
High-performance interior point methods
Application to power grid problems

Doctoral Dissertation submitted to the

Faculty of Informatics of the Università della Svizzera Italiana

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

presented by

Juraj Kardoš

under the supervision of

Olaf Schenk

March 2020

Dissertation Committee

Illia Horenko Università della Svizzera italiana, Switzerland
Igor Pivkin Università della Svizzera italiana, Switzerland
Petr Korba Zurich University of Applied Sciences, Switzerland
Tomáš Kozubek Technical University of Ostrava, Czech Republic
Andreas Wächter Northwestern University, USA

Dissertation accepted on 26 March 2020

Research Advisor PhD Program Director

Olaf Schenk Walter Binder and Silvia Santini

i

I certify that except where due acknowledgement has been given, the work
presented in this thesis is that of the author alone; the work has not been submit-
ted previously, in whole or in part, to qualify for any other academic award; and
the content of the thesis is the result of work which has been carried out since
the official commencement date of the approved research program.

Juraj Kardoš
Lugano, 26 March 2020

ii

Enlightenment is man’s emergence
from his self-incurred immaturity.
Immaturity is the inability to use
one’s own understanding without
the guidance of another. This
immaturity is self-incurred if its
cause is not lack of understanding,
but lack of resolution and courage
to use it without the guidance of
another. The motto of
enlightenment is therefore: Sapere
aude! Have courage to use your
own understanding!

Immanuel Kant

iii

iv

Abstract

A software library for the solution of large-scale structured nonconvex optimiza-
tion problems is presented in this work, with the purpose of accelerating the
solution on single-core, multicore, or massively parallel high-performance dis-
tributed memory computing infrastructures. A large class of industrial and engi-
neering problems possesses a particular structure, motivating the development
of structure exploiting interior point methods. Interior point methods are among
the most popular techniques for large-scale nonlinear optimization and their ef-
ficiency has attracted a lot of attention in recent years. Since the overall perfor-
mance of interior point methods relies heavily on scalable sparse linear algebra
solvers, this work thoroughly analyzes cutting-edge research based on the sparse
linear algebra and structure exploiting methods presented over recent years, and
further advances the performance by inspecting the structure of the underlying
linear systems, resulting in an additional computational time and memory sav-
ings.

The primal-dual interior point framework is applied for the solution of opti-
mal power flow problems, a class of optimization problems attracting increasing
attention in power system research, operations, and planning. Optimal power
flow involves large-scale nonconvex optimization problems with a number of
variables and constraints ranging up to hundreds of millions depending on the
grid resolution and specific problem formulation. The robustness and reliability
of interior point methods is investigated for different optimal power flow for-
mulations for a wide range of realistic power grid networks. Furthermore, the
object-oriented parallel and distributed scalable solver is implemented and ap-
plied to large-scale problems solved on a daily basis for the secure transmission
and distribution of electricity in modern power grids. Similarly, an efficient algo-
rithm is investigated for optimal power flow spanning long time horizons. Using
computational studies from security constrained and multiperiod optimal power
flow problems, the robustness and scalability of the structure exploiting approach
is demonstrated.

v

vi

Acknowledgements

It is my pleasure to thank all the people I have met on my academic journey,
whether in a professional or friendly manner. The professional encounters en-
riched my knowledge of the filed and provided me valuable insights into many
solution techniques, while the friends supported me in strenuous times, helped
me to find courage for difficult decisions, and kept me going toward my final
destination. Many thanks to all of you! It is only because of you I endured and
I will do my best to share my knowledge and try to help others as much as you
did!

This project was carried out within the frame of the Swiss Centre for Compe-
tence in Energy Research on the Future Swiss Electrical Infrastructure (SCCER-
FURIES) with the financial support of the Swiss Innovation Agency (Innosuisse-
SCCER program).

vii

viii

Contents

Contents ix

Nomenclature xiii

List of abbreviations xv

1 Introduction 1
1.1 Optimal power flow problems . 1
1.2 Interior point methods . 3
1.3 Contribution . 4

I Power grid optimization problems 7

2 Architecture of the power grid 9
2.1 Mathematical model . 11
2.2 Power grid components . 13

2.2.1 Electric generator . 13
2.2.2 Transmission line . 15
2.2.3 Transformer . 16
2.2.4 Load . 17
2.2.5 Energy storage device . 18

2.3 Power grid models . 20

3 Optimization problems in the power grid 23
3.1 Optimal power flow . 25

3.1.1 Problem formulation . 25
3.1.2 Solution approaches . 28

3.2 Security of the power grid . 30
3.2.1 Problem formulation . 31

ix

x Contents

3.2.2 Credible contingencies selection 32
3.2.3 Solution approaches . 33

3.3 Multiperiod problems . 35
3.3.1 Problem formulation . 35
3.3.2 Distribution system flexibility 37
3.3.3 Solution approaches . 42

II Interior point methods 45

4 Interior point methods 47
4.1 Problem definition and optimality conditions 50
4.2 Search direction computation . 54
4.3 Backtracking line-search filter method 56
4.4 Inertia correction and curvature detection 58
4.5 Barrier parameter update strategy 60
4.6 Problem scaling and convergence criteria 62
4.7 Initial point selection and warm-start strategies 63

5 KKT solution methods 65
5.1 Basic properties of the KKT matrix . 66
5.2 Direct methods . 67

5.2.1 Selective elimination of the slack variables 68
5.3 Iterative methods . 69
5.4 Quasi-Newton methods . 71

III High-performance IP algorithms and software for power
grid problems 75

6 Software packages 77
6.1 Power grid simulation packages . 78

6.1.1 MATPOWER . 78
6.1.2 PowerModels . 78
6.1.3 GridPACKTM . 79

6.2 IP optimization packages . 79
6.2.1 IPOPT . 80
6.2.2 BELTISTOS . 80
6.2.3 KNITRO . 81
6.2.4 MIPS . 81

xi Contents

6.2.5 FMINCON . 81
6.2.6 PIPS . 82
6.2.7 OOQP . 82
6.2.8 OOPS . 82

6.3 Linear solvers . 83
6.3.1 PARDISO . 83
6.3.2 The Harwell Subroutine Library 83

7 Structure exploiting solution methods 85
7.1 Revealing the structure of coupled OPF problems 86
7.2 Schur complement decomposition . 88
7.3 Solution algorithms for SCOPF problems 92
7.4 Structure exploiting algorithms for MPOPF 93

7.4.1 Distribution system flexibility 94

8 Numerical Results 95
8.1 Benchmarking environment . 96
8.2 OPF problem solution . 98

8.2.1 Choice of an initial point . 98
8.2.2 Convergence tolerance . 101
8.2.3 OPF formulations . 104
8.2.4 Optimization software . 106
8.2.5 Solution of the KKT linear system 108

8.3 SCOPF problem solution . 109
8.3.1 Impact of the slack variables elimination 110
8.3.2 GPU acceleration . 114
8.3.3 Performance case study . 115
8.3.4 Swiss grid case study . 117

8.4 MPOPF problem solution . 119
8.4.1 Number of time periods and storage devices 120
8.4.2 Memory complexity . 123
8.4.3 Computational complexity 124
8.4.4 Swiss grid case study . 125

9 Conclusions 127
9.1 Outlook and discussion . 128

Bibliography 131

xii Contents

Nomenclature

NB, NL Number of buses and lines (branches)
NG, NS Number of generators and energy storage devices
BPV Set of PV buses
Bslack Slack (reference) bus
CB, CL, CG Bus, branch and generator connectivity matrices, respectively
C f , Ct Branch connectivity matrix for its both ends
CS Energy storage connectivity matrix
v,θ Bus voltage magnitude and angle
u, w Real and imaginary components of the complex bus voltage
v Complex bus voltage vector v= ve jθ

v f ,vt Complex branch voltage vector for ’from’ and ’to’ ends
pD,qD Active and reactive power demands
sD Complex vector of power demands
pG,qG Vectors of active and reactive power generation
sG Complex vector of generator power injections, sG = pG + jqG

pG,min,pG,max Active generation power box bounds
qG,min,qG,max Reactive power generation box bounds
pB,qB Active and reactive power flow bus injections
sB Complex power flow bus injections
s f , st Complex vectors of branch power injections at ’from’ and ’to’ ends
pSd,pSc Discharging and charging active power of storage devices
pS Composite vector of the storage power injections pS =

�

pSd,pSc
�

pS,min,pS,max Minimum and maximum active storage power output
sS Complex power output of storage devices
smax

L Branch power flow limits
iB Complex current injections vector
i f , it Complex current injections, from and to branch ends
G, B Bus conductance and susceptance matrices
YB Complex bus admittance matrix YB = G + jB
YL Complex branch admittance matrix

xiii

xiv Nomenclature

εmax
S Capacity of the storage devices
ε0 Initial state of charge of the storage devices
ηd,ηc Discharging and charging efficiency
uSd,i

t ,dSd,i
t Up and down discharging flexibility

uSc,i
t ,dSc,i

t Up and down charging flexibility
u f

t ,d f
t Up and down flexibility requirements

r s Resistance of branches
x s Reactance of branches
zs Impedance of branches, zs = r s + jx s

bs Susceptance of branches
gs Conductance of branches
y

s
Admittance of branches, y

s
= gs + jbs

bc Branch charging susceptances
τ Transformer per unit tap ratios
θ shift Transformer phase shift angles
T Ideal phase shifting transformers T = τe jθ shift

bsh,gsh Shunt susceptance and conductance
y

sh
Shunt admittance from branch to neutral y sh = gsh + jbsh

C Set of contingency scenarios
Nc Size of the contingency set |C|
N Number of time periods
δt Time period length

x Optimization vector
x min, x max Optimization vector bounds
f Objective function
cε, c I Equality and inequality constraints
s Slack variables
λε,λI Lagrange multipliers for the constraints
λx ,λs Lagrange multipliers for the variables
L Lagrangian
z, y Dual variables for x and s
µ Barrier parameter
Jε, J I Jacobian of the equality and inequality constraints
H Hessian of the Lagrangian ∇2

x xL

� Operator denoting element-wise product of two vectors
[·] Operator representing concatenation of column vectors [x1, x2] = (x

ᵀ
1 , xᵀ2)

ᵀ

List of abbreviations

AC Alternating current
DC Direct current
PF Power flow
OPF Optimal power flow
SCOPF Security constrained optimal power flow
MPOPF Multiperiod optimal power flow
DSO Distribution system operator
TSO Transmission system operator
ES Energy storage
SOC State of charge
RE Renewable energy
DER Distributed energy resources
MO Market operator
LP Linear programming
QP Quadratic programming
NLP Nonlinear programming
SQP Sequential quadratic programming
MIP Mixed integer programming
IP Interior point
BSP Barrier subproblem
KKT Karush–Kuhn–Tucker
SC Schur complement
NR Newton-Raphson
HPC High-performance computing
GPU Graphics processing unit
CPU Central processing unit
MPI Message passing interface

xv

xvi

Chapter 1

Introduction

Due to global energy transition based on both economic growth and decarboniza-
tion, in conjunction with the liberalization of the energy market, the importance
of the computational tools in the power grid analysis has emerged more pro-
nounced than ever before. At the same time the proportion of renewable ener-
gies (REs) is called upon to increase in all major electricity markets. Currently,
hydroelectricity is by far the largest contributor among the REs while the pro-
portion of RE that comes from variable sources such as wind and solar is still
relatively limited. The reason is that variability of wind and solar REs creates
distinct challenges for integration into the larger power system. Namely, RE
poses requirements on generation, transmission, and operation technology in
terms of flexibility while maintaining system security and reliability. Power grid
operators, market players, or balancing authorities daily decision-making could
benefit significantly from computational software tools able to accurately model
power grid operations and solve optimization problems within short time frames.

We briefly discuss the most common optimal control problems supporting
transmission system operators daily decisions and further introduce a class of
optimization methods that has been successful for the solution of power grid
problems.

1.1 Optimal power flow problems

A set of optimization problems in electric power systems known in the literature
as optimal power flow (OPF), is one of the most studied subfields of constrained
nonlinear optimization. The OPF problem was introduced by Carpentier Car-
pentier [1962], who extended the economic dispatch (ED) in power systems by
inclusion of the electric power flow equations. The presence of the power flow

1

2 1.1 Optimal power flow problems

equations in the set of equality constraints remains the defining characteristic
of the problem. OPF is a large-scale, nonlinear, nonconvex optimization prob-
lem aiming to minimize the generation cost of electricity (or similar metric, e.g.
transmission losses, interface reactive power cost, social welfare, etc.), while at
the same time satisfying the physical constraints of the power grid among other
engineering and operational constraints further classifying OPF problems.

Power-grid optimization problems also include unit commitment (UC), which
is day ahead planning of generators and ED, which is used to balance supply and
demand. These problems need to be solved in restrictive time limits, less than
one hour for UC and even smaller time window of several minutes is available for
ED. Sub-hourly generation scheduling allows system operators to deal with inter-
mittent RE sources by reducing the period of uncertainty around wind generation
schedules and allows wind plant owners to adjust schedules more frequently and
thus helps to support system flexibility requirements. Consequently, a high-end,
distributed memory, supercomputing solution is required in order to meet these
time limits and find the solution of large stochastic optimization problems.

For the operation of power systems with high penetration of large-capacity
RE generation, RE power forecasting is critical for grid operators to carry out
operational planning studies and ensure that adequate resources are available
for managing the variability of RE output. The forecast, however, provides only
an estimate of the expected power generating capacities. One possible approach
on how to deal with error in forecasting is to generate multiple forecasts and
corresponding future scenarios. This is the general idea of the sample average
approximation (SAA) technique that is used in stochastic optimization to evalu-
ate the stochastic objective function. The resulting optimization problem is then
solved by deterministic methods, providing operators the optimal grid setup with
respect to certain criteria, such as operational costs or environmental impact.

The security constrained OPF (SCOPF) is an extension of the OPF problem
that additionally guarantees that the network operation will remain secure at
the even of a set of postulated contingencies. The SCOPF has become an essen-
tial tool for many transmission system operators for the planning, operational
planning, and real time operation of the power system. Increasing the number
of considered contingencies requires the introduction of additional variables and
constraints, which in turn results in a significant growth of the problem size,
rendering the solution computationally intractable for standard general purpose
optimization tools. The structure of the SCOPF problems however, is appropriate
for parallel structure-exploiting IP methods, where each contingency corresponds
to a separate partition on the linear level.

3 1.2 Interior point methods

1.2 Interior point methods

Interior point (IP) methods have become a successful and ubiquitous tool for
the solution of constrained optimization problems. The IP “revolution”, a term
coined by M. Wright Wright [2005], can be traced back to 1984 when Karmarkar
Karmarkar [1984] announced a polynomial time linear program (LP) that was
considerably faster than the most popular simplex method to date. Since then, IP
methods have continued to transform both the theory and practice of constrained
optimization.

The basic principle of the IP family of methods is to move through the inte-
rior of the feasible region towards the (local) optimal solution by approximately
solving a sequence of "simpler" subproblems. IP methods are easily applicable to
problems involving large numbers of equality and inequality constraints. They
are therefore the method of choice for large-scale optimal control problems, and
they allow customized direct or iterative solution methods for the underlying lin-
ear systems solved at each iteration. Since different linear system solvers can be
plugged in with ease, large-scale structured problems can benefit by factorization
methods that can exploit their structure as well as parallel computing infrastruc-
tures. The main steps in every IP method consist of (i) transforming the inequal-
ity constraints or variable bounds into logarithmic barrier terms, (ii) defining a
Lagrangian function, (iii) stating the first-order optimality conditions known as
Karush–Kuhn–Tucker (KKT) conditions, (iv) applying Newton’s method to solve
the KKT system, and finally, (v) updating the iterates and the barrier parameter.
The steps are repeated until the solution is found and the optimality conditions
are satisfied.

The step involving solution of the so-called KKT linear system represents the
major computational bottleneck in state-of-the-art IP packages. In the case of
large-scale problems, the cost of factorizations may be prohibitive in terms of
memory and time, thus limiting the effective use of optimization codes. Thus,
highly optimized linear algebra algorithms and software components is of paramount
importance for an efficient and scalable IP solver.

Structure exploiting IP methods

Structure exploiting IP methods were first attempted in OOQP Gertz and Wright
[2003], where a software package for solving convex QPs based on primal-dual
IP algorithm was developed to allow users to solve structured problems by sup-
plying linear algebra customized kernels to the particular block structure. This
attempt provided became the cornerstone for more advanced implementations

4 1.3 Contribution

that followed in OOPS Gondzio and Grothey [2009] and PIPS Petra [2014]. The
crucial algorithmic improvement allowing for the efficient linear decomposition
was introduced in Petra, Schenk, Lubin and Gärtner [2014]. It adopted the eval-
uation of local Schur complement contributions by performing an incomplete
factorization of the augmented matrices. The approach was first used in PIPS-
IPM Petra, Schenk and Anitescu [2014] for solution of stochastic LPs and convex
QPs. PIPS-NLP, a software library for the solution of large-scale structured non-
convex optimization problems on high-performance computers, was introduced
in Chiang et al. [2014]. It also exploited the structured linear algebra to achieve
high computational efficiency. The linear decomposition of the nonconvex prob-
lems was applied also recently in Schanen et al. [2018] aiming at a petascale
computational strategy on a system equipped with Intel manycore processors.
The decomposition algorithm can be very efficient also on single core computa-
tions, as demonstrated in Kourounis et al. [2018]. Further advancement of the
linear decomposition was explored in Kardoš et al. [2020], analyzing additional
elimination of the problem size on the linear level, thus reducing the memory
footprint of the decomposition algorithm, which is critical for the truly large-
scale problems. The decomposition algorithm is described in detail in part III of
this document.

1.3 Contribution

This work focuses on the interplay between the IP optimization techniques and
numerical linear algebra kernels involved in direct linear solvers. Specifically,
large-scale problems with millions of decision variables and constraints are con-
sidered. Linear systems resulting from many engineering and scientific domains
are not only sparse but also intrinsically structured. Truly large-scale problems
are by necessity generated by some repeated process. An example of such re-
peated processes are scenarios of real life operations — considering possible
outages of the operational equipment and production resources, scenarios in-
troduced by the discretization of the underlying probability space or evolution of
the process in the discretized time horizon D’Apuzzo et al. [2010]. The individ-
ual instances of the process are usually intercoupled, representing the relations
between the specific scenarios, or intertemporal coupling constraints.

It is a fair assumption that details related to the problem structure can be an
additional input to the solver for accelerating the solution process. Appropriate
factorization algorithms from sparse linear algebra are then adopted that exploit
the structure. The KKT systems of such problems are commonly reordered to

5 1.3 Contribution

an arrowhead block structure. Since linear algebra operations that exploit block
structure lend themselves to parallelization, the block structure can be efficiently
solved by the Schur complement decomposition techniques, where the individ-
ual blocks are distributed to available processes. Scalable solvers based on the
Schur complement decomposition are applied for the solution of OPF and SCOPF
problems. The linear solvers are designed for distributed memory architectures
due to the large-scale character of such problems. The proposed method also
addresses shared memory parallelism, taking into account modern computing
architectures, and utilizes advanced linear algebra techniques to further reduce
the problem size, improving memory requirements and time to solution. The
computational experiments involve a variety of power grids of increasing com-
plexity, ranging from one up to several thousand buses resulting to KKT systems
with up to millions of variables constraints.

This thesis is divided into three parts. Part I, Power grid optimization problems,
introduces the power grid infrastructure and formulation of the associated opti-
mization problems, including OPF, SCOPF, and multiperiod OPF (MPOPF). Each
problem is briefly discussed from the perspective of possible solution approaches
proposed in the literature. In Part II, Interior point methods, the state-of-the-art IP
algorithm is introduced and various building block and heuristics are discussed.
Possible solution methods of the saddle point systems, associated with the IP
algorithm, are also briefly summarized. Finally, some of the state-of-the-art IP
nonlinear programming solvers and power grid simulation software packages are
discussed in part III – High-performance IP algorithms and software for power grid
problems. The discussion is centered around the structure exploiting algorithms
designed for the power grid optimization problems. A parallel HPC algorithmic
framework is introduced. This part is concluded with a set of extensive perfor-
mance tests, comparing various commercial and academic IP packages and OPF
problem formulations. The new linear algebra treatment is analyzed in an HPC
environment and the performance improvement of the new library, both with
respect to memory consumption and running time, is assessed. The document
is concluded by a short summary and offers additional research directions that
could further advance the concepts introduced in this document.

The main contribution of this work to the existing literature are listed here
(not using any particular order).

• The design and implementation of a parallel, scalable, structure-exploiting
KKT linear system solver suitable for the solution of large-scale structured
optimization problems, based on the distributed Schur complement de-
composition, taking into account both modern multicore CPUs and GPU
accelerated architectures.

6 1.3 Contribution

• An additional sparsity-maintaining elimination of the variables is employed
during the solution of the KKT systems. This additional level of Schur com-
plement further reduces the solution time and memory requirements of the
KKT systems in each iteration of the IP method even on single-core execu-
tion.

• The study of the parallel performance of the scalable framework is per-
formed through weak-scaling and strong-scaling tests on nodes of a Cray
system using large-scale SCOPF power grid problems.

• An interface to the parallel and distributed linear solver was implemented
and added to state-of-the-art primal-dual IP library IPOPT.

• An exhaustive comparative study of the IP packages on a set of OPF bench-
marks, using multiple OPF formulations and considering additional factors
contributing to the overall performance of the optimization software.

• Detailed evaluation of solution algorithms for the OPF, SCOPF, and MPOPF
problems is performed on a set of power grid benchmarks with an increas-
ing complexity.

• An extension of the energy storage model is introduced and embedded in
the AC MPOPF framework, providing the flexibility to the (distribution)
system operator during the power grid operation and planning.

• C++ power grid simulator was implemented, supporting various applica-
tions, including power flow, OPF, SCOPF, and MPOPF problems with sup-
port of various optimizers such as IPOPT (including also the parallel linear
solver). Similar OPF extensions were also implemented in MATPOWER.

Part I

Power grid optimization problems

7

Chapter 2

Architecture of the power grid

An electrical grid, or power grid, is an interconnected network for delivering
electricity from producers to consumers. It consists of generating stations that
produce electrical power, high voltage transmission lines that carry power from
distant sources to demand centers, and distribution lines that connect individual
customers. A scheme of a typical electric power grid is illustrated in Figure 2.1.
Extrahigh-voltage electricity (380 kV and 220 kV) reaches the transmission grid
from power plants as well as imports from abroad. The voltage must be as high
as possible so that as much energy as possible can be transported over great
distances with minimal losses. Depending on the target customer (industrial
center or a typical family house) the voltage level is stepped down across multiple
stages and different grid levels into medium- and low-voltage distribution grids.

Recent developments in modern power grids involve widespread deployment
of intermittent renewable generation, embrace installation of a wide variety of
energy storage devices, as well as an increasing and widespread usage of electric
vehicles. On the other hand, conventional energy sources are continually dis-
continued, such as coal or nuclear power Swiss Federal Office of Energy [2018].
These developments motivate fundamental changes in methods and tools for the
optimal daily operation and planning of modern power grids. Operational deci-
sions taken by power system operators on a daily basis are commonly assisted by
repeatedly solving complex optimization problems, aiming to determine optimal
operating levels for electric power plants, so that the overall electricity genera-
tion cost is minimized, while at the same time it satisfies load demands imposed
throughout the transmission grid and meets safe operating limits. However, ex-
ploitation of renewable energy sources and their grid integration poses many new
challenges for grid operations due to their intermittent nature and high variabil-
ity. New strategies for the operation and management of the electricity grid have

9

10

Figure 2.1. Structure of an electric power system.

to be developed, in order to maintain power-supply reliability and resolve the im-
balances in the grid caused by large forecast errors. Energy storage is considered
to be an effective and flexible approach for addressing future operational chal-
lenges associated with renewables. Storing the energy generated during periods
of low demand and reusing it during periods of high demand does not only help
overcome the problem of supply from renewable energy sources, but it allows
electricity grids to operate more efficiently and cost effectively. The modeling of
storage devices, however, introduces an intertemporal coupling of the related op-
timization problems corresponding to each time period. The resulting very large
optimization problems become intractable for general optimization methods and
call for new computational tools assisting the grid operations.

Substantial increase in electricity demand had neither been foreseen nor ade-
quately supported by necessary upgrades of the electricity generation and trans-
mission systems. As a consequence, power networks nowadays have to operate
in stressed conditions close to their physical and engineering limits. These cost-
efficient operational conditions are usually uncertain because of the widespread
integration of renewable energy sources and the introduction of intraday electric-
ity markets Capitanescu et al. [2011]. Additionally, the renewable energy is also
placing greater stress on the power grid equipment and shifting their operational
conditions towards their limits. As a result, failures of any network component,
such as a transmission line or power generator, can be critical to the overall grid
operation. Consequently, strict security measures have to be honored by power
system operators, which also heavily rely on available computational tools.

11 2.1 Mathematical model

2.1 Mathematical model

Consider a power grid with NB buses, NG generators, and NL transmission lines.
The bus voltage vector v ∈ CNB is defined in polar notation as v = ve jθ , where
v,θ ∈ RNB specify the magnitude and phase of the complex voltage. The complex
voltages v determine the entire power flow (PF) in the grid that can be computed
using the Kirchhoff equations and the grid configuration, such as the transmis-
sion line parameters, transformer tap ratios, and shunt elements. The current
injections iB ∈ CNB into the buses are defined as iB = YBv, where YB ∈ CNB×NB

is the bus admittance matrix. The complex power at each bus of the network
sB = viB∗, sB ∈ CNB is to be balanced by the net power injections from the genera-
tors sG ∈ CNG , storage devices sS ∈ CNS and demand centers’ power consumption
sD ∈ CNB . Thus, the alternating current (AC) nodal PF balance equations, also
known as the mismatch equations, are expressed as a function of the complex bus
voltages and generator injections as sB+sD−CGsG−CSsS = 0, where CG ∈ RNB×NG

is the generator connectivity matrix and CS ∈ RNB×NS is the storage connectivity
matrix. They specify location of the individual generators and storage devices in
the power grid.

The real and reactive power units are megawatts (MW) and megavolt-ampere
(MVAr), respectively. The complex apparent power is measured in megavolt am-
peres (MVA). For the analysis of electrical machines or electrical machine system,
the per unit (p.u.) system is usually used. The per unit value of any quantity is
defined as the ratio of actual value in any unit and the base or reference value
in the same unit. Any quantity is converted into per unit measure by dividing
the numeral value by the chosen base value of the same dimension. The per unit
value are dimensionless.

The basic problem in the PF analysis is that current flow cannot be directed
along any particular branch in the network, but is determined by Kirchhoff’s
laws and the relative impedances of the various branches. Power flow analy-
sis is concerned with describing the operating state of an entire power system,
that is, a network of generators, transmission lines, and loads that could span
an area as large as several states. Given certain known quantities, such as the
amount of power generated and consumed at different locations, PF analysis al-
lows one to determine the remaining unknown quantities. The most important of
these quantities are the voltages at locations throughout the transmission system,
which, for alternating current, consist of both a magnitude and a time element
or phase angle. Once the voltages are known, the currents flowing through every
transmission link can be easily calculated.

However, the realistic power systems cannot be solved analytically since there

12 2.1 Mathematical model

is no closed-form solution. We can only get at a numerical answer through a
process of successive approximation or iteration. In order to find out what the
voltage or current at any given point will be, we must in effect simulate the en-
tire system. The so-called AC PF equations are a set of nonlinear and non-convex
equations. The common way to solve the equations is to use iterative methods
based on Newton’s method, including algorithms such as Gauss-Seidel, Newton-
Raphson (NR), Dishonest Newton-Raphson, Decoupled Load Flow, Fast Decou-
pled Load Flow or DC Power-Flow. An overview to the methods can be found
in literature, Frank and Rebennack [2012]; von Meier [2006]; Venkatasubrama-
nian and Tomsovic [2005]; Costa, VM ; Martins, Nelson; Pereira [1999] to men-
tion a few. The most general iterative PF method is NR, with its quadratic rate
of convergence. The idea of the NR method is to solve a linearization of the PF
equations at the current iterate to find an update for the next iterate. If the power
network is connected, the linearization is square and non-singular for fixed con-
trol variables. The solution of the linear system is the most expensive operation
in the NR algorithm, thus other methods address this by various approximations
and simplifications of the problem. For example, Dishonest Newton-Raphson
algorithm updates the linearization of the PF equations only every couple of iter-
ations, thus the costly factorization of the linear system are avoided. Decoupled
Load Flow algorithm assumes weak coupling between active power – voltage
magnitude, and reactive power – voltage phase pairs, resulting in two signifi-
cantly smaller independent linear systems, compared to the NR algorithm. Ad-
ditional simplifications, such as assumption that the voltage phase difference is
negligible or neglecting the reactive power flows lead to methods such as Fast
Decoupled Load Flow or DC Power Flow, which becomes linear problem. The
disadvantage of the simplifying assumptions are that the methods become less
robust, and the solution might not be valid for the stressed networks where the
simplifying assumptions do not hold.

The iterative algorithms highly depend on the starting points. The NR has
theoretical quadratic convergence rate, but this holds only for the points suffi-
ciently close to the optimal solution. Therefore a bad choice can lead to a non-
operable solution or even no solution in case of divergence. Recently, there has
been introduced a non-iterative algorithm, the Holomorphic Embedding Load
Flow Method (HELM) Trias [2015]. It is based on concepts of complex analy-
sis and as such does not rely on any initial values or simplifying assumptions.
However, it was shown that for obtaining the desired precision, the computation
of HELM proved to be significantly slower compared to the NR method Sauter
et al. [2017]. Therefore, hybrid approaches are recommended, such that HELM
is used to calculate initial values with low precision and an iterative method is

13 2.2 Power grid components

Figure 2.2. One line diagram for power grid with 14 nodes.

used to refine this initial solution.

2.2 Power grid components

The architecture of the power grid is usually illustrated using one-line diagram,
using a simplified notation for representing a three-phase AC power system. In-
stead of representing each of three phases with a separate line or terminal, only
one conductor is represented. A typical one-line diagram for a power grid is
shown in Figure 2.2. Common electrical elements, including bus bars, conduc-
tors, transformers, circuit breakers and capacitors are shown by standardized
schematic symbols. The individual components are described in the following
paragraphs.

2.2.1 Electric generator

A generator is a device used to convert energy (e.g. mechanical, geothermal,
solar) into electric power. A typical energy sources nowadays include steam, gas
or water turbines. The proportion of renewable energies (REs) is called upon to
increase in all major electricity markets. Currently, hydroelectricity is by far the
largest contributor among the REs while the proportion of RE that comes from
variable sources such as wind and solar is still relatively limited. The reason
is that variability of wind and solar REs creates distinct challenges for integra-
tion into the larger power system. RE sources are fundamentally different from
traditional generation methods because their energy output cannot be easily reg-

14 2.2 Power grid components

ulated since it depends on weather conditions. Therefore, energy from the RE
sources, in particular, wind and solar, is intermittent, highly variable, and difficult
to predict. These properties, combined with other unexpected power system fail-
ures, pose many challenges to power-grid operations that need to be overcome
before high levels of RE penetration can be attained without losing the grid reli-
ability and economic efficiency. One particularly difficult challenge is that large
forecast errors in available RE cause large power imbalances in the grid. These
imbalances need to be resolved by making fast power adjustments that typically
have a high cost, both economical and environmental. This cost may be associ-
ated with load curtailments or with the operational and environmental costs of
conventional fast-ramping generators Tinoco De Rubira and Hug [2016].

The general principle of a classical generator is that an external force spins
the magnet placed inside a conductive wire, resulting in a magnetic flux that
changes over time. This changing magnetic field induces an alternating voltage
and current in a loop of wire surrounding the space. The AC in turn produces its
own magnetic field, which acts to retard the motion of the spinning magnet. In
this way, the interaction of the magnetic fields mediates the transfer of energy
from mechanical movement into electricity. A standard type of generator used in
utility power systems is a synchronous generator. The induction (asynchronous)
generator is used in some specific applications and has some distinct and im-
portant properties. It operates without an independent source for its rotor field
current, but the rotor field current appears by electromagnetic induction from the
field of the armature current. Their one important application in power systems
is in association with wind turbines. In this case, induction generators offer an
advantage because they can readily absorb the erratic fluctuations of mechanical
power delivered by the wind resource.

Generator complex power injections sG = pG + jqG are expressed in terms
of active and reactive power components pG,qG ∈ RNG , respectively. The output
of the generator is limited by the lower and upper bounds pG,min ≤ pG ≤ pG,max,
qG,min ≤ qG ≤ qG,max. Such limits define a simple rectangular box bounds, while
more detailed generator models involve generator capability P-Q curves which
define a boundary within which the machine can operate safely in terms of exci-
tation limits and flows of the active and reactive power. In practice, it is usually
not possible to produce the maximum real output and the maximum reactive
output simultaneously. Additionally, inner dynamics of power generator does
not always allow to change the power production level instantaneously and so a
maximum rate of change of produced power must be respected, resulting in the
generator ramp limit constraints. A sparse NB ×NG generator connection matrix
CG can be defined such that its (i, j)th element is one if generator j is located at

15 2.2 Power grid components

τ∠θ shift : 1 r s x s

bc
2

bc
2

v f vt

Figure 2.3. Branch π model.

bus i and zero otherwise. The NB×1 vector of all bus injections from generators
can then be expressed as CGsG.

2.2.2 Transmission line

The key component in the electric power transmission is the bulk movement of
electrical energy from a generating site to an electrical substation via the high
voltage transmission lines, as illustrated in Figure 2.1. Low resistance is generally
desirable for power lines to minimize energy losses, but also because heating lim-
its the conductor’s ability to carry current. Conductors of overhead transmission
and distribution lines typically consist of aluminum, which is lightweight and rel-
atively inexpensive, while copper is the material of choice for underground cables
because, while it is more expensive, it has a lower resistance than aluminum. In
the latter case, the heat dissipation is more of an issue, whereas weight is not.

The transmission lines are modeled with a common π branch model, with a
series impedance zs = r s+ jx s, zs ∈ CNL , r s, x s ∈ RNL . In practice, it is convenient
to use inverse of impedance, known as series admittance y

s
= gs+ jbs, y

s
∈ CNL .

The model also includes a total charging susceptance bc ∈ RNL , which is usually
divided into two equal parts and added to the both ends of the each branch.
The branch model also considers an ideal phase shifting transformer T = τe jθ shift

with the per unit tap ratio τ and the transformer shift angle θ shift. The model
is illustrated in Figure 2.3. The complex current injections i f and it ∈ CNL , are
determined using the branch admittance matrix YL and voltage of the adjacent
“from” and “to” buses, denoted as v f and vt ∈ CNL , respectively, connected to the
corresponding ends of the line i,

�

i f

it

�

i

= YL
i

�

v f

vt

�

i

, (2.1)

16 2.2 Power grid components

where YL
i is the branch admittance matrix

YL
i =

�
�

y
s
+ j bc

2

�

1
τ2 −y

s

1
τe− jθ shift

−y
s

1
τe jθ shift

y
s
+ j bc

2

�

i

. (2.2)

The sparse connectivity matrices C f , Ct ∈ ZNL×NB are defined such that (i, j)th
element of C f and (i, k)th element of Ct are equal to 1 for each branch i, where
branch i connects from bus j to bus k. All other elements are zero. The apparent
power flow in the transmission lines, s f ∈ CNL and st ∈ CNL can be determined
using the bus voltages v as s f = (C f v)i

∗
f and st = (Ctv)i

∗
t .

Real-world transmission lines are limited by the instantaneous amount of
power that can flow through the lines due to the thermal limits. The apparent
power flow in the transmission lines are therefore limited by the power injections
at both ends of the lines, which cannot exceed a prescribed upper bound smax

L .
Squared values of the apparent power magnitude are usually used in practice,
such that s f (s f)∗ ≤ (smax

L)2.
The branch model also consists of transformer with a tap ratio with magni-

tude τ and phase shifting angle θ shift and is assumed to be located at the “from”
end of the branch.

The properties of the branch admittance matrix YL are used to build the nodal
admittance matrix YB = G+ jB ∈ CNB×NB , which represents the nodal admittance
of the buses in a power system. G is the conductance and B the susceptance.
The nodal admittance matrix is used in the power system analysis to determine
the power flow in the network. In realistic systems, the YB matrix is quite sparse
since each bus in a real power system is usually connected to only a few other
buses through the transmission lines. The nodal power sB = pB+ jqB, sB ∈ CNB is
accounting for all the power flow that is entering or leaving a particular node i
via the transmission lines. Assume bus i that is connected to other nk nodes with
indices B(i), we can write the power flow equation for the bus i as

sB
i = vi

∑

k∈B(i)
(G ik + jBik)vk

!∗

. (2.3)

Written in the matrix form, the nodal power flow is defined by sB = v(YBv)∗.

2.2.3 Transformer

High voltages are crucial for power transmission over long distances. Closer to
the end users of electricity, however, safety prohibits the use of equipment at

17 2.2 Power grid components

excessively high voltages. In the design of power delivery systems, the greater
energy efficiency of high voltage and low current must therefore be weighed
against safety and capital cost. Rather than having to settle for some intermediate
voltage as a compromise, the use of transformers makes it possible to operate the
different parts.

A transformer is a device for changing the voltage in an AC circuit and is
used to provide the effective interface between the high- and low-voltage parts
of the system. It consists of two conductor coils, as illustrated in Figure 2.3, that
are connected not electrically but through magnetic flux. As a result of electro-
magnetic induction, an alternating current in one coil will set up an alternating
current in the other. In the primary coil, the AC supplied by a generator pro-
duces a magnetic field, or flux, inside the core of the coil. Like the conductors
inside a generator, transformer coils are wound around a core of magnetically
susceptible material, generally some type of iron, to enhance the magnetic field.
The magnetic flux resulting from the current is proportional to both the current’s
magnitude and the number of turns in the coil.

In a real transformer, some power is dissipated in the form of heat. A portion
of these power losses occur in the conductor windings due to electrical resistance
and are referred to as copper losses. Even a small percentage of losses in a large
transformer corresponds to a significant amount of heat that must be dealt with.
Large transformers like those at substations or power plants require the heat to
be removed from the core and windings by active cooling, generally through
circulating oil that simultaneously functions as an electrical insulator.

2.2.4 Load

Load refers to any device in which power is being dissipated (i.e., consumed).
From the circuit perspective, a load is defined by its impedance. In the larger con-
text of power systems, loads are usually modeled in an aggregated way: rather
than considering an individual appliance, load may refer to an entire household,
a city block, or all the customers within a certain region. In the language of elec-
tric utilities, the term load therefore has attributes beyond impedance that relate
to aggregate behavior, such as the timing of demand. Serving the instantaneous
demand under diverse circumstances is the central challenge in designing and
operating power systems, and the one that calls for the majority of investment
and effort.

Load is an externally given quantity, a variable beyond control, that is in any
given time to be met by supply at any costs. This assumption is codified in the
social contract between utilities – or even just as transmission and distribution

18 2.2 Power grid components

service companies – and the public, which insists upon the utilities’ fundamental
obligation to serve the load, since the electricity cannot be stored in sufficient
quantities on large scale. From the standpoint of economics as well as logistics,
a relatively flat load duration curve with a high load factor is clearly desirable
for utilities. This is because the cost of providing service consists in large part
of investments related to peak capacity, whereas revenues are generally related
to total energy consumed (i.e., average demand). A pronounced peak indicates
a considerable effort that the service provider must undertake to meet demand
on just a few occasions, although the assets required to accomplish this will tend
not to be utilized much during the remainder of the year.

Each bus has an associated complex power demand sD = pD + jqD, which
is assumed to be known at all of the buses and is modeled by a static polyno-
mial (ZIP) model Zimmerman and Murillo-Sanchez [2016]. If there are no loads
connected to the bus i then {sD}i = 0.

2.2.5 Energy storage device

Energy storage devices are cruicial components in the grid when it comes to
a high penetration of variable RE sources. Traditionally, pumped-storage hy-
droelectricity is used for load balancing which allows energy from intermittent
sources (such as solar, wind) and other renewables, or excess electricity from
continuous base-load sources (such as coal or nuclear) to be saved for periods
of higher demand. Other storage technology include lithium-ion batteries, fly-
wheels or compressed air storage. Each device varies in its application and prop-
erties, with varying time scale of operation or storage capacity.

Nowadays, lithium-ion (Li-ion) battery energy storage system represent al-
ternative solution in order to guarantee grid stability in distribution areas with
large PV penetration, where the increasing share of PV generation at regional
and national scales brings technical and economic challenges related to the vari-
ability and uncertainty associated with PV generation Sevilla et al. [2018]. At
the moment, Li-ion batteries are considered as the most relevant technology for
distribution grids given their maturity level, modular design and capability for
both short-term and mid-term applications. Additionally, Li-ion batteries are ad-
vantageous due to its capability for charging and discharging efficiently at high
power rates even with limited battery capacity.

Each storage unit in the network is modeled by two network power injections.
A positive active power injection pSd,i ∈ R, pSd,i ≥ 0 models the discharging of
storage unit i. A negative active power injection pSc,i ∈ R, pSc,i ≤ 0 models the
charging of storage unit i. The vector of active storage power injections pS ∈ R2NS

19 2.2 Power grid components

is defined as

pS =
�

pSd,1, · · · ,pSd,NS ,pSc,1, · · · ,pSc,NS
�

(2.4)

and bounded by pS,min ≤ pS ≤ pS,max. Identical definitions apply for the reactive
storage power injections qSd,i, qSc,i, qS with bounds qS,min and qS,max . Together,
they yield the complex storage power injections sS = pS + jqS.

The storage connectivity matrix CS ∈ RNB×2NS maps the 2NS storage injections
sS to the NB buses. The connectivity matrix has the entries (i, k) and (i, NS + k)
equal to one if the injection sS

k of the storage device k is into bus i and zero
otherwise.

In our model, the storage size εmax
S is chosen to contain up to two hours of the

nominal active power demand pD
k of the bus k. If the storage device i is located

at bus k, then εmax
S,i = 2pD

k and εmin
S,i = 0. The initial state of charge is 70%,

which represents ε0 = 0.7εmax
S . The storage device power ratings are limited

to allow a complete discharging and charging within three hours and two hours,
respectively. Therefore, pSd,imax = 1

3ε
max
S and pSc,imin = −1

2ε
max
S . All storage device

discharging and charging efficiencies are chosen as ηd = 0.97 and ηc = 0.95.

Other components

Elements such as a capacitor or inductor, referred to as shunt elements, are mod-
eled as fixed impedance to ground at a given bus. The admittance of the shunt
element at the buses are given as y

sh
= gsh+ jbsh, where y

sh
∈ CNB ,gsh, bsh ∈ RNB .

Other crucial components of the grid are circuit breakers and switches. Break-
ers serve as protective devices that open automatically in the event of a fault, that
is, when a protective relay indicates excessive current due to some abnormal
condition. Switches are control devices that can be opened or closed deliber-
ately to establish or break a connection. An important difference between circuit
breakers and switches is that breakers are designed to interrupt abnormally high
currents (as they occur only in those very situations for which circuit protection
is needed), whereas regular switches are designed to be operable under normal
currents. Reasons for switching include contingencies, work clearances, service
restoration following an outage, managing overloads, and enhancing system ef-
ficiency. For example, a contingency might be a fault on one line that has to be
isolated from the system, and other connections need to be rearranged so as to
redistribute the load of the lost line among them. Further details regarding the
grid infrastructure can be found in Momoh [2000]; von Meier [2006]; Zimmer-
man and Murillo-Sanchez [2016]; Frank and Rebennack [2012].

20 2.3 Power grid models

2.3 Power grid models

During the development process of robust and fast power grid analysis methods,
it is crucial to have a set of realistic problems, which can be used to evaluate var-
ious algorithms. However, the power grid infrastructure represents the classified
information of national interest, which might be easily targeted and misused to
threaten the national security. Thus the realistic data are handled very carefully
and are not available to public. However, many synthetic or simplified models
with properties closely representing the actual system are available.

For example Pegase Josz et al. [2016]; Fliscounakis et al. [2013a] data ac-
curately represent the size and complexity of part of the European high voltage
transmission network. The network contains 1,354 buses, 260 generators, and
1,991 branches and it operates at 380 and 220 kV. The data are fictitious and do
not correspond to real world data. They can thus be used to validate methods
and tools but should not be used for operation and planning of the European grid.
Representations of the power grid with different granularity exist, from 1,354 up
to 13,659 buses. Similarly, the dynamic model of continental Europe is available
from European Network of Transmission System Operators (ENTSO-E), which is
designed for performing transient analysis Sevilla et al. [2017]; Semerow et al.
[2015].

ACTIVS is a collection of entirely synthetic cases consisting from 200 up to
10,000 buses. The grid is geographically situated in the eastern US. The case
is designed with a 500, 230, 161, and 115 kV transmission network to serve a
load that roughly mimics the actual population of its geographic footprint. The
synthetic transmission system was designed by algorithms described in Birchfield
et al. [2017] to be statistically similar to actual transmission system models but
without modeling any actual lines.

The data for the Polish 400, 220, and 110 kV networks during different oper-
ating conditions, such as summer 2008 morning peak or during winter 2007–08
evening peak conditions are available Zimmerman et al. [2011] and include some
equivalents of the German, Czech, and Slovak networks.

The size and complexity of French high and very high voltage transmission
networks are also available Josz et al. [2016]. These data are snapshots of French
very high voltage and high voltage grids in 2013. These data can be used to
validate mathematical methods and tools but should not be used for operation
nor planning of the French or European grids.

Various characteristics for selected benchmark cases1 with increasing com-

1For abbreviation purposes the prefix “case” was removed from all benchmark names.

21 2.3 Power grid models

plexity are listed in Table 2.1. In addition to the standard benchmark cases dis-
tributed with MATPOWER package, there are four larger cases, namely case21k–
case193k, built from the Polish system winter 2007–08 evening peak power flow
data (case3012wp), considering the largest generator outage and line contingen-
cies. The table lists number of buses, generators and lines for each benchmark
case, together with some properties of the optimization problem described in
Chapter 3.

The power grid data are distributed with the MATPOWER Zimmerman et al.
[2011] package in the MATPOWER case format Zimmerman and Murillo-Sanchez
[2016] or are available as PGLib-OPF Babaeinejadsarookolaee et al. [2019], an
open-access benchmark library, where all the network data are provided under
a creative commons license. The latter project is the official IEEE Power and En-
ergy Society OPF benchmark library, which has replaced archives such as NESTA
Coffrin et al. [2014].

Additionally, CIGRE-Networks Rudion et al. [2006]; CIGRE Task Force [2014]
were developed by the CIGRE Task Force to facilitate the analysis and validation
of new methods and techniques that aim to enable the economic, robust, and
environmentally responsible integration of distributed energy resources (DER).
CIGRE-Networks are a set of comprehensive reference systems that allow the
analysis of DER integration at high voltage, medium voltage, and low voltage at
the desired degree of detail.

22 2.3 Power grid models

Table 2.1. Benchmark cases statistics including the number of buses NB, gen-
erators NG, transmission lines NL and nonlinear equality and inequality con-
straints (considering OPF formulation with polar voltage coordinates).

Benchmark NB NG NL |x | |cE(x)| |cI (x)|
1951rte 1,951 391 2,596 4,634 3,902 4,198
2383wp 2,383 327 2,896 5,420 4,766 5,792
2868rte 2,868 599 3,808 6,858 5,736 4,562
ACTIVSg2000 2,000 544 3,206 4,864 4,000 6,412
2869pegase 2,869 510 4,582 6,758 5,738 5,486
2737sop 2,737 399 3,506 5,912 5,474 6,538
2736sp 2,736 420 3,504 6,012 5,472 6,538
2746wop 2,746 514 3,514 6,354 5,492 6,614
2746wp 2,746 520 3,514 6,404 5,492 6,558
3012wp 3,012 502 3,572 6,794 6,024 7,144
3120sp 3,120 505 3,693 6,836 6,240 7,386
3375wp 3,374 596 4,161 7,706 6,748 8,322
6468rte 6,468 1,295 9,000 13,734 12,936 4,626
6470rte 6,470 1,330 9,005 14,462 12,940 6,220
6495rte 6,495 1,372 9,019 14,350 12,990 6,218
6515rte 6,515 1,388 9,037 14,398 13,030 6,262
9241pegase 9,241 1,445 16,049 21,372 18,482 12,590
13659pegase 13,659 4,092 20,467 35,502 27,318 0
ACTIVSg10k 10,000 2,485 12,706 23,874 20,000 20,488

Large-scale benchmarks

ACTIVSg25k 25,000 4,834 32,230 57,558 50,000 46,660
ACTIVSg70k 70,000 10,390 88,207 156,214 140,000 137,234
case21k 21,084 2,692 25,001 54,091 42,168 50,002
case42k 42,168 5,384 50,001 107,027 84,336 100,002
case99k 99,396 12,689 117,860 250,703 198,792 235,720
case193k 192,768 24,611 228,574 485,135 385,536 457,148

Chapter 3

Optimization problems in the power
grid

Historically, when the first optimal power flow (OPF) models were formulated Car-
pentier [1962], the usual setting was that of a monopolistic energy producer.
The responsibility of such a producer, typically operating in a national setting,
spanned from the electrical production, transmission, and distribution in one
given area, comprising also the regulation of exchanges with neighboring re-
gions. In the liberalized markets that are nowadays prevalent, the decision chain
is instead decentralized and significantly more complex, as shown in the simpli-
fied scheme of Figure 3.1. In a typical setting, companies owning generation
assets have to bid their generation capacity over one of the market operators
(MO). Alternatively, or in addition, they can stipulate bilateral contracts with
final users (representing major loads such as industrial centers) or with whole-
sales and traders. Once they have received the bids and offers, the MO clears
the energy market and defines clearing prices. A transmission system operator
(TSO), in possession of the transmission infrastructure, then has the duty to en-
sure safe delivery of the energy, which in turns means different duties such as
real-time frequency-power balancing, spinning reserve satisfaction, voltage pro-
file stability, and enforcing real-time network capacity constraints Tahanan et al.
[2015].

From the perspective of the energy trading and wholesale market, efficient
energy trading relies on high-fidelity price prediction systems with short response
times. However, the consideration of realistic engineering constraints encoun-
tered in daily power grid operations results in high computational complexity
of pricing models with unacceptable response times. Furthermore, the liberal-
ized wholesale power markets, which consist of energy, ancillary service, and

23

24

Major
loads

Traders /
Wholesale

CoordinationMO TSO

Programmable units

Generation assets

Sell

Sell/Buy

Non programmable units

Communicate

Bilateral contractsBi
la

te
ra

l c
on

tr
ac

ts

Offers Q&P Offers Q&P

Offers Q&P

Legend:
MO – Market Operator
TSO – Transmission System Operator
Q&P – Quantities and prices

Figure 3.1. General structure of electrical systems, presenting the different
entities solving OPF problems and their interactions.

capacity markets, include a growing number of different types of DER. Real-time
responses are essential in modern trading environments and are not currently
provided by energy trading software. The research in this area focuses on de-
veloping novel computational tools for the market pricing mechanism that meet
real-time responses required by modern trading environments Helman [2019].
The goal of the trading entities is to have available high-fidelity price forecast-
ing tools in order to gain several advantages, such as better identifying impor-
tant events along the forecasting horizon, understanding when and if the market
might be panicking from particular events, facilitating the price discovery, and
enhancing the understanding of physical behavior of power plants. Generally
speaking, representing the potential price outcome over a given time horizon
and for a given country is essential for both trading and risk management pur-
poses. OPF is a fundamental building block of such computations.

On the other hand, TSO operates the extrahigh voltage transmission grid and
coordinates energy exchanges and operational activities with neighboring utili-
ties and is responsible for secure and reliable grid planning and operation. Ex-
tensive operational planning is performed on different time frames to ensure the

25 3.1 Optimal power flow

secure operation of the transmission system. Scheduled maintenance of the ma-
jor power plants and grid elements (lines, transformers, substation equipment,
etc.) are coordinated in order to avoid insecure situations. Analyses are per-
formed on yearly, monthly, weekly and daily basis and the core computational
tool is based on an OPF engine López et al. [2015].

3.1 Optimal power flow

Since the formulation of OPF by Carpentier Carpentier [1962] as a continuous
nonlinear programming (NLP) problem, OPF has become one of the most impor-
tant and widely studied constrained nonlinear optimal control problems, since
it is a fundamental building block in power system research, operation and it is
widely used in planning problems. As the power industry has become a deregu-
lated environment, operation is strongly influenced by a competitive market. The
security and economical issues of power systems are coordinated more tightly
than before. Thus, the need for fast and robust optimization tools that consider
both security and economy is more demanding than before to support the system
operation and control.

OPF is concerned with the optimization of the operation of an electric power
network subject to physical constraints imposed by electrical laws and engineer-
ing limits. The objective is to identify the operating configuration that best meets
a particular set of evaluation criteria. These criteria may include the most eco-
nomic generator dispatch which minimizes hourly fuel cost, transmission line
losses, and various requirements concerning the system’s security, or resilience
with respect to disturbances. The constraints are imposed by the power flow
equations or may be related to various limits, including voltage, thermal line
flow, transformer tap or generator limits.

3.1.1 Problem formulation

The OPF problem is defined in terms of the conventional economic dispatch prob-
lem, aiming at determining the optimal settings for optimization variables. The
standard formulation of the OPF problem takes the form of a general NLP prob-

26 3.1 Optimal power flow

lem, with the following form:

minimize
x

f (x) (3.1a)

subject to cE(x) = 0, (3.1b)

cI(x)≤ 0, (3.1c)

xmin ≤ x ≤ xmax. (3.1d)

The objective function f (x) consists of polynomial costs of generator injections,
the equality constraints cE(x) are the nodal balance equations, the inequality
constraints cI(x) are the branch flow limits, and the xmin and xmax bounds include
slack bus angles, voltage magnitudes, and active and reactive generator power
injections. The optimization vector x for the standard AC OPF problem consists
of the NB×1 vectors of voltage angles θ and magnitudes v and the NG×1 vectors
of generator real and reactive power injections pG and qG, defined in Chapter 2:

x =
�

θ v pG qG
�

. (3.2)

The complex voltage in polar coordinates is defined as v= ve jθ and the complex
power in rectangular form is expressed as sG = pG + jqG. The objective function
f (x) in (3.1a) is simply a summation of individual polynomial cost functions f i

P
of active power injections for each generator:

f (pG) =
NG
∑

i=1

f i
P(p

G i). (3.3)

The equality constraints in (3.1b) are the complex power balance equations

cS
E(v, sG) = sB + sD − CGsG = 0, (3.4)

or when expressed in terms of the full set of 2NB real and reactive components,
the constraints become nonlinear and nonconvex

cP
E (θ ,v,pG) = pB + pD − CGpG = 0, (3.5)

cQ
E (θ ,v,qG) = qB + qD − CGqG = 0. (3.6)

The nodal power vector is defined as sB = pB + jqB, the nodal power demand
vector is expressed as sD = pD + jqD. The inequality constraints (3.1c) consist
of two sets of NL branch flow limits expressed as nonlinear functions of the bus
voltage angles and magnitudes, one for the each end of the branch:

cP
I (θ ,v) =

�

�s f (θ ,v)
�

�− smax
L ≤ 0, (3.7)

cQ
I (θ ,v) =

�

�st(θ ,v)
�

�− smax
L ≤ 0. (3.8)

27 3.1 Optimal power flow

The flows s f and st are the apparent power flows expressed in megavolt ampere
(MVA), though real power or current can also be used.

The variables bounds (3.1d) include an equality constraint for the voltage
angle at a slack bus Islack (equivalently expressed as xIslack

min = xIslack
max = θ

slack). Since
the value is known, the variable is usually removed internally in the optimizer,
which is the case for IPOPT. The upper and lower bounds are imposed on all bus
voltage magnitudes and real and reactive generator injections:

θ i = θ
slack, i ∈ Islack,(3.9)

vi,min ≤ vi ≤ vi,max, i = 1, 2, . . . NB,(3.10)

pG i,min ≤ pG i ≤ pG i,max, i = 1, 2, . . . NG,(3.11)

qG i,min ≤ qG i ≤ qG i,max, i = 1, 2, . . . NG.(3.12)

The table 2.1 lists the number of decision variables together with a number of
nonlinear equality and inequality constraints (considering OPF formulation with
polar and voltage coordinates).

Rectangular vs. polar coordinates for voltage

The AC OPF problem takes different forms based on the different representations
of the complex bus voltages, which can be represented either in rectangular or
polar coordinates. The standard formulation uses polar voltage representation
v = ve jθ . The optimization vector x , considering alternative rectangular coor-
dinates, includes the real and imaginary parts of the complex voltage, denoted,
respectively, by u and w , where v= u + jw :

x =
�

u w pG qG
�

. (3.13)

The objective function remains unchanged, but in the case of rectangular
voltage representation, the nodal power balance constraints (3.5) and (3.6) and
branch flow constraints (3.7) and (3.8) are implemented as quadratic functions
of u and w :

cP
E (u, w ,pG) = pB(u, w) + pD − CGpG = 0, (3.14)

cQ
E (u, w ,qG) = qB(u, w) + qD − CGqG = 0, (3.15)

cP
I (u, w) =

�

�s f (u, w)
�

�− smax
L ≤ 0, (3.16)

cQ
I (u, w) =

�

�st(u, w)
�

�− smax
L ≤ 0. (3.17)

28 3.1 Optimal power flow

In the case of rectangular formulation, the voltage angle constraint at the
slack bus (3.9) and voltage magnitude limits (3.10) cannot be simply applied as
bounds on optimization variables. These constrained quantities become nonlin-
ear trigonometric functions of u and w :

θ i(u i, w i) = θ
slack, i ∈ Islack,(3.18)

vi,min ≤ vi(u i, w i)≤ vi,max, i = 1,2, . . . NB.(3.19)

Current vs. power for nodal balance constraints

Another variation of the standard AC OPF problem uses current balance con-
straints in place of the power balance constraints. Complex power balance con-
straints are expressed as (3.4), where (3.5)–(3.6) or (3.14)–(3.15) are their
real and imaginary components, respectively. The complex current balance con-
straints are expressed as

cE(v, sG) = iB + [v∗]−1
D (s

D − CGsG)∗ = 0, (3.20)

where [v∗]−1
D is a diagonal matrix whose ith diagonal entry is 1/v∗i , that is, e jθ i/vi

or 1/(u i− jw i). For further details, comprehensive explanation of the equations
and discussion regarding the modelling aspects, see Zimmerman and Murillo-
Sanchez [2016].

3.1.2 Solution approaches

The AC OPF problem is a non-convex optimization problem that is difficult to
solve quickly and reliably for large-scale grids. One important advantage of NLP
for OPF is that it naturally captures nonlinearities in stressed power system be-
havior rendering the NLP solution technique into an excellent tool for modeling
and simulation of modern power system operations. However, the performance
of NLP algorithms need to be extensively investigated for a variety of real-life
power networks and their applicability need to be assessed for real-time power
systems operations.

An important complexity source of OPF is its highly non-convex nature, which
makes solving this optimisation problem computationally hard. This is why the
operators who are dealing with large power systems usually use highly simplified
OPF models. To manage the complexity to a reasonable level, research has fo-
cused on solution techniques based on (i) problem relaxation or approximation
(ii) power grid decomposition, and (ii) high-performance nonlinear large-scale
optimization approaches.

29 3.1 Optimal power flow

An efficient algorithm for constructing accurate linear approximations of line
flow constraints was presented in Shchetinin et al. [2019]. These approxima-
tions reduce the complexity of the optimization problem while ensuring that the
solution is physically meaningful and has a high quality. The algorithm is based
on an in-depth analysis of the feasible set of the line flow constraints. Linear
and quadratic programming (LP/QP) based OPF problems were formulated in
Fortenbacher and Demiray [2019] that can be used for power system planning
and operation. They consider a linear power flow and branch flow approximation
and derive a power loss approximation in the form of absolute value functions
that are suitable to cover a broader operating range. The proposed formulation is
also an approximation and there are loss regions that are underestimated above
the certain operating values, which results in an underestimation of voltage an-
gles and magnitudes. Hence, there is no guarantee that the approximated OPF
solutions will lie inside the original feasible solution space.

One of the aspects of the current research trends for the future smart grid
is the possibility of devising distributed algorithms for solving a global problem,
which decompose the power grid and the associated optimization problem into
smaller tasks. This corresponds to the idea of a decentralized access to genera-
tion/storage resources, as well as to the much more challenging task of decen-
tralized control. The nonlinear decomposition of the grid into zones with the
aid of additional user information was performed e.g. in Hug-Glanzmann and
Andersson [2009]. The idea is to partition the network in multiple regions was
also used in Erseghe [2015], where a distributed algorithm based upon alternat-
ing direction method of multipliers (ADMM) was proposed. ADMM Boyd et al.
[2011] is an algorithm that solves convex optimization problems by breaking
them into smaller pieces, each of which are then easier to handle. However, the
non-convexity of the OPF introduces a lot of difficulties for the ADMM algorithm.
The improved convergence speed, proposed in Engelmann et al. [2019], comes at
the cost of increasing the communication effort per iteration. Therefore, inexact
Hessians are used to reduce the communication volume.

Over the last five decades, almost every mathematical programming approach
that can be applied to OPF has been attempted. Sequential linear programming
has been presented by Stott and Hobson Stott and Hobson [1978] and Alsac et
al. Alsac et al. [1990]. Despite its good performance, the linear model intro-
duces inaccuracies and might lead to infeasible solutions. Sequential quadratic
programming (SQP) was applied by Burchett Burchett et al. [1982] delivering
accurate and feasible solutions but the computational times are relatively high,
rendering the entire solution approach inappropriate for large-scale power sys-
tems. Linear and nonlinear interior point methods were applied by Vargas et

30 3.2 Security of the power grid

al. Vargas et al. [1993]; Granville [1994]; Torres and Quintana [1998], and
semidefinite programming by Low Lavaei and Low [2012]; Low [2014]. Sev-
eral extensions of these algorithmic approaches are reported in recent review
papers; see, e.g., Huneault and Galiana [1991]; Momoh et al. [1999]; Frank
et al. [2012]. Modern trends in power grid operations and modeling, however,
render approximation-based optimization techniques less attractive for coping
with stressed operating conditions. As a result, there is a great demand for new
algorithms and software tools able to address strong nonlinearities in system be-
havior, in order to guarantee reliable and economic system operation.

The high-performance nonlinear large-scale optimization approaches focus
on problems such as security constrained OPF, important from the perspective of
the TSO, or the multiperiod OPF that are necessary to predict the evolution of the
energy markets. The formulation of such problems and their solution approaches
are discussed in the following sections.

3.2 Security of the power grid

The security constrained OPF (SCOPF) Monticelli et al. [1987], is an extension
of the OPF problem, which finds an optimal operational state but at the same
time takes into account a set of security constraints arising from the operation
of the system under a set of postulated contingencies. It guarantees that the
whole power system can work under the nominal long-term cost-efficient oper-
ation plan, but can also remain in the operational state when some of the pre-
determined contingencies occur, such as failures or outages of equipment in the
power system. The SCOPF has become an essential tool for many transmission
system operators for the operational planning, and real time operation of their
system. Some of the SCOPF models may allow limited corrective actions after the
accident occurs Phan and Sun [2015], while the preventive SCOPF formulation
keeps the control variables fixed such that the system remains in a feasible state
if any of the contingencies occur. Both of these models are similar from the point
of view of the computational complexity, which is the primary focus of this work.
Each additional contingency corresponds to an extra set of constraints in the OPF
problem specified for the associated power grid. The nominal scenario and all
contingency states are coupled, rendering the whole problem computationally
intractable for realistic size grids.

31 3.2 Security of the power grid

3.2.1 Problem formulation

A variety of SCOPF formulations have been proposed in the literature, consider-
ing different types of contingencies or security modes (the preventive mode be-
ing more prevalent). The SCOPF optimization problem considered in this work
is the preventive SCOPF, although the same algorithmic improvements would
apply also to the corrective variant. SCOPF problem is formulated as:

minimize
θ c ,vc ,pG

c ,qG
c

NG
∑

i=1

fi(p
Gi
0) (3.21a)

subject to ∀c ∈ {c0, c1, . . . , cNc
},

cc
ε
(θ c,vc,p

G
c,q

G
c) = 0, (3.21b)

cc
I(θ c,vc)≤ smax

L , (3.21c)

vmin ≤ vc ≤ vmax, (3.21d)

θ slack
c = 0, (3.21e)

pG,min ≤ pG
c ≤ pG,max, (3.21f)

qG,min ≤ qG
c ≤ qG,max, (3.21g)

∀b ∈ BPV : vc = vc0
, (3.21h)

∀g ∈ BPV : pG
c = pG

c0
. (3.21i)

Note that the SCOPF problem replicates the OPF constraints and variables for
each contingency scenario c. It supplements the standard OPF problem with
constraints for the nodal power flow balance (3.21b), the branch flow limits
(3.21c), and other operational limits (3.21d), (3.21f), which have to be honored
not only for the nominal case c0, but also for every contingency event c ∈ C,
Nc = |C|. The values of the non-automatic control variables are the same in all
system scenarios, as expressed by the two non-anticipatory constraints (3.21h)
and (3.21i). These declare that the voltage magnitude and the active power
generation at the PV buses BPV (also known as generator buses) should remain
the same as in the nominal scenario c0, regardless which contingency they are
associated with. The only generator that is allowed to change its active power
output is the generator at the slack bus Bslack (also known as the reference or
swing bus) as its active power generation can be modified to refill the power
transmission losses occurring in each contingency c. This implies that part of the
optimization vector x will be shared between the scenarios and part of it will be
local to each contingency. Therefore, the vector of variables can be partitioned
into local components x c for each contingency∀c ∈ {c0, c1, . . . , cNc

} and the global

32 3.2 Security of the power grid

(shared) part x g:

x c =
�

θ , vi, qG, pG
j

�

, i 6∈ BPV, j ∈ Bslack, (3.22)

x g =
�

vi, pG
j

�

, i ∈ BPV, j 6∈ Bslack, (3.23)

x =
�

x 0, x 1, . . . , x Nc
, x g

�

. (3.24)

This ordering of the variables allow implementation of the efficient structure ex-
ploiting algorithms which represent the main focus of this work and is discussed
in part III of this document.

3.2.2 Credible contingencies selection

An important question arises in the SCOPF problem studies, which is how to se-
lect a reduced number of equivalent credible (so called umbrella) contingencies
and associated variables that the SCOPF problem has to consider in order to ob-
tain the same or nearly the same solution as with the full set of contingencies.
In other words, how to identify contingencies that do not pose any security risks
and at the same time do not restrict the optimal solution, therefore do not have
to be considered in the SCOPF problem. The set of umbrella contingencies for
a given SCOPF is strongly dependent on the operating conditions of the power
grid (loading, grid configuration, etc.). Hence, as the parameters of the prob-
lem change, the membership in the set of umbrella contingencies also varies.
The expertise and detailed knowledge of the power system by the system en-
gineers might be leveraged or an analysis ranking the severity of the events in
power systems Rüeger et al. [2019]; Kaplunovich and Turitsyn [2016] might be
performed. Alternatively, machine learning techniques are usually used for this
purpose, including three classes of learning methods, namely machine learning,
artificial neural networks and statistical pattern recognition Du et al. [2019]; R
et al. [2013]. However, the resulting set might be still very large and sophisti-
cated optimization algorithms are needed. For the purpose of this study, such
contingencies are selected that result in non-empty feasible region of the SCOPF
problem (3.21). This restricts the selection of the transmission lines that can
experience failure and do not compromise operation of the power grid. Such
lines are characterized by the following properties: (i) no islands and isolated
buses appear in the grid after the line failure, (ii) the reduced grid remains fea-
sible in the PF sense, and (iii) only limited reactive power generation violations
are allowed after the contingency occurrence. These considerations are usually
made in the planning stage of the transmission grid design, but since mainly syn-
thetic power grid networks are used to evaluate the solution algorithms, these
considerations might not be satisfied for all conceivable contingencies.

33 3.2 Security of the power grid

3.2.3 Solution approaches

Several techniques have been proposed in the literature aiming to reduce the
computational complexity of the SCOPF problem. Table 3.1 summarizes ap-
plication of various methodologies for solution of the SCOPF problems in the
recent years. Techniques such as DC grid approximations Fliscounakis et al.
[2013b], combination of AC and DC SCOPF Marano-Marcolini et al. [2012], fil-
tering of contingencies using prior knowledge about the grid, Capitanescu et al.
[2007], Capitanescu and Wehenkel [2008], identification of the binding contin-
gencies Platbrood et al. [2014], or nonlinear decomposition of the grid into zones
with the aid of additional user information Kargarian et al. [2015]; Mohammadi
et al. [2018] are possible approaches. Other works focus on efficient handling
of the discrete variables in large-scale grids Macfie et al. [2010], compared to
the usual practice of their continuous relaxation or mixed integer programming
(MIP). Recently, in addition to classic CPU-based computing, graphics processing
units (GPUs) have also been exploited for security analysis in Chen et al. [2017],
Zhou et al. [2017]. Other algorithms adopt the dual decomposition or the al-
ternating direction method of multipliers, e.g., applied to the DC OPF problems
in Chakrabarti et al. [2014], Kargarian et al. [2018].

A variety of the SCOPF decomposition methods have been proposed. Par-
allel solution techniques are commonly employed to accelerate the solution of
SCOPF problems since the advent of the multicore hardware. Initially, parallel
algorithms were introduced for identifying the active constraints in a linear pro-
gramming (LP) formulation where the simplex method used to solve the 1, 663
bus case with 1,555 contingencies Rodrigues et al. [1994]. Later, the parallel
algorithms were also extended to solve the NLP problems. In the meantime, IP
methods had been widely accepted as the most robust and successful tools for
large-scale nonconvex optimization, especially due to the fact that both the total
number of iterations and the overall execution time grow at a slower rate than
in the simplex method Lu and Unum [1993]. Furthermore, IP methods can eas-
ily handle problems with many inequality constraints and allow a wide variety
of sparse linear solvers, potentially exploiting the particular problem structure
Gondzio and Grothey [2009].

A decade later after the parallel simplex method, the nonlinear IP method was
used to solve the 3,493 busbar case with 79 contingencies Qiu et al. [2005]. The
problem decomposition on the linear level explored the Schur complement (SC)
decomposition, using preconditioned iterative solution methods for computing
the local SC contributions; however, good preconditioners are not always avail-
able. Alternative parallelization schemes were also explored, such as Benders

34 3.2 Security of the power grid

Table 3.1. Overview of the SCOPF solution methods with parallelism focusing
on compute nodes and cores (nodes×cores).

Year Method Buses Cont. Parallel
1994 LP Simplex Rodrigues et al. [1994] 1,663 1,555 64×1
2005 NLP IP + SC Qiu et al. [2005] 3,493 79 16×1
2007 NLP IP + Benders Borges and Alves [2007] 2,330 700 12×2
2010 Iterative MIP technique Macfie et al. [2010] 3,551 40 1×1
2012 NLP IP + LP Simplex Marano-Marcolini et al. [2012] 2,746 2,468 1×1
2013 NLP IP Capitanescu and Wehenkel [2013] 8,387 12 1×1
2014 NLP IP + SC Jiang and Xu [2014] 543 556 1×8
2014 NLP IP + cont. filter Platbrood et al. [2014] 9,241 12,000 8×8
2014 NLP IP + SC Chiang et al. [2014] 300 271 160×1
2018 NLP IP + SC Schanen et al. [2018] 118 12,228 1,536×64
2019 NLP IP + SC Kardoš et al. [2020] 9,241 512 64×16

decomposition, which decomposes the SCOPF problem into a master problem,
corresponding to normal operation, and multiple subproblems each correspond-
ing to a contingency case. It was applied to DC Corrective SCOPF Mohammadi
et al. [2013] or static security control Borges and Alves [2007]. Trivial paral-
lelization of the contingency assessment during the security analysis, based on
the combination of a contingency filtering scheme, used to identify the binding
contingencies at the optimum, and a network compression method, used to re-
duce the complexity of the post-contingency model, was explored in Platbrood
et al. [2014].

A decade later after the SC decomposition was used, the crucial algorithmic
improvement allowing for the efficient linear decomposition was introduced. It
adopted the evaluation of local SC contributions by performing an incomplete
factorization of the augmented matrices Petra, Schenk, Lubin and Gärtner [2014]
used in PIPS-IPM Petra, Schenk and Anitescu [2014] for solution of stochastic LPs
and convex QPs. PIPS-NLP, a software library for the solution of large-scale struc-
tured nonconvex optimization problems on high-performance computers was in-
troduced in Chiang [2014]. It exploits the structured linear algebra to achieve
high computational efficiency to solve the SCOPF problems, as demonstrated on
300 bus case with 271 contingency scenarios Chiang et al. [2014]. The linear
decomposition of the nonconvex SCOPF was applied also recently in Schanen
et al. [2018] to solve the SCOPF problems with up to 12, 228 (synthetic) contin-
gencies, using thousands of CPU cores, although solving only small scale grids,
such as the 118 busbar case.

The solution of the SCOPF problems using large-scale grids was addressed
in Kardoš et al. [2020], exploring further elimination of the problem size on the
linear level, reducing the memory footprint of the SC algorithm, which is critical
for the truly large-scale grids. The algorithm is described in detail in part III.

35 3.3 Multiperiod problems

3.3 Multiperiod problems

Time-coupled formulations, such as storage scheduling Sperstad and Korpas [2019],
sizing Park et al. [2015] or storage placement Joubert et al. [2018], are col-
lectively known as multiperiod OPF (MPOPF) problems. The MPOPF problem
consists of multiple OPF problems linked together by constraints relating the
variables from OPF problems in various time instances. Depending on the appli-
cation, MPOPF problems have to be solved at different time scales, ranging from
long-term planning decisions to real-time intraday operating decisions.

3.3.1 Problem formulation

The MPOPF is formulated as

minimize
θ n, vn, pG

n , qG
n

N
∑

n=1

NG
∑

i=1

fi(p
Gi
n) (3.25a)

subject to ∀n ∈ {1, 2, . . . , N},
cn
ε
(θ n,vn,pG

n ,qG
n) = 0, (3.25b)

cn
I (θ n,vn)≤ smax

L , (3.25c)

vmin ≤ vn ≤ vmax, (3.25d)

θ slack
n = 0, (3.25e)

pG,min ≤ pG
n ≤ pG,max, (3.25f)

qG,min ≤ qG
n ≤ qG,max, (3.25g)

εmin
S ≤ εn ≤ εmax

S . (3.25h)

The OPF constraints (3.25b)–(3.25g) must hold in each time period n ∈ 1,2, . . . , N ,
while the inter-temporal coupling is introduced by energy storage devices (3.25h)
(and possibly generator ramp limits). For convenience, the pG

n above consists not
only of the conventional generator injections (denoted as pG′,qG′) but also in-
cludes the injections incurred by the storage devices pS. In a practical MPOPF
application, consider NS energy storage units, where the vector of the storage
power injections consists of discharging and charging injections,

pS =
�

pSd,1, · · · ,pSd,NS ,pSc,1, · · · ,pSc,NS
�

. (3.26)

Similar ordering applies for the vector of reactive powers qS. The composite
vector considering also the generator power injections is thus pG =

�

pG′,pS
�

and
qG =

�

qG′,qS
�

. At each network bus, the external power injections must equal

36 3.3 Multiperiod problems

the injections from the connected generators, storages and load components,
resulting in the constraint (3.25b), which, written in complex power notation,
takes form

cn
ε

:= CGsG
n
′ + CSsS

n − sD
n = sB

n. (3.27)

The evolution of the vector of storage levels εn ∈ RNS follows the update equation

εn = εn−1 +BS pS
n n= 1, . . . , N , (3.28)

and introduces a coupling between the individual time periods. The energy level
in each period needs to honor the storage capacity, as expressed by the constraint
(3.25h). The initial storage level is denoted ε0 and the constant matrix BS ∈
RNS×2NS models discharging and charging efficiencies of the storage devices

BS = −δt





η−1
d,1 ηc,1

.
η−1

d,NS
ηc,NS



 (3.29)

with the discharging and charging efficiencies ηd,i and ηc,i, i = 1, 2, . . . , NS. The
linear inequality constraints introduced by storage devices can be written in ma-
trix form involving powers from all storage devices, generators, and time periods
as









εmin
S
εmin

S
...
ε0









︸ ︷︷ ︸

εmin

≤









ε0

ε0
...
ε0









︸ ︷︷ ︸

E0

+









BS

BS BS

...
...

. . .
BS BS · · · BS









︸ ︷︷ ︸

E









pS
1

pS
2
...

pS
N









︸ ︷︷ ︸

pS

≤









εmax
S
εmax

S
...
εmax

S









︸ ︷︷ ︸

εmax

. (3.30)

Storage models with known self-discharge rate can also be included through a
modification of E0. Furthermore, a storage degradation cost, modeled as affine
or quadratic function of the storage powers pS

n and the state of charge εn, can be
incorporated through the problem’s objective function.

The variables of the MPOPF problem x can be split into local components x n

according to a time period n= 1 . . . N ,

x n =
�

θ n, vn, pG
n , qG

n

�

, (3.31)

x =
�

x 1, . . . , x N

�

. (3.32)

This ordering of the variables allow implementation of the efficient structure
exploiting algorithms which represent the main focus of this work.

37 3.3 Multiperiod problems

3.3.2 Distribution system flexibility

This subsection proposes an extension of the MPOPF model providing the flexi-
bility reserves, a pilot project performed in collaboration with ETH Power System
Laboratory1 within the SCCER-FURIES2 project. The MPOPF problem can be for-
mulated at the distribution level for scheduling the storage devices, where the
flexibility reserves which might be used in certain situations, e.g. absorbing the
intermittent renewable resources Mohler and Sowder [2014]. Alternatively, in
the day-ahead market clearing, the outcomes may not be necessarily feasible for
the distribution system operator (DSO) because of network constraints. Hence,
the DSO may consider an adjustment market to exploit the potential flexibility of
DER, such as energy storage (ES). ES can provide flexibility provision by adjust-
ing its charging and discharging cycles. This may provide a feasible operating
solution to the DSO in the day-ahead. Additionally, the DSO may need flexibility
to balance their schedule at the transmission-distribution interface and to avoid
network violations in real-time. This will become necessary with the increased
installation of renewable energy resources.

For this purpose, the ES model needs to be revised such that the ESs are mod-
eled carefully as a switch to consider their charging and discharging efficiencies.
In this manner, the flexibility of ES can be fully exploited because it can act both
as a generator and a demand. The modeling of the ES needs to consider the
state-of-charge (SOC) of ES, since up-flexibility (increased discharging rate of
the device if it is in a discharging state, or reduced charging rate if the device
is charging) can be only provided if there is enough energy stored and to pro-
vide down-flexibility (additional charging, or reduced discharging rate) the SOC
needs to be sufficiently depleted. In cases where the ES is partially charged,
both up and down-flexibility can be provided up to a certain limit. The model
includes two more features. First, it considers the smooth transition between
charging and discharging of ES. As ES can swing between generation and de-
mand while providing up or down-flexibility, this becomes important to include
the effect of different charging and discharging efficiencies for an ES. Second,
it maintains the state-of-charge for the actual time of delivery. This is specifi-
cally important for the cases when the SOC is zero or at the maximum capacity.
If an ES is scheduled for providing for up or down-flexibility then it must have
sufficient SOC to provide the required flexibility. The model can be summarized

1https://psl.ee.ethz.ch
2https://www.epfl.ch/research/domains/sccer-furies

https://psl.ee.ethz.ch
https://www.epfl.ch/research/domains/sccer-furies

38 3.3 Multiperiod problems

as

∀i ∈ NS, t ∈ N : 0≤ pSd,i
t + uSd,i

t ≤ pS,max
d , (3.33)

∀i ∈ NS, t ∈ N : 0≤ pSd,i
t + dSd,i

t ≤ pS,max
d , (3.34)

(3.35)

∀i ∈ NS, t ∈ N : pS,max
c ≤ pSc,i

t + uSc,i
t ≤ 0, (3.36)

∀i ∈ NS, t ∈ N : pS,max
c ≤ pSc,i

t + dSc,i
t ≤ 0. (3.37)

Here, pSc,i
t and pSd,i

t represent charging and discharging power of the ES with the
maximum charging and discharging rate pS,max

c ,pS,max
d , respectively. The charg-

ing is modeled as negative power injection. The up/down charging/discharging
flexibility is modeled by uSd,i

t , uSc,i
t ,dSd,i

t ,dSc,i
t . The total up and down flexibility

required by DSO are ensured in the constraint given below, The minimum up
and down flexibility required by the DSO is enforced by requiring

∀t ∈ N : u f
t ≤

∑

i∈NS

(uSc,i
t + uSd,i

t), (3.38)

∀t ∈ N :
∑

i∈NS

(dSc,i
t + dSd,i

t)≤ d f
t . (3.39)

Furthermore, several operational constraints need to be satisfied by the model,
which are imposed by the so-called complementarity constraints, e.g., the ES can-
not be simultaneously charging and discharging

∀i ∈ NS, t ∈ N : pSc,i
t pSd,i

t = 0, (3.40)

and it is enforced to provide either up or down-regulation and not both at the
same time interval. This is enforced by

∀i ∈ NS, t ∈ N : uSd,i
t dSd,i

t = 0, uSc,i
t dSc,i

t = 0. (3.41)

In order to prevent usage of charging flexibility when the storage device is dis-
charging and vice versa, it has to satisfy also the following constraint

∀i ∈ NS, t ∈ N : (pSd,i
t + uSd,i

t − dSd,i
t)(−pSc,i

t + uSc,i
t − dSc,i

t) = 0. (3.42)

The NLP problem (3.25) can be easily extended by additional ’virtual’ gener-
ators modeling the flexibility variables, and including the additional constraints
(3.33) –(3.42). The equality constraints with zero term at the right-hand side,

39 3.3 Multiperiod problems

Figure 3.2. CIGRE medium voltage distribution system.

representing the complementarity constraints, might be relaxed to avoid prob-
lems with the numerical instability. The problems with the complementarity con-
straints usually suffer from ill-posedness of the feasible set of the smooth NLP
and well-developed nonlinear programming theory and numerical methods are
not readily applicable for solving this form of problems Jiang and Ralph [2000];
Fletcher and Leyffer [2004]. The resulting relaxed and smooth continuous NLP
can be solved by using any general-purpose optimizer, or as suggested later, using
a specialized solver adapted for the particular structure of the problem.

Example

The flexibility of the storage model can be demonstrated on a 15 bus Cigre
medium voltage distribution network Rudion et al. [2006], which can have ei-
ther radial or meshed topology, depending on the combination of the switches,
as observed in Figure 3.2. The ES unit is located at the bus 2 and 13. The storage
size is chosen to contain up to two hours of the nominal active power demand of
the connected bus, that is 39.6 MWh and 40MWh. The storages are initially at
70% charge level. The storage power ratings are limited to allow a complete dis-

40 3.3 Multiperiod problems

charging and charging within three hours and two hours, respectively. All storage
discharging and charging efficiencies are chosen as ηd = 0.97 and ηc = 0.95.

1 2 3 4 5 6 7 8 9 10
−1

−0.5

0

t [hours]

St
or

ag
e

po
w

er
[M

W
]

pSc,i
t + uSc,i

t + dSc,i
t pSc,i

t

uSc,i
t dSc,i

t

(a) Charging flexibility (green) of the storage device 1.

1 2 3 4 5 6 7 8 9 10
−2
−1.5
−1
−0.5

0

t [hours]

St
or

ag
e

po
w

er
[M

W
]

pSc,i
t + uSc,i

t + dSc,i
t pSc,i

t

uSc,i
t dSc,i

t

(b) Charging flexibility (green) of the storage device 2.

Figure 3.3. Flexibility provisions by the ES charging (pS,max
c = −20MW).

The DSO specifies the grid requirements and parameters, including the re-
quired flexibility, summarized in Table 3.2, and runs the proposed optimization
problem to minimize the operation cost and identifies the flexibility providers
(ES in this case) at each time interval. For simplicity, zero reactive loads are as-
sumed in the illustrative example. The results of flexibility provision from the ES
is given in Figures 3.3 and 3.4, while Figure 3.5 demonstrates that the flexibility
provision required by the DSO is satisfied.

Two observations are highlighted. First, the ES devices are not actively charg-
ing in the current example, as can be observed Figure 3.3, where the charging
power pSc,i

t is zero across the whole dispatch horizon. However, a portion of the
charging down flexibility is provided during 5th and 4th time interval by the ES
device 1 and 2, respectively, meaning that the charging rate of the devices can
be increased during these time periods. Note that the corresponding discharging
power and flexibility, illustrated in Figure 3.4, are zero during these time periods.
Second, down flexibility of 2MW is requested by the DSO in the 4th time period,

41 3.3 Multiperiod problems

as specified in Table 3.2. The ES device 2 provides 1.9MW of charging down
flexibility while 0.1 MW of discharging down flexibility is provided by the ES 1.
The contribution of both devices can be observed also in Figure 3.5, where the
contribution of both charging and discharging up/down flexibilities are shown.

1 2 3 4 5 6 7 8 9 10
−5

0

5

10

15

t [hours]

St
or

ag
e

po
w

er
[M

W
]

pSd,i
t + uSd,i

t + dSd,i
t pSd,i

t uSd,i
t dSd,i

t pS,max
d

(a) Discharging flexibility (green) of the storage device 1.

1 2 3 4 5 6 7 8 9 10
−5

0

5

10

15

t [hours]

St
or

ag
e

po
w

er
[M

W
]

pSd,i
t + uSd,i

t + dSd,i
t pSd,i

t uSd,i
t dSd,i

t pS,max
d

(b) Discharging flexibility (green) of the storage device 2.

Figure 3.4. Flexibility provisions by the ES discharging.

Table 3.2. DSO flexibility requirements over the 10 hour scheduling horizon.

Time period 1 2 3 4 5 6 7 8 9 10
Up flexibility (MW) 0 3 2 0 0 4 0 0 0 0
Down flexibility (MW) 1 0 0 2 1 0 5 5 5 5

42 3.3 Multiperiod problems

1 2 3 4 5 6 7 8 9 10
0
1
2
3
4

t [hours]

St
or

ag
e

po
w

er
[M

W
]

uSd,i
t uSc,i

t

u f
t

(a) Cumulative Storage up flexibility (all storage devices).

1 2 3 4 5 6 7 8 9 10

0
−1
−2
−3
−4
−5

t [hours]

St
or

ag
e

po
w

er
[M

W
]

dSd,i
t dSc,i

t

d f
t

(b) Cumulative Storage down flexibility (all storage devices).

Figure 3.5. Flexibility requirements (red) and actual flexibility provided.

1 2 3 4 5 6 7 8 9 10
0

10
20
30
40

t [hours]

SO
C
[M

W
h] ES device 1 ES device 2

Figure 3.6. Individual ES SOC, trajectory (solid) and maximum (dashed).

3.3.3 Solution approaches

Standard solutions strategies for MPOPF problems (3.25) adopt general purpose
NLP methods, usually employed for the solution of nonconvex optimization prob-
lems, e.g. time-coupled co-optimization that accounts for energy and reserve
ramping across all time intervals Fuchs et al. [2017]. The limitation of such ap-
proach is that the problem complexity quickly grows with the increasing length of
the time horizon and problem becomes computationally intractable. The com-

43 3.3 Multiperiod problems

putational complexity can be mitigated e.g. by applying successive quadratic
programming approach with a second-order cone programming relaxation of the
OPF problem Marley et al. [2017]. This combined method was demonstrated on
several test cases with up to 4259 nodes although with a time horizon of only
eight time steps. A wide-spread solution heuristic to solve the MPOPF problems
is to adopt a decomposition strategy based on splitting the long time horizon into
smaller intervals Fortenbacher et al. [2018]; Joubert et al. [2018]. The solution
thus involves repeatedly solving a constrained optimization problem, using pre-
dictions of future costs, disturbances, and constraints over a moving time hori-
zon. Such solutions, however, may become suboptimal compared to the fully
coupled solution.

A scaling study of a parallel nonlinear, nonconvex optimization approach ap-
plied to a MPOPF problem was presented in Schanen et al. [2018]. Relaxation
of the time-binding constraints was used to yield a time-separable optimization
problem, necessary for efficient parallelization of the numerical optimization on
massively parallel HPC hardware. An algorithm for solving the fully coupled
MPOPF problems was introduced in Kourounis et al. [2018]. The solution is
based on exploiting the particular structure of the MPOPF problem and the cou-
pling constraints introduced by the energy storage devices. Significant speedups
up to several orders of magnitude can be achieved over general purpose NLP
methods. The algorithm and the numerical results are elaborated in detail in
part III of this document.

44 3.3 Multiperiod problems

Part II

Interior point methods

45

Chapter 4

Interior point methods

Interior point (IP) methods have become a successful and ubiquitous tool for
solving the constrained optimization problems. Various forms of barrier methods
were used since the 1960s for programs with nonlinear constraints but gradually,
the barrier methods were replaced by more efficient methods such as augmented
Lagrangian and sequential quadratic programming (SQP). The IP “revolution”,
a term coined by M. Wright Wright [2005], can be traced back to 1984 when
Karmarkar Karmarkar [1984] announced a polynomial time linear program (LP)
that was considerably faster than the most popular simplex method to date. Since
then, IP methods have continued to transform both the theory and practice of
constrained optimization. IP variants are being extended to solve all kind of pro-
grams: from linear to nonlinear and from convex to nonconvex, and they are
being applied to solve many practical problems, including scientific and engi-
neering optimization problems.

There are two major directions for solving LP problems. Historically, it was
the simplex method but the IP methods have also gained a lot of attention. In case
of large problems, the search space might become difficult to explore for the sim-
plex method, which follows a sequence of adjacent extreme points of the feasible
region polytope to the optimal solution. However, sophisticated management
techniques of the bases, including methods such as column generation Barnhart
et al. [1998] or Bender’s decomposition Rahmaniani et al. [2017], are very effi-
cient and enable one to solve problems up to several million variables relatively
fast. In recent years, however, the performance of the simplex method is being
questioned by the rise of IP methods, especially for very large problems (more
than several million variables), where the IP method is usually faster. Neverthe-
less, the simplex method is still very popular nowadays, especially in applications
such as integer or stochastic LP. In these applications, a LP is slightly modified

47

48

and reoptimizing using the (dual) simplex method can be done very quickly, as
it is possible to start with an extreme point that will be close to one of the new
extreme optimal points (not necessary inside the new feasible regions). In com-
parison, the IP method cannot take information from the previous LP resolution
to solve a slightly modified LP since its performance suffers in cases where the
initial point is not sufficiently inside the interior of the feasible region and is near
the boundary of the feasible region.

Amongst many possible approaches to solution of general nonlinear program-
ming (NLP) problems, SQP and IP methods prevail nowadays. The methods are
supported by numerous commercial or academic optimization packages, e.g.,
KNITRO, SNOPT, MATLAB, or ScyPy provide a variant of SQP method, while
IPOPT, KNITRO, MIPS, MATLAB, PIPS-IPM or BELTISTOS are packages provid-
ing the IP method. Both approaches are based on the idea of moving toward a
local solution by approximately solving a sequence of “simpler” problems. SQP
methods try to guess which inequality constraints are binding and iteratively re-
fine the active set approximation. Nonbinding constraints can be discarded at
the current iteration since they do not restrict the feasible region. The solver
then works on the smaller space of the remaining constraints. The SQP itera-
tions proceed by building a quadratic model of the problem and use the solution
to update the current iterate and the active set approximation. The identification
of the active set is a NP-hard combinatorial problem; thus for problems where
the number of inequality constraints is large and identification of the active set
becomes difficult, the SQP solution times might become prohibitive. SQP allows
efficient warm starting, infeasibility detection, and performs better on problems
with a large number of equality constraints or pathological problems.

On the other hand, IP methods move through the interior of the feasible re-
gion towards the optimal solution. IP methods are easily applicable to problems
with a large number of inequality constraints, which are conveniently handled
by logarithmic barrier functions. The main advantages of the IP methods lie in
their polynomial time asymptotic complexity and convergence properties. An-
other advantage of IP methods is that they are applicable to large-scale problems
and allow for a variety of different direct sparse or iterative solution methods
for the underlying linear systems solved at each iteration. Since different lin-
ear system solvers can be plugged in with ease, large-scale structured problems
can be solved by exploiting parallel computing infrastructures. Despite the nu-
merous advantages, there exist some intrinsic difficulties related to the design
of an appropriate heuristic to decrease the barrier parameter which penalizes
the inequality constraints approaching the boundary of the feasible region, se-
lection of the globalization strategy for the nonconvex problems, and inherent

49

ill-conditioning of the underlying linear systems. It was also shown that the IP al-
gorithms may lead to convergence problems on very hard optimization problems
Capitanescu and Wehenkel [2013]. The main cause of convergence problems of
the IP methods is that the iterations become stuck at a nonoptimal point if the
feasibility boundary is approached too early, i.e., the slack variables prematurely
go to zero. This is also a reason why it is, in general, difficult to warm start the
IP methods.

The general conceptual IP framework defines the main algorithm, while var-
ious IP algorithms differ in details related to the treatment of the optimization
problem, such as definition of the (dual) variables, assembly of the linear system,
or update strategy of the variables. The IP algorithms can be classified in multi-
ple ways, although a common practice suggests three main categories: projective
methods, affine-scaling methods, and primal-dual methods. Among the different
IP methods the primal-dual (including primal-dual algorithms that incorporate
predictor and corrector) algorithms have gained a reputation for being the most
efficient. Another way to categorize the IP methods is related to feasibility of
the iterates, hence, we can consider feasible and infeasible IP methods. Yet an-
other classification may be related to the solution of the KKT system during the
IP iterations: standard IP algorithms usually use a direct sparse solver, however,
inexact IP methods may be devised, using an iterative solver applied to the KKT
system. Related to the KKT system are also quasi-Newton IP methods, which use
an approximation of the second-order derivatives based on e.g., secant updates
and low rank update scheme for the solution of the KKT system.

IP methods are well suited to large-scale optimization since they feature a
consistently small number of iterations needed to reach the optimal solution of
the problem as well as requiring fairly simple linear algebra. The number of
iterations does not increase significantly even for problems with many millions
of variables. The linear algebra requirements boil down to factorizations and
solves with the augmented system matrix of the problem. In the case of the
large-scale problems, the cost of the factorizations may be prohibitive in terms
of memory and time, thus limiting the effective use of optimization codes, so
a highly optimized linear algebra is paramount to the design of an efficient IP
solver. Thus, the effective implementation of IP methods is highly dependent on
the availability of effective linear algebra algorithms and software, that are able,
in turn, to take into account specific needs of the optimization solvers, which is
true especially for large-scale optimization problems.

50 4.1 Problem definition and optimality conditions

4.1 Problem definition and optimality conditions

Definition 4.1 A general NLP problem is formulated as a minimization problem

minimize
x

f (x) (4.1a)

subject to cε(x) = 0, (4.1b)

c I(x)≥ 0, (4.1c)

x ≥ 0, (4.1d)

where x ∈ RNx , the objective function f is a mapping f : RNx → R, the constraints
cε : RNx → RNε and c I : RNx → RNI are assumed to be sufficiently smooth, with
continuous second order derivatives, and Nx > Nε, NI , where Nε, NI are the numbers
of equality and inequality constraints, respectively.

Definition 4.2 The feasible set Ω is a set of points x that satisfy the constraints of
the NLP problem (4.1); that is

Ω= {x ∈ RNx | cε(x) = 0, c I(x)≥ 0, x ≥ 0}. (4.2)

Definition 4.3 The active set at any feasible point x is a set of inequality con-
straints indices, for which the equality constraint holds; that is, A(x) = {i | c i

I(x) =
0}.
Definition 4.4 Given the solution of the NLP problem x ∗ and the active set A(x ∗),
the linear independence constraint qualification (LICQ) holds if the set of con-
straint gradients {∇c i

ε
(x ∗), i = 1 . . . Nε; ∇c j

I(x
∗), j ∈ A(x ∗)}, is linearly inde-

pendent.

The NLP problem (4.1) can be transformed into an equivalent problem formu-
lation where the inequality constraints are converted to equality constraints by
introducing the slack variables s ∈ RNI with additional nonnegativity bounds
s ≥ 0. The NLP problem can be written as

minimize
x

f (x) (4.3a)

subject to cε(x) = 0, (4.3b)

c I(x)− s = 0, (4.3c)

(x , s)≥ 0. (4.3d)

Definition 4.5 The Lagrangian for the NLP problem (4.3) is defined as

L(x , s ,λε,λI ,λx ,λs) = f (x) +λᵀ
ε
cε(x) +λ

ᵀ
I (c I(x)− s)−λᵀx x −λᵀs s . (4.4)

51 4.1 Problem definition and optimality conditions

The vectors λε,λI ,λx , and λs are the Lagrange multipliers associated with the
equality, original inequality, and the bound constraints on the primal and slack
variables. This allows us to state the Karush–Kush–Tucker (KKT) first-order nec-
essary conditions for the NLP problem (4.3) which characterize the solution.

Theorem 4.1 Suppose that x ∗ is a local solution of the NLP problem (4.3) and that
the LICQ holds at x ∗. Then there exist Lagrange multiplier vectors λ∗

ε
∈ RNε ,λ∗I ∈

RNI ,λ∗x ∈ Rn and λ∗s ∈ RNI , (λ∗x ,λ∗s) ≥ 0, such that the following conditions are
satisfied at (x ∗, s∗,λ∗

ε
,λ∗I ,λ

∗
x ,λ∗s):

∇x f (x ∗) +∇x cε(x
∗)ᵀλ∗

ε
+∇x c I(x

∗)ᵀλ∗I −λ∗x = 0, (4.5a)

−λ∗I −λ∗s = 0, (4.5b)

cε(x
∗) = 0, (4.5c)

c I(x
∗)− s∗ = 0, (4.5d)

λ∗x x ∗ = 0, (4.5e)

λ∗s s∗ = 0, (4.5f)

(x ∗, s∗)≥ 0. (4.5g)

The conditions (4.5a) and (4.5b) are referred to as dual feasibility, (4.5c), (4.5d)
as primal feasibility, and (4.5f), (4.5e) as complementarity conditions. The point
x ∗ satisfying the KKT conditions is called a stationary, or critical, point. In order
to ensure that any stationary point x ∗ is indeed an optimal (local) solution of the
NLP problem (4.3), the second-order sufficient conditions are needed.

Theorem 4.2 Let x ∗ be a point at which LICQ holds, the KKT conditions are sat-
isfied, and strict complementarity holds for the active inequality constraints. Then,
the point x ∗ satisfies the second-order sufficient conditions for the NLP problem (4.3)
if the Hessian of the Lagrangian∇2

x xL(x
∗, s∗,λ∗

ε
,λ∗I ,λ

∗
x ,λ∗s) projected onto the null

space of the active constraint Jacobian is positive definite.

In practice, the second-order conditions are monitored using the inertia of the it-
eration matrix, which is further elaborated in section 4.4. Proofs of Theorems 4.1
and 4.2 can be found in classic optimization textbooks, e.g., Nocedal and Wright
[2006]; Wright [1997]. If the active set at the solution of the NLP problem were
known, we could apply a Newton-class method directly to the linearization of
the KKT conditions. However, the identification of the active set is known to be
an NP-hard combinatorial problem for which, in the worst case, the computation
time increases exponentially with the size of the problem. Therefore, many solu-
tion strategies adopt an IP approach, introducing a barrier subproblem where the

52 4.1 Problem definition and optimality conditions

nonnegativity bounds on the variables and slacks (x , s) ≥ 0 are handled by the
standard logarithmic barrier function. This is, in fact, a penalty term penalizing
the iterates that approach the boundary of the feasible region.

Definition 4.6 The barrier subproblem (BSP) reads:

minimize
x ,s

f (x)−µ
n
∑

i=1

log(x i)−µ
NI
∑

i=1

log(si) (4.6a)

subject to cε(x) = 0, (4.6b)

c I(x)− s = 0. (4.6c)

Under certain conditions the solution x ∗ of the BSP (4.6) converges to the so-
lution of the original NLP problem (4.1) as µ j ↓ 0. Consequently, a strategy to
solve the original NLP problem is to solve a sequence of the BSPs decreasing the
barrier parameter µ j. The solution of each iterate is not relevant for the solution
of the original problem, so it can be relaxed to a certain accuracy and such an
approximate solution is used as a starting point for the next BSP. The strategy for
updating the µ parameter and thus switching to the next BSP is discussed later
in section 4.5.

The solutions of the barrier problem (4.6) are critical points of the Lagrangian
function

L(x , s ,λε,λI) = f (x)−µ j

Nx
∑

i=1

log(x i)−µ j

NI
∑

i=1

log(si) (4.7)

+λᵀ
ε
cε(x) +λ

ᵀ
I (c I(x)− s).

Formulating and solving the optimality conditions of (4.7) directly would lead
to singularities, since the derivatives of the barrier terms involve the fractions
µ

x i
and µ

si
, which are not defined at the solution x ∗, s∗ of the NLP problem (4.1)

when active bounds x∗i = 0 or s∗i = 0 are attained. Primal-dual IP methods Conn
et al. [2000]; Gould et al. [2001] define the dual variables z and y as

zi =
µ

x i
, i = 1,2, . . . , Nx , (4.8a)

yi =
µ

si
, i = 1,2, . . . , NI . (4.8b)

From the definition of the dual variables it follows that zi =
µ

x i
> 0; therefore,

zi x i = µ ∀i = 1, . . . , Nx . Similarly, yisi = µ, yi > 0 ∀i = 1, . . . , NI . The optimality

53 4.1 Problem definition and optimality conditions

conditions of the BSP (4.6), considering also the dual variables (4.8), are written

∇x f (x ∗) +∇x cε(x
∗)ᵀλ∗

ε
+∇x c I(x

∗)ᵀλ∗I − z∗ = 0, (4.9a)

−λ∗I − y∗ = 0, (4.9b)

cε(x
∗) = 0, (4.9c)

c I(x
∗)− s∗ = 0, (4.9d)

z∗x ∗ = µe, (4.9e)

y∗s∗ = µe, (4.9f)

(x ∗, s∗)≥ 0. (4.9g)

Note that the dual variables z, y correspond to the Lagrange multipliers λx and
λs for the bound constraints. The KKT conditions of the BSP (4.9) are equivalent
to the perturbed conditions (4.5) of the original NLP problem (4.3), except for
the strict positivity of the dual variables (z, y) > 0. The primal-dual equations
then become

la := ∇x f (x) + Jᵀ
ε
λε + JᵀIλI − z = 0, (4.10a)

l b := −λI − y = 0, (4.10b)

l c := cε(x) = 0, (4.10c)

ld := c I(x)− s = 0, (4.10d)

l e := Zx −µe = 0, (4.10e)

l f := Y s −µe = 0, (4.10f)

where the Jacobian of constraints is written as Jε =∇x cε(x) and J I =∇x c I(x).
The diagonal matrices X , S, Z , Y are defined as X = diag(x), S = diag(s), Z =
diag(z), and Y = diag(y).

Linearizing the primal-dual equations and solving them by applying Newton’s
method starting from an arbitrary value of the barrier parameter µmay result in
slow convergence or poor conditioning of the associated KKT systems. Following
the central path ensures that certain favorable conditions for the KKT systems
and primal-dual variables are satisfied and descent directions can be obtained
with reasonable accuracy.

Definition 4.7 The central path C is an arc of strictly feasible points of the BSP
problem (4.6), C = {(xµ, sµ,λµ

ε
,λµI , zµ, yµ) |µ > 0}, such that (xµ, sµ,λµ

ε
,λµI , zµ, yµ)

is a solution of the BSP problem for every value of µ > 0. Points on the central path
are characterized by the first-order KKT conditions (4.10).

54 4.2 Search direction computation

Definition 4.8 The duality measure τ is an average pairwise complementarity
value x izi and si yi,

τ=
x ᵀz + sᵀy
Nx + NI

. (4.11)

The barrier parameter µ is usually chosen proportionally to the duality measure
and the centering parameter σ ∈ [0, 1], such that µ = τσ. By choosing σ = 1
the algorithm moves toward the central path C. Such a step is biased toward the
interior of the feasible region defined by the constraints (z, x)> 0, (y , s)> 0. At
the other extreme, the value σ = 0 results in the standard Newton step aiming to
satisy the KKT conditions (4.5). Many algorithms use intermediate values of σ
from the open interval (0,1) to trade off between the two objectives of reducing
duality measure and improving centrality. A strategy for selecting the centering
parameter is discussed later in section 4.5.

Remark 1 The treatment for general box constraints x min ≤ x ≤ x max and general
upper and lower bounds on the nonlinear constraints cmin

I ≤ s ≤ cmax
I requires the

addition of modified logarithmic barrier terms

fµ(x) = µ
∑

i

log(x i − xmin
i) +µ

∑

i

log(xmax
i − x i), (4.12a)

gµ(s) = µ
∑

i

log(si − cmin
I i) +µ

∑

i

log(cmax
I i − si), (4.12b)

The dual variables for i = 1, 2, . . . , Nx are defined by

z L
i =

µ

x i − xmin
i

, zU
i =

µ

xmax
i − x i

, (4.13)

while for the constraints the dual variables are defined by

y L
i =

µ

si − cmin
I i

, yU
i =

µ

cmax
I i − si

. (4.14)

4.2 Search direction computation

Since the solution of the barrier problem (4.6) satisfies the perturbed KKT condi-
tions (4.10), Newton’s method may be applied to solve the system of nonlinear
equations. The search direction (∆x k,∆s k,∆λk

ε
,∆λk

I ,∆zk,∆y k) at the kth iter-
ation can be obtained from the linearization of (4.10) at the current iterate

55 4.2 Search direction computation

(x k, s k,λk
ε
,λk

I , zk, y k), resulting in a system of linear equations

















H 0 Jᵀ
ε

JᵀI −I 0
0 0 0 −I 0 −I
Jε 0 0 0 0 0
J I −I 0 0 0 0
Z 0 0 0 X 0
0 Y 0 0 0 S

















k















∆x
∆s
∆λε
∆λI

∆z
∆y

















k

= −

















la

l b

l c

ld

l e

l f

















k

, (4.15)

where H =∇2
x xL. The system (4.15) is clearly unsymmetric. A symmetric system

can be obtained after eliminating the last two block rows:









H̃ 0 Jᵀ
ε

JᵀI
0 Ls 0 −I
Jε 0 0 0
J I −I 0 0









k







∆x
∆s
∆λε
∆λI









k

= −









la + X−1l e

l b + S−1l f

l c

ld









k

, (4.16)

where H̃ = H + X−1Z and Ls = S−1Y . The directions ∆zk and ∆y k can be
recovered from the equations

∆zk = −X−1(l e + Z∆x k), (4.17)

∆y k = −S−1(l f + Y∆s k). (4.18)

For a robust algorithm it is crucial to obtain highly accurate search directions.
Most of the burden is shifted to the sparse linear solver, where techniques such
as fill-in minimization reordering, symmetric scaling vectors, matching, and piv-
oting can provide substantial improvement to the solution accuracy. Additional
improvement can be achieved by performing iterative refinement using the un-
symmetrical version KKT linear system of form (4.15). It is possible to further
reduce the KKT system by eliminating the slack variables s . The system (4.16)
can be permuted to the structure with the diagonal block Ls in the lower right
corner,









H̃ Jᵀ
ε

JᵀI 0
Jε 0 0 0
J I 0 0 −I
0 0 −I Ls









k







∆x
∆λε
∆λI

∆s









k

= −









la + X−1l e

l c

ld

l b + S−1l f









k

. (4.19)

Since the block Ls is a diagonal matrix, the reordered system (4.19) can be triv-
ially reduced by computing the Schur complement with respect to the 3×3 block

56 4.3 Backtracking line-search filter method

0 20 40 60

0

20

40

60

nz = 576
0 20 40 60

0

20

40

60

nz = 576
0 10 20 30 40 50 60

0

10

20

30

40

50

60

nz = 522

Figure 4.1. Structure of the KKT system (4.16), reordered according to (4.19),
and the structure of the reduced KKT with the slacks removed (4.21).

in the upper left corner, as illustrated in Figure 4.1,




H̃ Jᵀ
ε

JᵀI
Jε 0 0
J I 0 0





k

− �0 0 −I
�ᵀ
(Lk

s)
−1 �

0 0 −I
�

. (4.20)

The additional elimination, compared to the previous work presented in Petra,
Schenk, Lubin and Gärtner [2014]; Petra, Schenk and Anitescu [2014], fur-
ther reduces the memory requirements and computation time due to the smaller
amount of factorization fill-in. Such an elimination, however, can be performed
only for the nonzero elements of Lk

s sufficiently away from zero in order to avoid
the ill-conditioning of the reduced system. The reduced linear system that needs
to be solved now has the structure





H̃ Jᵀ
ε

JᵀI
Jε 0 0
J I 0 −L−1

s





k



∆x
∆λε
∆λI





k

= −




la + X−1l e

l c

ld + L−1
s (l b + S−1l f)





k

(4.21)

and the eliminated slack variables can be recovered by solving

Lk
s∆s k = −lk

b − S−1
k lk

f +∆λ
k
I . (4.22)

4.3 Backtracking line-search filter method

After the successful computation of the search direction from (4.16) and (4.17)
the step sizes αk,αz

k ∈ (0,1] need to be determined in order to obtain the next

57 4.3 Backtracking line-search filter method

iterate:

x k+1 = x k +αk∆x k, (4.23)

s k+1 = s k +αk∆s k, (4.24)

λk+1
ε
= λk

ε
+αk∆λ

k
ε
, (4.25)

λk+1
I = λk

I +αk∆λ
k
I , (4.26)

zk+1 = zk +αz
k∆zk, (4.27)

y k+1 = y k +αz
k∆y k. (4.28)

Different step sizes for the primal and dual variables is commonly employed to
prevent unnecessarily small steps in either variables and delay the convergence to
the optimal. A first candidate step length is chosen such that the strict positivity
of x , s , and z is preserved, since it needs to hold both in the solution of the barrier
problem (4.6) and also in every iteration, which is necessary in order to evaluate
the barrier function. This is accomplished by the fraction-to-the-boundary rule,
which identifies the maximum step size αk,αz

k ∈ (0,1], such that

αmax
k =max

�

α ∈ (0, 1] : x k +α∆x k ≥ (1−τ)x k
�

, (4.29)

αz
k =max

�

α ∈ (0, 1] : zk +α∆zk ≥ (1−τ)zk
�

, (4.30)

where τ ∈ (0, 1) is a function of the current barrier parameter µ j. The step size
for the dual variables αz

k is used directly, but in order to ensure global conver-
gence the step size αk ∈ (0,αmax

k) for the remaining variables is determined by a
backtracking line-search procedure, exploring a decreasing sequence of trial step
sizes αi

k = 2−iαmax
k for i = 0,1, 2,

The variant of the backtracking line-search filter method Fletcher and Leyffer
[2002] used in IPOPT is based on the idea of a biobjective optimization problem
with the two goals (i) minimizing the objective function

ϕµ j
(x , s) := f (x)−µ j

n
∑

i=1

log(x i)−µ j

NI
∑

i=1

log(si), (4.31)

and (ii) minimizing the constraint violation

θ (x , s) := ‖ (cε(x), c I(x)− s) ‖1. (4.32)

A trial point x k(αi
k) := x k + αi

k∆x k and s k(αi
k) := s k + αi

k∆s k during the back-
tracking line search is considered to be acceptable, if it leads to sufficient progress
toward either goal compared to the current iterate. The emphasis is put on the
latter goal, until the constraint violations satisfy a certain threshold. Afterwards,
the former goal is emphasized and reduction in the barrier function is required,
accepting only iterates satisfying the Armijo condition.

58 4.4 Inertia correction and curvature detection

Definition 4.9 The filter F is a set of ordered pairs containing a constraint viola-
tion value θ and the objective function value ϕ, such that

F ⊆ {(θ ,ϕ) ∈ R2 : θ > 0}. (4.33)

The algorithm also maintains a filter F j for each BSP j for which the µ j is fixed.
The filter F j contains those combinations that are prohibited for a successful trial
point in all iterations within the jth BSP. The filter is initialized so that the algo-
rithm will never allow trial points to be accepted that have a constraint violation
larger than θmax. During the line search, a trial point x k(αi

k), s k(αi
k) is rejected

if (θ (x k(αi
k), s k(αi

k)), ϕµ j
(x k(αi

k), s k(αi
k))) ∈ F j. After every iteration, in which

the accepted trial step size does not satisfy the two objectives of the backtracking
linesearch, the filter is augmented, subject to a procedure described in Wächter
and Biegler [2006]. This ensures that the iterates cannot return to the neigh-
borhood of the unsatisfactory iterates. Overall, this procedure ensures that the
algorithm cannot cycle, for example, between two points that alternate between
decrease of the constraint violation and the barrier objective function.

In cases when it is not possible to identify a satisfactory trial step size, the
algorithm reverts to a feasibility restoration phase. Here, the algorithm tries
to find a new iterate which is acceptable to the current filter, by reducing the
constraint violation with some iterative method. Note that the restoration phase
algorithm might not be able to produce a new iterate for the filter line-search
method, for example, when the problem is locally infeasible.

4.4 Inertia correction and curvature detection

Definition 4.10 The inertia of a square matrix is defined as the ordered triplet
(n+, n−, n0) ∈ {N ∪ 0}3, where the terms denote the number of positive, negative,
and zero eigenvalues, respectively.

In order to guarantee descent properties for the line-search procedure, it is
necessary to ensure that the Hessian matrix projected on the null space of the
constraint Jacobian is positive definite (see Theorem 4.2). Also, if the constraint
Jacobian does not have full rank, the iteration matrix in (4.16) is singular, and
the solution might not exist. These conditions are satisfied if the iteration matrix
has the inertia (Nx+NI , Nε+NI , 0). The sizes correspond to the size of the Hessian
block (with respect to both primal variables x and the slack variables s) and the
Jacobians of the equality and inequality constraints. If the inertia is not correct,

59 4.4 Inertia correction and curvature detection

the iteration matrix needs to be modified. In the IPOPT implementation, the
diagonal perturbations δw,δc ≥ 0 are added to the Hessian (4.16), such that









H̃ +δwI 0 Jᵀ
ε

JᵀI
0 Ls +δwI 0 −I
Jε 0 −δc I 0
J I −I 0 −δc I









. (4.34)

The system is refactorized with different trial values of δw,δc until the inertia
is correct. The inertia of the iteration matrix is readily available from several
sparse indefinite linear solvers, such as PARDISO Schenk et al. [2001]. In case
the correct inertia cannot be achieved, the current search direction computation
is aborted and the algorithm uses a different objective function that does try to
solely minimize the feasibility violation (e.g., minimizing the constraints viola-
tion), ignoring the original objective function, in the hope that the matrix has
better properties close to the feasible points.

The inertia detection strategy focuses on the properties of the augmented
iteration matrix (4.16) alone and can thus discard search directions that are of
descent but for which the inertia of the augmented matrix is not correct. Further-
more, the inertia detection strategy might require multiple factorizations of the
iteration matrix and, because the factorization is the most expensive step in the
algorithm, computational performance can be greatly affected. Furthermore, the
inertia estimates might vary, depending on which linear solver is used or not be
available at all. To bypass the need for the inertia information, several authors
suggest using the curvature test, e.g., Chiang et al. [2014] Chiang and Zavala
[2016]:

dᵀkW k(δ)dk ≥ κdᵀkdk, κ > 0,δ ≥ 0, (4.35)

W k(δ) =

�

H̃ 0
0 Ls

�k

+δI , dk =
�

∆x k, ∆s k

�

.

If the test is satisfied, the search direction is accepted; if it is not satisfied, the
regularization parameter δ is increased and a new search direction is computed
using the new regularized matrix.

Remark 2 While the curvature detection strategy usually requires more IP itera-
tions until convergence compared with the inertia detection, it may require fewer
extra factorizations. Overall, the solution time is less than that of the inertia detec-
tion because significantly fewer regularizations are needed.

60 4.5 Barrier parameter update strategy

4.5 Barrier parameter update strategy

The strategy of the barrier parameter update is an important factor influencing
the convergence properties, especially for difficult nonconvex problems. When
solving nonlinear nonconvex programming problems, it is of great importance
to prevent the iteration from failing. Different barrier parameter update strate-
gies are discussed here, including the monotone Fiacco–McCormick strategy Byrd
et al. [1998] and an adaptive strategy based on minimization of a quality func-
tion Nocedal et al. [2009].

Using the default monotone Fiacco–McCormick strategy, an approximate so-
lution to the barrier problem (4.6) for a fixed value of µ is computed, possibly
iterating over multiple primal-dual steps. Subsequently, the barrier parameter is
updated and the computation continues by solution of the next barrier problem,
starting from the approximate solution of the previous one. The approximate so-
lution for the barrier problem (4.6), for a given value of µ j, is required to satisfy
the tolerance

Eµ(x
j+1, s j+1,λ j+1

ε
,λ j+1

I , z j+1, y j+1)< κεµ j (4.36)

for a constant κε > 0 before the algorithm continues with the solution of the
next barrier problem. The optimality error for the barrier problem is defined
by considering the individual parts of the primal-dual equations (4.10), that is,
the dual feasibility (optimality), primal feasibility (constraint violations), and the
complementarity conditions,

Eµ(x , s ,λε,λI , z, y) =max
�‖la‖∞,‖l b‖∞,‖l c‖∞,‖ld‖∞,‖l e‖∞,‖l f ‖∞

�

.
(4.37)

In the monotone barrier update strategy, the new barrier parameter is ob-
tained from

µ j+1 =max
�εtol

10
, min

�

κµµ j, µ
θµ
j

�
�

(4.38)

with constants κµ ∈ (0, 1) and θµ ∈ (1,2). In this way, the barrier parameter
is eventually decreased at a superlinear rate. On the other hand, the update
rule (4.38) does not allow µ to become smaller than necessary given the desired
tolerance εtol, thus avoiding numerical difficulties at the end of the optimization
procedure. The monotone Fiacco–McCormick strategy can be very sensitive to
the choice of the initial point, the initial value of the barrier parameter, and the
scaling of the problem. Furthermore, different problems might favor strategies
for selecting the barrier parameter at every iteration of an IP method, that is, for
every primal-dual step computation. Adaptive strategies commonly choose µk+1

61 4.5 Barrier parameter update strategy

proportionally to the duality measure for the kth iterate,

µk+1 = στk, (4.39)

where σ > 0 is a centering parameter and τ denotes the duality measure (4.11).
The adaptive strategies vary in how the centering parameter is determined. Two
adaptive strategies implemented in IPOPT are discussed next.

Mehrotra’s proposed a predictor-corrector principle Mehrotra [1992] for com-
puting the search direction. The centering parameter is computed as the ratio
between the duality measure (4.11) in the current iterate and the iterate updated
by the predictor step, considering the longest possible step sizes that retain the
nonnegativity of the variables in the barrier problem. If good progress in the
duality measure is made in the predictor step, the centering parameter obtained
in this way is small, σ < 1; therefore, the µ will be small in the next iteration.
In other cases σ may be chosen to be greater than 1. This heuristic is based
on experimentation with linear programming problems, and has proved to be
effective for convex quadratic programming.

The adaptive barrier update strategy based on the quality function, as sug-
gested in Nocedal et al. [2009], is trying to determine the centering parameter by
minimizing a linear approximation of the quality function. The quality function is
a measure defined by the infeasibility norms in the current iterate updated by the
probing search direction, which is expressed as a function of the sought parame-
terσ. The minimization problem is solved by a golden bisection procedure on the
specified (σmin,σmax) interval with a maximum of 12 bisections. The evaluation
of the barrier update strategies on both linear and nonlinear problems revealed
superior performance of the adaptive methods over the monotone strategy, both
in terms of CPU time and number of IP iterations. Although this superior perfor-
mance is more pronounced for the linear benchmarks, significant improvements
can be expected by using adaptive strategies, particularly in applications where
the function evaluation has the dominant cost Nocedal et al. [2009]. Figure 4.2
shows the convergence behavior with different barrier parameter update strate-
gies. The value of the barrier parameter µ over the iterations of the IP is shown
for the two update strategies. Feasibility, optimality and the objective function
are shown as well. The monotone strategy uses µ0 = 100. The adaptive strategy
used was the latter of the two, based on the quality function minimization.

62 4.6 Problem scaling and convergence criteria

0 5 10 15 20 25 30 35 40 45

0.8

1.0

1.2

1.4

1.6

·107

IPM Iteration number

O
bj

ec
ti

ve
Va

lu
e

($
/h

)

10−10

10−8

10−6

10−4

10−2

100

102

104
Objective
Feasibility
Optimality
µ-parameter

0 5 10 15 20 25 30 35 40

0.8

1.0

1.2

1.4

1.6

·107

IPM Iteration number

10−10

10−8

10−6

10−4

10−2

100

102

104

Fe
as

ib
.
/

O
pt

im
.
/
µ

-p
ar

am
.

Objective
Feasibility
Optimality
µ-parameter

Figure 4.2. Barrier parameter update strategies (left: monotone; right: adap-
tive).

4.6 Problem scaling and convergence criteria

Optimal control of realistic industrial and engineering problems, such as modern
power networks, multienergy carrier systems, the variables and constraints en-
countered, commonly involve different scales that usually differ by several orders
of magnitude. Sophisticated scaling is necessary to remedy problems related to
establishing accurate stopping criteria, improving convergence deteriorated by
unbalanced direction vectors, and dealing with loss of accuracy of the descent
direction computation due to poor conditioning of the associated KKT systems.
In the ideal case, not only the variables but also the functions should be scaled
so that changing a variable by a given amount has a comparable effect on any
function which depends on these variables. In other words, so that the nonzero
elements of the function gradients are of the same order of magnitude. For this
purpose, gradient-based scaling is commonly employed so that at the starting
point the gradients are scaled close to one. The scaling factors for the gradients
are defined as

s f =min(1, gmax/‖∇x f (x 0)‖∞), (4.40)

s(j)g =min(1, gmax/‖∇x c(j)
ε
(x 0)‖∞), j = 1 . . . Nε, (4.41)

s(j)h =min(1, gmax/‖∇x c(j)I (x 0)‖∞), j = 1 . . . NI , (4.42)

for a given gmax > 0. If the maximum gradient is above this value, then gradient-
based scaling will be performed. Note that all gradient components in the scaled
problem are at most of size gmax at the starting point. The scaling factors are
computed only at the beginning of the optimization using the starting point and

63 4.7 Initial point selection and warm-start strategies

kept constant throughout the whole optimization process.
Even if the original problem is well scaled, the multipliers λε,λI , z might be-

come very large, for example, when the gradients of the active constraints are
(nearly) linearly dependent at a solution of (4.1). In this case, the algorithm
might encounter numerical difficulties satisfying the unscaled primal-dual equa-
tions (4.16) to a tight tolerance. The convergence criteria in (4.37), therefore,
need to be scaled accordingly. The scaled optimality error used to determine the
convergence criteria is defined as

E0(x , s ,λε,λI , z) =max

�‖la‖∞
s1

,
‖l b‖∞

s1
,‖l c‖∞,‖ld‖∞,

‖l e‖∞
s2

,
‖l f ‖∞

s2

�

,

(4.43)
where the scaling factors s1, s2 are defined as

s1 =
max

�

smax,
‖λε‖1+‖λI‖1+‖z‖1+‖y‖1

Nε+NI+Nx+NI

�

smax
, s2 =

max
�

smax,
‖z‖1+‖y‖1

Nx+NI

�

smax
. (4.44)

The overall IPOPT algorithm terminates successfully, if the NLP error for the
current iterate with µ= 0 in (4.43),

E0(x , s ,λε,λI , z, y)≤ εtol, (4.45)

becomes smaller than the user provided value εtol > 0, and if the individual
criteria according to dual, primal, and complementarity conditions in (4.43) are
met. Each criterion uses a separate, user provided tolerance value.

4.7 Initial point selection and warm-start strategies

The simplex method moves from vertex to vertex of the polytope encompassing
the feasible set. In the typical case, a reasonably small change in the objective
will result in a new optimal solution that is only a few simplex pivots away. An
optimal basis of an original problem usually serves as an excellent warm-start to
resolve another closely related problem.

Unlike the simplex method, IPMs generate a sequence of interior-points that
converge to an optimal solution in the limit. Since IPMs work with interior-
points, they tend to generate much better search directions at points that are
away from the boundary of the feasible region and close to the central path.
When the new optimization problem is being solved, using an optimal solution
of a near problem, it might take several iterations just to get back to the central

64 4.7 Initial point selection and warm-start strategies

path. Therefore, an optimal or a near-optimal solution of the original problem is
in general not a very good candidate to be used as a warm-start for the solution of
a nearby problem. Approaches proposed in the existing literature on warm-start
strategies and reoptimization in the context of IPMs relies on the set of starting
points with desirable properties such as near-feasibility, near-optimality, and/or
proximity to the central path John and Yıldırım [2008].

Typically, after perturbing the original problem, the previous solution fails to
satisfy primal feasibility or dual feasibility or both. The existing methods pro-
pose different ways to handle this situation. Some strategies rely on computing
an adjustment or several adjustments to the previously stored iterate to regain
feasibility for the perturbed problem, which might reduce the number of iter-
ations, but introduces additional computational cost required to compute the
adjustments for the initial guess. Other methods modify the perturbed problem
using judiciously chosen penalty or barrier parameters so that the stored iterate
can be used as is. This however requires user experience in order to properly
determine the appropriate barrier parameter values.

Chapter 5

KKT solution methods

The solution of smooth optimal control problems by IP methods using exact
second-derivative information, entails the solution of a sparse indefinite linear
system at each iteration. This linear system is commonly known as the KKT sys-
tem, since it is derived from the linearizion of the optimality conditions (also
known as the KKT conditions). This linear system is referred to as the KKT sys-
tem in the following text, and KKT matrix refers to the associated sparse matrix.
For large-scale optimization problems the KKT system is large and sparse, while
its solution, obtained via the aid of direct sparse linear solvers, dominates the
overall runtime performance of the optimization. For this reason, optimization
and numerical linear algebra are strongly interlinked domains of scientific com-
puting. Much progress in numerical linear algebra has been motivated by the
need for solving linear systems with special features in the context of optimiza-
tion, and many optimization codes have benefited, in terms of both efficiency
and robustness, from advances in numerical linear algebra. The mutual feed-
back mechanism between the fields of linear algebra and optimization has been
pointed out in multiple publications, e.g., D’Apuzzo et al. [2010]; Benzi et al.
[2005]; Kourounis et al. [2018].

The importance of the KKT system solver in context of the IP methods is
crucial for two main reasons. First, the solution of the KKT linear system provides
the search direction, therefore, inaccurate solutions deteriorate the convergence
enforcing very small steps especially if a line search method is used, and may also
lead to divergence especially in the case of ill-conditioned KKT systems. Second,
the computational complexity of the IP method depends heavily on the efficiency
of the linear solver, since the main computational task at each iteration of the IP
method is the computation of the search direction.

65

66 5.1 Basic properties of the KKT matrix

5.1 Basic properties of the KKT matrix

The KKT structure of the primal-dual IP was discussed in section 4.2. For a gen-
eral NLP problem, the KKT system (4.15) is unsymmetric, sparse, and indefinite.
As a common practice the linear system is usually reduced to a symmetric form
resulting in more efficient factorization and backsubstitution as well as memory
consumption by direct sparse solvers. The majority of the IP frameworks use the
augmented system (4.16), thus we limit our discussion to the systems with the
following structure:

�

H J T

J 0

�

︸ ︷︷ ︸

K

�

v
w

�

=

�

c
d

�

, (5.1)

where H =

�

H̃ 0
0 Ls

�

, J =

�

Jε 0
J I −I

�

, v =

�

∆x
∆s

�

, w=

�

∆λε
∆λI

�

, c = −
�

la + X−1l e

l b + S−1l f

�

,

d = −
�

l c

ld

�

, and n = Nx + Ns, m = Nε + NI , using the notation from section 4.2.

The following theorem provides sufficient conditions for the nonsingularity of
the KKT matrix K and hence the uniqueness of the solution.

Theorem 5.1 Assume J has full rank and Z ∈ Rn×(n−m) is a basis for ker(J). If
Z T HZ is positive definite, then K is nonsingular.

The positive definiteness means that the quadratic problem related to the KKT
matrix is strictly convex and hence the KKT system provides its solution. Proof
for the theorem can be found in [Nocedal and Wright, 2006, Ch. 16]. In prac-
tical applications, computing a basis is a very expensive operation, thus the IP
framework controls the inertia instead. The inertia of the KKT matrix reveals if
the problem is locally convex at the current iterate. If we assume constrained
optimization problems, where m ≥ 1, the KKT matrix K is always indefinite, as
suggested by the following theorem.

Theorem 5.2 Let K be defined by (5.1), and suppose that J has rank m. Then
iner t ia(K) = iner t ia(Z T HZ) + (m, m, 0). Therefore, if Z T HZ is positive definite,
iner t ia(K) = (n, m, 0).

The proof is presented in Forsgren et al. [2002]. Since Z T HZ are the reduced
Hessian matrices of suitable local quadratic models of the optimization problem,
the inertia of K reveals whether the problem is locally strictly convex at the cur-
rent iterate or not. In this context, the inertia from Theorem 5.2 is called the

67 5.2 Direct methods

correct inertia. In the convex case, the KKT matrix always has the correct iner-
tia, and in this situation an off-the shelf sparse factorization routine can be used,
where the pivot selection is based on sparsity and numerical stability. In the
nonconvex case, it is of interest to find out the inertia during the factorization
process so that the matrix may be modified a posteriori. As mentioned before,
this relation between convexity and inertia has motivated the interest for suitable
modifications of both direct and iterative solvers, in order to detect if the KKT
matrix has the correct inertia during the solution process.

5.2 Direct methods

Direct methods are widely used for solving the KKT systems in well-established
optimization codes based on IP methods, capable of solving convex quadratic
programing problems, such as LOQO Vanderbei [1999], OOQP Gertz and Wright
[2003], or general NLP problems, IPOPT Wächter and Biegler [2005, 2006], KNI-
TRO Byrd et al. [2006], OOPS Gondzio and Grothey [2009], PIPS-NLP Chiang
[2014]. In this case, the KKT system is factorized into K = LDLT factorizations,
where L is unit lower triangular and D is a (block) diagonal matrix. In the case
of symmetric indefinite systems, factorization consists of two phases, a symbolic
and a numeric one. In the symbolic phase, an initial fill-reducing ordering is
computed based on the structure of K only. Suitable reordering strategies are
exploited to deal with the fill-in problem, e.g., METIS Gupta et al. [1997] based
on the multilevel recursive-bisection or multilevel k-way partitioning. As a con-
sequence, the linear solver performs factorization of the permuted KKT matrix
PKPT = LDLT , where P is a product of permutation matrices that holds the pivot
order and is chosen to try to preserve sparsity and limit growth in the size of the
factor entries. The pivoting strategies such as Bunch and Kaufman Bunch and
Kaufman [1977], are generally used during the factorization to ensure the nu-
merically stable factorization. In this case, LDLT factorizations, where L is unit
lower triangular and D is symmetric block diagonal with 1× 1 or 2× 2 blocks,
are applied to the KKT system.

In the case of the IP methods, the condition number of the system may in-
crease dramatically as optimality is approached. When using direct methods, the
inherent ill-conditioning of the KKT matrix is not a severe problem and, under
pretty general assumptions, these methods are able to compute a search direc-
tion accurately enough to advance toward the optimal solution Wright [1998].
However, in some instances it can be beneficial to scale the linear system before it
is solved, thus also enabling the linear solver to more accurately report the iner-

68 5.2 Direct methods

tia of the matrix. For larger problems within an open source testing environment
for optimization and linear algebra solvers, CUTEr set, it was observed that the
use of scaling can offer worthwhile savings but this is highly problem dependent
Hogg and Scott [2013]. Finally, for some factorizations, particularly those where
a small pivot threshold was used, it may be necessary to use a refinement pro-
cess to improve the quality of the computed solution. For example, the iterative
refinement process used in PARDISO. Some codes (e.g. KNITRO) do, however,
use preconditioned conjugate gradient as an alternative to iterative refinement
for improving the accuracy, when the direct approach fails to produce a solution
of sufficient accuracy Byrd et al. [1999].

When the problem is large-scale, the cost of the factorizations may be pro-
hibitive in terms of memory and time, thus limiting the effective use of optimiza-
tion codes. This has motivated in the last years an increasing research activity
devoted to the development of suitable high-performance solution approaches
which are discussed in Part III.

5.2.1 Selective elimination of the slack variables

In section 4.2 it was discussed how the KKT system can be reduced to a sym-
metric structure and how its size can be further reduced by elimination of the
diagonal terms Ls, resulting in system (4.21). However, since in the neighbor-
hood of the optimal solution some of the diagonal terms in Ls approach zero,
the associated slacks, whose coefficients in Ls are close to machine epsilon, are
not eliminated. This prevents the excessive ill-conditioning of the reduced sys-
tem. The direct sparse solver PARDISO treats indefinite systems by a symmetric
maximum weighted matching algorithm and 2× 2 pivoting Schenk and Gärtner
[2006a], which permutes and scales the system such that either the diagonal en-
try is 1 or the corresponding nearest off-diagonal element is 1. This method is
particularly efficient for the highly indefinite matrices stemming from IP methods
Gould et al. [2007].

The numerical values in Ls differ significantly for the active and inactive
constraints. First, consider the active constraints (4.1c). The associated slack
variables are approaching zero and the Lagrange multipliers attain large val-
ues, therefore the corresponding Ls coefficients will become large as well. These
values can be eliminated without increasing of the condition number of the re-
duced system. On the other hand, the slack variables of the inactive inequality
constraints are in the order of up to hundreds of thousands, depending on the
power flow rating of the transmission lines, and the corresponding Lagrange
multipliers λI approach zero. The corresponding coefficients Ls will thus also

69 5.3 Iterative methods

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57
0

0.2

0.4

0.6

0.8

1

IPM Iteration

R
at

io
of

El
im

in
at

ed
Va

ri
ab

le
s

τ= 10−6 τ= 10−8 τ= 10−10

Figure 5.1. Number of eliminated variables relative to the overall number of
the slack variables. The elimination is performed only if the corresponding Ls

term is above the threshold τ.

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57
1011
1013
1015
1017
1019
1021
1023

IPM Iteration

C
on

di
ti

on
N

um
be

r Original KKT matrix (4.16) Reduced KKT τ= 10−6 Reduced KKT τ= 10−8

Reduced KKT τ= 10−10

Figure 5.2. Condition number of the KKT system and its reduced versions
with various elimination thresholds τ.

approach zero in the neighborhood of the optimal solution. Elimination of these
variables would introduce large numerical error, since the elimination of the vari-
ables involves inversion. Figure 5.1 demonstrates the ratio of variables that can
be eliminated throughout the IPM iterations with various elimination thresholds
τ, such that Ls > τ, and Figure 5.2 illustrates the condition number estimates
(MATLAB’s condest) of the reduced and the original KKT system (4.16). The re-
sults are demonstrated for the PEGASE1354 network with 20 arbitrarily chosen
contingencies; other networks were observed to behave similarly. The appropri-
ate threshold that does not increase the ill-conditioning, while still allowing a
substantial number of variables to be eliminated, was chosen to be τ= 10−8.

5.3 Iterative methods

Sparse direct methods are the solvers of choice in various optimization codes for
solution of the OPF problems. However, the optimization framework might re-
sort to the iterative method when the direct approach fails to produce a solution

70 5.3 Iterative methods

of sufficient accuracy, such as in the KNITRO case. Similarly, the IP algorithm in
FMINCON applies a projected conjugate gradient method to solve the KKT sys-
tem in an iterative fashion. It was observed that FMINCON is not competitive
with other optimization frameworks relying on direct sparse solvers during so-
lution of large-scale OPF problems Kardos et al. [2018]. On the other hand,
iterative methods are popular in the numerical solution of partial differential
equation (PDE) problems because of their intrinsic storage and computational
requirements. The matrix is not formed explicitly, only an operator representing
the matrix-vector product is provided. For example, in the case of saddle point
systems arising from PDE problems on three dimensional meshes Benzi et al.
[2005].

Iterative solvers face many difficulties when solving the KKT systems resulting
from the IP methods. A possible reason is that, besides its poor conditioning, the
matrix lacks the regular spectral properties of matrices obtained from discretiza-
tions of continuous operators. In the context of the IP methods, the iterative
solution of the KKT system may be interpreted as an inexact search direction cal-
culation. It was demonstrated that computational flexibility is greatly increased
as inexact search direction calculations are allowed on certain problems (e.g.
PDE-constrained optimization problems Curtis et al. [2012]). The termination
criteria for the iterative process need to be carefully chosen in order to account
also for the noncovex problems, which cannot rely purely on the residuals, as is
the case for the convex problems. Additional conditions and procedures that aid
the algorithms in converging toward minimizers need to be introduced in order to
avoid saddle points or local maximizers, such as sufficient merit function approx-
imation reduction termination tests introduced in Curtis, Nocedal and Wächter
[2010]; Curtis, Schenk and Wächter [2010].

When an iterative solver is used to solve the KKT linear systems, an effec-
tive preconditioner is essential to keep the number of iterations low. For best
performance, the preconditioner should be tailored to specific problems. Other-
wise, there are two general-purpose preconditioning approaches. One is based
on purely algebraic techniques (incomplete factorizations or sparse approximate
inverses), and the other on algebraic multilevel methods. These require little
knowledge of the problem and can be applied in a black-box fashion. On the
other hand, when applied to saddle point systems, the black-box approach often
performs poorly because of the indefiniteness and lack of diagonal dominance.

71 5.4 Quasi-Newton methods

5.4 Quasi-Newton methods

The previous two sections were based on the fact that the second-order informa-
tion (i.e. Hessians of the Lagrangian and constraints) is available. In many appli-
cations, such information is very expensive to compute or the storage required
is too large Kourounis et al. [2014a]. Alternatively, the computational setup
might require to avoid using the Hessian information, as explained below. This
section briefly discusses OPF solution approaches based on quasi-Newton meth-
ods Gondzio and Sobral [2019], where the second-order information is based on
the limited memory BFGS approximation Nocedal and Wright [2006]; Lewis and
Overton [2013].

Augmented Lagrangian

An example of the OPF solution approach, where it could be favorable to avoid
using the second-order information, would be formulating the problem in such
a way that its structure is favorable for modern computing architectures. Mod-
ern HPC architectures are adopting hardware accelerators at an increasing pace
due to their favorable energy efficiency and high floating point operation rate.
This will be the case also for the first exascale computer “Aurora” that should
get in production in 2021 Trader [2019]. In order to gain a performance benefit
in an application code, the existing algorithms have to be redesigned to imple-
ment computational patterns favorable for these accelerated architectures. Cur-
rent state-of-the-art optimization packages rely on sparse linear algebra kernels,
which require indirect memory access and thus are not suitable for the acceler-
ators. The quasi-Newton augmented Lagrangian method [Nocedal and Wright,
2006, Ch. 17] can be used as an alternative solution method to IP method which
requires solution of the KKT sparse linear systems, including sparse Hessian of the
Lagrangian and sparse Jacobian of the constraints. On the other hand, the aug-
mented Lagrangian formulates an unconstrained optimization problem (except
simple box bounds), thus eliminating the sparse Jacobians. Furthermore, if it is
used in conjunction with a quasi-Newton method based on secant updates (e.g.,
BFGS), which forms a dense Hessian approximation, the computational kernels
will have dense nature. However, explicit assembly of this matrix might quickly
exhaust available memory for large-scale problems. Limited memory BFGS is
based on a compact representation using the information in change of the gradi-
ent and iterates in a couple of previous iterations. Low rank approximations are
matrix free and use only vector multiplications and additions. Preliminary ex-
periments of such an approach demonstrated that the solver is experiencing con-

72 5.4 Quasi-Newton methods

vergence difficulties for the nonconvex OPF problems, especially when it comes
to reducing the residuals of the dual infeasibility and ends up performing an
excessive number of iterations.

Reduced space IP method

Solution of the OPF problems may be based also on a similar approach as used
in the PDE-constrained optimization problems (e.g., maximization of the oil pro-
duction Kourounis et al. [2014b]). These problems are often solved by reduced
space optimization methods Akcelik et al. [2006]; Biegler et al. [2003]. In con-
text of OPF problems, the unknown voltages and the nonlinear equality con-
straints, representing the power flow equations, are eliminated from the opti-
mization problem and optimizer controls only the reduced set of the variables, so-
called control or design variables. The eliminated state variables are treated ex-
plicitly during evaluation of the objective function value and its gradient. Given
the known PF quantities, system of eliminated equality constraints is used to
solve for the unknown state variables. Thus, the equality constraints are im-
plicitly satisfied. However, this requires multiple factorizations of the constraint
Jacobians in each IP iteration. In theory, this should not turn out as a serious
limitation since the Jacobians are rather small (up to several thousand rows)
and robust power flow solvers are available. The efficient evaluation of the gra-
dient information, required by the optimization method, is achieved using the
adjoint method. The computational cost of evaluating the inequality constraint
(e.g., line flow limits) gradients can be improved using constraint lumping tech-
niques Kourounis et al. [2014b]. The second-order derivatives are not evaluated
exactly due to the excessive computational cost, only approximations such as
limited memory BFGS are used. The study of such reduced space IP approach
in Kardos et al. [2020a] demonstrated that the computational cost of evaluating
the gradient information is excessive and the constraint lumping introduces ap-
proximations of nonsmooth functions, which leads to convergence difficulties of
the IP method used for solution of the OPF problems.

It is well known that quasi-Newton’s methods have worse convergence than
their exact counterparts. The positive-definite BFGS approximation can be un-
suitable when the Lagrangian Hessian is indefinite at the optimal solution. The
convergence of quasi-Newton approaches, including the reduced space IP method,
are illustrated in Figure 5.3. The quasi-Newton methods require significantly
more iterations to reach the required tolerance εtol = 10−4, as shown in Figures
5.3b and 5.3c. The convergence problems might occur due to the fact that the
BFGS cannot approximate the Hessian at late iterates (close to the optimal point)

73 5.4 Quasi-Newton methods

due to the well-known ill-conditioning of the Hessian in the IPM methods as the
solution is approached.

0 2 4 6 8 10 12 14 16
1.30

1.30

1.30

1.30

1.30
·105

IPM Iteration number

O
bj

ec
ti

ve
Va

lu
e

($
/h

)

10−910−810−710−610−510−410−310−210−1100

Fe
as

ib
ili

ty

Objective Primal Feasibility Dual Feasibility

(a) IP method with exact Hessian.

0 10 20 30 40 50 60 70
1.30

1.30

1.30

1.30

1.30
·105

IPM Iteration number

O
bj

ec
ti

ve
Va

lu
e

($
/h

)

10−14
10−12
10−10
10−8
10−6
10−4
10−2
100

Fe
as

ib
ili

ty

Objective Primal Feasibility Dual Feasibility

(b) Full-Space IP with quasi-Newton limited memory BFGS.

0 10 20 30 40 50 60 70 80 90 100 110

1.30

1.30

1.30

1.30

·105

IPM Iteration number

O
bj

ec
ti

ve
Va

lu
e

($
/h

)

10−6
10−5
10−4
10−3
10−2
10−1
100

Fe
as

ib
ili

tyObjective Dual Feasibility

(c) Reduced-Space Quasi-Newton with constraint lumping.

Figure 5.3. Convergence trajectory for case118 power grid OPF benchmark.

Tables 5.1 and 5.2 provide additional information about the reduced space
IP method convergence, including performance and precision comparison. In all
cases, IPOPT was used as the solution method of the IP optimization problems.
The full space IP with exact Hessian information is used as a reference (Exact).
Next, the limited memory BFGS approximation of the Hessian in the full-space
IP method (BFGS) is shown, followed by the reduced space IP method without
constraint lumping (adjoint), and finally, the reduced space with the constraint
lumping (lumped). In case of the smaller benchmark (case118), all four methods
were able to successfully solve the problem, reaching NLP error in order of 10−5

and optimality gap with respect to the exact IP method in order of 10−11 in case

74 5.4 Quasi-Newton methods

Table 5.1. Convergence of various IP solution methods for case118.

Method Iterations Time (s) Stopping Reason NLP Error Optimality Gap

Exact 16 0.04 Solved 1.18 · 10−5

BFGS 75 0.98 Solved 8.19 · 10−5 −1.77 · 10−11

Adjoint 113 5.34 Solved 7.43 · 10−5 −3.52 · 10−4

Lumped 107 2.02 Solved 9.09 · 10−6 −3.52 · 10−4

Table 5.2. Convergence of various IP solution methods for case2737.

Method Iterations Time (s) Stopping Reason NLP Error Optimality Gap

Exact 26 1.09 Solved 1.92 · 10−5

BFGS 56 7.86 Acceptable tol. 1.69 · 10−1 5.2 · 10−9

Adjoint — — — — —
Lumped 140 30.50 Acceptable tol. 6.45 · 10−3 −8.57 · 10−3

of the BFGS and 10−4 for the reduced space methods. The number of iterations
was 4.7 times larger for the BFGS and up to 6.7−7.0 times for the reduced space
approaches, compared to the reference exact solution. The constraint lumping
reduced the computational time up to a factor of 2.6.

It was not possible to solve the benchmark case2737 up to the required toler-
ance. The IP iterations were stopped using the acceptable tolerances. When the
algorithm encounters many iterations in a row that are considered acceptable (in
this case 15), it will terminate before the desired convergence tolerance is met.
This happens if objective function is not improved in many consecutive iterations
and the relaxed tolerances are satisfied. The BFGS terminated with a significant
NLP error in the dual feasibility of 1.69 · 10−1. The adjoint method without the
constraint lumping was computationally very expensive due to the evaluation of
the constraint gradients (5 iterations took almost 200 seconds). However, the
constraint lumping method significantly improves performance of the reduced
space approach, outperforming also the BFGS approach in terms of the single
iteration cost. Similarly, also the NLP error is significantly improved.

Finally, it was observed that approaches using the Hessian approximation are
very sensitive to IP parameters such as initial point, barrier strategy and its ini-
tial value (monotone strategy should be preferred), length of the BFGS history,
etc. Additional results and discussion can be found in Kardos et al. [2020a].
The remaining part of this document does not contain any follow-up of this re-
search direction and focuses on direct sparse solution of the KKT system and its
decomposition, considering the exact Hessian information.

Part III

High-performance IP algorithms and
software for power grid problems

75

Chapter 6

Software packages

This chapter provides an overview of available power grid simulation packages
and primal-dual IP optimization software. In general, an OPF problem can be
formulated as a nonlinear optimal control problem with both equality and in-
equality constraints. Due to a large number of inequality constraints, IP meth-
ods are usually the most efficient solution method. IP methods are favorable for
their approach to the inequality constraints, which are replaced by a logarithmic
barrier function that penalizes the points approaching the boundary of the fea-
sible region. Finally, the chapter is concluded with a brief review of the linear
solvers used by the IP packages, since they heavily influence the performance
and robustness of the overall IP software. The overall hierarchy of the software
components is illustrated in Figure 6.1.

IPOPT, KNITRO,
BELTISTOS

MATPOWER, PowerModels,
GridPACK

BLAS, Sparse LA

PARDISO, MA27, MA57

Power Grid
Simulator

Optimization
Software

Linear
Solver

Linear
Algebra

Figure 6.1. Software stack in power grid simulations.

77

78 6.1 Power grid simulation packages

6.1 Power grid simulation packages

Although many commercial software tools exist that support load flow and OPF
simulation capabilities, including PowerFactory (DIgSILENT), PSS (Siemens),
NEPLAN (NEPLAN AG), PSLF(GE ENERGY CONSULTING), ETAP Grid (ETAP),
their licensing makes them prohibitive in many cases, thus focus is put on freely
available software, which is introduced in the following subsections.

6.1.1 MATPOWER

MATPOWER Zimmerman et al. [2011]; Zimmerman and Murillo-Sanchez [2016]
is a general purpose power system software, which employs all of the standard
steady-state models typically used for power flow analysis. It is an open-source
MATLAB-based package, and provides researchers and educators a platform for
solving power flow and an extensible collection of OPF problems. Recently, sev-
eral different formulations of the standard AC OPF problem were added, includ-
ing polar and rectangular representations of complex voltage variables and both
current and power versions of the nodal mismatch equations. The modular archi-
tecture of the MATPOWER code enables researchers to implement various OPF ex-
tensions or add user defined variables and functions. Interfaces to multiple high-
performance nonlinear optimizers, such as FMINCON, IPOPT, KNITRO, BELTISTOS,
and its default IP solver MIPS, are also available for its users. It also contains a
library of several power networks of increasing complexity.

A subset of the MATPOWER power flow model was implemented in C++, used
for evaluation of the HPC solution algorithms presented in this thesis. OPF ex-
tensions were also implemented, including SCOPF and MPOPF.

6.1.2 PowerModels

PowerModels Coffrin et al. [2017] is an open-source platform providing various
OPF problem formulations, including several convex relaxations. JuMP Dunning
et al. [2017], a domain-specific modeling language for mathematical optimiza-
tion embedded in Julia is used to formulate the OPF model as an optimization
problem. JuMP supports a variety of commercial or open-source solvers.

PowerModels provides similar modules to MATPOWER, but since it is imple-
mented in Julia it allows conducting large-scale experiments where hundreds of
independent tasks can be run in parallel. Associated MATPOWER’s MATLAB li-
censing costs can be prohibitive in a nonacademic environments, while Julia is

79 6.2 IP optimization packages

provided under open source license. Additionally, it also provides second-order
conic and quadratic relaxations of the OPF problem.

6.1.3 GridPACKTM

GridPACKTM Palmer et al. [2015]; Palmer et al. [2014] is an open source soft-
ware framework for the development of power system simulation applications.
The framework contains modules for setting up distributed power grid networks,
and is built on top of third party libraries for communication (MPI), partition-
ing (Parmetis), distributed matrices and vectors, linear and nonlinear solvers
(PETSc), and advanced programming constructs (Boost). The simulations are
thus capable of running on high-performance computers. It was used in appli-
cations such as power flow, dynamic simulation, and state estimation. It also
contains building blocks and interfaces that can be used to formulate a variety
of optimization applications. The provided building blocks consist of constructs
such as variable, expression, or constraint interfaces.

6.2 IP optimization packages

In what follows, several primal-dual IP software packages are described, which
are used by many practitioners for solving NLP problems. The optimization soft-
ware packages are summarized in Table 6.1, where the freely available solvers
are highlighted. Structure exploiting capability is also indicated.

Table 6.1. Open source and commercial optimizers.

Optimizers Version Structured License

IPOPT 3.12.5 no Open source (EPL)
BELTISTOS 1.0 yes Free academic use

KNITRO 11.0.1 no Artelys
MIPS 1.2.2 no Open source (BSD)∗

FMINCON 2017b no MATLAB
PIPS yes Open source (UChicago Argonne)

OOQP yes Open source (University of Chicago)
OOPS yes Demo available

80 6.2 IP optimization packages

6.2.1 IPOPT

IPOPT Wächter and Biegler [2005, 2006]; Nocedal et al. [2009] is a software
package for large-scale nonlinear optimization. It implements a primal-dual IP
algorithm with a filter line-search method that aims to find a local solution of a
given NLP problem. It includes additional algorithmic features such as second-
order corrections, inertia correction of the KKT matrix, problem scalings, and
various barrier update strategies. Furthermore, it provides tools such as deriva-
tive checker to verify the correctness of the user provided derivatives, or imple-
ments a first-order algorithm based on the Hessian approximation using limited
memory BFGS (l-BFGS). It supports a variety of linear solvers, including HSL
MA27, MA57, MUMPS, PARDISO, WSMP and others. Benchmarks Gould et al.
[2007] have shown that MA57 and PARDISO are often the most reliable linear
solvers for the indefinite problems within IPOPT.

6.2.2 BELTISTOS

BELTISTOS Kourounis and Schenk [2018]; Kourounis et al. [2018]; Kardos et al.
[2020b] is a collection of high-performance OPF solution algorithms including
extremely scalable and low memory MPOPF and SCOPF solvers. BELTISTOS-OPF
encapsulates the most efficient algorithmic kernels implemented in IPOPT, which
perform best for OPF problems on a wide variety of networks of increasing com-
plexity. It attempts to maintain sufficiently accurate search directions by con-
trolling sophisticated pivoting and scaling schemes provided by the direct sparse
solver PARDISO. Additionally, when the search directions are not sufficiently accu-
rate, they are refined by a sophisticated iterative refinement scheme Arioli and
Scott [2014] or by performing iterative refinement using quadruple-precision
floating-point arithmetic. Furthermore, special factorization schemes are applied
for accelerating structured problems. BELTISTOS-MP implements structure ex-
ploiting and data compression algorithms designed for the particular structure
of the MPOPF problems. BELTISTOS-MEM is a variant of the BELTISTOS-MP al-
gorithm, which sacrifices redundant computation in favor of memory efficiency.
BELTISTOS-SC addresses solution of the SCOPF problems by a parallel, structure
exploiting IP algorithm, utilizing both shared and distributed memory environ-
ments, also supporting GPU for acceleration of the dense linear algebra.

81 6.2 IP optimization packages

6.2.3 KNITRO

KNITRO Byrd et al. [2006] is a commercial software package for solving large-
scale mathematical NLP problems. KNITRO offers four different optimization al-
gorithms for solving optimization problems, including an IP with an iterative or
direct algorithm, SQP, and an active set algorithm. For the purpose of this study,
the IPM algorithm with direct step was selected, computing new iterates by solv-
ing the primal-dual KKT matrix using direct linear algebra and sparse symmetric
indefinite solvers such as MA27, MA57 or MKL PARDISO Intel [2019], or others.
However, KNITRO may automatically switch to an iterative conjugate gradient
solver if the direct step is suspected to be of poor quality, or if negative curvature
is detected. KNITRO implements a couple of line-search methods, backtracking
or cubic interpolation scheme. By default, the strategy is chosen automatically by
KNITRO and is valid only for the IP algorithm with direct step or SQP. KNITRO also
implements presolver that tries to simplify the model by removing variables or
constraints. Other features include second-order corrections, derivative checker,
multiple Hessian approximations (exact and l-BFGS, SR1), various barrier up-
date strategies, or problem scaling.

6.2.4 MIPS

MIPS Wang et al. [2007], the MATPOWER IP solver, is a primal-dual IP solver
for general NLP problems; however, OPF problems are the primary target of the
solver. It is entirely implemented in MATLAB code and distributed with MAT-
POWER. Although it is released under open source license, it requires a MATLAB
license for execution of the code. It implements an algorithm where the step
control is not enabled by default, which often leads to numerical failure of the
solver. It is strongly recommended to enable the additional step-size control in
the MIPS algorithm. The exact derivatives are required (both first and second or-
der) and it uses an adaptive strategy for the barrier parameter update (based on
the duality measure scaled by a constant). Various linear solvers are supported,
with MATLAB’s backslash being the default solver. In addition, an interface to the
PARDISO linear solver is available.

6.2.5 FMINCON

FMINCON Byrd et al. [2000] is a part of the MATLAB Optimization Toolbox Math-
Works [2018]. By default FMINCON uses its IP solver, but other algorithms are
available (including SQP, active set or trust region algorithms). The IP algorithm

82 6.2 IP optimization packages

applies projected conjugate gradient method to solve the KKT system in an iter-
ative fashion. Finite difference derivative checker, or the l-BFGS algorithm are
also available.

6.2.6 PIPS

PIPS Petra [2014] is a suite of parallel optimization solvers designed mainly for
stochastic optimization problems. PIPS consists of multiple IP solvers for various
problem classes and is designed to exploit particular problem structures using
customized parallel linear algebra. PIPS-IPM Petra, Schenk and Anitescu [2014]
is a parallel IP solver for stochastic LPs and convex QPs. The solver supports the
PARDISO linear solver and exploits its functionality to greatly improve the per-
formance of the local Schur complement contributions, which can be computed
much faster then when used with other linear solvers (such as supported MA27,
MA57, MA86, WSMP) and can thus offer HPC performance. It also supports
GPUs for the acceleration of dense linear algebra. General NLP problems can be
addressed by PIPS-NLP Chiang [2014]; Chiang et al. [2014], which implements
a parallel IP method for structured problems. Supported linear solvers include
MA27, MA57, MA86, Mumps, and UmfPack. PIPS-IPM and PIPS-NLP are both
derivative works of OOQP Gertz and Wright [2003].

6.2.7 OOQP

OOQP Gertz and Wright [2003] is a package for solving solving convex QPs based
on a primal-dual IP algorithm, where users may exploit problem structure by sup-
plying linear algebra, problem data, and variable classes that are customized to
their particular applications. The OOQP distribution contains default implemen-
tations that solve several important QP problem types, including general sparse
and dense QPs and bound-constrained QPs. The MA27/57 solvers are supported.
The larger goal of OOQP is to demonstrate the usefulness of object-oriented de-
sign principles in the context of optimization software and can incorporate other
software for sparse systems and for parallel environments, without requiring sub-
stantial rewriting of the code.

6.2.8 OOPS

OOPS Gondzio and Grothey [2009] is a parallel IP code that exploits any prob-
lem structure and it solves LP, QP, and NLP problems. It also supports nested
block-structured matrices that occur in problems such as multistage stochastic

83 6.3 Linear solvers

programming. It provides an interface to a collection of linear algebra routines
that need to be implemented for all supported structures.

6.3 Linear solvers

The solution of linear systems of equations is the cornerstone of a robust high-
performance optimization package. Several sparse direct linear solvers are de-
scribed in the following section, focusing on solvers used within this thesis. Spe-
cific performance benchmarks of the linear solvers, applied to the solution of OPF
problems, are presented in section 8.2.4.

6.3.1 PARDISO

PARDISO Schenk and Gärtner [2004]; Schenk and Gärtner [2006b] is a thread-
safe, high-performance, robust, memory efficient software for solving large sparse
symmetric and unsymmetric linear systems of equations on shared-memory mul-
tiprocessors. PARDISO uses a combination of left- and right-looking Level-3 BLAS
supernode techniques, utilizing OpenMP directives to achieve multithreaded par-
allelism. The solver uses diagonal pivoting or 1× 1 and 2× 2 Bunch–Kaufman
pivoting for symmetric indefinite matrices, typical for IP methods, and an ap-
proximation of the solution is found by forward and backward substitution and
iterative refinement. Additionally, symmetric weighted matching algorithms are
used to improve the pivoting accuracy.

IPOPT, BELTISTOS, PIPS-IPM, and MIPS contain ready to use interfaces to the
solver. Additionally, PARDISO is distributed with additional fully integrated com-
ponents such as the parallel threaded implementation of the Schur-complement
algorithm, called PARDISO-SCHUR Petra, Schenk, Lubin and Gärtner [2014],
which is available for sparse symmetric or unsymmetric matrices. PARDISO-
INV’s Verbosio et al. [2017] selected inversion method provides an efficient way
for computing, e.g., the diagonal elements of the inverse of a sparse matrix, and
is available for sparse symmetric or unsymmetric matrices.

6.3.2 The Harwell Subroutine Library

The Harwell Subroutine Library (HSL) HSL [2002] is a Fortran library for many
areas in scientific computing, including direct and iterative solvers, or various
auxiliary linear algebra functions. It is probably best known for its codes for the
direct solution of sparse linear systems, including multifrontal algorithm with

84 6.3 Linear solvers

approximate minimum degree ordering implemented in MA57. The system can
be optionally prescaled by using various scaling routines, while ordering options
are provided including hooks to MeTiS Gupta et al. [1997]; Karypis and Kumar
[1998]. Evaluation of the individual solvers in terms of robustness and perfor-
mance is provided in Gould and Scott [2004]. HSL packages are available at no
cost for academic research and teaching.

IPOPT provides support for a wide variety of linear solvers, including HSL
linear solvers MA27, MA57. KNITRO may utilize routines MA27 or MA57 in order
to solve linear systems arising at every iteration of the algorithm. MATLAB uses
the MA57 routines for real sparse symmetric matrices (operator ldl).

Chapter 7

Structure exploiting solution methods

Computers have evolved significantly over the past decade, at an even faster
pace than modern power grids. Multicore and manycore computer architectures
and distributed compute clusters are ubiquitous among scientists and engineers,
while at the same time no significant performance gains are expected for sequen-
tial codes. Historically, the easy performance gains could be achieved due to the
increased clock frequencies of newer processors, which was the case until roughly
2005 when the CPU clock settled at around 3 GHz and stopped increasing Rupp
[2018]. Significant performance gains, however, may be achieved by algorithmic
redesign tailored to the particular application that is also able to utilize multicore
and manycore architectures with deep memory hierarchies.

IP methods have been the most robust and successful tools for large-scale
nonconvex optimization, given that IP methods can easily exploit the problem
structure Gondzio and Grothey [2009]. The practical efficiency of the IP algo-
rithms highly depends on the linear algebra kernels used and performance gains
must be realized through the use of sophisticated algorithms utilizing parallelism
across all cores of processors or distributed memory clusters. For large-scale op-
timization problems, the computation of the search direction (4.16) determines
the overall runtime. In such cases, the KKT system is usually very large but
sparse, especially for coupled problems such as SCOPF or MPOPF. Direct sparse
linear solvers are the standard choice employed for the solution of the KKT; how-
ever, the solution quickly becomes intractable due to extensive memory and time
requirements. Hence, any attempt at accelerating the solution should be focused
on the efficient solution of the KKT linear system. Figure 7.1 demonstrates how
various IP method components contribute to the overall time for various OPF
benchmarks. The number of IP iterations was fixed at five. Note that the solu-
tion of the linear system represents the majority of the overall time.

85

86 7.1 Revealing the structure of coupled OPF problems

PEGASE
1354-2048

PEGASE
9241-512

PEGASE
9241-256

PEGASE
13659-128

PEGASE
13659-64

100
101
102
103
104
105
106

Ti
m

e
(s

)

Overall time KKT solution Function eval. Other

Figure 7.1. Computational complexity of the IP method components.

Real-world real-time implementation of coupled OPF problems for large-scale
energy systems still remain computationally intractable. The coupled OPF prob-
lems are ubiquitous in various domains, owing to the presence of smart loads and
energy storage devices such as batteries for demand shaping and deferral. Addi-
tional time couplings of the OPF problem at each time period are introduced by
generator ramp rate limits. The higher the number of time periods considered,
the larger the resulting optimal control problem becomes. For a significantly
large number of time periods the problem becomes notoriously difficult to solve
and for this purpose several approximations and simplifications are currently
employed by the industry in order to meet real-time responses. Furthermore,
the system operators have to foresee possible contingency events and operate
the grid in a such a way that its operation will remain secure in the event of
any contingency. However, addition of a large number of contingency scenar-
ios results in significantly larger problem sizes, rendering the problem solution
computationally intractable.

7.1 Revealing the structure of coupled OPF problems

A widespread approach for solving KKT systems consists of employing black-box
techniques such as direct sparse solvers, due to their accuracy and robustness.
The direct sparse solvers obtain the solution of the linear system by factorization
and subsequent forward-backward substitutions. The factorization is a compu-
tationally expensive operation, with complexity O(2

3 n3), commonly introducing
significant fill-in, which may quickly exhaust available memory on shared mem-
ory machines for large-scale linear systems. Furthermore, these solvers are not
aware of the underlying structural properties of the KKT systems arising from
many engineering problems which make it possible to significantly decrease time
to solution by employing structure-exploiting algorithms and distributed memory

87 7.1 Revealing the structure of coupled OPF problems

computers.
The appropriate structure emerges from the fact that each of the variables in

the SCOPF optimization vector 3.24
�

x ,λε,λI

�

or the MPOPF optimization vector
3.32

�

x ,λε,λI ,λA

�

correspond to some contingency scenario c = 0, 1, . . . , Nc, or
the time period n= 1,2, . . . , N :

x =
�

x 0, . . . , x Nc
, x g

�

,(7.1)

λε =
�

λε0, . . . ,λεNc

�

,(7.2)

λI =
�

λI 0, . . . ,λI Nc

�

,(7.3)

x =
�

x 1, . . . , x N

�

, (7.4)

λε =
�

λε1, . . . ,λεN

�

, (7.5)

λI =
�

λI 1, . . . ,λI N

�

, (7.6)

λA =
�

λA1, . . . ,λAN

�

. (7.7)

In order to reveal the scenario-local structure of the Hessian (4.21), the variables
corresponding to the same contingency or time period are grouped together, i.e.,

(7.8) u c =
�

x c, λε c, λI c

�

, un =
�

x n, λεn, λI n

�

, (7.9)

and, thus, the global ordering will be

(7.10) u =
�

u0, . . . , uNc
, u g

�

, u =
�

u1, . . . , uN , u g

�

, (7.11)

where the coupling variables u g are placed at the end of the new optimization
vector u. Coupling in the SCOPF problem, u g = x g , is introduced by the two
nonanticipatory constraints (3.21h) and (3.21i). The coupling in a case of the
MPOPF problem, u g = λA, is introduced by the linear energy constraints (3.25h).
Under the new orderings (7.10) and (7.11), the Hessian matrix of the KKT sys-
tem (4.21) becomes of an arrowhead structure (also described as bordered block-
diagonal Duff and Scott [2005] or dual block-angular Petra, Schenk and Anitescu
[2014]),













A0 Bᵀ0
A1 Bᵀ1

. . .
...

An Bᵀn
B0 B1 . . . Bn C

























∆u0

∆u1
...
∆un

∆u g













=













b0

b1
...

bNc

bC













, (7.12)

also illustrated in Figures 7.2 and 7.3. The block matrices Ai for the SCOPF
problem are

Ai =





H̃ x i ,x i
Jᵀ
εi ,x i

JᵀIi ,x i

J
εi ,x i

0 0
J Ii ,x i

0 −L−1
si



 . (7.13)

88 7.2 Schur complement decomposition

Similarly, the block matrices Ai for the MPOPF problem are

Ai =









H̃ x i ,x i
Jᵀ
εi ,x i

JᵀIi ,x i
0

J
εi ,x i

0 0 0
J Ii ,x i

0 −L−1
si

0
0 0 0 LAi









. (7.14)

The matrices incorporate the Hessian of the Lagrangian with respect to the scenario-
local variables H̃ x i ,x i

=∇2
x i x i

L+X−1
i Zi and the Jacobians of the constraints for the

ith scenario with respect to the local variables J
εi ,x i
=∇x i

cε i and JᵀIi ,x i
=∇x i

c I i,
as well as the diagonal entries corresponding to the eliminated slack variables.
In the case of the SCOPF problem, the block C = ∇2

xg xg
L+ X−1

g Zg contains Hes-
sian of the Lagrangian with respect to the coupling variables x g , while in the
case of the MPOPF problem it is a block of zeros. The off-diagonal blocks in the
arrowhead SCOPF system are

Bi =





H̃ xg ,x i

Jᵀ
εi ,xg

JᵀIi ,xg





ᵀ

, Bᵀi =





H̃ x i ,xg

J
εi ,xg

J Ii ,xg



 , (7.15)

where H̃ x i ,xg
= ∇2

x i xg
L represents the off-diagonal blocks of the Hessian of La-

grangian with respect to the local and coupling variables and J
εi ,xg
=∇xg

cε i and
J Ii ,xg

=∇xg
c I i are the Jacobians of the ith scenario with respect to the coupling

variables. The MPOPF coupling matrices B1, B2, . . . , BN ∈ RNNS×NA, where NA is
the size of the diagonal blocks in (7.12), contain the constant subblocks, which
arise from the particular form of the linear constraints (3.25h) representing the
evolution of stored energy.

7.2 Schur complement decomposition

The direct factorization of the full KKT system is not feasible for large-scale
SCOPF problems due to their growing size with the number of contingencies
and associated factorization fill-in that quickly exhausts the available memory.
The systems with the arrowhead structure, such as (7.12), are well suited to be
solved by the Schur complement (SC) technique. The SC arises as the result of
performing a block Gaussian elimination, thus reducing the problem from the full
KKT system into smaller problems corresponding to the diagonal blocks Ai and
the dense SC system S. The solution is obtained by a sequence of partial block

89 7.2 Schur complement decomposition

0 20 40 60 80 100 120 140 160

0

20

40

60

80

100

120

140

160

nz = 1421
0 20 40 60 80 100 120 140 160

0

20

40

60

80

100

120

140

160

nz = 1421

Figure 7.2. Symmetrized SCOPF system (4.21) and its permutation (7.12).

0 50 100 150 200

0

50

100

150

200

nz = 1710
0 50 100 150 200

0

50

100

150

200

nz = 1710

Figure 7.3. Symmetrized MPOPF system (4.21) and its permutation (7.12).

elimination steps, which are decoupled, aiming to form the SC of the system.
This way, the factorization of the full KKT system is avoided. Instead, only the
smaller diagonal blocks need to be factorized, as described in the Algorithm 1.

In the first step, the SC S is formed,

S = C −
Nc
∑

i=0

BiA
−1
i Bᵀi , (7.16)

which in the general case becomes a dense matrix. In case of the preventive
SCOPF problem formulation, the size of the coupling stays constant, indepen-
dently of the number of contingency scenarios. Therefore, the size of the SC
does not increase with an increasing number of contingencies. It can therefore
be solved using dense LDLᵀ factorization and back substitution algorithms. In
case of the MPOPF problem, the dense SC S requires additional treatment, since
the coupling increases with increasing number of time periods. The additional

90 7.2 Schur complement decomposition

Step 1 Step 2 Step 3 Step 4

𝑩𝟐

𝑩𝟑

𝑩𝟏

𝑨𝟐

𝑨𝟑

𝑨𝟏

Distribute
blocks

𝑨𝒊, 𝑩𝒊, 𝒃𝒊

Compute Solve Solve

𝑺𝒊 = 𝑩𝒊𝑨𝒊"𝟏𝑩𝒊𝑻 𝑺𝚫𝒖𝒈 = 𝒃𝑪 −(
𝒊

𝑩𝒊𝑨𝒊%𝟏𝒃𝒊 𝑨𝒊𝚫𝒖𝒊 = 𝒃𝒊 − 𝑩𝒊𝑻𝚫𝒖𝒈

Gather
blocks

𝚫𝐮𝟏, 𝚫𝐮𝟐, …

𝑩𝟐

𝑩𝟑

𝑩𝟏

𝑨𝟐

𝑨𝟑

𝑨𝟏

𝑩𝟐

𝑩𝟑

𝑩𝟏

𝑨𝟐

𝑨𝟑

𝑨𝟏

𝚫𝐮𝟐

𝚫𝐮𝟑

𝚫𝐮𝟏

𝚫𝐮𝐠𝑺 = 𝑪 −*
𝒊

𝑺𝒊
𝑺𝟐

𝑺𝟑

𝑺𝟏

𝚫𝐮𝟐

𝚫𝐮𝟑

𝚫𝐮𝟏

Step 5

Figure 7.4. Schur complement procedure for solving the KKT system.

treatment is discussed in section 7.4. The solution of the dense Schur system,

S∆u g = bC −
Nc
∑

i=0

BiA
−1
i bi, (7.17)

yields a part of the solution corresponding to the coupling variables ∆u g , which
is used to obtain all the local solutions ∆u i by solving

Ai∆u i = bi − Bᵀi∆u g . (7.18)

Since the block contributions to the SC BiA
−1
i Bᵀi are independent, they can be

evaluated in parallel, as well as the residuals BiA
−1
i bi and the solutions ∆u i

which can be computed independently at each process. Interprocess commu-
nication occurs because the local SC contributions and SC residuals need to be
assembled by the master process, and during the broadcast of the SC solution to
the remaining processes, as illustrated in Figure 7.4.

Remark 3 Note that the computational efficiency obtained by exploiting the block-
diagonal structure, such as (7.12), is determined by the number of the coupling
variables |u g |. If coupling is large, then the Schur decomposition will not be efficient
compared to the direct factorization techniques because of the cubic complexity of
dense factorizations (7.17).

The most expensive step of the presented computational scheme is evaluation
of the local contributions to the SC BiA

−1
i Bᵀi in (7.16). The standard approach

91 7.2 Schur complement decomposition

Algorithm 1 Parallel SC decomposition for solving the KKT system.
Require: KKT system with arrowhead structure (7.12), right-hand side b
Ensure: ∆u := KKT−1b

1: Distribute blocks from the KKT system (7.12) evenly across P processes,
where Np is the set of diagonal blocks assigned to process p ∈ P

2: Factorize Ai = Li DiL
ᵀ
i for each i ∈Np

3: Compute Si = BiA
−1
i Bᵀi for each i ∈Np

4: Accumulate C p =
∑

i∈Np
Si

5: if master then
6: Reduce S = C −∑p∈P C p

7: end if
8: Compute r i = BiA

−1
i bi for each i ∈Np

9: Accumulate r p =
∑

p∈P r i

10: if master then
11: Reduce r =

∑

p∈P r p

12: Factorize S = LsDs L
ᵀ
s

13: Solve S∆u g = bC − r
14: Broadcast solution u g to all p ∈ P
15: end if
16: Solve Ai∆u i = Biu g − bi for each i ∈Np

uses a direct sparse solver, such as PARDISO, to factorize the symmetric matrix
Ai = Li DiL

ᵀ
i and perform multiple forward-backward substitutions with all right-

hand side (RHS) vectors in Bᵀi , followed by multiplication from the left by Bi.
This approach, however, does not exploit sparsity of the problem in Bᵀi blocks,
since the linear solver treats the RHS vectors as being dense.

An alternative approach, implemented in PARDISO, addresses these limita-
tions by performing an incomplete factorization of the augmented matrix Petra,
Schenk, Lubin and Gärtner [2014]:

M i =

�

Ai Bᵀi
Bi 0

�

, (7.19)

exploiting also the sparsity of Bᵀi . The factorization of the augmented matrix M i

is stopped after pivoting reaches the last diagonal entry of Ai. At this point, the
term −BiA

−1
i Bᵀi is computed and resides in the (2, 2) block of M i. By exploiting

the sparsity not only in Ai, but also in Bi it is possible to reduce memory traffic
by using in-memory sparse matrix compression techniques, which render this
approach quite favorable for multicore parallelization.

92 7.3 Solution algorithms for SCOPF problems

PEGASE13659 PEGASE9241 PEGASE2869 PEGASE1354

10−1

100

101

102

103

104
Ti

m
e

(s
)

Backsolve Incomplete-1 Incomplete-2

Incomplete-4 Incomplete-8 Incomplete-16

Figure 7.5. Evaluation of the BiA
−1
i BT

i terms using backsolve and incomplete
factorization of the augmented matrix M i with multiple threads proposed in
Petra, Schenk, Lubin and Gärtner [2014].

Note that by using an incomplete factorization approach to the augmented
matrix M i for directly computing the local SC Si, some perturbation is introduced
to the local SC to allow for more efficient pivoting during their computation.
However, also the factorization of the diagonal blocks is perturbed, which can be
implicitly obtained from the incomplete factorization approach. Therefore, the
iterative refinement is essential and needs to be applied to each solve operation
with the diagonal block Ai in Algorithm 1. However, introducing the iterative
refinement might introduce load imbalance for the parallel computations, since
each solve with Ai for different i might require different number of iterative
refinement iterations to reach the desired residual.

Performance of computing the terms BiA
−1
i Bᵀi is shown in Figure 7.5 for var-

ious benchmarks. The standard (so-called “backsolve”) approach and the multi-
core incomplete factorization are shown. The latter is also shown for increasing
number of cores. This demonstrates that the incomplete factorization approach is
orders of magnitude faster, especially for the large problems. Due to the extensive
memory requirements for storing the RHS vectors in the “backsolve” approach,
only its single-core execution is demonstrated.

7.3 Solution algorithms for SCOPF problems

The parallel SC framework was applied to AC SCOPF problems and associated
KKT systems in Kang [2015]; Jiang and Xu [2014]. The studies do not evalu-
ate the algorithm on large-scale problems and demonstrate scaling only up to
16 or 8 MPI processes, respectively. The former work focuses on solving the

93 7.4 Structure exploiting algorithms for MPOPF

SC equations implicitly using an iterative quasi-Newton preconditioned conju-
gate gradient method. Structured non-convex optimization of large-scale energy
systems using PIPS-NLP was performed in Schanen et al. [2018]; Chiang et al.
[2014]. The parallel interior point optimization solver for nonlinear program-
ming leverages the dual-block angular structure specific to the problem formula-
tion by applying the SC for efficient parallelization of the linear solves. It was il-
lustrated how different model structures arise in power system domains and how
these can be exploited to achieve high computational efficiency. Stochastic opti-
mization problems on high-performance computers have been treated similarly
in Petra, Schenk, Lubin and Gärtner [2014]; Petra, Schenk and Anitescu [2014].
The numerical experiments suggest that supercomputers can be efficiently used
to solve power grid optimization problems with thousands of scenarios under the
strict time requirements of power grid operators, particularly due to improved
linear algebra on a shared memory level.

The proposed additional SC scheme in this work differentiates the solution
algorithm from the one suggested in the previous work, as summarized in the
recent manuscript Kardoš et al. [2020] and sections 5.2.1 and 8.3.1 in this doc-
ument. The benefits come from a more efficient direct sparse approach for the
solution of the underlying sparse KKT system, introduced in (4.19)–(4.22). The
proposed method employs one additional SC carefully chosen so that the sparsity
of the KKT matrix is maintained. This way the size of the linear system decreases
and this allows for memory savings and increased computational performance.

7.4 Structure exploiting algorithms for MPOPF

For the MPOPF problems, the size of the dense SC S grows very quickly, not only
with the size of the network but also proportionally to the number of installed
storage devices and the number of time periods NNS. As the number of time peri-
ods N or storage devices NS increases, the solution approach based on Algorithm
1 results in a less efficient algorithm than the direct sparse approach employing
PARDISO on the original KKT system (4.15), both with respect to computational
time and memory consumption despite the benefits of the Schur decomposition.
However, the MPOPF problem, unlike the SCOPF problem, can be optimized
even further by exploiting the particular structure of the off-diagonal blocks Bn,
as proposed in Kourounis et al. [2018]. The dense SC consists of smaller blocks,
which appear repeatedly in the matrix. The SC can thus be computed, stored
and factorized in more economical manner, compared to the naive black-box
approach.

94 7.4 Structure exploiting algorithms for MPOPF

7.4.1 Distribution system flexibility

The structure of the MPOPF problem extended by the flexibility provision (intro-
duced in section 3.3.2) is very similar to the MPOPF structure presented previ-
ously in Kourounis et al. [2018]. Structure of both problems is demonstrated in
Figures 7.6 and 7.7. There are additional (separable) constraints and variables in
each diagonal block and extra coupling variables, corresponding to the Lagrange
multipliers of the linear constraints (3.25h) considering also the flexibility provi-
sion. The KKT system can be permuted to the arrowhead form and the structure
exploiting approach, as presented before, can be applied in a similar manner.

0 100 200 300 400

0

100

200

300

400

nz = 2868
0 100 200 300 400

0

100

200

300

400

nz = 2868

Figure 7.6. The KKT system for the standard MPOPF and its permutation.

0 100 200 300 400 500

0

100

200

300

400

500

nz = 3540
0 100 200 300 400 500

0

100

200

300

400

500

nz = 3540

Figure 7.7. The KKT system considering the flexibility and its permutation.

Chapter 8

Numerical Results

In this chapter, the hardware and software setup used in the experiments is
described, followed by introducing a concept of performance profiles used to
present the results in a comprehensive manner. The numerical experiments fol-
low, demonstrating the computational efficiency of the algorithms presented in
this work.

The benchmarks, performed in section 8.2, are focused on the single period
OPF problems without any contingency scenarios. The benchmarks are designed
to investigate various parameters influencing the robustness and performance of
the IP frameworks. The factors studied are the convergence tolerance, initial
guess, and the OPF formulation. The first set of results is concluded by per-
forming a comparison of the robustness and performance of various commercial
and academic IP frameworks. The results are based on a preprint Kardos et al.
[2018]; Kardos et al. [2020b], submitted to the ACM Transactions on Mathemat-
ical Software journal.

The impact of structure exploiting techniques of the KKT system solution
on the overall computational time of the IP algorithm is demonstrated in sec-
tion 8.2.5. It is shown that the distributed solution approach based on the Schur
complement decomposition leads to the same SCOPF solution as the black-box
solution methods based on factorization of the full KKT system. Time-to-solution
and scaling of the parallel and distributed memory solution is reported for mul-
tiple large-scale SCOPF problems. Benefits of the improved sparse linear algebra
and slack variables elimination in computation of the local Schur complement
contributions are summarized. Furthermore, the bottlenecks of the decompo-
sition scheme and their impact on performance are discussed. The results are
based on the IEEE Transactions on Power Systems paper Kardoš et al. [2020].
The study is concluded by a series of performance and scaling benchmarks, pre-

95

96 8.1 Benchmarking environment

sented in preprint Kardos et al. [2018], based on a structure exploiting solu-
tion for the MPOPF problems proposed in Kourounis et al. [2018]; Kardos et al.
[2020b].

8.1 Benchmarking environment

A set of reference grids provided by the MATPOWER library Josz et al. [2016];
Zimmerman et al. [2011]; Fliscounakis et al. [2013a]; Birchfield et al. [2017] is
used during the experiments. Various characteristics for a set of selected twenty-
five benchmark cases are listed in Table 2.1 in chapter 2. In what follows, the
grid name will be suffixed by the number of considered transmission line contin-
gencies.

The IP frameworks and linear solvers used in this chapter were introduced
in Chapter 6. The focus here is put on the KKT system solver used within the
IP frameworks. The black-box solution of the KKT is used in IPOPT if used with
one of the supported direct sparse solvers (e.g. PARDISO –which is considered
as a default linear solver in later text, unless otherwise specified) or BELTISTOS-
OPF. On the other hand, the parallel solution of the SCOPF problem based on
the Schur complement decomposition, presented in algorithm 1 in chapter 7, is
used within BELTISTOS-SC-N, where N denotes the number of parallel processes.
We further distinguish between standard “backsolve” approach to local Schur
complement computation, indicated by BELTISTOS-SC-N-std, while the approach
where the local Schur complement contributions are obtained by incomplete fac-
torization of the augmented matrix (7.19) is denoted as BELTISTOS-SC-N-aug.
Multicore augmented factorization approach with T threads is further denoted
as BELTISTOS-SC-N-aug-T. The two versions of the MPOPF structure exploiting al-
gorithm proposed in Kourounis et al. [2018], based on the SC decomposition and
its memory efficient version, are also distinguished. The notation is summarized
in Table 8.1.

Computing environment

The large-scale scaling experiments are performed on multicore Cray XC40 com-
pute nodes of “Piz Daint” at the Swiss National Supercomputing Centre CSCS -
Swiss National Supercomputing Centre [2018], which consist of Intel Xeon E5-
2695 v4 at 2.10 GHz with 18 cores and 64 GB RAM. In all experiments, Intel
MKL implementation of BLAS and LAPACK (version 2017 update 3) was used.
The GPU accelerators installed at compute nodes are NVIDIA Tesla P100 with 16

97 8.1 Benchmarking environment

Table 8.1. Summary of the notation.

Method Description

IPOPT IPOPT with direct sparse solver PARDISO.
BELTISTOS-OPF BELTISTOS with direct sparse solver PARDISO.
BELTISTOS-SC-N-std BELTISTOS using Algorithm 1 with N processes.
BELTISTOS-SC-N-aug Algorithm 1 with (7.19) using N processes.
BELTISTOS-SC-N-aug-T Multicore execution with T threads.
BELTISTOS-MP Algorithm proposed in Kourounis et al. [2018].
BELTISTOS-MEM Algorithm proposed in Kourounis et al. [2018].

GB memory using CUDA Toolkit version 8.
The single period and multiperiod single-node simulations are performed on

a workstation equipped with an Intel Xeon CPU E7-4880 v2 at 2.50 GHz and 1
TB memory, located at Technische Universität Braunschweig, Germany.

Performance profiles

Performance profiles are used in order to evaluate the quality of the different
optimization methods for OPF problems. Performance profiles provide compact
comparison of the benchmark problems using different optimization packages.
These profiles were first proposed in Dolan and Moré [2002] for benchmarking
optimization software and used, e.g., to evaluate the performance of various
sparse direct linear solvers and optimizers Gould and Scott [2004]; Scott et al.
[2006]; More and Wild [2009].

The profiles are generated by running the set of optimizers M on a set of
OPF problems S and recording information of interest, e.g., time to solution or
memory consumption. Let us assume that a power flow optimizer m ∈M reports
a statistic θms ≥ 0 for the OPF problem s ∈ S; smaller statistics θms indicate better
solution strategies. We can further define θ̃s = minm∈M{ θms}, which represents
the best statistic for a given OPF problem s. Then for α ≥ 1 and each m ∈M
and s ∈ S

k(θms, θ̃s,α) =

�

1 θms ≤ α · θ̃s,
0 θms > α · θ̃s.

(8.1)

is defined. The performance profile pm(α) of the power flow optimizer m is then
defined by

pm(α) =

∑

s∈S k(θms, θ̃s,α)
|S| . (8.2)

98 8.2 OPF problem solution

Thus, in these profiles, the value of pm(α) indicates the fraction of all examples
which can be solved within a factor of α of the time the best solver needed; e.g.,
pm(1) gives the fraction of which optimizer m is the most effective package and
p∗m := limα→∞ pm(α) indicates the fraction for which the algorithm succeeded. If
we are just interested in the number of wins on S, we need only compare the val-
ues of pm(1) for all the solvers i ∈M, but if we are interested in optimizers with
a high probability of success on the set S, we should choose those for which p∗m is
largest. Thereby, for a selected test set, performance profiles provide a very use-
ful and convenient means of assessing the performance of optimizers relative to
the best optimizer on each example from that set Gould and Scott [2016]. When
commenting, e.g., on a performance profile presented in their paper, Dolan and
Moré state that it “gives a clear indication” of the relative performance of each
optimizer Dolan and Moré [2002] and one can determine which optimizer has
the highest probability pm(f) of being within a factor f of the best optimizer
for f in a chosen interval. In this paper performance profiles are used to com-
pare various aspects of problem formulation, problem setup, and performance
of several optimizers on sets of smooth power flow problems. Our results pro-
vide estimates for the best configuration of the problems and identification of the
optimizer with the greatest performance benefits.

8.2 OPF problem solution

This section discusses various areas that have an impact on the convergence prop-
erties of the IP method on the nonlinear level, e.g., initial point selection and
convergence tolerance. This can help power system engineers and other practi-
tioners to make an informed decision when solving the AC OPF problems using
an IP approach.

8.2.1 Choice of an initial point

The gradient-based optimization methods, such as IP methods, are sensitive to
the starting point used as an initial guess usually provided by the user as a pa-
rameter to the optimization method. IP methods are known to suffer the lack
of an efficient warm starting scheme which would enable the use of information
from a previous solution of a similar problem Gondzio and Grothey [2008]. An
advanced starting point which is close to the boundary of the feasible region, as
is typical, might lead to blocking of the search direction. Therefore, it is required
that the initial point is sufficiently inside the variable bounds. Note that if the ini-

99 8.2 OPF problem solution

1 1.5 2 2.5 3
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

α

p m
(α
)

Flat start
Matpower case data
Power flow solution

(a) Overall time

1 2 3 4 5 6
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

α

p m
(α
)

Flat start
Matpower case data
Power flow solution

(b) Number of iterations

Figure 8.1. Performance profiles for the three initial guesses using BELTISTOS-
OPF considering all benchmarks.

tial point does not strictly satisfy the variable bound constraints, IPOPT enforces
these by shifting the corresponding entries of the initial guess that do not satisfy
this criterion in order to be sufficiently inside the bounds. This is necessary in
order to be able to evaluate the logarithmic barrier function (4.6), which is de-
fined only for the points satisfying the bound constraints. On the other hand, the
convergence from poor starting points is achieved by penalty merit functions to
enforce progress toward the solution Wächter and Biegler [2006]. However, a
wise choice of the initial guess may significantly reduce the amount of iterations
to convergence. In context of the OPF problems, several heuristics may be de-
vised for selection of an initial point, based on setting the variables inside their
bounds or by selecting such point that satisfies the nonlinear equality constraints.
Several strategies of the primal variables initialization are discussed next.

The computationally simplest strategy is to set bounded control variables to
the midpoint of their allowed range, or close to a bound if bounded only from
one side, i.e. so called “flat start”. This option is the default in MATPOWER and
it does not satisfy any nonlinear constraints. The option “MATPOWER case data”
uses the values of variables specified in the input MATPOWER case and the third
option “power-flow solution” is the solution of the power flow equations for the
given case initialized from the “MATPOWER case data”, which guarantees that the
nonlinear power balance constraints are satisfied.

In order to evaluate the influence of the initial guess, the OPF problems are
solved from three different initial guesses currently provided by the MATPOWER
option opf.start. The performance profiles for the number of iterations and
overall time of the OPF benchmarks starting from different points are presented
in Figures 8.1a and 8.1b. The default OPF formulation with polar voltage coor-

100 8.2 OPF problem solution

6468rte

6470rte

6495rte

6515rte

9241peg
ase

ACTIV
Sg2

000

ACTIV
Sg1

0k

13659peg
ase

ACTIV
Sg2

5k

ACTIV
Sg7

0k

ca
se2

1k

ca
se4

2k

ca
se9

9k

ca
se1

93k

0
10
20
30
40
50
60
70
80

N
um

be
r

of
It

er
at

io
ns

Flat start Power flow MATPOWER case data

Figure 8.2. BELTISTOS-OPF iterations for each initial guess

Table 8.2. Number of solved benchmarks out of twenty-five test cases for
different starting points. Gray background indicates use of the PARDISO
solver.

Optimizer Flat start MATPOWER case data Power flow solution

MIPS-MATLAB’\’ 16 23 23
MIPS-PARDISO 16 23 24
IPOPT-PARDISO 23 25 25
IPOPT-MA57 21 22 21
BELTISTOS-OPF 25 25 25
FMINCON 18 21 20
KNITRO 20 23 24

dinates and power balance equations was considered. The results in Figures 8.1
and 8.2 were obtained using BELTISTOS-OPF, since it was the most successful
optimizer, as demonstrated in Table 8.2. The best initial guesses in our set of
benchmark cases were the options “MATPOWER case data” and “power-flow so-
lution”. Both optimizers BELTISTOS-OPF and IPOPT-PARDISO starting from these
initial guesses solved all twenty-five cases requiring fewer iterations on average
than optimizing from the “flat start”. In what follows, the option “MATPOWER
case data” is used in order to avoid the computational overhead of solving the
power flow equations. The option “MATPOWER case data” assumes that the case
is well constructed and contains high-quality data, which might not always be
the case. The power flow solution would be a more appropriate choice in such
situations.

The OPF problems are non-convex and different local minima may be reached
from different starting points. We observed that the relative differences between

101 8.2 OPF problem solution

solutions obtained from different initial guesses or different optimizers were less
than 10−5, see Kardos et al. [2018] for more details.

89pegase
case118

case300

1354pegase

case2383wp

2869pegase

9241pegase

ACTIVSg10k

10

20

30

40

50

60

N
um

be
r

of
It

er
at

io
ns

Flat start Local PF
Local OPF Local SCOPF

Nominal OPF

Figure 8.3. Number of iterations until convergence for different initial guesses.
Considering SCOPF problem with 10 line contingency scenarios.

Similar initial point selection heuristics might be devised for the SCOPF prob-
lem. As demonstrated in Figure 8.3, the number of iterations until convergence
may vary significantly with different starting points. We assume the following
starting point choices: local solutions of the PF equations for each contingency
scenario, solution of the OPF problem for the nominal case, solution of local OPF
for each contingency scenario, and finally, the solution of local SCOPF problems
considering the nominal case and the contingency of the given scenario. The re-
sults in Figure 8.3 indicate, the solution of the nominal OPF problem represents
a good trade-off between the complexity and quality of the approximation. It
provides convergence similar to more expensive approximations, such as local
OPF or even local SCOPF with a single contingency, yet being cheaper to com-
pute. The computation of the nominal OPF may be further improved by using
the PF solution as an initial guess for the OPF problem computation and using
relaxed convergence tolerances.

8.2.2 Convergence tolerance

Before proceeding with numerical experiments, the selection of the convergence
tolerance is analyzed. The convergence tests implemented by optimizers vary in
some details, e.g. scaling of the residual errors or type of the norms, making the
user specified tolerance not equivalent amongst the optimizers. Second, various
stopping tolerances were used in previous OPF studies, ranging from 10−3 to
10−8 Castillo and O’Neill [2013]. The selection of the convergence criteria has to

102 8.2 OPF problem solution

consider multiple factors, including required precision of the solution, numerical
issues associated with very tight tolerances and computation time. For very tight
tolerances, the linear systems become very ill-conditioned and the effect of the
round-off error becomes pronounced, thus influencing the numerical stability.

10−2 10−3 10−4 10−5 10−6 10−7 10−8 10−9 10−10 10−11 10−12

20

40

60

80

100

120

140

160

Tolerance

Number of Iterations

10−2 10−3 10−4 10−5 10−6 10−7 10−8 10−9 10−10 10−11 10−12

10−12

10−11

10−10

10−9

10−8

10−7

10−6

10−5

10−4

Tolerance

Feasibility Error

case1951rte case2383wp case2736sp case2737sop case2746wop case2746wp

case2868rte case2869pegase case3012wp case3120sp case3375wp case6468rte

case6470rte case6495rte case6515rte case9241pegase caseACTIVSg2000 caseACTIVSg10k

case13659pegase

Figure 8.4. Convergence for different tolerances - IPOPT (considering also the
restoration phase).

10−2 10−3 10−4 10−5 10−6 10−7 10−8 10−9 10−10 10−11 10−12

20

40

60

80

100

120

140

160

Tolerance

Number of Iterations

10−2 10−3 10−4 10−5 10−6 10−7 10−8 10−9 10−10 10−11 10−12

10−12

10−11

10−10

10−9

10−8

10−7

10−6

10−5

10−4

Tolerance

Feasibility Error

Figure 8.5. Convergence for different tolerances - BELTISTOS-OPF.

Many optimizers implement “acceptable” termination criteria, such that it
will terminate before the desired convergence tolerance is met (e.g. there is no
improvement in the objective function or feasibility norms over some specified
number of iterations or the step becomes too small). This is useful in cases where
the algorithm might not be able to achieve the desired level of accuracy. For the

103 8.2 OPF problem solution

10−2 10−3 10−4 10−5 10−6 10−7 10−8 10−9 10−10 10−11 10−12

20

40

60

80

100

120

140

160

Tolerance

Number of Iterations

10−2 10−3 10−4 10−5 10−6 10−7 10−8 10−9 10−10 10−11 10−12
10−13

10−12

10−11

10−10

10−9

10−8

10−7

10−6

10−5

10−4

Tolerance

Feasibility Error

case1951rte case2383wp case2736sp case2737sop case2746wop case2746wp

case2868rte case2869pegase case3012wp case3120sp case3375wp case6468rte

case6470rte case6495rte case6515rte case9241pegase caseACTIVSg2000 caseACTIVSg10k

case13659pegase

Figure 8.6. Convergence for different tolerances - KNITRO.

10−2 10−3 10−4 10−5 10−6 10−7 10−8 10−9 10−10 10−11 10−12

0

20

40

60

80

100

120

140

160

Tolerance

Number of Iterations

10−2 10−3 10−4 10−5 10−6 10−7 10−8 10−9 10−10 10−11 10−12

10−15
10−14
10−13
10−12
10−11
10−10
10−9
10−8
10−7
10−6
10−5
10−4

Tolerance

Feasibility Error

Figure 8.7. Convergence for different tolerances - MIPS.

10−2 10−3 10−4 10−5 10−6 10−7 10−8 10−9 10−10 10−11 10−12
0

20

40

60

80

100

120

140

160

Tolerance

Number of Iterations

10−2 10−3 10−4 10−5 10−6 10−7 10−8 10−9 10−10 10−11 10−12

10−12
10−11
10−10
10−9
10−8
10−7
10−6

10−5
10−4
10−3
10−2

Tolerance

Feasibility Error

Figure 8.8. Convergence for different tolerances - FMINCON.

104 8.2 OPF problem solution

purpose of this section, such heuristics were disabled and optimizers are allowed
to terminate only if the desired tolerance was reached. We observed that there is
no significant improvement of the objective function value for tight tolerances.
The absolute and relative errors of the objective function value for tolerances
10−4 and 10−9 are less than order of 10−3 ($/MWh) and 10−9, respectively. In
several cases, the objective function slightly increased for tighter tolerances, in
similar orders of magnitude. The constraint violations (feasibility error) and
number of iterations for different tolerances and optimizers are shown in Fig-
ures 8.4–8.8. The figures illustrate that even for a modest tolerance 10−4 the
constraint violations are usually much smaller and in most cases tightening the
tolerance involves only a few additional iterations in order of 1. For tight toler-
ances below 10−9, optimizers start to be numerically unstable and the number of
iterations starts to significantly grow or optimizers terminate with an error mes-
sage. We thus use a modest value of the tolerance to focus on the performance
of the optimizer, and isolate and issues related to the numerical errors.

8.2.3 OPF formulations

As introduced in chapter 3, different representations of the complex voltage
variables or of the nodal balance equations can be used to formulate the OPF
problem. Different OPF formulations will result in different constraint func-
tions and feasible regions and consequently different constraint Jacobians with
various properties, sparsity structure, and conditioning and which might pose
distinct challenges to the optimizers and influence the their convergence. The
corresponding MATPOWER options are opf.v_cartesian, specifying whether to
use polar or rectangular voltage coordinates, and option opf.current_balance,
which selects either a current or power balance formulation for AC OPF. Table 8.3
provides a summary of the optimizer success rate of solving different OPF for-
mulations on the set of twentyfive benchmark cases. As can be seen in the table,
robust optimizers such as BELTISTOS-OPF or IPOPT-MA57 (which, however, failed
to solve most of the large-scale benchmarks) are marginally influenced by the
choice of the formulation, while for the rest of the solvers the choice of the for-
mulation can significantly influence whether the case can be successfully solved.
While KNITRO and FMINCON perform better with rectangular voltage formula-
tion, IPOPT-PARDISO and MIPS provide better success rate for power-based nodal
equations.

The performance profiles for various OPF formulations presented in Figure 8.9
were obtained using the BELTISTOS-OPF optimizer, which successfully solved all
benchmark cases with all possible OPF formulations. There is a significant dif-

105 8.2 OPF problem solution

Table 8.3. Number of solved benchmarks out of twenty-five test cases for
different OPF formulations. Gray background indicates usage of PARDISO.

Optimizer Polar Power Polar Current Rectangular Power Rectangular Current

MIPS-MATLAB’\’ 23 21 21 20
MIPS-PARDISO 23 20 23 17
IPOPT-PARDISO 25 20 25 22
IPOPT-MA57 22 21 21 21
BELTISTOS-OPF 25 25 25 25
FMINCON 21 18 25 25
KNITRO 23 24 25 24

ference between the polar and rectangular voltage formulations in terms of the
overall time required until convergence. The polar formulations were observed
to lead up to twice as fast solution times when compared to the rectangular volt-
age formulations.

1 1.2 1.4 1.6 1.8 2
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

α

p m
(α
)

Polar-Power
Rect-Power
Polar-Current
Rect-Current

(a) Overall time

1 1.5 2 2.5 3
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

α

p m
(α
)

Polar-Power
Rect-Power
Polar-Current
Rect-Current

(b) Number of iterations

Figure 8.9. BELTISTOS-OPF performance profiles for various OPF formula-
tions starting from the MATPOWER case data.

When it comes to the other optimizers, IPOPT-MA57 also displays slightly
slower convergence with rectangular voltage formulation for small and medium-
sized benchmarks. Neither OPF formulation was solved for large-scale bench-
marks case21k–case193k due to prohibitive time requirements. IPOPT-PARDISO
does not seem to be influenced by voltage formulation, although it fails for large-
scale benchmarks using current nodal balance equations, as can be observed in
Figure 8.10a. The MIPS solver performs better with polar voltage coordinates,
while the opposite is true for FMINCON and KNITRO, which successfully converge
for more benchmarks with rectangular voltage coordinates, as presented in Ta-

106 8.2 OPF problem solution

ble 8.3. There is also a non-negligible influence of the nodal balance formulation.
All optimizers prefer power based formulation of the nodal balance equations.
The power balance was observed to be more robust and exhibit faster solution
times in conjunction with both polar and rectangular voltage formulations.

ACTIVSg25k
ACTIVSg70k

case21k
case42k

case99k
case193k

0

20

40

60

80

100

120

N
um

be
r

of
It

er
at

io
ns

(a) IPOPT-PARDISO

ACTIVSg25k
ACTIVSg70k

case21k
case42k

case99k
case193k

0

20

40

60

80

100

120

N
um

be
r

of
It

er
at

io
ns

Polar-Power Rect-Power

Polar-Current Rect-Current

(b) BELTISTOS-OPF

Figure 8.10. Optimizers’ iteration count for large-scale benchmarks for various
OPF formulations, starting from MATPOWER case data.

8.2.4 Optimization software

In this section, an emphasis is put on robustness, performance, and memory
efficiency of the entire optimization software set on the set of large-scale bench-
marks from Table 2.1. The “MATPOWER case data” has been used as an initial
guess due to the superior performance as it was demonstrated in section 8.2.3.
The OPF formulation with polar voltage and nodal power balance constraints
was used for this set of benchmarks. The memory usage was collected using
the Linux utility time, which reports maximum resident set size of the process
during its lifetime. Table 8.6 shows the summary of timing results for the large-
scale test cases and all optimizers. An extensive list of all results can be found
in Kardos et al. [2018]. The performance profiles for each of the three aspects
for the large-scale benchmarks for overall timing, iteration count, and memory
consumption are shown in Figures 8.11, 8.12, and 8.13, respectively. The perfor-
mance profiles clearly indicate that the BELTISTOS-OPF, IPOPT-PARDISO and the
KNITRO optimizers converged to the optimal solution for all large-scale bench-
mark cases, followed by MIPS-PARDISO and FMINCON, which numerically failed
for a single case. IPOPT-MA57 was not competitive, both in terms of robustness
and performance, failing for the three large-scale cases and being slower up to a
factor of three hundred or more, as can be seen in Table 8.6.

107 8.2 OPF problem solution

1 5 10 15 20 25 30 35 40
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

α

p m
(α
)

MIPS-’\’ MIPS-PARDISO IPOPT-PARDISO IPOPT-MA57 BELTISTOS-OPF FMINCON KNITRO

Figure 8.11. Overall time profile for large-scale benchmarks.

1 2 3 4 5 6 7 8 9
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

α

p m
(α
)

MIPS-’\’ MIPS-PARDISO IPOPT-PARDISO IPOPT-MA57 BELTISTOS-OPF FMINCON KNITRO

Figure 8.12. Iterations profile for large-scale benchmarks.

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 2.1 2.2
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

α

p m
(α
)

MIPS-’\’ MIPS-PARDISO IPOPT-PARDISO IPOPT-MA57 BELTISTOS-OPF FMINCON KNITRO

Figure 8.13. Memory efficiency profile for large-scale benchmarks.

Figure 8.11 reveals that BELTISTOS-OPF was the fastest optimizer for all large-
scale cases. MIPS-PARDISO was slower by a factor of 4 when compared to the
BELTISTOS-OPF, while KNITRO and IPOPT-PARDISO were up to 5.5 times slower.
MIPS-’\’ and FMINCON were slower up to a factor of 35 or 40, respectively. Con-
cerning the number of iterations, BELTISTOS-OPF is also the best optimizer, while

108 8.2 OPF problem solution

IPOPT-PARDISO and MIPS-PARDISO perform up to 2.5 times more iterations. Re-
garding the memory requirements, MIPS-PARDISO is the most efficient optimizer
for roughly 50% of the benchmark cases, very closely followed by BELTISTOS-OPF
and IPOPT-PARDISO. MIPS with the default linear solver required up to 7 times
more memory while solving the largest benchmark.

0 50 100 150 200

0

50

100

150

200

nz = 1583
0 50 100 150 200

0

50

100

150

200

nz = 1583
0 20 40 60 80 100 120 140 160

0

20

40

60

80

100

120

140

160

nz = 1421

Figure 8.14. Structure of the SCOPF KKT system (4.16) with two contin-
gencies, reordered according to (4.19), and, finally, the reduced KKT with the
slacks removed (4.21).

8.2.5 Solution of the KKT linear system

Since a sparse linear system is solved at each iteration of an IP solver, the ro-
bustness and performance of the optimizer heavily depends on the sparse di-
rect solver used for the computation of the search direction. The linear system
solutions with high accuracy provide better search directions and thus help to
accelerate convergence. Similarly, the efficient linear system solution strategy
eliminates the major computational bottleneck of the IP method for large-scale
problems.

The OPF problems and the associated linear systems are the ’simplest’ among
the three problems discussed in this document. Direct sparse solvers, based on
the black-box solution strategy, may be used, to solve the problem. Still, signifi-
cant differences are observed between the linear solvers.

The difference between the MIPS performance using the default backslash
solver ’\’ compared to the PARDISO solver is visible for the large-scale cases in
Table 8.4, where PARDISO outperforms the MATLAB backslash operator by more
than a factor of 20. PARDISO also reduces the number of iterations until conver-
gence for some cases due to special handling of ill-conditioned systems and thus

109 8.3 SCOPF problem solution

Table 8.4. Overall time (s) of MIPS with different linear solvers.

Polar-Power Polar-Current Rectangular-Power Rectangular-Current

Benchmark PARDISO ’\’ PARDISO ’\’ PARDISO ’\’ PARDISO ’\’

case1951rte 6.6 5.6 4.1 3.0 8.4 11.7 58.0 41.1
case2383wp 5.9 4.7 5.4 4.3 6.1 4.6 8.2 6.7
case2736sp 6.7 5.2 5.2 3.8 6.4 4.9 9.8 7.7
case2737sop 6.1 5.0 5.3 4.0 5.5 4.2 6.0 4.8
case2746wop 6.8 5.5 4.9 3.9 5.4 4.1 6.1 4.7
case2746wp 7.0 5.9 5.9 4.3 6.7 4.8 7.0 4.9
case2868rte 6.3 4.8 — — 6.9 5.0 — 29.2
case2869pegase 22.9 26.9 17.2 14.3 18.8 17.0 — —
case3012wp 7.2 6.3 6.1 5.5 7.2 6.3 7.6 6.6
case3120sp 27.9 30.0 10.3 9.3 12.4 11.4 11.8 10.3
case3375wp 8.3 7.6 8.6 7.7 8.6 8.0 9.8 9.0
case6468rte 19.3 17.5 27.7 88.1 — — 102.7 99.8
case6470rte 20.8 19.5 — — 107.5 — — —
case6495rte 33.0 29.8 42.3 43.0 95.0 73.4 — 73.4
case6515rte — 30.0 24.1 20.6 — — 80.6 68.6
case9241pegase 57.6 50.5 89.4 104.0 88.0 106.7 — —
caseACTIVSg2000 6.1 6.0 16.6 16.4 4.9 4.9 15.5 16.2
caseACTIVSg10k 36.1 32.1 58.6 53.1 59.4 65.4 76.6 68.5
case13659pegase 42.2 37.2 — — 115.6 — — —
ACTIVSg25k 119.0 109.4 118.4 104.7 164.4 156.7 208.9 192.0
ACTIVSg70k — — 627.7 1,075.5 879.1 1,079.4 1,476.0 1,322.4
case21k 140.6 171.0 126.7 142.3 141.6 183.9 142.3 171.0
case42k 518.2 2,639.5 — 2,672.0 438.3 2,897.3 541.5 2,601.0
case99k 1,612.3 25,936.4 4,077.3 18,011.5 1,524.2 19,458.4 — 18,472.1
case193k 4,484.0 — — — 3,530.6 81,198.0 — —

more accurate descent directions are provided to the optimizer. A similar effect
has been observed when using another optimizer such as IPOPT with two differ-
ent linear solvers e.g. HSL MA57 and PARDISO, shown in Table 8.5. The MA57
was shown to have the best performance among the HSL solvers on an extensive
set of test problems in Gould and Scott [2004]. Using IPOPT with PARDISO results
in feasible computation time and successful convergence also for the large-scale
networks, as summarized in the Table 8.6.

8.3 SCOPF problem solution

Solution of the KKT system is the most expensive part of the optimization process
for large-scale optimal control problems in terms of computational work. Using a
general direct sparse solver, that does not take into account the matrix structure,
the solution of the KKT system consumes up to 99.99% of the overall run time,
as demonstrated previously in Figure 7.1. The other contributions from function
evaluations (e.g., objective, Hessian of Lagrangian, or Jacobian of constraints),

110 8.3 SCOPF problem solution

Table 8.5. Overall time (s) of IPOPT with different linear solvers.

Polar-Power Polar-Current Rectangular-Power Rectangular-Current

Benchmark PARDISO MA57 PARDISO MA57 PARDISO MA57 PARDISO MA57

case1951rte 7.16 4.77 3.62 2.61 5.31 2.56 3.60 2.58
case2383wp 9.66 5.20 5.97 3.90 12.81 4.21 13.95 3.95
case2736sp 6.54 3.28 4.00 2.15 3.61 2.54 3.75 2.28
case2737sop 6.09 3.84 3.94 1.80 3.77 2.25 4.03 2.20
case2746wop 5.43 3.08 3.32 1.50 2.89 3.08 3.16 2.96
case2746wp 7.46 3.21 3.59 1.67 4.20 2.90 3.70 2.87
case2868rte 9.21 4.48 16.97 4.38 12.08 4.21 13.62 4.05
case2869pegase 10.37 4.94 9.10 3.35 12.65 4.76 32.17 3.83
case3012wp 12.95 5.67 6.57 3.97 15.04 4.57 8.92 4.66
case3120sp 10.83 5.53 9.78 4.14 16.84 5.96 19.69 4.92
case3375wp 13.06 6.28 — 4.39 12.42 4.67 205.81 4.52
case6468rte 12.23 7.91 8.91 5.26 11.52 9.08 10.36 11.37
case6470rte 41.56 10.96 50.25 6.92 36.67 10.66 54.12 11.42
case6495rte 21.73 12.41 10.39 8.75 15.52 184.76 15.51 162.49
case6515rte 16.85 11.16 11.67 8.10 12.15 118.26 11.39 51.35
case9241pegase 45.79 21.78 98.38 14.05 49.23 21.55 179.06 16.33
case_ACTIVSg2000 7.45 3.70 4.66 2.60 5.69 3.25 5.22 3.05
case_ACTIVSg10k 26.64 16.21 19.06 11.60 18.60 12.71 17.46 14.63
case_ACTIVSg25k 83.68 62.12 63.04 33.39 67.87 49.59 94.37 51.31
case13659pegase 266.01 30.32 259.19 15.69 400.67 27.97 559.03 22.44
case_ACTIVSg70k 491.83 198.12 309.33 149.67 358.52 330.07 483.38 292.97
case21k 262.59 — — — 166.43 — — —
case42k 747.87 75,386.85 — — 621.89 — — —
case99k 3,101.47 — — — 3,080.08 — — —
case193k 10,105.87 — — — 12,489.93 — — —

Table 8.6. Overall time (s) for large-scale benchmarks (Polar-Power form.)

Benchmark MIPS-’\’ MIPS-PARDISO IPOPT-PARDISO IPOPT-MA57 BELT.-OPF FMINCON KNITRO

ACTIVSg25k 109.4 119.0 83.7 62.1 30.3 210.1 50.2
ACTIVSg70k — — 491.8 198.1 111.1 786.1 167.6
case21k 171.0 140.6 262.6 — 81.4 — 219.8
case42k 2,639.5 518.2 747.9 75,386.9 251.1 8,428.3 1,162.0
case99k 25,936.4 1,612.3 3,101.5 — 782.4 20,554.6 2,558.9
case193k — 4,484.0 10,105.9 — 1,854.4 70,150.9 2,654.4

vector updates, or convergence criterion evaluation inside IP method, are orders
of magnitude smaller. Reduction in the KKT solution time therefore significantly
improves the overall run time.

8.3.1 Impact of the slack variables elimination

Figure 8.14 illustrates the symmetric KKT structure of the SCOPF problem for
a simple power grid, together with the reduced variant, where the slack vari-
ables are eliminated according to the discussion in section 5.2.1. The elimina-

111 8.3 SCOPF problem solution

PEGASE1k

2737sop

PEGASE2k

3375wp

6495rte
6515rte

PEGASE9k

ACTIVSg10k

5
10
15
20
25
30

Im
pr

ov
em

en
t

(%
)

Memory requirements Solution time

Figure 8.15. Improvement rate considering elimination of the slack variables.

tion threshold τ = 10−8 was used. Realistic power grids are significantly larger
and contain proportionally more nonzero entries, but the structure remains very
similar.

The expected benefits of solving the reduced KKT system compared to the
original system are savings both in terms of memory requirements for storing
the sparse L factor of the LDLᵀ factorization of the symmetric indefinite system,
and possibly faster factorization and solution times due to a smaller number of
required floating point operations. The numerical evaluation of the benefits of
solving the reduced system are summarized in Figure 8.15.

The elimination of the slack variables from the KKT system reduces its di-
mension by approximately 30% with 13% fewer nonzeros in the KKT system
and up to 12% fewer nonzeros in the L factor, resulting in up to 28% memory
savings for each of the diagonal blocks. The majority of the time in per-block
computation is spent in factorization of the augmented matrix (7.19). Factoriza-
tion time of the reduced system is improved up to 25% and the overall time of
the local computation in Algorithm 1 (steps 2, 8, and 16) is improved by up to
24%. Considering that the assembly of the local SC is the main bottleneck and
available memory on the compute nodes is limited, the achieved memory sav-
ings and time gain is significant, leading to more efficient and scalable code. We
note that the benefit of solving the reduced system strongly depends on the qual-
ity of fill-in minimization reordering of the linear system performed during the
factorization phase of the Ai blocks. For matrices which are well-conditioned,
the fill-in of the elimination is similar for both the standard KKT system (4.16)
and its reduced variant (4.21). This was observed for the PEGASE 13,659 bus
case. However, ill-conditioned matrices will have a much better fill-in reduction
and higher speedups between 20% - 30% were observed for all other networks.
Please note that matrices from IP methods are typically very ill-conditioned.

The comparison of different solution algorithms is not valid unless all of them

112 8.3 SCOPF problem solution

0 10 20 30 40 50 60 70 80 90 100
10−11

10−10

10−9

10−8

10−7

10−6

Iteration Number

R
el

at
iv

e
R

es
id

ua
l

IPOPT BELTISTOS-SC w/ elimination 10−8 BELTISTOS-SC w/o elimination

Figure 8.16. Residuals of the KKT systems for PEGASE1354-100 case using
different solution approaches – the IPOPT solver and the BELTISTOS-SC-aug
with and without elimination of the slack variables.

make the optimization algorithm converge to the same optimal solution. The
Schur complement based solution strategy from Algorithm 1 is just a different
way of solving the KKT linear system. Thus theoretically, it should not change
the convergence properties of the IP method. Nevertheless, due to the floating
point arithmetics, the round-off errors may introduce significant contribution so
that at some point the IP software package used with a different linear system
solution strategy might take different trajectory, but it was observed only for
very ill-conditioned linear system. The residuals for the KKT system solutions
arising in PEGASE1354-100 benchmark are shown in Figure 8.16. In order to
improve robustness of the implementation, it is very important to use the iterative
refinement in order to obtain highly accurate solutions. In IPOPT algorithm, the
iterative refinement (IR) is computed for the original, non-reduced, KKT system
(4.15). The Figure 8.16 presents residual of the first solution only, since the
number of IR might vary between the two approaches.

Figure 8.17 shows the convergence trajectory of the objective function and
infeasibility norms for the PEGASE1354-100 benchmark. Similar information
is shown for IEEE188-159 benchmark in Figure 8.18. Both figures are demon-
strating the convergence for the direct factorization approach, as implemented
in PARDISO linear solver, and distributed BELTISTOS-SC-4-aug approach (using 4
parallel processes). The two approaches take the same trajectories during the op-
timization process and converge to the same solution. Note the sudden changes
in the infeasibility norms in Figure 8.17 after iteration 60. These are the result of
switching from one barrier sub-problem to the next one with decreased barrier

113 8.3 SCOPF problem solution

0 10 20 30 40 50 60 70 80 90

7.40

7.41

7.42

·104

IPM Iteration number

O
bj

ec
ti

ve
Va

lu
e

($
/h

)

10−5

10−3

10−1

101

103

Pr
im

al
/

D
ua

lI
nf

ea
si

bi
lit

y

Objective IPOPT Objective BELTISTOS-SC Primal Inf. IPOPT Primal Inf. BELTISTOS-SC

Dual Inf. IPOPT Dual Inf. BELTISTOS-SC

Figure 8.17. Convergence trajectories for PEGASE1354-100 benchmark over
the IP iterations (both approaches overlap).

0 5 10 15 20 25 30 35 40 45 50 55

1.315

1.320

1.325

·105

Iteration number

O
bj

ec
ti

ve
Va

lu
e

($
/h

)

10−5

10−3

10−1

101

103

Pr
im

al
/

D
ua

lI
nf

ea
si

bi
lit

y

Objective IPOPT Objective BELTISTOS-SC Primal Inf. IPOPT Primal Inf. BELTISTOS-SC

Dual Inf. IPOPT Dual Inf. BELTISTOS-SC

Figure 8.18. Convergence trajectories for IEEE118-159 benchmark over the IP
iterations (both approaches overlap).

parameter µ. In both figures it is interesting to observe that even though the op-
timization problem is formulated as a minimization, the objective function value
is actually increasing in some iterations. This is a result of the fact that the opti-
mization process is driven by satisfying the constraints with higher priority than
improving the objective function value.

Figure 8.19 demonstrates that by using the parallel BELTISTOS-SC solver with
an increasing number of processes, the KKT solution time decreases and thus the
overall run-time of the optimization is reduced accordingly. The performance
of the BELTISTOS-SC-std approach is shown in Figure 8.19a. The single-process
performance is several times slower than the IPOPT approach, but with increas-
ing number of parallel processes the overall time scales down proportionally and
outperforms the IPOPT approach. On the other hand, the single-process perfor-
mance of the BELTISTOS-SC-aug approach, shown in Figure 8.19b, is almost two

114 8.3 SCOPF problem solution

IPOPT
1-std 2-std 4-std 8-std 16-std 32-std

101

102

103

104

105

Ti
m

e
(s

)

Overall time KKT Solve Func eval Misc

(a) Standard “backsolve”

IPOPT
1-aug

2-aug
4-aug

8-aug
16-aug

32-aug
101

102

103

104

105

Ti
m

e
(s

)

Overall time KKT Solve Func eval Misc

(b) Incomplete factorization approach

Figure 8.19. Overview of the IP components for PEGASE9241-256 benchmark,
where the IPOPT solver is compared to the parallel BELTISTOS-SC-N-std and
BELTISTOS-SC-N-aug algorithms.

orders of magnitude faster than the IPOPT approach and it is possible to further
decrease the solution time with additional parallel processes.

Depending on the problem size, there is an upper limit to the number of par-
allel processes that are able to efficiently utilize available computing resources,
since there are serial components in the IP algorithm. Such a situation can be ob-
served in Figure 8.19b, where the function evaluations and other IPOPT internal
computations became as significant as the solution phase for 8 and more parallel
processes. The effect of parallelization after this point will be deteriorated by
these serial components. Another component influencing the parallel efficiency
is assembly of the KKT system, which is performed solely at the master process
and individual blocks need to be distributed to the available processes. The distri-
bution step involves inherent interprocess communication and thus deteriorates
the performance with increasing number of processes. The communication over-
head becomes significant, especially if the workload per node is small, e.g., only
a couple of scenarios per node.

8.3.2 GPU acceleration

The bottleneck of the parallel Schur algorithm is the dense linear algebra associ-
ated with the global part of the solution in (7.12), which is solved exclusively by
a single process. The dense Schur system needs to be factorized and a forward-
backward substitution needs to be performed with the computed factors, corre-
sponding to steps 12 and 13 in Algorithm 1, respectively. GPU accelerated cu-
SolveDN library for dense linear systems is used to reduce the time of this serial
component of the algorithm in order to increase parallel efficiency and further

115 8.3 SCOPF problem solution

decrease overall time to solution. Table 8.7 summarizes the dense linear algebra

Table 8.7. Solution and memory transfer times of the dense Schur complement
systems of size N .

CPU GPU

Benchmark N Solution (ms) Solution (ms) Memory (ms) Speedup

PEGASE1354 518 19.7 13.1 0.8 1.41
PEGASE2869 1,018 131.1 21.2 1.4 5.80
PEGASE9241 2,888 416.3 50.7 7.4 7.16
ACTIVSg10k 3,663 925.9 71.5 11.3 11.18
PEGASE13659 8,182 8,641.0 231.0 54.0 30.33

0 500 1,000 1,500 2,000 2,500 3,000 3,500 4,000 4,500
0
5

10
15
20
25
30
35

Number of contingency scenarios

M
em

or
y

(G
B

) PEGASE1354 PEGASE9241
PEGASE13659

Figure 8.20. Memory required for storing the upper-triangular KKT system.

solution time, using the GPU accelerated library compared to the Intel MKL LA-
PACK implementation for CPU. N denotes size of the dense Schur complement,
and the GPU related memory transfers are presented separately from the solution
time. As a remark, the size of the dense Schur system is constant, independent
on the number of considered contingencies for each grid. We observed speedup
of up to 30× using GPU for the largest grid, considering also the penalty of the
memory transfers between CPU and GPU. The GPU acceleration is vital, since
the improved sparse linear algebra reduces computational time to such extent
that the dense computation times start to present significant contribution to the
overall run time, especially for the large-scale power networks.

8.3.3 Performance case study

Strong scaling efficiency of the BELTISTOS-SC-aug solver is measured on “Piz
Daint” computer, using an increasing number of compute cores and distributed

116 8.3 SCOPF problem solution

memory compute nodes. The number of considered contingency scenarios was

Table 8.8. Properties of the large-scale benchmarks.

Benchmark N c Variables Constraints KKT size

PEGASE1354 2,048 5.55 · 106 1.37 · 107 2.74 · 107

PEGASE1354 4,096 1.11 · 107 2.74 · 107 5.48 · 107

PEGASE9241 256 4.73 · 106 1.29 · 107 2.47 · 107

PEGASE9241 512 9.47 · 106 2.59 · 107 5.18 · 107

PEGASE13659 128 3.51 · 106 8.74 · 106 1.75 · 107

selected such that the problem does not exceed the memory limit of 64 GB avail-
able at each compute node since the current implementation requires assembly of
the linear system on a single node with subsequent distribution of its parts to the
remaining processes. This memory limit turned out to be very restrictive since it
did not allow us to solve arbitrarily large problems and demonstrate scaling up to
very large number of compute cores. The largest instance of the solved problem
contained up to 1.11·107 variables and 2.74·107 constraints, resulting in the KKT
system of size 5.48 · 107. The properties of the large-scale benchmark problems
are summarized in Table 8.8. Number of considered contingencies Nc, overall
number of variables, constraints and size of the resulting KKT system are pre-
sented. Memory requirements for storing the symmetric upper-triangular part of
the KKT system for the benchmark cases with growing number of contingencies
are illustrated in Figure 8.20.

Figure 8.21 shows the average wall time of the individual phases of the Algo-
rithm 1, indicating also the ideal strong scaling. The algorithmic phases shown
in the Figure are: the initialization phase (init), assembly of the Schur comple-
ment in steps 2–6 (SC Assembly), GPU accelerated Schur complement solution in
steps 12–13 (GPU Computation), and solutions of the local parts of the system in
steps 14–16 (Local Solve). The benchmarks were run with a single MPI process
per node and each process contained 16 threads.

The BELTISTOS-SC-aug approach using a single process outperforms the se-
quential direct factorization by a factor of up to 40× and 270× for the two bench-
marks, respectively. The observed speedup increased up to 500× and 4200×, re-
spectively, with an increasing number of distributed memory nodes. The signifi-
cant speedup difference between the two benchmark cases may be attributed to
nonsatisfactory performance of the serial direct factorization for the PEGASE9241-

117 8.3 SCOPF problem solution

512 benchmark due to extensive fill-in. Although both KKT systems have similar
size and number of nonzero entries, there is a factor of 13× difference between
the factorization time of the two. The speedups are expected to grow signifi-
cantly for larger problems, but due to the restrictive memory at the “Piz Daint”
machine, it is not possible to demonstrate. The BELTISTOS-SC-aug solution time
scales reasonably up to 512 cores at 32 compute nodes, which in terms of work-
load translates to 16 scenarios per node of PEGASE9241 or 128 scenarios per
node of PEGASE1354 benchmark. At this point, the initialization phase requires
approximately the same time as the most expensive part of the algorithm, which
is the computation of the local contributions to the Schur complement. Thus, the
initialization phase is the inherent bottleneck of this approach and determines
the scalability limits. The acceleration and efficiency of the structure-exploiting
algorithm stems from the reduced complexity associated with the factorization
of the smaller sparse diagonal blocks instead of the original SCOPF KKT sys-
tem (4.16) or its reduced variant (4.21) after it was permuted to the arrowhead
structure (7.12). For sufficiently large power grids, however, the dense Schur
complement system might become very large, and dominate the overall process-
ing time in steps 12 and 13. Hardware accelerators such as GPUSs might be
deployed to address the computational complexity of the dense linear algebra.
Otherwise, the dimensions of the dense systems remain feasible for the majority
of power grids, since the dimensions depend only on the power grid properties,
not on the number of contingency scenarios.

The implementation of fully distributed and parallel IP framework was not
attempted, since this was accomplished before, e.g. by PIPS Petra [2014]; Chiang
et al. [2014]. The purpose was to show that more efficient implementation is
possible by implementing sparse linear algebra routines which further improve
intra-node performance compared to the previous work. The proposed method
employs one additional Schur complement, chosen so that the sparsity of the
KKT matrix is maintained. Consequently, the size of the linear system decreases
and this allows for memory savings and increased computational performance.

8.3.4 Swiss grid case study

The parallel SCOPF problem solution is demonstrated on a Swiss transmission
system, consisting of 231 generator nodes (out of which 149 are domestic nodes)
and 439 transmission lines (220 and 380 kV). The architecture of the power grid
is illustrated in Figure 8.23. The SC decomposition approach, implemented in
BELTISTOS-SC, is compared to the single core IPOPT in Figure 8.24. Results for
two benchmarks are shown, considering 290 and 4,096 contingency scenarios.

118 8.3 SCOPF problem solution

0

100

200

300

400

500

Sp
ee

du
p

16 32 64 128 256 512 1024

10−1

100

101

102

Compute cores

Ti
m

e
(s

)

Speedup Overall time Initialization

SC Assembly GPU Computation Local Solve

(a) PEGASE1354-4096

0

1,000

2,000

3,000

4,000

Sp
ee

du
p

16 32 64 128 256 512 1024

100

101

102

Compute cores

Ti
m

e
(s

)

Speedup Overall time Initialization

SC Assembly GPU Computation Local Solve

(b) PEGASE9241-512

Figure 8.21. Strong scaling of the parallel BELTISTOS-SC-N-aug-16 solver and
its components on two SCOPF benchmarks. Additionally, the speedup with
respect to the serial IPOPT approach is shown.

0.0

0.5

1.0

Pa
ra

lle
le

ffi
ce

nc
y

16 32 64 128 256 512

10−1

100

Compute cores

Ti
m

e
(s

)

Efficency Overall time Init

SC Assembly GPU Computation Local Solve

(a) PEGASE1354, 128 cont. per node

0.0

0.5

1.0

Pa
ra

lle
le

ffi
ce

nc
y

16 32 64 128 256 512

10−1

100

101

Compute cores

Ti
m

e
(s

)

Efficency Overall time Init

SC Assembly GPU Computation Local Solve

(b) PEGASE9241, 16 cont. per node

Figure 8.22. Weak scaling of the parallel BELTISTOS-SC-N-aug-16 solver and
its components on two SCOPF benchmarks. Additionally, the parallel effi-
ciency is shown.

For the latter benchmark, the single process BELTISTOS-SC speedup with respect
to the IPOPT was 337-fold, while the speedup of the parallel run using 16 nodes
with 256 cores overall was over 3500-fold. Similar speedups were observed as
in the previous pan-European benchmarks.

119 8.4 MPOPF problem solution

Figure 8.23. Switzerland’s transmission system (image Singh et al. [2014]).

500

1,000

1,500

2,000

Sp
ee

du
p

16 32 64 128 256

10−1

100

101

Compute cores

Ti
m

e
(s

)

Speedup Overall time Initialization

SC Assembly GPU Computation Local Solve

(a) Swiss grid — 290 contingencies.

1,000

2,000

3,000

Sp
ee

du
p

16 32 64 128 256

10−1

100

101

102

Compute cores

Ti
m

e
(s

)

Speedup Overall time Initialization

SC Assembly GPU Computation Local Solve

(b) Swiss grid — 4,096 contingencies.

Figure 8.24. Strong scaling of the parallel BELTISTOS-SC-N-aug-16 solver on
two Swiss grid SCOPF benchmarks, including the speedup with respect to the
serial IPOPT approach.

8.4 MPOPF problem solution

The computational complexity of the MPOPF problems grows quickly with in-
creasing number of time periods. The generic optimization packages and black-
box linear solvers become infeasible for large MPOPF problems due to the ex-
tensive memory requirements and solution times. In this section, BELTISTOS-OPF
represents the black-box approaches. It is assumed that other black-box opti-
mization packages will perform in a similar order of magnitude. The structure
exploiting algorithm is represented by BELTISTOS-MP and its memory efficient

120 8.4 MPOPF problem solution

1 50 100 150 200 240
0.2

0.4

0.6

0.8

1

Time n (hours)

Lo
ad

sc
al

in
g

co
ef

fic
ie

nt

Figure 8.25. Hourly load scaling coefficient over a 10 day period.

variant BELTISTOS-MEM. Furthermore, due to the similarity of the BELTISTOS-
OPF and BELTISTOS-MP (underlying data structures, BLAS implementation, lin-
ear solver, etc.), the comparison will most accurately represent the performance
gap between the black-box and the structure exploiting approaches.

The benchmarks in this section focus on performance related to the KKT so-
lution (factorization and solution phases) since these represent the bottleneck of
the IP method for large-scale MPOPF problems. We do not consider common fac-
tors for both IP methods, including computation such as assembly of the MPOPF
case or symbolic factorization routines, which are performed only once, or other
routines (vector updates, evaluations of stopping criteria, etc.) performed in
each IP iteration.

For all simulations, the length of the time period δt is set to one hour. The
load scaling profile, shown in Figure 8.25, was used for all benchmarks to gen-
erate a time dependent load as a multiplicator of the nominal loads given in the
MATPOWER case files. The profile is based on a load pattern for the Swiss canton
Ticino.1 The experiments in this section are run using only a single core.

The benchmark cases include one small and two medium size power grid net-
works, listed in table 8.9. The table illustrates MPOPF problem sizes for different
numbers of time periods and numbers of storage devices.

8.4.1 Number of time periods and storage devices

We investigate the performance of BELTISTOS-OPF and BELTISTOS-MP for increas-
ing problem sizes, changing the number of time periods and storage devices. The
investigation is focused on the bottleneck of the IP method, which is the solution

1Data available at https://www.swissgrid.ch/en/home/operation/grid-data/

generation.html.

https://www.swissgrid.ch/en/home/operation/grid-data/generation.html
https://www.swissgrid.ch/en/home/operation/grid-data/generation.html

121 8.4 MPOPF problem solution

Table 8.9. Selected MPOPF benchmark statistics including the number of time
periods N , storage devices NS, buses nb, generators ng , transmission lines nl ,
and nonlinear equality and inequality constraints, as well as the number of
linear constraints |A(x)|.

Benchmark N NS nb ng nl |x | |g(x)| |h(x)| |A(x)|
case118 600 10 118 54 186 2.30·105 1.42·105 2.23·105 6.0·103

1369pegase 600 10 1,354 260 1,991 1.96·106 1.62·106 2.39·106 6.0·103

2869pegase 600 10 2,869 510 4,582 4.08·106 3.44·106 5.50·106 6.0·103

case118 1,200 10 118 54 186 4.61·105 2.83·105 4.46·105 1.2·104

1369pegase 1,200 10 1,354 260 1,991 3.92·106 3.25·106 4.78·106 1.2·104

2869pegase 1,200 10 2,869 510 4,582 8.16·106 6.89·106 1.10·107 1.2·104

case118 4,800 10 118 54 186 1.84·106 1.13·106 1.79·106 4.8·104

1369pegase 4,800 10 1,354 260 1,991 1.57·107 1.30·107 1.91·107 4.8·104

2869pegase 4,800 10 2,869 510 4,582 3.26·107 2.75·107 4.40·107 4.8·104

of the KKT system in each IP iteration. Since the KKT matrix changes numerically
but not structurally at every iteration it is therefore reasonable to separate the
symbolic factorization phase that determines a sparsity preserving pivot order
from the numerical factorization phase. The symbolic factorization phase only
needs to be done once at the beginning of the IP algorithm. In general, the ma-
trix is indefinite, thus the pivot order strongly depends on the numerical values
of the pivots, preventing the separation of symbolic and numerical factorization.
However the augmented system matrix can be transformed into a quasi-definite
matrix by use of a diagonal regularization Wächter and Biegler [2006], such that
negligibly small terms are used for all acceptable pivots and the stronger regular-
ization terms are used whenever a dangerously small pivot candidate appears.
The separation of the symbolic factorization phase is thus valid.

The average time of the KKT system solution, consisting of the numerical
factorization and forward-backward substitutions (excluding the symbolic fac-
torization) is shown in Figure 8.26 for increasing number of time periods. Dif-
ferent power grids are shown, each containing ten storage devices. It is evident
that BELTISTOS-MP outperforms the black-box solution approach implemented
by BELTISTOS-OPF, providing orders of magnitude faster solution times. Figure
8.26 also provides comparison of the factorization and forward-backward sub-
stitution phases, illustrated by the horizontal line inside the bars (note the loga-
rithmic scale on the y-axis). The factorization phase clearly dominates for the
BELTISTOS-OPF black-box approach, therefore the forward-backward substitution
phase is not visible in the figure. The factorization and the backsubstitution

122 8.4 MPOPF problem solution

600 1200 2400 4800
100

101

102

103

104

105

N

Ti
m

e
(s

)
Case 118

600 1200 2400 4800
100

101

102

103

104

105

N

1354 Pegase

600 1200 2400 4800
100

101

102

103

104

105

N

2869 Pegase

BELTISTOS-OPF BELTISTOS-MP BELTISTOS-MEM

Figure 8.26. Average time per iteration for solving the KKT system. The
horizontal line inside the bars marks the ratio between the factorization and
solution phase (logarithmic scale). Number of storage devices fixed to Ns = 10.

10 30 50 100
100

101

102

103

104

105

Ns

Ti
m

e
(s

)

Case 118

10 30 50 100
100

101

102

103

104

105

Ns

1354 Pegase

10 30 50 100
100

101

102

103

104

105

Ns

2869 Pegase

BELTISTOS-OPF BELTISTOS-MP BELTISTOS-MEM

Figure 8.27. Average time per iteration for solving the KKT system. The
horizontal line inside the bars marks the ratio between the factorization and
solution phase (logarithmic scale). Number of time periods fixed to N = 600.

phases are comparable for the BELTISTOS-MP, with the backsubstitution phase
taking more time for the memory efficient version of BELTISTOS-MP – BELTISTOS-
MEM, since some portion of the computation needs to be recomputed redun-
dantly in order to reduce the memory requirements of the algorithm. However,
the performance benefit is still significant, compared to the standard solution
method. We observe that the performance gap between BELTISTOS-MP and all
other black-box solvers represented by BELTISTOS-OPF increases with increasing
values of N . For N = 4, 800 the BELTISTOS-OPF failed due to exceeding the
memory limit during the symbolic factorization of the matrix. With increasing

123 8.4 MPOPF problem solution

benchmark size, the failure was also observed for N = 2,400 or N = 1,200
due to exceeding the available memory or the time limit. BELTISTOS-MP requires
approximately 1% of the time needed by the best competitor for the smallest
problem, with an increasing performance benefit for larger problems.

600 1200 2400 4800
100

101

102

103

104

105

106

N

M
em

or
y

(M
B

)

Case 118

600 1200 2400 4800
100

101

102

103

104

105

106

N

1354 Pegase

600 1200 2400 4800
100

101

102

103

104

105

106

N

2869 Pegase

BELTISTOS-OPF BELTISTOS-MP BELTISTOS-MEM

Figure 8.28. Memory requirements for solving the KKT system.

Next, the performance of BELTISTOS-MP is investigated for increasing number
of storage devices. This is particularly important for storage sizing and placement
problems, where the optimal size and location of the storage devices are sought
for. The number of storage devices increases the number of coupling variables
and thus the size of the Schur complement, therefore, also posing a bottleneck for
large problems. Figure 8.27 shows the average solution time of the KKT system
for an increasing number of storage devices Ns for different power grids, consid-
ering N = 600 time periods. In the case of the case1354pegase benchmark, the
10-fold increase in the storage devices resulted in an 81 times longer computa-
tion for the BELTISTOS-OPF, while only 3.7 times increase for the computation
time of BELTISTOS-MP.

8.4.2 Memory complexity

The memory efficiency of the solvers is examined in this section. Figure 8.28
illustrates the memory requirements of each solver on the same set of MPOPF
benchmarks as in Figure 8.26. Clearly, the black-box approach has the most ex-
tensive memory requirements, related to storing the factors for the full KKT sys-
tems. The structure-exploiting approach implemented in BELTISTOS-MP reduces
the memory requirements by more than one order of magnitude by use of effi-
cient linear algebra components adopted for the particular structure of the KKT
system. Additionally, BELTISTOS-MP can be executed using the memory saving

124 8.4 MPOPF problem solution

computation model, represented by BELTISTOS-MEM. The memory requirements
can be further reduced by releasing the memory required to store the L factors of
the diagonal blocks, and recomputing the factorization during different phases of
the Schur decomposition algorithm. Obviously, the redundant computations in
the memory efficient algorithm are reflected in increased execution time. How-
ever, the execution time is still orders of magnitude faster than the BELTISTOS-OPF
approach.

102 103 104

10−1

100

101

102

103

104

N

Ti
m

e
(s

)

IPOPT fact.
N3.06

IPOPT solve
N2

BELTISTOS-MP factorize
N1.66

BELTISTOS-MP solve
N1.2

Figure 8.29. Regression analysis for the factorization and solution phases for
both BELTISTOS-OPF and BELTISTOS-MP using case118.

8.4.3 Computational complexity

The complexity of the presented approach can be estimated by examining the
complexity of the factorization steps. The number of nonzeros entries per row
of OPF Hessians is approximately the same with that of Laplacian matrices dis-
cretized by finite element or finite volume methods on 3D meshes. Thus, the LU
factorization for each one of the sparse diagonal blocks of the arrowhead KKT
system, An, for most direct sparse solvers has a complexity of O(ND

2) George
[1973]; Liu [1990].

Consequently the complexity of the factorization for all the sparse diagonal
blocks in Algorithm 1, will be O(NND

2). However, for large N it is dominated
by the factorization of the dense Schur complement matrix S. The LDLᵀ fac-
torization of S has complexity O(n3) for dense symmetric matrices of Rn×n and
the associated back substitution has complexity O(n2), with n = NNS. This is

125 8.4 MPOPF problem solution

the case for each one of the standard methods, such as IPOPT or BELTISTOS-OPF.
Exploiting the fact that the blocks below the main diagonal of each column of S
are identical, which is a consequence of the structure inherent to the linear con-
straints (3.25h), the factorization can be performed in O(n2) operations and the
back substitution in O(n). Since the matrix S has a block structure with N × N
blocks in RNS×NS each, the complexity for the factorization is O(N 2NS

3) and for
the back substitution O(NNS

2); see Rozlovzník et al. [2011] for a detailed dis-
cussion of block dense LDLᵀ algorithms. The reduction in the computational
complexity and storage requirements of the Schur complement system, renders
the overall approach significantly more economical in terms of overall running
time and memory footprint.

In Figure 8.29, similar study on the complexity of the factorization and solu-
tion phases is shown for IPOPT and BELTISTOS-MP. As is expected, the complex-
ity of IPOPT is cubic for the factorization phase and quadratic for the solution
phase. However, although the factorization phase is expected to be quadratic for
BELTISTOS-MP, very large N is needed for the Schur complement factorization to
dominate the sparse factorization of the diagonal blocks An for which the mem-
ory on our workstation is not enough. Up to this point the factorization phase
seems to have an overall complexity 1.6 in terms of running time instead of the
estimated quadratic.

8.4.4 Swiss grid case study

The structure exploiting solution strategy is demonstrated on solutions of MPOPF
problems using the Swiss transmission network. These benchmarks are similar
and complement the SCOPF benchmarks in the previous section. The MPOPF
problem consists of up to 4, 800 time periods and up to 50 installed storage
devices. The load pattern for a ten day period is shown in Figure 8.30. The
BELTISTOS-MP was the best solver in a set of benchmarks, achieving up to three
orders of magnitude faster solution times compared to IPOPT. For larger problems
IPOPT failed due to excessive memory requirements during the factorization of
the KKT matrix. BELTISTOS-MEM achieves similar performance to BELTISTOS-MP,
where the performance gap is most significant for benchmarks with NS = 50 stor-
age devices. The size of the blocks in the dense SC is a function of the number
of storage devices, thus redundant factorization in the memory saving approach
becomes pronounced for the problems with larger utilization of storage devices.
The results are summarized in Figure 8.31.

126 8.4 MPOPF problem solution

100 200 300 400 500 600 700 800 900

2

4

6

8

·106

Time snapshot (15 min)

Po
w

er
(M

W
)

Load Export

Figure 8.30. Swiss grid power load over a 10 day period (year 2014).

600 720 1200 2400 4800
100

101

102

103

104

105

N

Ti
m

e
(s

)

IPOPT
BELTISTOS-MP
BELTISTOS-MEM

(a) Ns = 5

600 720 1200 2400 4800
100

101

102

103

104

105

N

(b) Ns = 20
(c) Ns = 50

600 720 1200 2400 4800
100

101

102

103

104

105

N

Ti
m

e
(s

)

Figure 8.31. Average time per iteration for solving the KKT system of the
Swiss power grid benchmark.

Chapter 9

Conclusions

This thesis was centered on computational methods for accelerating OPF prob-
lems, considering IP solution frameworks. The performed numerical experiments
can be roughly split into two parts, single period OPF, and coupled SCOPF and
MPOPF problems. The OPF problem was examined from multiple perspectives,
starting from the formulation of the problem, analysis of various characteristics
of the solution method, identifying aspects leading to improved performance and
finally, considering linear algebra kernels and its application to modern, paral-
lel multicore architectures with distributed memory hierarchies. The solution of
the large-scale coupled OPF problem, such as SCOPF problem considered in this
work, is possible by using sophisticated algorithmic improvements that achieved
two orders of magnitude or more speedup even on single core, and is further
increased using the parallel and distributed computing architectures.

A general assessment of the nonlinear IP frameworks used for solution of
the OPF problems can be summarized such that all software packages demon-
strate similar performance for small and medium-size networks. For smaller
OPF problems, we find that, in general, there is little difference in terms of re-
liability and efficiency among the leading competitors IPOPT-PARDISO, KNITRO
or BELTISTOS-OPF. It is important to note that the choice of the linear solver
significantly influences the overall optimizer’s performance, especially in case
of large-scale problems. Significant performance differences between the opti-
mizer convergence are observed for large networks. Two optimizers performed
consistently better than the rest, namely KNITRO and BELTISTOS-OPF. KNITRO
outperforms BELTISTOS-OPF for the OPF forumulation with Cartesian voltage co-
ordinates, while BELTISTOS-OPF is better for polar voltage coordinates with nodal
power balance. The choice of the initial guess was demonstrated to be crucial
since it usually accelerates convergence to the optimal solution if chosen wisely.

127

128 9.1 Outlook and discussion

In this respect, the solution of the power flow equations should always be pre-
ferred instead of averages of upper and lower bounds or flat starts.

Next, it was demonstrated that significant performance gains are possible for
specific classes of coupled optimal control problems not only by exploiting super-
computers and parallel distributed or multithreaded programming, but also by
deeper understanding of the problem structures and the design of algorithms
adapted to them. Orders of magnitude faster execution time were achieved
and solutions of very-large-scale problems became possible. The BELTISTOS-SC
framework accelerated the solution of large-scale SCOPF problems through sev-
eral algorithmic advancements. On the linear level, the solution of the SCOPF
problem was accelerated by several orders of magnitude by adopting highly effi-
cient sparse linear algebra algorithms. The numerical experiments demonstrated
speedup up to 270-fold compared to the black-box approach, even for single-
node execution. Finally, the parallel computing architectures were employed to
achieve additional performance gains.

These findings recommend a deeper redesign of the entire power grid op-
timization software ecosystem, aiming to realign optimization algorithms with
the realities of the underlying hardware constraints. Exploiting distributed mul-
ticore and manycore nodes for the solution of the KKT system drastically reduces
the execution times and demonstrates significant progress towards the solution
of large-scale power grid problems with the stringent time requirements of the
power grid operators.

9.1 Outlook and discussion

The solution of power grid optimization problems based on sparse linear algebra
and structure exploiting methods has been pushed to the limit and, as it seems,
additional improvements are still possible on both linear and nonlinear level.
The challenges are to design similar algorithms for problems such as MPOPF
including generator ramping constraints, the planning and placement problem,
stochastic OPF etc. Extensions of the presented methodology to other power grid
problems are quite tempting:

Stochastic OPF Source of uncertainty related to the intermittent nature of re-
newable in feed and electricity demand, are modeled by stochastic scenar-
ios aiming to capture the uncertainties considering various correlations.
The structure of the resulting problem known as Stochastic OPF, also results
in arrowhead sparse matrices and can benefit from Schur decompositions

129 9.1 Outlook and discussion

as it has already been reported Petra, Schenk and Anitescu [2014]. How-
ever, further exploitation of the structure and matrices may be possible,
reducing further the computing time and memory requirements.

Multiperiod OPF with generator ramp limits In Europe active power genera-
tion is determined by the market and remains fixed in the OPF problems
solved for supporting TSOs daily operating decisions. Many real-life appli-
cations could benefit however, from extension of MPOPF should it model
generator ramping constraints. These constraints introduce inter-temporal
coupling of individual time periods, additional to the ones introduced by
storage devices discussed previously.

Transient grid models The structure exploiting solver can be also applied within
the SCCER-FURIES framework developed by other researchers Demiray
and Andersson [2009], where a flexible, modular, and computationally ef-
ficient framework is suggested to allow transient simulations of power grid
problems. The structure of the linear systems resulting from the time dis-
cretization is appropriate for the parallel Schur complement decomposition
scheme.

The power grid models considered in this study are the standard public-access
domain datasets. These datasets were designed for testing the OPF algorithms
and asses the numerical behavior of the novel solution methods on mostly syn-
thetic power grids. As a next step, the developed computational tools are used
within the SCCER-FURIES Digitalization1 project, which closely collaborates with
other academic partners and tries to deploy the application with industrial part-
ners. One of the aims of this digitalization project is to create a tool for the secure
high-performance storage scheduling. This will be achieved through a complete
problem formulation across multiple time scales available. The implementation
of a fully distributed and parallel IP framework was not attempted as a part of this
work, since this was accomplished before, e.g. by PIPS Petra [2014]; Chiang et al.
[2014], and thus this represents a natural next step. The parallelism is applied
on the level of the KKT system solution, while the IP algorithm is run sequentially
by a single process, which introduces a considerable bottleneck and unnecessary
data transfers. The purpose was to show that a more efficient implementation is
possible by implementing sparse linear algebra routines which further improve
intranode performance compared to previous work. The proposed method em-
ploys one additional Schur complement, chosen so that the sparsity of the KKT

1https://search.usi.ch/en/projects/1074/sccer-furies-digitalization

https://search.usi.ch/en/projects/1074/sccer-furies-digitalization

130 9.1 Outlook and discussion

matrix is maintained. Consequently, the size of the linear system decreases and
this allows for memory savings and increased computational performance.

Additionally, the efficient Schur decomposition heavily relies on the incom-
plete factorization approach of the augmented matrix for directly computing the
local Schur complements. Some perturbation is introduced to the local Schur
complements to allow for more efficient pivoting during their computation. Con-
sequently, the factorization of the diagonal blocks, which can be implicitly ob-
tained from the incomplete factorization approach, is also perturbed. Therefore,
the iterative refinement is essential and needs to be applied to each solve oper-
ation with the diagonal block. Doing so might introduce load imbalance for the
parallel computations, since different numbers of iterative refinement iterations
might be performed for individual diagonal blocks to reach the desired residual.
The resulting solution of the entire KKT system might contain considerable error
if the iterative refinement is not allowed to perform a sufficient number of itera-
tions. In order to address this shortcoming, although it was not observed in the
numerical experiments, the distributed solution might be used as a very efficient
implicit preconditioner applied in an iterative method for the entire KKT system.

It was attempted to further advance the solution of large-scale problems by
exploring two additional methods using an alternative to the Schur decompo-
sition approach on the linear level. The first method was based on nonlinear
decomposition of the SCOPF problem, such that it is decomposed into solution
of many embarrassingly parallel power flow problems. These are much easier to
solve and many robust and fast power flow solvers exist. The approach, however,
relies only on the first order information while the Hessians are approximated.
The convergence characteristics of the method need to be assessed in more rigor-
ous study in future work. It was observed that the method requires significantly
more iterations to reach the desired tolerance and in certain cases the tolerance
could not be reached. The second attempt was based on the idea of formulating
the solution method such that the dense linear algebra becomes a computational
kernel. In such a case, the computation can be greatly improved by leveraging
the computational load to modern hardware accelerators. The formulation based
on the augmented Lagrangian was explored, using the Hessian approximations
based on limited memory secant updates. The open question for the future is rig-
orous mathematical analysis of the behavior of the method, especially on difficult
nonconvex problems, such as OPF.

Bibliography

Akcelik, V., Biros, G., Ghattas, O., Hill, J., Keyes, D. and van Bloemen Waanders,
B. [2006]. Parallel Algorithms for PDE-Constrained Optimization, Society for
Industrial and Applied Mathematics, chapter 16, pp. 291–322.

Alsac, O., Bright, J., Prais, M. and Stott, B. [1990]. Further developments in lp-
based optimal power flow, IEEE Transactions on Power Systems 5(3): 697–711.

Arioli, M. and Scott, J. [2014]. Chebyshev acceleration of iterative refinement,
Numerical Algorithms 66(3): 591–608.

Babaeinejadsarookolaee, S., Birchfield, A., Christie, R. D., Coffrin, C., DeMarco,
C., Diao, R., Ferris, M., Fliscounakis, S., Greene, S., Huang, R., Josz, C., Ko-
rab, R., Lesieutre, B., Maeght, J., Molzahn, D. K., Overbye, T. J., Panciatici, P.,
Park, B., Snodgrass, J. and Zimmerman, R. [2019]. The power grid library for
benchmarking ac optimal power flow algorithms.

Barnhart, C., Johnson, E. L., Nemhauser, G. L., Savelsbergh, M. W. P. and Vance,
P. H. [1998]. Branch-and-price: Column generation for solving huge integer
programs, Operations Research 46(3): 316–329.

Benzi, M., Golub, G. H. and Liesen, J. [2005]. Numerical solution of saddle point
problems, Acta Numerica 14: 1–137.

Biegler, L. T., Ghattas, O., Heinkenschloss, M. and van Bloemen Waanders, B.
[2003]. Large-scale pde-constrained optimization: An introduction, in L. T.
Biegler, M. Heinkenschloss, O. Ghattas and B. van Bloemen Waanders (eds),
Large-Scale PDE-Constrained Optimization, Springer Berlin Heidelberg, Berlin,
Heidelberg, pp. 3–13.

Birchfield, A. B., Xu, T., Gegner, K. M., Shetye, K. S. and Overbye, T. J. [2017].
Grid structural characteristics as validation criteria for synthetic networks,
IEEE Transactions on Power Systems 32(4): 3258–3265.

131

132 Bibliography

Borges, C. L. T. and Alves, J. M. T. [2007]. Power system real time operation
based on security constrained optimal power flow and distributed processing,
2007 IEEE Lausanne Power Tech, pp. 960–965.

Boyd, S., Parikh, N., Chu, E., Peleato, B. and Eckstein, J. [2011]. Distributed
optimization and statistical learning via the alternating direction method of
multipliers, Foundations and Trends in Machine Learning 3(1): 1–122.

Bunch, J. R. and Kaufman, L. [1977]. Some stable methods for calculating
inertia and solving symmetric linear systems, Mathematics of Computation
31(137): 163–179.

Burchett, R. C., Happ, H. H. and Wirgau, K. A. [1982]. Large scale optimal power
flow, IEEE Transactions on Power Apparatus and Systems PAS-101(10): 3722–
3732.

Byrd, R. H., Gilbert, J. C. and Nocedal, J. [2000]. A trust region method based on
interior point techniques for nonlinear programming, Mathematical Program-
ming 89(1): 149–185.

Byrd, R. H., Hribar, M. E. and Nocedal, J. [1999]. An interior point algorithm for
large-scale nonlinear programming, SIAM Journal on Optimization 9(4): 877–
900.

Byrd, R. H., Liu, G. and Nocedal, J. [1998]. On the local behavior of an interior
point method for nonlinear programming, Numerical Analysis 1997, Addison
Wesley Longman, pp. 37–56.

Byrd, R. H., Nocedal, J. and Waltz, R. A. [2006]. Knitro: An Integrated Package
for Nonlinear Optimization, Springer US, Boston, MA, pp. 35–59.

Capitanescu, F., Glavic, M., Ernst, D. and Wehenkel, L. [2007]. Contingency
filtering techniques for preventive security-constrained optimal power flow,
IEEE Transactions on Power Systems 22(4): 1690–1697.

Capitanescu, F., Ramos, J. M., Panciatici, P., Kirschen, D., Marcolini, A. M., Plat-
brood, L. and Wehenkel, L. [2011]. State-of-the-art, challenges, and future
trends in security constrained optimal power flow, Electric Power Systems Re-
search 81(8): 1731 – 1741.

Capitanescu, F. and Wehenkel, L. [2008]. A new iterative approach to the cor-
rective security-constrained optimal power flow problem, IEEE Transactions on
Power Systems 23(4): 1533–1541.

133 Bibliography

Capitanescu, F. and Wehenkel, L. [2013]. Experiments with the interior-point
method for solving large scale optimal power flow problems, Electric Power
Systems Research 95: 276 – 283.

Carpentier, J. [1962]. Contribution to the economic dispatch problem, Bulletin
de la Societe Francoise des Electriciens 3(8): 431–447.

Castillo, A. and O’Neill, R. P. [2013]. Survey of approaches to solving the acopf,
Technical report, Federal Energy Regulatory Commission.

Chakrabarti, S., Kraning, M., Chu, E., Baldick, R. and Boyd, S. [2014]. Security
constrained optimal power flow via proximal message passing, 2014 Clemson
University Power Systems Conference, pp. 1–8.

Chen, D., Jiang, H., Li, Y. and Xu, D. [2017]. A two-layered parallel static security
assessment for large-scale grids based on GPU, IEEE Transactions on Smart Grid
8(3): 1396–1405.

Chiang, N., Petra, C. G. and Zavala, V. M. [2014]. Structured nonconvex op-
timization of large-scale energy systems using pips-nlp, 2014 Power Systems
Computation Conference, pp. 1–7.

Chiang, N.-Y. [2014]. PIPS-NLP.
URL: https://www.mcs.anl.gov/ nychiang/pipsnlp.html

Chiang, N.-Y. and Zavala, V. M. [2016]. An inertia-free filter line-search algorithm
for large-scale nonlinear programming, Computational Optimization and Appli-
cations 64(2): 327–354.

CIGRE Task Force [2014]. Benchmark systems for network integration of renew-
able and distributed energy resources. ELT_273_8.

Coffrin, C., Bent, R., Sundar, K., Ng, Y. and Lubin, M. [2017]. PowerModels.jl:
An open-source framework for exploring power flow formulations.

Coffrin, C., Gordon, D. and Scott, P. [2014]. NESTA, the NICTA energy system
test case archive.

Conn, A. R., Gould, N. I. M., Orban, D. and Toint, P. L. [2000]. A primal-dual
trust-region algorithm for non-convex nonlinear programming, Mathematical
Programming 87(2): 215–249.

134 Bibliography

Costa, VM ; Martins, Nelson; Pereira, J. L. [1999]. Developments in the Newton
Raphson power flow formulation based on current injections, IEEE Transac-
tions on Power Systems 14(4): 1320–1326.

CSCS - Swiss National Supercomputing Centre [2018]. Piz Daint.
URL: https://www.cscs.ch/computers/piz-daint/

Curtis, F. E., Huber, J., Schenk, O. and Wächter, A. [2012]. A note on the im-
plementation of an interior-point algorithm for nonlinear optimization with
inexact step computations, Mathematical Programming 136(1): 209–227.

Curtis, F. E., Nocedal, J. and Wächter, A. [2010]. A matrix-free algorithm
for equality constrained optimization problems with rank-deficient jacobians,
SIAM Journal on Optimization 20(3): 1224–1249.

Curtis, F. E., Schenk, O. and Wächter, A. [2010]. An interior-point algorithm for
large-scale nonlinear optimization with inexact step computations, SIAM J. Sci.
Comput. 32(6): 3447–3475.

D’Apuzzo, M., De Simone, V. and di Serafino, D. [2010]. On mutual impact of
numerical linear algebra and large-scale optimization with focus on interior
point methods, Computational Optimization and Applications 45(2): 283–310.

Demiray, T. and Andersson, G. [2009]. Optimization of numerical integration
methods for the simulation of dynamic phasor models in power systems, In-
ternational Journal of Electrical Power and Energy Systems 31(9): 512 – 521.
Power Systems Computation Conference (PSCC) 2008.

Dolan, E. D. and Moré, J. J. [2002]. Benchmarking optimization software with
performance profiles, Mathematical Programming 91(2): 201–213.

Du, Y., Li, F. and Huang, C. [2019]. Applying deep convolutional neural network
for fast security assessment with n-1 contingency, 2019 IEEE Power Energy So-
ciety General Meeting (PESGM), pp. 1–5.

Duff, I. S. and Scott, J. A. [2005]. Stabilized bordered block diagonal forms for
parallel sparse solvers, Parallel Comput. 31(3-4): 275–289.

Dunning, I., Huchette, J. and Lubin, M. [2017]. Jump: A modeling language for
mathematical optimization, SIAM Review 59(2): 295–320.

135 Bibliography

Engelmann, A., Jiang, Y., Mühlpfordt, T., Houska, B. and Faulwasser, T. [2019].
Toward distributed OPF using ALADIN, IEEE Transactions on Power Systems
34(1): 584–594.

Erseghe, T. [2015]. A distributed approach to the opf problem, EURASIP Journal
on Advances in Signal Processing 2015(1): 45.

Fletcher, R. and Leyffer, S. [2002]. Nonlinear programming without a penalty
function, Mathematical Programming 91(2): 239–269.

Fletcher, R. and Leyffer, S. [2004]. Solving mathematical programs with comple-
mentarity constraints as nonlinear programs, Optimization Methods and Soft-
ware 19(1): 15–40.

Fliscounakis, S., Panciatici, P., Capitanescu, F. and Wehenkel, L. [2013a]. Con-
tingency ranking with respect to overloads in very large power systems taking
into account uncertainty, preventive, and corrective actions, IEEE Transactions
on Power Systems 28(4): 4909–4917.

Fliscounakis, S., Panciatici, P., Capitanescu, F. and Wehenkel, L. [2013b]. Con-
tingency ranking with respect to overloads in very large power systems taking
into account uncertainty, preventive, and corrective actions, IEEE Transactions
on Power Systems 28(4): 4909–4917.

Forsgren, A., Gill, P. E. and Wright, M. H. [2002]. Interior methods for nonlinear
optimization, SIAM Review 44(4): 525–597.

Fortenbacher, P. and Demiray, T. [2019]. Linear/quadratic programming-based
optimal power flow using linear power flow and absolute loss approximations,
International Journal of Electrical Power & Energy Systems 107: 680 – 689.

Fortenbacher, P., Ulbig, A. and Andersson, G. [2018]. Optimal Placement and Siz-
ing of Distributed Battery Storage in Low Voltage Grids Using Receding Hori-
zon Control Strategies, IEEE TRANSACTIONS ON POWER SYSTEMS 33(3).

Frank, S. and Rebennack, S. [2012]. A Primer on Optimal Power Flow: Theory,
Formulation, and Practical Examples Title: A Primer on Optimal Power Flow:
Theory, Formulation, and Practical Examples.

Frank, S., Steponavice, I. and Rebennack, S. [2012]. Optimal power flow: a
bibliographic survey I, Energy Systems 3(3): 221–258.

136 Bibliography

Fuchs, A., Garrison, J. and Demiray, T. [2017]. A security-constrained multi-
period opf for the locational allocation of automatic reserves, 2017 IEEE
Manchester PowerTech, pp. 1–6.

George, A. [1973]. Nested dissection of a regular finite element mesh, SIAM
Journal on Numerical Analysis 10(2): 345–363.

Gertz, E. M. and Wright, S. J. [2003]. Object-oriented software for quadratic
programming, ACM Trans. Math. Softw. 29(1): 58–81.

Gondzio, J. and Grothey, A. [2008]. A new unblocking technique to warmstart
interior point methods based on sensitivity analysis, SIAM Journal on Opti-
mization 19: 1184–1210.

Gondzio, J. and Grothey, A. [2009]. Exploiting structure in parallel implemen-
tation of interior point methods for optimization, Computational Management
Science 6(2): 135–160.

Gondzio, J. and Sobral, F. N. C. [2019]. Quasi-newton approaches to interior
point methods for quadratic problems, Computational Optimization and Appli-
cations 74(1): 93–120.

Gould, N. I. M., Orban, D., Sartenaer, A. and Toint, P. L. [2001]. Superlinear con-
vergence of primal-dual interior point algorithms for nonlinear programming,
SIAM Journal on Optimization 11(4): 974–1002.

Gould, N. I. M. and Scott, J. A. [2004]. A numerical evaluation of HSL packages
for the direct solution of large sparse, symmetric linear systems of equations,
ACM Trans. Math. Softw. 30(3): 300–325.

Gould, N. I. M., Scott, J. and Hu, Y. [2007]. A numerical evaluation of sparse
direct solvers for the solution of large sparse symmetric linear systems of equa-
tions, ACM Trans. Math. Softw. 33: 10.

Gould, N. and Scott, J. [2016]. A note on performance profiles for benchmarking
software, ACM Trans. Math. Softw. 43(2): 15:1–15:5.

Granville, S. [1994]. Optimal reactive dispatch through interior point methods,
IEEE Transactions on Power Systems 9(1): 136–146.

Gupta, A., Karypis, G. and Kumar, V. [1997]. Highly scalable parallel algorithms
for sparse matrix factorization, IEEE Transactions on Parallel and Distributed
Systems 8(5): 502–520.

137 Bibliography

Helman, U. [2019]. Chapter 19 - distributed energy resources in the us whole-
sale markets: Recent trends, new models, and forecasts, in F. Sioshansi (ed.),
Consumer, Prosumer, Prosumager, Academic Press, pp. 431 – 469.

Hogg, J. D. and Scott, J. A. [2013]. On the effects of scaling on the performance
of ipopt.

HSL [2002]. HSL. A collection of Fortran codes for large scale scientific compu-
tation.
URL: http://www.hsl.rl.ac.uk

Hug-Glanzmann, G. and Andersson, G. [2009]. Decentralized optimal power
flow control for overlapping areas in power systems, IEEE Transactions on
Power Systems 24(1): 327–336.

Huneault, M. and Galiana, F. D. [1991]. A survey of the optimal power flow
literature, IEEE Transactions on Power Systems 6(2): 762–770.

Intel [2019]. Developer Reference for Intel Math Kernel Library, Intel Corporation.
Chapter 5: Sparse Solver Routines.
URL: https://software.intel.com/en-us/download/developer-reference-for-intel-
math-kernel-library-c

Jiang, H. and Ralph, D. [2000]. Smooth SQP methods for mathematical pro-
grams with nonlinear complementarity constraints, SIAM Journal on Optimiza-
tion 10(3): 779–808.

Jiang, Q. and Xu, K. [2014]. A novel iterative contingency filtering approach to
corrective security-constrained optimal power flow, IEEE Transactions on Power
Systems 29(3): 1099–1109.

John, E. and Yıldırım, E. A. [2008]. Implementation of warm-start strategies in
interior-point methods for linear programming in fixed dimension, Computa-
tional Optimization and Applications 41(2): 151–183.

Josz, C., Fliscounakis, S., Maeght, J. and Panciatici, P. [2016]. AC Power Flow
Data in MATPOWER and QCQP Format: iTesla, RTE Snapshots, and PEGASE,
ArXiv e-prints .

Joubert, C. J., Chokani, N. and Abhari, R. S. [2018]. Impact of large scale battery
energy storage on the 2030 central european transmission grid, 2018 15th
International Conference on the European Energy Market (EEM), pp. 1–5.

138 Bibliography

Kang, J. [2015]. An Efficient Interior-Point Decomposition Algorithm for Parallel
Solution of Large-Scale Nonlinear Problems with Significant Variable Coupling,
PhD thesis, Texas A & M University, http://hdl.handle.net/1969.1/156141.

Kaplunovich, P. and Turitsyn, K. [2016]. Fast and reliable screening of n-2 con-
tingencies, IEEE Transactions on Power Systems 31(6): 4243–4252.

Kardos, J., Kourounis, D. and Schenk, O. [2018]. Complete results for a nu-
merical evaluation of interior point solvers for large-scale optimal power flow
problems, ArXiv e-prints: 1807.03964 .

Kardos, J., Kourounis, D. and Schenk, O. [2020a]. Reduced-space interior point
methods in power grid problems, ArXiv e-prints: 2001.10815 .

Kardos, J., Kourounis, D. and Schenk, O. [2020b]. Structure Exploiting Interior
Point Methods, ArXiv e-prints: 1907.05420 .

Kardoš, J., Kourounis, D. and Schenk, O. [2020]. Two-level parallel augmented
schur complement interior-point algorithms for the solution of security con-
strained optimal power flow problems, IEEE Transactions on Power Systems
35(2): 1340–1350.

Kargarian, A., Fu, Y. and Li, Z. [2015]. Distributed security-constrained unit
commitment for large-scale power systems, IEEE Transactions on Power Systems
30(4): 1925–1936.

Kargarian, A., Mohammadi, J., Guo, J., Chakrabarti, S., Barati, M., Hug, G.,
Kar, S. and Baldick, R. [2018]. Toward distributed/decentralized dc optimal
power flow implementation in future electric power systems, IEEE Transactions
on Smart Grid 9(4): 2574–2594.

Karmarkar, N. [1984]. A new polynomial-time algorithm for linear programming,
Combinatorica 4(4): 373–395.

Karypis, G. and Kumar, V. [1998]. A fast and high quality multilevel scheme for
partitioning irregular graphs, SIAM J. Sci. Comput. 20(1): 359âĂŞ392.

Kourounis, D., Durlofsky, L. J., Jansen, J. D. and Aziz, K. [2014a]. Adjoint for-
mulation and constraint handling for gradient-based optimization of composi-
tional reservoir flow, Computational Geosciences 18(2): 117–137.

139 Bibliography

Kourounis, D., Durlofsky, L. J., Jansen, J. D. and Aziz, K. [2014b]. Adjoint for-
mulation and constraint handling for gradient-based optimization of composi-
tional reservoir flow, Computational Geosciences 18(2): 117–137.

Kourounis, D., Fuchs, A. and Schenk, O. [2018]. Toward the next generation of
multiperiod optimal power flow solvers, IEEE Transactions on Power Systems
33(4): 4005–4014.

Kourounis, D. and Schenk, O. [2018]. Optimal power flow solvers of extreme
performance.
URL: www.beltistos.com

Lavaei, J. and Low, S. H. [2012]. Zero duality gap in optimal power flow problem,
IEEE Transactions on Power Systems 27(1): 92–107.

Lewis, A. S. and Overton, M. L. [2013]. Nonsmooth optimization via quasi-
newton methods, Mathematical Programming 141(1): 135–163.

Liu, J. W. [1990]. The role of elimination trees in sparse factorization, SIAM
Journal on Matrix Analysis and Applications 11(1): 134–172.

López, P. C., Sadikovic, R., Pinto, H. and Magnago, F. [2015]. Swiss tso experience
with an ac security-constrained optimal power flow application for real-time
security management, 2015 IEEE Eindhoven PowerTech, pp. 1–6.

Low, S. H. [2014]. Convex relaxation of optimal power flow; part I: Formulations
and equivalence, IEEE Transactions on Control of Network Systems 1(1): 15–27.

Lu, C. N. and Unum, M. R. [1993]. Network constrained security control using an
interior point algorithm, IEEE Transactions on Power Systems 8(3): 1068–1076.

Macfie, P. J., Taylor, G. A., Irving, M. R., Hurlock, P. and Wan, H. [2010]. Proposed
shunt rounding technique for large-scale security constrained loss minimiza-
tion, IEEE Transactions on Power Systems 25(3): 1478–1485.

Marano-Marcolini, A., Capitanescu, F., Martinez-Ramos, J. L. and Wehenkel, L.
[2012]. Exploiting the Use of DC SCOPF Approximation to Improve Iterative
AC SCOPF Algorithms, IEEE Transactions on Power Systems 27(3): 1459–1466.

Marley, J. F., Molzahn, D. K. and Hiskens, I. A. [2017]. Solving multiperiod opf
problems using an ac-qp algorithm initialized with an socp relaxation, IEEE
Transactions on Power Systems 32(5): 3538–3548.

140 Bibliography

MathWorks [2018]. Matlab™Optimization Toolbox User’s Guide, Version 2. The
MathWorks, Natick, MA, USA.

Mehrotra, S. [1992]. On the implementation of a primal-dual interior point
method, SIAM Journal on Optimization 2(4): 575–601.

Mohammadi, J., Hug, G. and Kar, S. [2013]. A benders decomposition approach
to corrective security constrained opf with power flow control devices, 2013
IEEE Power Energy Society General Meeting, pp. 1–5.

Mohammadi, J., Hug, G. and Kar, S. [2018]. Agent-based distributed security
constrained optimal power flow, IEEE Transactions on Smart Grid 9(2): 1118–
1130.

Mohler, D. and Sowder, D. [2014]. Chapter 23 - Energy storage and the need
for flexibility on the grid, in L. E. Jones (ed.), Renewable Energy Integration,
Academic Press, Boston, pp. 285 – 292.

Momoh, J. [2000]. Electric Power System Applications of Optimization, Power
Engineering (Willis), Taylor & Francis.

Momoh, J. A., El-Hawary, M. and Adapa, R. [1999]. A review of selected opti-
mal power flow literature to 1993. Part II: Newton, linear programming and
interior point methods, IEEE Trans. on Power Syst. 14(1): 105–111.

Monticelli, A., Pereira, M. V. F. and Granville, S. [1987]. Security-constrained op-
timal power flow with post-contingency corrective rescheduling, IEEE Transac-
tions on Power Systems 2(1): 175–180.

More, J. J. and Wild, S. M. [2009]. Benchmarking derivative-free optimization
algorithms, SIAM Journal on Optimization 20(1): 172–191.

Nocedal, J., Wächter, A., and Waltz, R. A. [2009]. Adaptive barrier up-
date strategies for nonlinear interior methods, SIAM Journal on Optimization
19(4): 1674–1693.

Nocedal, J. and Wright, S. J. [2006]. Numerical Optimization, second edn,
Springer, New York, NY, USA.

Palmer, B., Perkins, W., Chen, Y., Jin, S., Callahan, D., Glass, K., Diao, R., Rice,
M., Elbert, S., Vallem, M. and Huang, Z. [2014]. Gridpack: A framework for
developing power grid simulations on high performance computing platforms,
2014 Fourth International Workshop on Domain-Specific Languages and High-
Level Frameworks for High Performance Computing, pp. 68–77.

141 Bibliography

Palmer, B., Perkins, W., Chen, Y., Jin, S., Callahan, D., Glass, K., Diao, R., Rice,
M., Elbert, S., Vallem, M. and Huang, Z. [2015]. Gridpack: A framework for
developing power grid simulations on high performance computing platforms,
International Journal of High Performance Computing Applications 30.

Park, C., Knazkins, V., Sevilla, F. R. S., Korba, P. and Poland, J. [2015]. On the
estimation of an optimum size of energy storage system for local load shifting,
2015 IEEE Power Energy Society General Meeting, pp. 1–5.

Petra, C. [2014]. PIPS.
URL: https://github.com/Argonne-National-Laboratory/PIPS

Petra, C. G., Schenk, O. and Anitescu, M. [2014]. Real-time stochastic optimiza-
tion of complex energy systems on high-performance computers, Computing
in Science Engineering 16(5): 32–42.

Petra, C. G., Schenk, O., Lubin, M. and Gärtner, K. [2014]. An augmented incom-
plete factorization approach for computing the schur complement in stochastic
optimization, SIAM Journal on Scientific Computing 36(2): C139–C162.

Phan, D. T. and Sun, X. A. [2015]. Minimal impact corrective actions in security-
constrained optimal power flow via sparsity regularization, IEEE Transactions
on Power Systems 30(4): 1947–1956.

Platbrood, L., Capitanescu, F., Merckx, C., Crisciu, H. and Wehenkel, L. [2014].
A generic approach for solving nonlinear-discrete security-constrained optimal
power flow problems in large-scale systems, IEEE Transactions on Power Sys-
tems 29(3): 1194–1203.

Qiu, W., Flueck, A. J. and Tu, F. [2005]. A new parallel algorithm for security
constrained optimal power flow with a nonlinear interior point method, Power
Engineering Society General Meeting, 2005. IEEE, IEEE, pp. 447–453.

R, S., Kumar, R. S. and Mathew, A. T. [2013]. Online static security assessment
module using artificial neural networks, IEEE Transactions on Power Systems
28(4): 4328–4335.

Rahmaniani, R., Crainic, T. G., Gendreau, M. and Rei, W. [2017]. The benders
decomposition algorithm: A literature review, European Journal of Operational
Research 259(3): 801 – 817.

142 Bibliography

Rodrigues, M., Saavedra, O. R. and Monticelli, A. [1994]. Asynchronous pro-
gramming model for the concurrent solution of the security constrained opti-
mal power flow problem, IEEE Transactions on Power Systems 9(4): 2021–2027.

Rozlovzník, M., Shklarski, G. and Toledo, S. [2011]. Partitioned triangular tridi-
agonalization, ACM Trans. Math. Softw. 37(4): 38:1–38:16.

Rudion, K., Orths, A., Styczynski, Z. A. and Strunz, K. [2006]. Design of bench-
mark of medium voltage distribution network for investigation of dg integra-
tion, 2006 IEEE Power Engineering Society General Meeting, pp. 6 pp.–.

Rüeger, C., Dobrowolski, J., Korba, P. and Sevilla, F. R. S. [2019]. Lyapunov
exponent for evaluation and ranking of the severity of grid events on extra-
large power systems, 2019 IEEE PES Innovative Smart Grid Technologies Europe
(ISGT-Europe), pp. 1–5.

Rupp, K. [2018]. Karl rupp, computational scientist.
URL: https://www.karlrupp.net/2018/02/42-years-of-microprocessor-trend-
data/

Sauter, P. S., Braun, C. A., Kluwe, M. and Hohmann, S. [2017]. Comparison of
the Holomorphic Embedding Load Flow Method with Established Power Flow
Algorithms and a New Hybrid Approach, IEEE Green Technologies Conference,
IEEE Computer Society, pp. 203–210.

Schanen, M., Gilbert, F., Petra, C. and Anitescu, M. [2018]. Toward multi-
period ac-based contingency constrained optimal power flow at large scale,
20th Power systems computation conference, PSCC, pp. 1–7.

Schenk, O. and Gärtner, K. [2004]. Solving unsymmetric sparse systems of linear
equations with pardiso, Future Generation Computer Systems 20(3): 475 – 487.
Selected numerical algorithms.

Schenk, O. and Gärtner, K. [2006a]. On fast factorization pivoting methods for
sparse symmetric indefinite systems, Electronic Transactions on Numerical Anal-
ysis 23: 158–179.

Schenk, O. and Gärtner, K. [2006b]. On Fast Factorization Pivoting Methods for
Sparse Symmetric Indefinite Systems, Elec. Trans. Numer. Anal. 23: 158–179.

Schenk, O., Gärtner, K., Fichtner, W. and Stricker, A. [2001]. Pardiso: a high-
performance serial and parallel sparse linear solver in semiconductor device

143 Bibliography

simulation, Future Generation Computer Systems 18(1): 69 – 78. I. High Per-
formance Numerical Methods and Applications. II. Performance Data Mining:
Automated Diagnosis, Adaption, and Optimization.

Scott, J. A., Hu, Y. and Gould, N. I. M. [2006]. An Evaluation of Sparse Direct
Symmetric Solvers: An Introduction and Preliminary Findings, Springer Berlin
Heidelberg, Berlin, Heidelberg, pp. 818–827.

Semerow, A., Höhn, S., Luther, M., Sattinger, W., Abildgaard, H., Garcia, A. D.
and Giannuzzi, G. [2015]. Dynamic study model for the interconnected power
system of continental europe in different simulation tools, 2015 IEEE Eind-
hoven PowerTech, pp. 1–6.

Sevilla, F. R. S., Korba, P., Uhlen, K., Hillberg, E., Lindahl, G. and Sattinger, W.
[2017]. Evaluation of the entso-e initial dynamic model of continental eu-
rope subject to parameter variations, 2017 IEEE Power Energy Society Innova-
tive Smart Grid Technologies Conference (ISGT), pp. 1–2.

Sevilla, F. R. S., Parra, D., Wyrsch, N., Patel, M. K., Kienzle, F. and Korba, P. [2018].
Techno-economic analysis of battery storage and curtailment in a distribution
grid with high pv penetration, Journal of Energy Storage 17: 73 – 83.

Shchetinin, D., De Rubira, T. T. and Hug, G. [2019]. On the construction of
linear approximations of line flow constraints for ac optimal power flow, IEEE
Transactions on Power Systems 34(2): 1182–1192.

Singh, A., Willi, D., Chokani, N. and Abhari, R. S. [2014]. Optimal power flow
analysis of a switzerland’s transmission system for long-term capacity plan-
ning, Renewable and Sustainable Energy Reviews 34: 596 – 607.

Sperstad, I. and Korpas, M. [2019]. Energy Storage Scheduling in Distribution
Systems Considering Wind and Photovoltaic Generation Uncertainties, Ener-
gies 12(7): 1231.

Stott, B. and Hobson, E. [1978]. Power system security control calculations using
linear programming, part I, IEEE Transactions on Power Apparatus and Systems
PAS-97(5): 1713–1720.

Swiss Federal Office of Energy [2018]. Energy strategy 2050.
URL: https://www.bfe.admin.ch/bfe/en/home/policy/energy-strategy-
2050.html

144 Bibliography

Tahanan, M., van Ackooij, W., Frangioni, A. and Lacalandra, F. [2015]. Large-
scale unit commitment under uncertainty, 4OR 13(2): 115–171.

Tinoco De Rubira, T. and Hug, G. [2016]. Adaptive certainty-equivalent approach
for optimal generator dispatch under uncertainty, European Control Conference
(ECC) .

Torres, G. L. and Quintana, V. H. [1998]. An interior-point method for nonlinear
optimal power flow using voltage rectangular coordinates, IEEE Transactions
on Power Systems 13(4): 1211–1218.

Trader, T. [2019]. It’s official: Aurora on track to be first us exascale computer
in 2021.
URL: https://www.hpcwire.com/2019/03/18/its-official-aurora-on-track-to-
be-first-u-s-exascale-computer-in-2021/

Trias, A. [2015]. Fundamentals of the Holomorphic Embedding Load-Flow
Method.

Vanderbei, R. J. [1999]. Loqo:an interior point code for quadratic programming,
Optimization Methods and Software 11(1-4): 451–484.

Vargas, L. S., Quintana, V. H. and Vannelli, A. [1993]. A tutorial description of
an interior point method and its applications to security-constrained economic
dispatch, IEEE Transactions on Power Systems 8(3): 1315–1324.

Venkatasubramanian, M. and Tomsovic, K. [2005]. 7 - power system analysis,
in W.-K. CHEN (ed.), The Electrical Engineering Handbook, Academic Press,
Burlington, pp. 761 – 778.

Verbosio, F., Coninck, A. D., Kourounis, D. and Schenk, O. [2017]. Enhancing the
scalability of selected inversion factorization algorithms in genomic prediction,
Journal of Computational Science 22: 99 – 108.

von Meier, A. [2006]. Electric Power Systems: A Conceptual Introduction, Wiley
Survival Guides in Engineering and Science, Wiley.

Wächter, A. and Biegler, L. T. [2005]. Line search filter methods for nonlinear
programming: motivation and global convergence, SIAM J. Optim. 16(1): 1–
31 (electronic).

145 Bibliography

Wächter, A. and Biegler, L. T. [2006]. On the implementation of an interior-
point filter line-search algorithm for large-scale nonlinear programming, Math.
Program. 106(1, Ser. A): 25–57.

Wang, H., Murillo-Sanchez, C. E., Zimmerman, R. D. and Thomas, R. J. [2007].
On computational issues of market-based optimal power flow, IEEE Trans. on
Power Syst. 22(3): 1185–1193.

Wright, M. [2005]. The interior-point revolution in optimization: History, recent
developments, and lasting consequences, Bulletin of the American Mathemati-
cal Society 42(1): 39–56.

Wright, M. H. [1998]. Ill-conditioning and computational error in interior meth-
ods for nonlinear programming, SIAM J. on Optimization 9(1): 84–111.

Wright, S. [1997]. Primal-Dual Interior-Point Methods, Society for Industrial and
Applied Mathematics.

Zhou, G., Feng, Y., Bo, R., Chien, L., Zhang, X., Lang, Y., Jia, Y. and Chen, Z.
[2017]. GPU-accelerated batch-ACPF solution for N-1 static security analysis,
IEEE Transactions on Smart Grid 8(3): 1406–1416.

Zimmerman, R. D., Murillo-Sanchez, C. E. and Thomas, R. J. [2011]. MAT-
POWER: Steady-State Operations, Planning, and Analysis Tools for Power Sys-
tems Research and Education, IEEE Trans. on Power Syst. 26(1): 12–19.

Zimmerman, R. and Murillo-Sanchez, C. [2016]. Matpower 6.0 User’s manual,
Power Systems Engineering Research Center.

	Contents
	Nomenclature
	List of abbreviations
	Introduction
	Optimal power flow problems
	Interior point methods
	Contribution

	I Power grid optimization problems
	Architecture of the power grid
	Mathematical model
	Power grid components
	Electric generator
	Transmission line
	Transformer
	Load
	Energy storage device

	Power grid models

	Optimization problems in the power grid
	Optimal power flow
	Problem formulation
	Solution approaches

	Security of the power grid
	Problem formulation
	Credible contingencies selection
	Solution approaches

	Multiperiod problems
	Problem formulation
	Distribution system flexibility
	Solution approaches

	II Interior point methods
	Interior point methods
	Problem definition and optimality conditions
	Search direction computation
	Backtracking line-search filter method
	Inertia correction and curvature detection
	Barrier parameter update strategy
	Problem scaling and convergence criteria
	Initial point selection and warm-start strategies

	KKT solution methods
	Basic properties of the KKT matrix
	Direct methods
	Selective elimination of the slack variables

	Iterative methods
	Quasi-Newton methods

	III High-performance IP algorithms and software for power grid problems
	Software packages
	Power grid simulation packages
	MATPOWER
	PowerModels
	GridPACKTM

	IP optimization packages
	IPOPT
	BELTISTOS
	KNITRO
	MIPS
	FMINCON
	PIPS
	OOQP
	OOPS

	Linear solvers
	PARDISO
	The Harwell Subroutine Library

	Structure exploiting solution methods
	Revealing the structure of coupled OPF problems
	Schur complement decomposition
	Solution algorithms for SCOPF problems
	Structure exploiting algorithms for MPOPF
	Distribution system flexibility

	Numerical Results
	Benchmarking environment
	OPF problem solution
	Choice of an initial point
	Convergence tolerance
	OPF formulations
	Optimization software
	Solution of the KKT linear system

	SCOPF problem solution
	Impact of the slack variables elimination
	GPU acceleration
	Performance case study
	Swiss grid case study

	MPOPF problem solution
	Number of time periods and storage devices
	Memory complexity
	Computational complexity
	Swiss grid case study

	Conclusions
	Outlook and discussion

	Bibliography

