the attacker to get
a copy of the recorded data but also to modify data on the fly directly in the device
itself. In this thesis, we account for such attacks with the goal of ensuring integrity
and provenance of experience data from the moment such data is captured.

Lastly, we provide a comprehensive threat model by identifying security chal-
lenges for each of the three stages of memory augmentation, from experience
capture, to data storage and sharing, to data processing and presentation. How-
ever, note that our solutions address only threats related to the capture, storage
and sharing practices. Threats and attacks related to the other stages of cue pro-
cessing and presentation are presented as future work (see Section|[7.2)).
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Chapter 3

Secure Memory Capture and Storage

An all-embracing memory augmentation system can bring tangible benefits both
for us as individuals but also for our society. For one thing, through the act of
remembering we are able to “learn from history” and advance knowledge. How-
ever, as Bannon [[128]] points out, any such technology that aids us in remember-
ing should also support us in forgetting. Mayer-Schonberger [[129]], in his book
on the virtue of forgetting in the digital age, observes that our transition to the in-
formation society has shifted a very old norm about memories: “while forgetting
used to be the norm and remembering the exception, today forgetting has be-
come the exception, and remembering the default”. The point that these authors
make is clear: any memory augmentation system has to consider the duality of
our memory, i.e., “the role of remembering and the importance of forgetting”.

In fact, there exists a way how we can decrease our ability to recall certain
memories. In the field of Psychology, this process is known as “retrieval induced
forgetting” (RIF) and, most importantly, it is based on the cued-recall process
that we previously introduced in Section[1.1] The basic idea behind RIF is as fol-
lows: by selectively reviewing memory cues of a category, one can significantly
increase the recall of memories associated with those cues, while at the same
time decrease the recall of memories from the same category but for which no
cues were presented [5]]. In a recent study by Cinel et al. [[6], a series of six ex-
periments provides strong evidence that RIF can also be carried out using images
captured by lifelogging cameras.

These findings suggest that we can address Bannon’s critical view on the du-
ality of memory, and that we can use the same technology to willingly fade out
some memories from our past. While this is a completely legitimate thing to ask
from our memory augmentation system, however, how do we make sure that it
is only us demanding our system to do so? As we pointed out in section (1.2}
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by controlling what cues we review, an attacker can manipulate our memories of
past experiences.

Therefore, in this and the next chapter we set out with the goal of addressing
the challenge of preventing human memory manipulation in pervasive memory
augmentation systems. At the outset, we explore the different ways how such
attacks can be executed in practice. We then design and build a systematic and
practical solution that addresses the elicited threats. Thus, we propose:

* asecure and trusted wearable camera coupled with a data storage protocol
to capture and store digital memories in a secure fashion (presented in
this chapter);

* an approach to securely exchange memory cues among co-located users,
coupled with a zero-knowledge protocol for verifying shared but modified
memory cues (Chapter |4)).

By using off-the-shelf cryptographic primitives, our protocols can efficiently
run on low-power wearable cameras and thus can protect memories from the
moment they are captured by a user’s device to the time that they are stored in
repositories for later processing (e.g., into memory cues). We assess the proto-
cols’ security and demonstrate their practical feasibility using an implementation
based on a prototype memory-capture camera. In this chapter we target the fol-
lowing research question:

* RQ1: How can we guarantee digital memory integrity and provenance to
prevent memory manipulation attacks?

Parts of this chapter are based on the following publication:

* A. Bexheti, M. Langheinrich, I. Elhart, and N. Davies, “Securely Storing
and Sharing Memory Cues in Memory Augmentation Systems: A Prac-
tical Approach,” in Proceedings of the 17th Annual IEEE International
Conference on Pervasive Computing and Communications (PerCom’19),
2019, p. 10
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Figure 3.1. Threat model for captured experience data that constitute users’
memories. Victim’s items colored in red, namely, the wearable camera and the
memory repository can be controlled by various adversaries and represent po-
tential points of attack. Attackers can change our memories by inserting fictitious
experiences, modifying existing experiences, or deleting recorded experiences.

3.1 Threat Model and Requirements

As digital memory cues are elevated to become an essential source of our recol-
lection of past events, we expose our overall memories to significant manipula-
tion threats.

Without the ability to ensure the security of digital memory cues, we would
endanger our memories in a number of ways. Figure depicts the envisioned
threats intertwined with the memory augmentation process. We look at each
possible threat individually and highlight the envisioned adversaries, before de-
riving a set of security requirements towards the creation of secure pervasive
memory augmentation systems. In this vein, we see the following threats:

T1: Capturing fake experience data.
Attackers can try to distort our memories as early as the experience capture
phase. They can compromise our cameras and install malicious software
which would permit them to modify captured images. This may sound
more far-fetched than it actually is. Today’s smartphones are powerful
enough to, for instance, detect faces and make them younger, change their
gender, or even replace them with different faces, all in real-time E]ﬂ

Thttps:/ /www.insider.com/iphone-and-android-apps-photoshop-your-pictures-instagram-
2017-7

Zhttps: //www.abc.net.au/news/2017-04-27/should-you-worry-about-privacy-when-using-
faceapp/8476666
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T2:

Repository manipulation.

An attacker that has compromised our memory repositories can (1) inject
fake memory cues, (2) modify existing ones, or (3) delete a carefully
picked set of memory cues. They will be able to implant memories of
events that we never experienced using attack (1) or (2), or accelerate the
vanishing of existing memories (i.e., induce RIF) using either attack (2)
or (3). Moreover, by influencing the memory cue creation process they
may also induce RIE which is outside the scope of this thesis.

These attacks can be carried on by (i) any malicious person that is able to hack
into our wearable cameras, (ii) the repository service provider, or (iii) any third-
party that can compromise a memory repository.

Security Requirements

Based on the elicited threats, we delineate a set of requirements that should be
considered in designing manipulation-resistant memory augmentation systems:

R1:

R2:

R3:

Ensure verifiable memory cue integrity and provenance.

Captured experience data should feature reliable and verifiable provenance
data, i.e., information on the origin and context of capture, as well as in-
formation about their integrity, i.e., what changes (if any) have been made
to them. This ensures that the captured data is an accurate reflection of
what occurred during that experience.

Ensure equipment integrity.

Any such cue provenance and integrity information is accurate and valid
as long as the devices producing this information are trusted and are not
compromised. Thus, we need guarantees that experience capture sensors
are running a valid and a certified software stack.

Secure personal repositories.

Digital memory cues should be stored in secure and user-controlled repos-
itories. However, not everyone of us will want (or will be able to afford) to
host their own memory repository, but will instead subscribe to third-party
services able to host our captured memories (for instance just like how we
subscribe to an email service or commercial cloud server and not host our
own serves). Thus, we need to make sure that the integrity and provenance
of our memory cues is intact even while they are kept in repositories.
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3.2 Related Work

The work presented in this chapter intersects two principal research strands: cap-
ture sensors based on trusted computing and protocols for securely linking data.

Capture Sensors Based on Trusted Computing

Knowles [[107]] explores the implications of trust in emerging data-rich systems,
with the goal of understanding how users generate and sustain trust in these
systems. In her view, trust is a holistic concept composed of three interconnected
aspects: trust in data, trust in systems, and trust in people. Findings from this
work are in line with the design requirements that we draw as part of secure
memory augmentation systems. The trust in data highlights the importance of
data accuracy when collecting user-related content. However, as Knowles points
out, trustworthy data is not simply accurate, but is verifiably accurate. This is
in line with our design requirements R1 (i.e., accounting for verifiable integrity
and provenance of memory cues), and R2 (i.e., ensuring equipment integrity).
A second observation of the work from Knowles is that trust should be propa-
gated from the data-level to the system-level. System trust results from the level
of security of each individual component of the system (if the system sits within
a larger system-of-systems architecture), and how the system combines and in-
terprets the collected data. This observation resonates with our design require-
ments R3 (i.e., continuing to keep data secure even on memory repositories),
and R4 (i.e., providing transparency for the memory cue selection process).
Prior research has proposed using trusted computing capabilities for camera
sensors. In an attempt to restore credibility to digital photography, Friedman
proposes the design of his Trustworthy Digital Camera [[139]], which relies on
public-key cryptography to digitally sign captured images. The private key is
stored in a “secure microprocessor”, but the author does not provide any addi-
tional information about such a microprocessor. Winkler and Rinner [[140, [141]]
take this concept further, with TrustCAM, a prototype of a smart embedded cam-
era equipped with a trusted platfrom module (TPM). All images captured by
TrustCAM are digitally signed and encrypted to guarantee image authenticity
and integrity. In later work, Winkler et al. [142] propose TrustEYE.M4, which
further improves the security of their first TrustCAM sensor. Improvements come
from the fact that they move security features as close as possible to the sensor,
thus reducing the number of trusted components in their camera design. Our
proposed secure camera goes beyond TrustCAM’s capabilities: it securely links
captured images in a chain structure in order to prevent unnoticed image deletion
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from user repositories. However, we acknowledge that our camera can benefit
from the improved security design of TrustEYE.M4 in an attempt to prevent any
hardware-based attacks.

Saroiu and Wolman [[143]] propose two design alternatives for trusted sensor
devices. One design is similar to our trusted camera, i.e., embedding TPM-like
capabilities directly into the sensor. Their second approach relies on a virtual-
ized environment coupled with a TPM. The virtual machine will be in charge to
read data coming from each individual sensor and then use the TPM to sign such
readings before making them accessible to others. This design based on virtual
machine can be further explored with the ultimate goal of improving the func-
tionality and security of our camera. Furthermore, the authors show that trusted
computing can be used in mobile sensing applications beyond trustworthy pic-
ture taking. They highlight a number of different application scenarios that can
benefit from the deployment of trusted sensors, such as location proofs, partici-
patory sensing, vehicular sensing networks, or energy consumption monitoring.
Findings from this work testify for the security and efficiency of a TPM-enabled
wearable camera, making for a stronger case for using an approach based on
trusted sensors for the the protection of experience data.

Protocols for Securely Linking Captured Data

One way to detect data unsolicited deletion attacks is to securely link data ele-
ments together in a data-chain structure. Traditionally, such schemes are realized
using cryptographic hash chains [[144] [145]] where the hash of an item i is cal-
culated using the item itself and the keyed hash of the previous item i-1. Any
subsequent data deletion or modification attempt would invalidate the structure.
Prior research has employed this concept for creating a data authentication pro-
tocol suitable for low-power devices [[146}, [147] to prevent fake data injection
in broadcast networks.

Other works [[148],[149, [150] have used hash-chain structures to securely link
elements together with strong guarantees of their temporal order. They make use
of trusted authorities to produce signed timestamp tokens that also depend on
tokens issued for previous items. Once an item is timestamped and added to the
chain it is impossible to modify its token or remove the item itself from the chain,
even by the item owner or the timestamping authority.

While such immutability is a desired property in some contexts, it is a limi-
tation for our envisioned application. We instead propose a lightweight protocol
for securely linking captured data that allows authorized users to legitimately
remove a particular item from their memory repository without invalidating the
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Figure 3.2. Overview of the event flow of using our system for securely capturing
and storing experience data.

whole chain structure. A user can delete accidental capture of, for instance, a
bathroom break or a museum visit where photography is forbidden. However,
an attacker cannot do so undetected, since any instance of unauthorized data
deletion will invalidate the structure and thus will be detected.

3.3 Secure Memory Capture Using Trusted Sensors

The root of trust in our system is a secure and trusted camera. Trusted cam-
eras are a well-known concept in security [140, (142} [143]]. In the course of this
research, we have built a prototype wearable camera that uses a Trusted Plat-
form Module (TPM)EL The purpose of the TPM is threefold. Firstly, it enables the
camera to guarantee the integrity and provenance of all captured images, and
secondly, it ensures that the camera’s firmware is tamper-resistant and intact.
Furthermore, the TMB described in this chapter, lays the groundwork to securely
bootstrap the subsequent data storage protocol as well as the data sharing pro-
tocol explained in the next chapter.

Figure depicts the event flow of using our system for securely captur-
ing and storing experience data. At the outset, a user will take “ownership” of a
camera (i.e., issue the TPM_TakeOwnership command, which triggers the TPM to
create its set of root keys). For each captured image I of a user’s experience, the
camera will then log “provenance” data P, such as time and location of capture,
and a fingerprint (cryptographic hash) of the captured image. It will then cryp-
tographically “seal” this provenance information by digitally signing a hashed

3https://trustedcomputinggroup.org/resources/tpm_main_specification
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representation of P using its root private key. The combined raw provenance data
and its signature are called the provenance certificate I1, = {P,Si 8Mpk,,., (H(P))}.
Later on, when reviewing an experience, the camera owner can verify that those
images have indeed been captured by their trusted camera (addressing threat[T1)
and that they have not been maliciously modified in the meantime. Any attempt
to add external images into users’ memory repositories threat (T2/1) or mod-
ify existing images (T2]2) can be easily detected since the suspicious image will
lack a valid signature. Furthermore, using a data storage protocol described in
section they can also check if any images have been deliberately deleted
(threat[T2]3), e.g., to reduce the memories of a particular experience.

The rest of this section describes the camera’s implementation, followed by a
description of the underlying trust bootstrapping process [[151]].

3.3.1 Camera Implementation

We built a prototype camera (depicted in Figure to evaluate the feasibility
of the proposed protocols. Our camera is powered by the “Raspberry Pi 3 Model
B+”IoT platform to which we added a CryptoShiel with an “Atmel Trusted Plat-
form Module’ For picture taking we use a serial camera moduleﬁ that provides
pre-compressed JPEG images with a maximum resolution of 640 x 480 pixels. We
implemented all of our protocols in Java. Our implementation makes use of jTSS
[[152], a Java library that implements the software stack proposed by the Trusted
Computing Group (TCG) for managing the communication with the TPM. Ul-
timately, our solution may be ported to the smaller “Raspberry Pi Zero W” in
order to make it more portable and manageable for real-life applications. The
Pi Zero W board measures 6.5cm x 3.0cm x 0.5cm, making it about 2.5 times
smaller than the Pi 3 B4+. While the slower Pi Zero will run our solution less
efficiently, our results will most likely be matched by the performance of any
next-generation Pi Zero boards.

3.3.2 Trusting the Camera

To establish trustworthiness in our system, we rely on a hardware-based ap-
proach for secure platform attestation (i.e., firmware integrity) and secure stor-
age of key material (i.e., private keys are not disclosed to unauthorized parties).

“http:/ /learn.sparkfun.com/tutorials/crypto-shield-hookup-guide
Shttps:/ /www.microchip.com/wwwproducts/en/AT97SC3204
®https://www.adafruit.com/product/1386
"https://trustedcomputinggroup.org



3.3 Secure Memory Capture Using Trusted Sensors

63

Adafruit serial
camera module

Breadboard

Figure 3.3. Our prototypical camera setup used for performance evaluation.

With the help of the included TPM module, our camera can establish an im-
plicit chain of trust. In this context, the camera proves to its owner — but also to
other users, in case images are being shared with others - that it is in a known-
good state. Typically, the state of a system is a function of both the hardware
and the software it has executed. As Parno et al. [151] suggest, the state of the
hardware can be verified by a signed certificate by the system’s manufacturer.
However, software’s state is more dynamic and ephemeral, and needs a different
attestation procedures. In this vein, traditional attestation schemes start from a
trusted component (Root of Trust for Measurement) to perform system measure-
ments as the system’s software is being loaded. A common such measurement is
to compute a hash over the software’s binary, libraries, configuration files, and
any inputs used [[151]]. The computed measurements are then stored inside the
TPM, specifically in a set of dedicated registers also known as Platform Compo-
nent Registers (PCR). A PCR has a special security property such that it cannot
be freely overwritten, but can only be extended by hashing the concatenation of
data that is already stored in it with a hash of the new data.

To verify what state a system has booted in (i.e., knowing what software
component is being executed on a platform), a verifier engages in an interactive
challenge-response protocol with the system’s TPM (Root of Trust for Report-
ing) [[I51]]. The verifier will send a random nonce n and request from the TPM
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to generate a quote. The quote contains the verifier’s nonce and the measurement
aggregates that are stored in the PCRs within the system’s TPM. The TPM will
then respond with such a quote packaged in an attestation report Ry,,, signed us-
ing its private attestation key AK,,,;,, (how such key is generated is explained in the
next section, i.e., Ry, «— {n’,PCR/, SignAKpriv(n’, PCR’)}. The verifier will
recognize the system as trustworthy if: 1) the signature can be verified with the
public part of the TPM’s attestation key AK,;, 2) the received nonce is the same
as the one that the verifier provided (i.e., n’ = n), and 3) the measurements con-
tained in the PCRs are in an expected good state (i.e., PCR’ = PCR). This scheme
allows a user to remotely verify the current state of a device at arbitrary times.

However, in our application, it is crucial for a user to know that a camera was
in a known-good state at the moment when it captured a picture. Moreover, using
the above scheme to engage in a platform attestation protocol each time a new
image is captured might introduce significant overhead. As a result, we modify
the traditional interactive platform attestation protocol to a non-interactive one
as follows. Instead of waiting for a verifier to initiate the protocol, the camera
automatically provides an attestation report (obtained from its TPM) every time
it captures a picture. In order to ensure that the report is fresh (and not one
from a previous time) the camera uses a fingerprint of the currently captured
image as a nonce parameter when requesting a report from the TPM. With a
view towards supporting a secure and trustworthy sharing of images with other
co-located peers, the fingerprint is computed right after the image is captured
and immediately shared by means of a short-range wireless broadcast with co-
located others, using a protocol that we designed for such purpose (the protocol
is described in detail in Chapter [4). Finally, the produced platform attestation
report for an image is embedded in the image’s provenance certificate IT;.

To check the reported platform state of a camera that captured an image I, in
addition to verifying the reports signature and its PCRs values, a verifier should
also check the report’s nonce for freshness. If the image in question was captured
by the verifier's own camera, they can then compute a new fingerprint nonce n’
from the associated image I, and match it with the nonce of the report (i.e., n’ =
n). When receiving a modified image from a co-located peer, one instead uses
the fingerprint that was collected wirelessly during co-location and compare it
with the report’s nonce.



3.4 A Storage Protocol for Securely Linking Data

3.3.3 Provisioning and Protecting Camera Key Material

The TPM provides means for ensuring the confidentiality and integrity of its key
material. Every TPM module is provisioned with an Endorsement Key-pair EK,
which is stored in tamper-resistant non-volatile memory inside the TPM. The EK
is embedded in the TPM as part of its manufacturing, a process which is assumed
to be carried out in a secure and trusted environment. During the first-time ac-
tivation of the camera and its TPM, the EK is used to generate the Attestation
Report Signing Key AK and Storage Root Key SRK. The SRK is another key which
is also stored inside the TPM. We follow the specifications from the Trusted Com-
puting Group (TCG) and use SRK to derive other application-specific keys. This
also happens during the activation of the camera. Specifically, we use SRK to
derive the Provenance Signing Key PK and all other keys that are mentioned later
in this work. Such derived keys are stored in the camera’s storage (outside the
TPM) but encrypted with the private parent key (i.e., SRK). To control access to
these keys, we employ a PCR state constraint, i.e., the TPM will refuse to use EK
and SRK - and hence any key derived from them — if the platform is not running
in a trusted state. We explained the platform attestation procedure based on PCR
measurements in section above.

3.4 A Storage Protocol for Securely Linking Data

Our secure camera prevents an adversary from injecting or manipulating im-
ages in a user’s repository (i.e., threats [T2|1 and [T2}2). Each image requires a
valid signature that is unique to the user’s camera, something an attacker should
be unable to produce. The TPM equally prevents an attacker from hacking the
camera’s firmware in order to modify images directly on the camera, and before
even uploading them to the user’s repository (i.e., threat[T1). However, threat
[T2|3 - image deletion — can not be prevented this way: an attacker who gains
unauthorized access to a user’s repository could easily remove important images.
Given the large number of captured images and the fact that such data is usually
reviewed a long time after it was captured, it is challenging for a user to deter-
mine if any particular image is missing. While we may not be able to prevent
someone who already has unauthorized access from performing any deletion,
we want to be able to detect such instances, i.e., we want to know if an image in
a series of captured images was removed, and whether it was done by the users
themselves or by an unauthorized party.
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Figure 3.4. Overview of the file chain scheme. Each file is linked by a unique
counter. The order is then authenticated using a MAC token computed over the
file’s content and its counter.

3.4.1 Protocol Description

We propose an efficient scheme to securely link images, captured by users’ cam-
eras, in their memory repositories. Figure describes the underlying steps,
Figure provides an overview of the scheme, while Table itemizes the
used identifiers. In our scheme, data is ordered and linked using an incremental
counter “c”, represented as a hexadecimal number. Two special (empty) files,
“HEAD” and “TAIL”, mark the beginning and end of the list, respectively. Remov-
ing an element from within the linked list will require either a replacement file
to be inserted, or all subsequent elements to be renumbered. Adding a file to
the end requires updating the TAIL file. Both operations will require secret key
material (as described further below) that is only available to authorized users.

To first get a feeling of how large the counter value can get, consider the fol-
lowing estimation. Constantly recording one’s life in pictures (with a frequency
of 2 photos per minute) will result in 2,880 pictures produced in a day, 1,051,200
pictures in a year and about 73.5 million pictures during a lifetime of 70 years.
In order to ensure that, after a camera reset, the list never overlaps a prior one,
we always initialize the counter with a current timestamp (e.g., Unix epoch, sec-
onds since 1970), which is currently at ~ 1.5 billion.

A hexadecimal counter value of 8 characters (16% ~ 4 billion) would thus
be more than sufficient, with another 8-character serial number to differentiate
between cameras. The counter can be part of the file’s header (e.g., EXIF tag
in case of JPEG images) or simply be part of the filename. In case of the lat-
ter, a counter of length 16 should easily fit within the maximum length of 255
characters that most standard file systems support, such as Microsoft’s NTFS,
Apple’s HFS, or Linux’s EXT.
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Variable Description

I1, Signed provenance certificate for image I.
EK,ub/priv TPM endorsement key.

SRK ,u/priv TPM storage root key derived from EK.
PKpup/priv Key for signing/verifying IT,.

Storage Protocol

TK Symmetric key for computing authentication
tokens.

PTK,up/priv Derived from SRK, used to encrypt TK.

S Camera’s unique serial number.

c Counter initialized to a current Unix time.

Table 3.1. List of variables used for the storage protocol.

In order to prevent an adversary from replacing or renaming files, any opera-
tion on them must be authenticated by an authorized user. For this we rely on the
established cryptographic primitive of a message authentication code (MAC) [[153]],
which allows one to authenticate a message M by computing an authentication
token using a secret key TK. The token can be used later to verify the authen-
ticity of the initial message.

We thus build our linked file structure as follows (also see Protocol 1 in Fig-
ure . At power-on, the camera initializes a counter ¢ (step 1) and creates
two empty anchor files for the HEAD and the TAIL. The anchor files are assigned
with a counter value of ¢ and ¢ + 1, respectively, and with the camera’s unique
serial number S, by simply writing these information to the filename (steps 2, 5).
This operation is then authenticated by computing a MAC token over their file-
names (steps 3, 6).

For each newly captured image I, the camera proceeds as follows. At the
outset, the next counter value ¢ + 1 (step 7) and the camera’s serial number S
are assigned to the image by writing them to the image’s filename (step 8). This
operation is authenticated by first hashing the image’s contenlﬂ and then con-
catenating it with ¢ and S before computing the MAC token over this (step 9).
The produced tokens are embedded in the image’s provenance certificate IT; (the
provisioning of these certificates was explained previously in section which
in turn is stored in a separate auxiliary file as explained in step 9 of Protocol 1.

8We use a a one-way collision resistant hash function (such as SHA3-256).
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Protocol 1 Securely Linking Captured Data

A. Initialize a secure file chain (on camera power-on)

—_

. ¢=UNIX timestamp //initialize counter
2. newFile(*”, fypap = “HEAD"||S||c)
//create HEAD empty anchor file with filename fy;z,p
3. tokenypap = MAC(TK, fygap);
newFile(tokenygap, feerr 1 = furapll“-cert”) //authenticate HEAD and
//store its token in a sepa}ate certificate file with filename f.zrr 4
4. ¢ =c+1 //increment counter )
. newFile(*”, fra, = “TAIL'||S||c)
//create TAIL empty anchor file with filename fr,;;
6. tokengu;, = MAC(TK, fra);
newFile(tokenyyy, fegrr 1= franll“.cert”)
/ Jauthenticate TAIL and store its token in a separate certificate file
//with filename fprr 1

[9)]

B. Add an element to the secure chain

for each newly captured image I
7. ¢ =c+1 //increment counter

8. fileRename(I, f; = “IMAGE"||S||c||“.jpeg”)
//add ¢ and S to the image’s I filename
9. token; = MAC(TK,H(I)||S||c)
newFile(tokeny, fn, = fi||“.cert”)
//authenticate image and store its token in a separate
/ /provenance certificate file with filename fy;
10. Update TAIL by executing steps 4-6
11. commitToBlockchain(fra, fcrrr 1)
//upload TAIL and store its token certificate file to
//an immutable blockchain ledger (optional)

Figure 3.5. Pseudocode of the storage protocol.

Computing the token as a function of the contents of the file and its counter
value binds these two together, meaning that an adversary cannot delete a data
file and then overwrite the counters of the subsequent files without being noticed.
Finally, the structure’s tail is updated (step 10).
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In case that a legitimate user wants to delete a particular image I,, and
without renumbering all subsequent files from the structure, she can simply use
an empty replacement file. After removing both the image file and the corre-
sponding auxiliary certificate file that contains the MAC token, the user cre-
ates an empty file and assigns it the same counter as that of the deleted file,
by writing it in the filename: f, = [“DELETED”||S||c]. She authenticates
this by computing a MAC token in a similar way as for the empty anchor files:
token; = MAC(TK, f; ), and again stores it in a separate file with the same
name: fegrr prrerep = Lfi,|l“.cert”]. If the user wants to hide this deletion
from a third party, she alternatively can recompute the entire list by replacing all
counter values of subsequent images in the list and recomputing the correspond-
ing authentication files.

3.4.2 Checking for Missing Images

To check a stream of images for potentially unauthorized deletions, one proceeds
as follows. For each image I that was captured between time t; until time ¢;
(e.g., all images from the last work meeting):

1. read the filename and corresponding MAC token;

2. using the obtained counter from step 1, re-compute a new MAC token and
compare it with the token obtained from step 1;

3. 3) check if this file is linked properly with the subsequent file in the given
range by verifying that the counter of the previous and subsequent files
equal c —1 and ¢ + 1, respectively, and that all serial numbers match the
serial number of the desired camera. Furthermore, re-compute new MAC
tokens for both the previous and subsequent files and compare if the com-
puted tokens match with the tokens stored in the filenames.

If, for every image in the given range, the computed token matches the token
associated to it, one can conclude that the tested data link is valid and intact.
A broken link or an unauthenticated one is an indication of a deliberate data
deletion attack.

3.4.3 Generating the MAC token key TK

TK is randomly generated by the TPM during the camera’s first-time activation.
It is then encrypted with an asymmetric parent key PTK, which in turn is de-
rived from the TPM’s storage-root-key SRK. Both TK and PTK are securely kept
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inside the camera’s storage encrypted with each other’s parent keys, i.e., PTK
and SRK, respectively.

Checking for missing images requires knowledge of the key material TK,
which is used to verify MAC tokens. Since this process will be performed out-
side the camera, (e.g., on a user’s personal computer) TK has to be shared with
other potentially untrusted computer devices. Managing the storage of TK is
outside the scope of this work. However, given a computer with a TPM, a secure
key-migration protocol as specified by TCG [[154] allows for the secure transfer
of TK from the camera to another device.

3.4.4 Security Analysis

An adversary that wants to delete an image file without the victim noticing has
three options:

1. renumber all subsequent files and then create new updated MAC tokens
for each of them;

2. create a replacement file ((“DELETED”||S||c]) and compute a valid MAC
token for it; or

3. reuse the MAC token of another file that the victim deleted herself (simi-
larly as in 2, but in this case the replacement file “DELETED” would have
been created by the victim herself).

The first two options are prevented by virtue of the secret key TK used to com-
pute MAC tokens. Reusing tokens of other files is not going to help due to the
mismatching serial number S and counter c.

An attacker with unauthorized access to the victim’s repository can, however,
overwrite the whole directory with a previously made backup. In practice, the
attacker would “roll back the time” to a much earlier, but valid state, thus making
the last n images disappear. To prevent this, the MAC token of the current TAIL
can be occasionally committed to an immutable public ledger, i.e., a blockchain
(Protocol 1, step 11). Since no image is uploaded to a blockchain (but only tails’
MAC tokens are), it is still possible to perform authorized image deletions as ex-
plained before (i.e., using an empty replacement file). However, if the user wants
to hide the fact that she deleted an image herself, after recomputing the entire
list following the image deletion (as before), the user also needs to invalidate
the previously committed token of the tail from the blockchain and commit the
token of the new tail.
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As we described above, the security of the proposed scheme depends on the
secrecy of the symmetric key TK, which is used to compute MAC tokens. Unau-
thorized possession of the secret key would make the system vulnerable to the
all threats presented in this chapter, as it would allow an attacker to re-compute
a valid MAC token for every injection or deletion operation. To retrieve they key
an attacker can try the following advanced attacks:

1. chosen-plaintext attack with the final goal of recovering TK; or
2. obtain TK through so called timing attacks.

By definition, one of the key security requirements of a MAC algorithm is its
ability to resist to chosen-plaintext attacks. This means that even if an attacker
can use one’s camera as an oracle and request it to compute a MAC token for
different plaintext images, the attacker cannot get any information about the
secret key or guess a valid token for an image that was not sent to the oracle.
In our work we use a particular type of a MAC which involves a hash function
(also known as HMAC). In this context, Bellare [[155]] proves that an HMAC is
secure and is a pseudorandom function family (PRF) if the underlying compres-
sion function is also a PRE According to Bellare, a HMAC is still collision-resistant
even when implemented with a hash function that is not resistant to a second
pre-image attack. One has still to use a long-enough key in order to prevent
brute-force attacks.

However, this does not prevent an attacker who can get physical access to
one’s camera (e.g., stealing it for a short time and returning it before anyone can
notice) to use it to capture and hence sign images that the attacker would chose
on purpose. This type of attack can be thwarted by having the camera authen-
ticate the user prior to being activated. This can be achieved using a fingerprint
scanner and encrypting the fingerprint information using a TPM-issued key.

A timing attack is another vector for disclosing the secret key. Such an attack
relies on information gained by observing the behavior of an MAC verification
oracle. Similarly as in the chosen-plaintext attack, an adversary can submit an
image and MAC token, and the oracle will tell if the token is valid or not. A
typical pitfall here is that the system would take slightly longer to respond for a
valid token than for an invalid one. An attacker that can detect the difference can
then try to construct the correct secret key. This kind of attack can be prevented
by using a proper and a valid implementation of a MAC function.
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3.4.5 Evaluation

We measured both runtime overhead and energy consumptions of the proposed
camera in order to validate the camera’s practical feasibility. In this chapter we
focus only on runtime overhead figures of the camera’s operations including Pro-
tocol 1. In Section of the next chapter we additionally report on the runtime
overhead of our second protocol for securely exchanging images with co-located
others. Furthermore, in Section [4.7.2|we report on the total power consumption
of the camera when running both protocols.

Latency tests were conducted using two different images sizes: (1) a low-
resolution image with 640 x 480 pixels (the maximum resolution of the installed
camera module) and (2) a high-resolution image with 4096 x 3072 pixels (a res-
olution offered by most of today’s wearable cameras). Images are interpreted
using an 8-bit RGB color model, where each pixel is represented by three bytes.
We benchmarked three processes:

1. capturing and storing a picture in the camera’s internal storage,
2. obtaining a TPM-signed platform attestation report, and

3. appending an image to a secure link structure (following the Protocol 1
process described in Figure [3.5)).

Tests were conducted with a TPM complying to version 1.2 of the standard.
All cryptographic operations were carried out with RSA keys of 2048 bits, while
all hash operations were computed using SHA3-256. Digital signatures were
calculated over a SHA1 hash representation of the data to be signed’|

Figure [3.6la summarizes the camera runtime results. Our proposed protocol
works reasonably well on low-power devices. A low-resolution image is cap-
tured and processed in less than 13 seconds (3.5 s for taking the photo, 1.7 s for
generating a platform attestation and 7 s for executing Protocol 1). Less than
45 seconds are needed for a high resolution image (35s for taking the photo,
1.7 s for the platform attestation and 7 s for Protocol 1). The tested camera mod-
ule did not support such high resolution capture, however, we estimated that it
would take about 35 seconds to download a pre-compressed JPEG image of that
size with the module’s maximum supported transfer-rate of 115,200 bps. The
runtime overhead for both generating a platform attestation and appending an
image to a secure data structure is almost constant irrespective of the image size.

°TPM provides support only for signing SHA1 hashes.
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Figure 3.6. Left: Implementation runtime overhead (in s). Measurements were
conducted a with low-resolution images (640 x 480 pixels) and high-resolution
images (4096 x 3072 pixels). Right: Image storage verification times (in s)
using: one day worth of images, one week of images and one month of images.

In additional tests, we benchmarked the verification times of our system. We
ran the benchmarks using high-resolution images (with 4096 x 3072 pixels) on
a machine with a 2.3 GHz quad-core processor. Specifically, we evaluated only
the storage protocol for securely linking captured images (Protocol 1) since the
runtime of the other parts, i.e., verifying image authenticity and verifying the
platform attestation is negligible (i.e., < 3 seconds overall for the longest image
chain that we tested) compared to the link protocol. We ran the verification pro-
cedure from section and observed how long it took to verify file-chains of
different lengths (see Figure [3.6]b). We could verify a stream of 2,880 images
(one day worth of images captured in 30 second intervals) in about 22 seconds;
20,000 images (approx. one week of images) in about 150 seconds; and 86,000
images (approx. one month) in about 670 seconds.

3.5 Limitations

Using a TPM-based camera as a root of trust has its own security caveats, as
discussed in [[156]]. With physical access to the camera, an attacker may still
modify its picture-taking sensor, thus feeding the camera’s software with already
modified image data (i.e., threat T1). Possible remedies include modifying the
sensor to provide encrypted image data to the rest of the camera components
(proposed also by [[156]]), or authenticating the sensor using pattern noise data
that may serve as a unique identifier [157]].
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All this would still be unable to prevent staging attacks. Consider the follow-
ing examples of such situations:

* Recording in a Malicious Way: When obtaining images shared from other
malicious users, one cannot say whether they were facing their cameras in
a particular way in order to hide some information that otherwise would
have been visible in the captured images. Moreover, such malicious users
may try to highlight some other information in order to reinforce a partic-
ular memory.

* Re-enact a Fictitious Experience: A group of malicious users could enact
a fake version of an experience, more or less recording a “movie” with
actors (which could include, e.g., a look-alike actor to fake the presence of
the victim in the recordings). Then, they could share those memories with
a victim user and claim that those are the memories of a real experience.

The proposed camera is addressing the risk of memory manipulation by en-
suring the integrity and provenance of captured images that will potentially be
reviewed by users. However, in no way it intends to provide the ultimate proof
whether an image that a user may review is a fake memory cue or not. In prac-
tice, this issue cannot be solved with only a technical solution, it needs much
more than that. Thus, even though one can verify the integrity and provenance
of images captured from a trusted camera, in the above examples this may not
be enough to ascertain that the images one reviews are not part of a targeted
memory manipulation attack.

The above examples are not that easy to be successfully realized in practice.
For one thing, they would produce conflicting evidence: the difference between
the shared image stream and the personal one, captured from the victim’s cam-
era, could be enough to alert the victim for suspicious data; or during the time
that the fictitious experience was happening, the victim user could remember be-
ing to a different location. Nevertheless, such examples show what the proposed
camera cannot directly protect against. Instead, in this thesis we target a use
case that can more likely happen in practice: deliberately modifying captured
experience memory cues.

3.6 Chapter Summary

Memory augmentation systems allow us to improve the recollection of episodic
memories, and hence bring obvious benefits. However, fueled by their ability
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to also attenuate our memories, any such technology also entails great risks, as
it makes our memories vulnerable to targeted manipulation attacks. In this chap-
ter we investigated how such attacks can happen in practice, and consequently
proposed a systematic approach to address some of those attacks.

An attacker can compromise our system in several ways. They can hack our
capturing gear, for instance by means of malware injection through a (regular)
firmware update, and by extension cause the camera to produce modified images.
Such intentionally modified images would then be considered as valid represen-
tation of past situations. Furthermore, an attacker can break into our digital
memory repositories, which yields several attack vectors. An attacker can thus
change our memories by inserting fictitious experience data, modifying existing
ones, or silently deleting recorded experiences.

In this chapter we presented a secure wearable camera based on a trusted
computing platform (TPM) which addresses these attacks (RQ1). Unlike other
similar trusted cameras which ensure the credibility and integrity of captured
photographs, our solution additionally addresses two of the most important mem-
ory manipulation attacks.

Firstly, the camera runs a custom protocol which joins captured images in a
secure data structure, thus thwarting surreptitious data deletion attempts from
compromised memory repositories. We showed that the proposed scheme can
efficiently run in low-power embedded cameras: a high-resolution image (4096
x 3072 pixels) is captured and added to a secure chain in less than 45 seconds.
We further showed that verifying the integrity of a chain of images captured in a
day can be done in about 22 seconds, or about 670 seconds for verifying longer
chains of approximately one month worth of images.

Secondly, the proposed camera allows the seamless exchanging of captured
images with other co-located users. The benefits of sharing memories and the de-
scription of such secure sharing is the topic of the next chapter, which will present
an approach that enables secure image sharing, and hence, prevents malicious
others from manipulating our memories by sharing fabricated images.
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Chapter 4

Secure Memory Sharing

In Chapter [3|we presented an approach to securely capture and store experience
data, which can be later used to construct cues for reinforcing one’s own mem-
ories. In this chapter we go beyond and investigate the possibility of securely
sharing captured experiences with others.

It is perhaps not surprising that the principle objective of a memory augmen-
tation system is to support and augment one’s own memories. However, driven
by today’s “social networking culture” where users continuously generate and
share information with others, O’Hara et al. [158]] arguee that lifelogging is not
only capturing data about oneself for one’s own purposes. Seen this way, cap-
tured memory cues could be shared with others in a same way as we already
share an abundance of information in social network sites. This unfolds pivotal
benefits in the recollection of past memories [[9]]. For example, it allows users
to reminisce together about a past experience, or show one who was not there
what they missed.

Yet another benefit from sharing memories with others is the possibility to
enhance one’s own memory cues by offering a richer capture perspective for a
given experience. The motivation for this stems from a technical limitation of
wearable cameras. We previously found [[11] that, regardless where you wear
your camera, their images may not lend themselves well as memory cues [52]].
For example, a camera worn on the neck or chest will often have its lenses cov-
ered by clothes or hair, might capture user’s hands and arms, or simply face the
wrong way. Even when unobstructed, the first-person-view typically shows only
a small part of the scene, potentially never capturing a person sitting right next
to the person recording. In a similar vein, cameras embedded in glasses may pro-
duce distorted and out of focus images due to users’ frequent head movements.

77
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In light of this, we acknowledge two complementary data sources that can
enhance the overall quality of memory cues. Firstly, the views from the wearable
cameras of other co-located users (i.e., people that are experiencing a particu-
lar moment together) may offer a richer view than one’s own. For instance, our
first-person camera will not show who is next to us, while the view captured
from the person opposite from us would. Secondly, the view of co-located in-
frastructure cameras allows them to capture comprehensive scenes, completely
unobstructed. Furthermore, as Clinch et al. point it out [[159]], environmental
cameras do not have the same size restrictions as wearable cameras, hence their
bigger and heavier sensors can provide higher-quality pictures than wearables.
Consequently, we will now look into this type of sharing among co-located peers,
with the ultimate goal of enhancing the quality of produced memory cues. We
refer to such sharing as “implicit memory sharing”.

Sharing memory cues with others raises significant privacy and security im-
plications. Captured experience data will inevitably feature sensitive and per-
sonal information. For instance, cameras might record users while they work in
front of computer screens, or even continue to record images when one enters
a bathroom.

Receiving experience data that were shared from others opens up additional
threats that go beyond privacy risks. Co-located others could share fabricated
images, allegedly featuring an accurate reflection of the shared experience. As
we previously saw in Chapter 3], our episodic memories can be easily affected by
falsified image cues.

In this chapter, we set out with the goal of enabling an implicit but secure
sharing of memory cues among peers that are part of the same experience. There-
fore, starting from the trusted wearable camera from Chapter |3 we propose a
system that will implicitly and securely exchange images among co-located peers,
as well as a protocol to verify any such shared but modified images obtained from
others. Continuing from RQ1 defined in section[1.2] in this chapter we addresses
the following research questions:

* RQ2: How can we seamlessly and securely share captured experiences
with co-located others, avoiding the risk of accidental oversharing, i.e., shar-
ing with the wrong audience, or sharing parts of a capture that we would
otherwise have kept to ourselves?

* RQ3: How can we verify the integrity and provenance of experience data
which we obtain from others to detect the sharing of falsified experience
captures?
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Parts of this chapter are based on the following publications:

4.1

* A. Bexheti, M. Langheinrich, and S. Clinch, “Secure Personal Memory-
Sharing with Co-located People and Places,” in Proceedings of the 6th
International Conference on the Internet of Things, ser. [oT’16. New
York, NY, USA: ACM, 2016, pp. 73-81

* A. Bexheti, M. Langheinrich, I. Elhart, and N. Davies, “Securely Storing
and Sharing Memory Cues in Memory Augmentation Systems: A Prac-
tical Approach,” in Proceedings of the 17th Annual IEEE International
Conference on Pervasive Computing and Communications (PerCom’19),
2019, p. 10

Threat Model and Requirements

Sharing images, also quite private photographs, is a common activity in today’s
social media platforms. However, having a system that does such sharing au-
tomatically and implicitly (i.e., without active user involvement) can radically
change the nature and scale of disclosed information. Continuing from our list
of threats started on page[57] listing [T1|and [T2] we foresee the following addi-
tional threats which are also depicted in Figure [4.1}

T3:

T4:

Memory Oversharing.

When implicitly exchanging memories among co-located users, there are
two key risks of accidental data oversharing. Firstly, one can share their
memories with the wrong audience (e.g., sharing meeting data with a
person sitting next door to the meeting room). Secondly, one can risk shar-
ing data of the wrong experience (e.g., mistakenly disseminating data of
a meeting from two weeks ago), or sharing more data than one intends
to (e.g, continuing to share data even after a meeting is over).

The envisioned attacker is will try to access others’ data by passively sniff-
ing the traffic of generated metadata that allows co-located users to legit-
imately exchange data with each other, actively claim co-location, or im-
personate a peer.

Receiving fake memories.
Maybe obviously, during an automated data sharing practice, one will of-
ten exchange experience data with co-located others who one knows well



80

Secure Memory Sharing

© icons by The Noun Project et al.

() Co-located peers exchange@ (@) @

________________________ their experience data T
Figure 4.1. A visualization of envisioned threats when seamlessly exchanging
data among co-located peers and infrastructure cameras. Malicious peers or
infrastructure providers can intentionally share modified images of a joint expe-
rience with the victim. Other adversaries that are not part of the event can also
try to passively sniff the traffic in order to get access to the exchanged data.

and trusts, such as friends and family. However, there will be certain sit-
uations when one will share, but also will receive, experience data from
others that one does not necessarily know well, and hence may have less
trust on them or no trust at all. In this context, a second peril when ex-
changing memories with strangers is that dishonest data sharers (either
peers with wearable sensors or an infrastructure provider sharing data from
a fixed sensor) can behave maliciously by providing intentionally altered
data. As a consequence, in addition to the previously described risks of
human memory manipulation in Section (i.e., [T1} hacking one’s cam-
era in order to deliver already modified images; and [T2} compromising
the integrity of one’s digital memory repository), this opens the door to yet
another way of manipulating one’s overall memories. This form of attack
can be carried out by a dishonest user or infrastructure service provider
that shares falsified images with their co-located peers.

T5: Tracking users.

Tracking is a prominent risk in our envisioned system for memory shar-
ing. An attacker could simply listen passively for the generated network
information between peers and thereby track their location. Attack vector
space is increased if we assume that an attacker can also get access to im-
age download requests from users’ repositories. In this case the attacker
could infer additional information, such as who was with whom (knowing
that usually sharing happens between co-located peers).
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Security Requirements

Starting from such threats, we draw up a set of requirements for the seamless
but secure exchange of experience data with co-located others:

R4: Secure experience data exchange between co-located entities.
Recorded data should be solely exchanged with people that are in close
physical proximity with each other. When possible, data will also be sourced
from a nearby infrastructure camera. People that simply pass by should not
receive any part of the shared data. Moreover, any such sharing should be
fine grained and account only for the data captured during the period of
co-location and interaction. For instance, sharing with a person should
immediately stop should that person leave the event and walk away.

R5: Support for verifiable cue modifications.

From the viewpoint of recipients, it is pivotal to have a way to verify the in-
tegrity and provenance of obtained data, i.e., whether the received image
accurately reflects the experience and has not been modified in the mean-
while. However, as it may be perfectly legitimate to share only a modified
version of one’s captured image, e.g., to block a certain region of the image
showing sensitive information, the system should allow recipients to reli-
ably identify the modified parts of the image, obviously without revealing
the hidden information. Recipients can then decide whether they should
keep or discard the obtained image.

R6: Prevent user tracking.

Beyond the previous requirements, it should be infeasible to infer anything
about the users (e.g., their identity or their traversed path) or the dissemi-
nated data by simply observing the generated network traffic. This can be
achieved, for instance, adding “noise” to the generated traffic, or dynami-
cally changing the packet contents and transmitting schedule, and thereby
reducing chances of making any connection between the different packets
and users.

4.2 Related Work

The work described in this chapter is grounded in the following fields: (i) systems
for proximity detection, and (ii) zero-knowledge protocols for proving knowl-
edge of a particular piece of information without revealing it.
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Proximity Detection Systems

Detecting the presence of nearby individuals is a popular feature of location-
based services (LSB) [[160, 161}, [162]]. To achieve this, users’ mobile devices
need to share their GPS location traces with centralized location servers. Then,
whenever two users move to each others’ vicinity, the server will, for instance,
send them notification messages. However, GPS-based approaches do not work
indoors and they are not accurate enough for close proximity estimation.

Other approaches rely on WiFi signals to estimate a device’s position [[163]
164]]. In these systems, mobile devices can compute their position by scanning for
nearby WiFi access points and then cross-referencing the access point positions
in pre-computed databases. Unlike these approaches, Krum and Hinckley [[165/]
propose a proximity detection system that does not compute a device’s absolute
position, allowing it to work “out of box” without any a priori configuration and
setup. Their NearMe system compares clients’ WiFi signatures (e.g., access point
names and signal strengths) to compute devices proximity to one another. The
detection range is lower-bounded to the coverage area of one access point, thus,
resulting in a minimum range of 30-100 meters. In the same vein, Li et al. [166]]
present a similar approach but using cellular tower readings instead.

Our approach is closely related to the class of peer-to-peer proximity pro-
tocols based on low-range communication technologies such as Bluetooth and
RFID [[167, 168, 169]]. For example, Liu et al. [170]] present a fine grained prox-
imity detection system that can provide adequate accuracy for inferring face-to-
face user proximity. In addition to Bluetooth RSSI values, their solution also
incorporates readings from light-sensors for greater accuracy. Findings from this
work show that Bluetooth offers an accurate and power-efficient mechanism for
user proximity estimation.

Cattuto et al. [[171]] have investigated the use of RFID technology for measur-
ing device proximity. The authors have designed conference-like badges equipped
with RFID tags. Such badges exchange low-power radio packets in order to
sense the neighbourhood and proximity with each other. Since these badges
are equipped with a single RFID radio, they alternate between transmitting and
scanning cycles, both for advertising one’s presence to others and listening for
presence information sent by others. Lastly, the designed badges can reliable
exchange radio packets within 1-1.5 m of one another.

Many of the aforementioned proximity detection systems require one to re-
veal their location to other entities. However, sharing one’s location can greatly
endanger users’ privacy. As a result, prior work has also investigated the pos-
sibilities of designing privacy-aware proximity detection systems. For instance,
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Zhong et al. [[172]] present a system that enables a user to learn information
about another person’s location only if the two are actually nearby (i.e., if their
distance is below a specified threshold). Depending on the risk appetite, authors
have designed three protocols to solve this problem. Their first protocol, “Louis”,
relies on a trusted third-party entity that does not learn any location information.
“Lester”, their second protocol, works without any third-party, but it allows one,
with a bit of extra effort, to obtain information on a user’s location even when the
two of them are not nearby. Authors’ third protocol, “Pierre”, corrects the limita-
tion of Lester on the cost of not providing a precise distance measure to nearby
friends. In another work, Siknys et al. [[173]] introduce the concept of vicinity re-
gions, which compared to the standard circular shape regions employed by other
works, can be of any shape. Their system is modeled using the client-server ap-
proach, and it employs spatial clocking and encryption to ensure location-privacy.
In yet another work, Mascetti et al. [[I74] provide a rigorous and formal defi-
nition of location privacy preferences and adversary model. One particular fea-
ture of their model is that it considers an a priori probabilistic knowledge of a
user’s location that an adversary can have (e.g., a user is likely to be located
in her hometown and not in another one). Furthermore, authors present two
privacy-aware proximity detection protocols, which they formally analyze using
the proposed adversary model and prove that location privacy is guaranteed.

Finally, many more interesting examples of co-presence detection systems can
be found in the survey work by Conti and Lal [[175]].

Protocols for Verifying Shared but Modified Images

Designing protocols for the verification of modified images is an active field of
research. In recent work, Naveh and Tromer propose PhotoProof [[156]], a pro-
tocol for verifying modifications performed on an original image. Their solution
is based on digital signatures and the proof-carrying-data (PCD) concept: a cryp-
tographic primitive for secure execution of distributed computation [[176]. After
capturing a signed image with a trusted camera, a user can modify the image
according to a set of permissible transformations, and then compute an integrity
proof following the PCD algorithm. Using these proofs, anyone can then verify if
the performed transformations is permissible or not. The verification procedure
takes less than half a second, however, generating a PCD proof for a small image
of 128 x 128 pixels takes about 300 seconds on a powerfuﬂ machine.

'PhotoProof [[156]] used a machine with a quad-core CPU at 3.4 GHz and with 32 GB of RAM
for their proof creation task.
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Chabanne et al. [[177] propose a similar scheme to verify redacted (obfus-
cated) pixels of scanned documents. Their solution relies on the extracted sig-
nature scheme [[178]], which allows one to remove parts of a previously signed
document and re-sign it without the knowledge of the signer’s secret key. The
extracted signature can be still verified with the signer’s public key and with-
out having the removed parts from the original document. While this solution
is more efficient than PhotoProof, partially because it supports only one type
of image modification (i.e., pixel obfuscation), it is still too complex for low-
power wearable cameras. Generating a redaction proof of a gray-scale image
with 1200 x 800 pixels takes 124.5 seconds and 39.7 seconds on a single-core
and octa-core system, respectively?}

We propose a less flexible but more efficient scheme that uses cryptographic
hash functions. Similar to the work of Chabanne et al. [[177]], our protocol
only supports the simple “blinding” (i.e., blocking) of certain parts of the im-
age, rather than operations that apply on the whole image (e.g., cropping, color
adjustment). Both our own experience, as well as the survey paper from Bettini
and Riboni [[18], have shown that area blinding is crucial for addressing privacy
issues in pervasive systems that capture and store visual data streams.

4.3 A Systematic Approach for Memory Sharing

In this section we investigate a technique for using our trusted camera for the
seamless exchange of self-captured images with co-located others, and for acquir-
ing data sourced from any co-located infrastructure devices. We start by eliciting
initial system requirements, and then describe our system for sharing personal
lifelog images with others, with a view to preserving the privacy of all involved
users. With a focus on the technical side of this work we report initial security
analysis results and performance measurements.

4.3.1 System Requirements

We delineate the system requirements through a scenario involving various daily
activities. For each activity, we describe the envisioned data sharing practice,
highlighting how captured data should be shared and with whom.

2Chabanne et al. [177] used two different computers for generating redaction proofs: 1) one
computer with a 3.6 GHz single-core CPU and with 4 GB of RAM; and 2) a second computer with
a 2.9 GHz octa-core CPU and with 16 GB of RAM.
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* Morning walk to the office. We want access to any fixed infrastructure
camera capturing our walk, yet must also prevent their owners from easily
tracking our location.

* Encounter a work colleague. While entering our department building,
we meet a colleague in the hallway for a chat. We want access to our
colleague’s data captured during the encounter, and data from any hallway
cameras that captured the meeting.

* Attend a work meeting. After lunch we attend a work meeting. During
the meeting, we want in-room sensors to provide access to high-quality
captured data (camera, microphone, board contents, etc.), as well as cap-
tured data from co-located colleagues. People who simply pass in front of
the meeting room should not have access to this data.

» After the meeting, chat with a colleague. While packing our bag in the
meeting room, we have a quick chat with a colleague. Albeit high-quality
capture of the meeting room is stopped, we still want to capture data from
our colleague’s wearable camera. Colleagues who have already left the
room should not have access to this data.

* Verify integrity of some dubious images. Later on, our system informs
us that we have obtained some modified images from our colleagues at the
meeting. After a quick inspection, we see that one of them has blurred all
image regions that showed laptop screen. We decide to keep those images
since their overall integrity is intact and they do not pose any manipulation
risk of the memories of the event.

4.3.2 System Description

This section describes the full life cycle of a shared capture session — from peer
discovery to data exchange and access control. Table itemizes the identi-
fiers used in this section, while Figure [4.2| gives an overview of data flows. In a
nutshell, a user’s camera advertises its willingness to both share its self-captured
data and to acquire data of other co-located peer devicef]by broadcasting period-
ically updated access tokens and a periodically changing public key (see section
‘Advertise Sharing Availability Using Memory Beacons|’). Tokens represent a way

3peer devices may include both the personal capture cameras of other users and fixed capture
installations, e.g., room cameras.



86 Secure Memory Sharing
Bob John
Capture Image.si | 0| l(((-))) Pubg,p j + tokengop 1 Pubonn j + tokenonn ¢1 (((.))) @ C—apture ‘mages

el = 1 Fetch John’s data URL > <€ Upload John’s data URL | ; 2
[ 2 sl e
§ g https://fixed_address/token on, 1 u Enc Pubsoélj-nttps://john‘s_repolhashK(tokenJO,,,, ) é E
s | = o]«
[ ‘3 € Receive an encrypted URL / \ + 18
o| = [reeer o] | @
gl 3 Enc [https://john’s_repo/hashg(token onn ¢1] - £ g
E|Sg - ol =
g & URL Repository H g
o o
3|V v E
s —
e Download John’s data using the decrypted URL —

S— Dec Privaos !(1httpszlljohn 's_repo/hashg(token jon, 1)) —

John’s Memory Repository

© icons by The Noun Project et al.

Bob’s Memory Repository

Figure 4.2. Data flow for capturing and sharing lifelog data between two co-
located people. Bob’s repository downloads John’s shared capture data, using
decrypted URLs available from a URL repository.

of letting others know where to access data one is willing to share. Instead of
sharing captured data directly, only a reference (i.e., the token) is shared, which
not only improves the security of the scheme but also lowers bandwidth require-
ments. Both tokens and public keys are sent out only when the device senses the
presence of a co-located peer in order to prevent a malicious person from track-
ing its location by passively sniffing announced data (see section ‘{Smart Memory|
IBeaconing Based on Improved Peer Detection|” for details). When the camera of
another peer observes such announcements, it will trigger a key-exchange with
the peer (see section ‘Key Exchange Protocol”). To perform such a P2P key ex-
change in a multi-user environment, all peers broadcast both access tokens and
their (periodically changing) public keys. A user’s camera grants access to its
captured data that it is willing to share only to co-located peers. It does so by
encrypting both the shared data, as well as the corresponding repository access
information, with all peers’ public keys (using “broadcast encryption”). As a con-
sequence, only the peers who possess the valid private key will be able to both
get and decrypt the shared data (see section ‘Access Control to Shared Data’).
We will now describe each of these steps in more detail.

Advertise Sharing Availability Using Memory Beacons

A device advertises its capability and willingness to let others access its captured
data by simply announcing an online location (URL) of where the data will even-
tually be located (real-time upload of captured data is not a key requirement).
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Variable Description

“r”
1

Pub,; / Priv;; Temporary session key-pair; “i” identifies device,

“j” identifies session.

K} ash Key for hashing tokens to storage location.

token;, Access token, where “i” is the device that issued
it and “t” is the time period it was issued in.

tdwell Minimum dwell time before adding or removing

a peer Pub;; key to the list of registered peers.

Table 4.1. Variables used in the system for sharing memory cues.

This also means that a device does not exchange the actual data itself over the
wireless channel, which minimizes both bandwidth and energy consumption.

The actual announcements (which we call memory beacons) are sent using
the Bluetooth Low Energy (BLE) short-range wireless protocol. The advertised
online location is not fixed, but is based on an implied fixed system-wide base
URL (not sent). This approach has several benefits. First, it has low bandwidth
requirements as we can only broadcast the actual image identifier, i.e., the token
in this case, and omit the other parts of a URL link as specified by the URL proto-
col. Second, given the already small BLE packet size of 25 bytes (see Figure
on page for the actual BLE data package), it allows us to use all this space
for the token. This improves the security of the scheme as it lowers the chances
of an attacker (who might already know the fixed URL of a user’s repository) to
guess a valid token and subsequently use it to obtain data from the user’s repos-
itory. Third, this approach gives more flexibility to users in choosing the service
provider for their memory repository. Switching repositories requires one only
to update the URL address of the new repository in the URL resolver. All issued
tokens would then resolve correctly to the updated repository address. Simi-
lar such schemes are already in use. For instance, the Digital Object Identifier
(DOI) scheme usually includes a DOI as a URL which uses a resolver through an
HTTP proxy at a fixed base URL (http://dx.doi.org). Finally, we note that this
approach may have some privacy implications similar to those in the case of the
Domain Name System (DNS) [[179]. By inspecting token queries going to the
URL resolver one can infer, e.g., who was co-located with whom.

The beacon therefore only provides a continuously changing access token,
under which peers can find captured data for the short period over which this to-
ken was used. Our current prototype updates tokens every few seconds, though
longer or shorter intervals may be equally possible. Access tokens are simply
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large numbers — enough so that accidental overlap of tokens becomes unlikely.
Due to the limited size available in BLE announcements (see section ‘{Implemen]
tation]” below) we use 200 bits in our prototype, which does not scale well in
the long ter but is probably fine for immediate deployments. With a view
towards allowing recipients to verify the integrity of obtained images, access to-
kens are computed as a function of the actual image content that the camera just
captured. This process is part of our proposed protocol for verifying modifica-
tions of shared images and is described in more detail in the next section (i.e.,
Section [4.4). Peers use captured tokens to find the shared data at the known
system-wide URL. In the following we denote tokens as token;,, where “i” is the
issuing device and “t” is the time period for which the token was issued. Their
short lifetime means that as soon as a peer leaves the range of the device’s bea-
cons, they are unable to access any of the data captured at a later time, as this
data will use different access tokens.

While tokens thus provide some access control, as clients need the token to
know the address, one might accidentally “stumble” upon uploaded data sim-
ply by trying arbitrary tokens. To prevent this, peers also need an access key to
decrypt the data present at the token address. As part of the announcements,
devices thus also periodically send out a public key Pub;;, where “i” again iden-
tifies the device and “j” identifies a “sharing session”. Whenever a device stops
sharing captured data, i.e., when all peers leave, it starts a new session upon
first discovering a new peer. Hence, over the course of a day, several public keys
will be generated and used. In our prototype, every 10" announcement carries
a public key instead of an access token. We describe the use of these public keys

to access shared data in section 9Access Control to Shared Datal’.

({344
1

Smart Memory Beaconing Based on Improved Peer Detection

Broadcasting a continuous stream of tokens could potentially allow a passive at-
tacker to track a device. While tokens change frequently, public keys (which are
interleaved with tokens) may not change that often. With few devices around,
there may simply not be enough “noise” for a device to “blend-in” with oth-
ers. Infrastructure sensors on the other hand are basically peers who do not
move. No privacy issues prevent them from simply always broadcasting bea-
con announcements.

4One billion people, each sending 86'400 individual tokens per day (one new token per sec-
ond), would create 8.6410'% &~ 10'* tokens per day. If we want these to be around for some 3
years (1000 days), we have 107 tokens “in use” at any time. Given the birthday paradox, this
would leave a 10'7/2%0%/2 x10'7/10%° ~ 1073 chance of overlap.
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Idle Mode

No social context detected
Social context detected

Sharing Mode
Stream token
and own pubkey

New Pubkey seen again

Known Pubkey still not seen

Remove Peer

Dwell time = 2 Pubkey Rounds Add Peer
Figure 4.3. System state diagram showing the transition between Idle Mode and
Sharing Mode and the peer presence detection, using an example dwell time
t gwenr Of two rounds.

For this reason, users’ devices periodically stop beaconing, moving from shar-
ing mode into an idle mode. Mode transition is triggered by the the absence of
other proximate peers; the device will switch from idle mode to sharing mode if
it detects the presence of a peer in range, and vice versa (see Figure [4.3).

Presence detection cannot therefore rely on the reception of tokens from
other peers, as these may be in idle mode. Instead, we envision the use of a
social detector sensor — a sensor designed to detect social engagement with other
peers. Prior works propose different approaches for designing such a sensor. For
example, Nakkura et al. [[180]] present an audio based sensor which can detect if
a device owner is engaged in conversation. In another work Xu et al. use
a similar audio-based approach to count the number of different speakers that
participate in an experience. In yet another work, Fathi et al. [[84]] use image
recognition to detect faces in captured photographs — a face lingering in front
of the camera may well indicate social interaction. Note that, however, in this
thesis we focus only on the actual data sharing process using a proximity detec-
tion based on BLE distance threshold. However, the design of a social presence
detection sensor as described above is out of the scope of this thesis.
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Key Exchange Protocol

Upon encountering a memory beacon from another device, or upon detecting
social engagement, a device will trigger beacon announcement. As part of this
process, it will run a “broadcast-based” key exchange protocol with other co-
located devices to exchange public keys for the session (Pub;;). The exchange
is broadcast-based in the sense that there is no direct communication or a hand-
shake between the devices whatsoever — all data is sent via broadcast. Once
a peer’s public key is received, a device subsequently encrypts uploaded data
using that public key. If multiple peers are detected, a broadcast encryption
scheme [[182]] is used to encrypt the data using each peer’s public key (see sec-
tion ‘9Access Control to Shared Data[” below).

In order to prevent passers-by from receiving a set of access tokens “by acci-
dent” and thus having access to captured data, we enforce a dwell time (tg,.;;)
during which the peer’s public key must be seen repeatedly. Only if a peer has
been present for long enough, will we retroactively mark all captured data star-
ing from its first detection as being also shared with this particular peer. As long
as the peer stays in range (i.e., as long as its public key is periodically received),
the device will keep the peer’s Pub;; key within the list of authorized clients that
can access its captured data (see Figure [4.3)).

Access Control to Shared Data

A device controls access to its captured data using both the access tokens sent
during “sharing mode”, and the public keys received from other peers. Co-located
peers can query that device’s database at a known base address and exchange
tokens they have collected for actual data:

—> https: //fixed _address/token;,

We previously discussed the benefits of having a fixed URL resolver. For one
thing, it facilitate the use of one’s own repository to host actual captured data,
the known base address does not directly provide data but instead offers a “redi-
rect” to the data host (similarly to today’s digital object identifier, dx.doi.org).
In order to prevent trivial tracking through resolution of collected tokens (see
threat [T5]in page [80), the URL redirect is encrypted with the public keys of all
authorized peers:

«— E(https : //user_repo/data_address)
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A peer accessing the token URL thus receives an encrypted value that, when
decrypted using the peer’s private session key at the time (which the peer will
need to keep track of), will result in another URL for access to the actual data.

To achieve a multi-user encryption setup, we use broadcast encryption [182]]:
instead of re-encrypting the data URL for each peer, we use a (random) symmetric
key to encrypt the URL with a symmetric cipher, and then encrypt that symmetric
key with each recipients Pub;; key. While URLs are not long, encrypting only a
128-bit (16 byte) symmetric key instead of a 30-40 byte URL is clearly more eco-
nomical, especially as this will need to be performed multiple times (once for
each peer).

Given the above, captured data can then be made available at a repository
of a user’s choice. Note that the actual shared data (e.g., images) does not need
to be encrypted, as only those who both know the token token;, and have had
their session public key Pub;; captured by the device (and subsequently used
to encrypt the used symmetric key) will be able to find URLs of shared images.
However, if desired, the same broadcast encryption scheme can of course be
applied to the shared data (e.g., to prevent accidental disclosure to an attacker
guessing the URL) [[183]].

In order to come up with the final URL on the user’s repository, the user can
simply use a keyed hash, together with a long-term secret key K; ., to convert
each access token into a storage URL on their own repository. A non-keyed hash
function would not be sufficient, as it would allow an attacker who knows the
base address of the user’s repository (e.g., from a previous peer exchange) to
simply “fish” for images using only captured access tokens.

A device can revoke access to (unretrieved) data at any time. To invalidate
access for a peer, the device simply removes the public key Pub;; of the peer
from the set of authorized devices and re-runs the broadcast encryption scheme
to re-encrypt URLs with a new key. This, of course, only makes sense if the peer
has not already downloaded the shared data.

4.4 Verifying Shared but Modified Image Cues

As we previously argued, being able to share captured experiences with co-
located peers can yield tangible benefits for memory cue creation. For a recipient
of such shared images it is thus crucial to have some guarantee that the image
has not been maliciously (i.e., invisibly) altered.
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Variable  Description

K Tile size for the image splitting procedure.

T, Collection of tile fingerprints for image I.

salt, Random number for computing tile fingerprints.
T, Hash-based fingerprint of T;.

SK,up/priv  Derived from SRK, used to sign 7.

o Signature over ;.

Rurr TPM-signed platform attestation report.

pa Sharing certificate for image I that encodes

Ty,salt;, 0., and Rypr.

Table 4.2. Variables used in the protocol for verifying shared images.

While it is trivial to verify that the image has not been altered (using the
secure signature of the peer’s camera, which the receiving user can verify), there
are perfectly legitimate reasons for a peer to share only a modified version of
their captured image. Oftentimes, our own captured images will contain pri-
vate information (e.g., a document, a phone or laptop screen) that should not be
shared with others.

The goal is hence to allow an image recipient to reliably identify all modified
parts of an image. The identification of the modified and unmodified parts should
obviously be possible without revealing the original, unmodified image — the
verifier should only have access to the modified image.

To this end, we will present two protocol variants for addressing this problem.
The first variant is based on a practical scheme that allows only one type of image
modification. It can be efficiently implemented on today’s low-power wearable
cameras. The second variant is a more general scheme that supports more im-
age modification operations. However, due to the complexity of the underlying
cryptographic primitive, it is not yet possible to realize this scheme in practice.

4.4.1 Variant 1: A Practical Protocol Based on Hash Schemes

Our proposed protocol focuses only on supporting the simple “blinding” (i.e.,
blocking or blurring) of certain parts of the image, rather than operations that
apply to the whole image (e.g., cropping, color adjustment). Both our own ex-
perience, as well as other’s prior work (e.g., [79} [184]]), has shown that area
blinding is crucial for addressing privacy issues in lifelogging imagery.
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The protocol builds on the system we reported in the previous section
which enabled the seamless sharing of lifelogs between co-located peers. One
element of the sharing protocol we developed for this are tokens — numerical
identifiers that each user’s camera broadcasts in real-time (using a short-range
wireless technology), and which are frequently (e.g., every 5-10 seconds) up-
dated. All images taken by a camera are stared in a user’s repository under the
token that was active at the time. In this way, only those who received the tokens
are able to query the sharer’s memory repository later to retrieve the image.

While we previously did not specify exactly how tokens were computed, we
now introduce a new constraint about them: access tokens are computed as a
function of the actual image content that was just captured. This allows the
data sharer to not only regulate access to the image, but to also “commit” the
image’s content publicly without actually sharing the original image itself. By
furthermore signing tokens with the camera’s private-key, we can ensure image
authenticity. Finally tokens allow us to support the verification of modifications,
e.g., obfuscations, to a certain unmodified (but not shared) image. This process
is described below (see also Protocol 2 — variant 1 in Figure , while Table
itemizes the used identifiers.

To compute a token 7, for an image I, the image is first chunked into “tiles”
(step 1, Figure[4.4). A tile is defined as a rectangular area of arbitrary dimensions,
and is the smallest area that can be modified (see Figure for an overview).
For each tile we then compute a hashed fingerprint following the procedure as
in step 3 of Protocol 2: the tile’s content (i.e., the serialized set of its pixels) is
concatenated with its row and column indices (from the tile array), as well as
with an additional per-image salt, and then hashed using a secure hash function.

The fingerprints of all tiles are concatenated and hashed again to create the
final image token 7, (step 4), which is immediately announced to co-located
peers (step 5) through a short-range BLE broadcast (explained in Section 4.3)).

The set of tile fingerprints, a signature over the final token, the image salt,
and the signed platform attestation report R,,, obtained from the camera’s TPM
(step 6), are encoded in a sharing certificate %, (step 7). R,,, is generated using
token 7, as a nonce (see section for the certificate generation process).

Before making the image accessible from their repository at a later time,
the data sharer can modify it by obfuscating any tile that contains sensitive in-
formation (as shown in Figure [4.5). The final ¥, together with the captured
image are then uploaded to the user’s memory repository (step 8). Accessing the
data sharer’s repository at the token address 7, will then yield the modified im-
age I, the tile hash-set T, of the unmodified image I, the token’s signature o
the attestation report R,,,, and the corresponding salt; (steps 9, 10).

Tr?
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Protocol 2 Verifying Shared But Modified Images (Variant 1)
A. Generate and disseminate image sharing token
for each newly captured image I
1. tiles; =splitImage(I,«)
//split image into rectangular tiles of size x
2. T, =[] //empty set for storing tile fingerprints
3. for columns i in tiles;

for rows j in tiles;
@ hy; = H(lljll(t,,lIsalt,)
//where ¢(t, ) = p1lIpall. .. P> is a string serialization of
//all pixels that are in tile t, ;
(b) Tr.add(h; ;)

4. 1, =H(¢(T;)) //where ¢(T;) = hgpllhg1ll- . |[hy,

broadcastToken(t;) //broadcast 7, to co-located peers via BLE

//as explained before in Section

6. 0., =sign(t,SK)
R,rr = platformAttest(nonce = 7;)
// sign 7, and generate a fresh TPM signed camera platform attestation
//bound to image I

7. Xy ={Ty,salt;,0. ,Ry.} //encode everything in a sharing certificate ¥,

8. uploadData(l,%;) //upload %, to user’s memory repository and link it
//with image I

o

B. Verify authenticity and modifications of a shared image
for a token T, that was received from a co-located peer
9. I',%, « downloadImage(t,),
//obtain an image and its certificate using token 7,

10. {T;,salt;, 0, ,Rarr} < X // extract the certificate
11. if verif yPlatform(R,yy,nonce = 7;)

if verif y(o.,,7,,SK) && if H(¢(T})) == 1,
(a) Split the received image I’ and compute a tile set T, following
steps 1-3 from above
(b) for index i in range of length(T,)
if T/[i] # T,[i]
drawFrame(I’, T;[i]) //draw a red frame in I’ around
//the area of tile T,[i]

Figure 4.4. Pseudocode of the image verification protocol (variant 1).
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Figure 4.5. The process of “blinding” an image region before sharing. From left:
(1) the unmodified image I of size 900 x 650 pixels; (2) the image divided into
18 x 13 tiles, each made of 50 x 50 pixels; (3) blocking the tiles that contain
information which should not be disclosed; and (4) the final modified image I’
which is ready to be shared.

Following step 11 from Protocol 2, the data recipient can now verify which
tiles have seen modifications, and which tiles come from the original unmodified
image I. At the outset, she will verify that the token 7; used to access the im-
age is indeed a hash of the concatenated tile hash-set T,. Next, she will chunk
the received modified image I’ (using the same tile size used in the unmodified
image I) and then inspect each tile of I’ individually using the following pro-
cedure. For each tile tlf’j of I, she checks its integrity by computing the tile’s
hash h:',j = H(il| j||¢(t;’y)||salt1) and matching it with the value given in the
corresponding tile hash-set T,. Now, all modified tiles (i.e., where the hashes
do not match) can be marked, e.g., by drawing a red frame around them in the
displayed image I’, allowing the receiving user to easily verify which tiles have
been obfuscated (or otherwise modified). Finally, based on the verification re-
sults, recipients can draw their conclusion regarding the “trustworthiness” of the
obtained image, i.e., whether to accept or discard it as a memory cue.

4.4.2 Variant 2: A Protocol Based on Homomorphic Encryption

Beyond the operations of blocking or blurring certain regions of an image, some
peers may like to perform global image modifications, such as compressing their
raw images, adjusting image colors, or extensively retouching the image. Using
the previous protocol variant, such changes would result in all or very many tiles
being marked as “modified”, making it impossible for the recipient to truly un-
derstand the extend of the modifications: did the sender just adjust the colors,
or did they completely redraw the image (e.g., adding or removing objects)? All
of which constitutes a modification of the originally signed image that cannot be
addressed using the previous protocol variant.
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Therefore, to realize a scheme that would account for diverse image oper-
ations, we investigated the opportunities offered by homomorphic cryptosystems.
A homomorphic cryptosystem is a special kind of cryptosystem that allows sim-
ple algebraic operations (such as addition and multiplication) to be performed
on the data after encryption and obtaining the same result as if the algebraic
operations were performed on the data before encryption [[185]. For example,
given two messages x and y, a homomorphic encryption scheme E() fulfills the
following condition:

E(x®y)=E(x)®E(y), (4.1

where @ and ® represent some operations (such as addition, subtraction or mul-
tiplication) on the plaintext and ciphertext domains, respectively. Such systems
have been employed in various scenarios like secure electronic voting, private in-
formation retrieval systems [[186]], privacy protection schemes [[187], and sharing
secret data [[188]].

In the context of sharing memories, a homomorphic scheme would allow
the data recipient to verify any modifications (that the sharer claims to have
done on the original image as captured by her camera) by performing the same
modifications on the original but encrypted image, and hence without disclosing
the sensitive information contained in the sharer’s unmodified image. Since the
recipient peer will receive the modified image, she can check if the modifications
that the sharer performed on the original image match with the modifications
that she performs on the unmodified but encrypted image.

Requirements

At the outset, we delineate a set of requirements that we deem necessary for
realizing such a scheme:

* R1: Pixel-based encryption. In order to support image processing on the
encrypted domain, image encryption has to be performed on pixel level,
where each pixel will be encrypted separately. This requirements comes
from the fact that usually image processing approaches operate on pixels,
for example by changing pixels’ colors according to some parameters. Fur-
thermore, the pixel-wise encryption scheme should not come at the cost
of weakened security. In order to prevent an adversary from deducing any
information about a plaintext pixel from the ciphertext of another pixel,
identical pixels should map to different ciphertexts.
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* R2: Support for fully homomorphic encryption. Most image process-
ing techniques involve both the operations of addition and multiplication.
Hence, it is necessary that the underlying cryptosystem is fully homomor-
phic, i.e., supports both these operations on the ciphertext domain.

* R3: Ensure confidentiality of the original image. Verification of the
claimed modifications done on an image should be performed without re-
vealing the original unmodified image.

Protocol Description

Similarly as with previous protocol variant (section [4.4.1), this variant is also
tightly coupled with the system we reported previously (section [4.3). To meet
the aforementioned requirements, here we propose a different approach for com-
puting access tokens, which we describe below (see also Protocol 3 in Figure[4.6).
For a captured image I at time ¢,, the user’s camera, at time t,, will generate
a new token by encrypting the image using a homomorphic encryption scheme
prior to signing it with its internal key. Such encryption is performed on the
pixel level. Thus, given an image I with dimensions w and h, and a key material
composed of a long-term secret K and n = w x h randomly generated and distinct
keys r (one per pixel), each pixel will be encrypted sequentially as follows:

Cij <_E(pij)K7 rn)) (42)

where p;; is the pixel at the i-th row and j-th column and ¢;; is the computed
ciphertext. Produced ciphertexts are then packaged in a w x h ciphertexts array:

C; = {c;;}- (4.3)

The purpose of having a different random key r (alongside the long-term
key K) for each pixel is to ensure that identical pixels will always map to different
ciphertexts. For simplicity, let us combine the computations from both equations
and 4.3|in a single function ImgEnc, that given as input an image, a long-term
key and a list with the other random keys, it will sequentially encrypt each pixel
of the image and return an array with the computed ciphertexts:

C, «— ImgEnc(I,K,R). 4.4
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Protocol 3 Verifying Shared But Modified Images (Variant 2)

Data Sharer (Prover)

t, : take original image I
t; : Encrypt I and sign it
C,=ImgEnc(I,K,R)

0= Sign(CIJ Psecret)

t, : Modify I according to T
M=F(LT)
Encrypt M

Cy = ImgEnc(I,K,R)

M,Cy, T

Data Recipient (Verifier)

t; + 6 : obtain C, o

t; : obtain M, Cy, T

Verify the signature of C;
if Verify(o, P,,pc) continue:

Translate T to ciphertext domain
W «— Transform(T)

Apply ¥ to C;

CM — F/(CI,‘IJ)

Verify claimed processing
if G,; == C,; accept image M

Figure 4.6. Pseudocode of the image verification protocol (variant 2).

The array of ciphertexts C; represents the image’s token. Upon computing
such token, the sharer’s camera will first sign it with its internal private key and
then send the token and its signature to co-located peers (by means of broad-
cast). The token and its signature are then picked-up by the recipient’s camera

at t; + 6.

As previously stated, the choice of using a homomorphic cryptosystem is to allow
recipients to verify any transformations that might have been performed on the
obtained image. An image transformation is a process applied to its pixels.
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Thus, given an original image I, with dimensions w and h, a processing func-
tion F() can be seen as follows:

{p\lﬁpl\zap,\?n v ’p(WA*h)} — F(Pl:PZ:P:a; v ’p(w*h)’ Ay, 05, As; .. 0, ak): (45)

where p; and p; are the respective original and modified image pixels, and a; is a
transformation parameter. A simpler matrix-based notation yields the following:

M «— F(I,T), (4.6)

where I and M are the original and the modified images, respectively, and T is the
transformation kernel matrix. One can vary the contents of the kernel matrix in
order to perform different image transformations (e.g., pixel blurring, color ad-
justment, image scaling, etc.). Having already sent out the token of the original
image, the data sharer is free to apply any transformation to it before sharing the
actual image with others. She will then share the modified image M alongside
the transformation kernel matrix T in order to let the recipient know what sort
of manipulation was done on the original image I. Moreover, she will also share
an encrypted version of the modified image M (for reasons that are explained
below), computed as in equation 4.4} using the same long-term secret K and the
same set of random keys R.

Cy «— ImgEnc(M,K,R). “4.7)

At the end of the image sharing process, i.e., at time t,, the recipient peer
would have obtained the following information: (i) the unmodified but encrypted
image C,, (ii) the modified image M, (iii) its encrypted version Cy;, and (iv) the
kernel matrix T. At this point, in a two-steps process the recipient peer can check
if the claimed processing (as given by the kernel matrix T) is performed on the
original image I in order to get the modified image M. Since the peer does not
have the original unmodified image I, the verification has to be performed using
the encrypted image only.

In a first step, the recipient peer verifies the signature of the unmodified en-
crypted image C;. If it is valid, then the peer modifies C; using the provided
kernel matrix T. Thanks to the homomorphic encryption, the outcome of this
will be the modified image but in encrypted form.

Let F’() be a processing function that runs over encrypted image pixels. Note
that in order to perofm any processing on the encrypted domain it is necessary
to first transform the processing parameters a,; (from the kernel matrix T) into
the same domain space as that of the ciphertexts c;. The recipient peer can then
proceed with the transformation on the encrypted image C; as follows:

{CA]’ CAZJ CAB’ ceey C(M:\*h)} “— F/(Cl’ CZ’ C3, ey C(W*h)’wli ,(1[)25 'L/)g, DY ,ka), (4.8)
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where ¢; is the encrypted pixel of the unmodified image, ¢; is the modified en-
crypted pixel, and ), is the processing parameters transformed in the same do-
main as the ciphertexts. Simplifying this with matrix notation yields:

Cy «— F/(C,0). (4.9)

In a second step the data recipient can compare if the outcome of step 1
(i.e., modifying the encrypted original image) matches with the encryption of
the modified image that the data sharer sent her:

F'(ImgEnc(I,K,R),¥)=ImgEnc(F(I,T),K,R) =
F/(CIJ \Ij) = IngTlC(M, K: R) = (410)
g = Cy

If there is match, the recipient peer can be sure that only the claimed modifica-
tions were done on the original image as captured by the sharer’s camera. While
in principle the recipient peer could have encrypted the modified image M (since
she has it in clear) and match it with modifications she did on the encrypted im-
age (or even decrypt the modified encrypted image C,; and match it with M),
however, both these operations require that the sharer exchanges with her the
encryption key material (i.e., K and R). Obviously this would allow the recipient
to decrypt the unmodified original image C;, hence the choice for making the
sharer to instead share the encrypted modified image Cy; together with M.

Choosing the Underlying Homomorphic Encryption

Building and implementing this scheme in practice is a challenging task. One of
the challenges arises from the choice of the underlying homomorphic cryptosys-
tem to be used. Most of the existing homomorphic cryptosystems are partially
homomorphic, i.e., they support either the operation of addition or multiplication
but not both. For example, both RSA [[189]] and the El Gamal [[190] cryptosys-
tems support the operation of multiplication only, while the Paillier system [[191]]
supports the operation of addition only.

Gentry [[192]] was arguably the first to propose a fully homomorphic encryp-
tion scheme, i.e., a cryptosystem that supports both addition and multiplication
on ciphertexts. His scheme is based on ideal lattices: after fixing a ring R and
a basis B, for an ideal lattice I C R, it picks a public key B§k as well as a pri-
vate key Bf,k, which are the basis of some other ideal J, such that I +J = R.
Encryption of a plaintext p is computed as follows: ¢ «— p + I mod B‘J’k. In
decryption, p «— (¢ mod Bjk) mod B;. Gentry’s scheme encrypts a single bit
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at a time, and in theory it can be used to construct the aforementioned pixel-
wise image encryption from equation However, his scheme is too complex
(especially for a low-powered camera device) to be implemented in practice. Ac-
cording to Gentry’s implementation notes [[193[], even when choosing a very low
security parameter for the encryption function (i.e., n = 512) it takes about 30
seconds to encrypt a single bit (using a machine with a 64-bit CPU and with a
large memory).

In recent work [[194]], Yang et al. present a fully homomorphic encryption
system based on Gentry’s scheme, tailored for encrypting images. They optimize
Gentry’s scheme by (i) changing it from a pubic key encryption to a symmetric
encryption (in order to use shorter keys without sacrificing security), and (ii) en-
crypting a byte (i.e., a pixel) instead of a single bit at a time. According to their
implementation notes, encrypting a 1-megapixel image (using a machine with a
double-core CPU at 3.1 GHz and with 4 GB of RAM) finishes in about 10 seconds.

Yang et al. have managed to cut down significantly the required resources
(both for processing and storage). Nevertheless, their fully homomorphic im-
age encryption scheme still remains suitable only for powerful server machines.
There is much work to be done in order to execute the second variant of our pro-
tocol in a low-powered camera. Unlike this variant, our previous protocol variant
(from section[4.4.1) runs seamlessly and efficiently on embedded cameras, as we
will see from our implementation notes reported in the following sections.

4.5 Implementation

We implemented the proposed data sharing and data verification protocol (vari-
ant 1) to better assess their practical feasibility when run on our low-powered
camera. Our implementation consists of two main services: a beacon transmitter
and a beacon scanner. The transmitter service generates a public/private key-pair
every time it starts and then broadcasts the public key. These keys are generated
with Elliptic Curve Cryptography (ECC) using a curve over a 256 bit prime field.
The private key is kept secure by encrypting it using the Storage Root Key (SRK)
available from the camera’s TPM (see section for more information on this
process). The transmitter also generates and broadcasts an access token at a
specific frequency. Tokens are generated using the procedure from Protocol 2
(variant 1, see section[4.4). The scanner service listens for nearby beacons of the
same type. Once it detects a beacon, it will store both access tokens and captured
public keys in the camera’s internal storage.
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Figure 4.7. The beacon protocol data unit.

The implementation uses Bluetooth Low Energy (BLE) as the underlying tech-
nology for sending and receiving both keys and access tokens. Specifically, we
use the Alt Beacon Libraryﬂ to create a BLE beacon-like device. BLE version 4
allows up to 28 bytes (excluding the BLE header bytes) for manufacturer spe-
cific data in the advertisement packet. Three bytes are consumed by the beacon
library (2 for specifying a mandatory beacon identifier, and one for a mandatory
power reference valu leaving 25 bytes for actual data (see Figfor the bea-
con layout). This size limitation restricts our choice of key and token length. As a
result, the system generates tokens token;, of exactly 25 bytes (200 bits). Since
200 bits is not sufficient for public key transmission Pub,;, we instead broadcast
a 25 byte identifier for a key uploaded to a known key server; peers can use the
identifier to retrieve the key from this known server.

While in sharing mode, our system alternates between session public keys
Pub,; and access tokens token;,. We use the 2 byte Beacon Header field (see Fig-
ure to differentiate between key and token data. Since tokens are refreshed
much more frequently than public keys, the system is configured to broadcast
token beacons with a higher frequency than keys. However, a too low frequency
of key distribution will result in delayed “registration” of peers. We experimented
with different transmission schedules in order to find the best ratio between pub-
lic key and token transmission frequencies and report results in section |4.7|

4.6 Security Analysis

We take a two step approach for the security analysis of the proposed system.
At the outset, we analyse the data sharing system concerning its ability to prevent
memory oversharing and user tracking. We then examine the image modification
protocol (variant 1) with regard to the detection of hidden image modifications.

Ssee https://altbeacon.github.io/android-beacon-library/
®The TX Power Reference Value is a pre-measured signal strength at 1m distance from a bea-
con, which allows a recipient to estimate the actual distance of the signal sender.
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Figure 4.8. Attack tree visualizing the different ways for obtaining unauthorized
access to a peer’s captured data. Tree nodes represent sub-actions that must be
accomplished for the attack to succeed. Double half-arcs represent an AND rela-
tionship among nodes indicating that all such node actions have to be achieved
in order for the parent action to succeed.

4.6.1 Experience Sharing System

One of the goals of the proposed data sharing scheme is to protect the captured
memories of a user from unauthorized access as well as prevent tracking the
user’s location. As a result, we primarily try to minimize “oversharing”, i.e., the
accidental inclusion of a peer’s device into our captured data stream, without
actually being part of our experience (e.g., a shared meeting).

A second goals it to minimize our tracking envelope. Tracking is a prominent
risk in our system since a device advertises its willingness to share captured data
by broadcasting announcements (i.e., public keys and access tokens). An attacker
could simply listen passively for such advertised information and thereby track a
user’s location. To counter this threat, a device does not send out announcements
all the time. As described in section 4.5 we envision that the system announces
itself only when it detects the presence of an appropriate peer. The design of such
peer detection is outside the scope of this thesis — we previously described several
approaches for peer detection based on a social detector, see ‘{Smart Memory|
[Beaconing Based on Improved Peer Detection]” in section[4.5] Moreover, both public
keys and tokens are frequently updated to prevent an adversary from associating
them to a specific user.

The system should avoid oversharing (i.e., allowing non-authorized parties to
access captured data) by granting access only to peers who were present and en-
gaged with the user at the time of capture. Figure depicts the different ways
an unauthorized person can try to get access to a user’s captured data. An at-
tacker can try to construct a data URL (one that leads to actual data of a user)
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by guessing a valid access token or passively sniffing for tokens being sent out.
Either way, the attacker then has to also guess a valid decryption key (i.e. user’s
private ECC key) in order to successfully get a valid data URL. Guessing both an
access token of 25 bytes (200 bits) and a valid decryption key (the private part
of a 256 bits ECC key-pair) is extremely unlikely. Even if an attacker manages
that, this would only allow her to get a small set of data points and not com-
promise the whole system, as other data are protected by different access tokens
and eventually different encryption keys.

While our protocol against oversharing can protect from non-participants get-
ting data of an experience, it cannot protect against their collusion with legit-
imate participants (i.e., one trusted participant passing on the recordings the
received). To address this one can consider technologies such as “Digital Rights
Management” (DRM), usage control models [[195],196]], or watermarking to help
identify the source of a leak should it, for example, surface on the Internet. Im-
plementing any of these solutions is out of scope of this thesis. However, to
counter such peer collusion under a certain extend, we propose a tangible con-
trol interface. The interface allows one to quickly stop recording and sharing
through physical gestures. This could allow users to react on time (e.g., by stop-
ing the recording) should they, for example, judge that what they are currently
experiencing is too sensitive to be captured in the first place.

Furthermore, our solution does not guard against secret recordings — either
out-of-band (e.g., a hidden camera or microphone) or through a “hidden” (fake)
peer device that exploits the system by pretending to be a peer capture device.
Countering hidden cameras or microphones is beyond the scope of this thesis.
However, our tangible interface can be again used to counter fake peers under
certain conditions (a formal meeting in an office setting). The interface is also
equipped with a low-powered display which the number of connected peers that
one is sharing data with. This could allow meeting participants to detect data
over-sharing through a quick head count mismatch. We present the design of
such interface and evaluation results of a user study in chapter

4.6.2 Image Verification Protocol

In order for an attacker to change any tile’s content unnoticed, two options exist:
(1) to manipulate the image before the tile’s hash is computed, or (2) to manip-
ulate it in such a fashion that the tile’s hash does not change. The first option is
ruled out by virtue of the secure camera hardware. Here, the camera’s firmware
is attested by the its trusted computing platform TPM, so changing the camera’s
principal operations should not be possible. The second approach requires the
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attacker to perform a second pre-image attack on the underlying hash function.
Given a secure hash function (we use SHA3-256 in our implementation) this
should be equally infeasible.

We also need to ensure that the recipient cannot uncover the original contents
of a tile, based on the shared information. To achieve this, a recipient has to
perform a pre-image attack on the hashes of the obfuscated tiles: given the hash
h of a tile that is blocked in the modified image, find a value t such that H(t) = h.
Given that the hash function concatenates the tile contents with both the tile
indices i, j, and a salt, even identical tiles in the original image should hash to
different values. A brute force attack is thwarted by the large search space: a
pixel is composed of three bytes, one byte for each RGB color. Trying all pixel
colors has a time complexity of 256> = 22* per pixel, hence iterating through a
single tile would take (22*)™" time, where m x n are the tile dimensions in pixels.
Even the smallest tile size of 5 x 5 pixels that we evaluated our system on (see
section[3.4.5) would require (224)% = 269 ~ 4x 10! operations for a single tile.

While brute force is not an option for a malicious recipient peer, preimage
attacks can be realized through a more sophisticated approach based on pre-
computed hash tables, also known as a rainbow table attack[[197]. Such attacks
tend to reduce the time complexity of a brute force attack on the cost of increasing
the storage complexity. A malicious peer can compute a very large rainbow table
once (or even use existing tables shared by the community) and then reuse it
to disclose information from every obtained image. Though a rainbow table
attack is probabilistic and there is no guarantee that it will always find a valid
hash input, however, even assuming that such an attack would always work, the
use of a different salt for every other image prevents the reuse of existing tables:
a recipient peer needs to computes a new table for every new image. By carefully
choosing the salt length one can make this attack unpractical: for a 32-bit salt
the malicious peer needs to compute 23 & 42 billion different rainbow tables.

4.7 Evaluation

We conducted several measurements to validate the practical feasibility of the
proposed system. Specifically, we measured the performance of the BLE beacon
protocol and its discovery range, the implementation runtime overhead as well
as the camera’s energy consumption.
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Figure 4.9. Average beacon reception rates per second when using three token-
pubkey ratios (all given in seconds) 2.0-1.0 / 3.0-1.0 / and 5.0-1.5, using three
BLE announcement frequencies 1 Hz; 3 Hz; and 10 Hz.

4.7.1 Beacon Reception Rates and Proximity Range

We initially measured the performance of the underlying BLE beacon transmis-
sion. More specifically, we simulated a three-party social encounter, measuring
how long it took for the peers’ devices to “register” each other once they get in
proximity and how reliably a device can pick up other peers’ access tokens. Due
to hardware limitations, we were not able to trigger the BLE radio of the Rasp-
berry Pi 3 B+ board to both transmit and scan for BLE beacons at the same time.
Consequently, for this test, we used a smartphone that was capable to perform
this functionality (Google Nexus 5X running Android 6). For this we developed
a smartphone app that performs the core functions of the data sharing system,
following the implementation details as described in section 4.5

In our tests, we compared three different token—public key ratios (2:1, 3:1,
and 5:1.5, all given in seconds) over the three BLE announcement rates sup-
ported by Android 6 (1 Hz, 3 Hz, and 10 Hz). For example, in the first case
(1 Hz rate) the system would send out 2 tokens in 2 seconds, followed by send-
ing the device’s session public key one within the next 1 second; at a rate of 3 Hz,
this would mean 6 token packets (still taking 2 seconds) followed by 3 public key
packets (taking 1 second).

Figure shows the public key and token reception rates per second, aver-
aged over the results of all 3 phones running with each configuration for a period
of 5 minutes. Increasing the transmission frequency to 3 Hz improves reception
rates, but a further increase to 10 Hz adds delay when simultaneously transmit-
ting and scanning for packets. Thus, we use 3 Hz for the transmission rate.
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With a 3 Hz packet transmission, the highest beacon reception rates (0.3 to-
ken/s and 0.12 keys/s) are achieved with 3 seconds of token transmission and
1 second of key transmission. Therefore, it may take up to 3 seconds before a
device reliably receives a new token from another device; public key beacons
will be picked up in 8.3 seconds. In practice, this means that once two devices
are in range, it should take no more than 9 seconds (average 4.15 seconds) for
them to “register” each other and, after sufficient dwell time t;,,;; has elapsed, to
add each other’s public keys to their respective encrypted URL uploads. Tokens
should therefore not be updated more frequently than once every 3 seconds, oth-
erwise a peer may miss a token (and thus be unable to access captured data for
this period). These results were more or less dependent on the performance of
the smartphones that we had, and clearly better results may be achieved with
more recent or even future hardware. Furthermore, there is a trade-off between
token update frequency and data over-sharing. The lower the frequency, the
more data will be overshared and vice versa. One should chose the right update
frequency depending on the envisioned privacy requirements.

While results show that our protocol performs reliably well with three peers,
it is to be expected that the beacon reception rate would decrease as the number
of peers would increase. This is due to packet collisions that can occur when
many peer devices would transmit simultaneously. However, in this work we
assume sharing to happen among relatively small encounters (i.e., groups of no
more than 10 participants). We looked at prior work in order to understand what
would be the implications on beacon reception rates from such group sizes. In
one such work, Treurniet et al. [198], report a decrease of about 6% in packet
reception rates when having 10 peer devices. This would add about half a second
to the total of 8.3 seconds needed for a device (in the case of three peer devices)
to pick-up the beacons from others. If we would account for additional other
devices that can communicate through BLE (e.g., IoT devices, BLE beacons, etc.)
the total number of BLE devices can easily be in the range of 20-30 at any time.
Results from the work of Treurniet et al. show that with 30 devices, BLE reception
rates can decrease up to 20%. This would introduce an additional latency of only
2 seconds, resulting in a total of about 10 seconds before peer devices running our
sharing protocol can register each other. These figures suggest that our protocol
would still perform well even in such moderately crowded BLE environment.

BLE has a maximum range of about 100 m, allowing signals to be “heard”
even by devices which are not in a close enough proximity to be considered co-
located peers. However, when transmitting with the lowest power level that our
test devices could achieve (i.e., approximately -12 dBm), the proximity detec-
tion distances were lowered significantly (e.g., about 7 m in open environments
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Figure 4.10. Implementation runtime overhead (in s). Measurements were con-
ducted with low-resolution images (640x480 pixels) and high-resolution im-
ages (4096x3072 pixels). Protocol 2 was evaluated with five different tile sizes.
For the low-res images we tested the following tile sizes in pixels (T1: 5x5; T2:
10x10; T3: 20x20; T4: 40x40; and T5: 160x160), and for the high-res images
(T1: 32x32; T2: 64x64; T3: 125%x125; T4: 256x256; and T5: 1024x1024).

without any obstruction, to about 3 m in office-like environments). These results
provide satisfactory accuracy for reliably exchanging experience data in different
scenarios. For instance, when recording images of a hiking activity, a distance of
7 m allows one to exchange experience data with a larger group of other hikers,
while a distance of 3 m would be enough for exchanging data of a meeting with
other attendees.

4.7.2 Runtime Overhead and Energy Consumption

In additional tests, we evaluated the variant 1 of our proposed protocol for com-
puting an image modification proof following the process from Figure Tests
were conducted using our TPM-enabled wearable camera, and with two differ-
ent images sizes: a low-resolution image with 640x480 pixels (the maximum
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Figure 4.11. Estimated camera operational time when running our system with
various photo capturing frequencies and powered with a battery of 200 mAh
and 500 mAh, respectively. For Protocol 2 we used medium tile sizes (i.e., T3).

resolution of the installed camera module), and a high-resolution image with
4096x3072 pixels. For the tests featuring a high-resolution image, we manu-
ally put such an image into the camera’s internal storage. The protocol’s code
would then fetch the image contents directly from there and not from the cam-
era’s module. We furthermore measured the overhead of splitting the image into
five groups of tile sizes. When selecting a tile size, we considered the trade-off
between obfuscation granularity and performance efficiency. For the smaller im-
age we started with a tile size of 5x5 pixels and increased it up to 160x160
pixels. We applied proportionally larger tiles to the larger image, from 32x32
pixels up to 1024 x1024 pixels.

Figure summarizes the runtime overhead (in seconds). For complete-
ness, we also included the execution time of the other camera processes that
were presented in Chapter (3| (i.e., capturing an image, generating a TPM plat-
form attestation report, and adding the image to a secure link). As we can see
from the figure, our proposed schemes work reasonably well on our camera plat-
form. A low-resolution image is captured and processed in less than 25 seconds
(3.5 s for taking the photo, 7 s for Protocol 1 and 12 s for running Protocol 2 with
the smallest i.e., most processing intensive, tile size of 5x5 pixels). Less than 60
seconds are needed for a high resolution image (34 s for taking the photo, 7 s for
Protocol 1 and 16 s for Protocol 2 again with the smallest tile size 32x32 pixels).

Finally we measured the energy consumption of the camera when running
the proposed schemes. Again, these tests were performed using the camera
processes (from capturing a picture, adding it to the secure chain, generating
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a TPM-signed platform report, computing the image modification proof, and
exchanging this it with co-located others). Energy figures were measured us-
ing the “Keweisi KWS-V20” USB power teste The average power consumption
for both low-res and high-res images (with medium tile sizes of 20 x 20 and
125 x 125 pixels) is 2.1 mAh and 5.6 mAh, respectively. Out of these values,
1.06 mAh and 3.60 mAh were consumed by the Raspberry Pi 3 B+ module alone.
From these measurements we did not derive exactly how much power was con-
sumed by the actual BLE transmissions. However, prior work has shown the BLE
consumes very little energy per bit transmitted and scanned [200), [198]]. In this
regard we expect the actual packet advertisements over BLE to account for very
little overhead to the overall energy consumption figures.

Using these power measurements, we estimated the camera’s operational
time (see Figure with a small battery of 200 mAh (same as that of the
Narrative Clip 2) and a bigger battery with 500 mAh. With a capture frequency
of one low-resolution photo per minute, the camera can be operational from 40
hours (smaller battery) up to 100 hours (bigger battery) on a single charge. As
for high-resolution photos, the camera can run between 30 hours and 75 hours.

4.8 Chapter Summary

In this chapter we investigated the possibility of seamlessly exchanging captured
experience data among co-located users. The rationale behind such data sharing
emanates from a technical limitation of wearable cameras, which may not always
produce good memory cues [|52]], as camera lenses can be obscured by hair or
clothes, or simply face the wrong way [[11]. In a previous experiment [58]] we
observed that at least 25 percent of lifelogging images captured by our study
participants were occluded.

As a result, we highlighted two complementary data sources that can improve
the quality of the produced memory cues. First, wearable cameras of others can
offer a richer view than one’s own camera. For instance, while our own camera
might fail to capture who is sitting next to us, the camera of the person opposite
from us would. Secondly, the high-vantage point of infrastructure cameras allows
them to capture comprehensive scenes, completely unobstructed [[159]].

We furthermore analyzed the potential threats that any such seamless data
sharing would raise. Captured images will inevitably feature private information,
which opens the door to accidental data spills. For instance, when capturing

"The “Keweisi KWS-V20” USB power meter that we used for these evaluation lists an accuracy
error of up to 3%, as reported in [[199]].
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Figure 4.12. Overview of the event flow of using our system for securely captur-
ing, storing, as well as securely sharing experience data with co-located others.

a work meeting one can mistakenly share data with the users who simply pass
by the meeting room or share data of a different meeting event. Furthermore,
any data that we receive from others may endanger our overall memories of that
event. Malicious others can share with us intentionally fabricated images that
do not truly reflect the experience. Reviewing such falsified images can utterly
reshape what we remember about the experience.

Therefore, in this chapter we presented an approach to enable a seamless
but secure exchange of experience data. Our system is built on top of the results
from Chapter [3|for the secure capture and storage of experience data. Figure[4.12
provides a complete view of our system by incorporating components presented
in both Chapter [3|and this chapter.
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Our system allows a user’s camera to advertise its willingness to both share
self-captured data and to acquire data captured by other co-located peers. For
this reason, by means of the short-range BLE technology, users’ cameras broad-
cast periodically updated access tokens and temporal public keys. The purpose
of tokens is twofold. First, they represent a way of letting others know where
to access data one is willing to share. Second, a token allows one to commit
an image’s content publicly without actually having to share the original image
itself. One can then decide to obfuscate any sensitive information prior to shar-
ing it with others. Using such tokens, recipients can verify any modifications
performed on the original, unshared image (RQ3). On the other hand, a device
can grant access to the data that it is willing to share to co-located peers only.
This is achieved by encrypting the shared data with all peers’ public keys. Con-
sequently, only those who possess the valid private key will be able to access the
shared data (RQ2).

Our tests confirm that the proposed scheme can reliably and efficiently run
on a low-power camera device. When transmitting the radio-packets with the
lowest possible power level, we were able to reduce the BLE detection range
to 7 meters in open unobstructed environments and 3 meters in closed office-
like spaces. Devices can reliably exchange access tokens and public keys with a
maximum rate of 0.3 tokens/s and 0.12 keys/s, respectively. Furthermore, the
camera can compute a modification proof for a low-resolution image in about 12
seconds, while 16 seconds are needed for a high-resolution image. When includ-
ing the runtime overhead of the other schemes from Chapter 3} a low-resolution
image can be captured and processed in less than 25 seconds, whereas process-
ing a high-resolution image takes about 60 seconds. When processing one low-
resolution image per minute, we measured that the camera can be operational
from 40 hours (with battery of 200 mAh) up to 100 hours (battery of 500 mAh)
on a single charge. As for capturing high-resolution photos, the camera can run
between 30 hours and 75 hours.

In this chapter we addressed the challenge of accidental oversharing of expe-
rience data. In the following chapter we investigate the possibility of empower-
ing users with more controls regarding both memory the capturing and sharing.
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Chapter 5

A Tangible Interface for Controlling
Memory Capture and Sharing

As we have seen in Chapter [4, the ability to exchange captured experiences
among co-located peers is a useful desideratum of memory augmentation sys-
tems. It can offer a more comprehensive capture of an experience, something
that one’s own wearable camera may not be able to match. However, despite
such benefits, sharing self-captured images with others can at the same time se-
riously jeopardize users’ privacy. In the previous chapter we focused primarily on
preventing situations of accidental oversharing that can happen due to system er-
rors, e.g., mistakenly considering a bystander as participant of a common event.
As a result, the proposed system attempts to disseminate one’s self-captured data
only with peers that are co-present with the user. Ideally, no data will be shared
should there be no co-located peers that the user is interacting with.

However, such an automated approach may not always offer the desired out-
come. Let us consider several situations where users would benefit from having
more control over the practices of capturing and sharing their memories. While
an experience is being captured, there may be moments that a user would not
want the system to record in the first place (e.g., discussing confidential matters
in a meeting). In other situations, a user would want to capture the experience
for themselves but would not feel comfortable sharing such data with others
(e.g., while working in front of a computer). In yet other situations, a user may
be willing to share data only with a particular set of other users, but would want
to limit adding further peers. All these examples highlight one essential require-
ment: users should be able to continuously control and express their capture and
sharing preferences of the event they are experiencing, as the event moves across
different levels of sensitivity and privacy. What is more, in case that one forgets
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to react in time, it should be possible for one to perform after-the-fact deletion of
such data, as soon as it is noticed. Not to mention that access should be revoked
if the “problematic” data was already shared with others.

Therefore, in this chapter we set out with the goal of providing a solution
that features a more balanced tradeoff between the benefits of sharing personal
experience data and protecting users’ privacy. To this end we developed Mem-
Stone, a prototype of a tangible user interface (TUI) that allows users to control
access to (and the sharing of) captured memories in-situ. We conducted a user
study with 20 participants with the goal of investigating the suitability of a set of
gestures to control data capturing and sharing, as well as comparing the usability
and efficiency of MemStone with a more “traditional” mobile app user interface.
Our study included an open-ended discussion session to better understand users’
perceptions of such tangible interface. In this chapter we describe MemStone’s
design and functionality, report on the results of the user study, and conclude
with discussing the implications of our results and outlining directions of future
research. The work presented in this chapter addresses the first par (underlined
below) of the following research question:

e RQ4: What interfaces and policy-based access control models can we use
to exercise control over data capture as well as to prevent the disclosure of
private and sensitive information when sharing experience data?

Parts of this chapter are based on the following publication:

* A. Bexheti, A. Fedosov, I. Elhart, and M. Langheinrich, “Memstone:
A Tangible Interface for Controlling Capture and Sharing of Personal
Memories,” in Proceedings of the 20th International Conference on
Human-Computer Interaction with Mobile Devices and Services, ser. Mo-
bileHCI'18. New York, NY, USA: ACM, 2018, pp. 20:1-20:13

5.1 Related Work

The work in this chapter is mainly inspired by and based on previous research in:
privacy issues with visual lifelogs, techniques for enhancing privacy of such data,
and gesture-based interactions.
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Privacy Issues with Visual Lifelogs

Visual lifelogs can be the basis for highly effective memory cues. Thanks to body-
worn cameras, which allow us to seamlessly capture continuous logs of our daily
experiences, visual lifelogging lays at the sweet spot between memory recall and
ease of capture. However, previous studies have found that such unobtrusive
capture can infringe both user and bystander privacy. Clinch et al. [58]] have
conducted a multi-day experiment where they provided all their participants with
a wearable camera which continuously captured users’ working activities. They
found that such cameras repeatedly captured participants’ computer screens and
phones. As a consequence, they observed that such capture of private spaces as
well as the presence of specific objects in images made users concerned about
their privacy.

Similar privacy concerns with images showing specific objects or taken at
particular locations, but also portraying other known people, bystanders, or user
activities, have also been observed by other studies [97, (105, 201]]. Price et
al. [202] noticed that users are less concerned when sharing images with a group
of other lifeloggers than with non-lifeloggers, further suggesting that this could
re-define what a private space means when lifelogging in a group. In another
work, Adams [[115] proposes a privacy model that considers image receiver and
purpose of usage as additional factors that influences sharing decisions. All these
studies confirm the privacy challenges of visual lifelogging and highlight the need
for techniques for privacy-aware data capture and data sharing.

Privacy-enhancing Techniques of Visual Logs

Several solutions have been proposed for regulating access and controlling data
sharing [[18]], however, they usually require active user input in order to specify
fine-grained access control and privacy policies. Due to the large volume of cap-
tured experience data, this would be a cumbersome process for lifeloggers [58]],
leading to mistaken disclosures (“misclosures” [[111[]). For instance, a Narrative
Clip camera produces 120 pictures in one hour, or 1’500 in a day. One option is
obviously not to capture all that information in the first place, but the challenge
is that one cannot foresee which data might be a valuable memory trigger.

Prior work has made attempts to automate to some extent such decision ef-
forts by designing algorithms that can understand both capture context and cap-
tured data. For example, Fan et al. [203]] propose a mobile-based technique that
stops lifelogging capture when it detects that a user is in a restroom. Moncrieff
et al. [204] leverages background audio, but also other sensors, to determine
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the context in surveillance scenarios running in private environments, such as
smart homes. Based on the inferred context, the system will activate a prede-
fined privacy policy and enforce it using a combination of data hiding techniques.
Other approaches rely on computer vision algorithms to study the captured im-
ages themselves and flag those that contain specific places [80], particular ob-
jects [[112]], computer screens [[79], or even images that portray activities [[113]].

While all these (semi-)automated solutions can potentially improve user pri-
vacy, however, they may reduce the utility of a memory augmentation system.
As Adams [[115]] notes, privacy issues related to captured experiences often rely
on users’ implicit assumptions of its usage and intended receiver, and as such
they can vary with person and context [58]]. For instance, an image that can in-
fringe a user’s privacy because it contains a computer screen can be the strongest
memory cue; or a user might want to share such computer screen image with
only a particular other user that she trusts more. In contrast, we propose a solu-
tion based on (manual) in-situ user input. In-situ controls offer greater flexibility
to users and allow them to react in real-time based on their impressions of the
context, but still keep user involvement lower than post-hoc solutions. Hoyle et
al. [[110] also confirm that lifeloggers prefer in-situ control more than manual
post-hoc filtering. Ultimately, our in-situ control can be used side-by-side with
an automatic control approach and complement it.

Gesture-based Control Interfaces

Prior research has explored the opportunities of controlling virtual information
using objects from the physical world. Fitzmaurice et al. [[205]] propose a tech-
nique for manipulating digital data using graspable wooden blocks, with the goal
of augmenting traditional graphical user interfaces. The tangible bits vision by
Ishii and Ullmer [[206]] aimed at bridging the gap between digital bits and gras-
pable objects, where objects from the physical world would both manipulate and
visualize digital content. Similarly, Fishkin et al. [207]] present the paradigm of
embodying physical manipulations to computational devices, so that the device’s
physical body becomes also its interface.

Other research has particularly focused on box-shaped physical interfaces.
For example, Rekimoto and Sciammarella proposed ToolStone [208]], a cordless
tangible interface controllable by physical manipulations. ToolStone would be
operated by users’ non-dominant hand and would complement the traditional
computer input device (i.e., the mouse) in various applications where such a
bimanual interface could be appropriate, e.g., choosing a color from a palette;
zooming, scrolling, or rotating contents; controlling a virtual camera, etc.
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Sheridan et al. [209] explored the affordance of a cube as control interface.
Through a user study they developed a classification of 16 distinct gestures (or “non-
verbal dynamics”) that users performed with a cube, such as placing the cube in
a particular place or position, turning it, rotating, tapping, shaking, squeezing,
or fiddling with it, etc. Van Laerhoven et al. [210] built such a cube that em-
bodies gesture recognition and showed how it can be used as an input device for
desktop applications involving selection and navigation operations.

All these studies show the feasibility and psychological affordance of box-like
interfaces, however they mostly focus on applications for extending traditional
input devices or GUIs. Moreover, in these works the box was used only as an input
device and was not utilized to also provide feedback back to the user. In our work
we adopt the concept of a box-shaped interface and apply it in a scenario that
goes beyond extending conventional input devices, i.e., allowing one to control
and observe how, when and with whom one’s lifelogging devices are capturing
and sharing data that constitutes one’s memories.

5.2 MemStone Interface

We designed MemStone inspired by a mix of both practical and theoretic knowl-
edge. More specifically, we were motivated by the ToolStone interface from
Rekimoto and Sciammarella [208]], particularly by its design and shape. We fur-
thermore grounded MemStone’s design in a set of theoretical design principles
regarding interactive products [206, 211, 212]].

5.2.1 Design Principles

Our design of MemStone was strongly influenced by the design principles from
Norman, presented in his seminal book “The Design of Everyday Things” [212]].
Rogers et al. [213]] provide a nice overview of Norman’s main principles, which
we briefly restate here:

* Visibility: When creating interactive objects it is important that its func-
tions and components are easily visible to users. Norman stresses the im-
portance of visibility through an example of car controls. The controls for
most operations (e.g., headlights, horn, indicators, windshield wipers, etc.)
are positioned in such a way that it becomes easy for the drivers to find and
use them. Usage is hindered when we cannot understand how to operate
a device. For instance, in most automatic faucets it is not clear that they
are triggered by motion sensors, thus it becomes difficult to operate them.
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* Feedback: Upon a user performing an action, the device should follow

with an immediate and synchronized feedback information. This not only
informs the user what action have they just triggered, but also whether
the action has been accomplished or not. Rogers et al. [213]] amplify the
importance of this point by imagining how some everyday situations would
be like without feedback. For instance, if the guitar or the pen would not
send any immediate feedback, there would be an unacceptable delay before
any sound was produced or any line written on a paper. This delay would
render these devices almost useless. Feedback can take different forms,
such as audio, visual, verbal, tactile, or various combinations of these.

Constraints: Sometimes it is desirable to restrict some interface actions
from being triggered. This can prevent users from performing a wrong
action, hence reducing chances of mistakes. As reported by Rogers et
al. [213]], Norman classifies the different ways how this can be achieved
into three categories of constraints: physical, logical, and cultural. A phys-
ical constrain prevents an undesirable physical movement on an object.
For instance, when inserting a 3.5" computer disk into a drive, the drive’s
physical design prevents putting the disk in the wrong way. Not all physical
constrains do offer a good solution. Probably the most familiar example of
a bad physical constrain is found in the USB type A interface. The paradox
is that no matter how hard you try, almost always you fail to get it right
on the first try. The rationale behind an unflippable design was stirred by
cost factors — a flippable design would require twice the wiring, and hence
higher costg']

On the other hand, logical constrains rely on common semantical knowl-
edge to understand how a device works. A typical example of such con-
strains is disabling menu options when they are not appropriate for the
given context and task.

Cultural constrains rely on universally accepted and learned conventions.
For example, using the red color for warning, a triangle icon for play, alarm
sound for danger, etc.

Mapping: This concept is about making the connection between controls
and their actions. Good examples of such mapping is found in the “up”
and “down” arrows of computer keyboards, or the sequence of the buttons
of an MP3 player (i.e., with the play button being in the middle, while the
rewinding and fast forward buttons appearing on its left and right).

Thttps: / /www.cnet.com/news/the-reason-why-you-always-plug-in-a-usb-wrong/
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Figure 5.1. Overview of the developed MemStone prototype that allows users
to in-situ control the capture and sharing of personal memories through a set of
five physical gestures. MemStone’s front side (left) features a central screen and
two LEDs that describe in detail its active operation. MemStone has a different
colored back side (right) that allows users to see its position even from distance
and denote its action.

* Affordance: This refers to the act of making it obvious how to use an object
by perceiving its attributes. For instance, the shape of a door handle tells
whether to pull or push it in order to open the door. Similarly, a computer
mouse affords clicking, a virtual scroll bar affords moving up and down, a
button affords clicking, etc.

* Consistency: When designing interfaces, it is crucial to have similar tasks
be performed by similar operations or rules. For instance, the left mouse
button is always used to select different elements in an interface, or the
mouse scroll button will always vertically shift screen contents. Consistent
interfaces are generally easier to learn and use.

5.2.2 Interface Description

MemStone (depicted in Figure[5.1)) is a rectangular-shaped 3D printed box (mea-
suring 67 mm x 52 mm); augmented with an embedded computing platform
(NodeMCU ESP8266E|), an accelerometer sensor, a vibration mini motor, BLE
radio, and a lithium battery. In principle it can communicate directly with a
range of capture devices (e.g., body-worn cameras, smartglasses, audio recorder
bands) in order to allow users to in-situ control, with simple physical manipula-
tions, what memories such devices can capture and share with co-located othersE|

Its shape (rectangular) and visual appearance (bi-colored) aims to allow users
to easily understand its current operation (to some extent also its available ges-

2http://www.nodemcu.com
3The current prototype of the MemStone focuses only on gesture recognition but it does not
yet implement a protocol for communicating with other devices.



122 A Tangible Interface for Controlling Memory Capture and Sharing

tures at a glance. The front side (see Figure[5.1}-eft) has a central screen (with a
resolution of 128 x 64 pixels and a diagonal size of 33 mm) that provides feed-
back on the system’s current mode of operation. Specifically, the screen shows
several aspects of the active action, such as elapsed time of current data capture
(if active), the number of peers one is sharing data with (if any), if newly ap-
pearing peers are allowed to join the sharing session, and the device’s remaining
battery level. The front side has two additional LEDs that also give details about
the current operation. The LED on the left will signal the user when the experi-
ence is being captured while the other LED will indicate that this data is being
shared. The back side (see Figure[5.1}-right) has a different color than the other
sides to allow the user, as well as other co-located people, to see the device’s state
from a distance and thus allow them to note its active operation without having
to closely look at its screen.

5.2.3 Gestures and Control Actions

Starting from the privacy challenges presented at the beginning of this chapter,
we have derived five different aspects that one could control when capturing and
sharing experience data. Each such control action can be executed by perform-
ing a particular physical gesture using MemStone, as shown in Figure For
the gesture selection we were in part inspired by the work from Sheridan and
her colleagues [209]. Through a user study, Sheridan et al. explored the natural
affordance of a cube-shaped device and came up with a classification of 16 phys-
ical gestures that a cube affords. Starting from their result, we selected 5 such
physical gestures that we believe offer a good match to the actions for controlling
the practice of experience capture and sharing:

* The face-down gesture (Figure [5.2}A) stops both data capture, sourced
from any of the user’s capture devices, and data sharing with other co-
located people. This way a user can let others know that she does not
record anything herself. Whilst this may also signal that a user does not
want others to record her, the MemStone cannot control the capture oper-
ations of other users.

* By putting the MemStone device face-up (Figure [5.2}B), the user triggers
her data capture from any of her lifelogging gear. In addition, the user
informs co-located peers that she is recording and expresses her willingness
to exchange data with them. Sharing commences automatically with all
other peers that have similarly positioned their device face-up.
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Figure 5.2. The current MemStone prototype supports five physical gestures:
(A) face-down; (B) face-up; (C) stand-on-side; (D) double-tap; and (E) shake.

* In order to capture data from one’s own recording gadgets but inform oth-
ers that one does not want to share data of that particular moment, one
places the MemStone his a vertical stand-on-side position, facing oneself
(Figure[5.2}C). Any active sharing session with any peer stops immediately.

* Double-tapping the MemoryStone (Figure[5.2}D) “locks” the data exchange
with the current set of co-located people and prevents any further peers
from joining (though peers leaving will still be removed from the common
data exchange). A subsequent double-tap will remove this lock. A similar
access control mechanism, but using the metaphor of a virtual wall, has
been proposed by Kapadia et al. [214]].

* The shake gesture (Figure E) allows the user to delete the last 30 sec-
onds (this is configurable) of captured data. By repeating this gesture the
user can delete data captured for longer periods.

Gesture recognition is based solely on data obtained from a 3D accelerometer
sensor. Triggered actions are confirmed with the help of distinct vibration pat-
terns as feedback. For the lock/unlock action, two different vibration patterns
will signal the user the current lock state after the initiated change.

5.2.4 Envisioned Usage Scenario

To better illustrate the vision of using the MemStone’s concept as a tangible con-
trol interface for memory augmentation systems, consider the following meeting
capture scenario, as shown in Figure

Team Alpha, with its members Bob, John, and Alice have recently decided
to use a memory augmentation system during their weekly meetings. During
one meeting, Bob and John use a body-worn camera that automatically captures
an image every 30 seconds. Alice uses a set of smartglasses that, similarly to
the cameras, capturing 2 photos per minute. Bob also brought a wristband that
captures the last 30 seconds of audio with a single tap. Each device uploads the
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Figure 5.3. lllustartion of the envisioned usage scenario of MemStone.

data it captures to the respective user’s memory repository, where such data is
eventually processed in order to generate memory cues, that will help them be
more prepared for their next meeting.

All team members use the MemStone device to control their meeting capture
and sharing practices. In the scenario in Figure |5.3] Bob and John have posi-
tioned their MemStones face-up notifying others that they are capturing this part
of the meeting, as well as expressing their willingness to exchange data with
their peers. As a consequence, their memory augmentation system would access
images captured from each other’s cameras, in order to improve the quality of
the generated memory cues. John is particularly interested in obtaining images
from Bob’s camera, as Bob’s camera occasionally captures the whiteboard (which
is not the case with John’s camera). In addition, John would also obtain audio
snippets recorded by Bob’s wristband. Alice, on the other hand, fears that her
glasses might capture some sensitive information from her laptop’s screen, which
she has in front of her. She decides not to share any data with the rest, but only
records for herself. To do that and also to inform others that she is not willing to
share anything, Alice has put her MemStone on the stand-on-side position.

Note that even though Alice has decided to not share her captured data,
John and Bob may very well have included Alice in their peer sharing activity.
Whether or not sharing requires reciprocity (i.e., a user that stops sharing will
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also be barred from receiving other shares) depends on each user’s preferences —
the protocol cannot enforce that peers actually share anything. If Alice continu-
ous to send out her public key and if John and Bob have not locked their session,
her key will be included in the broadcast encryption. Similarly, John may signal
that he is willing to share but eventually decide not to make any captured data
available at the token address that his system broadcasted — Bob is unable to en-
sure the future sharing behavior of John. Note that while this seems to encourage
(i.e., pretending to share in order to receive data from peers while not sharing
anything) such behavior will in most cases eventually be sanctioned by social
conventions: Bob will soon realize that John never actually shares anything so
will be less inclined in the future to continue sharing with him.

In this scenario, we envision that MemStone devices will be part of the meet-
ing room, just as one finds a remote controller for the projector or whiteboard
markers in such a room. Before the meeting start, each attendee picks up a Mem-
Stone from a small receptacle at the entrance and connects it with their meeting
capture gear (e.g., by simply physically touching those devices together [215]).
The connection would remain active as long as the devices are in close proximity.
After the meeting ends, users would return the MemStones to their receptacle or
simply leave them on the table. Once a user leaves the room, the MemStone
would disconnect from their capture devices and reverts back to an idle state.

5.2.5 Using MemStone to Control Infrastructure Sensors

In addition to data sourced from their personal devices, team Alpha members oc-
casionally use the room’s built-in capture infrastructure to also make recordings
of their meetings. The room is equipped with a fixed-camera, a central audio
recorder, as well as a smartboard that captures snapshots of its contents.

Meeting attendees could use their MemStone to implicitly control experience
capture from such infrastructure devices. A strict privacy-aware approach would
stop recording from any fixed sensor as long as there is at least one participant
that has positioned their MemStone face-down (i.e., does not record for them-
selves and does not want to exchange any data with others, Figure[5.2}A) or also
on a vertical stand-on-side position (records only for themselves without sharing
any data with others, Figure [5.2}C). Another approach would be that recording
is based on a majority decision, or even unanimosity (i.e., infrastructure sen-
sors stop recording only if all users disable recording). Alternatively, the room’s
capture devices could also be controlled by a designated “room-MemStone”. Its
operation would then need to be agreed on by all participants.
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Select your action:

START RECORDING

Select your action:

STOP RECORDING

Select your action:

STOP RECORDING

00:03 00:06
Own Recording Peers: 2
START SHARING STOP SHARING
Additional control: Additional control: Additional control:
LOCK SESSION
DELETE 30 SEC. DELETE 30 SEC. DELETE 30 SEC.

Figure 5.4. A phone-based interface for controlling data capture and sharing
of daily experiences. Screenshots of different interface states. Left: initial state
when no capturing or sharing is taking place; Middle: state of an ongoing data
capture but not sharing; Right: interface’s state after activating data sharing with
co-located peers.

In the remainder of this chapter, we consider a similar scenario (i.e., a meet-
ing capture between two attendees in which data is sourced only from users’
wearable devices) in order to:

1. investigate how controlling data capture and sharing practices using phys-
ical gestures compares with a more traditional alternative, such as smart-
phone app; and

2. understand user perceptions regarding the MemStone tangible interface.

5.3 Phone-app as an Alternative Interface

Prior research in lifelog privacy [[110] suggests that lifeloggers prefer in-situ con-
trol over end-of-day filtering for deciding which visual logs are shareable with
others. Traditionally, such in-situ privacy control approaches are implemented
as mobile apps running on a touch-based smartphone [216,217]. While emerg-
ing body-worn devices, such as smartwatches or wearable glasses, could in prin-
ciple become viable alternative platforms for designing such lifelogging control
apps, the widespread use of phone apps means that a smartphone-based tool
represents the most realistic alternative to our proposed tangible interface today.



5.4 User Study 127

We thus created a simple smartpone app that can act as a baseline alternative
to MemStone. The phone Ul, displayed in Figure allows one to perform the
same five control actions that can be performed using a MemStone. Note that
since we wanted to compare the gesture-driven MemStone against the idea of
using the smartphone as control interface (and not compare with a particular
phone interface design per se), we went with a rather simplistic but intuitive
phone UI: operated by buttons, each with a short label clearly describing its ac-
tion. In the previous meeting capture scenario, users would install this app on
their personal phones and pair it with their lifelogging gear.

5.4 User Study

We conducted a user study aimed to address the following research questions:

1. Is the proposed gesture-based interface usable for in-situ controlling data
capture and data sharing in meeting capture scenarios?

2. Are the chosen gestures easily remembered even after longer time periods?

3. How does the use of gesture-interactions to control data capture and shar-
ing perform against conventional (i.e., mobile app-based) user interfaces?

4. What are user perceptions on such gesture-based control interface within
the context of memory augmentation systems?

For this study we recruited 20 participants (7 of them female) using snowball
sampling [218]]. Their age ranged from 22 to 63 years old, with an average
age of 28.75 years (SD = 9.31). They had different education levels, 4 of them
had only a high-school degree, 9 were bachelor graduates and 7 had a masters
degree. Most of our participants stated that they had an affinity for technology.
All said that they used a smartphone several times a day and a laptop few times
a week. No remuneration was provided to study participants.

5.4.1 Study Design and Procedure

We performed a comparative user study, employing a within-subjects design in a
counterbalanced order, where each participant tried both interfaces in differing
order (i.e., MemStone-Phone or Phone-MemStone).

We considered a meeting capture scenario between two people, similar to the
previous scenario in Figure[5.3] To strike a balance between validity and repeata-
bility, we prepared two different videos, each showing a meeting. We then asked
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participants to watch those videos and pretend to be one of the attendees. Each
such recorded meeting contained 10 tasks related to controlling capturing and
sharing of memories within the meeting (note that a detailed description of both
meeting videos and tasks is provided in the next section). Prior to watching a
meeting video, participants were given either our MemStone or an Android mo-
bile phone with the corresponding control app installed (accessible via a shortcut
from the home screen). They were then instructed to use the respective tool for
handling these control and sharing tasks. The phone was a Nexus 5X running
stock Android 8.0 with only our app additionally installed. Note that the Nexus
5X features a default screen timeout of 15 seconds, which we did not change.
While no screen lock (e.g., PIN) was setup, participants had to turn on the phone
and then swipe up the lockscreen before they could interact again with the app
after a screen timeout.

A session with a single participant lasted on average 60-70 minutes. At the
outset, we briefly introduced the study, asked participants to sign a consent form,
and to provide basic demographic information. Then, the session proceeded with
the following stages:

1. Introduction of the vision for technology-driven memory augmentation,
with a focus on how it could be applied to the envisioned meeting scenario.

2. A short demonstration of one of the interfaces followed by a trial session
where participants try the different functionalities of the chosen interface.

3. Participants watch a video of a recorded meeting and use the assigned in-
terface to control access to (and sharing of) their meeting memories.

4. Users fill a SUS questionnaire to express their perceived usability of the
interface.

5. Repeat steps 2—4 using the other control interface and the second video.

6. Semi-structured interview, reflecting on the experience with both interfaces.

Participants’ interactions with the interfaces (steps 2—4) were video recorded
using a wide-angle camera. The produced video data was later used to compute
the devices’ efficiency and effectiveness for performing the specified control ac-
tions. The goal of the semi-structured interviews was to better understand the
user experience with both control interfaces, and to also explore user percep-
tions on the proposed in-situ control interface. We recorded these sessions using
a voice recorder, and then transcribed the recorded interviews. To analyze this
data, we followed an iterative process, going back and forth between the data
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Task

MemStone Action

Phone Action

T1: Capture and share with co-
located peers

Face-up

Press “Start Record-
ing” and then “Start
Sharing” buttons

T2: Check elapsed time of cur-
rent capture

Shown on the

small display

Shown in app

T3: Stop capturing and sharing

Face-down

Press “Stop Record-
ing”

T4: Capture only for oneself and
do not share with others

Stand-on-side

Press “Stop Sharing”
if currently sharing

T5: Capture and share with co-
located peers

see T1

see T1

T6: Delete the last 30 seconds of
captured data

Shake device

Press “Delete 30 Sec”

T7: Lock current sharing session

Double-tap device

Press “Lock Session”

T8: Verify with how many peers

Shown on small

Shown in app

the system is sharing data display
T9: Stop capturing and sharing | see T3 see T3
T10: Capture only for oneself see T4 cee T4

and do not share with others

Table 5.1. List of tasks and corresponding device actions.

and the researchers’ notes [219]]. This technique helped us to organize partic-
ipants’ feedback related to our TUT’s physical design, its interaction, as well as
participants’ perceived usefulness of the system.

5.4.2 Recorded Meetings and Tasks

To better simulate a real meeting scenario, we created two videos depicting a
meeting between an instructor and a teaching assistant, in which they discuss
the progress of a course they teach together. In the video, both attendees cap-
ture the event using a wearable camera, while one of them also uses a wristband
audio recorder. During the video, the attendees discuss both non-sensitive and
sensitive issues (e.g., student grades), thus requiring several control actions on
the capture and sharing system. Each time such a control point comes up, the
“actors” explicitly announce this need for control (e.g., “Let me pause recording



130 A Tangible Interface for Controlling Memory Capture and Sharing

Video 1 | T1 | T2 | T3 | T4 | T5 | T6 | T7 | T8 | T9 | T10
Video 2 | T1 | T2 | T3 | T4 | T9 | T5 | T7 | T8 | T6 | T10

Table 5.2. Task sequence for both videos.

for a moment!” or “Can you delete this part, please?”), yet without explicitly stat-
ing what exactly they have to do. A small icon at the bottom-right corner of the
screen additionally triggers the need for action. To allow for different participant
reaction times, the study administrator would then remotely pause the video and
resume it only after the participant would perform an action, or would say that
they would not know what action to perform. For each action, we measured
participants’ reaction time and task completion rates.

In total, there were 10 tasks involving all five control actions that were pre-
sented previously (3 of them were repeated twice), plus two additional informa-
tion gathering tasks related to the feedback given by the control device. Study
tasks and the corresponding actions are summarized in Table

The produced meeting videos are slightly different in order to minimize par-
ticipants’ learning bias when they have to watch both videos for trying the two
interfaces. In addition, the videos also feature slightly different task sequences
(see Table for comparison). During the study the videos and control inter-
faces were used together in a balanced order, that is, both videos were used in
10 runs with each interface.

5.5 Results: Interface Comparison

We report study results of the comparison of the two interfaces. Specifically, we
report on the efficiency and effectiveness to perform the study tasks. We then look
at the aspects of usability and learnability, as well as intuitiveness end enjoyment.

5.5.1 Efficiency and Effectiveness

Initially we compared both interfaces in terms of effectiveness (i.e., task comple-
tion rate) and efficiency (i.e., task completion time). For each device we collected
data from 10 interaction tasks from a single participant, resulting in a total of
400 tasks performed from by 20 participants with both control interfaces.

For computing the task error rate, we only looked at the human error aspect
and did not consider mistakes from the system (e.g., if the MemStone device
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Figure 5.5. Average task completion rate across all participants. See Table
on page for a description of tasks T1 through T10.

failed to recognize the performed gesture). As displayed in Figure partici-
pants on average performed equally well with both interfaces. However, when
looking at individual tasks, MemStone users performed less mistakes than phone
users in tasks related to ‘capturing and sharing with others’ (T1 and T5) and ‘cap-
ture only for oneself’ (T4 and T10). The challenge with performing tasks T1 and
T5 using the phone Ul is that one has to press two buttons, one for recording and
for sharing, as opposed to the single gesture (face-up) with MemStone. From our
observations, we saw that most participants pressed only the “start recording”
button in these cases. In two cases, we observed that participants confused the
MemStone gesture for performing T4 and T10 (i.e., stand-on-side) with those
of T3 and T7 (i.e., face-down and double-tap, respectively). When using Mem-
Stone, two participants failed to do T2 (reading the elapsed time of the current
capturing) and T8 (verifying that that the preceding task on locking the shar-
ing session) since they did not notice that such information was displayed in the
MemStone’s screen.

For each task we also measured the time between the moment the visual
clue was provided (an icon being displayed in the video of the recorded meet-
ing) to the moment participants performed the correct action. Such information
was precisely computed from the session video recordings using the timestamps
overlaid on those videos. For all tasks, MemStone outperformed the phone in-
terface in this aspect: using the MemStone, participants could perform a given
task on average 2.5 times faster than when using the phone interface (see Figure
[5.6). We conducted a repeated measures ANOVA to compare the effect of control
interface (MemStone and Phone app) on task completion times. The results show
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Figure 5.6. Average task completion time in seconds (includes data from suc-
cessfully completed tasks only). Error bars represent 95% confidence interval.

that MemStone was significantly faster than the Phone app (Wilks’ Lambda =
0.485, F(1,180) = 190.799, p < 0.001)ﬂ Moreover, we performed a Sobel
test [[220]] to check if these results are not due to the fact that some of our partic-
ipants had not recently used an Android phone (and that they could have spent
more time performing the study tasks using the Android-based test phone, thus,
making the control with the phone slower). Test results confirmed that the ef-
fect of control interface on task execution times was not significantly mediated
by participants’ smartphone ownership (z = 0.056, p = 0.954).

This was also reflected in participants’ perceptions during the interview ses-
sions, where the MemStone was perceived to be more efficient in performing the
given actions:

“I think the dedicated device is better, it is just easier. You do not need
to check your phone and you are not losing time. While in the phone
maybe you get a message and you want to read it, hence it is not effi-
cient.” (P13, similarly P14, P19, P20).

5.5.2 Perceived Usability and Learnability

We also compared the two interfaces with regard to users’ perceived usability
and learnability. After watching a recorded meeting and using one of the two in-
terfaces for controlling meeting capture and sharing, participants evaluated the
interface using a SUS questionnaire. SUS is a ten-item questionnaire that has

4Statistics were computed using data only from successfully completed tasks.
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been extensively used by usability practitioners for assessing the perceived us-
ability of a system [221]]. Recent work [222, [223]] suggests that the SUS result
can be decomposed into two components for measuring both usability and learn-
ability of a system. After applying this approach, the average usability scores for
both the MemStone and the phone interfaces are 75.31 (SD=18.38) and 82.81
(SD=16.42), respectively. This suggests that the gesture-based MemStone pro-
totype is in principle usable above average. However, its lower score against the
phone app reflects user concerns regarding the necessity for an additional control
device, which we discuss in section |5.8

As for the learnability scores inferred from SUS results, MemStone scored an
average of 78.75 (SD=22.61) and the phone’s score is 89.37 (SD=13). Unsur-
prisingly, the phone — being an already established concept and an artifact that
most of us know how to use and operate — scored higher than the novel inter-
face concept of MemStone. All phone buttons were also unambiguously labeled,
making it easy to use without having to remember much. However, the relatively
small difference in their scores implies that participants find MemStone not sig-
nificantly harder to learn. This was also highlighted by some participants during
the interview. They believed that MemStone could be quickly learned also by
children:

“I think it was a bit easier to use than the phone app. You do not have to
unlock your phone and choose the right button, so it was quite intuitive
and user friendly. And I think even children would be able to use this
correctly and learn it in few minutes.” (P2, similarly P7, P14).

5.5.3 Perceived Intuitiveness and Enjoyment

During the interview sessions, we asked participants to reflect on how they would
compare these interfaces in terms of intuitiveness and enjoyment. Enjoyment is
an important part of the usability of a product, as it positively influences both a
user’s willingness to learn and their tolerance for interface shortcomings [224].
Participants acknowledged the fact that the phone UI was clear and intuitive, and
that it was similar to many other apps that they use everyday:

“The phone is more intuitive. You have the feedback you know exactly
what is going on. As for the buttons you know what each of them does.”
(P13, similarly P19).
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However, they also regarded the MemStone as almost equally intuitive to
interact with:

“The phone is labeled, something you use everyday. It is easy and more
intuitive. It does not mean that the box [MemStone | was harder, it was
also really easy to understand.” (P19, similarly P14, P16, P20).

Others believed that the MemStone could actually become more intuitive once
users would get to know it better:

“Once you pass the learning phase it becomes more mechanic, probably
without thinking so much you would just use the MemStone.” (P17,
similarly P5).

Participants were more decisive in expressing their opinion on the devices’ per-
ceived enjoyment. A clear majority said that using the MemStone was more enjoy-
able and fun (P1 but also P2, P4, P6, P9, P13-P20). The reasons for this choice
were various: the phone UI was just another app (P13, P14, P16); the MemStone
was a novel concept operated by physical manipulations and is something that one
will not encounter frequently (P13-P20); or also because the phone is more inva-
sive and requires active user focus:

“The phone took out the fun the moment I had to stop whatever I was do-
ing and focus on it to search the necessary functions. That was not fun!
The cube [MemStone Jwas definitively more fun.” (P20, similarly P17).

Others compared the experience of using the MemStone with that of a toy:
“The MemStone is more fun to use, it is a toy essentially...” (P13),
while another participant got emotionally attached to it comparing it with a pet:

‘“And I like the vibration, it becomes like a pet in a way. I guess you can
get very emotionally bonded to it.” (P20).

5.6 Results: Long-term Gesture Memorability

In addition to exploring several characteristics of MemStone gestures, including
efficiency, enjoyment, learnability and usability, we also explored gesture memo-
rability. Prior research highlights memorability as a key characteristic of gesture-
based interfaces [225], [226]], since easy-to-remember gestures can reduce mis-
takes and frustration (especially when one is focused on other important things
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9. Which of the following actions will be triggered
when performing the face-down gesture?

(O 1. Capture meeting data only for myself. (O 5. Delete the last 30 seconds of captured data.

(O 2. Capture and share data with (O 6. This gesture wasn't used in the previous
meeting attendees. study.

(O 3. Don't capture and don't share any data. (O 7. I don't remember the action for this gesture.

(O 4. Lock sharing to only the current
set of attendees and don’t share with
anyone that might join afterwards.

Figure 5.7. lllustration of a survey question from the follow-up study. A small
video shows how the gesture in question is performed.

during a work meeting). Additionally, memorability can also increase adoption
of a gesture-based interface [[227].

After conducting the comparative user study, we administered a follow-up
study with the goal of investigating participants’ long-term memorability of the
MemStone’s physical gestures. This follow-up inquiry was conducted four months
after the first study. We contacted all prior participants by email and asked them
to participate in a short follow-up online survey. Eleven participants from the
prior study (55%) participated in the follow-up study. As in the first study, no
incentive payment was provided to participants for this follow-up study.

5.6.1 Follow-up Study

The survey contained two types of multiple-choice questions. The first 10 ques-
tions showed a MemStone gesture (e.g., “face down”) and then asked partici-
pants to select which of the given five actions would be triggered after perform-
ing the gesture (as illustrated in Figure[5.7)). For each gesture the survey showed
a small embedded video of how it is performed. As the original study only had
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five gestures for five actions, we included five fake gestures that were not used in
the previous study, yet which were somehow similar to the original five gestures:
1) squeeze, 2) rotate, 3) swipe, 4) tap-on-table, and 5) slide-device-back-and-forth.
The fake gestures were meant to understand how memorable the original ges-
tures were. Given that not all of the 10 gestures mapped to an actual action,
participants could answer “This gesture was not used in the study”, as well as “I
do not remember this gesture”. A second part of the survey questions then in-
vestigated the reverse, i.e., the mapping of actions to gestures. Here, 5 questions
showed an action (e.g., “pause recording”) and participants then had to select
which of the 10 previously shown gestures (i.e., 5 real gestures and 5 fake ges-
tures) would trigger this action. An 11th option again was “I do not remember
the gesture for this action”. All 15 questions were presented to participants in
random order.

5.6.2 Results

Figure provides an overview of the results from the long-term gesture mem-
orability survey. From participants’ individual responses (columns P1 to P11 in
Figure |5.8)) we observe that five participants answered all questions correctly,
three participants have a correct response rate between 60% and 73%, while
the other three participants (P5, P10 and P11) could only successfully answer
less than 60% of the questions. We investigated further their individual perfor-
mances achieved during the first study. There was no indication for P5’s low
performance, however, for both P10 and P11, their low level of engagement dur-
ing the first study and also their lack of interest for extra electronic devices seem
reasonable explanations for their low performance. This can also be confirmed
by their perceived SUS scores for MemStone’s usability (32 and 55).

When looking at the gesture-action mapping (see rows Q1 to Q10 from Fig-
ure with a combined order of gesture and related action questions), both
the ‘face-down’ gesture and the ‘no capture’ action were successfully mapped in
90% of the cases. The second best such mapping (with a correct response rate of
72%) is for the ‘shake’ gesture and ‘delete 30 seconds of data’ action. The weak-
est mapping with only 45% was for the ‘double-tap’ gesture and the ‘lock sharing’
action. By further investigating this association, we observed that in four cases
the ‘double-tap’ gesture was mistaken with another action (once with ‘delete 30
seconds of data’ and three times with ‘capture and share data’). When asked to
identify the gesture for the ‘lock-sharing’ action, four participants said that they
do not remember it, and two others selected a wrong gesture (‘face-down’ and
the ‘squeeze’ fake gesture).
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Question

P1 P2 P3 P4 P5 P6 P7 P9 P10 P11 P12 | success

rate (%)
Q1: "Face-up" gesture 63.6
Q2: "Capture and share" action 81.81
Q3: "Shake" gesture 81.81
Q4: "Delete" action 81.81
Q5: "Stand-on-side" gesture 63.6
Q6: "Capture for oneself" action 81.81
Q7: "Double-tap" gesture 54.54
Q8: "Lock sharing" action 45.45
Q9: "Face-down" gesture 100
Q10: "No capture" action 90.9
Q11: "Slide" gesture 90.9
Q12: "Squeeze" gesture 81.81
Q13: "Rotate" gesture 72.7
Q14: "Swipe" gesture 63.63
Q15: "Tap-on-table" gesture 54.54

Participants' success rate (%) 100 100 60 100 40 66.6 100 100 73.3 40 33.3

I Correct guess Il Wrong guess  [lNZHl Not remembered

FP False positive: a fake gesture was mistakenly selected for a specific action

FN False negative: a gesture was mistakenly classified as not being used in the study

Figure 5.8. A heatmap illustration of the distribution of answers from the survey
on long-term gesture memorability. Odd numbered questions from 1 to 10 ask
participants to map a given gesture to an action, while even numbered questions
ask the opposite. Questions from 11 to 15 quiz participants on the action that
would be triggered from a fake-gesture that was not used in the first study.

Among the fake gestures, i.e., physical gestures that were not used in the first
study (rows Q11 to Q15 from Figure[5.8)), the ‘tap-on-table’ and the ‘swipe’ were
wrongly selected as to trigger an action in 3 and 2 cases, respectively. In line
with the previous outcome, the ‘lock sharing’ was the mostly mistaken action to
be triggered by such fake gestures.

All in all, even after four months, participants were able to successfully recall
the relationship between most physical gestures and control actions. Apart from
the association of the ‘double-tap’ gesture and ‘lock sharing’ action, all others
gesture-actions were correctly identified in more than 60% of the survey ques-
tions, which suggests that they can be successfully used with the proposed tan-
gible interface concept.
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5.7 User Perceptions of the MemStone Device

We now report the qualitative results from the open-ended discussion session.
This data unfolds users’ perceptions of the MemStone interface, specifically fo-
cusing on the MemStone’s design, interaction technique and visibility in convey-
ing feedback to users.

5.7.1 Suggested Design Improvements

Participants generally liked the concept of the rectangular-shaped box. They also
liked its bi-colored design, the two LEDs (which indicate capturing and sharing
activities), and its central screen. However, they proposed several improvements
related to its physical design.

Participants believe that making it smaller and lighter would also make the
device to better fit their hands, thus being also easier to be used (P2, P13). More-
over, it would also become less of a burden to carry it with them:

“I think you can do this device smaller, like a USB stick. I have 3-4 sticks
with me and it is not a big problem.” (P13, similarly P14).

Additionally, the current prototype was perceived as being a bit slippery, so de-
signers should take into account materials which provide better grip:

“The current prototype is a bit slippery and it can easily escape from the
hands.” (P15).

To further improve the device’s feedback, participants suggested to include an ad-
ditional LED for the ‘lock sharing’ action, similarly as for the ‘capturing’ and ‘shar-
ing’ actions. Participants expressed contrasting opinions regarding the amount
of information displayed on the MemStone screen. Some would like to have
a less cluttered screen that would show only the number of peers one is shar-
ing data with, together with the elapsed time of sharing, while others would
want even more information, such as as detailed profile information on the con-
nected peers and their physical distance. This suggests that one should con-
sider a customizable interface that can be switched between such simple and
comprehensive views.
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5.7.2 Interaction Techniques
Gesture Affinity

Study participants expressed an affinity for the underlying physical gestures. The
mapping between gestures and their control actions was well aligned to users’
mental models, thus it was easy to associate them during the study:

“I think it is very intuitive, if you have it face-up, it kind of radiates
through versus everybody sitting around, facing yourself it is just you
and face-down is off.- You have chosen the functions nicely with the phys-
ical movements and the device’s position.” (P7);

“Once you rationalize them, you see that some are quite easy, such as
turning on the other side. But also other ones pair to their actions and
make absolutely sense. From that point of view they become easy to
remember and can be used without thinking.” (P16, similarly P9, P14,
P17-P20).

P16 further commented on the low physical demands for performing such ges-
tures, suggesting that the interface can be also operated by people with slight
physical disabilities.

Gesture Challenges

Users also expressed some concerns and challenges with the ‘shake’ gesture, as
well as with the ‘double-tap’ one. While the mapping between ‘shaking’ and
‘delete data’ was not necessarily questioned, it was seen as a rather hard-to-
perform gesture (P4, but also P5, P7, P14, P17, P18). Moreover, it was suggested
that it may be even considered as not polite to perform it while one is speaking
in a meeting. Suggested alternatives were ‘swipe’ or ‘squeeze’.

While ‘double-tap’ was considered an easy-to-perform gesture, most partici-
pants expressed their concerns regarding its relationship with the ‘locking shar-
ing’ action. They also believe that ‘locking’ should be extended beyond a binary
lock/unlock model, so that one can be more selective on whom to keep and re-
move from their locked session.

5.7.3 Role of Device Visibility

Participants appreciated the fact that MemStone is more visible and transparent
than the phone in conveying its feedback to all co-located users. Such openness
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had a two-fold effect on participants’ perceptions about the device. First, partic-
ipants said that they felt more confident about their privacy. For instance, should
users agree not to record some part of the meeting, then by looking at others’
MemStones they can easily understand if they are behaving according to the
agreed protocol:

“If there’s something that doesn’t have to be recorded and I ask for it,
then I can see if people are following. This gives me more confidence.
It’s a way to see what people do and how they behave; it’s an additional
feedback.” (P15, similarly P4).

The increased confidence, however, may also come with a cost. Some partici-
pants said that the device’s transparency could also influence their data capturing
and sharing practices:

“It would extremely change my behavior even if I might try not to let it
influence me. Thinking that somebody is watching me, or even record-
ing me, you become self-aware, it changes your behavior, you want it
or not.” (P17, similarly P2, P4, P14).

However, others suggested that their decision to share or not actually depends on
the context and on the other attendees (P13, P15, P18, P19). This outcome is in
line with prior work [228]], which suggests that knowledge sharing behavior is
influenced by multiple factors.

Lastly, some participants expressed their belief that by observing the action
of others one can increase their meeting concentration:

“Since one is recording, then maybe someone will say something impor-
tant and I should record too.” (P14, similarly P16, P17).

5.8 Discussion

Overall, our TUI was efficient in allowing users to control access to, and sharing
of, captured experiences in a meeting context. It was also perceived as user-
friendly and enjoyable to use, which is in line with findings from Hoyle and
colleagues [[105]], suggesting that users preferred an in-situ control method rather
than other post-hoc approaches, such as [80, [112]].

MemsStone’s efficiency and effectiveness, but also our participants’ affinity to
its gestures, highlight that the device’s affordances (i.e., range of possible activ-
ities) are visible and clear to users. This is in line with findings from Sheridan
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and colleagues [209] on the affordances of box-shaped interfaces, also follow-
ing Norman’s insight that such affordanes are useless if they are not visible to
users [229]. We also found that participants could relatively well remember the
physical gestures and their corresponding actions even when asked four months
after. Our results suggest that a reasonable relation between gestures and their
actions is what makes them memorable, as it is also suggested by Nacenta et
al. [227]. Moreover, such memorable gestures do not only confirm users’ per-
ception of an easy-to-use device, but they also suggest that MemStone can be
reliably used in infrequent settings, e.g., monthly meetings.

In general, most of our study participants expressed the desire to use Mem-
Stone in a context where devices are provided at the event location, e.g., meet-
ing rooms (P2, P5, P13, P14, P15, P17, P19, P20). However, despite our pro-
totype outperforming a comparable smartphone application, the interview ses-
sions uncovered our participants’ concerns for having to carry yet another de-
vice. Participants expressed their disinclination to carry a personal MemStone
device with them during their everyday activities. While this suggests that con-
venience trumps efficiency [[230], it might also be a as-of-yet too infrequent use
case (controlling capture devices) to be of much use to people. A future filled with
a plethora of capture situations may very well change this perspective. Never-
theless, we believe that this requires additional investigation to shed more light
on users’ concerns.

MemStone is more efficient in capture and sharing controls than a smart-
phone for static experiences where a user does not move very often (e.g., in work
meetings). This allows users to perform the necessary physical gestures easily,
but also the device can pick them up with a higher accuracy (since there are no
other physical movements that could trick the device’s gesture detection logic).
On the other hand, a smartphone might be better for other activities where users
are in constant move (e.g., having a walk with a friend). Here, a touch-based
interaction might be less error-prone than MemStone’s physical gestures. Even
assuming a smaller MemStone that can fit in a pocket and can be easily carried
around, it still can be more cumbersome for one to perform specific gestures,
especially those that require the MemStone to be put in a specific position (e.g.,
face-down, face-up, and stand on side position).

We believe there is value in further improving the initial concept of MemStone
based on our participants’ suggestions. Thus, we highlight several improvement
ideas in this section. One such improvement that follows naturally is to allow
users to share their memories even with others that were not part of the same
event. For example, by ‘touching’ two MemStones together, users could share
data captured in the last hour, e.g., following a similar sharing process from the
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work by Geronimo et al. [231]] on mid-air gestures. Furthermore, our results
highlight an interesting dichotomy regarding the level of presented information
on the MemStone’s screen. On one hand, some participants liked a minimalistic
screen showing as few as possible information. On the other hand, other par-
ticipants advocated for a more comprehensive description of the capturing and
sharing practice. Based on this, we believe that the MemStone can be configured
with two such display modes.

The current prototype is passive and it responds only to user input. As a future
improvement, the MemStone can be made more proactive and context-aware. By
inferring the context of its owner (e.g., location, event, time of day, etc.) it can
also automatically suggest sharing decisions, for instance by beep or vibration.

In addition to physical gestures, MemStone can be extended with voice in-
teraction, similarly as the emerging intelligent voice assistants (e.g., Amazon
Alexa, Google Home or Apple’s Siri). However, reflecting on many security in-
cidents with these devices [232], 233[], this complementary feature could create
more tensions among the MemStone users, instead of capitalizing any user ben-
efits. Related to the aspect of security, our current MemStone prototype does
not authenticate user gestures. A malicious person can ’easily steal’ one’s Mem-
Stone and then delete one’s experiences by shaking the MemStone. This can
be prevented by authenticating all user actions. One can imagine a MemStone
equipped with several fingerprint sensors or even the whole surface acting as a
sensor to allow for a seamless authentication. Additionally, the way how the ges-
ture is performed could in itself be used to identify the real owner of the device,
following similar authentication systems based on physical gestures [234, 235I].

So far we focused our discussion on ideas that can further enhance user expe-
rience with the MemStone. But there is another dimension of how we envision
it to be used, which goes beyond acting as a personal memory control interface.
In fact, the concept of such a visible and open interface can help users navigate
social constraints inherent in lifelogging. Unlike taking pictures using regular
phones or cameras, the act of capturing pictures automatically using wearable
cameras can create discomfort and social tensions. As we previously described in
Section automatic capture equipment can create fear of covert recordings
as they tend to capture others without consent. These fears have been manifested
in several unpleasant situations in the past. In 2012, Steve Mann - a lifelogging
pioneer — was physically assaulted in a McDonald’s restaurant in Paris for wear-
ing digital eye glasses [236]]. A similar incident happened later on in 2014: while
a person was entering a bar in San Francisco, the situation escalated and she was
was verbally assaulted because of her Google Glass [237].
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Koelle et al. [[106] think that non-existent or poor feedback mechanisms of
wearable cameras are to be blamed for the lack of bystander awareness, which
prevents them from reacting on or objecting to being recorded. In an effort to
increase bystander awareness of capture situations, they propose eight camera
designs that go beyond having a simple LED status light. However, extending
the camera design with additional physical artifacts may not always deliver the
intended result. As we discussed in Chapter [4] wearable cameras are very often
obscured by hair or clothes. This would make it hard to observe any such phys-
ical feedback artifact on the camera. What is more, following the paradigm of
ubiquitous computing, the already diminutive cameras will become smaller and
smaller until we will start implanting them in our lenses or body, hence making
them invisible to others.

In light of this, we believe that the concept of a tangible interface such as
MemsStone, can offer a viable complementary feedback alternative. While a per-
son sitting across us may not be able to verify whether our camera is on or off
simply by looking at it, she is more likely to infer this information by verifying
the color of our MemStone (i.e., seeing the orange colored back side of Mem-
Stone is an indicator that we are not recording). Others would furthermore
know whether we are also sharing such captured data or we are only captur-
ing for ourselves (i.e., if our MemStone is standing on side it means that we are
not sharing any data with anyone). Moreover, the MemStone can also be used to
convey privacy messages to other lifeloggers and explicitly express our disagree-
ment from appearing in their recordings. For instance, by putting our MemStone
face-down we can decide to opt-out from the recordings of co-located others. For
this to work, cameras of others lifeloggers need to detect and recognize the po-
sition of our MemStone, and consequently block our face on the images that
capture. Prior work has proposed similar approaches for privacy-respecting cap-
ture. Using techniques from computer vision they can block faces of bystanders
by recognizing their hand gestures or particular visual markers that they wear,
such as colored hats or vests [95] 238, 239]. Obviously one can also mistakenly
detect a MemStone of another person sitting close us, who might have different
privacy preferences than ours. Hence, any approach requires careful design and
engineering in order to avoid this risk.

As a possible limitation of our study, we acknowledge the fact that partici-
pants had to pretend that they are participating in a recorded meeting, which
they watched through a laptop. However, even if we would have organized real
meetings with our participants, they would also have to be scripted in one way
or another, and hence would still be just as artificial as the recorded meetings.
Nevertheless, we believe that evaluating the prototype in such lab scenarios still
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allowed participants to control different aspects of a meeting capture scenario.
Results obtained from this study allow us to answer our research questions about
the comparison of our interface with a more traditional smartphone interface,
and explore participants’ perceptions on our TUI prototype.

5.9 Chapter Summary

In this chapter we investigated the feasibility of controlling the capture and shar-
ing of experience data through in-situ physical gestures. To this end, we pre-
sented MemStone, a tangible user interface for achieving fine-grained control
over those practices. MemStone is a small 3D printed box powered by an em-
bedded computing platform. Its rectangular shape and bi-colored design allow its
owner, but also other co-located users, to infer its current operation at a glance
and even from a distance. On its front side, there is a central screen and two
LEDs, that all together provide additional feedback regarding the data capturing
and data sharing processes.

MemStone supports five different controls regarding how one captures and
disseminates experience data. Each of those controls is triggered by performing a
physical gesture using the MemStone. For instance, putting the MemStone ‘face-
down’ stops one’s gear from sourcing any information and prevents the system
from sharing it with other co-located peers. Contrary to this, putting the Mem-
Stone ’face-up’ triggers data capture from the user’s lifelogging gear, as well as
informs co-located others that the user is willing to exchange data with them.
Additional controls include: capture data only oneself and not share it with oth-
ers, lock a sharing session and prevent peers appearing later join the sharing
practice, and delete the last 30 seconds (or more) of captured data.

We evaluated our prototype in a meeting capture scenario with 20 partici-
pants. We found that our participants were significantly quicker in performing
data capturing and sharing controls using MemStone than using a more conven-
tional mobile app interface. The concept was highly valued by the participants,
it was perceived as user-friendly, quick to learn, and easy and fun to use. Par-
ticipants also expressed a positive attitude for the physical gestures and their
relationship with the control actions. We also found out that participants were
able to remember the control gestures even after a long time period, which sug-
gests that such TUI is suitable to be used in less frequently occurring events.
However, in spite of its better performance and its high perceived value as an
ambient-based control device, participants were very much divided about the
convenience of having to carry an additional personal control device with them
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for their everyday activities. Lack of frequent data capture practices could well
be the reason of why our study participants did not perceive the benefits of a
dedicated control interface.

Finally, we believe that a tangible user interface can help users navigate some
of the social constraints inherent in automatic data capturing systems. Their open
and transparent feedback mechanism can increase recording awareness, allow-
ing bystanders to react or even object to being recorded. Additionally, Mem-
Stones could also convey privacy preferences to the cameras of others. For ex-
ample, A MemStone that is positioned 'face-down’ is an indicator that its owner
does not want to be recorded by others. Consequently, upon recognizing such sit-
uation, a privacy-respecting camera would then blur any face that appears close
to such MemStone.
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Chapter 6

Access Control for Memory
Augmentation Systems

In Chapters[3H4 we described our approach based on trusted camera sensors for
recording, storing, and exchanging experience data with other co-present peers
in a secure fashion. With the goal of protecting users’ privacy, in Chapter |5| we
furthermore presented a tangible interface (MemStone) for regulating different
aspects regarding the capture and sharing of experience data through usable in-
situ controls. Our study results indicate concrete benefits when using MemStone
in collaborative context, where captured data is meant to be exchanged between
all users that are experiencing an event together.

Irrespective of the actual interfaces for influencing how memories are cap-
tured and shared, this requires the availability of a context-aware access control
mechanism that can both express and enforce user sharing preferences. Address-
ing these controls requires filtering both the input to users’ memory reposito-
ries (i.e., controlling memory capture) and the output from those repositories
(i.e., controlling sharing of captured data) based on a set of user preferences.
Figure depicts our holistic approach to a privacy-aware and secure system
for human memory augmentation. In this chapter, we set out with the goal of
surveying existing access control mechanisms and evaluating their suitability to-
wards such demands of pervasive memory augmentation systems.

At some level, this may seem to represent a traditional data access control
challenge. However, as indicated by prior research, conventional access con-
trol models, such as, Mandatory Access Control (MAC), Discretionary Access
Control (DAC), and Role-based Access Control (RBAC), are designed for oper-
ating systems and closed databases and are not suitable for context-aware per-
vasive systems [[18, 240]. In fact, they are either not enough flexible and too
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Figure 6.1. A holistic approach towards a privacy-aware and secure system for
human memory augmentation.

structured, or not sufficiently robust to support such dynamic user needs. To this
end we shift our focus on the novel class of context-aware access control solu-
tions. We identified existing access control systems from several survey studies
centered on privacy protection in pervasive systems, social networks, and col-
laborative systems [[18], 242]]. We also looked at existing papers with
more than 10 citations indexed in Google Scholar that had “context”, “perva-
sive computing”, “privacy”, and either “access control” or “policy language” in
title, abstract, or keywords. We selected only those papers that also outlined ex-
amples (at least conceptually) showing practical implications of the proposed
access control system.

We start out by formalizing the aforementioned needs and delineate a finer-

grained set of capture and access control requirements. In doing so, we rely on
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findings from the literature and from our own experience working with memory
augmentation systems. Finally we evaluate the suitability of novel access control
systems with respect to the elicited requirements. Our analysis highlights that
there is a growing interest from the research community for addressing privacy
and security challenges of pervasive systems. However, there is no one-size-fits-all
solution that considers the demands of pervasive memory augmentation systems
and that more work is needed to efficiently address them. In this chapter we
address the second part (underlined below) of the following research question:

* RQ4: What interfaces and policy-based access control models can we use
to exercise control over data capture as well as to prevent the disclosure of
private and sensitive information when sharing experience data?

Parts of this chapter are based on the following publication:

* A. Bexheti and M. Langheinrich, “Understanding Usage Control Re-
quirements in Pervasive Memory Augmentation Systems,” in Proceed-
ings of the 14th International Conference on Mobile and Ubiquitous Mul-
timedia, ser. MUM '15. New York, NY, USA: ACM, 2015, pp. 400-404

6.1 Control Requirements

In this section we explore each of the aforementioned control needs and derive
a comprehensive set of capture and access control requirements (see Table [6.1).
Our findings are motivated by past work in the areas of memory augmentation
systems and lifelogging.

6.1.1 Controlling Experience Capture

It is crucial for users to control which of their experiences will be captured and
how will this be achieved. This is not only important for shaping how they will
remember their prior experiences, but also for reducing the chances of capturing
any private and sensitive information in the first place. With respect to this, we
foresee the following control requirements.

CR1: Context-based experience capture. Most of the time the recording sys-
tem will be by default activated and will capture everything in an implicit manner.
However, we believe that users would want to control which events cannot be
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Requirement

CR1: Context-based experience capture
CR2: Control capture data types and frequency
CR3: Control capture devices

CR4: Sharing based on context and interpersonal relationships
CR5: Control sharing data type and granularity

CR6: Support for automatic data obfuscation

CR7: Delayed data sharing

CR8: Time-limited sharing and access revocation

CR9: Support for obligations.

CR10: Support for collective ownership

Table 6.1. Elicited control requirements.

recorded should they have any concerns on what is being captured. While one
can prepare daily (or even weekly) policies to specify which upcoming events she
would like to have captured, this requires active user involvement and can only
work if one has a fine-grained plan of their day or week. We believe that a more
practical and realistic approach is to filter based on context. For example, one
can record all meetings at work, weekend activities with family, or school lec-
tures and seminars. Using the same control mechanism one can also say which
events they would not like to be captured.

CR2: Control capture data types and frequency. In certain situations one may
want to control how an experience is captured, i.e., which sensors are used and
at what frequency. Capturing both images and audio-snippets may be desirable
for leisure activities, e.g., a hiking trip with the family, but recording audio could
be problematic and not acceptable for work-related activities, e.g.., recording a
meeting while company’s financial situation is being discussed. Moreover, for
situations where there are not so many scene changes (e.g., in a meeting room)
it may be desirable to capture fewer images (since otherwise most of the images
will be similar and portray the same scene).

CR3: Control capture devices. In addition to memories captured by their own
devices, users can also benefit from data captured by infrastructure devices, as
well as data captured by the devices of others. The drawback with such an ap-
proach is that one has to rely on capture devices that are owned and controlled
by third-parties, as opposed to, e.g., personal cameras. As we saw in previous
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chapters, a malicious service provider may intentionally modify data prior to
sharing them with the user, in order to influence how the user will recall an
event and eventually manipulate the user’s episodic memory. Therefore, we be-
lieve that users should be able to specify the different sources they are willing to
accept data from.

6.1.2 Memory Access Control

After an experience has been captured and stored in a secure storage, one has to
regulate access and specify who can obtain which data. We previously described
our system that enables a secure exchange of captured experiences among co-
located peers (Chapter[d). We furthermore presented a tangible interface for con-
trolling some aspects of such sharing practice through physical gestures (Chap-
ter[5). Here we go a step further, as we describe a series of finer-grained controls
for addressing privacy risks stemming from the sharing of experiences.

CR4: Sharing based on context and interpersonal relationships. Similarly
as in (i.e., using context to control experience capturing), context can also
play an important role in specifying which memories are deemed shareable. For
example, one can decide that all memories of work-related events can be shared
with (co-located) colleagues. To this end, the system should also permit one to
specify to whom they are willing to disclose these data. Prior work has shown
that interpersonal relationships among users (e.g., friends, work colleagues) can
be an intuitive way of specifying recipients of data in access policies [240]].

CR5: Control sharing data type and granularity. Context can offer a first-
level of control but it might not be enough in certain situations. Whilst an event
might be flagged as shareable, there could be particular moments that, if shared,
could potentially risk users’ privacy. For instance, in a meeting capture scenario
where data is seamlessly shared with all participants, attendees agree to leave
their capture gear on even during the meeting break because there could be some
fruitful discussions happening at that time. However, one user opens their lap-
top and in this case, their camera could have captured the laptop screen (e.g.,
while entering credit card details) or the card itself (showing the numbers printed
on the card). The user would clearly not be happy sharing any of the images
captured around that time. In fact, findings from several studies highlight the
necessity for such control when the sharing of captured experiences is consid-
ered [58], 97, 105, [243]].
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CR6: Support for automatic data obfuscation. Denying access to images that
contain sensitive information can protect users’ privacy but at the same time
it limits the volume of shared experiences. Instead, a user might still share a
modified version of those images with sensitive parts being obscured or blurred.
Ideally, such blurring can happen automatically without active user involvement.

CR7: Delayed data sharing. A prior work by Efstratiou et al. [244] studied
user privacy concerns when sharing sensory data in social network sites (e.g., lo-
cation tracking, conversation monitoring and interaction with physical objects).
The authors suggest the possibility of delayed sharing of potentially sensitive
information as a way of increasing user control over their data. This can be a
complementary step for the automatic data obfuscation operation (e.g., a user
can manually verify if the system has properly cleaned the sensitive informa-
tion), or it can be a fail-safe approach handing control back to the user in case
the system fails to automatically clean the data. This would then allow users
to manually run scripts to, for instance, identify memory cues that can contain
sensitive information, and perform the actual data cleaning.

CR8: Time-limited sharing and access revocation. Yet another useful control
is the possibility to share memories for a limited time frame (e.g., 1 week or
1 month) [245]]. During that time, recipients may access the memories one is
willing to share with them. Once the time expires, the data sharing link will not
be accessible anymore and access will be revoked to any data that has not already
been downloaded. This control is motivated by similar time-limited sharing ap-
proaches employed in several location sharing systems [246]].

CR9: Support for obligations. A user that is willing to share her personal mem-
ories might do so under certain conditions or obligations [21]]. An obligation can
be a pre-sharing agreement regarding how shared data can be used, how should
it be stored and processed or whether it can be re-shared and disseminated with
others, etc.

CR10: Support for collective ownership. Looking at the different stakeholders
of memory augmentation systems, Gurrin [|8]] categorizes them into four groups:
1) the lifelogger is the individual who captures an experience using their own
recording gear and stores captured data in a personal repository; 2) the bystander
is a person who has been accidentally captured and appears in one’s data, but
without having interacted with the lifelogger; 3) the subject is a person that the
lifelogger has been actively interacting with and appears in several instances
within the captured data; and finally 4) the host is an individual or an entity
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that manages the storage of one’s lifelog (can also be the lifelogger herself).
Gurrin assumes a simple ownership model: captured data is owned by the person
who captured it (i.e., the lifelogger in this model). Davies et al. [9]] point out
that this simple ownership model may not be appropriate in situations where
captured data is used as a memory cue. In their view it is not clear who "owns"
the memories of collective events, e.g., a meeting involving three people. The
challenge here is that there are multiple people that contribute with their data
to create the memories of the event and that in some way they are all owners
of such data. Moreover, if meeting attendees discuss about some secret matters
of a company, than the the company representatives could also claim to own the
captured data. The meeting scenario, and other similar examples of collective
data capture, highlight the necessity for multi-user ownership models where all
involved stakeholders can somehow specify access preferences.

6.2 Evaluation of Access Control Models

In this section we present evaluation results of the suitability of access control
models with respect to the identified requirements.

6.2.1 Support for context-based capture and sharing

Memory augmentation systems will, by default, be always activated and will
capture a plethora of users’ daily activities featuring different contexts. The vari-
ance in users’ activities and context can play an important role for users to de-
termine which activities they would like to capture (requirement but also
data from which activity they would feel comfortable disclosing to others (re-
quirement [CR4). This has prompted us to explore access control models that
accommodate the use of context in access decision making.

Most of the existing access control models tailored to pervasive systems al-
low the expression of temporal [[247] and location-based [|248]] contextual con-
straints. For instance, using such systems one can capture and share all their
moments during work hours, or all weekend activities happening outside of the
home environment.

However, memory augmentation systems claim for more sophisticated con-
trols to express complex conditions using multiple contextual data. Such con-
trols are offered by several works [249] 250, 251], 252}, [253], 254]]. For instance,
Corradi et al. [253]], and Ahn et al. [[254]] propose systems that distinguish be-
tween physical and logical context. Similar to previous models, a physical context
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specifies a physical location denoted by geographical coordinates. A logical con-
text identifies higher-level states of both users and the environment (e.g., the ac-
tivity that one is engaged in or the role that a user has). While a user at any time
can belong to only a single physical context, the can very well be associated with
several logical contexts. This allows for the specification of finer-grained capture
and sharing controls. For instance, one can specify a rule that would capture and
share data from work meetings, but will not share any data captured while one is
using the laptop during such meetings (to prevent the disclosure of any sensitive
data featuring the laptop’s screen).

The UbiCOSM system from Corradi et al. [[253]] offers a similar feature as
our system for sharing data with co-located peers. In particular, an access rule
can account for the presence of other users that operate in the same physical
context. This is achieved by associating permissions to multiple contexts through
a dependence relationship.

Choi et al. [255]] propose a model that allows access policies to also consider
a user’s physiological state (e.g., user engagement, anxiety, or stress level). A
user may want to capture exciting moments but at the same time might not feel
comfortable sharing any data of stressful moments.

Apart from having a rich context model, other desiderata for access control
models include flexibility and ease of use. Covington et al. [256]] propose a gen-
eralized version of the role based access control model (RBAC). In their model,
the notion of role does not only apply to user-related roles (as in the original
RBAC) but it also applies to environment roles, which can be used to capture
different aspects of the environment. By building on top of a well-established
access control model, this work offers an elegant means of using context in ac-
cess control policies.

Any system that regulates access to one’s memory repository must take into
account that access policies should be specified to not only govern outgoing traffic
(i.e., data flowing out of a repository) but also any incoming traffic (i.e., data
being added to a memory repository). In principle, all of the aforementioned
models can be extended to govern incoming traffic, however, models explicitly
designed with such functionality have been proposed [257, 249]. For instance,
the Confab toolkit for developing privacy-sensitive systems, proposed by Hong
and Landay [257], targets both the upload and the release of personal data.
Confab’s data model can be used to represent different entities, such as people,
places, and things. Data about these entities is organized in infospaces — logical
storage units reachable through a network. Both incoming and outgoing requests
to infospaces are regulated by two general access operators, in and out operators,
which in turn are driven by user specified policies.
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The main strong point of context-based control techniques consists in the flex-
ibility of expressing various access policies through rich context-based reasoning.
This approach can introduce additional security concerns should the authentic-
ity and integrity of contextual data be compromised. In their access control for
the Aware Home project, Covington et al. [258] have built a trusted version of
the Context Toolkit [259] in order to ensure security and reliability of collected
environment data.

6.2.2 Support for sharing based on interpersonal relations

Through everyday life experiences, but recently also by means of online social
network platforms, users establish various interpersonal relationships with oth-
ers. Prior research has identified the importance and characteristics of interper-
sonal relationships in specifying data sharing preferences in online social net-
works [260, 261}, 262, 263]]. Based on these works but also on our own expe-
rience with lifelogging applications [58]], we believe that constraints based on
interpersonal relationships are important for efficient and intuitive sharing of
personal memories (i.e., requirement CR4).

Role-based Access Control (RBAC) introduced the notion of a role to simplify
the specification of access control policies. While roles can be used to specify in-
terpersonal relationships, however, the limitation of this model is that it assumes
domains with highly structured role hierarchies, such as companies or hospi-
tals. As a result, several proposals have extended the initial RBAC model to also
support dynamic and context-dependable roles [[248, 249 252} 253 254, 258]].
For instance, the UbiCOSM system [253]] permits the creation of user roles as a
specific type of the logical context. One can create different roles (e.g., Family
Member, Classmate) by first defining a logical context for it and then describing
the role through a set of constraints. The Houdini framework [249]], developed
at Bell Labs by Hull and his colleagues, provides a general-purpose framework
for privacy-aware data sharing of mobile users. Their access control mechanism
accounts for four kinds of information when deciding to give access to a particu-
lar data, among them being the resource owner’s view of the resource requester
(e.g., work colleague, friend).

In order to empower users with additional control in the dissemination of
their data, research in the domain of online social networks and collaborative
systems proposes a novel access control paradigm based on interpersonal con-
strains, known as Relationship-Based Access Control (ReBAC) [240, [264]]. They
consider extra information for deciding to whom access should be granted, such
as the depth of the relationship (i.e., the length of the shortest path between
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two users, for controlling the radius of the social circle) and the strength of the
relationship (i.e., the level of trust of a relationship) [265]].

6.2.3 Support for multi-user governance

When exchanging captured memory cues with co-located peers, each involved
stakeholder may claim a share of ownership on the captured data. To this end,
each involved entity should be able to specify rules that control access to and
sharing of the produced event data. A final merging of these rules is required in
order to determine the actual access permissions on the data in question.

Some of the systems that we surveyed in this work support a basic form
of handling the governance of data owned by multiple stakeholders [248 250,
251]]. All co-located users can decide to delegate access control and sharing deci-
sions to a trusted person. Through a mutual agreement (e.g., a majority voting)
they can first agree on who they think should be in charge of the data captured
during the event and then specify rules to delegate all access requests to the ac-
cess control system of the chosen entity. In case of a meeting capture scenario,
the meeting leader can be in charge of the meeting’s captured data. This model
relies on the fact that co-located users can reach a consensus in selecting a repre-
sentative to safeguard their collective data, which might not always be the case.
Moreover, this approach limits the access control decisions to be specified by a
single entity only.

Other trends allow data control permissions to be specified by all co-located
users, and access can then be granted only if all user permissions allow for that.
This approach has been followed by the Virtual Walls policy language proposed
by Kapadia et al. [214]. Using the abstraction of physical walls, their system
allows users to control the privacy of their digital traces much in the same way
as users control privacy of the analog data in the physical world. In their system,
each co-located user can in principle specify their own virtual wall to protect
their personal data, and the final access rule can be derived by selecting the rule
from the most restrictive virtual wall.

A number of models, stemming from research on online social networks and
collaborative systems, highlight the importance of multi-party access control mech-
anisms when sharing photos online [240]. One of the proposed approaches to-
wards models involving multiple stakeholders is through selective encryption of
photographs [266), 267, 268]]. Illia et al. [267]] propose an access control model
that changes the control granularity from the level of photographs to that of
identified faces appearing in those photos. At the outset the system will iden-
tify depicted faces in an image and will associate them with users’ identities.
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All identified users from this step can then control the exposure to their own face
by specifying access permissions. Finally, when a subject requests a photo, the
system will determine which faces should be hidden based on the identity of the
requester, and only serve a processed version of the photo by blurring all those
faces that the requester is not authorized to see. While the focus of this work is
on protecting identified faces only, this concept can be extended to include other
objects appearing in an image (e.g., laptop and phone screens, documents, etc.)
in order to accommodate for privacy risks in memory augmentation systems.

All of the presented examples of multi-party access control assume an equal
level of authority among all of the involved stakeholders associated with a data
object. However, more recent research proposes techniques for enabling asym-
metric multi-party access control models [269]] where the decision power that
a stakeholder has over a particular data resource can depend on their relation-
ship with the resource (e.g., whether the person produced the data or is tagged
in it) [270]. This is inline with the stakeholders model proposed by Gurrin [|8]
(see requirement[CR10). When computing the final access permissions, policies
specified by the lifelogger (an individual who captures an experience using own
recording gear) can have higher priority than those of the subject (a co-located
person that interacts with the lifelogger and appears in several instances of their
data), which in turn can have higher priority than those permissions specified by
subjects that might administer the fixed capturing infrastructure and that are not
co-located with the lifelogger at the time of capture.

6.2.4 Data obfuscation and sharing granularity

Access control systems will either deny or grant access to requested memory cues
depending on a set of contextual attributes evaluated against access permissions.
Denying access to particular data can prevent unsolicited disclosure of private
and sensitive information that may otherwise be present in the requested data,
and hence protect users’ privacy. However, this may also decrease the utility of
memory augmentation. A more flexible solution than that of sharing “all or noth-
ing”, is to extend access control with data transformation mechanisms in order to
obfuscate any private data before granting access to it (requirements|CR6)). Here
we focus on mechanisms that address the complementary problem of recogniz-
ing and obfuscating private information that may appear in captured experience
data. We then shed some light on how access control systems can be extended
with data obfuscation mechanisms in order to empower users with even finer-
grained privacy control.
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Most the systems that support privacy-preserving sharing of visual data rely
on computer vision techniques coupled with machine-learning to recognize sen-
sitive content depicted in images [|79, 180, 83} 184, [112], (113, [271]]. For instance,
Korayem et al. [[79] investigate the feasibility of automatically detecting com-
puter screens appearing in lifelog images. This work offers promising results
showing that it is possible to reliably detect computer screens even from low
quality, blurry and possibly occluded images captured by wearable cameras. Us-
ing a similar approach applied to lifelog images, Templeman et al. [[80]] developed
a system that can reasonably well infer the space where an image is taken, and
hence avoids the accidental sharing of images captured in sensitive places, such
as bathroom or bedroom. Note that more work is needed to assess the actual
sensitivity level of the experience during which an image was taken. For exam-
ple, in the event of a detected computer screen, it is not clear whether the screen
depicts any private information at all. A user might still agree to share an image
of a computer screen that was captured during a work meeting, but the same
user might not want to share a similar image that was captured during meeting
break, at a time when she was completing an online purchase.

Additional work has shown that it is possible to infer higher level information
from visual data captured by wearable cameras [|82, 83|, [84]]. For instance, Castro
et al. [[83]] propose a machine-learning approach to learn and predict everyday
activities from lifelog images. Their technique achieves a high overall accuracy in
identifying up to 19 different activities (such as working, watching TV, reading,
having a work meeting, cooking, eating, driving, etc.). Fathi et al. [|84]] propose
an approach for recognizing social interactions such as discussion, dialogue, and
monologue from first-person perspective day-long videos. Their method relies on
two kinds of data sources: detected faces and attention patterns. At the outset,
their system will try to detect all faces appearing in the video and then estimate
their location and orientation. In a second step, the system infers any atten-
tion pattern such as who looks at who or whether all users look at a common
place. The combination of such information was shown to provide enough in-
sights regarding the type of the social interaction. For instance, if there would
be multiple faces detected and if most of them are looking at one person for a
longer-period of time then this would be classified as a monologue. Finally, any
such high-level information that can be inferred using these approaches should
be correlated with specific parts of the image in order to understand if and how
the image should be modified.

All of the aforementioned mechanisms for privacy-aware data sharing are
intended to work on already captured data, e.g., a resource that is inspected
at the time of an access request. Contrary to such after-the-fact approaches,
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Steil et al. [272] propose a solution that targets the problem at the source, i.e., at
the time of capture. Their solution, referred to as PrivacEye, uses a combination
of deep-learning and computer vision techniques to gauge the privacy-level of a
given situation and then disable the camera by occluding it with a shutter. This
way the camera will not capture the privacy-sensitive experience at all. To open
the camera’s shutter again, PrivacEye makes use of estimated privacy-level of an
experience, but this time using a secondary camera that captures the user’s eye
movements. Whilst this approach might further reduce chances of unsolicited
privacy infringements (since no sensitive data is recorded in the fist place), the
drawback of this mechanism is that it lowers the volume of captured data. In sit-
uations when captured data is used as a basis for generating memory cues, users
might still want to capture data of a privacy-sensitive experience for themselves
and not share it with others. As a consequence, an after-the-fact mechanism can
be more appropriate for memory augmentation systems as long as it can correctly
and efficiently recognize private information as well as be easily integrated with
dynamic access control solutions.

To this end, we investigated how the access control models surveyed in this
work can be extended with such data filtering techniques. As a first step, we
looked at the possibility of encoding any data filtering controls in order to allow
users to write full-fledged access policies using the system’s choice of language.
Secondly, we explored whether the specified filtering controls are supported and
can be carried out by the system’s underlying policy enforcement component.

We observed that most of the surveyed access control systems support the
specification of data filtering or transformation policies [|247,248, 249, 251], 257,
273]]. Bagiiés et al. [274]] propose the SenTry privacy policy language as part of
their Unified User-centric Privacy Framework. SenTry allows the specification
of fine-grained access policies and it is specifically tailored to applications from
the pervasive computing domain. One particular feature of SenTry is its support
for transformation policies in order to allow users to better specify their privacy
preferences. Similarly, the Ponder language [251]] proposed by Damianou et al.
supports information filtering policies that can be applied to both incoming and
outgoing data (like Confab [[257]]). In Ponder, multiple filter expressions can be
specified for a data request and each filter can contain an activation condition.
Both the SenTry and the Ponder languages provide rich expressive capabilities
and can easily support the specification of data filtering policies for memory aug-
mentation applications. However, they fall short when it comes to performing the
actual transformations on visual data. In fact, any filtering can be only applied to
contextual data encoded in string representation, such as location coordination,
calendar entries, etc.
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In trying to implement filtering techniques on visual data, a simple approach
that is supported by most of the access control systems is to impose a tempo-
ral delay on the data to be shared. Instead of immediately granting access to a
particular resource, the access control component can be configured to share it
only after a certain time has passed from the moment the resource was captured.
Users can then manually (or automatically by means of automated scripts) exe-
cute a data filtering solution to remove any private information before the data
becomes available to others. However, such an approach does not allow one to
fully exploit the capabilities of dynamic access control models, i.e., one cannot
write full-fledged privacy policies that also include data filtering rules.

A better approach that can reduce this gap between the specification of data
filtering policies and their enforcement is the support for external functions as
early as the policy specification stage. We observed that such approach is present
in very few systems [257, 275]]. For instance, the Privacy Markup Language
(PRML) [275]] aims at extending the capabilities of corporate privacy policies
with data handling capabilities, thus closing the gap that existed between these
two concepts. A PRML policy, written using the XML language, specifies that a
role can do an operation on a data group owned by a subject if certain constraints
are met. Optionally, the data resource can be subject to a particular transforma-
tion before an operation (such as reading or sharing) can occur. The transfor-
mation declaration is composed of a <name> element and an <implementation>
element, with the later referring to an external function that implements the data
transformation. Another system that can be extended with custom data filtering
capabilities is the Confab privacy toolkit [257]], which we described previously.
In Confab, data flowing from and to an infospace (logical units containing data
about people, places, or things) is filtered by in and out operators. By default
Confab does not support any operators that can transform visual data. However,
thanks to its modular design, Confab can be easily extended with custom oper-
ators tailored for manipulation of visual data and which can then be driven by
user specified policies.

Our analysis highlights that there is no “one size fits all” solution for address-
ing privacy challenges when sharing captured memory cues with others. On one
hand, there is a considerable amount of work on recognizing and eventually ob-
fuscating sensitive information depicted in visual data (from single items that
appear in pictures such as faces of people, computer screens or documents, to
higher-level and more complex information such as activities one is engaged in
or social interactions). On the other hand, more work is needed to integrate such
solutions into existing access control systems with the ultimate goal of offering
a seamless experience to users when controlling their captured experience data.
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6.3 Evaluation Summary

Table presents a summary of our analysis with respect to the requirements
presented in Section In the table, “#?” is used to indicate that the system
fully satisfies the given requirement subject to potentially minor modifications of
the access control system or its model; “O” indicates that the requirement can
be still satisfied but this requires some substantial modifications of the evaluated
system; “%” indicates that the requirement is not satisfied by the system or at
least it was not clear from the system’s description.

Requirements to concern the ability of an access control system to
influence how an experience is captured. More specifically, they are related to
defining the experience to be captured (i.e., [CR1)), what data modality should
be used and at what frequency (i.e.,[CR2), and whether one is willing to accept
any data captured by the cameras of others (i.e., [CR3). For the evaluation of
requirement we marked “full support” for those systems that support rich
contextual models. “Full support” was marked also for systems with a rather lim-
ited context model (e.g., that can represent only time and location aspects), but
that can be easily extended with a richer model. Consequently, “partial support”
was marked for systems that only consider a limited but fixed representation of
context situations, whereas models that were not designed for context-aware sit-
uations were marked with “no support”. Requirement is considered fully
satisfied by systems that are able to filter both capture data types and capture
frequency. In most access control systems that we surveyed, data types can be
represented as resources, whereas capture frequency can be specified as param-
eter of the resource. Systems that satisfied only one of the these characteristics
were marked with ”"partial support”. Regarding requirement a clear ma-
jority of the access control systems permit the specification of capture devices
as subjects that can upload data to a memory repository. Therefore, these sys-
tems were marked with “full support”. On the other hand, systems that provide
a less elegant way of filtering capture devices received the “partial support” flag.
Looking at Table we can observe that capture control requirements are well
supported by many access control proposals.

Requirements and are intended to offer initial control on the mem-
ory cue sharing practice. Requirement concerns two aspects regarding this
practice. First, using a similar approach as with requirement it relies on
the context to be able to decide which memories can be disseminated to other
peers. Therefore, to evaluate this aspect, we used a similar evaluation criteria
as in requirement The other aspect concerns the ability to share memories
based on the social relationship with the data recipients. Access control systems
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CPPL [252]
PlexC [1248]
P2U [276]
Rei [250]

Ponder [251]
PRML [275]

Houdini [[249]
PDL [277]

PDL-C [254]

UbiCOSM [253]
CoPS [247]
CPE [278]

SenTry [274]

Environmental Roles [[256]]

Virtual Walls [|214]]
Confab [257]

« Full support (can require minimal modifications)

O Partial support (subject to substantial modifications)

X No support

Table 6.2. Evaluation of access control systems against control requirements.
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that support dynamic and contextual relationship models were marked with “full
support”. Models based on a less flexible relationship concept, such as fixed hi-
erarchical roles, were marked with “partial support”. Requirement is quite
similar to but instead of filtering incoming data, here the filter is meant to
be applied to data leaving the repository. Our literature review shows that these
requirements are largely recognized and addressed by access control systems.

The next set of requirements (i.e., to provide further control on
the sharing of memory cues. Specifically, requirement concerns the “clean-
ing” of any sensitive information depicted on the data to be shared. Systems that
permit the specification of data obfuscation rules and that actually perform the
cleaning process were marked with “full support”. Systems that do not provide
any data cleaning mechanism, but that, on the other hand, are able to execute
external data obfuscation procedures through third-party libraries, are marked
with “partial support”. A less flexible approach is to delay the actual data shar-
ing process and allow the user to manually inspect data that is deemed share-
able (requirement [CR7). This requirement was considered as fully supported
by those systems that permit the specification of time-based rules. Surprisingly,
while most access control systems support the notion of time, sometimes it was
not clear how to precisely specify when a rule should take effect. Requirement
concerns the sharing of memory cues for a limited time only, with the pos-
sibility of revoking access to such data. While we may not be able to prevent
others from accessing data that has already been downloaded on their repos-
itory, we want to prevent further downloads to the data in question from our
repository. Access control systems that support access revocation were marked
with “full support”. Systems that can be extended to efficiently implement such
functionality were marked with “partial support”. Requirement|CR9|was consid-
ered as fully supported by those systems that both allow one to specify obligations
that data recipients have to perform immediately after getting access to shared
data, as well provide mechanisms to enforce them. However, most access con-
trol systems provide a limited support for sharing obligations, and they do not
elaborate further on how such obligations can be actually enforced. Looking at
Table we can see that several access control systems accommodate the spec-
ification of temporal constrains. Contrary to this, very little work accounts for
integrating obfuscation mechanisms for visual data, as well as enabling condi-
tional data sharing.

Finally, requirement [CR10|relates to the governance of data captured during
collaborative events (e.g., during a meeting). Access control systems that allow
sharing decisions to be specified by all involved stakeholders, with the final deci-
sion being derived by a simple approach (e.g., by delegating it to a single entity,
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or by selecting the most restrictive preference) are marked with “partial support”.
A fully supported approach should consider more complex governance models:
accounting for the relationship of the resource and stakeholders (e.g., a data pro-
ducer or a person that appears in one’s data). As we can see from Table only
few proposals offer partial support to data governance models.

6.4 Research Challenges

Research results from the field of context-aware access control systems highlight
a growing maturity of such mechanisms to adapt to the needs of dynamic perva-
sive systems. Despite this, there are still some challenges that require research
attention before any access control solution can be seamlessly applied in the con-
text of pervasive memory augmentation systems. In this section, we summarize
what we believe are the key challenges.

* Lack of fully integrated solutions. Our study has revealed lack of compre-
hensive access control systems that incorporate data obfuscation capabili-
ties. We identified several data obfuscation systems tailored in particular
to visual lifelogging data. All these systems can detect and subsequently
blur sensitive elements such as computer screens, faces, sensitive places, or
even remove high-level activities. However, very few of the access control
systems that we surveyed accounted for such mechanisms that can trans-
form data prior to granting access.

As a result, we identified two simple ways how access control systems can
be extended with such functionality. One way is to delay the sharing of
a resource, thus giving enough time to its owner to manually remove any
sensitive information. However, constantly reviewing shared data can be
a tedious activity and puts a lot of burden on users.

The other approach relies on the fact that most access control systems sup-
port the execution of external functions. In principle, this feature can be
used to allow them to execute any data filtering operation. Nevertheless,
this is far from being ideal. External functions may not always be visible
when specifying control policies, thus preventing users to write full-fledged
access control policies.

More efforts are needed to close this gap and design access control systems
that can seamlessly handle data obfuscation operations.
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* Capturing and enforcing preferences from multiple-stakeholders.

We identified several research efforts of access control systems that support
multiple-user governance models. These systems can be used in collabora-
tive scenarios where captured data is exchanged among co-located peers
that experience a same event together. In this case, each involved user
should be considered as owner of the produced data, and thus should have
a say in specifying data sharing preferences. However, there are two chal-
lenges that have not been fully addressed so far.

The first such challenge concerns how preferences from multiple-stakeholders
can be efficiently captured. One possible way of addressing this is through
the gesture-based MemStone interface that we presented in Chapter
However, additional work is needed to resolve issues raised by conflict-
ing preferences, where co-located peers can have a different view on how
event’s data can be captured, but also with whom such data can be dissem-
inated beyond the attendees of the event.

A second challenge, which is often overlooked by access control solutions,
is how to enforce such multi-party preferences. In this vein, Ilia et al. pro-
pose a multi-party access control system for photo sharing on social net-
work sites [267]. Their system will first identify people appearing in an
image, will fetch their privacy preferences, before finally deciding whether
to grant or deny access on a particular image. In another work, Kapadia et
al. [279] anticipate that voting schemes based on secure multiparty com-
putation (SMC) [280] can be helpful in devising a consensus when dealing
with group policies. We believe that both these approaches may be help-
ful in designing a potential a group-based governance model for memory
augmentation systems.

* Controlling the Presentation of Memory Cues Beyond the need for in-
fluencing the collection and sharing of personal memory streams, users
will also need to control the presentation of these memories. Users will
not have the time to explicitly and manually review their captured mem-
ory cues (a wearable camera will typically capture about 1,500 pictures
in a day). Instead, a more practical approach is to review a compressed
summary of a prior experience (e.g., the top ten pictures coupled with few
keywords that summarize a discussion). Consequently, users should spec-
ify the memory goals at a high level of abstraction (e.g., faces of new en-
counters, eating healthy), and this should impact the cues that are created
as triggers in order to support the memories associated with the specified
high level goals.
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From users’ point of view, it would be beneficial if one could use the same
policy language for the specification of memory goals, cue presentation,
and access control. Ultimately, any such solution would allow one to spec-
ify full-fledged policies for controlling their memory augmentation system.

6.5 Chapter Summary

This chapter presents a detailed analysis of novel and context-aware access con-
trol solutions tailored to emerging pervasive systems. Our goal is to inform and
motivate further research on the design and development of access control solu-
tions suitable for pervasive memory augmentation systems.

At the outset we identified several requirements necessary for controlling dif-
ferent aspects related to the capturing and sharing of experience data. Our work
has revealed many interesting access control approaches that meet the require-
ments but to a varying extent.

Our results show that context-based control techniques can express a wide
range of access policies through their rich context-based reasoning. However, at
the same time, they introduce additional security concerns should the authentic-
ity and integrity of contextual data be compromised.

Several systems supported well the possibility of sharing data based on in-
terpersonal relationships. Their main strong point is that they extend the tra-
ditional role-based access control (RBAC) model to also support dynamic and
context-dependent roles.

Furthermore, our analysis uncovered at least three different trends for sup-
porting a multiple-user governance models. The first such trend was to delegate
all access control decisions to a trusted entity, which in turn is selected from a
majority voting process. A second trend allows all involved users to specify their
own permissions. Access then is granted only if all user permissions allow that.
A third trend proposes the use of selective encryption when sharing photographs.
Nevertheless, we highlight that more work is needed for a seamless negotiation
of group-based access policies.

We also analyzed the possibility of extending access control systems with data
obfuscation mechanisms. We found out that there is a considerable amount of
work on recognizing and eventually obfuscating sensitive information depicted
in visual data. However, more work is needed to actually integrate such solutions
into existing access control systems with the ultimate goal of offering a seamless
experience to users when controlling their captured experiences.
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To summarize, our study uncovers a growing interest and maturity of pro-
posed solutions in this area. There are many interesting access control approaches
that meet some of the requirements but not all of them. However, in spite of
such progress, there is still work to be done in devising an ultimate access con-
trol solution that will fully support all such requirements. Consequently, we also
briefly discussed the key challenges and gaps that we have identified from our
analysis, including both technical and usability challenges. Finally, we acknowl-
edge that this work is inevitably incomplete due to the broad literature on access
control systems.
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Chapter 7

Conclusion and Future Work

Human memory is a complex system and there are still many unknowns that
would allow us to completely understand its workings. One very important as-
pect related to the remembrance of past memories is that such process can be
influenced by external stimuli. For instance, imagine how reviewing a photo-
graph can help us recall many details of our last summer vacation.

This premise has in fact fueled many scientific writers and researchers in
speculating how future technology can be put to a good use in creating effective
memory stimuli. However, recent technological advances allow us to think more
pragmatically about the design of memory augmentation systems, the benefits
that it would bring to users, but also to reason about the challenges and issues
that are raised from it. In this thesis we focused on the later aspect, that is, we
studied two chief issues stemming from this kind of technology: 1) the threat of
manipulating users’ memories and 2) the risk of jeopardizing users’ privacy. We
investigated techniques and solutions to address these two threats with a goal of
designing secure systems for human memory augmentation.

This thesis started with a description of pervasive memory augmentations
systems (Chapter [1)), followed by a presentation of the technical background
that is necessary to realize such technology (Chapter[2). In a nutshell, pervasive
memory augmentation embodies a three step process. Captured experience data
(step 1), e.g., pictures captured in a day, are used to generate a set of stimuli or
memory cues (step 2), which are then delivered back to users through ambient-
fashion displays (step 3). By constantly reviewing such data, we can train our
memories of past experiences. Ultimately, prior memories can be recalled with-
out the help of any tool.
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Beyond improved recall, reviewing a set of memory cues can also speed up
the forgetting of memories of other related experiences that one did not review.
While there is no inherent problem with our ability to forget certain past expe-
riences, however, the fact that such system can be used to both reinforce and
attenuate one’s memories opens the door to malicious memory manipulation at-
tacks. Anyone who can inject, modify, or even delete information from one’s dig-
ital memory repository can implant fake memories that do not accurately reflect
a past event, or that are related to a non-existent event. Therefore, in Chapter
we investigated the question “How can we guarantee digital memory integrity and
provenance to prevent memory manipulation attacks?” (RQ1). We presented our
solution based on a secure wearable camera coupled with a trusted computing
platform (TPM). The camera not only ensures the provenance and integrity of
data that it captures, but it also prevents the unnoticed deletion of data from
one’s repository through a custom protocol that we designed for this purpose.

In Chapter [4we investigated the possibility of exchanging captured data with
co-located peers. This is motivated by in fact that wearable cameras which often
fail to capture important elements of an experience. However, cameras of peers
or any fixed infrastructure camera, may well capture key elements of the scene
that one’s own camera did not. Therefore, with a view towards the secure sharing
of captured experiences this investigation aimed at answering the question “How
can we seamlessly and securely share captured experiences with co-located others,
avoiding the risk of accidental oversharing, i.e., sharing with the wrong audience, or
sharing parts of a capture that we would otherwise have kept to ourselves?” (RQ2).
To this end, we designed a mobile system that seamlessly and automatically ex-
changes data with other peers that are in close physical proximity to a user. The
secure wearable camera that we built is an integral part of this system.

Beyond the risk of accidental data disclosure, the sharing of memory cues
opens the door to two more issues. First, any data that one obtains from others
increases the attack vector on memory manipulation. Trusted co-located others
can maliciously share fabricated images allegedly featuring an accurate reflection
of a “real” experience. To answer the question “How can we verify the integrity
and provenance of experience data which we obtain from others to detect the sharing
of falsified experience captures?” (RQ3), we designed a protocol that allows a data
recipient to verify if the such data has been captured by a trusted camera, and
what modifications (if any) the sender performed on it in prior to sharing.

Secondly, the ability to automatically share captured data can seriously jeop-
ardize users’ privacy. Therefore, in the final part of this thesis (Chapters[5|and [6])
we shift our focus towards investigating fine-grained access control solutions.
With a goal of putting users in control of their digital memories, we set out to
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answer the question “What interfaces and policy-based access control models can
we use to exercise control over data capture as well as to prevent the disclosure of
private and sensitive information when sharing experience data?” (RQ4). To this
end, we designed and built a tangible user interface (TUI) for controlling dif-
ferent aspects related to the capturing and sharing of memories through in-situ
gestures. We presented the interface and results of a user study in Chapter [5]
Beyond the actual interface for the access control, this requires the availability
of an access control mechanism that can both express and enforce user access
preferences and policies. Therefore, in Chapter [ we delineated a set of finer-
grained access control requirements. We then surveyed existing access control
mechanisms and evaluated their suitability towards such requirements.

7.1 Summary of Contributions and Results

In this thesis we followed a cross-disciplinary research approach from computer
security, performance evaluation of computer systems and user-centered research
to answer four research questions. In the following we summarize the contribu-
tions made with regard to the research questions, and conclude with an outlook
on future research directions.

7.1.1 Securely Capturing and Storing of Experience Data

Prior research from the fields of Neuroscience and Cognitive Psychology sug-
gests that our memories can be manipulated with the help of fake stimuli. To
this end, we presented a secure wearable camera based on a trusted comput-
ing platform (TPM). Our camera prevents an adversary from creating fabricated
memories by means of injecting fake experience data, modifying and deleting
existing data from a victim’s repository. Injection and modification attacks are
prevented by means of digital signatures using keys that are securely sealed in
the device’s TPM. However, the deletion attack cannot be prevented this way.
Thus, we designed a a custom protocol which joins captured images in a secure
data structure, thus thwarting surreptitious data deletion attempts from compro-
mised memory repositories. We designed this protocol to efficiently run on the
resource-constrained camera device. Evaluation results show that the proposed
scheme can efficiently run in low-power embedded cameras: a high-resolution
image (4096 x 3072 pixels) is captured and added to a secure chain in less than
45 seconds. We further showed that verifying the integrity of a chain of images
captured in a day can be done in about 22 seconds, or about 670 seconds for
verifying longer chains of approximately one month worth of images.
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7.1.2 Secure Memory Sharing with Co-located Others

With a goal of improving quality of captured experiences, in Chapter [4|we investi-
gated the possibility of sharing captured data among co-located peers. Therefore,
we extend our camera design from Chapter [3|with two additional protocols. The
first protocol enables the sharing of captured data with all peers that are in a
close physical proximity with a user. Sharing will stop once one leaves the prox-
imity area. As part of this process, a users’ camera periodically sends updated
access tokens and temporal public keys. Such tokens are broadcast by means of
the short-range BLE technology. They are encrypted with the public keys of all
co-present peers. Consequently, only those who possess the valid private key will
be able to access the shared information. We measured two essential aspects of
this protocol, that is, the token detection range, and the token exchange rate.
When transmitting the radio-packets with the lowest possible power level, we
were able to reduce the BLE detection range to 7 meters in open unobstructed
environments and 3 meters in closed office-like spaces. Devices can reliably ex-
change access tokens and public keys with a maximum rate of 0.3 tokens/s and
0.12 keys/s, respectively. In practice, this means that once two devices are in
range, it should take no more than 9 seconds (average 4.15 seconds) for them
to start exchanging images. Tokens should therefore not be updated more fre-
quently than once every 3 seconds, otherwise a peer may miss a token (and thus
be unable to access captured data for this period).

7.1.3  Verifying Shared but Modified Visual Cues

To protect the sharer’s privacy, the system will only share a token in real-time,
and postpone the actual disclosure of the shared data (e.g., an image) to a later
time. The sharer can then obfuscate any sensitive information contained in the
image prior to sharing it with others. To prevent any malicious modifications
in this case (i.e., aimed at providing fake data to others), our second protocol
allows recipients to verify the integrity of the data they obtain from others. This
is achieved by computing access tokens as a function of the actual image con-
tent that was just captured. This allows the data sharer to not only regulate
access to the image, but to also “commit” the image’s content publicly without
actually sharing the original image itself. By furthermore signing tokens with
the camera’s private-key, we can ensure image authenticity. Such “custom” to-
kens allow one to support the verification of modifications, e.g., obfuscations,
to a certain unmodified (but not shared) image. Our tests show that the cam-
era can compute a token (i.e., a modification proof) for a low-resolution image
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in about 12 seconds, while 16 seconds are needed for a high-resolution image.
When including the runtime overhead of the other schemes from Chapter (3 a
low-resolution image can be captured and processed in less than 25 seconds,
whereas processing a high-resolution image takes about 60 seconds. All in all,
capturing one low-resolution image per minute, we measured that the camera
can be operational from 40 hours (with battery of 200 mAh) up to 100 hours
(battery of 500 mAh) on a single charge. As for capturing high-resolution pho-
tos, the camera can run between 30 hours and 75 hours.

7.1.4 In-situ Controls for Memory Capture and Sharing

In Chapter |5 we presented MemStone: a tangible user interface (TUI) for con-
trolling capture and sharing of experience data. We designed MemStone inspired
by a mix of both practical and theoretic knowledge, as well as design principles
regarding interactive products. MemStone is operated by five physical gestures,
where each gesture performs a different control action. For instance, by putting
the MemStone on a stand-on-side position, one captures data for oneself but
does not share it with others. By shaking the MemStone, one can delete data
captured in the last 30 seconds. One can also see the device’s current operation
(i.e., how many peers one is sharing data with) by looking at its central screen.
We administered a user study with a goal of evaluating the device’s usability, and
comparing it against a more traditional smartphone app designed for the same
purpose. We first conducted a lab study with 20 participants following a meet-
ing capture scenario. We found that our participants were significantly quicker
in performing data capturing and sharing controls using MemStone than using a
mobile app interface. The concept was highly valued by the participants, it was
perceived as user-friendly, quick to learn, and easy and fun to use. Participants
also expressed a positive attitude towards the physical gestures and their rela-
tionship with the control actions. From a follow up study, conducted four months
after the prior one, we found out that participants were able to remember the
control gestures even after a long time period. This suggests that such a TUI
is suitable to be used also in less frequently occurring events. Results from our
study resonate well with findings from prior research that uncover lifeloggers’
affinity to in-situ control interfaces. However, in spite of the better performance
and the high perceived value of tangible-based control devices, participants were
very much divided about the convenience of having to carry an additional per-
sonal control device with them for their everyday activities. This could be well
attributed to lack of frequent data capture practices, with participants failing to
perceive the benefits of a dedicated control interface.
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7.1.5 A Review of the Suitability of Access Control Models for
Memory Augmentation Systems

In Chapter [6] we set out with the goal of investigating the suitability of emerg-
ing class context-aware access control solutions with respect to requirements of
memory augmentation systems. There are many interesting access control ap-
proaches that meet some of the requirements but not all of them. For example,
we found out that most systems that we surveyed can express a wide range of ac-
cess policies through their rich context-based reasoning. The possibility to share
data based on interpersonal relationships was also well supported by several
access control systems. Furthermore, our analysis shows that there is a consider-
able amount of work on data obfuscation for privacy reasons, but it is not easy to
integrate them with existing access control systems. All in all, our study uncov-
ers a growing interest and maturity of proposed access control solutions. There
is still work to be done in devising an ultimate access control solution that will
fully support all such requirements.

7.2 Future Work

This thesis provides a set of tools and protocols for designing secure systems for
human memory augmentation. In the course of this research, we identified new
challenges that are beyond the scope of this thesis. In the following we point out
some directions for future research.

7.2.1 Additional Memory Manipulation Threats

In the first part of this thesis (i.e., Chapters [3| and |4) we primarily focused on
security threats that can happen at the stages of experience capture, data shar-
ing, and data storage. Beyond these stages, we foresee additional threats that
can endanger one’s memories. Specifically, these threats target the memory cue
selection and cue presentation stages.

Manipulating the cue selection process

A compromised repository would permit an attacker to also influence the mem-
ory cue selection process. While the underlying experiences will be unaltered,
they will be carefully selected in such a way that reviewing them will re-enforce
particular memories of an event while attenuating other memories of the same
event (i.e., recall-induced forgetting). We envision a similar adversary model
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as with the previously introduced threats[T2} i.e., (i) the repository service provider,
or (ii) a third-party that can compromise a memory repository.

One research direction that can lead to interesting findings is to provide some
indicators that will describe the working of the cue selection process. In fact,
both Bettini et al. [[18] and Knowles [[107]] see the availability of transparency
tools as an essential prerequisite of any privacy-protecting system. This is further
amplified in systems that influence the selection of memory cues that one will
review, ultimately shaping how one remembers a particular event.

Prior research highlights that making systems explain their actions through
intelligible explanations can improve user understanding and trust [281] 282,
283]. In this vein, Lim and Dey [284), [285] investigate how such intelligibil-
ity mechanisms can be designed. They focus on answering questions Why? or
Why not? did a system behave in a certain way. Whilst their findings are about
a specific scenario (i.e., a social-aware mobile application which shares people’s
availability status), they nevertheless offer great insights into designing for trans-
parency of context-aware systems in general. In fact, this can motivate promis-
ing research efforts on designing for intelligible explanations tailored to memory
augmentation systems.

Visualizing fake memory cues

Display devices can also be hacked to manipulate what we see on our screens. A
team of computer security researchers lead by Ang Cui have found a way to hack
into a a particular model of Dell computer monitors, leaving nearly 1 billion mon-
itors vulnerable to this attack [286, [287]]. By injecting a malware, researchers
were able to not only read values of the pixels but they could also overwrite any
pixel color. In light of this, attackers could present us fake memory cues and even
control their presentation schedule. The envisioned adversary is any third-party
that is able to control our display devices.

One possible way to address this sort of attack would be to adopt our concept
from the trusted wearable camera. As a result, we can ensure the security of the
display’s firmware through a trusted hardware platform. However we foresee a
number of challenges that require carefully design solution. First, any such solu-
tion will need to target a number of different display devices — including picture
frames, smartphones, smartwatches, public displays, TV sets, etc. — each with
different software characteristics and properties. Second, to verify if a display
firmware is intact one has to compare it with a target firmware which is attested
by a trusted entity. With many different displays devices from different man-
ufactures, this would require a scalable infrastructure (similar to a public-key
infrastructure) to deploy the trusted firmware states.
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7.2.2 Verifying More Image Modifications Beyond Blurring

In Chapter [4 we presented a two-party protocol that allows a recipient to verify
the integrity and provenance of visual cues shared by others. Since we were
designing for resource constrained device, our solution accounts for only one
type of image modification, i.e., the blocking or blurring of sensitive parts of
an image. However, real-life scenarios entail more operations than this. For
instance, one may want to compress an image prior to sharing it. In other cases
one may perform cosmetic changes such as adjusting the colors of the image or
increasing the intensity of light. While there is nothing inherently wrong with
such modification, our algorithm would not be able to reassure the receiver that
the changes were purely cosmetic — it would simply mark all images as “changed”.

To accommodate for more image modifications, in Chapter |4, we also out-
lined one possible solution based on homomorphic encryption. While any such
approach is at the moment too computationally expensive for low-power mobile
sensors, we still believe that homomorphic encryption presents a very natural
candidate for addressing this challenge. One promising approach is to investi-
gate the possibility of extending the trusted domain beyond the camera itself,
and subsequently offloading the expensive computation to more powerful de-
vices. The concept of fog computing [288|, [289]] offers a great opportunity for
realizing such setup.

7.2.3 Specifying Control Policies Through Abstractions

In Chapter [6] we investigated the suitability of existing policy-driven access so-
lutions with respect to our security requirements of memory augmentation sys-
tems. However, we did not look at how user policies can be specified. In fact,
policy specification is an ongoing field of research and there exist several pol-
icy languages that enable one to specify both security and privacy policies [290]].
For instance, logic-based languages have proven to be very attractive for this pur-
pose. However, most of these approaches are intended for system administrators
and trained personnel, and they can be very complex for end-users.

To tackle this complexity, prior research proposes to model complex privacy
policies into simplified metaphors. For instance, Lederer et al. [[291]] present
one such metaphor where privacy policies are encoded as situational faces. For
instance, when running into a situation which would require user intervention
(e.g., giving consent for an event to be recorded) one can select a preferred face,
i.e., an abstraction of a permutation of privacy preferences for the encountered
situation. Another intriguing system (which we presented in Chapter|[6]) uses the
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virtual wall metaphor. Similarly as with real walls from physical world, users can
place different virtual walls to control how can read their data.

We believe that this promising idea should be adopted in the context of mem-
ory augmentation systems. In this regard, we think that results of our MemStone
interface and its five physical controls can inform and motivate future research
efforts in designing interesting policy abstractions, with the ultimate goal of sim-
plifying the specification of memory control policies.
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