
Design Space Exploration
in High-Level Synthesis

Doctoral Dissertation submitted to the

Faculty of Informatics of the Università della Svizzera Italiana

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

presented by

Lorenzo Ferretti

under the supervision of

Prof. Laura Pozzi

October 2020

Dissertation Committee

Prof. Nikil Dutt University of California Irvine,
Irvine, United States.

Prof. Paolo Ienne École polytechnique fédérale de Lausanne,
Lausanne, Switzerland.

Prof. Cesare Alippi Università dalla Svizzera italiana,
Lugano, Switzerland.

Prof. Antonio Carzaniga Università dalla Svizzera italiana,
Lugano, Switzerland.

Dissertation accepted on 30 October 2020

Research Advisor PhD Program Director

Prof. Laura Pozzi Prof. Walter Binder, Prof. Silvia Santini

i

I certify that except where due acknowledgement has been given, the work
presented in this thesis is that of the author alone; the work has not been submit-
ted previously, in whole or in part, to qualify for any other academic award; and
the content of the thesis is the result of work which has been carried out since
the official commencement date of the approved research program.

Lorenzo Ferretti
Lugano, 30 October 2020

ii

To my beloved

iii

iv

The best way to predict the future
is to invent it.

Alan Kay

v

vi

Abstract

High Level Synthesis (HLS) is a process which, starting from a high-level descrip-
tion of an application (C/C++), generates the corresponding RTL code describ-
ing the hardware implementation of the desired functionality. The HLS process is
usually controlled by user-given directives (e.g., directives to set whether or not
to unroll a loop) which influence the resulting implementation area and latency.
By using HLS, designers are able to rapidly generate different hardware imple-
mentations of the same application, without the burden of directly specifying the
low level implementation in detail.

Nonetheless, the correlation among directives and resulting performance is
often difficult to foresee and to quantify, and the high number of available direct-
ives leads to an exponential explosion in the number of possible configurations.
In addition, sampling the design space involves a time-consuming hardware syn-
thesis, making a brute-force exploration infeasible beyond very simple cases.
However, for a given application, only few directive settings result in Pareto-
optimal solutions (with respect to metrics such as area, run-time and power),
while most are dominated. The design space exploration problem aims at identi-
fying close to Pareto-optimal implementations while synthesising only a small
portion of the possible configurations from the design space.

In this dissertation I present an overview of the HLS design flow, followed
by a discussion about existing strategies in literature. Moreover, I present new
exploration methodologies able to automatically generate optimised implement-
ations of hardware accelerators. The proposed approaches are able to retrieve a
close approximation of the real Pareto solutions while synthesising only a small
fraction of the possible design, either by smartly navigating their design space
or by leveraging prior knowledge. Herein, I also present a database of design
space explorations whose goal is to help researchers to design new strategies by
offering a reliable source of knowledge for machine learning based approaches,
and standardise the methodologies evaluation. Lastly, the stepping-stones of a
new approach relying on deep learning strategies with graph neural networks is
presented, and final remarks about future research directions are discussed.

vii

viii

Acknowledgements

ix

x

Contents

Contents xi

1 Introduction 1

2 Hardware Design Evolution 3
2.1 RTL-Design Flow . 5
2.2 High-Level Synthesis Revolution . 6

2.2.1 Evolution of HLS . 7
2.2.2 The HLS Process . 10
2.2.3 HLS Optimisations . 14

2.3 New Challenges . 20

3 The Design Space Exploration Problem 23
3.1 Terminology . 23
3.2 Problem Formulation . 25
3.3 Metrics . 28

4 Related Works 31
4.1 Model-based Strategies . 33
4.2 Black-box-based Strategies . 35

4.2.1 Learning-based strategies . 36
4.2.2 Refinement-based strategies 37

5 Refinement-Based Strategies 39
5.1 Cluster-Based Heuristic . 39

5.1.1 Exploration Methodology . 43
5.1.2 Results . 48

5.2 Lattice Search . 56
5.2.1 Exploration Methodology . 57
5.2.2 Results . 64

xi

xii Contents

6 Transfer Learning Driven Design Space Exploration 73
6.1 Leveraging Prior Knowledge . 73

6.1.1 Standard Approach VS Leveraging Prior Knowledge 76
6.1.2 Results . 86

6.2 A Database of Design Space Explorations 94
6.2.1 DB4HLS Infrastructure . 96
6.2.2 A Domain-Specific Language for DSEs 97
6.2.3 A Framework for Parallelising HLS Runs 99

7 Is Deep Learning a Viable Solution? 101
7.1 Graph-Based Deep Learning for DSE. 102

7.1.1 Graph Representation of HLS Designs 103
7.1.2 Graph Neural Network for HLS 108
7.1.3 Challenges . 110

8 Conclusion 113
8.1 Contributions during the Ph.D. 114
8.2 What’s next? . 117

Bibliography 119

Chapter 1

Introduction

The constant growth in performance and area/energy efficiency requirements of
everyday applications has, in the last decades, influenced researchers to design
more and more performing and efficient specialised hardware. Hardware ac-
celerators have emerged as a viable solution to satisfy such requirements and
address the end of Moore’s law [77] and the breakdown of Dennard scaling [35].

However, hardware design is a complex process. It requires the description
of millions of transistors that have to work in parallel in order to perform com-
plicated tasks. Traditionally, Integrated Circuit (IC) methodologies have relied
on Hardware Description Languages (HDLs) such as VHDL and Verilog in order
to describe the logical components and their interaction at a Register Transfer
Level (RTL). Nonetheless, the HDL design flow does not scale for large applica-
tions. The HDLs main drawback is that they require to concurrently define both
functionality and implementation from a low-level view. Therefore, such ap-
proaches cannot easily target complex applications or support the generation of
circuit variants with different area and latency targets, as often required in case
of different performance and cost constraints.

To cope with these shortcomings, High-Level Synthesis (HLS) tools such as
LegUp [12], ROCCC [98], SPARK [116], and Xilinx VivadoHLS [126] take a more
abstract stance, allowing the design of ICs from high-level specifications. By us-
ing HLS tools, designers can guide the design process by applying directives able
to steer the resulting RTL implementation according to the desired performance
and requirement goals.

While HLS fostered a revolution in hardware design, it opened a new series
of challenges. In fact, while HLS allows to easily define vast design spaces for
a given hardware specification, determining the performance (latency) and re-
source requirements (area, power) of each implementation still implies time-

1

2

consuming syntheses. Moreover, the number of possible implementations of a
design grows exponentially with the number of applied directives, while, in gen-
eral, only a few of them are Pareto-optimal–i.e., they show the best cost/per-
formance tradeoff–from a performance and resources perspective.

Various HLS-driven Design Space Exploration (DSE) strategies have been pro-
posed to identify (or approximate) the set of Pareto implementations while min-
imizing the number of synthesis runs. These approaches aim at imitating the
behaviour of the HLS tools to pre-estimate the effect of the HLS directives and
guide the HLS exploration process. While mandating very few synthesis runs,
such strategies struggle when coping with multiple, interdependent optimiza-
tions. Hence, they are often limited to capturing the effect of only a few direct-
ives.

Herein, I present the methodologies I have devised during my doctoral stud-
ies. My contributions are characterized by novel problem formulations that can
be exploited to reduce the problem complexity by focusing the exploration only
on portion of the design space. The proposed formulations achieve this goal
by performing local searches, either dividing the problem in subproblem or ex-
ploiting a locality property of the design spaces. I also showcase the possib-
ility of leveraging prior knowledge from past DSEs to effectively infer optimal
implementations for new target designs. Then, I have contributed to the field
with a database of DSEs whose purpose is to offer designers a reliable source
of knowledge for future exploration methodologies relying on machine learning
strategies and standardise the evaluation process of the existing and future ones.

Moreover, the possibility of using Deep Learning to address DSEs is discussed.
I present a Graph Neural Network model aiming at learning the set of HLS direct-
ives resulting into Pareto-optimal implementations from an abstract representa-
tion of HLS-application in the form of graphs (i.e., simplified control data flow
graphs). Lastly, the results of my doctoral studies are summurised, the final con-
siderations are discussed, and possible future research directions are presented.

This document is structured as follows: Chapter 2 describes the limitations
of the traditional hardware design flow, the improvements, but also the the chal-
lenges introduced by HLS tools. Chapter 3 formalise the DSE problem and the
elements characterising it. Chapter 4 describes the state of art in the domain of
DSE problems for hardware design and in particular HLS-driven DSEs. Chapter
5 and 6 present my contribution to this field, and Chapter 7 introduces a new
approach involving deep learning to address the DSE task. Lastly, Chapter 8
concludes this document summarising the results obtained and discussing final
remarks.

Chapter 2

Hardware Design Evolution

In 1965 Gordon Moore made one of the most famous predictions in technology:
the number of transistors in Integrated Circuit (IC) double every two years. His
prediction, namely Moore’s Law [78], has been used by semiconductor compan-
ies to plan technological advancement for years. As a consequence, designers
had to devise hardware design techniques able to keep pace with the increasing
number of transistors and the available computational resources.

Register-Transfer Level (RTL) became the dominant method to describe ICs
[61]. However, the constant growth in the number of processing elements in
everyday devices and the increasing complexity of design functionalities have
also grown exponentially, causing the design and verification processes of RTL
designs to become a bottleneck for productivity [52]. Figure 2.1 shows the pre-
dicted trend in the processors count in portable devices made by the International
Technology Roadmap for Semiconductors (ITRS). The figure highlights a trend
that will to burden the designers’ activity in the not distant future.

Moreover, Moore’s prediction, that guided the computer industry for over
50 years, appears to not be valid anymore [123][69][57]. The main reason for
this can be identified in the breakdown of Dennard’s Scaling. In 1974 Dennard
observed that as transistors became smaller and smaller, their power density re-
mains constant [28]. Companies reacted to this discover designing faster and
faster circuits without significantly affecting the ICs power requirements. How-
ever, the breakdown of Dennard’s scaling law forced microprocessor companies
to identify alternative strategies other than produce faster ICs. In order to sat-
isfy the growing performance and power requirements, designers have identified
heterogeneity as a viable alternative to obtain high-performance and energy-
efficient hardware. In this context, Application Specific Integrated Circuits (AS-
ICs) able to solve specific tasks have gained a lot of popularity, becoming funda-

3

4

N
um

be
r o

f p
ro

ce
ss

in
g

el
em

en
ts

0
500

1000
1500
2000
2500
3000
3500
4000
4500

Year

2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024

3771

2974

2317
1851

1460
1137

899709558447343266185129

Figure 2.1. ITRS growth prediction of the number of Processing Elements in
consumer devices[52].

mental to solve complicated tasks [55][93], and outlining the trend of hardware
design [83][8].

While heterogeneous architectures and specialised hardware can boost per-
formance and energy efficiency, the variety of processing elements keeps bur-
dening the design process. While observing Figure 2.1, it is important to notice
that not only the number of processing elements per device is estimated to grow,
but, due to the heterogeneity, also the variety of processing elements in a device
increases. This aspect decreases even more design productivity, since multiple
different specialised hardware need to be designed.

To compensate for this drawback, Electronic System-Level (ESL) design auto-
mation has been identified as the next step in the hardware design process, with
High-Level Synthesis (HLS) tools being a viable solution [72][18][23][66].

HLS allows designers to both speed-up the design phase and raise the abstrac-
tion level of it. With HLS designers do not have to provide an RTL description of
the design functionality by using Hardware Description Languages (HDL) such
us Verilog or VHDL. HLS tools take in input a C/C++ or SystemC specification
which is automatically transformed into a cycle-accurate RTL specification im-
plementing the application functionality. Moreover, HLS enables to easily target
different technology such as ASICs or Field Programmable Gate Arrays (FPGAs).
In addition, HLS allows behavioural verification of the programs at C/C++ level
using software verification tools that are faster and simpler than RTL ones, ac-
celerating the this process.

Furthermore, HLS allows the rapid generation of circuits variants. Microar-

5 2.1 RTL-Design Flow

chitectural variation can be explored without modifying the original software by
using specific HLS directives affecting the resulting implementation. This feature
is one of the main advantages of the HLS design flow with respect to the RTL one,
allowing the rapid prototyping of hardware accelerators with different costs and
performance requirements.

These benefits, by affecting design and verification time, development costs,
learning curve of hardware, and time-to-market of the generated hardware de-
signs, cause the hardware acceleration on heterogeneous platform to become a
more and more attractive and widely adopted solution [61].

In the next subsections, an overview of the traditional design flows and of the
HLS one used to generate hardware accelerators are presented. In Section 2.1
I will briefly discuss the characteristics of the RTL-design flow; then, in Section
2.2 the HLS process and the evolution of the HLS tools from their origin to the
present are discussed. Lastly, Section 2.3 presents the challenges introduced by
the adoption of the HLS design flow and the domain related research questions.

2.1 RTL-Design Flow

The evolution of design automation and of Computer Aided Design (CAD) tools
have boosted the productivity of hardware design processes. Design automation
and verification are the keys to the effective use of large scale integrated circuit
technology [43]. Design automation tools perform all tasks that were originally
performed manually. Simulation and verification of the design functionality and
synthesis are few examples. These steps, however, still require a description of
the underlying circuit functionality and structure to operate. Designers, by us-
ing Hardware Description Languages (HDLs), can define the features, microar-
chitecture functionalities, and specification requirements of the target hardware
implementation.

HDLs enable designers to define the hardware components’ functionality as
a set of operations on the data. These operations transform the original data,
and move them from source storage units (e.g., registers) to destination ones.
Thus, these types of specifications are named Register-Transfer-Level (RTL) de-
scriptions. RTL descriptions require designers to specify the logical structure of
the circuit using logic and arithmetic operators, to define operations at bit and
word-level granularity. Moreover, conditional statements can be used to describe
control flow behaviours.

The drawback of RTL-languages is that they do not scale well for large ap-
plications. While RTL-languages raised the level of abstraction with respect to

6 2.2 High-Level Synthesis Revolution

manual circuit design, RTL-descriptions still require to concurrently define both
the functionality and the implementations at a low level of details. The definition
of arithmetic operations and data transfers at RTL-level implies manual descrip-
tion of the functionality behaviour in a timed-manner. Thus, all performed op-
erations have to be described cycle-by-cycle. This aspect makes RTL languages
extremely error-prone, requiring advanced hardware design expertise and im-
posing a steep learning curve for them. A study [128] showcased how 30K-40K
lines of C/C++ code for a 1M-gate design may result in about 300K lines of RTL
code to implement the same functionality. This example suggests the necessity
to raise the abstraction level of the design process to reduce design errors, devel-
opment time, cost, and the time-to-market of new designs.

2.2 High-Level Synthesis Revolution

To cope with RTL-design limitations, High-Level Synthesis (HLS) has been in-
troduced. HLS tools, starting from a high-level behavioural description of the
software functionality (C/C++ or System C), automatically produce the RTL
description of the desired IC. The generated hardware component can then be
seamlessly synthesised with ASIC or FPGA toolchains in order to implement the
corresponding hardware accelerator.

HLS merges the benefits of software design productivity with the performance
and efficiency of hardware. It enables software designers to access hardware per-
formance without actually building hardware design expertise [82]. Similarly, it
offers to hardware engineers the design productivity and the level of abstraction
typical of software, allowing rapid exploration of micro-architectural variations,
an extremely important aspect while targeting complex systems with strict per-
formance cost requirements [66].

The HLS process, relying on high-level programming languages, allows a dra-
matic improvement in design productivity. Considering the same example from
the study discussed in Section 2.1, the lines of code required by the HLS-design
flow is 7X-10X less than the one needed by the RTL implementation of the same
functionality [128].

Moreover, the definition of functionalities at behavioural-level leads to the
diffusion of behavioural intellectual properties (IPs) reuse. The modular nature
of the IPs, which, differently from RTL descriptions are not constrained to fixed
architectural and interface protocols, allows them to easily be retargeted to dif-
ferent technologies or system requirements .

Moreover, HLS has raised particular interest in the FPGA community. The

7 2.2 High-Level Synthesis Revolution
LAHTI et al.: ARE WE THERE YET? STUDY ON STATE OF HLS 905

Fig. 8. Maximum, minimum, and average time usage for different categories with RTL and HLS.

TABLE VII
AREA AND PERFORMANCE FIGURES OF RTL AND HLS DESIGNS

TABLE VIII
HLS AND RTL PRODUCTIVITY

Table VIII tabulates productivity values for HLS and RTL
approaches. The productivity of all participants was clearly
better with the HLS tool, and the average productivity of HLS
was up to 6.0 times that of RTL. Hence, it is even higher than
that found in the survey results. We can speculate how the

productivity would have changed if the persons had imple-
mented stage pipelining in their RTL implementations. It is
still unlikely that the productivity levels had shifted to support
RTL over HLS, as the time usage would have increased along
with the throughput.

Fig. 8 shows the time usage of the participants in five cat-
egories. On average, the persons used less time within all
categories when working with HLS. The grand total for max-
imum, average, and minimum time usages with the RTL flow
was 37.7, 15.1 and 3.7 h, respectively, whereas the same values
for the HLS flow were 25.0, 10.1, and 1.6 h.

As a conclusion, all participants had better productivity with
HLS than with RTL. Although the group size was small, and
the hardware background of the persons was very similar, this
study shows that it is easier to adopt HLS than RTL and
receive better results faster for people who have most of their
experience in software design. This result underlines the fact
that HLS is a useful tool for software engineers who want to
implement, for example, hardware accelerators.

It should be noted that our result differs from the typical
surveyed study, where the QoR of RTL was better than that
of HLS. The likely explanation for this is that in the sur-
veyed works, the designers had significantly more previous
hardware expertise than our test persons. On the other hand,
our case study is in line with the surveyed literature concerning
productivity, which favors HLS.

D. Feedback From the Test Persons

After completing the test assignments, the participants were
asked about the pros and cons of HLS and RTL design flows,
out of which they finally had to select their favorite. The
answers were split evenly (3-3) between HLS and RTL flows.

The persons favoring RTL over HLS hoped for more open
source support for HLS tools, as the flow is highly tool depen-
dent. This would allow more hobbyists to use HLS tools. Some
test persons also wished for more control in the HLS tool over
the resulting RTL in terms of cycle accuracy. For them, RTL
was easier to fine tune and it gave them a better understanding
of the problem at hand.

The persons favoring HLS over RTL liked the ease of HLS,
where unnecessary details such as automatic I/O handshak-
ing and pipelining support can be left as the responsibility of
the HLS tool. This let the participants to focus on defining
the behavioral description. They also felt that RTL was more

Authorized licensed use limited to: Universita della Svizzera Italiana. Downloaded on August 23,2020 at 08:47:02 UTC from IEEE Xplore. Restrictions apply.

Figure 2.2. Comparison of HLS and RTL design flow productivities across
different metrics. The boxplots show the maximum, minmum and average
time for the different metrics evaluated. The figure has been published in [61].

reconfigurability of FPGAs well fits with the benefits introduced by HLS tools. In
particular, the possibility to rapidly generate different IPs implementing a large
variety of functionalities, and the efficient estimate of their performance and
costs, make the combination of FPGA and HLS an extremely appealing solution
for the design and deployment of complex systems on FPGA architecture [33].

In a recent work, Lahti et al. [61] have analysed different metrics comparing
the HLS design flow with respect to the traditional RTL one. They have compared
in particular the quality of result and productivity differences between the two.
Their findings showcased that while the quality of results of the RTL flow is still
better than state-of-the-art HLS tools, the average development time with HLS
tools is much faster. The paper shows that a designer can achieve four times
more productivity with HLS [61] with respect to the RTL flow. Figure 2.2, from
[61] exhibits these differences. The chart shows the time required to implement
different designs with the HLS and the RTL design flow. For all the different
metrics considered in the study, the HLS flow resulted in higher productivity.

2.2.1 Evolution of HLS

The origin of HLS can be traced to the early 1970s. At that time, Carnegie Mel-
lon researchers built a revolutionary tool (CMU-DA [30][88]) which, using the
Instruction Set Processor Specification (ISPS) language [3], allowed the descrip-
tion of a design at a behavioural level. By generating an intermediate represent-
ation, common code-transformation techniques were applied, and the concepts
of datapath allocation, module selection, and controller generation step of the
modern synthesis tools were introduced for the first time. That work, despite
little consideration from the industry [72], raised considerable research interest

8 2.2 High-Level Synthesis Revolution

[18].
The next decade, 1980-1990, has seen the proliferation of a number of dif-

ferent research HLS tools (e.g., ADAM [44], HAL [90], MIMOLA [74], and Her-
cules [27]), and few industrial ones (Cathedral [26], Yorktown Silicon Compiler
[11] and BSSC [139]). These works, similarly to modern tools, decompose the
synthesis process in different steps: code transformation, module selection, op-
eration scheduling, datapath allocation, and controller generation.

Code transformation is used to transform the original code into a semantic-
ally equivalent version of it, able to better expose the program characteristics and
allowing basic optimisations. The module selection phase selects, from a library
of different components, the particular functional unit used to implement each
operation in the code–e.g., it selects the most appropriate hardware multiplier
to implement a multiplication among floats given a certain clock constraint. Op-
eration scheduling assigns each operation into a specific cycle or control state.
Then, datapath allocation defines the type and number of hardware resources
needed to satisfy the design constraints, and, lastly, controller generation applies
all the design decisions to generate an RTL model to be synthesised. All these
steps were the cornerstone for the next generations of HLS tool.

A common characteristic of these tools was the adoption of custom languages
to define the design specifications. Some of them used extensions of existing
languages–i.e., Hercules [27] used HardwareC [60] based on the existing C lan-
guage –while many others opted for custom languages oriented to domain-specific
applications. Despite these tools being the ancestor of the modern generations,
only a few of them were widely adopted and obtained large consensus. Among
them, the Cathedral project [26] had a long evolution and culminated in its com-
mercialisation and the OptimoDE tool from ARM [17]. However, the poor quality
of the results, the domain specialisation of most of the tools, the lack of a compre-
hensive design language and the creation of many custom ones, combined with
the adoption of RTL synthesis tools, spread the idea that behavioural synthesis
could not fill the productivity gap[72].

In the next decade, 1990-2000, thanks to the improvement in RTL synthesis
tools and the wide adoption of RTL-based designs, the major Electronic Design
Automation (EDA) companies have invested in commercial HLS tools. Propriet-
ary tools from Synopsys with Behavioural Compiler [59], Cadence with Visual
Architect [49] and Mentor Graphics with Monet [34] entered the market. While
these tools were able to raise the interest of industries, they could not replace
the RTL design flow. In particular, the necessity of using behavioural description
languages as input of the HLS tool, and the steep learning curve of those, lim-
ited their diffusion. Moreover, the HLS design flow was still missing important

9 2.2 High-Level Synthesis Revolution

aspects. Existing tools failed to recognise the difference between data-flow and
control flow, often focusing on only one of the two aspects resulting in poor qual-
ity of results. Lastly, EDA were not able to correctly foresee potential user of HLS.
These tools were thought for current RTL designers, who were skeptical about
the newcoming design flow and relied on the quality of results of the traditional
RTL-design flow [23]. This aspect made clear that it was necessary to raise the
abstraction level of design languages, and to enlarge the pool of users to increase
the diffusion of HLS tools.

The rise in abstraction level is the characterising aspect of the current gener-
ation of HLS tools. The 21st century has mainly seen the evolution of existing
behavioural CAD tools [13][119][24][117]. Despite different opinions [32][99],
EDA companies and researchers realised the necessity to adopt a high-level input
language, more accessible to algorithm and designers than HDLs. The choice fell
on C/C++ and C-like languages–e.g., SystemC. This had a huge impact on the
diffusion of HLS tools. It expanded the pool of users for HLS tools and allowed
researchers to leverage the most recent compiler technologies and optimisation.
This last aspect consequently resulted in an improvement in the quality of result
of the HLS tools, making them more reliable and appealing to RTL-designers.

However, despite the large diffusion of C and C++ as dominating input lan-
guages, these are used with limitations. Current HLS tools cannot exploit all
the features of such languages such as pointers, dynamic memory management,
recursion and polymorphism, which can hardly be mapped to a hardware imple-
mentation. Moreover, C/C++ lacks some aspects such as definition of variable
bit-width, timing, synchronisation, characterising the hardware design. To cope
with this, many language extensions and libraries have been proposed [60][42]
[120] and restriction to the C input programs have been introduced. Among
these strategies, the use of pragmas, directives, and the adoption of a subset of
ANSI C/C++ had large diffusion. By using pragmas and directives the HLS pro-
cess can be guided, and standard compiler techonology can be adopted. This
modularity allows to seamlessly move from software to hardware design in the
direction of the hardware/software codesign goal.

Another important factor that favoured the diffusion of HLS tools was the
growth of the FPGA market and the diffusion of this technology [124]. FPGAs,
differently from ASICs, require different implementation programming models
and have different design criteria. The limited resources available on a reconfig-
urable chip force designers to explore different architectural choices able to fit
area and performance constraints. The possibility to easily explore these costs
and performance tradeoffs with the use of pragmas to govern the HLS process
made HLS tool an appealing solution for designers targeting FPGA technology.

10 2.2 High-Level Synthesis Revolution

Many HLS tools flourished in the 2000 decade belong to this category like SPARK
[116], ROCCC [98], Trident [125], Handel-C [46] among many.

A more recent evolution of HLS tools has seen the diffusion of research-
oriented projects as Bambu [92], LegUp [12] and AutoPilot [144], with few of
them, Autopilot and LegUP, being acquired by EDA companies or commercial-
ised respectively. Among commercial tools, VivadoHLS [126], CatapultC [13],
Bluespec [7] and CtoS [117] had large diffusion. Lastly, the 2015 acquisition of
Altera from Intel lead to the creation of the recent Intel HLS Compiler [53], and
the recent integration of FPGAs on the Amazon Web Services architecture has
seen the adoption of the Xilinx design suite SDAccel [109].

2.2.2 The HLS Process

In the previous sections, we have mentioned the benefit of the HLS design flow
and the evolution that HLS tools had from the 70s until today. Herein, I will
describe the HLS process’s details and the steps performed by synthesis tools to
automatically generate an RTL implementation starting from a C/C++ design.
An experienced reader, who is already aware of the HLS process details, may
want to skip this section and move to the next ones.

The HLS process provides many benefits to designers, it allows, starting from
a high-level description of an application, the rapid generation of optimized RTL
specifications. By focusing only on the behavioural aspect of the functional-
ity to implement in hardware, designers can reason on what to implement in-
stead of how to achieve that. Moreover, HLS enables rapid exploration of micro-
architectural variations through the use of optimisation directives. Thus, mul-
tiple variants of the same circuit functionality can be seamlessly implemented
satisfying different cost and performance requirements. Besides, the adoption of
HLS simplifies the verification process and the portability of the generated IPs.

To generate an RTL implementation, the HLS process requires a high-level
specification of the functionality to implement in hardware, an RTL component
library, and a set of design constraints–e.g., target architecture, clock period.
Given these elements, the HLS process relies on five different steps: compilation,
resource allocation, operation scheduling, binding, and control logic generation.
All these steps break down the original behavioural representation, extract the
operations and variable describing the functionality, and use this information to
generate the final RTL implementation.

In the following, the different steps are detailed, and a few practical examples
are provided. Figure 2.3 shows an overview of the HLS-design flow, including
the required input, the process steps, and the generated output.

11 2.2 High-Level Synthesis Revolution

Compiler
pass

High-level
specifications

Technology
library

Design
constraints

CDFG
Resources
allocation

Scheduling

Binding

Control
logic

generation

RTL
specifications

Figure 2.3. Overview of the HLS process.

Compiler pass

The input specifications are processed by a compiler pass which generates and ab-
stract representation of the functionality. The compiler extracts the information
needed to identify the resources and the operations to be implemented in hard-
ware. The compiler pass defines "what" will be implemented. In this phase, the
compiler may introduce code optimisations, either to simplify the code structure–
e.g., dead code elimination, constant propagation, and loop transformation may
be applied–or to transform the original code into a functional equivalent version
that can be mapped to a more efficient design pattern.

Standard abstract representation of the code are Control Data Flow Graphs
(CDFGs)[41][84]. CDFGs encompass both the data and control dependency in-
formation between operations. These are built extending the Data Flow Graph
(DFG) with control flow dependencies in order to represent loop structures and
unbounded iterations. The CDFG nodes and the edges identify the set of opera-
tions and variables needed to generate the RTL implementation. These elements
are the input of the allocation, scheduling, and binding steps.

Resources Allocation

Once the variables and the operations have been extracted by the compiler, the
resources required to map them to hardware are defined. Allocation defines
"who" will perform the identified operations. This step, named resource alloca-
tion or simply allocation, defines the type and number of functional units, stor-
age components, busses, and other connectivity elements required to generate

12 2.2 High-Level Synthesis Revolution

the hardware implementation. The available resources are selected from a lib-
rary of RTL components, usually dependent on target technology and proprietary
tools. This library includes all the information required by the synthesis task to
estimate area, power, and latency needed in the scheduling and binding phases.

Scheduling

The scheduling phase maps all the identified operations to a specific clock cycle.
This step defines the order in which each operation will occur. Scheduling de-
termines "when" an operation will happen. Design constraints and the techno-
logy library have a significant impact on the resulting schedule. E.g., by relaxing
the clock period constraint more operation may be scheduled into the same clock
cycle, according to technology characteristics. Similarly, using a faster techno-
logy, more operations may occur during the same cycle.

In addition to technology and design constraints, the code structure also has
an impact on scheduling. For example, the concatenation of operation interme-
diate results may lead to a more efficient scheduling of the operations.

Figure 2.4 shows examples of scheduling given the resource allocations for
two different types of technologies and different design constraints–i.e., clock
constraint.

Binding

Binding determines which allocated resource will be used for each operation.
Binding defines "where" operations are mapped to the allocated resources. Oper-
ators are mapped to functional units, and variables are mapped to storage units.
In this phase, decisions about the sharing of the allocated resources are made.
According to the performance or power/area requirement, the binding phase will
decide to allocate more units or share the functional and storage units already
allocated among the different operations and variables. These choices may affect
the resources required for the connection of the allocated resources. Therefore,
some of the choices affecting the connectivity elements performed during the
allocation step may be revised at this stage.

Figure 2.4 scheduling d) shows an example of binding with resource sharing.
Resources are re-used during the scheduling in order to minimise the area and
reduce the number of functional units.

13 2.2 High-Level Synthesis Revolution

int foo(…){
 …
 tmp1 = a + b;
 tmp2 = tmp1 * c;
 tmp3 = d + e;
res = tmp2 - tmp3;

}

Allocated resources:

+ +

a
b
c
d
e

tmp1

tmp2

tmp3
res

-

+

+

*

*
-

+
+

* -

Scheduling:

+ + -*

+
+

* -

Technology 1

Technology 2

Technology 1
3 cycles

Technology 2
4 cycles

+
+

-

Technology 1
2 cycles
(slower clock)

Scheduling with binding sharing resources:

+ + -
Technology 1
4 cycles
(less resources)

*

*

a)

b)

c)

d)

Figure 2.4. Example of resource allocation, scheduling, and binding for the code
in the example. Four different scheduling are shown: a) scheduling adopting
functional units of technology 1, b) scheduling adopting functional units of
technology 2, c) scheduling adopting functional units of technology with a
slower clock constraint from the one originally specified by the designer, d)
scheduling adopting functional units with binding sharing resource. In the last
scheduling example, only one adder is allocated, and the same functional unit
is used to compute both tmp1 and tmp3 at different clock cycles.

Control Logic Generation

The last step of the HLS process generates the final RTL architecture. The con-
trol logic extracted by the compiler pass is used to define the datapath for the
functionalities implemented in the previous steps. The datapath includes all the
storage elements, functional units, and connection elements defined in the alloc-
ation and binding stages according to the defined scheduling. Input, output, and
control ports of the design interface are connected to the RTL logic, and a finite
state machine implementing the controller unit manages the correct execution
of the functionality.

14 2.2 High-Level Synthesis Revolution

Putting all together

All the above-mentioned steps together generate the resulting RTL. While per-
forming independent tasks, the different phases are affected by the decisions
made by each other. In particular, allocation, scheduling, and binding choices
are interdependent. For this reason, these three stages are the core of the exist-
ing HLS tools and are the ones characterising their quality of results.

The efficiency of these different stages may also impact the target techno-
logy of HLS tools. For example, HLS tools targeting FPGAs may be interested
in resource-constrained approaches. In this case, the allocation process and a
binding sharing the resources will be predominantly imposing more stringent
constraints on the scheduling. In other cases, e.g., for time-constrained applica-
tions where ASICs are the target technology, more aggressive scheduling will be
adopted.

Moreover, these stages are performed in order to satisfy a target objective
function, such as the minimisation of area/power or latency. Some HLS tools
allow designers to chose the target objective–i.e., Mentor Catapult HLS [13]–
while others are optimised for one of the two–i.e., VivadoHLS [126] minimises
the latency. However, even for HLS tools where the objective function is prede-
termined, time and resource requirements can be satisfied by relaxing the design
constraints.

While HLS can automatically generate efficient RTL implementation of the
given functionality, designers do not directly control its process. To cope with
this aspect, HLS tools allow designers to guide the synthesis through HLS dir-
ectives. These directives, often in the form of compiler’s pragmas, directly affect
the compiler pass, allocation, scheduling, and binding steps. In the following, a
description of the most common optimisations and some practical examples are
provided.

2.2.3 HLS Optimisations

HLS tools, by specifying HLS directives, can influence the synthesis process. The
directives directly impact the resulting performance and costs, enabling designers
to rapidly explore different architectural variations. The number and type of
possible optimisations depend on the HLS tool. However, across the different
tools available, some macro-categories of optimisations are common. Herein,
these will be described, and a few examples of their effect will be discussed.
In particular, I will discuss the pragmas available for the VivadoHLS tool [126].
While directives names may differ according to the commercial tool adopted, the

15 2.2 High-Level Synthesis Revolution

effect they have on the synthesis process is similar.

Spatial Parallelism

One of the most common optimisation is spatial parallelism. Spatial parallelism
allows to reduce latency and increase the throughput of an IC. Multiple func-
tional units can be instantiated to concurrently execute the program operations.
HLS tools automatically perform instruction-level parallelism during the schedul-
ing and binding phase. However, designers can force the amount of parallelism
by explicitly specifying regions of the code to be parallelised. For example, a
designer can target a loop with an unroll directive. The directive forces the com-
piler to unfold the loop body up to a certain factor, or even entirely, imposing
to the HLS tool to instantiate the hardware resources required to execute the
loop body operations concurrently. Ideally, a loop without loop carried depend-
encies can be parallelised entirely if enough resources are available. Therefore,
the execution time of the entire loop is reduced to the execution time of a single
iteration. Usually, spatial parallelism dramatically reduces latency but requires a
significant amount of extra resources.

Figure 2.5 shows an example of a loop unrolling directive applied to a loop.
The optimisation, specified in the form of pragma in the original code, unrolls
the loop by a factor of 2. Therefore, the functional units in the loop’s body are
doubled, and the total number of iterations required to execute the loop is halved.

Pipelining

Another common optimisation among HLS tools is pipelining. Pipelining can be
applied to functions or loops, and it reduces the initiation interval for functions
or loops allowing concurrent execution of their operations. In fact, the execu-
tion of the next loop or function input can start before the completion of the
predecessor’s operations. Pipelining requires that data dependency must be re-
spected before moving to the next iteration. Pipelining enables functions and
loops to process a new input or loop iteration every N cycles, where N is the
Initiation Interval (II). The II specifies the number of clock cycles between suc-
cessive input processing or loop iterations. The ideal II of 1 specifies that a new
input or loop iteration should be processed every cycle. However, the minimum
II achievable can be limited by resource constraints or dependencies–i.e., loop
carried dependencies. This optimisation, similarly to spatial parallelism, implies
the allocation of extra resources required to perform the parallel execution of
multiple input/iterations, but it may greatly improve execution time. Compiler

16 2.2 High-Level Synthesis Revolution

int foo(…){
 …
 loop:for(i=0;i<10;i++){
 #pragma HLS unroll factor=1
 tmp1[i] = a[i] + b[i];
 res[i] = tmp1[i] * tmp1[i];
}

}

int foo(…){
 …
 loop:for(i=0;i<10;i++){
 #pragma HLS unroll factor=2
 tmp1[i] = a[i] + b[i];
 res[i] = tmp1[i] * tmp1[i];
}

}

Allocated resources:

+ *

+ *

Scheduling:

+ * …
i = 0 i = 1

20 cycles to
perform loop
body computations

Allocated resources:

+ *

+ *

Scheduling:

+ * …

i = 0 i = 2

+ *

+ * + * …

10 cycles to
perform loop
body computations

i = 1 i = 3

Figure 2.5. Examples of loop unrolling directives applied on a loop. (Top)
Allocated resources required by the loop body computation and an example of
scheduling for them when no unrolling is applied. (Bottom) Allocated resources
and schedule when a loop unrolling factor of 2 is applied. The number of
iterations is halved, and the amount of resources is doubled. For simplicity,
the computation required to increment the loop iterator variable and check the
loop condition are omitted in both examples.

passes can be combined to greatly improve the effectiveness of this optimisation
[131][151].

Figure 2.6 shows an example of the pipeline directive applied to a loop. The
optimisation, specified in the form of pragma in the original code, defines an
initiation interval of 1. The loop body instructions are pipelined allowing the
execution of each operation at a new cycle.

Memory Allocation

While implementing a design in hardware, different choices regarding the mem-
ory allocation strategy are possible. Private Local Memories (PLM) can be coupled
to accelerators to allow direct access to the data needed during computation. In
FPGAs, this can be easily achieved by forcing the allocation of multiple memory
banks in the form of distributed block RAMs (BRAMs). Using PLM, accelerators
can perform multiple memory operations in one cycle according to data distri-
bution over the allocated memories. However, allocation of specific resources is

17 2.2 High-Level Synthesis Revolution

int foo(…){
 …
 loop:for(i=0;i<10;i++){
 #pragma HLS pipeline II=1
 tmp = A[i]; // RD
 tmp = tmp * tmp; // CMP
 res[i] = tmp1; // WR
}

}

int foo(…){
 …
 loop:for(i=0;i<10;i++){
 tmp = A[i]; // RD
 tmp = tmp * tmp; // CMP
 res[i] = tmp; // WR
}

}

Allocated resources:

Scheduling:

RD CMP WR

Allocated resources:

Scheduling:

i = 0

i = 2
i = 1

…RD CMP WR RD CMP WR
i = 0 i = 1 i = 2

RD CMP WR
RD CMP WR

RD CMP WR
…

RD CMP WR

RD CMP WR

Figure 2.6. Examples of pipelining applied on a loop. (Top) Resource and
scheduling required by the loop body without the pipelining directive. Nine
clock cycles are required to perform three iterations of the loop. (Bottom)
Allocated resources and scheduling with loop pipelining enabled with an initi-
ation interval of one. Five clock cycles are required to perform three iterations
of the loop.

required. These resources depend on the available technology library and the
target platform. Therefore, available resources may be limited to a certain type
and size.

Designers can force the HLS tools to instantiate particular memory elements
and allocate design variables to instantiated memories. However, forcing the use
of a specific memory element and type can result in suboptimal use of resources
if the design variables’ size is not aligned to the memory sizes.

Moreover, HLS tools permit to change the physical implementation of the
memories by specifying memory partitioning directives. Memories usually have
only a limited number of read and write ports, which can limit the throughput
of a load/store intensive algorithm. According to the original code’s memory ac-
cess pattern, the bandwidth of an allocated memory element can be increased by
partitioning the memories associated with the arrays in the original code. The
original array elements can be distributed over multiple smaller memories, effect-
ively increasing the number of load/store ports. While potentially improving the
throughput of the design, this optimisation requires more memory instances or

18 2.2 High-Level Synthesis Revolution

0 1 2 3 4 5

0 1 2 3 4 5

0 1 2 3 4 5 0 1 2 3 4 5

A

A

A

Mem 1 Mem 2 Mem 3 Mem 4 Mem 5 Mem 6

0 1 2

3 4 5

Memory 1

Memory 2

Block

0 2 4

1 3 5

Memory 1

Memory 2

Cyclic

Complete

Figure 2.7. Examples of array partitioning directives applied to an array vari-
able. (Top) Block array partitioning with partitioning factor of 2. (Middle)
Cyclic array partitioning with partitioning factor of 2. (Bottom) Complete
partitioning.

registers and increases the connectivity element among memory and functional
units.

Figure 2.7 shows an example of the array partitioning directive applied to
three arrays. The figure shows three different types of partitioning strategies–
block, cyclic, and complete–and partitioning factors. A block strategy partitions
the original memory into equally sized blocks of consecutive elements. A cyc-
lic partition splits the original memory into same size memories interleaving the
elements of the associated array. In this case, consecutive array elements are dis-
tributed on different memory elements up to a certain partitioning factor. Com-
plete partitioning instead is the most resource expensive approach. It completely
decomposes the memory into individuals elements.

Predicated Execution

Software transformations can be applied to allow a parallel schedule of disjoint
execution paths. This transformation of the code, often named if-conversion, re-
quires the introduction of predicates, or guards, to discriminate at the end of
the parallel execution among the concurrent paths’ results. The benefits of pre-
dicated execution are a higher parallelisation of the code and the elimination of

19 2.2 High-Level Synthesis Revolution

control dependency in the execution of intensive code structures. This optimisa-
tion is extremely effective in the case of balanced branches, while in the case of
unbalanced, the execution time could even be slowed down.

Hierarchical-Module Optimisations

By removing or introducing hierarchy among the generated modules, the amount
of control logic generated by the synthesis may be affected. For example, en-
abling function inlining avoids execution and generation of the logic required
to manage function invocations. The inlining HLS directive flattens the hier-
archy among target function and remaining RTL code. Therefore, the function
no longer appears as a separate hierarchy level in the RTL, and a better resource
sharing can be achieved. On the other hand, an inlined function cannot be
shared, and the reuse of its RTL module is not possible. This optimisation may
reduce the overall latency, but more area is usually required to implement the
RTL. Similar results can also be obtained for loops by merging the body of the
loops.

Bit-width Optimisation

This optimisation specifies the exact amount of bits required by datapath oper-
ators and variables. Differently from general-purpose processors, which are de-
signed with a fixed size datapath, HLS tools can generate specialised hardware
with custom size operators and registers. This optimisation affects all aspects of
the resulting implementations: area, latency, power, and quality of the gener-
ated output. It enables to minimise the area of a design while satisfying certain
task-related quality of result goals. For example, the implementation of com-
plex machine learning models (i.e., Convolutional Neural Networks) on ASICs
and FPGAs relies on the identification of the optimal bit-width for the neural
network layers [129]. In this case, reducing the bit-width allows to dramatic-
ally diminish the model’s size and the memory required to store it. This aspect
is extremely beneficial since it permits to deploy complex models on resource-
constrained platforms. The main drawback of this approach is related to the
effect that bit-width reduction has on the quality of the implemented acceler-
ator’s results. In fact, for classification tasks reducing the bit-width significantly
affects classification performance. While targeting these applications, designers
then have to evaluate the results of the generated hardware to verify that a target
classification goal is satisfied.

20 2.3 New Challenges

Resource Library

The allocation step of the HLS process identifies, from a library of RTL compon-
ents, the resources needed to implement the desired functionality in hardware.
Existing libraries are rich and offer several different implementations of the same
operation. However, it is hard for designers to foresee the choices made by the
HLS tools and estimate the result of the synthesis process. The different com-
ponents available in these libraries are often vendor-specific or related to the
target technology and a characterisation of the library components is not always
available.

Through the use of HLS directives, designers can force or prevent the use
of specific resources affecting the allocation step, and, consequently, the HLS
process results. Enforcing the use of particular resources allows designers to
control more tightly the HLS process. Moreover, while designers may have a
higher degree of control on the HLS process, the implemented design is generated
minimising a target objective during the synthesis. Forcing the use of certain
resources may lead to suboptimal choices unless specific resource constraints are
required

2.3 New Challenges

The HLS revolution has shaken the belief of hardware designers about the capab-
ility of HLS tools. The dramatic gain in the design productivity introduced by the
HLS design flow and the quality of results achievable with existing commercial
and research tools have consolidated HLS as a viable option for fast prototyping
and short-time-to-market [61][18].

However, many of the advantages of HLS are hardly quantifiable with re-
spect to traditional design flows. For example, HLS allowed designers to explore
a space of possible optimisations for their design that, before HLS, was hardly
treatable. The quality of resulting implementations was dependent on the de-
signer experience, while, nowadays, structured and sound search strategies can
be applied to identify effective optimisations.

On the other hand, the possibility of rapidly exploring equivalent versions of
the same design has opened a new challenge. Navigating the space of all the
possible implementations controlled through HLS directives is a non-trivial task.
This problem, namely the Design Space Exploration (DSE) problem, requires
the identification of the most effective combination of optimisations for a given
design and engineer target requirements. In this dissertation, we focus on this

21 2.3 New Challenges

challenge.
However, DSE is not the only challenge introduced by HLS. Another one is

the identification of which portion of the software to accelerate in hardware. Not
all software benefits in the same way from hardware acceleration, and complex
heterogeneous systems must be properly designed to benefit from heterogeneity
and hardware specialisation. To this end, various works have been proposed
[143][142], and research in this area is extremely active.

Other challenges involve the improvement of in-system design validation and
debugging, better support for domain-specific synthesis, and the possibility of
raising the level of abstraction moving to higher level languages (i.e. Python)
among others.

22 2.3 New Challenges

Chapter 3

The Design Space Exploration Problem

In this chapter of the dissertation the terminology and a formal definition of the
HLS-driven Design Space Exploration (DSE) problem are presented. In addition,
a metric, used to evaluate the quality of the DSE and to perform a comparison
with respect to the state of the art alternatives is introduced.

Section 3.1 will describe the terminology adopted in this document to dis-
criminate among the different elements of the HLS design flows. In Section 3.2
a formal definition of the DSE problem and the elements characterising it will be
presented. Finally, 3.3 will introduce the metric used to evaluate the quality of
the DSE methodologies.

3.1 Terminology

An HLS design (or design) is a functionality to be realized in hardware. For ex-
ample, a Fast Fourier Transform function and a 2D convolution function from
an image processing application are examples of designs that can be separately
synthesized with HLS. A specification is a high-level description of the design in
a programming language such as SystemC or C/C++. The specification, which
can be given with an untimed or a loosely-timed model, is the input to the HLS
tool. An implementation of the design is the output of a run of the HLS tool. This
output is typically expressed as an automatically generated RTL code written in
Verilog or VHDL. Each implementation is characterized by the values of a per-
formance metric and a cost metric (e.g., latency or throughput as performance
metric and, area or energy as costs).

A synthesis configuration (or, simply, configuration) defines the transform-
ations that a design undergoes through HLS. A designer controls these trans-
formations with constraint and optimization directives, such as loop unrolling or

23

24 3.1 Terminology

Listing 3.1. Example of specification in C for a toy example design.
1 void bar (in t input_ar ray [32] , in t output_array [32]) {
2 in t i ;
3 loop_1 : for (i=0; i <32; i++){
4 output_array [i] = input_ar ray [i]* input_ar ray [i] ;
5 }
6 foo (output_array) ;
7 }

Vn,m

Knob Location Type Sets of values

K1 input_array partitioning
{cyclic, block}

{1,2,4,8}
K2 loop_1 unrolling {1,2,4,8}
K3 foo() inlining {on,off}
… … … …
… … … …
Kn … … {Vn,1, … , Vn,m}

K1
cyclic

4
8

Knob value

Directive

Configuration

Knob

A directive is a combination of a
knob and a knob value

on
…

K2

K3

Kn

…

Figure 3.1. Example of terminology associated to the example in Snippet 3.1.

pipelining, array manipulation, and other control and datapath optimizations. A
directive is associated with a location in the code specification. A location could
be either a label in the code or a language construct; for example, a loop or an
array declaration. A designer can further customize some directives by specifying
the values for the directive parameters–for example, the designer can customize
the amount of parallelism in the implementation by unrolling a loop a certain
number of times or by setting a certain initiation interval for the pipeline imple-
menting the loop.

Each location of a given specification, with an associated directive, encodes
a knob (a type of directive, the location, and selected parameter values) that the
designer considers for the DSE task. For each directive a designer can manually
define an admissible set of directive values, and, for directives with multiple
parameters (i.e., partitioning allows to specify both the factor and the type), a
set of values for each parameter is specified.

Example: Snippet 3.1 and Figure 3.1 show an example of specification for a
target design–function bar in the snippet–and the associated notion of directive,
knob, knob type, location and set of values associated to a directive for possible

25 3.2 Problem Formulation

targets in the design.
For a design D, letX D denote the set of all possible synthesis configurations.

In general, XD is a very large set, possibly of infinite size. In practice, designers
explore a portion of the design space of D by trying a subset XD ⊂ XD, whose
elements they choose carefully based on their experience running HLS.

The set of all the possible configurations explored by a designer is the Con-
figuration Space (XD). This is defined as the cartesian product among the sets of
directive values for each knob:

XD = K1 × K2 × · · · × KN (3.1)

where N is the number of considered knobs, and Ki is the set of values related to
each i knob, i.e. the set of values that the directive associated to knob i can as-
sume. For a directive with multiple parameters–e.g., array partitioning requires
to define both the partitioning factor and the type–, Ki is the Cartesian product
among each set of values. The size of the configuration space is then given by its
cardinality (|XD|).

Lastly, the design space (YD) is the set of implementations resulting from the
synthesis of the configuration is XD.

3.2 Problem Formulation

The DSE of an HLS design is a multi-objective optimisation problem, with costs
and merit as objective functions. In literature different objective functions have
been considered for the DSE problem. The survey from Bulnes et al. [97] iden-
tifies the following as the most common objectives considered in the state of the
art:

• Latency. This is the most common unit of measure for the performance. It
is usually defined as the number of clock cycles required by a hardware im-
plementation to complete its functionality. Alternatively, the total latency
is multiplied with the target clock of the system. In this case the objective
is referred as effective latency.

• Throughput. Ratio among the effective latency and the input size. It meas-
ures how efficiently the input is processed with respect to its size.

• Area. This is the most common unit of measure for the costs. It can be
either the space occupied to implement the IC in hardware, expressed in

26 3.2 Problem Formulation

µm2, or the number of components allocated in the target device, i.e. func-
tional units (FU) and registers. While the first is commonly used for ASIC,
the second approach is well suited for reconfigurable resources as in the
case of FPGA. I this cases common units of measure are the number of
Flip-Flops (FF), Look-Up Tables (LUT), Digital Signal Processor (DSP), and
Block RAM (BRAM).

• Resource utilization. With FPGA, due to the limited number of resources
available on a target device, the costs is expressed as percentage of re-
sources required by an implementation. With such formulation, multiple
different resources can be aggregated together in a single objective func-
tion.

• Power. Total power consumption of the IC. This is usually the combination
of dynamic and static power consumptions.

• Wire length or Data path. Measure of costs of the interconnection and of
the connectivity components.

• Digital noise. Measure of error due to the combination of computational
errors and noise propagation introduced by bit-width reduction and quant-
isation effects.

• Reliability. Measure of probability that an error will occur due to soft errors.
This usually depends form the type of FU used in the design.

• Temperature. Measure of maximum temperature and temperature vari-
ation occurring during the execution of the design functionality. Usually
minimised to reduce electronic failures.

• Robustness. Protection that a IP offers against attacks, i.e. reverse engin-
eering attacks.

In the context of my works I have considered as measure of cost the area (a),
expressed either as the number of FF, LUT, DSP, and BRAM, or as aggregated
values of those in form of a linear combination of their utilisation for a given
technology:

a =
FF

FFavailable
+

LUT
LUTavailable

+
DSP

DSPavailable
+

BRAM
BRAMavailable

(3.2)

27 3.2 Problem Formulation

Equation 3.2 allows to evaluate the overall utilisation of the resources required by
an implementation (FF, LUT, DSP, and BRAM) with respect to the ones available
on a specific FPGA (FFavailable, LUTavailable, DSPavailable, and BRAMavailable).

As a measure of merits I have considered either latency and effective latency
(l). Where the effective latency is measured as the product among the clock
cycles and the clock period.

l = #Clock_c ycles× Clock_period (3.3)

The resulting area a and latency l obtained for a given configuration through
the HLS process define the implementation cost and merit.

Goal of the DSE problem is to identify the Pareto-optimal implementations of
a given design while minimising the number of synthesis required to implement
them. Given D and XD, the design space exploration task returns a subset of XD

that consists of all Pareto configurations, i.e.

P(D, XD) = {x |x ∈ XD and x is Pareto} (3.4)

A Pareto configuration (p) of a design is a configuration that leads to an imple-
mentation that is Pareto-optimal in the bi-objective optimization space defined
by the performance and cost metrics.

A (first-rank) Pareto frontier (P(D, XD), or, simply, P) is the set of points:

p ∈ P⇔ > q ∈ XD, q 6= p | A(q)≤ A(p)∧ L(q)≤ L(p).

Where A(·) and L(·) are the area and latency values associated to a configuration.
In other words, iff p ∈ P, then no other solutions exist in the design space

having simultaneously less area and less latency than p.
A (first-rank) Pareto frontier is the set of Pareto-optimal points. Finally, an

i-th rank Pareto frontier (for i > 1) is defined as the Pareto frontier obtained after
removing the lower rank frontiers from the design space.

Figure 3.2 shows examples of different ranked Pareto frontiers.
DSE strategies aim at finding an approximate Pareto frontier bP(D, XD) of the

best performing implementations, as close as possible to the one deriving from
exhaustive search P(D, XD), while minimizing the number of synthesis runs.

28 3.3 Metrics

Area

Latency

Area

Latency

Area

Latency

Figure 3.2. Example of three different rank Pareto frontier. (Left) 1st-rank
Pareto frontier. (Center) 2nd-rank Pareto frontier. (Right) last rank Pareto
frontier.

3.3 Metrics

Quality evaluation of DSE is a challenging aspect. In literature a variety of met-
rics have been adopted to measure the results of the DSE process. Different
works [91] [22] [21] measure the improvement obtained by an optimised im-
plementation with respect to a standard one–e.g., the one generated by the HLS
tool without applying directives. For a given implementation the performance
and area improvement and/or reduction are measured and compared with the
ones obtained with different methodologies. While this approach offers an im-
mediate view on the effectiveness of a given implementation it doesn’t highlight
the ability of a methodology to explore concurrently the design space objectives.

To deal with this problem, Zitler et al. [149] suggested the use of the follow-
ing metrics:

• Average Distance from Reference Set (ADRS). The ADRS metric expresses
the distance between a reference curve P (the Pareto frontier from ground
truth data), and an approximated curve bP. The ADRS for two objective
functions is defined as:

ADRS(bP, P) =
�

1
|P|

∑

p∈P

min
bp∈bP
(d(bp, p))
�

(3.5)

bP and P are the set of points defining the approximated Pareto frontier
and the reference one, respectively. |P| defines the cardinality of the ref-
erence set P and d(bp, p) is the distance among a reference point and an
approximated one defined as:

29 3.3 Metrics

d(bp, p) =max
§

0,
A
bp − Ap

Ap
,

L
bp − Lp

Lp

ª

(3.6)

Given this formulation, low ADRS values are better, because they imply
proximity between P and bP.

• Hypervolume or S-metric or Lebesgue measure. This metric is used to meas-
ure the difference among hypervolumes (HV) between the approximated
Pareto curve bP and the reference Pareto-set P. The HV of a set of solutions
measures the size of the portion of the objective space that is dominated by
those solutions collectively [134]. It requires the definition of a bounding
point to calculate the volume of design space. Given a 2D design space, the
HV measures the difference in area among the region of design space com-
prised between the bounding point and the Pareto-front P with respect to
the area of the bounding point and the approximated Pareto curve bP. A low
difference among HVs implies a good approximation of the Pareto frontier.

• Pareto Dominance. This metric measures the relation among the number
Pareto-optimal design discovered bP, and the one in the reference Pareto-set
P. This relation is defined as:

Dominance =
|bP
⋂

P|
|P|

(3.7)

A high dominance score implies a good exploration result.

• Cardinality. This metric lists the Pareto solution discovered. High cardin-
ality implies a larger variety of solution discovered. While this metric does
not require a reference set to be calculated, it does not guarantee a good
exploration quality.

Among the above mentioned metrics, with the exception of the cardinality
metric, a ground-truth is required to compute the metric score. However, retriev-
ing the reference Pareto-set P requires the exhaustive exploration of the design
space and such process can be extremely time consuming if not infeasible. This
aspect has often limited the use of such metrics as measure of the quality of
results.

In my works, similarly to [64],[71],[86],[114],[138],[146], I have evaluated
my methodologies by adopting the ADRS metric, measuring the distance among
the Pareto-frontier retrieved by a given strategies with respect to a ground-truth.
This approach, while requiring the exhaustive synthesis of the configuration space

30 3.3 Metrics

0 0.2 0.4 0.6 0.8 1
Latency

0

0.2

0.4

0.6

0.8

1

A
re
a

DSE comparison: Exhausitve vs Heuristc

Figure 3.3. Example of an exhaustive exploration compared with an explora-
tion heuristic. The x are the result of exhaustive exploration, while the dots
(dark and light) are the design points explored by our heuristic (13% of the
total). Dark dots represent the retrieved Pareto solution.

defined by the designer, allows a comparison with existing methodology which is
both qualitatively with respect to the state of the art alternatives and with respect
to the design space of the target design.

Figure 3.3, shows an example of DSE performed for decode benchmark from
CHStone [47]. The synthesised configurations are marked with filled dots, non
synthesised ones with crosses, and Pareto-optimal solutions of the design space
with darker dots. The two objective functions considered in this DSE are the area,
as a number of FF, and the latency, in number of clock cycles. An ADRS of 0.0128
was achieved with only 234 synthesis runs (over 1728 possible configuration).

Chapter 4

Related Works

A number of recent works have analysed the state of the art of HLS-driven DSE.
The surveys from Schafer et al. [108], Bulnes et al. [97] and Shathanaa [112]
offer an overview of the trends in the design of DSE strategies. These surveys
propose their own classification of the methodologies in literature. However,
none of them agree on a unique categorisation of the existing approaches.

In the survey from Schafer et al. [108] DSE techniques are classified in two
categories: synthesis-based and model-based. According to the proposed clas-
sification, the synthesis-based methodologies generate a new configuration and
invoke the HLS tool to evaluate the resulting implementation. Model-based ones
instead avoid the invocation of the synthesis process to estimate the resulting cost
and performance. The proposed classification however became shadowy when
supervised learning methodology are discussed. According to the survey, these
methodologies belongs to both the above mentioned categories. In fact, in or-
der to build their knowledge, and in some cases refine it, the synthesis of many
different configurations is required. Only once the methodology has learned a
model of the HLS tool behaviour they use the acquired knowledge to estimate
the effect of the HLS directives.

Alternatively, Bulnes et al. [97] propose a more fine-grained classification
of the multi-objective methods for DSEs. According to the proposed taxonomy,
two macro-categories can be identified: exact methods and approximate ones.
While exact methods [80][81][79], based on variation of the branch and bound
algorithm, had a scarce appealing in the scientific community, approximate ones
had a large popularity among researchers and have steered the research dir-
ection. However, the survey focused only on heuristic algorithms and meta-
heauristic approaches almost ignoring the portion of state of the art considering
analytical methods.

31

32

MODEL Area

LatencyC/C++
HLS directives

Figure 4.1. Model-based approach where the quality of the estimations relies
on the knowledge embedded in a model.

Lastly, Shathanaa et al. [112] divide the state of the art into learning-based
methodologies, exploration-based types, evolutionary algorithm, and population-
based stochastic optimisation methods. This classification partially overlaps with
the one proposed by Schaefer et al. [108], but as for the work from Bulnes et
al.[97], analytical models are not discussed.

Herein, in order to discuss the state of the art I will introduce a slightly dif-
ferent classification inspired to the one presented by Schaefer et al. [108]. The
classification I propose look at the DSE problems from a higher level of abstrac-
tion and broadly divides the literature into two categories: model-based method-
ologies and black-box-based methodologies. Model-based strategies (Figure 4.1)
aim at estimating the effect of a directive given a priori knowledge of the HLS
tool employed and of the application structure. Black-box-based methodologies,
instead, infer the behaviour of the synthesis tool and the application properties.
These methodologies can be further subdivided in learning-based methodologies
and refinement-based ones. Approaches in the former category exploit an initial
training phase to learn the HLS process behaviour and then perform the explor-
ation (Figure 4.2); the latter strategies use an iterative refinement approach to
gradually estimate the model and guide the DSE selecting, at run time, the most
promising configurations (Figure 4.3).

In the following sections I will discuss the major contribution proposed in
the past years in the context of DSEs. In Section 4.1, the strategies belonging to
the model-based category are discussed, while in Section 4.2 are presented and
discussed the methodologies belonging to the black-box-based group.

33 4.1 Model-based Strategies

MODEL Area

LatencyC/C++
HLS directives

Training
set

Figure 4.2. Learning-based methodologies. These methodologies rely on a
training phase to infer a model and generate the estimated performance and
costs.

MODEL Area

LatencyC/C++
HLS directives

Figure 4.3. Refinement-based methodologies. These methodologies learn
runtime the behaviour of the HLS tools updating their model at each new
iteration.

4.1 Model-based Strategies

Model-based approaches aims at estimating the behaviour of the HLS process,
for a given design, without directly invoking the synthesis process. Such tech-
niques perform an a priori estimation of performance and costs of the resulting
implementations. While such approaches are often accurate in estimating the
implementation characteristics, these are often limited in the number of HLS
directives considered. In order to pre-estimate the area, power, and latency, the
designers build a model–usually an analytical one–that analyses the behavioural
description of the design and predicts performance and required resources.

These approaches require the characterisation of both HLS directives and of

34 4.1 Model-based Strategies

the specific HLS tool modelled. Such aspects, are the main drawback of model-
based strategies. Estimating the effect of multiple directives together is an ex-
tremely complicated task due to the impact that each of them has on the alloca-
tion, scheduling, and binding operations of the synthesis process. Thus, because
of this complexity, existing models are often limited to only few directives. Non-
etheless, such models are tailored for specific HLS tools, causing the methodology
to be constrained to it.

Example of these approaches are the works proposed by Choi et al. [16], Chi
et al. [14], and Cong et al. [19], [20]. The work from Choi et al.[16] considers
only array partitioning, loop unrolling and pipelining as HLS directive, and an
analytical model is built in order to estimate resource and performance of the
resulting implementation. Similarly, in the works from Chi et al. [14], and Cong
et al. [19], [20], analytical models quantify the performance and resource con-
sumption. In these paper, to reduce the complexity of the model, the strategies
focus on specific class of applications–i.e. stencils in the work from Chi et al.
[14]–, architectures–i.e. systolic arrays in the work from Cong et al. [19]–, or by
proposing design templates [20] to reduce the configuration space size.

On a similar stance, Tan et al. [121] and Liu et al. [63] propose the use of
architectural templates to constrain the design space and effectively lowering the
complexity of the problem before building an analytical model of it.

In addition, a number of recent works from Zhong et al. [147], Wang et al.
[130], and Zhao et al. [145] have proposed methodologies based on static graph
analysis techniques. In these works compiler techniques are used to generate a
graph representation of the design starting from the behavioural representation
of it. The graph representations are used to perform analysis of the processing
elements and their communication. These information are then used to build a
model of the computational elements and quantify the communication cost.

From a different perspective, Shao et al. [111] have proposed Aladdin, a pre-
RTL, power-performance simulator for fixed-function accelerators. The frame-
work accurately estimates performance, power, and area of accelerators starting
from their C/C++ implementation and a set of associated directives. Similarly,
Choi et al. [15] have presented a HLS simulation flow able to extract schedul-
ing information from the HLS tool and automatically construct an equivalent
cycle-accurate simulation model while preserving C semantics. These approaches
while offering an accurate prediction of performance and costs by avoiding the
synthesis process, do not help addressing the problem related to the high dimen-
sionality of the design space.

The works from Balivaran et al. [6], and So et al.[115] exploit early es-
timation techniques, based on pre-characterisations of specific directives for a

35 4.2 Black-box-based Strategies

given HLS tool, to decide the configurations to synthesise during the explora-
tion. Lastly, Haubelt et al. [48] propose a set of rules that enable designers to
estimate the effect obtained by combining different design implementations by
modelling the directives behaviour.

All these approaches have been shown to effectively address the exploration
problem by reducing the complexity of the design space. However, these results
are achieved either by constraining the size of it, or by focusing on specific class
of applications. Therefore, while being able to obtain high quality results these
methodologies lacks in generalisation.

Moreover, analytical models are fine tuned for specific HLS tools, binding
the methodology to the tool analysed to build the model. Adapting the existing
strategies to a different tool is not always a straightforward process since it re-
quires the characterisation of both directives and behaviours of the alternative
tool. In addition, commercial tools change rapidly to address the market require-
ments (e.g. a new version of Vivado HLS [126] is released every year, and minor
updates are are released every 4 months), causing model based approaches to
potentially become obsolete in a short time. Because of these aspects, model-
based approaches do not guarantee the portability of the devised models both
across different tools and among different releases of it.

On the other hand, Black-box-based strategies address these limitations by
adopting an agnostic approach both to the number of directives considered, and
to the HLS tool chosen by the designer. The next section offers an overview of
the state of the art methodologies belonging to this group.

4.2 Black-box-based Strategies

Differently from the model-based approaches discussed in Section 4.1, black-box-
based strategies do not assume an initial knowledge of the problem. These ap-
proaches neither assume prior knowledge of the HLS tools or a characterisation
of the HLS directives considered. As a drawback, these approaches need to build
their knowledge either offline or online during the exploration. This step has
a cost–not present in the model-based strategies–which often requires the black-
box-based methodologies to perform a higher number of synthesis to retrieve high
quality results.

Black-box-based methodologies, can be divided in two different groups. On
one hand, there are learning-based approaches which rely on an initial phase to
learn a model of the synthesis process and, according to the gained knowledge,
guide the selection of the configurations to be explored. These strategies usually

36 4.2 Black-box-based Strategies

build their knowledge in a one time process, then, they use such knowledge to
estimate performance and costs or to guide the exploration. On the other hand,
refinement-based approaches may rely or not on an initial training phase to build
the initial knowledge base, but subsequently, during the ongoing exploration,
such knowledge is refined with the newly acquired data.

Given this classification, different strategies have been proposed. Accord-
ing to the taxonomy from [108] and [97] surveys, we can identify three main
group of strategies: meta-heuristics, dedicated heuristics and supervised learn-
ing approaches. While meta-heuristics and dedicated heuristics fall under the
refinement-based umbrella, supervised learning approaches can be either in the
the learning-based group or in the refinement-based one, depending on whether
the model is updated or not during the exploration.

4.2.1 Learning-based strategies

Ozisikyilmaz et al. [85] proposed an approach using statistical inference to create
a predictive model relying on neural network and linear regression to guide the
DSE of a computer architecture. The proposed approach predicts performance
and cost given processor, memory, and bus parameters of a new architecture.
While this approach highlighted the possibility to use neural network to guide
DSE, to the best of my knowledge, there are no works in literature that adopted
such an approach for HLS-driven DSE.

Alternative approaches have relied on different learning models in order to
retrieve good quality results with a low budget of synthesis. To this end, the
work from Zuluaga [150] proposes a regression model which relies on Gaus-
sian process to predict area and latency given an initial training set. Schafer
et al. use learning-based methods to implement local search techniques, using
pattern matching techniques [106]. Meng et al. [76] proposed a machine learn-
ing approach using adaptive threshold non-Pareto elimination which, instead
of focusing on improving the conventional accuracy of the learner, focuses on
understanding and estimating the risk of losing good designs due to learning
inaccuracy. Zacharopoulos et al. [141] combines a compiler pass analysis and
Random Forest classifier to predict the optimal unrolling factor of loops.

All of the above mentioned methodologies rely on an initial phase to learn
a model of the synthesis process and, according to the gained knowledge, they
perform the selection of the configurations to explore.

37 4.2 Black-box-based Strategies

4.2.2 Refinement-based strategies

These methodologies, differently from the learning-based ones, are able to refine
their knowledge during exploration. In this way, the search for Pareto solutions
can focus on promising regions of the design space discovered online, exclud-
ing the sub-optimal ones by adapting the internal model. During the search for
Pareto optimal solutions, feedbacks resulting from synthesis are collected and are
used to refine the model, aiming at expanding its knowledge while identifying
the most promising configurations.

To this end, meta-heuristic approaches and dedicated heuristics have been
shown to obtain good results when dealing with multi-objective optimisation
problems. In particular population based heuristics, and response surface models
had large popularity in the research community.

Schafer et al. use an adaptive simulated annealing approach [105] to gener-
ates a series of designs exploring efficiently the design space. The same author
proposed a probabilistic model to predict Pareto-dominant solution according to
the choice of the HLS pragmas [104], and a divide and conquer approach which
first explores the loops separately and at the end merges the exploration results
[107].

Liu et al. [64] uses the Random Forest algorithm to infer a model of the
HLS tool and refine the model at each new synthesis. Similarly, Fornaciari et al.
[40] propose a sensitivity-based methodology which evaluates the influence of
architectural parameters, selecting and guiding the exploration according to the
most influential ones.

Different works explored population based techniques [1], [87] and [51] in-
vestigating the use of Genetic Algorithms to guide the DSE problem, addressing
different subsets of directives. Other works ([138], [71], [113] and [86]) use a
Response Surface Model to refine the simulation-based exploration and generate
a model of the synthesis engine.

With a different approaches, Beltrame [5] has instead developed a methodo-
logy which uses the domain knowledge derived from the platform architecture to
guide the exploration using a Markov decision process. Wu et al. [135] instead,
presented a strategy that considers datapath and dynamic FU allocation to ex-
plore area/power trade-off. Piccolboni et al. [91] instead designed an automatic
methodology for the design-space exploration that concurrently coordinates both
HLS directives, and memory optimization.

In a recent editor’s note, Doppa et al. [31] highlighted the importance of
leveraging prior knowledge to effectively reduce the complexity of DSE problems.
A small number of works take this stance in the context of hardware design.

38 4.2 Black-box-based Strategies

However, they do so from a different and somehow limited perspective.
To this end, Dai et al. aim at improving the accuracy of HLS estimations

using post-synthesis data [25], while the goal of Liu et al. is to estimate the
performance on FPGA from an ASIC synthesis report [67]. Deshwa et al. leverage
prior knowledge in the context of network-on-chip DSEs, to identify promising
starting point for their exploration methodology [29]. More recently, Wang et
al. [132] proposed a method to accelerate the process of HLS-driven DSE by
pre-characterizing micro-kernels offline and creating predictive models of these.

Finally, Martins et al. [73] also present a strategy to harness prior knowledge
based on a similarity metric, but their framework is geared towards the selection
of compiler optimizations, as opposed to targeting the hardware domain of HLS.

My research focused mainly on the identification of DSE strategies categor-
ised under the black-box-based class. In particular, works detailed in Chapter 5
belong to the refinement-based category while the one described in Chapter 6
falls in the learning one. They differ from the literature for the introduction of
new formulations able to outperform state of the art methodologies. Moreover,
to the best of my knowledge, the learning-based methodology detailed in Chapter
6 is the first attempt to apply transfer learning to DSE problems for automatic
optimisation of hardware accelerators.

Chapter 5

Refinement-Based Strategies

In this chapter two DSE methodologies, that I have devised during the Ph.D.,
are discussed. Both the methodologies presented here belongs to the refinement-
based categorization introduced in Chapter 4. Refinement-based strategies aim at
learning the behaviour of an HLS tool according to a black-box approach. By ob-
serving the results of the HLS process for a given set of inputs, a refinement-based
strategy aims at estimating the resulting performance and costs of the HLS pro-
cess given the current knowledge of the problem. Each time a new implement-
ation is generated, the new acquired knowledge is used to adapt the inference
process and select a new configuration to synthesise, aiming at improving the
Pareto-frontier.

Section 5.1 presents a cluster-based approach that identifies patterns among
similar implementations in the design space and decomposes the DSE problem
in many smaller subproblems, effectively lowering its complexity and address-
ing each subproblem independently. Section 5.2 describes a local-search based
strategy that reshapes the DSE problems into a lattice and navigates it based on
the observation that Pareto-implementation are neighbours in the lattice repres-
entation of the design space.

5.1 Cluster-Based Heuristic

By analysing the result of a DSE, the presence of certain patterns among the data
can be observed. Figure 5.1 shows an example of DSE for the ChenIDCt function,
from the CHStone benchmark suite [47]. The synthesised implementations are
marked with red crosses, while Pareto-optimal solutions of the design space are
marked with darker dots. From the figure, can be easily identified groups of
points clustered together and comma-shaped patterns. However, while these

39

40 5.1 Cluster-Based Heuristic

0 0.2 0.4 0.6 0.8 1
Latency

0

0.2

0.4

0.6

0.8

1

A
re
a

Figure 5.1. DSE of ChenIDCt from CHStone [47] in area-latency space.

patterns may be easily identifiable in simple design spaces, they may not be easy
to spot in more complex ones.

The exploration strategy presented in this section is motivated by the obser-
vation that some combinations of values, when assigned to directives, result in
high-quality implementations, while others are sub-optimal, leading to designs
with high cost and low performance. For example, the unrolling factors of two
different loops may be inter-dependent because of a producer-consumer relation.
Configurations which do not abide to this relation likely result in sub-optimal de-
signs. Starting from a small initial set of area/latency points in a design space, I
therefore explore it by clustering solutions with a high degree of similarity, and
discarding clusters which are distant from the Pareto curve. Pareto-optimal im-
plementations of the clusters are then combined to generate new configurations
estimated to improve the Pareto frontier.

Clustering allows to decompose the DSE problem in many smaller subprob-
lems, effectively lowering its complexity. Solutions are clustered considering
their similarity both according to the synthesis output and to the input direct-
ive values.

An implementation of a design D is defined as a vector in the space of area
(A), latency (L), and configuration space. The space defined by the area and
latency is named S while the space of all the possible configuration values is
named XD (or, simply, X). Each element of X is a configuration vector ~x . A
configuration vector is created by the concatenation of the knob values defining
a configuration. The set of all the configuration vectors defines the configuration

41 5.1 Cluster-Based Heuristic

foo(int in[10], int out[10]){
bar(in);
for(i = 0; i < 10; ++i){
out[i] = in[i] * in[i];

}
}

x =
Bundling

Function inlining

Loop unrolling

Figure 5.2. Example of a C code and the regions that may be addressed with
HLS directives.

space. Each component of the configuration vector belongs to the set of directive
values associated to a specific knob. Given N knobs, a configuration vector ~x is
defined as:

~x = [k1, k2, · · · , km], k1 ∈ K1, k2 ∈ K2, . . . kn ∈ Km (5.1)

with Ki being the set of directive values associated to the knob i. To obtain
an equally distributed representation of the directive values in X , we represent
these in a discretised form in which each element ki has the same distance from
its previous and following elements in Ki with Ki ∈ [0, 1].

Example. Figure 5.2 shows a simple HLS code snippet and three possible HLS
directives that can be applied: function inlining, input bundling and loop un-
rolling. Inlining can either be performed or not, so the inline directive has two
legal values. Similarly, the two arrays can either be bundled on the same port
or each assigned to a different one. Finally, for this example we assume that
the legal loop unrolling factors are [1, 2,5, 10], corresponding to the discretized
values of [0,1/3, 2/3,1]. A possible discretized configuration vector for this ap-
plication is ~k = [0,1, 1/3] , which corresponds to an implementation with no
port bundling, inlining of function bar, and the for loop unrolled by 2.

The retrieved area (a) and latency (l) numbers obtained synthesizing a con-
figuration, defined by a vector ~x from X , are concatenated to generate a vector
~s belonging to S as follows:

~s = [a, l], a ∈ A, l ∈ L (5.2)

Area and latency values are normalized in order to represent them with the
same range of values of the directive sets. In this case, the normalization is
derived by dividing each element in S by the maximum area and latency values
among the explored configurations.

42 5.1 Cluster-Based Heuristic

y3 = [200, 960, 4, 0, 16, 1]

 y4 = [120, 1500, 4, 0, 4, 1]

Latency

A
re

a
y2 = [1180, 220, 4, 1, 4, 0]

 y1 = [1280, 230, 16, 1, 16, 1]

Figure 5.3. Explored points in the design space are characterized by their
area, latency (first two values) and directives (last four) parameters. In the
example, y1 and y2 may be grouped in a single cluster because they have a
similar performance. y3 and y4 are also grouped together, because they adopt
similar directives values.

An implementation in the design space is completely characterized by its val-
ues in S and X . The concatenation of these two spaces is named the clustering
space Y , and its elements ~y are defined as:

~y ∈ Y = A× L × K1 × K2 × · · · × Km (5.3)

~y = [a, l, k1, k2, · · · , km] (5.4)

Two points (e.g. y3 and y4 in Figure 5.3) may be assigned to the same cluster
if they present similar design parameters, even if they have quite different area
and delay. The grouping of points into clusters is performed each time a new
solution is synthesized, letting the correlation between values of different direct-
ives to naturally emerge. Therefore, the proposed strategy waives the need for a
model of the effect of each directive on a target design.

An approach only relying on intra-cluster exploration may never reach DSE
regions which do not include any point in the initial set. To avoid this pitfall,
clusters are combined to generate new ones. This inter-cluster step enables the
exploration of points whose characteristics are in-between two previously con-
sidered design space regions. Since it searches for intermediate solutions, such
strategy is most effective when points with extreme directive values (high or low)
are included in the DSE as part of the initial set. To ensure this condition, the
directive values in the initial sampling set are generated according to a U-shaped
probabilistic distribution. A detailed description of the DSE framework steps is
provided in the following section.

43 5.1 Cluster-Based Heuristic

Initial
sampling

A C

B

Clustering

A

B

B

A

Cluster selection

Intra-cluster expl.

B

A

D

Inter-cluster expl.

Figure 5.4. Overview of the Clustering-Based DSE framework.

5.1.1 Exploration Methodology

Figure 5.4 summarises the clustering-based heuristic. The clustering-based ex-
ploration process is divided in five steps: a) Initial sampling, b) Clustering, c)
Cluster selection, d) Intra-cluster exploration, e) Inter-cluster exploration. Starting
from the initial sampling of the design space, the Clustering, Cluster selection,
Intra-cluster exploration (expansion of each cluster) and Inter-cluster explora-
tion steps (generation of new clusters) are iteratively performed until either no
new solution is found, or a user-defined budget of synthesis runs expires.

Initial sampling

This step generates the initial set of configurations X̄ , and derives the first ap-
proximation of the design space Pareto curve P̄. For an initial sampling size n,
the X̄ space is composed of n unique configuration vectors ~x .

The elements of each ~x originate from the probabilistic sampling of a sym-
metric Beta distribution, which is characterized by a density function, defined

44 5.1 Cluster-Based Heuristic

0 0.2 0.4 0.6 0.8 1
x

0

1

2

3

4

5

Pr
ob

ab
ili

ty
 D

en
si

ty
 F

un
ct

io
n

Figure 5.5. Beta distributions for different values of α.

over an interval 0≤ x ≤ 1, as:

f (x) =
xα−1(1− x)α−1

B(α)

Where B is the Beta function:

B(α) =

∫ 1

0

xα−1(1− x)α−1d x

As shown in Figure 5.5, this U-shaped distribution has, with a value of α
lower than 1, a higher probability associated to the boundary values of x . By
adopting it, the initial explored set of directive values X̄ will contain elements
whose values have, with high probability, extreme values from the respective set
of directive values. This is a desired property in the proposed framework, so
that Pareto solutions with in-between directive values will be explored during
the refinement steps.

The set of area and latency vectors, resulting from the synthesis of the initially
sampled configurations, defines first instance of S̄. Each vector of S̄ and the
corresponding element of X̄ are concatenated to generate the set Ȳ .

Clustering

Once the initial set of Ȳ is generated, its elements (y) having common charac-
teristics are aggregated into clusters. To this end, I relied on the Hierarchical

45 5.1 Cluster-Based Heuristic

Clustering algorithm [133] [75]. As a similarity metric, I considered the squared
Euclidean distance among the points in the Ȳ space.

To ensure a good balance between intra- and inter-cluster exploration, mul-
tiple clusters should be present, while most of them should aggregate multiple
points. This trade-off is governed via a clustering factor, which sets the number
of clusters to a percentage of the number of the explored designed points. An
exploration of different settings for this parameter is presented in Section 5.1.2.

The clustering operation partitions the Ȳ space into multiple clusters Ci, and
defines C̄ as:

C̄ =
⋃

Ci (5.5)

Each cluster is characterised by its centroid ~c, which is, for each (a, l, k1, k2, ...)
component, the average value among the points belonging to the clusters. More-
over, clusters possess a boundary in the S space, corresponding to a 4 elements
tuple containing the maximum and minimum values of area and latency of the
cluster points.

Example: a cluster C1 = { ~y1, ~y2, ~y3} with ~y1 = [0.1,0.8, 0.1,0.9, 1], ~y2 =
[0.15, 0.7,0.2, 0.8,0] and ~y3 = [0.5,0.5, 0.4,0.4, 1] has the boundary: bc1

=
(0.1, 0.5,0.5, 0.8).

Cluster selection

This step selects which clusters will be considered for the generation of new
points in the Synthesis space.

To perform it, as shown in Figure 5.6a, I consider: the Pareto frontier of
the explored design space P̄ (pictured as diamonds), the Pareto frontier of the
centroids of the clusters P̄C (pictured as a line among centroids) and the cluster
boundaries (pictured as dashed rectangles). This data is employed to select can-
didate clusters corresponding to design space regions which contain promising
solutions. Only the points belonging to these clusters are considered in the fol-
lowing intra- and inter-cluster exploration steps, while the rest are discarded.

Candidate clusters are selected according to three criteria:

1. if ~y ∈ Ci ∧ ~y ∈ P̄, then Ci is a candidate cluster.

2. if a cluster Ci belongs to the Pareto frontier of centroids P̄C , then Ci is a
candidate cluster.

3. for each ~c ∈ C̄\P̄C , if A(~c) and L(~c) are inside the boundaries of an element
of P̄C , then Ci is a candidate cluster.

46 5.1 Cluster-Based Heuristic

Latency

A
re

a C

B
Pc

bA

bB

bC

A

(a) Clusters characteristics and clusters’
Pareto-frontier.

A

B

Latency

A
re

a C

(b) 1st cluster selection criterion.

Latency

A
re

a

A C

B

Pc

(c) 2nd cluster selection criterion.

A

C

B
Latency

A
re

a

bB

(d) 3rd cluster selection criterion.

Figure 5.6. Cluster characterization and application of the cluster selection
criteria described in Section 5.1.1. (a) shows the elements which characterize a
cluster and the design space. In (b) and (d) all clusters are selected for further
exploration, while in (c) cluster C is pruned.

Example: Figure 5.6 exemplifies the application of the cluster selection cri-
teria. In Figure 5.6b, A, B and C are all selected because each of them contains
elements which belong to P̄. Figure 5.6c shows an example where the applica-
tion of the third criterion leads to the selection of clusters A and B. Finally, Figure
5.6d shows an example where the third criterion is applied, since the centroid of
cluster C is within the boundary of cluster B.

Intra-cluster exploration

Intra-cluster exploration identifies new solutions by examining candidate clusters
individually. For each cluster, the algorithm considers the points belonging to its

47 5.1 Cluster-Based Heuristic

Latency

A
re

a

y1

y2

y3y2,3

y1,2
^

^

A

Figure 5.7. Example of intra-cluster exploration, where the estimated solutions
(dashed empty dots) are generated combining Pareto-optimal ones (dark filled
dots).

local Pareto frontier PCi
. These points are pair-wise combined in the Y space by

performing a vector addition relative to the cluster centroid, generating new es-
timated solutions by (Figure 5.7). Combinations which do not improve the global
Pareto frontier are discarded without performing a synthesis run.

Estimated by elements may have directive values which do not correspond to
valid settings for the HLS directives (e.g.: they are not integer numbers). Up to
three valid configurations are therefore derived according to the following rules:

1. each component is casted to the closest directive value.

2. all components are upcasted to a valid directive value.

3. all components are downcasted to a valid value.

After this pass, estimated points which have already been synthesized are also
discarded. The resulting set of bx configurations are then used to invoke the HLS
synthesis tool to retrieve the corresponding (non-estimated) area and latency.
Finally, the new obtained y are added to the Ȳ space and an updated Pareto
frontier is retrieved.

Example: Figure 5.7 shows an example of intra-cluster exploration. The dark
filled dots are the points of the cluster before the exploration, while the dashed
empty dots are the estimated Pareto configurations. In this example only the
combination of y1 + y2 and y2 + y3 generate new estimated design points, since
y1 + y3 does not improve the current Pareto curve.

48 5.1 Cluster-Based Heuristic

Latency

A
re

a

y1

y2
y3

y4

y1,3

y2,3

y2,4

^

^
^

A

B

Figure 5.8. Example of inter-cluster exploration. The Pareto points of cluster
A (dark filled dots) and B (light filled dots) are combined generating new
candidates solutions (dashed empty dots).

Inter-cluster exploration

In order to discover unexplored regions of the design space, this stage combines
design points belonging to different clusters. This step considers all pairings of
the clusters in bPC , merging them and calculating their common centroid.

Vector addition, relative to the centroid, is applied to the Pareto points of
the merged cluster. The resulting set of estimated by vectors are casted to valid
configuration as in the intra-clustering stage. Finally, configurations which are
not yet part of bY are synthesized, and the Pareto frontier is updated.

Example: Figure 5.8 shows an example of an inter-cluster exploration. The
Pareto points of cluster A, y1 and y2 (dark filled dots), are pairwise summed with
the ones of cluster B, y3 and y4 (light filled dots). The results of their vector sum
generate three estimated design points by1,3, by2,3 and by2,4 (dashed empty dots).
The vector sum between y1 and y4 is estimated not to improve the Pareto frontier
and is therefore discarded.

5.1.2 Results

Herein the implementation details and the results obtained by the proposed
cluster-based heuristic are discussed. First we describe implementational de-
tails and the benchmark considered. Then, the exploration of the heuristic’s
hyper-parameters is discussed, and, lastly, a comparison with the state of the
art alternative is shown.

49 5.1 Cluster-Based Heuristic

Experimental setup

The HLS exploration framework presented in the previous sections has been im-
plemented in Matlab, which, as part of its Statistics and Machine Learning Tool-
box [75], provides an implementation of the Hierarchical-Clustering algorithm
employed in the clustering stage. The implementations have been generated us-
ing VivadoHLS from Xilinx [126] as a high-level synthesis tool, using the Kintex7
FPGA as the target architecture, and a clock constraint of 10ns.

HLS benchmarks are derived from the CHStone suite [47]. Table 5.1 reports
them, as well as the directives employed in each case and their considered values,
derived by manual inspection of the benchmarks. The table also indicates the
configuration space size.

To assess the performance of the proposed methodology, I have compared
the result with the heuristic proposed by Liu et al. [64], which has been re-
implemented. It is based on the Random Forest (RF) algorithm [9], which refines
an initial design space sampled with the Transductive Experimental Design (TED
[140]) method. Such combination has been shown in [64] to outperform other
strategies based on different machine learning algorithms [150], [138], [86] and
[71]. As a further baseline, I have also considered the cluster-based implement-
ation and that of Liu et al. when a random initial sampling is adopted.

For all experiments, the Pareto frontier P is derived from an exhaustive search
of all possible directive configurations. Such brute-force exploration required
multiple days of computation on each of the considered benchmarks, highlight-
ing the importance of exploration heuristics targeting HLS. Since both the pro-
posed methodology and that of Liu et al. have a probabilistic component gov-
erned by a seed value, for each experimental setting I run the algorithms 100
times, averaging the results.

As a quality metric, I employed the ADRS to measures the difference between
two Pareto curves: the ground-truth one P and the approximate one retrieved
by the heuristic P̄. A low value of ADRS indicates that P̄ well approximates P,
while a high one reports a low-quality approximation.

Parameter tuning

In this section are evaluated the effect of varying the parameters required by the
cluster-based framework: the clustering factor (governing the size and number
of clusters generated at run-time) and the number of points evaluated in the
initial sampling phase.

Figure 5.9 shows the impact of adopting different clustering factors, for the

50 5.1 Cluster-Based Heuristic

Table 5.1. Pragmas applied to the different CHStone function explored. (|D|
= size of the design space)

Benchmark Function Pragma Values

unroll loop1 0,2,4,8
unroll loop2 0,2,4,8
unroll loop3 0,2,4,8,16,32,64

jpeg
ChenIDct
|D| = 224

bundle 0,1
unroll loop1 0,5,10,25,50
unroll loop2 0,2,5,10
unroll loop3 0,2,11,22
unroll loop4 0,6
inline all 0,1

encode
|D| = 640

bundle 0,1
unroll loop1 0,5,10,25,50
unroll loop2 0,2,5,10
unroll loop3 0,2,5,10
unroll loop4 0,6
inline all 0,1

adpcm

decode
|D| = 640

bundle 0,1
unroll loop1 0,4,16,40,80,160
unroll loop2 0,4,16,40,80,160
unroll loop3 0,9
unroll loop4 0,4,19,38,76,152
unroll loop5 0,9

Autocorr
|D| = 1728

bundle 0,1
unroll loop1 0,3,9
unroll loop2 0,7
unroll loop3 0,3,9
unroll loop4 0,2,4,8
inline func1 0,1
inline func2 0,1
inline func3 0,1
inline func4 0,1
inline func5 0,1

gsm

Reflection
|X | = 4608

bundle 0,1

51 5.1 Cluster-Based Heuristic

Table 1

ChenIDCt encode decode Autocorrelation reflection_Coeff

5 0.0333 0.0212 0.0175 0.0579 0.0063

10 0.0319 0.0159 0.0131 0.0452 0.0066

15 0.0311 0.0176 0.0129 0.0373 0.0067

20 0.0308 0.0168 0.0112 0.0410 0.0068

A
ve

ra
ge

 A
D

R
S

0

0.015

0.03

0.045

0.06

ChenIDCt encode decode Autocorr Reflection

5%
10%
15%
20%

�1

Figure 5.9. Effect of the clustering tradeoff factor for the different benchmarks,
with a size of the Initial sampling set equal to 10% (lower values are better).

considered benchmarks, on the achieved ADRS. The data reported in the figure
considers a number of clusters equal to 5%, 10%, 15% and 20% of the number
of explored design points. It highlights that this parameter has a small impact on
the quality of the results, with a value of 15% leading, on average, to marginally
better results.

The size of the initial sampled set plays instead a more important role, and
this is seen in Figure 5.10. The figure shows the performance of the proposed
heuristic, in terms of mean ADRS achieved, for different initial sampling sizes
(5%, 10%, 15% and 20% of the design space) for the decode function from the
gsm benchmark. It can be observed that, the higher the initial sampling size,
the better approximation the algorithm finally converges to–i.e., it converges
to a lower ADRS value. On the other hand, if we consider an a-priori limited
number of synthesis, then lower initial sampling sizes can outperform higher
values. For example, for a budget of 100 synthesis, an initial sampling of 10%
reaches a lower ADRS than an initial sampling of 15%. Indeed, if the number of
synthesis is limited, there is a tradeoff between how many synthesis should be
spent initially, and how many are then left for exploration. The results shown
in the state of the art comparison are collected adopting an initial sampling size
of 10% and a clustering factor of 15%. Consistent results have been obtained in
further experiments with all initial sampling sizes and clustering factors. Given
these considerations, a clustering factor of 15% and an initial sampling size of
10% have been chosen the following experiments.

State of the art comparisons

Herein is discussed a comparative evaluation of the proposed methodology with
respect to the one proposed by Liu et al. of [64]. The comparison is illustrated

52 5.1 Cluster-Based Heuristic

0 50 100 150 200 250
of synthesis

100

101

m
ea

n
A

D
R

S

5%
10%
15%
20%

Figure 5.10. Comparison among different initial sampling sizes for the decode
function from CHStone [47].

in Figures 5.11 through 5.15. These figures report the ADRS achieved by the
proposed framework (Clust-Beta), with a maximum budget of synthesis equal
to 40% of the total design space and an initial sampling budget equal to 10%.
Results are compared with five other combinations of initial sampling and refine-
ment exploration strategies: the intra- and inter-cluster exploration combined
with random or TED initial sampling, and Random Forest (RF) exploration of a
Beta, random or TED initial sampling. Across all benchmarks, Clust-Beta consist-
ently outperforms alternative methodologies, both when a low or a high number
of synthesis are considered, with the only exception of Autocorr for a high syn-
thesis budget. The competitive advantage of Clust-Beta qualitatively lays in our
design space decomposition, together with the intra- and inter-cluster explora-
tion and the use of a Beta-distribution for the initial sampling. The combina-
tion of these factors enables to focus the exploration only on the most promising
regions of the design space. Further experiments with all initial sampling sizes
reported in Figure 5.10, sweeping the synthesis budget up until both our method
and the best performing alternative converge or reach 40% of the design space
size. Results are consistent with the one shown in Figures 5.11—5.15: Clust-
Beta outperforms the other considered methodologies most (87%) of the times,
resulting in smaller ADRS.

Lastly, I have evaluated the algorithm run-time (without considering the time
required for the synthesis) of Clust-Beta with respect to RF-TED. For the run-time
comparison I have considered the execution time of Clust-Beta and RF-TED run-

53 5.1 Cluster-Based Heuristic

Table 5.2. Run-time comparisons: Clust-Beta vs RF-TED

ChenIDCt encode decode Autocorr Reflection
Run-time

comparisons
1.9x 1.76x 1.81x 1.31x 20.17x

ning both algorithm until no new synthesizable configuration are generated, or
40% of the design space is explored. The run-time is then divided, in both cases,
by the number of synthesis effectively run, so that a measure of the time spent
in the exploration engine itself can be obtained. Results are reported in Table
5.2. Note that, besides reaching a better approximation of the Pareto curves,
Clust-Beta is also quicker compared to the one proposed by Liu et al. of [64].
The highest speedup is achieved in the Reflection case, which is the largest
among the considered applications, hinting at a better scalability of the devised
methodology.

This work has been presented at the IEEE International Conference in Com-
puter Design (ICCD) 2017, and the paper has been selected for a journal public-
ation in IEEE Transaction on Emerging Topics in Computing (TETC) 2018 [36].

0 20 40 60 80
of synthesis

10-2

10-1

100

m
ea

n
A

D
R

S

Clust - Beta Clust - Random RF - TED
Clust - TED RF - Beta RF - Random

Figure 5.11. ADRS curves comparisons for the ChenIDCt benchmark.

54 5.1 Cluster-Based Heuristic

0 50 100 150 200 250
of synthesis

10-2

10-1
m

ea
n

A
D

R
S

Clust - Beta Clust - Random Clust - TED
RF - Beta RF - Random RF - TED

Figure 5.12. ADRS curves comparisons for the Encode benchmark.

0 50 100 150 200 250
of synthesis

10-2

10-1

m
ea

n
A

D
R

S

Clust - Beta Clust - Random Clust - TED
RF - Beta RF - Random RF - TED

Figure 5.13. ADRS curves comparisons for the Decode benchmark.

55 5.1 Cluster-Based Heuristic

0 100 200 300 400 500 600
of synthesis

10-1

100
m

ea
n

A
D

R
S

Clust - Beta Clust - Random RF - TED
Clust - TED RF - Beta RF - Random

Figure 5.14. ADRS curves comparisons for the Autocorr benchmark.

0 500 1000 1500
of synthesis

10-2

10-1

m
ea

n
A

D
R

S

Clust - Beta Clust - Random RF - Beta
RF - Random RF - TED Clust - TED

Figure 5.15. ADRS curves comparisons for the Reflection benchmark.

56 5.2 Lattice Search

5.2 Lattice Search

-1.5 -1 -0.5 0 0.5 1 1.5
PC1

-1.5

-1

-0.5

0

0.5

1

1.5

PC
2

Figure 5.16. DSE of ChenIDCt CHStone [47] in the PCA directives space.

Figure 5.1 shown an example of non-exhaustive exploration of the ChenIDCt
function, from the CHStone suite [47], where all Pareto-solutions have been
found. The figure shows the configurations plotted on a 2 dimensional space
of area and latency. Synthesised configurations are marked with filled dots, non
synthesised ones with crosses, and Pareto-optimal solutions of the design space
with darker dots.

By analysing the exploration results in the area-latency space, it is hard to
identify correlations among the different configurations. However, the same
dataset can be observed–applying Principal Component Analysis [54]–as a func-
tion of the variance of the directives. Figure 5.16 represents the same configura-
tions of Figure 5.1 in the directives space, after performing Principal Component
Analysis (PCA) on the normalised directive values, thus reshaping them accord-
ing to their variance. The figure plots the data only as function of first and second
PCA components. Crucially, in this representation Pareto-optimal solutions tend
to cluster together, or to be distributed on a common plane.

As the configuration space X is the Cartesian product among the different
directive sets Kn, the variance of the design space depends on the variance of
each directive set Kn, which in turn depends only on the sets cardinality. By
shaping the design space as a unitary N -dimensional lattice (where each dimen-
sion represents a directive associated to a directive set Kn) I therefore obtain a
representation of the HLS problem in which, as in PCA representation, Pareto-
points are closely clustered, a key characteristics exploited by the exploration

57 5.2 Lattice Search

Figure 5.17. Petrie projections of N -dimensional lattices. (Left) 4-dimensional
lattice. (Center) 7-dimensional lattice. (Right) 11-dimensional lattice. For
simplicity, only the vertices of the N -dimensional lattices are shown.

framework illustrated in the following sections.
Figure 5.17 shows three examples of lattice. The figure shows the petrie poly-

gon orthographic projections of a 4-dimensional lattice, 7-dimensional lattice,
and 11-dimensional lattice. For simplicity, only the vertices of the N -dimensional
lattices are shown.

To strengthen this observation I have analysed, again for the ChenIDCt bench-
mark, the distribution of the euclidean distances in the lattice space among
Pareto-optimal solutions, with respect to the ones considering all other configur-
ations. Results, shown in Figure 5.18, highlight that the average distance among
Pareto-optimal solutions is significantly smaller than the average distance among
non Pareto-optimal ones. Indeed, the Mann-Whitney-Wilcoxon Test (or U-test,
[70]) applied to the two distance sets results in a small p-value of 1.8843e−08,
which indicates their statistical difference and the possibility to distinguish be-
tween them. Similar outcomes were retrieved for the other benchmarks evalu-
ated (described in Section 5.2.2), and summarised in Table 5.3.

5.2.1 Exploration Methodology

The proposed lattice-traversal DSE strategy, as shown in Figure 5.19, is divided
in 3 phases: A) Lattice creation & initial Sampling, B) Selection of lattice Pareto-
neighbours, B) Synthesis & lattice labelling. After lattice creation and initial sam-
pling, steps b) and c) are repeated until either a user-defined budget of synthesis
runs is reached or the neighbourhood search does not return any more feasible
candidate.

58 5.2 Lattice Search

0 0.5 1 1.5 2
Distance

0

1

2

3

4

5

Pr
ob

ab
ili

ty
 D

en
si

ty
 F

un
ct

io
n

Pareto config.
non-Pareto config.

Figure 5.18. Distance distribution among Pareto configurations and among
non-Pareto ones.

Table 5.3. Distribution of the distances among Pareto-configurations and non-
Pareto ones, for different CHStone benchmark functions[47].

Function
non-Pareto Pareto U test
µ σ µ σ p-value

ChenIDCt 1.0689 0.0823 0.7382 0.2013 1.8843e-08
Encode 1.4719 0.0634 1.0323 0.1440 4.5067e-13
Decode 1.4729 0.0638 1.2319 0.1778 4.4463e-09
Reflection 2.0762 0.0481 1.5082 0.1317 2.1293e-11
Autocorr 1.4363 0.0607 1.2803 0.1158 3.9376e-18

end
yes

Lattice creation
&

initial sampling

Selection of lattice
Pareto-neighbours

Synthesis
&

lattice labelling

no

stopping
criterion satisfied?start

A B

C

Figure 5.19. Overview of the lattice exploration algorithm.

59 5.2 Lattice Search

K3

K2

K1

0 0.5 1

0

1

1
0

0.2

0.4

0.6

0.8

Figure 5.20. Example of 3-dimensional lattice for 3 directive sets with cardin-
alities: |K1|= 3, |K2|= 2 and |K3|= 6.

Lattice representation and initial sampling.

Given the design space X , composed of N different sets of directive values KN , the
different configurations x are represented as an N -dimensional lattice structure
where each dimension is a directive set. Each node in the lattice is a configuration
x and each dimension goes from 0 to 1 with M admissible values, with M being
the number of directive values in Ki. The lattice is ordered according to the KN

directive values. Figure 5.20 shows an example of 3-dimensional lattice for 3
directive sets with cardinalities: |K1|= 3, |K2|= 2 and |K3|= 6.

After lattice creation, an initial sampling of the design space generates the
first set of configurations X̄ from which the first approximation of the real Pareto
frontier is obtained. X̄ is composed of a set of n unique configuration directives
x . We adopt the same initial sampling strategy proposed in [36], which uses a
U-shaped Beta distribution to sample n directive values from the corresponding
admissible set Ki, generating n different configurations.

Then, area and latency information is retrieved by synthesising the configur-
ations in X̄ to obtain the corresponding values S̄. From S̄, the Pareto-solutions
are identified and a first approximation P̄ of P is obtained. Figure 5.21 shows
an example of lattice, discriminating the nodes between synthesised solutions
(belonging to X̄), non-synthesised ones (bX = D\X̄) and, among the nodes in X̄ ,
the Pareto configurations P̄.

60 5.2 Lattice Search

Selection of lattice Pareto-Neighbours

Once the N -dimensional lattice is created and the initial points are sampled, few
further design points in bX are selected as candidates for synthesis. To this end,
for each element in P̄ the algorithm considers the euclidean distance among the
elements in bX and selects the closest ones, building a new node set bX ∗. X̄ is then
updated with the new selected elements, removing these from bX .

Synthesis & lattice labelling

After the selection of the Pareto-Neighbours bX ∗, these elements are synthesised
and the corresponding area and latency results are retrieved. Then, the new
Pareto-frontier is computed and the set of P̄ nodes is updated. The algorithm
continues to explore the design space selecting at each iteration a new set of bX ∗

until the design space is exhaustively explored or a stopping criterion–such as a
budget of synthesis–is satisfied and the exploration ends.

Example: Figure 5.21a shows an example of exploration with six synthesised
configurations and a set of Pareto-solutions P̄. In the figure, the synthesised solu-
tions X̄ are the filled dots, while the empty ones are the elements of bX . The filled
dots can be further divided into Pareto-solutions (darker, blue dots) and dom-
inated solutions (lighter, red ones). Among the elements of X̄ , four are Pareto-
solutions: p1, p2, p3 and p4. The algorithm searches for Pareto-solution neigh-
bours selecting first the configurations closer to a point pi. The selection of the
new configurations moves in the direction of the dimension with the maximum
variance–in this case the directive set K3. The thicker lines show which config-
urations are selected as neighbours. At the following iteration, Figure 5.21b, a
new Pareto-element has been discovered and sets P̄ and X̄ have been updated.
At this point, the exploration from p1 stops–since p1 is now dominated–while ex-
ploration for the new set of P̄ proceeds as before. For Pareto-solutions p3 and p4,
the nearest neighbours in bX are along lattice dimension K1. While for p4 there
is only one close element, p3 has two neighbours at the same distance. In this
case p3 explores randomly one of the two solutions. In the next iteration (Figure
5.21c) P̄ and X̄ are updated; p3, which has not found a Pareto-solution in the
neighbour which was previously selected among two, now tries the other one;
the other points continue moving towards closest non-synthesised neighbours.
At this iteration, the exploration leads p2 and the newly discovered p7 to select
the same neighbour, and the corresponding configuration will be synthesised
only one time. Finally, Figure 5.21d shows a further iteration of the exploration
algorithm. In this case, 3 different paths reach the same configuration, which is

61 5.2 Lattice Search

10.5
0
0

0.2

0.4

0.6

0.8

1

0.5 01
p

p

p

p1

2

3

4

K3

K2K1

(a) Algorithm iteration n

10.5
0
0

0.2

0.4

0.6

0.8

1

0.5 01

p3

4p

p2

p5

K3

K2K1

(b) Algorithm iteration n+1

10.5
0
0

0.2

0.4

0.6

0.8

1

0.5 01

p2

p5

p6

p3

p7

K3

K2K1

(c) Algorithm iteration n+2

10.5
0
0

0.2

0.4

0.6

0.8

1

0.5 01

2p

5p

p66

8
p

p9

p10

K3

K2K1

(d) Algorithm iteration n+3

Figure 5.21. Example of lattice exploration. Dots represent the X directive
configurations. Configurations belonging to bX have not yet been synthesised,
and are marked as empty dots. Synthesised configurations (hence belonging
to the X̄ set) are indicated with filled dots. Among these, darker filled dots
are Pareto-solutions P̄. Thick lines connect Pareto-solutions to their closest
configurations, which will be synthesised in the next iteration of the exploration
algorithm.

identified as the nearest neighbour in bX of p2, p5 and p10.

Local searches

The naïve algorithm implementation described in the previous section requires to
store in memory, for the duration of the exploration, the entire multi-dimensional
lattice. Such requirement could hamper the scalability of the lattice-based ap-

62 5.2 Lattice Search

r = 0.5

K3

K2

K1

0 0.5 1

0

1

1
0

0.2

0.4

0.6

0.8

Figure 5.22. Example of local search with an exploration sphere of radius
r = 0.5. The dots are configurations in the lattice. The filled dots are the
possible candidate configurations included in the Exploration Sphere.

proach, since lattice creation may even be impossible for large designs, due to
the exponential relation between the number of directives and the number of
lattice points.

To address this problem, I devised an optimisation that only performs local
searches in the neighbourhood of the P̄ points, and therefore does not require
representation of the entire lattice. The identification of Pareto-Neighbours is
then performed only within an exploration sphere of short and tuneable radius
(Figure 5.22), by iteratively generating the configurations included in the sphere
centred in a p ∈ P̄ point.

To perform local searches, information of the already-synthesised configura-
tions must still be preserved, to avoid multiple synthesis of the same design point
and multiple selection of the same point as a closest neighbour. To this end I use
a tree structure (Synthesised Configuration Tree, SCT). The tree has as many
levels as the design space directives (plus the tree root), with each level having
at most as many branches as the admissible directive values. At the start of the
exploration, the SCT is empty, except for the root node. Then, each time a syn-
thesis is performed, a new leaf is added, as well as the proper path connecting
it to the root. The tree would eventually become completely populated in the
case of an exhaustive exploration (in which all configurations are visited), but
remains sparse when only a small fraction of the design points are synthesised.

A second tree structure (Visited Configuration Tree, VCT) is dynamically con-

63 5.2 Lattice Search

0
0
0

-0.5
0
0

0.5
0
0

0
-1
0

0
1
0

0
0

-0.2

0
0

0.2

-0.5
0

0.2

0.5
0

0.2

0
-1
0.2

0
1

0.2

0
0
0

0
0

0.4

level1

valid

distance > r

out of lattice

already visited in the tree

root

level2

already synthesized

F1
F2
F3

Figure 5.23. VCT structure generated by a neighbourhood search of radius r
= 0.4, considering the lattice structure is of Figure 5.21 and starting on the
[0,0,0] point. At the first tree level, three of the resulting configurations are
out of the lattice bounds and two exceed the radius constraint. If the node
[0,0,0.2] has already been synthesised, the search proceeds to a second level,
where only [0,0,0.4] is a valid neighbour point.

structed at each neighbourhood search. As shown in Figure 5.23, the root node
of this tree contains the directive values of the point at the centre of the explor-
ation sphere. Then at each level of the tree, one directive value is incremented
or decremented by the directive minimum distance. A test is then performed to
check if any of the configurations at each VCT node is not encoded in the SCT
(and has not, therefore, been synthesised). If this is the case for exactly one VCT
node, its configuration is the desired p neighbour. If instead multiple candidates
are retrieved, the one at the minimum distance is selected. Finally, if no solutions
are found, the radius constraint is iteratively increased to allow exploration of
further configurations. VCT branches are pruned if a) any directive value is < 0
or > 1 , indicating that the related configuration is outside of the lattice bounds,
b) the configuration vector of a node has already been visited elsewhere in the
tree, and c) the distance between the configuration values of a VCT node and the
ones of p is > r. Hence, VCTs contain at most as many nodes as the number of
lattice nodes belonging to the exploration sphere.

Besides recasting the nearest-neighbour search as a local problem, this for-
mulation has the benefit of providing a tuning parameter in the form of the max-
imum allowable radius rmax to be explored. By changing it, it is possible to tune

64 5.2 Lattice Search

the extent of local searches and in effect limit the maximum depth of VCTs. The
effect of different rmax settings are studied in Section 5.2.2.

5.2.2 Results

Experimental setup

I have implemented the lattice-based HLS exploration methodology in the Py-
thon language. All configurations for the considered benchmark functions were
synthesised using VivadoHLS from Xilinx [126], targeting a Kintex7 FPGA, with
a clock constraint of 10ns. The same benchmarks adopted for the cluster-based
heuristics detailed in Table 5.1 have been considered. The explorations have
been evaluate comparing the results obtained by the proposed methodology with
the ground-truth obtained through an exhaustive exploration of the design space.
Note that the both the cluster-based approach and the lattice-traversing explor-
ation framework can be interfaced to any HLS synthesis tool and target any syn-
thesis directive, as long as a notion of performance and cost can be derived from
the outputs, and inputs can be expressed with directive sets having a non-infinite
cardinality.

As done by other related works (e.g. [64][36] [71][86][114][138][36]), I
have evaluated the quality of the performed explorations in terms ADRS.

Parameter tuning

In Section 5.2.1, I introduced a tuneable parameter rmax , that constrains Pareto
neighbour searches. Figure 5.24 reports the effect of varying its value on the
achievable ADRS, for the Decode function. By setting it to the minimum lattice
distance (rmax = 0.25), only a very small lattice neighbourhood is considered.
This choice entails that only Pareto neighbours along the directive values having
the highest cardinality are explored. In addition, I have considered rmax values
of 0.5, 1, and∞. In the latter case, the search is only bounded by the lattice size,
and hence proceeds until any non-synthesised point is found, if one exists in the
design space. Results show that a small radius suffices to perform high-quality
explorations: while a value of 0.25 results in a relatively poor value of final ADRS,
setting the radius to 0.5 already enables to retrieve a very good approximation
of the real Pareto frontier while still exploring only a small portion of the design
space.

In turn, reducing the size of the Exploration Sphere implies that few neigh-
bours must be evaluated during local searches, minimising the memory footprint

65 5.2 Lattice Search

0 200 400 600 800
of synthesis

0

0.01

0.02

0.03

0.04

0.05

m
ea

n
A

D
R

S

Final ADRS (r = 0.25)

Final ADRS (r = 0.5)

Final ADRS (r = 1)

Final ADRS (r = inf)

0 200 400 600 800
of synthesis

0

0.01

0.02

0.03

0.04

0.05
m

ea
n

A
D

R
S

Figure 5.24. ADRS obtained with lattice explorations for the Decode function,
with different rmax constraints.

of the lattice-based algorithm, while also reducing its run-time. Indeed, Figure
5.25 shows an exponential relationship between the maximum radius and the
size of the VCT search tree described in Section 5.2.1, as well as the time re-
quired for its traversal. Similar results were obtained for the other considered
benchmarks. They are reported in Table 5.4, showing the VCT size for differ-
ent rmax values, and the run-time required for a single neighbourhood search.
In all cases, a constrained radius rmax = 0.5 offers a good tradeoff between the
quality of the obtained results and the portion of design space evaluated at each
iteration.

The fast and effective explorations deriving from local searches result in much
lower workloads compared with state of the art alternatives, as the comparative
evaluation illustrated in Figure 5.26 showcases. The data in Figure 5.26 dis-
regards the time required for synthesis, being independent from the exploration
strategy. This characteristic enables the tackling of very large design spaces, such
as the one illustrated later in this section.

In an additional round of experiments, I have investigated the robustness of
Lattice-expl when the initial sapling size parameter is varied. In the previous
experiments an initial sampling size equal to 10% of the design space has been
considered. In this regard, Table 5.5 shows the number of synthesis required, for
each functions, to reach an ADRS of 0.01, when adopting initial samplings equal
to 1%, 2%, 5% and 10% of the design space size. The results highlight that our
methodology is able to smartly navigate the design even when starting from few
initial configurations.

66 5.2 Lattice Search

0 0.5 1 1.5 2 2.5
Radii

0

200

400

600

800

V
C

T
no

de
s

9.139 ms

42.189 ms

323.549 ms

2267.803 ms

Figure 5.25. VCT tree size and average time required for a lattice neighbour-
hood exploration with different rmax constraints, targeting the Decode function.

Table 5.4. Memory and run-time evaluation, varying the radius of the Explor-
ation Sphere.

Function
ChenIDCt Encode Decode Autocorr Reflection

rmax = 0.25
Time [ms] 7.545 6.418 9.139 23.899 25.718
ADRS 0.0618 0.0273 0.0367 0.0086 0.0083
VCT nodes 3 3 3 7 1

rmax = 0.5
Time [ms] 35.700 38.313 42.189 202.509 79.376
ADRS 0.0021 0.0039 0.0007 0.0017 0.0083
VCT nodes 39 21 21 81 7

rmax = 1
Time [ms] 153.297 309.019 323.549 1392.983 149.943
ADRS 0 0 0 0 0
VCT nodes 111 81 81 218 43

67 5.2 Lattice Search

0 1000 2000 3000 4000 5000
Design Space size

0

1000

2000

3000

4000

5000

6000

Ti
m

e
to

 re
ac

h
an

 A
D

R
S=

0.
01

 [s
ec

]

Lattice-expl
RF-ted

Figure 5.26. Run-times required by the RF-Ted[64] and Lattice-expl (rmax =
0.5) algorithms to reach an ADRS of 0.01, considering the benchmarks in Table
5.1.

Table 5.5. Number of synthesis (in percentage with respect to the design space)
required to obtain an ADRS = 0.01, with rmax = 0.5, varying the size of the
initial sampling.

Initial sampling
Function 1% 2% 5% 10%
ChenIDCt 60 (27%) 67 (30%) 61 (27%) 52 (23%)
Encode 180 (28%) 159 (25%) 111 (17%) 102 (16%)
Decode 201 (31%) 117 (18%) 86 (13%) 103 (16%)
Autocorr 838 (48%) 680 (39%) 589 (34%) 363 (21%)
Reflection 246 (5%) 240 (5%) 332 (7%) 460 (10%)

State of the art comparisons

In Figures 5.27-5.31 the performance of the proposed methodology (Lattice-expl)
is compared with two state of the art algorithms: the heuristic proposed by Liu
et al. (RF-ted, [64]), re-implemented for comparison, and the Clust-beta [36],
presented in 5.1. Since both the Lattice-expl methodology and the Clust-beta
have a probabilistic component due to the initial sampling, for those cases I ran
the explorations 100 times, averaging the results. An initial sampling size equal
to 10% of the design space has been been used as a sampling size. The work
from [64] is based on Random Forest, and has been shown to outperform other

68 5.2 Lattice Search

strategies based on different machine learning algorithms [150], [138], [86] and
[71].

The comparisons are illustrated in Figures 5.27 to 5.31. The figures report
the ADRSs achieved by the three methodologies, starting after the initial sam-
pling phase. Across all benchmark functions, Lattice-expl reaches a tangibly bet-
ter (lower) ADRS with a smaller number of synthesis at the end of the explora-
tion. However, in few case in the early stage of the exploration, the Clust-beta
methodology is able to obtain slightly better results than Lattice-expl, due to the
greedy nature of Clust-beta.

In addition to the comparison with the state of the art, to showcase the high
degree of scalability of the lattice-based exploration methodology, I have per-
formed an exploration of the Autocorr benchmark along 9 different directives
(including clock frequency, unrolling factors of every loops, function inlining
and bundling options). As in this case the resulting design space size exceeds
1.5 million points, we could not derive the ground truth of the real Pareto im-
plementations, required to compute the quality of solutions in terms of ADRS.
Figure 5.32 instead plots the Pareto frontier retrieved by our framework after
a number of different synthesis budgets, highlighting that the lattice-based ap-
proach can be employed even in such extremely large design spaces, and showing
an effective iterative improvement of the Pareto frontier.

This work has been published in the Proceeding of IEEE International Con-
ference in Computer Design (ICCD) 2018 [37].

0 20 40 60 80 100
of synthesis

0

0.02

0.04

0.06

0.08

0.1

m
ea

n
A

D
R

S

ChenIDCt
Lattice-expl
Clust-beta
RF-ted

In
iti

al
 sa

m
pl

in
g

Figure 5.27. ADRS curves comparisons for the ChenIDCt benchmark.

69 5.2 Lattice Search

0 50 100 150 200 250 300
of synthesis

0

0.02

0.04

0.06

0.08

0.1

m
ea

n
A

D
R

S

Encode
Lattice-expl
Clust-beta
RF-ted

In
iti

al
 sa

m
pl

in
g

Figure 5.28. ADRS curves comparisons for the Encode benchmark.

0 50 100 150 200 250 300
of synthesis

0

0.02

0.04

0.06

0.08

0.1

m
ea

n
A

D
R

S

Decode
Lattice-expl
Clust-beta
RF-ted

In
iti

al
 sa

m
pl

in
g

Figure 5.29. ADRS curves comparisons for the Decode benchmark.

70 5.2 Lattice Search

0 200 400 600 800
of synthesis

0

0.02

0.04

0.06

0.08

0.1

m
ea

n
A

D
R

S

Autocorr
Lattice-expl
Clust-beta
RF-ted

In
iti

al
 sa

m
pl

in
g

Figure 5.30. ADRS curves comparisons for the Autrocorr benchmark.

0 500 1000 1500 2000
of synthesis

0

0.02

0.04

0.06

0.08

0.1

m
ea

n
A

D
R

S

Reflection
Lattice-expl
Clust-beta
RF-ted

In
iti

al
 sa

m
pl

in
g

Figure 5.31. ADRS curves comparisons for the Reflection benchmark.

71 5.2 Lattice Search

0 0.5 1 1.5 2 2.5
Latency 105

0

0.5

1

1.5

2

2.5

3

3.5

A
re

a

104

After 2000 synth.
After 500 synth.
After 100 synth.
Initial sampling 10 synth.*

0 0.5 1 1.5 2 2.5
Latency 105

0

0.5

1

1.5

2

2.5

3

3.5

A
re

a

104

After 2000 synth.
After 500 synth.
After 100 synth.
Initial sampling 10 synth.

0 0.5 1 1.5 2 2.5
Latency 105

0

0.5

1

1.5

2

2.5

3

3.5

A
re

a

104

After 2000 synth.
After 500 synth.
After 100 synth.
Initial sampling 10 synth.

0 0.5 1 1.5 2 2.5
Latency 105

0

0.5

1

1.5

2

2.5

3

3.5

A
re

a

104

After 2000 synth.
After 500 synth.
After 100 synth.
Initial sampling 10 synth.

0 0.5 1 1.5 2 2.5
Latency 105

0

0.5

1

1.5

2

2.5

3

3.5

A
re

a

104

After 2000 synth.
After 500 synth.
After 100 synth.
Initial sampling 10 synth.

Figure 5.32. Pareto frontier evolution for the Autrocorr benchmark with more
than 1.5 million possible configurations.

72 5.2 Lattice Search

Chapter 6

Transfer Learning Driven Design Space
Exploration

In Chapter 5 two different Refinement-based methodologies have been presen-
ted. The two approaches start the DSE relying on an initial set of synthesis re-
trieved trough the use of an initial sampling approach. After this initial step,
both the methodology start navigating the design space aiming at leveraging
the knowledge of the synthesised configurations in order to discover new Pareto
solutions. While these strategies are effective in discovering an approximation
of the Pareto frontiers of the target designs, it is clear that the necessity to build
the initial set of knowledge from scratch every time is a limitation of the two
approaches.

To this end, I have investigated the the feasibility of effectively harnessing
the knowledge of past synthesis outcomes to guide the optimization of new designs.
This new approach, differently from the previous two, does not belong to the
Refinement-based category defined in Chapter 4, but falls in the Learning-based
classification. In the next sections the details of the proposed strategy leveraging
prior knowledge from past DSEs (Section 6.1) will be described. Then, I present
a database of DSEs aiming at helping researchers developing new strategy and
allowing an easier comparison among existing and future DSE methodologies
(Section 6.2).

6.1 Leveraging Prior Knowledge

When optimizing a design with HLS, an expert designer starts by identifying
which directives are applicable. For example, given the code in Snippet 6.5, the
designer may be interested in exploring unrolling factors for loops, combined

73

74 6.1 Leveraging Prior Knowledge

Listing 6.1. last_step_scan (target).
1 void l a s t _ s t e p _ s c a n (in t bucket [SIZE] , in t sum[RADIX]) {
2 in t i , j , k ;
3 loop_1 : for (i = 0; i < RADIX ; i++){
4 loop_2 : for (j = 0; j < BLOCK; j++) {
5 k = (i * BLOCK) + j ;
6 bucket [k] = bucket [k] + sum[i] ;
7 }
8 }
9 }

Listing 6.2. get_delta_matrix_weights2 (source).
1 void get_de l ta_matr ix_weights2 (double del ta_weights2 [N_NODES

*N_NODES] , double ou tpu t_d i f f e r ence [N_NODES] , double
l a s t _ a c t i v a t i o n s [N_NODES]) {

2 in t i , j ;
3 loop_1 : for (i = 0; i < N_NODES; i++) {
4 loop_2 : for (j = 0; j < N_NODES; j++) {
5 del ta_weights2 [i * N_NODES + j] = l a s t _ a c t i v a t i o n s [i]

* ou tpu t_d i f f e r ence [j] ;
6 }
7 }
8 }

with different degrees of partitioning for the input/output arrays.
Furthermore, the designer may recall to have already optimized in the past

a design with a similar code structure, such as the one reported in Snippet 6.2.
Indeed, even if they are not identical (e.g., the loop boundaries and the memory
access patterns differ), the two code snippets have some structural similarities:
they both iterate over two nested loops and process data provided in input to
the function through pointers. These similarities may be sufficient to suggest
adapting those directives that lead to optimal implementations for Snippet 6.2
to the case of Snippet 6.5, instead of starting the DSE by trying anew many
combinations of directives.

The designer’s empirical strategy to tackle the DSE task hence consists of
three main steps: a) identify the main structural characteristics in the code of
the target design, b) pinpoint a similar already-explored design, and finally c)

75 6.1 Leveraging Prior Knowledge

transfer the knowledge from the source design to the new target design.

The proposed methodology performs these steps, but, differently from the above-
described scenario, operates in a systematic and automated way. Section 6.1.2
shows that explorations, guided by prior knowledge, yield close approximations
of the Pareto-optimal results from an exhaustive approach, while requiring very
few synthesis runs. The methodology discussed in this section answers the fol-
lowing three research questions.

R.Q.1: From an HLS perspective, how can similarities among designs be quan-
tified?

In general, code written in a high-level programming language such as C/C++
or SystemC is ill-suited for the automatic identification of structural similarities.
Therefore, an abstract representation that only retains the characteristics of in-
terest for HLS optimizations, e.g., the structure of loops and that of memory ac-
cess patterns, is proposed. Such a representation (termed specification encoding)
is automatically generated with a custom compiler pass. Since the representa-
tion is in the form of a string of symbols, a string-similarity algorithm is used to
quantify the similarity in terms of computational patterns that exist between a
source design (from a library capturing prior knowledge) and the target design.

R.Q.2: How can the similarity between directive choices for different designs be
assessed?

Besides the specification code, the other aspect affecting the HLS results is the
choice of HLS directives. Indeed, a proper source of previous knowledge should
have a choice of directive values similar to the one of the target. As an example,
if a loop can be unrolled by only a small degree in a source, little information can
be leveraged to optimize a loop in the target for very high unrolling factors. A
domain-specific language is introduced to describe succinctly the set of directives
associated with a design, as well as a metric to measure the similarity between
sets of directives associated with the source and target designs. Then, in a source
selection strategy step, design and directive similarities are combined to identify
the most promising source for the given target design.

R.Q.3: How to infer from prior knowledge HLS directives that give optimal res-
ults?

A strategy that transforms the HLS directives for the source design into HLS
directives of the target design, as shown in the lower part of Figure ??, addresses
this last question.

In the next subsection, the answers to these three research questions are dis-
cussed in details.

76 6.1 Leveraging Prior Knowledge

6.1.1 Standard Approach VS Leveraging Prior Knowledge

Recalling the definition from Chapter 3, for a design T , XT denote the set of all
possible synthesis configurations, which is in general an impractically large set.
In practice, designers focus the exploration on a smaller portion of the design
space of T by trying a subset XT ⊂ XT . The DSE task returns a set of Pareto
configurations, P(T, XT) which is a subset of XT . This subset is obtained by first
(1) performing |XT | HLS runs on T , one run for each x ∈ XT , and then (2) by
selecting only those configurations that turn out to be Pareto configurations.

Now, assume that before performing the DSE task for T (the target design),
the designer has performed the DSE task for another design S (the source design),
thereby obtaining P(S, XS) for a given subset XS of the configuration setXS. Fur-
thermore, assume that a function g : XS → XT exists that transforms a configur-
ation for the source design into one for the target design, i.e.

g(xs) = x t (6.1)

with xs ∈ XS and x t ∈ XT . With the help of function g, the designer can leverage
prior knowledge on the source design, in order to perform a DSE for the target
design with a potentially much smaller number of HLS runs.

Let X S
T be the set of all configurations for the target design T that are obtained

by transforming the Pareto configurations (up to a certain Pareto frontier rank)
of the source design, i.e.:

X S
T = {g(xs)|xs ∈ P(S, XS)} (6.2)

By synthesizing the target design T with the configurations in X S
T , the set P(T, X S

T)
can be obtained, as an approximation bP(T, XT) of the set of Pareto configurations
P(T, XT).

Figure 6.1 showcases the difference between a standard approach and one
leveraging previous knowledge.

Note that this approximation requires |X S
T | HLS runs, while the derivation

of the actual set of Pareto configurations would require |XT | HLS runs. Tun-
ing the maximum Pareto frontier rank whose configurations are transformed
from source to target, the synthesis effort and the approximation of P(T, X S

T) by
bP(T, XT) can be traded-off. I have explored the effect of varying this parameter
in Section 6.1.2. Since for a given design T the number of Pareto configurations
|P(T, XT)| is, in general, much smaller than the number of configurations |XT |, if
sets P(T, XT) and P(S, XS) are of comparable sizes then leveraging prior know-
ledge allows a major reduction in the number of time-consuming HLS runs while
deriving the approximated set bP(T, XT).

77 6.1 Leveraging Prior Knowledge

!(⋅)

%&

%&'

%'

((), %&)

(+(T,	%&) =	
(), %&'

((), %&)
%&

((/, %0)

%&

%' %&

Figure 6.1. (Top) Standard approach: the designer defines a set of configura-
tions to be explored, XT , given a target design T . Only after synthesizing all
the XT configurations, Pareto optimal ones P(T, XT) are identified.
(Bottom) Approach leveraging prior knowledge instead: the configurations to
be synthesized X S

T are inferred from the P(S, XS) of a similar design S. By
synthesizing T with X S

T � XT configurations, a close approximation bP(T, XT) of
the Pareto frontier is obtained.

Moreover, the degree to which P(T, XT) is approximated by bP(T, XT) depends
on the choice of a proper source design S to derive the prior knowledge for the
given target T . To this end, I introduce a novel and concise representation to
encode the specification and a configuration space of each design via an abstract
characterization called signature. Then, a similarity metric between the signa-
tures is defined. If the signatures of two designs (source and target) have high
similarity, then Pareto configurations for the source desing–when transformed to
configurations for the other–may approximate well the actual Pareto configura-
tions for the target design. Moreover, signatures are also employed to automate
the transformation of Pareto configurations between source and target spaces,
thereby realizing function g(·) of Equation 6.1.

Figure 6.2 illustrates the overall flow of the methodology. Given a target
design’s specification and configuration space as input, the proposed strategy
(A) derives the signature of the design, and (B) employs a similarity metric over
such signature to search, in a database of already performed DSEs (the sources),
the most similar one. Once a source is selected, the Pareto configurations for that

78 6.1 Leveraging Prior Knowledge

Application &
Config. Space

DSEs
database

Target
signature

Inference
process

Synthesised
designs

Similarity
evaluation

Source
signature

Target
configurations

Signature
encoding

A

B

C
 HLS
tool

Area

Latency

Figure 6.2. Methodology flow. The target design and its configurations space
are encoded into a signature, which is compared to the ones of existing DSEs.
The source having the most similar signature is selected to drive the inference
process and generate the target configurations.

source are extracted, and (C) they are transformed by an inference process into
valid configurations for the target.

Signature Encoding

This step aims at characterizing a DSE with a compact representation that ab-
stracts the specification (code) and the associated configurations (set of applied
directives). The proposed specification encoding (SE) and configuration space
descriptor (CSD) capture these two aspects. The combination of SE and CSD
uniquely define a signature encoding.

Specification Encoding. A specification encoding describes those aspects of
an HLS specification that can be targeted by HLS directives, such as the pres-
ence of loops and read/write operations, while disregarding anything that is not
interesting from a HLS-driven DSE perspective.

The encoding process generates a string representation of the specification
that highlights the source code structure.

Table 6.1 shows the encoding scheme adopted and the correspondence be-
tween the string symbols and the code constructs. The SE is derived from the
C/C++ specification through an LLVM [62] pass. I have extended the compiler
to parse the abstract syntax tree and produce the SE string. The last column of
Table 6.1 also shows the HLS directives that can be associated with each code
construct. Curly braces are used to identify the scope associated with symbols,
thus allowing hierarchical representations (e.g., a function containing multiple
nested loops).

Running Example: Given the function last_step_scan from Snippet 6.5 and
the encoding in Table 6.1, the proposed SE is F{PP}L{L{RRW}}. The encoding
states that the function (F) receives two parameters by reference (PP), it has two

79 6.1 Leveraging Prior Knowledge

Table 6.1. Specification encoding of design source code.

Symbols Code constructs HLS directives
F Function definition None

V
Function parameter

None
passed by value

P
Function parameter

Partitioning and resource
passed by reference

A
Arrays definition or

Partitioning and resource
declaration

S
Struct definition or

Partitioning and resource
declaration

L Loops Unrolling
R Read operations None
W Write operations None
Cid Function call Inlining
{ .. } Scope None

nested loops and the innermost loop performs two reads and one write operations
(L{L{RRW}}). Likewise, the SE for Snippet 6.2 is F{PPP}L{L{RRW}}, showcasing a
similar, but not identical, structure.

Configuration Space Descriptor. A domain-specific language to concisely
describe a user-defined configuration space has been defined. For source designs,
CSDs describe which configurations are available in its design space, while for a
target a CSD indicates the set of configurations that a designer wishes to explore.
Each line of the descriptor encodes a knob (a type of directives, the location, and
the selected parameter values) that the designer considers for the DSE task. For a
directive with multiple parameters, a set of values for each parameter is specified.

Listing 6.3. Configuration Space Descriptor of last_step_scan.
1 resource ; l a s t _ s t e p _ s c a n ; bucket ; {RAM_2P_BRAM}
2 resource ; l a s t _ s t e p _ s c a n ; sum ; {RAM_2P_BRAM}
3 a r r a y _ p a r t i t i o n ; l a s t _ s t e p _ s c a n ; bucket ; 1 ; { c y c l i c , b lock } ;

{1−>512,pow_2}
4 a r r a y _ p a r t i t i o n ; l a s t _ s t e p _ s c a n ; sum ; 1 ; { c y c l i c , b lock } ;

{1−>128,pow_2}
5 u nr o l l ; l a s t _ s t e p _ s c a n ; l a s t _ 1 ;{1−>128,pow_2}
6 u nr o l l ; l a s t _ s t e p _ s c a n ; l a s t _ 2 ;{1 ,2 ,4 ,8 ,16}
7 c lock ;{10}

80 6.1 Leveraging Prior Knowledge

Listing 6.4. Configuration Space Descriptor of get_delta_matrix_weights2.
1 a r r a y _ p a r t i t i o n ; ge t_de l ta_matr ix_weights2 ; de l ta_weights2 ;

1;{ c y c l i c , b lock };{1−>256,pow_2}
2 a r r a y _ p a r t i t i o n ; ge t_de l ta_matr ix_weights2 ; ou tpu t_d i f f e r ence ;

1;{ c y c l i c , b lock };{1−>64,pow_2}
3 a r r a y _ p a r t i t i o n ; ge t_de l ta_matr ix_weights2 ; l a s t _ a c t i v a t i o n s ;

1 ;{ c y c l i c , b lock };{1−>64,pow_2}
4 u nr o l l ; ge t_de l ta_matr ix_weights2 ; loop_1 ;{1−>64,pow_2}
5 u nr o l l ; ge t_de l ta_matr ix_weights2 ; loop_2 ;{1−>64,pow_2}
6 c lock ;{10}

Running Example: Given the function last_step_scan in Snippet 6.5, the associ-
ated CSD is shown in Snippet 6.3. The descriptor defines seven different knobs
that can be associated with the function last_step_scan. Line 1 of Snippet 6.3
shows a knob with a single value: it associates a dual-ported Block RAM (BRAM)
to the array bucket that is the input of the function. Line 3 instead defines a knob
governing the array partitioning directive defined by all the pairs having one of
two partitioning strategies (cyclic and block) as first component, and the ten
possible partitioning factors (all the powers of two from 1 up to 512) as the
second one.

The CSD is parsed and the resulting set of configurations of the design space
is generated as follows:

X = K1 × K2 × · · · × KN (6.3)

where N is the number of considered knobs, and Ki is the set of values related
to each i knob, i.e. the set of values that the directive associated to the knob i
can assume. For a directive with multiple parameters, Ki is the Cartesian product
among each set of values. The size of the configuration space is then given by its
cardinality (|X |).

Similarity evaluation

To choose a candidate source design for a target design, a similarity metric be-
tween their signature encodings is computed. This similarity is computed given
the similarities of the design SEs and CSDs:

Sim= αSimSE + (1−α)SimCSD α ∈ [0, 1] (6.4)

81 6.1 Leveraging Prior Knowledge

The parameter α in Equation 6.4 weights the contributions of the SE and CSD
similarities. The best source candidate, selected according to the similarity met-
ric, is used to transfer knowledge from source to target design during the infer-
ence step.

Figure 6.3-left shows the similarity matrix for the 39 functions in the Mach-
Suite Benchmarks. Each row shows the similarity between a target design and
all the candidate source designs; the diagonal elements show the similarity of
the design to itself. The figure highlights a high similarity variance that discrim-
inates well between similar and dissimilar sources. In Section 6.1.2, I show that
the chosen similarity metric leads to an effective selection of the source for the
given target.

SE similarity. Since the specification encoding is expressed as a string, a
string-based algorithm can be used to assess the similarity between SEs. In this
approach, I adopt the Longest Common Subsequence (LCS) metric [89]. This met-
ric returns a score SimSE ∈ [0,1], whose value is closer to 1 the more two strings
are alike. Given two application signatures of length n and m, the running time
of a dynamic programming approach is O(n × m)[127]. However, it is import-
ant to observe that the signature encoding reduces the size of the input codes
to strings with a small number of characters; therefore the time required for the
similarity evaluation is negligible with respect to the synthesis time.

The LCS metric is defined as follow:

SimAS(Ai, B j) =



















0 i f i = 0 or j = 0

SimAS(Ai−1, B j−1) + 1 i f i, j > 0 and ai = b j

max{SimAS(Ai, B j−1), i f i, j > 0 and ai 6= b j

SimAS(Ai−1, B j)}

(6.5)

Where ai and b j are the i th and j th element of the strings A and B respectively.
Figure 6.3-center expresses the SimSE matrix for the same 39 functions, where
each row shows the similarity between a target design and all candidate sources.

Running Example: Given the specification encoding of the target design F{PP}L

{L{RRW}} and the source design F{PPP}L{L{RRW}}, the resulting SE similarity score
is 0.93.

CSD Similarity. The similarity between two CSDs is assessed by comparing
the knobs Ki for a target configuration space XT (for design T) to the knobs K j

for a source configuration space XS (for design S) using a mapping function MT,S,
which relates each knob of the target CSD to a specific knob of the source CSD:

MT,S(Ki) = K j (6.6)

82 6.1 Leveraging Prior Knowledge

1
5

10
15

20
25

30
35

S
ou

rce
fu

n
ction

15101520253035

Target function

1
5

10
15

20
25

30
35

S
ou

rce
fu

n
ction

15101520253035

Target function

0.0

0.2

0.4

0.6

0.8

1.0

1
5

10
15

20
25

30
35

S
ou

rce
fu

n
ction

15101520253035
Target function

1
5

10
15

20
25

30
35

S
ou

rce
fu

n
ction

15101520253035

Target function

F
igure

6.3.
(Left)

Signature
sim

ilarity
m
atrix

obtained
w
ith
α
=

0.2.
(C

enter)
Specification

E
ncoding

sim
ilarity

m
atrix.

(R
ight)

C
onfiguration

Space
D
escriptor

sim
ilarity

m
atrix.

D
arker

color
expresses

a
higher

sim
ilarity.

E
ach

row
of

the
m
atrix

show
s
the

sim
ilarity

betw
een

a
target

design
and

the
source

ones.
T
he

indices
on

the
axes

corresponds
to

the
function

ID
s
in

Table
6.2.

83 6.1 Leveraging Prior Knowledge

Domain Mapping

Target
knobs

K1 K2 K3 K4 K5 K6 K7
Resource Resource Part. type

Part. factor
Part. type

Part. factor
Unroll Unroll Clock

Source
knobs

K1 K2 K3 K4 K5 K6
Part. type

Part. factor
Part. type

Part. factor
Part. type

Part. factor
Unroll Unroll Clock

Domain Knob values
Set of values for
target knob K6

1 2 4 6 8 16 32 64 128

Set of values for
source knob K5

1 2 4 6 8 16 32 64

Figure 6.4. Top: mapping between the knobs of source and target CSD shown
as example (Snippet 6.5 and 6.2). Bottom: correspondence between the knob
value sets of knobs K6 and K5 in target and source, leading to a distance ∆ of
1.

The function MT,S is determined through an alignment procedure. By iterat-
ing over the knobs of the target CSD from top to bottom, each knob is mapped to
the first non-mapped knob of the same type belonging to the source CSD. Even-
tually, if no more knobs are available in the source, some target knobs may be
left unmapped.

Running Example: Let us consider the target and source designs and their
CSDs in Snippet 6.3 and Snippet 6.4, respectively. The CSD of function last_step_

scan has seven different knobs–each knob is one line of the descriptor–while the
CSD of function get_delta_matrix_weights2 has only six knobs. Figure 6.4 shows
the mapping MT,S between the two CSDs. Five out of seven knobs of function
last_step_scan can be mapped by using get_delta_matrix_weights2 as a source
design; while knobs K1 and K2 of last_ step_scan are un-mapped.

Once a mapping MT,S is defined between a target configuration space XT ,
having I different knobs, and a source configuration space XS, having with J
different knobs, their similarity is computed as follows:

SimCSD = 1−
�

1
I

I
∑

i=1

∆(Ki, MT,S(Ki))/DMAX

�

(6.7)

84 6.1 Leveraging Prior Knowledge

where DMAX is a normalization factor–constant across all the source candidates
for a given target–such that SimCSD ∈ [0, 1]. Then, ∆(·) is a function measuring
the minimum distance between a source knob and a target knob:

∆(Ki, K j) =

√

√

√

√

|Ki |
∑

n=1

(
|K j |

min
m=1
|δ(kn, km)|)2 kn ∈ Ki, km ∈ K j (6.8)

The above equation sums up the distance between each target knob value kn

and the one that is closest to it among all source knob values km. The function
δ(kn, km) computes the distance between two knob values of the same directive
type that has Z parameters, e.g., kn = (kn,1, · · · , kn,Z):

δ(kn, km) =

√

√

√

Z
∑

z=1

|kn,z, km,z|2 (6.9)

where numerical parameter values are casted to their respective log2 value, and
categorical parameter values are represented with one-hot encoding.

Since for unmapped knobs there is no correspondence between source and
target, the distance ∆(·) in Equation 6.8 is computed between the values of the
target knob and the default value of the directive.

Figure 6.3-right shows the resulting SimCSD matrix for the functions in the
MachSuite Benchmark Suite considered in this work.

Running Example: Given the mapping between the functions in the running
example, for each target knob the distance with respect to the source one is meas-
ured. Figure 6.4 (bottom) shows the computation of the distance for the target
knob K6 mapped to the source node K5, each having a single value set of possible
unrolling factors. K6 specifies 9 factors (from 1 to 128, all of them powers-of-
two), while K5 comprises 8 values (from 1 to 64). Since the δ is calculated
among numerical values, the directive values are casted to their respective log2;
therefore, the knobs discrepancy leads to a ∆ equal to (log2128− log264) = 1.
When accounting for all target knobs, the CSD similarity between the source and
target is 0.97.

Inference

After a source design is identified for a target design, the inference process trans-
fers knowledge from the source to the target configuration space, hence imple-
menting Equation 6.1. In the first step of such process, the configurations belong-
ing to the Pareto frontier in the source configuration space are extracted from a

85 6.1 Leveraging Prior Knowledge

Domain Inference

Source
knobs

K1 K2 K4 K5 K6
cyclic
256

cyclic
8

32 64 10

Target
knobs

K1 K2 K4 K5 K6 K7K1 K2 K3 K4 K5 K6 K7
2P_BRAM 2P_BRAM cyclic, block

1,…,256,512
cyclic, block
1,..,8,..,128

1,..,32,..,128 1,2,4,8,16 10

Figure 6.5. Inference from source to target design spaces from the running
example. The inferred values of the HLS directive knobs are underlined in the
bottom part of the figure.

library of prior knowledge. These are peeled from the source design space, al-
lowing the identification of second-rank Pareto configurations. Then, it proceeds
iteratively to extract higher ranked Pareto frontiers, until a certain number of
these have been retrieved from the source design space.

Each selected configuration is transformed into a valid one in the target CSD.
To this end, first, knobs in the source and target spaces are mapped according to
the mapping function MT,S described in the previous section. If a target knob Ki

is not be mapped to a source knob, the value of x i
T value is fixed to the directive

default, since no previous knowledge related to that knob can be leveraged. The
values of all other knobs are instead inferred from the source design space.

Then, given a source configuration xS = [x1
S , . . . , x J

S] ∈ XS, with x j
S being the

value for knob j, the corresponding target configuration is set as xT = [x1
T , . . . , x I

T]
∈ XT , where each component x i

T are knob values associated to the knob i.
For each configuration component, the inference function (g : XS → XT ,

introduced in Equation 6.1) is defined as follows:

x i
T = arg min

n
{δ(kn, x j

S)} (6.10)

where δ(·) is the distance function defined in Equation 6.9, x j
S is the value as-

signed to the j− th knob of the source, and kn ∈ Ki is the set of all possible sets of
values that the knob Ki of the target design can assume, as specified by its con-
figuration space descriptor. Therefore, each target directive value x i

T is assigned
to the closest value to x j

S among those specified in the target knob set for knob i.
Running Example: Let us assume that, among the many Pareto configurations

of the source design in Sippet 6.2, one configuration has the directive values
shown in Figure 6.5. Given the mapping function from Figure 6.4 and Equa-
tion 6.10, the source Pareto configuration are transformed into a valid target con-
figurations. The partitioning factors–256 and 8 for K1 and K2 of the source–are

86 6.1 Leveraging Prior Knowledge

mapped to the closest partitioning factor values of the target knobs–respectively
256 and 8 for K1 and K2 of the target. Similarly, the same partitioning type–
cyclic–is inferred from the source Pareto configuration for the target ones. Fi-
nally, the source unrolling factors and the clock, 32, 64 and 10 for K4, K5 and K6

are mapped to 32, 16 and 10 for K5, K6 and K7 in the target, respectively.

6.1.2 Results

Experimental setup

I have implemented the similarity evaluation and inference algorithms in Python,
while the SE encoding was implemented in C++ as a custom compiler pass within
the LLVM infrastructure, as described in Section 6.1.1.

The experiments targeted all of the functions in the MachSuite benchmarks
collection [94], except those that expose very small design spaces, and those
having a variable latency for different invocations during benchmark execution
due to input-dependent control flows. In total, 11 designs were discarded. The
resulting suite comprises 39 functions, which have on average 40 lines of code
and 308 in the biggest case.

For each design, I have performed an extensive DSE across their configura-
tion spaces up to tens of thousands of design points. Vivado HLS [126] was used
to run synthesis with a target clock period of 10ns and targeting a ZynqMP Ul-
trascale+ (xczu9eg) FPGA chip. I have collected the design configurations and
synthesis results in a MySQL database.

In order to control the configuration space size1, I only employed power-
of-two values for directives having a numerical range (e.g., loop-unrolling and
array-partitioning factors), and, in some cases, I forced related knobs to have
the same value (e.g., the partitioning factor of an array and the unrolling of a
loop accessing it once every iteration). Such decision corresponds to the intu-
itive choice of constraints that a designer would impose when tasked with the
exploration of the design space.

The extensive DSEs are used in two ways. On the one hand, the results are
used as ground truth to assess the performance of the approach. On the other,
they are used as a source of previous knowledge. In the latter case, a leave-
one-out cross-validation is adopted, considering each design as a target using all
others as candidate knowledge sources.

1Even for the simple case in Snippet 6.2, considering all loop unrolling factors, two types of
resources, two types of partitioning and all partitioning factors would result in more than 108

configurations.

87 6.1 Leveraging Prior Knowledge

Lastly, similarly to [65, 36, 37, 146], the Average Distance from Reference
Set (ADRS) metric is used.

Results

Outcome of Explorations. Table 6.2 summarizes the results of the explora-
tions performed with the proposed methodology. It reports the target function
IDs (used as indexes in Figure 6.3), their benchmarks and the function names.
Moreover, for each case, it provides the function IDs and the function names of
the source having the highest similarity score, the obtained ADRS values in the
target space, the number of synthesized configurations derived from that source,
and the size of the related configuration space (|CS|).

For the vast majority of targets, the proposed approach requires very few syn-
theses to reach low ADRS scores. As an example, when targeting aes_addRoundKey

(row index: 20) while leveraging the knowledge of the add_bias_to_activations

source, only 13 out of 500 possible synthesis rounds are performed, still resulting
in a perfect identification of the Pareto frontier of best performing implementa-
tions (ADRS = 0). Only 35 out of thousands of configurations are synthesized
for the gemm target (row index: 5) while reaching a very close Pareto frontier
approximation (ADRS = 0.012).

The results of Table 6.2 were obtained by inferring up to the 10th-ranked
Pareto frontier (as defined in Section 3) and by fixing the trade-off between SE
and CSD similarity (introduced as α in Section 6.1.1) to 0.2. Both settings are
explored in the rest of this section.

Tuning of the similarity function. Figure 6.6 shows the ADRS achieved
when selecting the most similar candidates according to the similarity metric in
Equation 6.4 while varying the parameter α, i.e., the relative weight of specifica-
tion encoding and configuration space similarity. Data is shown on a logarithmic
scale and in an aggregated form across all targets. Boxes encompass the first and
third quartile of the ADRS values obtained by the DSEs of all targets, while the
lines inside them indicate the median case. The skewers above and below each
box are the upper and lower 1.5 interquartile. As before, I infer configurations
up until the 10th-ranked Pareto frontier in the source design space.

Figure 6.6 shows that both SE and CSD have an impact on the quality of
results and that CSD similarity generally has a more significant impact than the
SE one. An α value of 0.2 both minimizes the interquartile range and the median
ADRS.

Effectiveness of the similarity metric. Figure 6.7 highlights the importance
of a proper source of previous knowledge in order to achieve effective explor-

88 6.1 Leveraging Prior Knowledge

Table 6.2. List of functions explored from MachSuite[94] (grouped by bench-
mark). The table reports: target function IDs, it benchmark name, target
function name, source function IDs, source function names, ADRS value, num-
ber of synthesized configurations, and size of the configuration space (|CS|).

ID Benchmark Target function Source ID Source function ADRS # Synth. |CS|
1 spmv ellpack ellpack 28 get_delta_matrix_weights2 0.034 65 1600
2 bfs bulk bulk 28 get_delta_matrix_weights2 0.010 39 2352
3 md knn md_kernel 30 get_oracle_activations1 0.006 25 1600
4 viterbi viterbi 28 get_delta_matrix_weights2 8.7e−4 12 1152
5 gemm ncubed gemm 28 get_delta_matrix_weights2 0.012 35 2744
6 gemm blocked bbgemm 28 get_delta_matrix_weights2 1.689 35 1600
7 fft strided fft 30 get_oracle_activations1 0.0007 15 1600
8 fft transpose twiddles8 32 product_with_bias_input_layer 0.0002 24 64
9

sort merge
ms_mergesort 27 get_delta_matrix_weights1 0.322 31 1024

10 merge 30 get_oracle_activations1 0.262 19 4096
11 stencil stencil2d stencil 28 get_delta_matrix_weights2 0.015 46 1344
12 stencil stencil3d stencil3d 28 get_delta_matrix_weights2 1.88 16 1536
13

radix sort

update 30 get_oracle_activations1 0.009 28 2400
14 hist 28 get_delta_matrix_weights2 0.007 46 4704
15 init 18 local_scan 0.078 68 484
16 sum_scan 36 add_bias_to_activations 0.136 25 1280
17 last_step_scan 28 get_delta_matrix_weights2 0.004 90 800
18 local_scan 17 last_step_scan 0.005 71 704
19 ss_sort 32 product_with_bias_input_layer 0.0005 21 1792
20

aes

aes_addRoundKey 36 add_bias_to_activations 0 13 500
21 aes_subBytes 29 get_delta_matrix_weights3 0 8 50
22 aes_addRoundKey_cpy 28 get_delta_matrix_weights2 0 71 625
23 aes_shiftRows 16 sum_scan 0.013 8 20
24 aes_mixColumns 25 aes_expandEncKey 0 15 18
25 aes_expandEncKey 13 update 0.003 33 216
26 aes256_encrypt_ecb 4 viterbi 0.030 22 1944
27

backprop

get_delta_matrix_weights1 28 get_delta_matrix_weights2 0.002 139 21952
28 get_delta_matrix_weights2 27 get_delta_matrix_weights1 0.010 77 31213
29 get_delta_matrix_weights3 28 get_delta_matrix_weights2 0.030 222 21952
30 get_oracle_activations1 31 get_oracle_activations2 2.907 67 2401
31 get_oracle_activations2 29 get_delta_matrix_weights3 0.051 19 1372
32 product_with_bias_input_layer 34 product_with_bias_output_layer 3.560 3 1372
33 product_with_bias_second_layer 32 product_with_bias_input_layer 0 30 686
34 product_with_bias_output_layer 32 product_with_bias_input_layer 2.5e−5 24 392
35 backprop 1 ellpack 4.4e−5 4 2048
36 add_bias_to_activations 20 aes_addRoundKey 0.002 5 1372
37 soft_max 29 get_delta_matrix_weights3 0.053 9 64
38 take_difference 29 get_delta_matrix_weights3 0.0002 8 512
39 update_weights 4 viterbi 1.1e−4 3 1024

ations. It depicts four DSEs of the target design last_step_scan, from the run-
ning example, leveraging different sources of previous knowledge. Each plot
depicts the ground truth of the target design space resulting from its exhaustive
exploration–gray dots–as well as the Pareto frontier retrieved with the inference
process–dark blue line. The top-left DSE shows the result of inferring configura-
tions from get_delta_matrix_weights2 (ID 27), the best-ranked source according
to the defined similarity metric. In this case, the Pareto frontier is very well ap-
proximated and obtains a small ADRS of 0.004.

The top-right picture of Figure 6.7 shows an example of DSE characterized

89 6.1 Leveraging Prior Knowledge

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Values of ↵

10�2

100
A

gg
re

ga
te

d
A

D
R

S

Figure 6.6. ADRS evolution while changing the value of α.

by a low SE similarity, resulting in a partial approximation of the Pareto frontier,
since only a few knobs can be mapped from source to target. In this case, the
inference process uses as source design the function bulk (ID 2), which is ranked
30th in order of similarity score. Similarly, the bottom-left picture shows the
result of the DSE when product_with_bias_output_layer (ID 34) is employed
as a source design. In this case, the similarity score is penalized by a low CSD
similarity. Therefore, only a portion of the target design space can be explored,
due to inadequate coverage of the knob values of XT by the ones in XS. The Pareto
frontier is hence well approximated only for the XT region for which previous
knowledge is available, resulting in an ADRS of 1.5. Finally, in the plot at the
bottom-right of Figure 6.7 are shown the result of the inference from backprop (ID
35). In this case, both a low SE similarity (few knobs can be mapped from source
to target) and a low CSD similarity (for mapped knobs, knob values are distant
between source and target spaces) can be observed, resulting in an extremely
poor approximation of the Pareto frontier, since little previous knowledge can be
harnessed. In this case, as reported in the figure, the retrieved Pareto frontier
only comprises a single design point.

Figure 6.8 generalizes these findings by reporting the aggregated ADRS val-
ues when selecting the sources with the highest similarity score for each target,
the second-best choices, etc. As in Figure 6.6, data are on a logarithmic scale.
Boxes encompass the first and third quartile of the ADRS scores across all targets,
while the line inside the boxes indicates the median case. An order of magnitude
separates the best and third-best choice, after which performance remains almost
constant and tangibly worse than in the case of the best-ranked source.

Finally, Figure 6.9 compares the aggregated ADRS values obtained by the pro-

90 6.1 Leveraging Prior Knowledge

0 2000 4000 6000
E↵ective latency [ns]

0.0

0.2

0.4

0.6

A
re

a
ID:27, Rank:1st
ADRS=0.004

0 2000 4000 6000
E↵ective latency [ns]

0.0

0.2

0.4

0.6

A
re

a

ID:34, Rank:35th
ADRS=1.50

0 2000 4000 6000
E↵ective latency [ns]

0.0

0.2

0.4

0.6

A
re

a

ID:2, Rank:30th
ADRS=0.85

0 2000 4000 6000
E↵ective latency [ns]

0.0

0.2

0.4

0.6

A
re

a

ID:35, Rank:37th
ADRS=5.53

Figure 6.7. Example of DSEs targeting last_step_scan, inferring from differ-
ent sources. (Top-left) Good Pareto-approximation obtained with the best
candidate source. (Top-right, bottom-left, bottom-right) Low quality Pareto
approximations, from sources having low CSD and/or AS similarity. Gray dots
represent the ground-truth for the target design last_step_scan, while the dark
blue line represents the Pareto frontier obtained performing the inference with
different sources.

91 6.1 Leveraging Prior Knowledge

1 2 3 4 5 6 7 8 9 10
Source rank according to metric

10�2

100

A
gg

re
ga

te
d

A
D

R
S

Figure 6.8. ADRS according to source selection by metric ranking.

Oracle Prior Knowl. Average Random

10�3

10�1

101

A
gg

re
ga

te
d

A
D

R
S

Figure 6.9. ADRS according to source selection criterion.

posed strategy (named Prev.Knowl. in the figure), i.e., leveraging the source with
the highest similarity, with three alternatives: a perfect oracle always choosing
a-posteriori the best source (Oracle), the average of selecting all sources for each
target (Average), and a random sampling of the target design space (Random)–
disregarding knowledge transfer altogether. For the latter case, several samplings
equal to the ones required by Prev.Knowl. are performed, and the results are av-
eraged over 100 different runs to minimize noise. A choice that is driven by the
proposed similarity metric (Prev.Knowl.) performs three orders of magnitude
better than a choice that is not considering past explorations at all (Random)
and 12X better when compared with a blind choice for the source design (Aver-
age).

92 6.1 Leveraging Prior Knowledge

1 2 3 4 5 6 7 8 9 10
of inferred Pareto fronts

0.0

0.1

0.2

0.3
A

gg
re

ga
te

d
A

D
R

S

0

20

40

A
ve

ra
ge

#
of

sy
nt

h
es

is

Figure 6.10. Cumulative evolution of the ADRS while inferring from multiple
Pareto frontiers. The average number of synthesis performed while the number
of Pareto frontiers increases is shown with the dashed line.

Table 6.3. Qualitative comparison with SoA methodologies. Average number
of synthesis required to obtain an ADRS ≤ 0.04.

‖CS‖ Prev.Knowl. Lattice Cluster RF-TED Zhong
[37] [36] [65] [146]

< 200 7 36 37 155 NA
< 700 10 64 64 391 19
< 1800 22 230 290 1588 31
< 6000 19 460 460 1903 32
< 16000 NA NA NA NA 35
< 32000 38 NA NA NA NA

Tuning the number of source Pareto frontiers. In a further round of ex-
periments (Figure 6.10), I have investigated the effect of varying the number of
selected source Pareto frontiers. Each boxplot shows the aggregated ADRS out-
comes when inferring an increasing number of Pareto frontiers from the highest-
similarity source to the target. While increasing the number of frontiers always
lowers ADRS scores, diminishing returns can be observed for a number of fron-
tiers ≥ 7. The number of required synthesis, instead, linearly increases with the
amount of inferred Pareto frontiers.

Comparison with State of the Art. Table 6.3 compares Prev.Knowl. with
four related works that also aim to automate the optimization of HLS designs.
According to the taxonomy of Section 4, three of them are refinement-based ap-
proaches [36, 37] presented in Chapter 5, and [65], while one is a model-based

93 6.1 Leveraging Prior Knowledge

approach [146]. For fairness, the results are grouped in different brackets accord-
ing to the configuration size of the employed benchmarks. When no benchmark
is reported for a given size on past works, the corresponding table cell is marked
with NA. In other cases, data shows the average number of synthesis runs re-
quired to reach an ADRS of 0.04, which [146] considers as an excellent Pareto
frontier approximation (and which is attained by Prev.Knowl. in 29 out of 39
cases (see Table 6.2)).

The numbers in this table show that Prev.Knowl. greatly outperforms the
refinement-based approaches (see the required number of synthesis in the first
four columns), and this advantage grows with the size of the configuration space.
The proposed strategy is even competitive with the model-based strategy of Zhong
et al. [146] (see the last column), while being agnostic to the number and type
of optimizations that can be considered.2

Leveraging previous knowledge across different clock constraints and plat-
forms. All previous results assumed that the same clock constraint (10ns) and
FPGA model (Xilinx Zynq xczu0eg) are employed for all synthesis runs. In prac-
tice, both these conditions may not be satisfied, as often past explorations may be
performed for an FPGA than is different from the one of interest for a new design.
Similarly, the clock constraints may, in general, not be the same for sources and
target. Nonetheless, Prev.Knowl. is robust toward variations of FPGA models
and operating frequencies because it relies on the Pareto-dominance relationship
in the cost/performance space of implementations in each DSE composing the
knowledge base, as opposed to relying on the actual values of area and latency.
This relationship, and consequently the set of Pareto configurations of a design,
is not tangibly affected by the employed clock period and FPGA.

To investigate this characteristic, I have observed the ADRS obtained by identi-
fying the implementations of the first-rank Pareto frontier of the last_step_scan

benchmark (13 out of 1600 implementations) synthesized with various clock
periods, and inferring the related configurations for a different clock constraint.
I have evaluated the result of the inference for target and sources with clock
constraints of 5ns, 10ns, 25ns and 50ns. For all experiments, no changes in the
inferred Pareto frontier were observed, and hence good approximations of the
Pareto frontier were obtained. These results confirm that indeed the set of Pareto
configurations are not tightly dependent on the operating frequency.

Similar remarks are obtained when varying the FPGA employed for the syn-
thesis of source and target. I have observed the ADRS obtained by identify-
ing the implementations of the first-rank Pareto frontier of the last_step_scan

2Zhong et al. only considers the loop unrolling and the dataflow directives.

94 6.2 A Database of Design Space Explorations

Table 6.4. ADRS obtained by leveraging the knowledge of the
get_delta_matrix_weights2 source while exploring the last_step_scan tar-
get, varying the clock constraints and FPGA models employed for the target
benchmark.

Clock period (ns) Technology ADRS
10 ZynqMPU+ 0.0044
5 0.0044

25 ZynqMPU+ 0.0044
50 0.0044

Artix 0.0049
10 Virtex 0.0045

Kintex 0.0045

benchmark synthesized with various FPGAs (ZynqMPUltrascale+ xczu9eg, Vir-
tex xc7vh580, Kintex xc7k352, and Artix xc7a100), and inferring the related con-
figurations for a different platform. For all combinations of target and sources
platforms, the Pareto configurations are the same. Even in this case, the inferred
Pareto frontier perfectly approximates the one obtained by exhaustive explora-
tion.

Concluding this round of experiments, Table 6.4 shows an example of apply-
ing Prev.Knowl., again considering last_step_scan as a target, while employing
the knowledge base in Table II. The design get_delta_matrix_weights2 (ID 28)
is identified as the most similar source and it is used to infer configurations up
to its 10th-rank Pareto frontier–the same setting adopted for the results in Table
II. In the first row of the table, provided for reference, both the clock constraint
and the FPGA of the target design are equal to the ones used for the source. In
rows 2-4, three different target clock constraints are used, while in rows 5-7 the
target FPGA is different from the source one. In all cases, very similar, and small,
ADRS are achieved, showcasing the robustness of the Prev.Knowl. methodology.

This work has been accepted at the CASES 2020 conference. The work has
been presented at ESWEEK 2020 and it will be published in IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems (TCAD) [39].

6.2 A Database of Design Space Explorations

As shown in the previous Section and in Chapter 5, DSEs strategies are typically
validated against exhaustive explorations performed ad-hoc by designers. More-

95 6.2 A Database of Design Space Explorations

over, works such as [132], [39] and a recent editor’s note from [31] highlight the
importance of relying on prior knowledge to steer the HLS exploration process to
reduce design process costs. However, performing the huge number of synthesis
required for validation or for generating a high-quality knowledge base entails a
very high effort, which at present must be repeated ex-novo when investigating
the performance of a novel DSE methodology.

Against this backdrop, I aim at introducing DB4HLS, a database of high-level
synthesis design space explorations. The database comprises more than 100000
design points, reporting the synthesis outcomes of exhaustive explorations per-
formed on 39 functions from the MachSuite [94] benchmark suite. These DSEs
are the one performed for the work leveraging prior knowledge presented in
Section 6.1. In addition, I have proposed a simple domain-specific language to
define design spaces, which concisely describes all available configurations, res-
ulting in an open infrastructure that can be enriched by further contributions
from the research community.

The database provides a rich set of DSEs by targeting the benchmarks of the
MachSuite collection of designs [94]. DSEs for 39 out of 50 functions in the
benchmark suite have been performed, discarding those having a variable latency
due to input-dependent control flows, and those having very small design spaces.
The considered functions present on average 40 lines of code, with the biggest
having 308 lines of code.

For each function, an extensive DSE across their configuration spaces have
been performed, generating up to tens of thousands of design points. These are
reported in Table 6.2 introduced in Section 6.1.2.

All the implementations are generated with Vivado HLS [126] version 2018.2
to run syntheses with a target clock period of 10ns and targeting a ZynqMP Ul-
trascale+ (xczu9eg) FPGA chip. We constrained the design space sizes by employ-
ing only power-of-two values for directives having a numerical range (e.g., loop-
unrolling and array-partitioning factors). Moreover, in some DSEs we forced two
optimizations to take the same value, when intuitively such choice would lead to
better cost/performance trade-offs (e.g., the partitioning factor of an array and
the unrolling of a loop accessing it once every iteration).

Even when considering these constraints, the data collection required more
than 4 years of single-core machine time. To speed up this process, GNU Parallel
[122] was adopted to collect synthesis data from up to 60 parallel instances of
Vivado HLS, allowing us to populate the database in approximately 25 days of
wall-clock time.

Goal of the database is to provide a standardised synthesis data sets that will
allow easier comparisons among DSE strategies, enabling fairer evaluations of

96 6.2 A Database of Design Space Explorations

benchmark designalgorithm

configuration
spaceconfiguration

implementationsynthesis
information

resource 
 results

performance
results

nameMany-to-one One-to-one Entity

middle

bottom

top

Figure 6.11. Scheme of the Entity-Relationship Diagram (ERD) of the
DB4HLS syntheses database.

the strengths and weaknesses of each approach. It will also facilitate the de-
velopment and assessment of future design exploration frameworks, spurring
research in this challenging field.

6.2.1 DB4HLS Infrastructure

The DB4HLS infrastructure, in addition to the DSE data, offers:

1. database infrastructure hosting DSE in a structured and easy-to-access way.

2. a domain-specific language used to describe a configuration space for a
target design.

3. an interface to generate new explorations and to further enrich the data-
base.

The database structure, implemented in MySQL, comprises a description of
the design targeted for exploration (top part of Figure 6.11), and that of the
explored HLS optimizations applied to each design (middle part of Figure 6.11).
Finally, it reports the resource and performance results obtained by synthesis
(bottom part of the figure). Each of these components is described more in detail
in the following.

97 6.2 A Database of Design Space Explorations

Similarly to the taxonomy adopted in MachSuite [94], and the terminology
introduced in Section 3.1, applications are identified by the benchmark they be-
long to (e.g.: aes), by the algorithm they realize (e.g.: aes256_encrypt) and
by the design implementing such algorithms. As an example, two variants are
provided by MachSuite for the aes256_encrypt algorithm (one using lookup
tables to store encryption keys and one generating the values online), each cor-
responding to a separate design specified as C++ code.

A descriptor of the HLS optimizations considered for the DSEs are stored as
entries in the configuration space table. Multiple explorations (hence, rows in
the configuration space table) for the same design are possible, corresponding to
different choices of optimizations, or to explorations targeting different tools/FP-
GAs, or even contributions from different researchers. An entry in the configur-
ation space table is linked to many entries of the configuration table, where each
entry indicates a specific element of the design space.

A line in the configuration table (that indicates the set of HLS optimizations
defining a design space element) is linked to an entry in the implementation table.
Furthermore, the synthesis information table provides additional information on
each performed synthesis: the synthesis timestamp, the contributor that origin-
ated the data, the employed synthesis tool and version, and the targeted FPGA.
Finally, each implementation links to one or more entries in the resources and per-
formance tables, which report the synthesis outcomes. Resources are expressed
as employed Flip-Flops, Look-Up Tables, Block RAMs (BRAM) and DSP blocks,
while performance is reported in terms of effective latency.

6.2.2 A Domain-Specific Language for DSEs

Generating the different configurations associated with a DSE is a tedious and
error-prone process when performed by hand. We therefore developed a Domain-
Specific Language (DSL) to automatically and concisely define configuration spa-
ces by employing Configuration Space Descriptors (CSDs).

Each line of a descriptor encodes a knob, which comprises a directive type, a
label corresponding to its location in the design C/C++ code, and one or multiple
sets of values. The number of sets is equal to the number of parameters required
by the directive type. Values can be numerical when expressing optimizations
such as loop unrolling or array partitioning factors, or categorical when determ-
ining the type of employed FPGA resources such as BRAM types. A shorthand
is provided for expressing regular value series (e.g., a succession of power-of-
two values). Finally, we provide a @bind decorator, which constraints the values
associated with different directives.

98 6.2 A Database of Design Space Explorations

Listing 6.5. last_step_scan design (C code).
1 void l a s t _ s t e p _ s c a n (in t bucket [SIZE] , in t sum[RADIX]) {
2 in t i , j , k ;
3 loop_1 : for (i = 0; i < RADIX ; i++){
4 loop_2 : for (j = 0; j < BLOCK; j++) {
5 k = (i * BLOCK) + j ;
6 bucket [k] = bucket [k] + sum[i] ;
7 }
8 }
9 }

Listing 6.6. Configuration Space of last_step_scan.
1 resource ; l a s t _ s t e p _ s c a n ; bucket ; {RAM_2P_BRAM}
2 resource ; l a s t _ s t e p _ s c a n ; sum ; {RAM_2P_BRAM}
3 a r r a y _ p a r t i t i o n ; l a s t _ s t e p _ s c a n ; bucket ; 1 ; { c y c l i c , b lock

};{1−>512,pow_2}
4 a r r a y _ p a r t i t i o n ; l a s t _ s t e p _ s c a n ; sum ; 1 ; { c y c l i c , b lock

};{1−>128,pow_2}@bind_a
5 u nr o l l ; l a s t _ s t e p _ s c a n ; l a s t _ 1 ;{1−>128,pow_2}@bind_a
6 u nr o l l ; l a s t _ s t e p _ s c a n ; l a s t _ 2 ;{1 ,2 ,4 ,8 ,16}
7 c lock ;{10}

99 6.2 A Database of Design Space Explorations

Snippet 6.5 shows the code of the function last_step_scan and Snippet 6.6
an example of DSL defined to describe the configuration space defined for its
DSE. The DSL defines seven different knobs. Line 1 of Snippet 6.6 shows a knob
with a single value: it associates a dual-ported BRAM to the array bucket that
is the input of the function. Similarly, line 2 defines a dual-ported BRAM for
the array sum. Line 3 instead defines a knob governing the array_partitioning
directive defined by all pairs having one of two partitioning strategies (cyclic
and block) as the first component, and the ten possible partitioning factors (all
the powers of two from 1 up to 512) as the second one. The same is done in line
4, but defining a different set of partitioning factors (all the powers of two from 1
up to 128). Then line 5 and 6 define for loop_1 and loop_2 the associated set of
unrolling factors to consider during the exploration, all the powers of two from
1 up to 128 and 16, respectively. Both line 4 and 5 have a binding decorator
(@bind_a), that specifies that the array partitioning directive and the unrolling
one must have the same partitioning and unrolling factor for all configurations
described by the CSD. Finally line 7 defines the target clock.

The DSL generates the set of configurations of the design space as the Carte-
sian product of all knob values: CS = K1×K2×· · ·×KN ; where N is the number of
considered knobs, and Ki is the set of values related to each i knob, i.e. the set of
values that the directive associated to knob i can assume, taking into account the
restrictions imposed by the bind decorator. For a directive with multiple para-
meters, Ki is itself the Cartesian product among each set of values. The size of
the configuration space is then given by its cardinality (|CS|).

The configuration space descriptor in Snippet 6.6 describes a configuration
space with 1600 different configurations. Without the binding decorator, the
cardinality of the configuration space would be 12800.

6.2.3 A Framework for Parallelising HLS Runs

Figure 6.12 gives a high-level view of the infrastructure, realized through Bash
and Python scripts, which we provide to automate explorations and commit
their outcomes in DB4HLS. Starting from a user-provided design and Config-
uration Space Descriptor (CSD), configuration files are automatically generated
and stored in the database. Then, using GNU Parallel [122], a tunable number
of instances of an employed HLS tool (we use Vivado HLS for data collection)
are concurrently and independently executed, one for each configuration. As
synthesis runs terminate, the retrieved performance and resources information
is also stored in DB4HLS, and new HLS processes are launched until all config-
urations have been explored.

100 6.2 A Database of Design Space Explorations

61

gnu-parallel

configuration 1 configuration 2 configuration N…

synthesis
invocation 1

synthesis
invocation 2

synthesis
invocation M

 synthesis  
process 1

 synthesis
process 2

 synthesis  
process M

Configuration
space descriptor

…

…

Database

Collect
results

Collect
configs.

Figure 6.12. DB4HLS framework for parallel execution of HLS processes and
data collection for efficient DSEs.

MySQL statements can then be used to retrieve data from the tables in the
database and to access the design’s implementations and the associated perform-
ance and resource results.

To conclude, aim of DB4HLS it to offer an extensive set of DSEs targeting func-
tions from MachSuite [94]. The data collection is made publicly available and
will be updated targeting functions from available benchmark suites. In addition,
further design spaces can be effectively defined through a novel domain-specific
language and a framework to easily contribute novel explorations to DB4HLS.

Chapter 7

Is Deep Learning a Viable Solution?

Various HLS-driven Design Space Exploration (DSE) strategies, which were dis-
cussed in Chapter 4, have been proposed to identify, or approximate, the set of
Pareto implementations while minimizing the number of synthesis runs. These
approaches aim to imitate or learn a model of the HLS tools to pre-estimate the
effect of the HLS directives and steer the DSE process to identify Pareto optimal
configurations. While mandating very few synthesis runs to identify Pareto solu-
tions, such strategies are not able to accurately estimate performance and costs
of the implemented designs.

Against this backdrop, a Machine Learning (ML) approach allows to model
the behaviour of HLS directives leveraging prior knowledge–i.e., performance
and cost of already existing hardware design–while being agnostic to the number
and type of directives considered. However, devising a suitable representation of
the problem is not straightforward. Prior attempts to apply Deep Learning (DL)
approaches to the DSE problem, discussed in Section 4.2, have not been further
explored, and ad-hoc heuristics have outperformed existing approaches.

To address the above-mentioned limitations, I aim at creating a DSE frame-
work able to leverage prior knowledge coming from existing DSE methodologies
and from the outcome of past DSEs. This can be performed by extending [39],
which showcased promising results while leveraging prior knowledge, and by
learning, from input graphs representing an abstraction of the design specifica-
tions, a model able to generalise the effect of HLS directives without needing a
pre-characterization of the HLS tool.

In the next section, I will describe the work done in this research direction,
as well as envisioned future steps.

101

102 7.1 Graph-Based Deep Learning for DSE.

7.1 Graph-Based Deep Learning for DSE.

The challenge of creating DSE frameworks able to imitate the behaviour of ex-
isting HLS tools with traditional ML, and DL models relying on prior knowledge,
have not been fully exploited due to the limited expressiveness of vector-based
representations of the input data. Graphs, on the other hand, are powerful math-
ematical abstractions that can be used to capture complex relations and structural
information. Control and data flow graphs, in fact, are standard representations
of computer programs behaviour. The HLS process itself inherently uses the no-
tion of Control Flow Graphs (CFG) and Data Flow Graphs (DFG) to perform the
scheduling, allocation, and binding stages used to generate the HW implement-
ation of a SW functionality.

I aim at exploiting the recent advancements in Graph-Based Deep Learning
(GDL) to process and evaluate, in the form of graphs, the effect of candidate HLS
directives for a given computational kernel. In particular, my goal is to predict
the performance and cost of the hardware implementation of such kernels using
Graph Neural Networks (GNNs) [10][137][103].

Starting from input graphs representing an abstraction of the design specific-
ations, I aim at learning a model able to generalise the effect of HLS directives
without needing a pre-characterization of the HLS tool. GDL approaches [10]
offer state-of-the-art tools to process data represented as graphs; in particular,
GNNs are a class of cutting-edge techniques able to solve complex learning tasks,
taking full advantage of relational and structural information. By adopting GDL,
it is possible to avoid the shortcomings that, up to now, have limited the use of
traditional ML approaches in the context of HLS-driven DSE.

The research objective is to adopt GNNs to learn a mapping from graph rep-
resentations of designs’ hierarchical control and computational structures to the
performance and cost of the implementations, by using a collection of synthes-
ized designs as a training set (e.g., the dataset of HLS implementations described
in Section 6.2). The resulting model is expected to generalise to unseen designs,
allowing the identification of the most promising HLS directives and leading to
Pareto-optimal implementations of the target design. A key aspect of such ap-
proach is the model’s ability to build a knowledge discriminating among different
classes of inputs. Such differentiation can be further leveraged by including the
knowledge of existing DSE models and strategies into the GNNs model.

The proposed framework, shown in Figure 7.1, is beneficial to researchers as
it would push the boundaries of the state-of-the-art by offering the possibility to
apply Deep Learning (DL) techniques in the context of HLS-driven DSEs.

103 7.1 Graph-Based Deep Learning for DSE.

Design &
Config. Space

DSE framework

Synthesised
designs

DB of DSE
strategies

DL engine
 HLS
tool

DB of HLS
implementations

Abstract
representation

Figure 7.1. Overview of the DL approach for DSEs. A graph representation of
a target design is given in input to the DSE framework. The DL engine of the
framework leverages prior knowledge from existing DSE strategies and already
performed HLS implementations to estimate Pareto-optimal implementations.

7.1.1 Graph Representation of HLS Designs

The first step in the direction of building a GNN model requires the definition of
a graph-based representation of an HLS design. To generate such representation
I have built a compiler analysis pass, using LLVM, to derive a simplified Control
Data Flow Graph (CDFG) of a given design. A CDFG embeds the notion of both
CFG and DFG. The first is a model of the flow of control between the basic blocks
in a program, while the second models the interaction among data elements in
the graphs.

Allen, in [2], defines the CFG as a directed graph G = (N , E), where each
node n ∈ N corresponds to a basic block, and each edge e = (ni, n j) ∈ E repres-
ent a possible flow from block ni to block n j. DFGs instead are bipartite graphs
with actors and links, where actors can be considered similar to transitions in
Petri nets, and links similar to places [56]. DFGs are usually used to model
computation and to identify data dependencies, e.g., by modeling the interac-
tion between variables and operators. By merging CFGs and DFGs, CDFGs are a
powerful representation of both computational and control flow models of pro-
grams behaviour.

The DFG information, structured as a network of functional units, registers,
multiplexers, and buses, is used to represent the computation taking place in a
hardware implementation. This information is used by HLS tools, during the
synthesis process, to allocate and bind the resources required by the hardware
implementation. On the other hand, CFGs represent the structure of the pro-
grams. This information is used by HLS tools to generate the hardware that
guarantees the correct temporal end spatial scheduling of the instructions on the

104 7.1 Graph-Based Deep Learning for DSE.

hardware resources.
The simplified CDFG I am proposing also aims at representing these two no-

tions, but from the perspective of the HLS-driven DSE problem, abstracting low-
level details and focusing on the high-level characteristics of a design. To this
end, the elements of the standard CFG are modified to introduce nodes that can
be directly mapped to HLS directive, while DFG actors are reduced to instruc-
tions directly interacting with main memory, and links represent use-def changes
among actors.

In standard CFGs, each node is a basic block (BB). A BB is defined as a linear
sequence of program instructions having one entry point, the first instruction ex-
ecuted, and one exit point, the last instruction executed. BBs may have multiple
predecessors and successors, including themselves. The program entry blocks
does not have predecessors, and program-terminating blocks do not have suc-
cessors. Each BB is connected to a different one through a directed edge, and
each edge corresponds to a possible transfer of control from a starting block to a
target one.

In the formulation I propose, BBs are differentiated according to the type of
instructions performed in it. Moreover, their granularity is increased. In fact, a
standard BB is divided into sub-blocks according to the functionality of the BB.
In particular, we define the following type of blocks:

• function definition block (F): this block identifies the entry point of a func-
tion.

• pointer parameter block (P): this block identifies a parameter passed in
input to a function as a pointer.

• value parameter block (V): this block identifies a parameter passed in input
to a function as a value.

• memory allocation block (A): this block identifies a set of instructions re-
quiring to allocate resources.

• loop block (L): this block identifies the set of instructions defining a loop.

• memory reads block (R): this block identifies instructions reading from
main memory.

• memory writes block (W): this block identifies instructions writing into
main memory.

105 7.1 Graph-Based Deep Learning for DSE.

Table 7.1. List of information extracted with the LLVM pass for each of the
different CDFG blocks.

Block type Information extracted

F
number of parameters passed to the function, number of

instructions executed, function name, number of invocation,
function return type.

P argument type, argument names, associated number of elements.
V argument type, argument name.
A variable type, variable name, associated number of elements.

L
number of instructions, nesting depth, number of iterations,

presence of loop carried dependency, and stride
(in case of loops).

R
name of the variable accessed

(only variable accessing to the main memory).

W
name of the variable accessed

(only variable accessing to the main memory).

C
name of the invoked function, name of parameters passed to it,

number of total instructions executed by the function.
B number of instructions executed.

• function calls block (C): this block identifies instructions invoking a differ-
ent function.

• standard block (B): this block identifies instructions performing computa-
tions that do not belong to any of the above mentioned categories.

Table 7.1 summarizes the information extracted by the complier pass for each
block of the CDFGs.

This information has two purposes. Label information–i.e., function names,
pointer names, names of the accessed variable–are used to enhance the CFG with
DFG information, tracking the use-def changes. The remaining information–
e.g., number of instructions, number of iterations, array size, etc.–are used to
generate a one-hot encoded vector associated with each node of the CFG. The
vector is used to define a block according to its type and the relevant property
of it. The vector includes the fields associated with the potential HLS directives
values applied to the design.

Example: Figure 7.2-top shows an example of one-hot encoded vector struc-
ture given the different block types and the information extracted with the com-

106 7.1 Graph-Based Deep Learning for DSE.

Block type F P V A L C B
26 elements

9 4 2 152 21

26 elements
CDFG block information

7 elements

Inlining
block F

Partitioning
block P

Partitioning
block P

Unrolling
block L

Inlining
block F

Figure 7.2. Structure of the one-hot encoded vector used to represent the
CDFG blocks. (Top) Shows the structure of the vector without the elements
specifying the pragma values. (Bottom) Shows the structure of the vector when
pragmas are included.

piler pass. The one-hot encoded vector has: 9 elements used to identify the block
type, 5 elements for L blocks, 4 elements for the F block, and 2 elements for P, A
and C blocks, respectively. Lastly V and B block have only one element. A total of
26 elements are used to represent the information associated to each node of the
CDFG. In addition to these elements the fields associated with the HLS directives
considered in the DSE are concatenated as shown in figure Figure 7.2-bottom.

For each value, pointer parameter block, and memory allocation blocks, dir-
ected edges pointing to memory reads, memory writes, and function calls blocks
are added. Instead of tracking all the variables use-def chain, we focus only on
the ones directly interacting with memory. This is due to the fact that such inter-
action has very high costs with respect to the cost of local computations, often
negligible. This information is added to allow the model to understand the de-
pendencies among the design’s subgraphs.

Given Snippet 7.1, its associated CDFG generated by the LLVM pass is shown
in Figure 7.3. The figure shows the standard CFG of the function on the left,
and the generated simplified CDFG on the right. In the CDFG representation in
Figure 7.3-right, is it possible to observe how the structure of the original CFG
in Figure 7.3-left is preserved but its granularity of the blocks is increased. For
example, the BB6 block in the original CFG is split into 8 different blocks in the
CDFG (B5, R1, B6, R2, B7, W1, and B8).

In addition to the control flow information, Figure 7.3-right highlights the
dependencies among operations and variables interacting with memory. Directed
connections from the arrays in input to the function links them to the read and
write operations. These connections are shown as red arrows.

This CDFG and the attributes associated to the different nodes are the input

107 7.1 Graph-Based Deep Learning for DSE.

start

BB1

BB2

BB3 BB4

BB5

BB6 BB7

BB8 BB9

start

F

P1

P2

P3

R2

B1

R1

L1

B2 B3

L2

B4B5

B10

B6

W1

B7

B8

B9

Figure 7.3. (Left) Example of standard CFG of the function
get_delta_matrix_weights3, in Snippet , generated with LLVM. (Right) Cus-
tom version of the CDFG of function get_delta_matrix_weights3, generated
with a LLVM pass

108 7.1 Graph-Based Deep Learning for DSE.

Listing 7.1. get_delta_matrix_weights3 (source).
1 void get_de l ta_matr ix_weights3 (
2 double del ta_weights3 [nodes_per_ layer*pos s i b l e_ou tpu t s] ,
3 double ou tpu t_d i f f e r ence [pos s i b l e_ou tpu t s] ,
4 double l a s t _ a c t i v a t i o n s [nodes_per_ layer]) {
5 in t i , j ;
6 outer : for (i=0; i<nodes_per_ layer ; i++) {
7 inner : for (j=0; j<pos s i b l e_ou tpu t s ; j++) {
8 del ta_weights3 [i *po s s i b l e_ou tpu t s+ j] =
9 l a s t _ a c t i v a t i o n s [i]*ou tpu t_d i f f e r ence [j] ;

10 }
11 }
12 }

of the GNN model described in the next section.

7.1.2 Graph Neural Network for HLS

Deep Learning models have been successful at aiding researchers and industry
to address many pattern recognition and data mining tasks, such as: object de-
tection [95][96], translation [68, 136], and speech recognition [50]. However,
while such approaches have been effective while dealing with Euclidean data,
for non-Euclidean data (i.e., graphs), the complexity of the representation has
imposed a challenge on existing traditional machine learning algorithms. To
cope with graph structured data, traditional machine learning approaches map
the input structured data into a simpler representation, e.g., vectors. However,
this transformation often results in a loss of important information associated
with topological dependency among the different nodes, significantly affecting
the final results.

In the context of DSE problems related to hardware design, to the best of my
knowledge only one work has tried to apply neural networks to address the ex-
ploration task [85]. In this work, a predictive model relying on a neural network
and linear regression has been proposed to guide the DSE of a computer archi-
tecture. However, apart from this attempt, researchers have focused on different
classes of machine learning models and heuristic strategies instead of pursuing
deep learning models.

Graph Neural Networks (GNNs) have emerged as a valid tool for applying
deep learning on structured data. GNNs are able to perform inference on graph

109 7.1 Graph-Based Deep Learning for DSE.

structures by taking into account arbitrary relationships among the graph nodes.
In fact, a graph convolution can be considered as a generalised form of 2D con-
volution, and an image can be considered as a special case of graph[137]. In dif-
ferent works [103],[58], GNNs have been used to perform inference by mapping
node features into categorical and numerical values. Bronstain et al. [10] offer
an overview of deep learning methods dealing with non-Euclidean data. Sim-
ilarly, [45] and [4] discuss the use of GNNs to address the network-embedding
problem and the use of GNNs as a building block for learning relational data.

I aim at using a GNN model to learn, given the CDFG representation of an
HLS-design, the effect of HLS directives on the resulting implementation. By us-
ing Graph Convolutional Neural Networks (GCNN) it is possible to generalise the
convolution operation usually performed on grid data to graph-structured data.
The CDFG node attributes are aggregated into a vector representation, while the
graph structure is represented as a connectivity matrix. By training the GCNN
over a set of different optimized designs, I aim to generate an abstract graph
representation that aggregates the original node features with the neighbours’
ones and predicts the cost and performance for unseen designs. The convolution
operation performs a message-passing stage across the graph nodes. The mes-
sage passing is defined as a message function Mt and a vertex update function
Ut running for T time steps. In this phase, the hidden states ht

v at each node v
are updated according to the messages passed by the neighbours N(v) of v, on
messages mt+1

v as follows:

mt+1
v =
∑

w∈N(v)

Mt(h
t
v, ht

w, evw) (7.1)

ht+1
v = Ut(h

t
v, mt+1

v) (7.2)

Then, a readout phase computes a feature vector for the entire graph using
a readout function R. In our case we use a pooling operator to downsample the
nodes and generate the abstract graph representation before feeding a regression
layer used to predict the cost and performance.

The message function, the vertex update function, the readout function and
the regression one are all learnable functions.

Figure 7.4 shows the architecture of the model built to estimate the cost and
performance for a given HLS-design and a set of applied pragmas.

110 7.1 Graph-Based Deep Learning for DSE.

Input graph

Hidden layer Hidden layer

ReLU …

Regression layer

Output
layer

ReLU

Figure 7.4. Architecture of the GCNN proposed to predict costs and perform-
ance of an HLS-design.

7.1.3 Challenges

Working on the GCNN model different criticalities have emerged. The first is-
sue is related to the level of granularity of the input graph. Standard CDFGs
used by the HLS tools include information about the variables and operations to
synthesise in hardware. The proposed simplified CDFG does not include all this
information. It abstracts the concept of operations and required functional units
into the concept of basic block. The number of instructions included into a basic
block is used as a weight of the computations performed by that block. There-
fore, all the operations performed within a basic block are equally weighted,
independently from their type. A similar approach has been used in my previous
work [39] in which the computational part was not even included in the abstract
representation of a design. However, in this approach, the GCNN model aims
at estimating the performance and costs of an optimised implementation, while
in [39] estimated Pareto implementations were predicted without the need to
estimate area and latency.

This last point introduces another challenge. In literature, only a few at-
tempts have tried to learn a model able to generalise the HLS behaviour inde-
pendently from the input designs and from the directives due to the complexity
of the synthesis processes and the large variety of possible inputs. Therefore,
trying to learn a model able to precisely predict the area and latency outcome
of the HLS tool may be ambitious. An alternative strategy may lead to predict-
ing if an input design, with the associated set of optimisation leads to a Pareto-

111 7.1 Graph-Based Deep Learning for DSE.

optimal implementation. Alternatively, instead of predicting exactly the cost and
performance or the Pareto-dominance, an ordering relation among the different
configurations can be learned. This last option would avoid the need for an ac-
curate estimation of area and latency. The model’s goal would be learning the
relational order among the different configurations, disregarding the area and
latency estimation error, but preserving the Pareto-dominance relation among
the estimated configurations.

The choice of the proper task to learn affects consequently another import-
ant aspect: the choice of a proper loss function to evaluate the model. Mean
Squared Error (MSE) or Mean Absolute Error (MAE) may be good choices while
trying to predict area and latency; however alternative loss functions have to be
considered when the Pareto-dominance relation, or the ordering among the solu-
tions, are the goal of the learning task. To this regard, a possible strategy would
be considering multi-task learning as a multi-objective optimization problem, as
done by Sener et al. in [110], and formulate the problem accordingly.

Moreover, if the learned model fails to produce a high-quality estimation
of performance and cost, the model can still be used as a building block for a
more sophisticated reinforcement learning approach. The reinforced learning
algorithm’s goal would be learning a sequence of incremental optimisation steps
to navigate the design space and estimate the Pareto elements identifying the
fastest way to retrieve the Pareto frontier.

Lastly, as pointed out by Schafer et al., one of the main challenges of super-
vised learning methods for DSEs is to determine the size of the training data
[108]. In fact, while DB4HLS, shown in Section 6.2, offers a large quantity of
data for the training, due to the nature of the DSEs, the amount of data associ-
ated to different designs may be unbalanced. Thus, while some designs may have
tens of thousands of configurations, others may have only hundreds. Therefore,
learning a general model from mostly unbalanced training data may be difficult.
To cope with this, alternative solutions have been explored, especially by heur-
istics, aiming to learn how to address the DSE for a specific design instead of
learning a general strategy. To this end, a reinforcement learning approach men-
tioned before may be a valid option. Alternatively, transfer learning strategies
can be adopted to start from a general knowledge obtained across a large variety
of designs and refine it with a design-specific one.

The set of pieces built until now are small steps of an ambitious project still
far from its realisation. This work-in-progress needs further development and
the above-mentioned criticalities and possibilities need to be addressed and ex-
plored. During the next months, I plan to investigate these aspects, obtain some
preliminary results, and consolidate the different steps performed until now.

112 7.1 Graph-Based Deep Learning for DSE.

Chapter 8

Conclusion

HLS has opened many challenges. Among them, the DSE one, subject of this
dissertation, has seen many efforts from researchers. However, a general solution
to the DSE problem is still far, and DSEs challenges keep evolving.

In fact, the growing market and applicability of ASICs and FPGAs, and the dif-
fusion of heterogeneous hardware architectures, require more and more efficient
strategies to generate optimised hardware accelerators able to satisfy perform-
ance and efficiency requirements. Machine learning accelerators are becoming
ubiquitous. These are adopted in many domains and are applied to different
scenarios, targeting high performance architectures and embedded devices. To
contrast the growth of their complexity, domain specific accelerators are required
both to speed-up the training process to save time and money, and addressing
energy saving requirements[118].

To deal with this aspect, HLS methodologies must specialise in order to target
domain-specific accelerators and focus on specific aspects of the exploration. For
example, the exploration of accelerators dealing with classification tasks need to
take into account the drawbacks that some optimisations have on classification
performance. By embedding a models of the performance loss in DSE strategies,
efficient explorations of the accelerator design space can be achieved.

Moreover, the possibility to reconfigure at runtime FPGAs allows to change
the accelerators functionality online to adapt to application scenario changes
and external events. HLS plays a key role in this framework, enabling the rapid
generation and exploration of accelerator variants to deal with the changing re-
quirements.

On an orthogonal direction, approximate computing enables the generation
of RTL components able to trade inaccuracy with performance gain, and area/-
power savings. Applications that are tolerant to such inaccuracies can exploit

113

114 8.1 Contributions during the Ph.D.

approximated hardware to reduce costs and improve performance. Including
the possibility to explore the use of approximated hardware [102][100][101] in
the synthesis during DSEs can lead to more efficient accelerators.

Future DSE strategies must be able to consider all these aspects. Although,
including additional objectives and metrics to the exploration task will increase
even more the size of the design space and the problem complexity. Therefore,
more sophisticated methodologies able to deal with the increasing dimensional-
ity of the problem need to be devised.

I believe the future of DSE relies in the ability of upcoming models to consider
all these additional dimensions. DSEs must be able to evaluate optimisations tar-
geting designs at different abstraction levels–i.e., algorithmic level, software im-
plementation level, HLS-directive level, and hardware components one–in order
to completely exploit the advantages of the HLS design flow.

Lastly, as a personal remark, I strongly believe that additional effort is re-
quired by the research community. Despite the many publications in the field,
the hardware community is less open to public releasing the produced artefacts,
with respect to the software one. Therefore, a fair evaluation of existing method-
ologies is a non trivial goal to achieve. This is due to two main factors: there is a
lack of datasets to evaluate the existing methodologies, and DSE tools are often
not publicly available online. The database proposed in Section 6.2 is a first step
in the direction tackling these problems. The electronic design automation com-
munity should move in this direction in order to guarantee a fairer evaluation of
the existing methodologies and support advancements in this field.

8.1 Contributions during the Ph.D.

Herein follows a list of all the publications I have contributed during my doc-
toral studies. Publications are listed in temporal order and categorized among
journals, conferences, and unpublished works:

Publications in peer-reviewed scientific journals

1. Leveraging Prior Knowledge for Effective Design-Space Exploration in High-
Level Synthesis [39].
L. Ferretti, J. Kwon, G. Ansaloni, G Di Guglielmo, L. Carloni, and L. Pozzi.
Presented at ESWEEK 20-25 September 2020. To be published in IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems
(TCAD) 2020.

115 8.1 Contributions during the Ph.D.

This work is the result of an internship at Columbia University in New York.
I have proposed a novel design space exploration strategy investigating, for
the first time, the feasibility of effectively harnessing the knowledge from
past synthesis outcomes to guide the optimization of new designs. The pro-
posed approach, by leveraging prior knowledge from a database of existing
design space explorations, dramatically reduces the number of syntheses
required by the explorations while retrieving a close approximation of the
Pareto frontier.

2. RegionSeeker: Automatically Identifying and Selecting Accelerators From Ap-
plication Source Code [143].
G. Zacharopoulos, L. Ferretti, E. Giaquinta, G. Ansaloni, L. Pozzi.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems (TCAD) 2018.

In this work, a fully automated identification and selection methodology
of hardware accelerators, from application source code, is presented. The
proposed methodology advances the state-of-the-art and provides efficient
solutions by offering an up to 4.6x speedup and, on average, approximately
30% higher speedup compared to state-of-the-art identification techniques.

3. Cluster-Based Heuristic for High Level Synthesis Design Space Exploration [36].
L. Ferretti, G. Ansaloni, L. Pozzi.
IEEE Transactions on Emerging Topics in Computing (TETC) 2018.

In this work, I have presented a design space exploration methodology able
to efficiently navigate the space of possible high level synthesis optimiza-
tions. The proposed methodology uses clustering to divide the problem
in subproblem and perform different local explorations reducing the com-
plexity of the task. This approach was shown to outperform state-of-the-art
alternatives.

Peer-reviewed conference proceedings

1. Compiler-Assisted Selection of Hardware Acceleration Candidates from Ap-
plication Source Code [142].
G. Zacharopoulos, L. Ferretti, G. Ansaloni, G. Di Guglielmo, L. Carloni and
L. Pozzi.
IEEE 37th International Conference on Computer Design (ICCD) 2019.

This research paper extends the RegionSeeker framework accepted in the
TCAD journal as listed above. The proposed method performs automatic

116 8.1 Contributions during the Ph.D.

identification and selection of hardware accelerators while taking into ac-
count the overhead due to memory communication and the platform con-
straints. The evaluation of the methodology is performed for a complex
application such as H.264 decoder.

2. Tailoring SVM Inference for Resource-Efficient ECG-Based Epilepsy Monitors [38].
L. Ferretti, G. Ansaloni, L. Pozzi, A. Aminifar, D. Atienza, L. Cammoun, P.
Ryvlin.
Design, Automation & Test in Europe Conference (DATE) 2019.

I have conceived and explored multiple optimizations by tailoring Support
Vector Machine (SVM) inference engines devoted to the detection of epi-
leptic seizures from ECG-derived features. The combination of the different
optimization strategies resulted in 12.5X and 16X gains in energy and area,
respectively, with a negligible loss, 3.2% in classification performance.

3. Lattice-Traversing Design Space Exploration for High Level Synthesis [37].
L. Ferretti, G. Ansaloni, L. Pozzi.
IEEE 36th International Conference on Computer Design (ICCD) 2018.

In this work, I have proposed a design space exploration methodology
based on the observation that Pareto-implementations share a low variance
among their configurations. Therefore, I have devised a strategy selecting
the HLS directives that minimise the variance of new candidate solutions,
with respect to the best-performing ones that have already been visited.
This approach results in close approximations of the real Pareto frontier
while requiring a lower workload and fewer synthesis runs with respect to
existing approaches.

Accepted but not yet printed

1. Adaptive Iterated Local Search with Random Restarts for the Balanced Trav-
elling Salesman Problem.
J. Pierotti, L. Ferretti, L. Pozzi, J. Thereisa van Essen.
To be published in Advances in Intelligent Systems and Computing.

In this work, an adaptive variant of the iterated local search metaheuristic
featuring random restart for the Balanced Travelling Salesmen Problem is
presented. This algorithm introduces an uneven reward-and-punishment
rule to enable a fast response to dynamic changes during the search for new
solutions. The proposed approach has obtained notable results, achieving
the 5th position at the MESS 2018 metaheuristic competition.

117 8.2 What’s next?

Unpublished work

1. DB4HLS: A Database of High-Level SynthesisDesign Space Explorations.
L. Ferretti, J. Kwon, G. Ansaloni, G Di Guglielmo, L. Carloni, and L. Pozzi.
Will be submitted to IEEE Embedded Systems Letters (ESL).

This work extendes the database created for the work "Leveraging Prior
Knowledge for Effective Design-Space Exploration in High-Level Synthesis"
accepted at ESWEEK and listed above. I have created a framework to effi-
ciently perform and collect design space explorations with HLS. The open
structure of DB4HLS allows the incremental integration of new explor-
ations offering a valuable tool for the research community investigating
automated strategies for the optimization of HLS-based hardware designs.

8.2 What’s next?

Herein, I discuss the future plans for my research. Some of the future works have
already been presented in Chapter 7, where the possibility to use DL to tackle
DSEs problems, and the challenges it presents have been discussed.

However, I am considering other possible directions aiming at expanding the
works done until now and address the challenges discussed previously in this
chapter. Following the directions traced by the work leveraging on the previous
knowledge (Chapter 6), I aim to:

• Extend the work by moving from a separate representation of specifica-
tions and configuration space to a unified representation of those in form
of a graph–i.e., the graph representation discussed in Chapter 7. This al-
low the use of graph similarities to identify the proper sources and to ex-
ploit benefits from microkernel characterisations as done in a recent work
[132]. Moreover, searching for subgraph similarities would allow a better
coverage of large applications. Besides, I aim at creating a model to im-
prove the existing inference stage in order to offer a better coverage of the
design space for which no knowledge is available–i.e., differences among
the source and target set of directive values. Lastly, I would like to investig-
ate the possibility to combine the knowledge from different DSE problems
in case of multiple similar sources.

• Release the database of DSEs described in Section 6.2 and expand the data-
base with other benchmark suites such as CHStone [47] and Rosetta [148].

118 8.2 What’s next?

• Devise a DSE framework for classification task problems that explores a
design space including different ML models, and optimizations targeting
the model at different levels of abstraction. Given cost and performance
requirements, the framework holistically identifies a choice of the proper
classification algorithm, its software implementation, HLS optimisations
and hardware components able to satisfy designer requirements.

• Embed the knowledge of existing models into a comprehensive framework
able to choose the best exploration strategy according to the input problem
characteristics. Such framework would be able to merge the capabilities of
the existing independent ones to solve more complicated tasks.

Bibliography

[1] Ahmad, I., Dhodhi, M. K. and Hielscher, F. H. [1994]. Design-Space Explor-
ation for High-Level Synthesis, Proceeding of 13th IEEE Annual International
Phoenix Conference on Computers and Communications.

[2] Allen, F. E. [1970]. Control flow analysis, ACM Sigplan Notices 5(7): 1–19.

[3] Barbacci, M. R. [1981]. Instruction set processor specifications (isps): The
notation and its applications, IEEE Transactions on Computers 100(1): 24–
40.

[4] Battaglia, P. W., Hamrick, J. B., Bapst, V., Sanchez-Gonzalez, A., Zambaldi,
V., Malinowski, M., Tacchetti, A., Raposo, D., Santoro, A., Faulkner, R. et al.
[2018]. Relational inductive biases, deep learning, and graph networks,
arXiv preprint arXiv:1806.01261 .

[5] Beltrame, G., Fossati, L. and Sciuto, D. [2010]. Decision-Theoretic
Design Space Exploration of Multiprocessor Platforms, IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems 29(7): 1083–
1095.

[6] Bilavarn, S., Gogniat, G., Philippe, J.-L. and Bossuet, L. [2006]. Design
Space Pruning Through Early Estimations of Area/Delay Tradeoffs for FPGA
Implementations, IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems 25(10): 1950–1968.

[7] Blu [2020]. Bluespec, https://bluespec.com/technology/.

[8] Borkar, S. and Chien, A. A. [2011]. The future of microprocessors, Commu-
nications of the ACM 54(5): 67–77.

[9] Breiman, L. [2001]. Random Forests, Machine learning 45(1): 5–32.

119

https://bluespec.com/technology/

120 Bibliography

[10] Bronstein, M. M., Bruna, J., LeCun, Y., Szlam, A. and Vandergheynst, P.
[2017]. Geometric deep learning: going beyond euclidean data, IEEE Signal
Processing Magazine 34(4): 18–42.

[11] Camposano, R. [1988]. Design process model in the yorktown silicon com-
piler, 25th ACM/IEEE, Design Automation Conference. Proceedings 1988.,
IEEE, pp. 489–494.

[12] Canis et al., A. [2013]. LegUp: An open-source High-level Synthesis tool for
FPGA-based processor/accelerator systems, ACM Transactions on Embedded
Computing Systems (TECS) 13(2): 1–27.

[13] Cat [2020]. Catapult High-Level Synthesis, https://www.mentor.com/

hls-lp/catapult-high-level-synthesis/c-systemc-hls.

[14] Chi, Y., Cong, J., Wei, P. and Zhou, P. [2018]. Soda: stencil with op-
timized dataflow architecture, 2018 IEEE/ACM International Conference on
Computer-Aided Design (ICCAD), IEEE, pp. 1–8.

[15] Choi, Y.-k., Chi, Y., Wang, J. and Cong, J. [2020]. Flash: Fast, parallel, and
accurate simulator for hls, IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems .

[16] Choi, Y.-k. and Cong, J. [2018]. Hls-based optimization and design space
exploration for applications with variable loop bounds, 2018 IEEE/ACM In-
ternational Conference on Computer-Aided Design (ICCAD), IEEE, pp. 1–8.

[17] Clark, N., Zhong, H., Fan, K., Mahlke, S., Flautner, K. and Nieuwenhove,
K. [2004]. Optimode: Programmable accelerator engines through retarget-
able customization, Hot Chips, Vol. 16.

[18] Cong, J., Liu, B., Neuendorffer, S., Noguera, J., Vissers, K. and Zhang, Z.
[2011]. High-level synthesis for fpgas: From prototyping to deployment,
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Sys-
tems 30(4): 473–491.

[19] Cong, J. and Wang, J. [2018]. Polysa: polyhedral-based systolic array auto-
compilation, 2018 IEEE/ACM International Conference on Computer-Aided
Design (ICCAD), IEEE, pp. 1–8.

https://www.mentor.com/hls-lp/catapult-high-level-synthesis/c-systemc-hls
https://www.mentor.com/hls-lp/catapult-high-level-synthesis/c-systemc-hls

121 Bibliography

[20] Cong, J., Wei, P., Yu, C. H. and Zhang, P. [2018]. Automated accelerator
generation and optimization with composable, parallel and pipeline archi-
tecture, 2018 55th ACM/ESDA/IEEE Design Automation Conference (DAC),
IEEE, pp. 1–6.

[21] Cong, J., Zhang, P. and Zou, Y. [2011]. Combined loop transformation and
hierarchy allocation for data reuse optimization, 2011 IEEE/ACM Interna-
tional Conference on Computer-Aided Design (ICCAD), pp. 185–192.

[22] Cong, J., Zhang, P. and Zou, Y. [2012]. Optimizing memory hierarchy al-
location with loop transformations for high-level synthesis, Proceedings of
the 49th annual design automation conference, pp. 1233–1238.

[23] Coussy, P., Gajski, D. D., Meredith, M. and Takach, A. [2009]. An introduc-
tion to high-level synthesis, IEEE Design & Test of Computers 26(4): 8–17.

[24] Cyb [2020]. CyberWorkBench High Level Synthesis from C/C++/SystemC
to ASIC/FPGA, https://www.nec.com/en/global/prod/cwb/index.

html.

[25] Dai, S., Zhou, Y., Zhang, H., Ustun, E., Young, E. F. and Zhang, Z. [2018].
Fast and accurate estimation of quality of results in high-level synthesis with
machine learning, pp. 129–132.

[26] De Man, H., Rabaey, J., Six, P. and Claesen, L. [1986]. Cathedral-ii: A sil-
icon compiler for digital signal processing, IEEE Design & Test of Computers
3(6): 13–25.

[27] De Micheli, G., Ku, D., Mailhot, F. and Truong, T. [1990]. The olympus
synthesis system, IEEE Design & Test of Computers 7(5): 37–53.

[28] Dennard, R. H., Gaensslen, F. H., Yu, H.-N., Rideout, V. L., Bassous, E. and
LeBlanc, A. R. [1974]. Design of ion-implanted mosfet’s with very small
physical dimensions, IEEE Journal of Solid-State Circuits 9(5): 256–268.

[29] Deshwal, A., Jayakodi, N. K., Joardar, B. K., Doppa, J. R. and Pande, P. P.
[2019]. MOOS: A Multi-Objective Design Space Exploration and Optimiz-
ation Framework for NoC Enabled Manycore Systems, ACM Trans. Embed.
Comput. Syst. .

[30] Director, S., Parker, A., Siewiorek, D. and Thomas, D. [1981]. A design
methodology and computer aids for digital vlsi systems, IEEE Transactions
on Circuits and Systems 28(7): 634–645.

https://www.nec.com/en/global/prod/cwb/index.html
https://www.nec.com/en/global/prod/cwb/index.html

122 Bibliography

[31] Doppa, J. R., Rosca, J. and Bogdan, P. [2019]. Autonomous design space ex-
ploration of computing systems for sustainability: Opportunities and chal-
lenges, IEEE Design Test 36(5): 35–43.

[32] Edwards, S. A. [2006]. The challenges of synthesizing hardware from c-like
languages, IEEE Design & Test of Computers 23(5): 375–386.

[33] eet [2020]. Subaru Replaces ASICs with Xilinx FPGA
for Latest Vision-Based ADAS, https://www.eetimes.com/

subaru-replaces-asics-with-xilinx-fpga-for-latest-vision-

based-adas/.

[34] Elliott, J. P. [1999]. Understanding behavioral synthesis: a practical guide to
high-level design, Springer Science & Business Media.

[35] Esmaeilzadeh, H., Blem, E., St. Amant, R., Sankaralingam, K. and Burger,
D. [2011]. Dark silicon and the end of multicore scaling, Proceedings of the
38th Annual International Symposium on Computer Architecture, ISCA ’11,
pp. 365–376.

[36] Ferretti, L., Ansaloni, G. and Pozzi, L. [2018a]. Cluster-based heuristic for
high level synthesis design space exploration, IEEE Transactions on Emerging
Topics in Computing (99): 1–9.

[37] Ferretti, L., Ansaloni, G. and Pozzi, L. [2018b]. Lattice-traversing design
space exploration for high level synthesis, Proceedings of the International
Conference on Computer Design, pp. 210–217.

[38] Ferretti, L., Ansaloni, G., Pozzi, L., Aminifar, A., Atienza, D., Cammoun, L.
and Ryvlin, P. [2019]. Tailoring svm inference for resource-efficient ecg-
based epilepsy monitors, 2019 Design, Automation & Test in Europe Confer-
ence & Exhibition (DATE), IEEE, pp. 948–951.

[39] Ferretti, L., Jihye, K., Ansaloni, G., Di Guglielmo, G., Carloni, L. and Pozzi,
L. [2020]. Leveraging prior knowledge for effective design-space explora-
tion in high level synthesis.

[40] Fornaciari, W., Sciuto, D., Silvano, C. and Zaccaria, V. [2002]. A Sensitivity-
Based Design Space Exploration Methodology for Embedded Systems,
Design Automation for Embedded Systems 7(1): 7–33.

https://www.eetimes.com/subaru-replaces-asics-with-xilinx-fpga-for- latest-vision-
https://www.eetimes.com/subaru-replaces-asics-with-xilinx-fpga-for- latest-vision-
based-adas/

123 Bibliography

[41] Gajski, D. D., Dutt, N. D., Wu, A. C. and Lin, S. Y. [2012]. HighâĂŤLevel Syn-
thesis: Introduction to Chip and System Design, Springer Science & Business
Media.

[42] Gajski, D. D., Zhu, J., Dömer, R., Gerstlauer, A. and Zhao, S. [2012]. SpecC:
Specification language and methodology, Springer Science & Business Media.

[43] Geiger, R. L., Allen, P. E. and Strader, N. R. [1990]. Vlsi design techniques
for analog and digital circuits.

[44] Granacki, J., Knapp, D. and Parker, A. [1985]. The adam advanced design
automation system: overview, planner and natural language interface,
22nd ACM/IEEE Design Automation Conference, IEEE, pp. 727–730.

[45] Hamilton, W., Ying, Z. and Leskovec, J. [2017]. Inductive representation
learning on large graphs, Advances in neural information processing systems,
pp. 1024–1034.

[46] Han [2020]. Handel-C Synthesis Methodology, https://www.mentor.

com/products/fpga/handel-c/.

[47] Hara, Y., Tomiyama, H., Honda, S., Takada, H. and Ishii, K. [2008].
Chstone: A benchmark program suite for practical c-based high-level syn-
thesis, 2008 IEEE International Symposium on Circuits and Systems, IEEE,
pp. 1192–1195.

[48] Haubelt, C. and Teich, J. [2003]. Accelerating Design Space Exploration
Using Pareto-Front Arithmetics [SoC design], Proceedings of the Asia and
South Pacific Design Automation Conference, IEEE, pp. 525–531.

[49] Hemani, A., Karlsson, B., Fredriksson, M., Nordqvist, K. and Fjellborg, B.
[1994]. Application of high-level synthesis in an industrial project, Proceed-
ings of 7th International Conference on VLSI Design, IEEE, pp. 5–10.

[50] Hinton, G., Deng, L., Yu, D., Dahl, G. E., Mohamed, A.-r., Jaitly, N., Senior,
A., Vanhoucke, V., Nguyen, P., Sainath, T. N. et al. [2012]. Deep neural
networks for acoustic modeling in speech recognition: The shared views of
four research groups, IEEE Signal processing magazine 29(6): 82–97.

[51] Holzer, M., Knerr, B. and Rupp, M. [2007]. Design Space Exploration with
Evolutionary Multi-Objective Optimisation, International Symposium on In-
dustrial Embedded Systems, IEEE, pp. 126–133.

https://www.mentor.com/products/fpga/handel-c/
https://www.mentor.com/products/fpga/handel-c/

124 Bibliography

[52] Int [2011]. System Drivers 2011, http://www.itrs.net/.

[53] Int [2020]. Intel High Level Synthesis Compiler, https://www.intel.

com/content/www/us/en/software/programmable/quartus-prime/

hls-compiler.html.

[54] Jolliffe, I. T. [1986]. Principal Component Analysis and Factor Analysis,
Principal Component Analysis, Springer, pp. 115–128.

[55] Jouppi, N. P., Young, C., Patil, N., Patterson, D., Agrawal, G., Bajwa, R.,
Bates, S., Bhatia, S., Boden, N., Borchers, A. et al. [2017]. In-datacenter
performance analysis of a tensor processing unit, Proceedings of the 44th
Annual International Symposium on Computer Architecture, pp. 1–12.

[56] Kavi, K. M., Buckles, B. P. and Bhat, U. N. [1986]. A formal definition of
data flow graph models, IEEE Transactions on computers (11): 940–948.

[57] Kish, L. B. [2002]. End of moore’s law: thermal (noise) death of integration
in micro and nano electronics, Physics Letters A 305(3-4): 144–149.

[58] Klicpera, J., Bojchevski, A. and Günnemann, S. [2018]. Predict then
propagate: Graph neural networks meet personalized pagerank, arXiv pre-
print arXiv:1810.05997 .

[59] Knapp, D. W. [1996]. Behavioral synthesis: digital system design using the
synopsys behavioral compiler, Prentice-Hall, Inc.

[60] Ku, D. C. and De Micheli, G. [1988]. Hardware c-a language for hardware
design, Technical report, STANFORD UNIV CA COMPUTER SYSTEMS LAB.

[61] Lahti, S., Sjövall, P., Vanne, J. and Hämäläinen, T. D. [2018]. Are we
there yet? a study on the state of high-level synthesis, IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems 38(5): 898–911.

[62] Lattner, C. and Adve, V. [2004]. LLVM: A compilation framework for lifelong
program analysis & transformation, Proceedings of the international sym-
posium on Code generation and optimization, p. 75.

[63] Liu, G., Tan, M., Dai, S., Zhao, R. and Zhang, Z. [2017]. Architecture
and synthesis for area-efficient pipelining of irregular loop nests, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems
36(11): 1817–1830.

http://www.itrs.net/
https://www.intel.com/content/www/us/en/software/programmable/quartus-prime/hls-compiler.html
https://www.intel.com/content/www/us/en/software/programmable/quartus-prime/hls-compiler.html
https://www.intel.com/content/www/us/en/software/programmable/quartus-prime/hls-compiler.html

125 Bibliography

[64] Liu, H.-Y. and Carloni, L. P. [2013a]. On Learning-Based Methods for
Design-Space Exploration with High-Level Synthesis, Proceedings of the 50th
Design Automation Conference, IEEE, pp. 1–7.

[65] Liu, H.-Y. and Carloni, L. P. [2013b]. On learning-based methods for design-
space exploration with high-level synthesis, Proceedings of the 50th Design
Automation Conference, pp. 1–6.

[66] Liu, H.-Y., Petracca, M. and Carloni, L. P. [2012]. Compositional system-
level design exploration with planning of high-level synthesis, Proceedings
of the Conference on Design, Automation and Test in Europe, pp. 641–646.

[67] Liu, S., Lau, F. and Schafer, B. C. [2019]. Accelerating FPGA prototyping
through predictive model-based HLS design space exploration, p. 97.

[68] Luong, M.-T., Pham, H. and Manning, C. D. [2015]. Effective ap-
proaches to attention-based neural machine translation, arXiv preprint
arXiv:1508.04025 .

[69] Mann, C. C. [2000]. The end of moore’s law?, Technology Review
103(3): 42–42.

[70] Mann, H. B. and Whitney, D. R. [1947]. On a test of whether one of two
random variables is stochastically larger than the other, The annals of math-
ematical statistics pp. 50–60.

[71] Mariani, G., Palermo, G., Zaccaria, V. and Silvano, C. [2012]. OSCAR:
An Optimization Methodology Exploiting Spatial Correlation in Multicore
Design Spaces, IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems 31(5): 740–753.

[72] Martin, G. and Smith, G. [2009]. High-level synthesis: Past, present, and
future, 26(4): 18–25.

[73] Martins, L. G., Nobre, R., Cardoso, J. M., Delbem, A. C. and Marques, E.
[2016]. Clustering-based selection for the exploration of compiler optimiz-
ation sequences, 13(1): 8.

[74] Marwedel, P. [1984]. The mimola design system: Tools for the design
of digital processors, 21st Design Automation Conference Proceedings, IEEE,
pp. 587–593.

126 Bibliography

[75] Mat [n.d.]. Statistics and machine learning toolbox, https://ch.

mathworks.com/help/stats/.

[76] Meng, P., Althoff, A., Gautier, Q. and Kastner, R. [2016]. Adaptive threshold
non-pareto elimination: Re-thinking machine learning for system level
design space exploration on fpgas, 2016 Design, Automation & Test in Europe
Conference & Exhibition (DATE), IEEE, pp. 918–923.

[77] Moo [n.d.]. Moore’s law is dead. now what?, https:

//www.technologyreview.com/2016/05/13/245938/

moores-law-is-dead-now-what/.

[78] Moore, G. E. et al. [1965]. Cramming more components onto integrated
circuits.

[79] Mukherjee, R., Ghosh, P., Dasgupta, P. and Pal, A. [2013]. A multi-objective
perspective for operator scheduling using fine-grained dvs architecture,
arXiv preprint arXiv:1303.1645 .

[80] Mukherjee, R., Ghosh, P., Kumar, N. S., Dasgupta, P. and Pal, A. [2012].
Multi-objective low-power cdfg scheduling using fine-grained dvs architec-
ture in distributed framework, 2012 International Symposium on Electronic
System Design (ISED), IEEE, pp. 267–271.

[81] Mukherjee, R., Ghosh, P. and Pal, A. [2012]. Hotspot minimization using
fine-grained dvs architecture at 90 nm technology, 2012 Asia Pacific Con-
ference on Postgraduate Research in Microelectronics and Electronics, IEEE,
pp. 13–18.

[82] Nane, R., Sima, V.-M., Pilato, C., Choi, J., Fort, B., Canis, A., Chen, Y. T.,
Hsiao, H., Brown, S., Ferrandi, F. et al. [2015]. A survey and evaluation of
fpga high-level synthesis tools, IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems 35(10): 1591–1604.

[83] Olukotun, K. and Hammond, L. [2005]. The future of microprocessors,
Queue 3(7): 26–29.

[84] Orailoglu, A. and Gajski, D. D. [1986]. Flow graph representation, Proceed-
ings of the 23rd ACM/IEEE Design Automation Conference, pp. 503–509.

[85] Ozisikyilmaz, B., Memik, G. and Choudhary, A. [2008]. Efficient System
Design Space Exploration Using Machine Learning Techniques, Proceedings
of the 45th Design Automation Conference, ACM, pp. 966–969.

https://ch.mathworks.com/help/stats/
https://ch.mathworks.com/help/stats/
https://www.technologyreview.com/2016/05/13/245938/moores-law-is-dead-now-what/
https://www.technologyreview.com/2016/05/13/245938/moores-law-is-dead-now-what/
https://www.technologyreview.com/2016/05/13/245938/moores-law-is-dead-now-what/

127 Bibliography

[86] Palermo, G., Silvano, C. and Zaccaria, V. [2009]. ReSPIR: a Response
Surface-Based Pareto Iterative Refinement for Application-Specific Design
Space Exploration, IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems 28(12): 1816–1829.

[87] Palesi, M. and Givargis, T. [2002]. Multi-Objective Design Space Explora-
tion Using Genetic Algorithms, Proceedings of the 10th International Work-
shop on Hardware/Software Codesign, pp. 67–72.

[88] Park, N. and Parker, A. [1986]. Sehwa: A program for synthesis of pipelines,
23rd ACM/IEEE Design Automation Conference, IEEE, pp. 454–460.

[89] Paterson, M. and Dančík, V. [1994]. Longest common subsequences, In-
ternational Symposium on Mathematical Foundations of Computer Science,
pp. 127–142.

[90] Paulin, P. G., Knight, J. P. and Girczyc, E. F. [1986]. Hal: a multi-paradigm
approach to automatic data path synthesis, 23rd ACM/IEEE Design Automa-
tion Conference, IEEE, pp. 263–270.

[91] Piccolboni, L., Mantovani, P., Guglielmo, G. D. and Carloni, L. P. [2017].
Cosmos: Coordination of high-level synthesis and memory optimization for
hardware accelerators, ACM Transactions on Embedded Computing Systems
(TECS) 16(5s): 1–22.

[92] Pilato, C. and Ferrandi, F. [2013]. Bambu: A modular framework for the
high level synthesis of memory-intensive applications, 2013 23rd Interna-
tional Conference on Field programmable Logic and Applications, IEEE, pp. 1–
4.

[93] Putnam, A., Caulfield, A. M., Chung, E. S., Chiou, D., Constantinides,
K., Demme, J., Esmaeilzadeh, H., Fowers, J., Gopal, G. P., Gray, J. et al.
[2014]. A reconfigurable fabric for accelerating large-scale datacenter ser-
vices, 2014 ACM/IEEE 41st International Symposium on Computer Architec-
ture (ISCA), IEEE, pp. 13–24.

[94] Reagen, B., Adolf, R., Shao, Y. S., Wei, G.-Y. and Brooks, D. [2014]. Mach-
suite: Benchmarks for accelerator design and customized architectures,
Proceedings of the IEEE International Symposium on Workload Characteriza-
tion, pp. 110–119.

128 Bibliography

[95] Redmon, J., Divvala, S., Girshick, R. and Farhadi, A. [2016]. You only look
once: Unified, real-time object detection, Proceedings of the IEEE conference
on computer vision and pattern recognition, pp. 779–788.

[96] Ren, S., He, K., Girshick, R. and Sun, J. [2015]. Faster r-cnn: Towards real-
time object detection with region proposal networks, Advances in neural
information processing systems, pp. 91–99.

[97] Reyes Fernandez de Bulnes, D., Maldonado, Y. and Trujillo, L. [2020]. De-
velopment of multiobjective high-level synthesis for fpgas, Scientific Pro-
gramming 2020.

[98] ROC [n.d.]. Roccc, http://roccc.cs.ucr.edu/, http://roccc.cs.ucr.edu/.

[99] Sanguinetti, J. [2006]. A different view: Hardware synthesis from systemc
is a maturing technology, IEEE Design & Test of Computers 23(5): 387–387.

[100] Scarabottolo, I., Ansaloni, G., Constantinides, G. A. and Pozzi, L. [2019].
Partition and propagate: An error derivation algorithm for the design of
approximate circuits, 2019 56th ACM/IEEE Design Automation Conference
(DAC), IEEE, pp. 1–6.

[101] Scarabottolo, I., Ansaloni, G., Constantinides, G. A., Pozzi, L. and Reda,
S. [2020]. Approximate logic synthesis: A survey, Proceedings of the IEEE .

[102] Scarabottolo, I., Ansaloni, G. and Pozzi, L. [2018]. Circuit carving: A
methodology for the design of approximate hardware, 2018 Design, Auto-
mation & Test in Europe Conference & Exhibition (DATE), pp. 545–550.

[103] Scarselli, F., Gori, M., Tsoi, A. C., Hagenbuchner, M. and Monfardini, G.
[2008]. The graph neural network model, IEEE Transactions on Neural Net-
works 20(1): 61–80.

[104] Schafer, B. C. [2015]. Probabilistic multiknob high-level synthesis design
space exploration acceleration, IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems 35(3): 394–406.

[105] Schafer, B. C., Takenaka, T. and Wakabayashi, K. [2009]. Adaptive Simu-
lated Annealer for High Level Synthesis Design Space Exploration, Interna-
tional Symposium on VLSI Design, Automation and Test, IEEE, pp. 106–109.

http://roccc.cs.ucr.edu/

129 Bibliography

[106] Schafer, B. C. and Wakabayashi, K. [2012a]. Divide and Conquer High-
Level Synthesis Design Space Exploration, ACM Transactions on Design
Automation of Electronic Systems (TODAES) 17(3): 29.

[107] Schafer, B. C. and Wakabayashi, K. [2012b]. Divide and conquer high-
level synthesis design space exploration, ACM Transactions on Design Auto-
mation of Electronic Systems (TODAES) 17(3): 1–19.

[108] Schafer, B. C. and Wang, Z. [2019]. High-level synthesis design space
exploration: Past, present and future, IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems pp. 1–1.

[109] SDA [2020]. SDAccel: Enabling Hardware-Accelerated Software,
https://www.xilinx.com/products/design-tools/software-zone/

sdaccel.html.

[110] Sener, O. and Koltun, V. [2018]. Multi-task learning as multi-objective
optimization, Advances in Neural Information Processing Systems, pp. 527–
538.

[111] Shao, Y. S., Reagen, B., Wei, G.-Y. and Brooks, D. [2014]. Aladdin: A pre-
rtl, power-performance accelerator simulator enabling large design space
exploration of customized architectures, 2014 ACM/IEEE 41st International
Symposium on Computer Architecture (ISCA), IEEE, pp. 97–108.

[112] Shathanaa, R. and Ramasubramanian, N. [2018]. Design space explora-
tion for architectural synthesis—a survey, in P. K. Sa, S. Bakshi, I. K. Hatzily-
geroudis and M. N. Sahoo (eds), Recent Findings in Intelligent Computing
Techniques, pp. 519–527.

[113] Silvano, C., Fornaciari, W., Palermo, G., Zaccaria, V., Castro, F., Mar-
tinez, M., Bocchio, S., Zafalon, R., Avasare, P., Vanmeerbeeck, G., Ykman-
Couvreur, C., Wouters, M., Kavka, C., Onesti, L., Turco, A., Bondik, U.,
Mariani, G., Posadas, H., Villar, E., Wu, C., Dongrui, F., Hao, Z. and
Shibin, T. [2010]. MULTICUBE: Multi-Objective Design Space Exploration
of Multi-core Architectures, IEEE Computer Society Annual Symposium on
VLSI, pp. 488–493.

[114] Silvano et.al, C. [2010]. MULTICUBE: Multi-Objective Design Space Ex-
ploration of Multi-core Architectures, IEEE Computer Society Annual Sym-
posium on VLSI, pp. 488–493.

https://www.xilinx.com/products/design-tools/software-zone/sdaccel.html
https://www.xilinx.com/products/design-tools/software-zone/sdaccel.html

130 Bibliography

[115] So, B., Hall, M. W. and Diniz, P. C. [2002]. A Compiler Approach to Fast
Hardware Design Space Exploration in FPGA-based Systems, Proceedings
of the ACM SIGPLAN’02 Conference on Programming Language Design and
Implementation 37(5).

[116] SPA [n.d.]. SPARK, http://mesl.ucsd.edu/spark/, http://mesl.ucsd.

edu/spark/.

[117] Str [2020]. Stratus High Level Synthesis, https://www.cadence.

com/ko_KR/home/tools/digital-design-and-signoff/synthesis/

stratus-high-level-synthesis.html.

[118] Strubell, E., Ganesh, A. and McCallum, A. [2019]. Energy and policy
considerations for deep learning in nlp, arXiv preprint arXiv:1906.02243 .

[119] Syn [2020]. Synphony High Level Synthesis, https://news.synopsys.
com/index.php?s=20295&item=123096.

[120] Sys [2011]. SystemC, https://standards.ieee.org/standard/

1666-2011.html.

[121] Tan, M., Liu, G., Zhao, R., Dai, S. and Zhang, Z. [2015]. Elastic-
flow: A complexity-effective approach for pipelining irregular loop nests,
2015 IEEE/ACM International Conference on Computer-Aided Design (IC-
CAD), IEEE, pp. 78–85.

[122] Tange, O. [2011]. Gnu parallel - the command-line power tool.

[123] Theis, T. N. and Wong, H. . P. [2017]. The end of moore’s law: A new
beginning for information technology, Computing in Science Engineering
19(2): 41–50.

[124] Trimberger, S. M. S. [2018]. Three ages of fpgas: A retrospective on the
first thirty years of fpga technology: This paper reflects on how moore’s law
has driven the design of fpgas through three epochs: the age of invention,
the age of expansion, and the age of accumulation, IEEE Solid-State Circuits
Magazine 10(2): 16–29.

[125] Tripp, J. L., Gokhale, M. B. and Peterson, K. D. [2007]. Trident: From
high-level language to hardware circuitry, Computer 40(3): 28–37.

[126] Viv [2020]. Vivado High-Level Synthesis, https://www.xilinx.com/

products/design-tools/vivado/integration/esl-design.html.

http://mesl.ucsd.edu/spark/
http://mesl.ucsd.edu/spark/
https://www.cadence.com/ko_KR/home/tools/digital-design-and-signoff/synthesis/stratus-high-level-synthesis.html
https://www.cadence.com/ko_KR/home/tools/digital-design-and-signoff/synthesis/stratus-high-level-synthesis.html
https://www.cadence.com/ko_KR/home/tools/digital-design-and-signoff/synthesis/stratus-high-level-synthesis.html
https://news.synopsys.com/index.php?s=20295&item=123096
https://news.synopsys.com/index.php?s=20295&item=123096
https://standards.ieee.org/standard/1666-2011.html
https://standards.ieee.org/standard/1666-2011.html
https://www.xilinx.com/products/design-tools/vivado/integration/esl-design.html
https://www.xilinx.com/products/design-tools/vivado/integration/esl-design.html

131 Bibliography

[127] Wagner, R. A. and Fischer, M. J. [1974]. The string-to-string correction
problem, Journal of the ACM (JACM) 21(1): 168–173.

[128] Wakabayashi, K. [2004]. C-based behavioral synthesis and verification.

[129] Wang, E., Davis, J. J., Zhao, R., Ng, H.-C., Niu, X., Luk, W., Cheung, P. Y.
and Constantinides, G. A. [2019]. Deep neural network approximation for
custom hardware: Where we’ve been, where we’re going, ACM Computing
Surveys (CSUR) 52(2): 1–39.

[130] Wang, S., Liang, Y. and Zhang, W. [2017]. Flexcl: An analytical per-
formance model for opencl workloads on flexible fpgas, 2017 54th ACM/E-
DAC/IEEE Design Automation Conference (DAC), pp. 1–6.

[131] Wang, Y., Li, P. and Cong, J. [2014]. Theory and algorithm for general-
ized memory partitioning in high-level synthesis, Proceedings of the 2014
ACM/SIGDA international symposium on Field-programmable gate arrays,
pp. 199–208.

[132] Wang, Z., Chen, J. and Schafer, B. C. [2020]. Efficient and robust high-
level synthesis design space exploration through offline micro-kernels pre-
characterization, 2020 Design, Automation Test in Europe Conference Exhib-
ition (DATE), pp. 145–150.

[133] Ward Jr, J. H. [1963]. Hierarchical Grouping to Optimize an Objective
Function, Journal of the American Statistical Association 58(301): 236–244.

[134] While, L., Bradstreet, L. and Barone, L. [2011]. A fast way of calcu-
lating exact hypervolumes, IEEE Transactions on Evolutionary Computation
16(1): 86–95.

[135] Wu, F., Xu, N., Yu, J., Zheng, F. and Bian, J. [2009]. Exploiting power-
area tradeoffs in high-level synthesis through dynamic functional unit al-
location, 2009 International Conference on Communications, Circuits and
Systems, IEEE, pp. 1092–1096.

[136] Wu, Y., Schuster, M., Chen, Z., Le, Q. V., Norouzi, M., Macherey, W., Krikun,
M., Cao, Y., Gao, Q., Macherey, K. et al. [2016]. Google’s neural machine
translation system: Bridging the gap between human and machine transla-
tion, arXiv preprint arXiv:1609.08144 .

132 Bibliography

[137] Wu, Z., Pan, S., Chen, F., Long, G., Zhang, C. and Philip, S. Y. [2020].
A comprehensive survey on graph neural networks, IEEE Transactions on
Neural Networks and Learning Systems .

[138] Xydis, S., Palermo, G., Zaccaria, V. and Silvano, C. [2015]. SPIRIT:
Spectral-Aware Pareto Iterative Refinement Optimization for Supervised
High-Level Synthesis, IEEE Transactions on Computer-Aided Design of Integ-
rated Circuits and Systems 34(1): 155–159.

[139] Yassa, F. F., Jasica, J. R., Hartley, R. I. and Noujaim, S. E. [1987]. A silicon
compiler for digital signal processing: Methodology, implementation, and
applications, Proceedings of the IEEE 75(9): 1272–1282.

[140] Yu, K., Bi, J. and Tresp, V. [2006]. Active Learning via Transductive Exper-
imental Design, Proceedings of the 23rd international conference on Machine
learning, ACM, pp. 1081–1088.

[141] Zacharopoulos, G., Barbon, A., Ansaloni, G. and Pozzi, L. [2018]. Ma-
chine learning approach for loop unrolling factor prediction in high level
synthesis, 2018 International Conference on High Performance Computing &
Simulation (HPCS), IEEE, pp. 91–97.

[142] Zacharopoulos, G., Ferretti, L., Ansaloni, G., Di Guglielmo, G., Carloni,
L. and Pozzi, L. [2019]. Compiler-assisted selection of hardware accelera-
tion candidates from application source code, 2019 IEEE 37th International
Conference on Computer Design (ICCD), IEEE, pp. 129–137.

[143] Zacharopoulos, G., Ferretti, L., Giaquinta, E., Ansaloni, G. and Pozzi, L.
[2018]. RegionSeeker: Automatically identifying and selecting accelerators
from application source code, IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems pp. 1–13.

[144] Zhang, Z., Fan, Y., Jiang, W., Han, G., Yang, C. and Cong, J. [2008]. Auto-
pilot: A platform-based esl synthesis system, High-Level Synthesis, Springer,
pp. 99–112.

[145] Zhao, J., Feng, L., Sinha, S., Zhang, W., Liang, Y. and He, B. [2017].
Comba: A comprehensive model-based analysis framework for high level
synthesis of real applications, 2017 IEEE/ACM International Conference on
Computer-Aided Design (ICCAD), IEEE, pp. 430–437.

133 Bibliography

[146] Zhong, G., Venkataramani, V., Liang, Y., Mitra, T. and Niar, S. [2014a].
Design Space Exploration of Multiple Loops on FPGAs Using High Level
Synthesis, Proceedings of the International Conference on Computer Design,
pp. 456–463.

[147] Zhong, G., Venkataramani, V., Liang, Y., Mitra, T. and Niar, S. [2014b].
Design Space Exploration of Multiple Loops on FPGAs Using High Level
Synthesis, Proceedings of the International Conference on Computer Design,
pp. 456–463.

[148] Zhou, Y., Gupta, U., Dai, S., Zhao, R., Srivastava, N., Jin, H., Feather-
ston, J., Lai, Y.-H., Liu, G., Velasquez, G. A. et al. [2018]. Rosetta: A real-
istic high-level synthesis benchmark suite for software programmable fp-
gas, Proceedings of the 2018 ACM/SIGDA International Symposium on Field-
Programmable Gate Arrays, pp. 269–278.

[149] Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C. M. and Da Fonseca, V. G.
[2003]. Performance assessment of multiobjective optimizers: An analysis
and review, IEEE Transactions on evolutionary computation 7(2): 117–132.

[150] Zuluaga, M., Krause, A., Milder, P. and Püschel, M. [2012]. Smart Design
Space Sampling to Predict Pareto-Optimal Solutions, ACM SIGPLAN Notices,
pp. 119–128.

[151] Zuo, W., Li, P., Chen, D., Pouchet, L.-N., Zhong, S. and Cong, J. [2013].
Improving polyhedral code generation for high-level synthesis, 2013 Inter-
national Conference on Hardware/Software Codesign and System Synthesis
(CODES+ ISSS), IEEE, pp. 1–10.

134 Bibliography

	Contents
	Introduction
	Hardware Design Evolution
	RTL-Design Flow
	High-Level Synthesis Revolution
	Evolution of HLS
	The HLS Process
	HLS Optimisations

	New Challenges

	The Design Space Exploration Problem
	Terminology
	Problem Formulation
	Metrics

	Related Works
	Model-based Strategies
	Black-box-based Strategies
	Learning-based strategies
	Refinement-based strategies

	Refinement-Based Strategies
	Cluster-Based Heuristic
	Exploration Methodology
	Results

	Lattice Search
	Exploration Methodology
	Results

	Transfer Learning Driven Design Space Exploration
	Leveraging Prior Knowledge
	Standard Approach VS Leveraging Prior Knowledge
	Results

	A Database of Design Space Explorations
	DB4HLS Infrastructure
	A Domain-Specific Language for DSEs
	A Framework for Parallelising HLS Runs

	Is Deep Learning a Viable Solution?
	Graph-Based Deep Learning for DSE.
	Graph Representation of HLS Designs
	Graph Neural Network for HLS
	Challenges

	Conclusion
	Contributions during the Ph.D.
	What's next?

	Bibliography

