
SWISS FINANCE INSTITUTE

UNIVERSITÀ DELLA SVIZZERA ITALIANA

Doctoral Thesis

BANK RISK APPETITE IN A WORLD OF COCOS

Author

Cecilia Aquila

Thesis Advisor

Prof. Giovanni Barone-Adesi

Thesis Committee
Prof. Giovanni Barone-Adesi - Swiss Finance Institute and Università della Svizzera Italiana

Prof. François Degeorge - Swiss Finance Institute and Università della Svizzera Italiana

Prof. Erich Walter Farkas - Swiss Finance Institute, ETH Zurich and University of Zurich

A thesis submitted in ful�llment of the requirements for the degree of Philosophiae doctor in

Finance at the Swiss Finance Institute - Università della Svizzera Italiana

October 5, 2018



�Fatti non foste a viver come bruti, ma per seguir virtute e canoscenza"

Dante Alighieri



Acknowledgements

I gratefully acknowledge �nancial support from the Università della Svizzera Italiana,

the Swiss Finance Institute, the Europlace Institute of Finance (EIF) and the Labex Louis

Bachelier.

I am grateful to Prof. Giovanni Barone-Adesi, my advisor, for accepting to supervise my

PhD thesis and for passionating me to conduct research in �nance since my early Bachelor

study. I thank you for teaching me technically a lot, for helping me �nding my own way, for

sustaining me in my choices. I express gratitude for having always left the door open, for

having listened and talked to me, for you patience, for conducting me till the end of this great

journey in the Academia and for helping me to reach the top of my mountain. Thank you

for being a great example to me and to all of us. I'm indebted to you for having reassured

my mum telling her that I would have found my way, professionally speaking. It allowed

her to be more relaxed given that it was her priority, even the very last days, to make sure

I would have found the right job for me. She didn't see that but you helped giving her the

same satisfaction she would have experienced last year after the job o�er I received.

I'm thankful to Prof. François Degeorge for providing very important "knowledge bricks"

for my research foundations and for contributing teaching me the method for conducting

research. Bringing EFA Meeting 2014 here in Lugano has been inspiring and a great gift for

all of us. Being in the Organization Committee of EFA Meeting 2014 has been one of the

greatest memories of this PhD.

I'm indebted to Prof. Erich Walter Farkas for helpful comments and suggestions on my �rst

paper, when we met in Zurich, for giving me the chance to attend the class of Prof. Tunaru

in 2015 and for kindly accepting to be on my Thesis Committee.

I owe a lot to Prof. Marco Meneguzzo for pushing my curiosity to the health environment

both from an Academic and professional point of view, for having given me many oppor-

tunities, for having helped and encouraged me to publish the article based on my Master

Thesis, as well as having sent me to my �rst conference in Lisbona on Public Management

and Policy. I will never end thanking you for always having been there for my family, for that

December 24th, 2014 you came at Istituto dei Tumori for the birthday of my mum, while she

was having the �rst failed chemotherapy, till now, that you are so caring to us and especially

to my father.

A special thank to Prof. Antonietta Mira, for being a great example for me, for having



given me many technical instruments, for having been always at disposal, for helped uncon-

ditionally, for giving also to me the chance to participate in the Organization Committee for

MCMSKI 2016. Many thanks for the nice evenings spent together, fascinating, inspiring and

supporting all of us. I thank you a lot for being a reference point for me and my family, for

having shared with us the joys of the wedding, the birth of our babies and the for having

been there when mum passed away.

I will be always grateful to Prof. Mauro Baranzini and Prof. Amalia Mirante for having be-

lieved in my potential since the very beginning of my studies, according to me the USI grant

for the Bachelor and Master. USI is still small, but very open minded. In Prof. Baranzini's

class, I had the privilege of having been exposed to a di�erent point of view with respect to

main stream research in macroeconomics, having left an indelible mark in my way of think-

ing.

I want to express gratitude to Prof. Antonio Vegezzi for having been a sponsor of this PhD

and for having always been willing to advise me in key life and student decisions.

Many thanks to Prof. Orlando Nosetti and Adriana for having transmitted me the passion

for studying economics, for the nice friendship and for having suggested that, at some point,

we need to let to future research some arguments and end the paper.

I thank a lot Tamara Nefedova and Giuseppe Pratobevera, my co-authors and friends, for

having supported me even during this last period of Academia. With both of you I shared

a lot of my professional and private life and, there too, joys and drama. Thank you for not

judging me and for helping to focus on the upside. Tami we spent amazing days together in

NYC and the Hamptons in four, as well as a nice days in Cannes and in Cassis in six. This

have been amazing. Thank you for having been one of the greatest example professionally

speaking and as a woman, as a friend, as a wife.

I owe the PhD, with the SFI mention, to Alessio Ruzza. I will never forget how much you

helped me studying "time series" before and the work we did together on the third paper,

whose �rst trials date back to 2014.

I miss already Chiara Legnazzi, my o�ce-mate, the best one I would ever have! You taught

me, through your example, how to totally focus on the activity: no distractions and great

results. Many thanks to you and Alessio for having shared with me so much.

I'm obliged to Matteo Borghi for the feedbacks on my research and for having been always

supportive telling me as a mantra "mai mollare neanche un metro". In many occasions, I

borrowed the energy for going further from there.

A great gift I received during this PhD has been Federica Bianchi's friendship. You are part

4



of my family, with Tino, Antonia and Nevio. Thank you all for sharing everything. Wonder-

ful moments and very hard days have become the sap of our friendship.

Filippo Macaluso deserves a special mention for the several evenings we spent together in

the o�ce, especially during the �rst year, for the great �nocchiona I always stole you from

the fridge, for the great tour in Firenze at Villa Cora where I hope to spend a couple of days

for the end of your PhD.

Many thanks to Biljana Seistrajkova and Elisa Ossola for being a caring, close and very smart

friends. You showed me that it could be feasible to have a family and earn a PhD.

All my thanks to Katia Mue' for the precious help,for being supportive and caring.

I would also like to thank who I consider my Lugano PhD family: Carlo Sala, my C and C

collegue for the friendship and for inspiring me with your Master Thesis on CoCos; Davide

Tedeschini, for the greatest tour in Perugia and numerous lunches in the kitchen - third �oor;

Fabrizio Leone, for having talked a lot together, for always having been there for me and

for all of us; Ilaria Piatti, for the great person you are and the top professional example

you gave us; Mihaela Sandulescu, for being close to all of us; Mirco Rubin for all the advice

you gave to me; Mirela Sandulescu, for the nice chats we had; Paul Schneider, for having

explained me a lot of continuous time �nance, for the German versus Italian exchange and

for the friendship; Peter Gruber, for the enormous help in coding, for the greatest "wedding"

Sacher we ever had, and for the inspiring talks; and Zoran Filipovic for the friendship and for

the great talks, I missed the opportunity to come to your wedding and hope we could catch up.

I am thankful to Cristina Largader, who sustained me since we �rst met in 2009. Your

approval and continuous stimulus gave me important incentives for being motivated and

ready to go till the end of this PhD. You are a great friend.

I express my gratitude to the board of the Cardiocentro Ticino Foundation and especially

to the management who have been patient and �exible during this last year, allowing me to

conclude this beautiful chapter of my life.

Many thanks also to the Club Pattinaggio Lugano, to Sabrina Martin, Andrea Savorgnano,

Sonia Dal Pian, Alexandra, Betty, Luca Giacon for having allowed me teaching ice-skating

to recover from many hours spent looking into my pc screen. In particular I want to thank

Fabrizio Pedrazzini for the great exchange we had both on and o� ice and for the friendship.

I thank Chiara Lotrecchiano with her husband Paolo and my godchildren Damiano and Be-

linda for the interesting talks regarding �nance subject, for having always been there and

having been patient and accepted to postpone all the time the right time for meeting each

5



other.

I'm thankful to Stefania Zappa, Sara Di Salvatore with Matteo, Thomas, Giusi and Massimo,

Laura Raponi, Valentina Della Giacoma, Stefano Bianchi, Matteo Capriata and Stefania

Corti with Ursula and Emilio, for their friendship and unconditional support.

I will be always grateful to my family. In the �rst place to my mum, Tiziana, who taught me,

through her example what does it mean to be an extraordinary and signi�cant person, a great

doctor and a loving mum. She showed me the importance of studying and the goodness of

sacri�cing the today for a better tomorrow. She personi�ed "per aspera, ad astra", meaning

that she did everything that was feasible and also infeasible (but in both cases painful) for

being always there for me, our family, her friends and her patients. I thank her for waking

up with me at 5 am, even in the last period of her disease, for supporting me conducting my

research or studying for the exams. She worried that I would not have been able to end my

PhD considering my private life. I will never forgive me for not having been able to allow her

to hug her grandchildren and for not being able to earn this PhD before, to share these joys

with her. A special thank to my father, Salvatore, for the constant encouragement during this

long journey as a PhD student and especially in this last couple of years where the support

have been also very practical with the kids, giving me unconditional support far longer than

early afternoon. Thank you for having taught me to work tirelessly and to study the most I

could. Thank you mami and papi for being my �rst fan. I thank my granny, Jolanda, and

my grandfather Ferruccio, with their great friend Theo, who helped me growing as a woman

and spent the last two years every afternoon looking after my kids while I was doing research.

My grandparents, Francesca and Gaetano, also played a role in this PhD, understanding I

was not able to visit them all the times they would have well deserved because I needed to

concentrate on my research.

Many thanks to Anna being always available for us and caring.

I owe a lot to my husband Stefano, who spent so many days on the sofa, sitting near me at

the table, renouncing to chat with me, respecting my studies before, and my research later

on. Thank you for understanding that I dedicate this PhD to our children, hoping to provide

a good example to them in the �rst place, inspiring and encouraging them as my mum did

with me. I'm enormously grateful to Andrea and So�a Tiziana, my beloved children, who

have been patient and accepted not to play with their mum, not to enjoy all the tenderness

they would have deserved because of these papers or who received late milk or food because I

even didn't realized that time passed. I hope from Saturday on we could all live our "Temps

retrouvé".

6



Contents

1. Introduction

2. Chapter 1: How to Shape Risk Appetite in Presence of Franchise Value?

3. Chapter 2: Optimal Bank Risk Appetite in a World of CoCos

4. Chapter 3: CoCo bonds and Write Down Bonds Impact on Banks' Risk Appetite and

Investment Policy

5. Conclusions



to my children



Introduction

In my PhD thesis I focus on bank capital structure, risk appetite and hybrid �nancing in-

struments, i.e. Contingent Convertible bonds (CoCos). I assess optimal bank �nancing and

investment behaviour shaping its risk appetite. I conduct both a theoretical analysis with

empirical application on the �nancing side and an empirical analysis on the investment one.

The main goal of our research is to understand bank's risk appetite in presence of growth

opportunities and a �nancing structure including CoCo bonds, hybrid capital securities that

absorb losses when the capital of the issuing bank falls below a certain threshold. We conduct

our analysis in two steps, assessing the bank risk appetite in presence of franchise value �rst in

a context of standard �nancing, second introducing CoCo bonds. The thesis consists of three

chapters. Chapter 1, "How to Shape Risk Appetite in Presence of Franchise Value?"(with

G. Barone-Adesi), Chapter 2, "Optimal Bank Risk Appetite in a World of CoCos"(with G.

Barone-Adesi) and Chapter 3 "CoCo Bonds and Write Down bonds impact on Banks'Risk

Appetite and Investment Policy"(with T. Nefedova, G. Pratobevera and A. Ruzza).

Chapter 1: How to shape risk appetite in presence of franchise value? (with

Giovanni Barone-Adesi)

The �rst paper is a joint work with Giovanni Barone-Adesi. We investigate the shape of the

risk appetite of our bank and the role played by the monetary policy in framing it. Bank

objective function and its risk appetite are determined by the interplay of the default option

and the down-and-out call (DOC) option, pricing the franchise value, i.e. the net present

value of non-observable bank's growth opportunities. We de�ne the objective function as the

ratio between the sum of the two options' prices and the market value of the tangible assets.

Our major contribution consists in assessing risk appetite in three dimensions, allowing also

the monetary policy to play a role on risk appetite and to work jointly with the bank manager

in the optimization of the objective function. We test our optimizations on a sample of 1436

banks, listed in the US, over 1980-2014. We �nd that the optimal risk-free rate is higher with

respect to the existing one in the last period. The objective function is magni�ed for lower

values of leverage, which is straightforward given our speci�cations and optimal volatility

should stay low in order not to erode the franchise value. The monetary policy maker should

play a role for an e�ective risk appetite optimization. We show that regulators should tune
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their recommendations depending on the targeted cluster, since the driver of risk appetite

alternates between the two options depending on the cluster and on the underlying variable

considered, given the other two. Furthermore, introducing the franchise value in the speci�-

cation of risk appetite, we propose an incentive for the manager to adopt a policy long-term

oriented. There is still ample room for the regulator to �nd the proper instruments in order

to boost banks growth on one side, and consequently help economic growth, and to prevent

them undertaking excessive risks on the other side.

Our paper is based on the seminal works by Black and Scholes (1973) and Merton (1973a),

where the liabilities of a company are seen as an European option written on the assets of

a �rm. The endogenization of the default threshold, proposed by Leland and Toft (1996),

provides alone not a clear improvement with respect to the standard Merton model, unless a

jump component is introduced, as in Leland (2006). Our study is more related to Brockman

and Turtle (2003), who introduce in equity path dependency, i.e. equity can be knocked out

whenever a legally binding barrier is breached. Hugonnier and Morellec (2017) propose a

dynamic model of banking assessing the impact of the main instruments in Basel III. On the

other side, leverage requirements decrease default risk and increase growth opportunities of

the bank, on the long-run, which is partly in line with our �ndings. Additionally, raising

equity requirements make the loss to be borne by shareholders and the distance to default

increases (see e.g. Admati and Hellwig (2013)). The model we propose relies on regulatory

principles: Basel III indicates a bank is insolvent if the common equity tier one (from now

on CET1) is below 4.5%. It is true that in some countries banks, that would be declared

insolvent for Basel III, still run their assets. Thus, a possible extension to this model would

consider the interplay between an exogenous default barrier set by the regulator and the

endogenous one chosen by the bank, highlighting an important weakness in monitoring by

the regulator.

Chapter 2: Optimal Bank Risk Appetite in a World of CoCos. (with Giovanni

Barone-Adesi

In the post- Lehman Brothers failure, governments announced the end of the too big to fail.

In this context, issuing loss absorbing instruments has gained increasing popularity. Between

2009 and 2015, banks issued more than 380 billion of CoCos 1. Regulation plays a crucial role

in determining CoCos'issuance. Under Basel III, CoCo bonds are eligible as either Additional

Tier 1 (AT1) or Tier 2 (T2), which are types of capital apparently preferred by banks with

1Data from Moody's Investors Service, Moody's Quarterly Rated and Tracked CoCo Monitor Database-
Year End 2015
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respect to equity to accomplish regulatory requirements, given that they are cheaper and less

dilutive than issuing equity. Their introduction into the �nancing structure of our banks is

relevant from a regulation and risk management point of view.

In the second paper, prepared in collaboration with Giovanni Barone-Adesi, we introduce

CoCo bonds in the �nancing structure of our bank and see how the shape of the bank risk

appetite changes. Some of the characteristics of CoCo bonds are key in understanding the

dynamics of risk appetite. In our model, the manager acts in order to accomplish regulatory

requirements. Focusing on capital requirements, Basel III rule requires banks to fund them-

selves with at least 4.5% of common equity of risk-weighted assets (RWAs). The regulator

allows for an extra 1.5% of Additional Tier 1 (AT1) that together with the CET1 concurs to

compose the minimum level of 6% of Tier 1 capital over RWAs. Hence, in order to be compli-

ant with this ratio, the manager has discretionary power over two variables: CoCos issuance

and assets' volatility. On one side, issuing CoCos, which are eligible for AT1, the manager

increases the numerator of the ratio, enlarging the Tier 1. On the other side, the manager

might decrease the RWAs. RWAs are a weighted sum of banks' assets, thus we refer to this

�gure as the total assets' volatility. Through this capital requirement ratio, the regulator

provides an incentive for decreasing assets' volatility. Optimizing the level of risk appetite,

the manager should focus on the maximization of the bank objective function, which is given

by the sum of the two options (default put option and down-and-out call option). In this

model, we have an additional optimization variable, with respect to the basic model outlined

in the �rst paper: the proportion of CoCos to issue with respect to the total amount of debt.

Hence, the manager has discretionary power over the level of leverage, the proportion of

CoCos to issue and the assets' and franchise value's volatility. The last optimizing variable

is the policy rate: this is a relevant variable to be assessed in this context. Nowadays it

is near zero or negative, thus it pushes the bank to substitute assets into more risky ones,

pretending to get higher returns. In this framework, we argue that monetary policy makers

drive the banks assets' volatility to higher levels, on the contrary the regulators attempt to

mitigate this through the capital requirement ratio's incentive to decrease RWAs. Which one

of the two incentives has the greater impact over our objective function? For higher levels

of volatility, the default put option is magni�ed and the down-and-out call (DOC) option

is more likely to expire worthless because of the higher probability of breaching the barrier.

Vice versa, for lower levels of volatility, this probability is smaller, increasing the DOC option

value even more thanks to the CoCos �nancing that are widening the distance to the barrier.

Nevertheless, we consider also the case where their cushion function is weakened because of

the consequent decrease in the market value of equity given that the market might discount
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the CoCos' conversion as a signal of a forthcoming default. Our contribution to the existent

literature, is again to assess risk appetite in a multi-dimensional perspective and to account

for di�erences among banks' clusters which are even more relevant in a world with CoCos.

Furthermore, we address the pros and cons of the regulation in force, based on a ratio giving

interesting incentives and a monetary policy allowing for negative interest rates.

Attaoui and Poncet (2015) develop the model showing that credit spread on straight debt

is lower if the �rm has WD bonds in its �nancing structure, given the cushion function of

the WDs with respect to the straight debt (senior). CoCos are nearer to equity because in

some states of the world they are not debt. Chen et al. (2013) show that replacing some

straight debt with CoCos lowers the endogenous default barrier and therefore increases the

�rm's ability to mitigate a loss in asset value. A natural direction for future research is

to consider the impact of wealth transfer among di�erent categories of stakeholders, which

should be relevant for governments. Roy and El-Herraoui (2016) demonstrate the complexity

of designing a fair and e�ective bail-in regime. The regulator is mainly confronted with the

choice of implementing or not the wealth transfer. If it chooses to do so, it faces the risk of

requests for compensation and arbitrage behavior in �nancial markets.

Chapter 3: CoCo Bonds and Write Down bonds impact on Banks' Risk Ap-

petite and Investment Policy (with T. Nefedova, G. Pratobevera and A. Ruzza)

Theoretical literature has widely assessed hybrid capital, on the contrary there is a small

empirical literature, given the scarcity data. Scepticism around CoCos come from their short

track record, as they were introduced only in 2009 in the banking industry, making their

performance not yet tested during bad times. In the paper, written jointly with Tamara

Nefedova, Giuseppe Pratobevera and Alessio Ruzza, the main goal is to assess empirically

banks' risk appetite and investment policy when their �nancing structure includes contingent

convertible bonds (CoCos) and (or) write-down bonds (WDs), hybrid capital securities that

absorb losses when the capital of the issuing bank falls below a certain threshold. The main

di�erence between the two �nancing instruments is that CoCos convert to equity, while WDs

convert to zero. We aim to study the impact on bank risk appetite of issuing WDs/CoCos,

and what happens to the bank investment policy. To the best of our knowledge, this is the

�rst attempt to address these questions empirically. From 2009 to 2014, about half of the Co-

Cos outstanding were eligible as AT1 and in 2015 about 76% were AT1 CoCos. The greatest

amount of CoCos issued worldwide is in Europe, hence this is the appropriate environment

to study CoCos and WDs issues. The conclusions of this study are relevant for both the

US and European regulators, �nancial decision-makers and investors. What is the impact of
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introducing hybrid capital like CoCos and WDs into banks' �nancing structure on their risk

appetite and medium and long-term investment decisions? The only existent comprehensive

empirical study on CoCos is conducted by Avdjiev et al. (2015). They interestingly show that

CoCos issuance reduces banks' credit risk and investors in CoCos view those instruments as

risky and place a signi�cant likelihood on the possibility of conversion.
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Chapter 1

How to shape risk appetite in presence of
franchise value?2

Abstract

We propose a model where risk appetite is determined by the interplay of the default

put option and the down-and-out call option, pricing the franchise value. The bank

manager takes incremental decisions maximizing his objective function, i.e. the sum

of the two options, adjusting jointly the level of leverage, assets and franchise value

volatility and the policy rate. Risk appetite is given by the �rst order derivatives. We

show that regulators should tune their recommendations depending on the targeted

cluster, since the driver of risk appetite alternates between the two options depending

on the cluster and on the underlying variable considered. We �nd that the optimal

policy rate for stability is higher with respect to the existing one in the last period. The

modelling framework and the insights emerging from the cluster analysis are our major

contribution to the existent literature.

Keywords : risk appetite, policy rate, default put option, down-and-out call option, franchise

value, assets and franchise' volatility, leverage.

JEL: G21, G32, G38, E52

2We acknowledge the �nancial support of the Europlace Institute of Finance (EIF) and the Labex Louis
Bachelier (Grant 2014)
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1 Introduction

The main goal of our research is to understand bank's risk appetite. The modelling framework

and the insights emerging from the cluster analysis are our major contribution to the existent

literature. We �nd what are the main drivers for risk appetite and their impact on both the

bank market value and its franchise value. Bank risk appetite is determined by the interplay

of the default put option, and the franchise value, i.e. the net present value of non-observable

bank's growth opportunities, priced through a down-and-out call option. The franchise value

is not directly observable: how can we evaluate this �gure? We rely on Barone-Adesi et al.

(2014) pricing it through the down-and-out call option and we propose to estimate it implicitly

from the equity market value, extending the standard structural models. Risk appetite is

determined by the manager objective function which we propose it to be the sum of the two

options, since these are the key determinants of the bank market value. We propose two

ways to reach the goal of shaping risk appetite. First, we suggest a two steps optimization

problem, second, we assess risk appetite in a state space model. In the �rst step of the

optimization problem, we estimate the non observable quantities, namely the franchise value

and the market value of the assets. The optimization procedure is based on the non-linear

least squares estimator, through which we minimize the distance between the equity market

value �gures and our model. We discriminate banks with and without franchise value and

subsequently we perform a cluster analysis based on leverage. Given the industry in which

we perform our analysis, we rely on the Basel Committee on Banking Supervision de�nition

for leverage3, i.e. the ratio between the tier one and the total exposure. In our model,

the total exposure is given by the franchise value and, thus, the market value of the assets.

The Federal Reserve announced that the minimum Basel III leverage ratio would be 6%

for systemically important �nancial institution banks and 5% for their insured bank holding

companies. Hence, we encounter those thresholds as reference point given that our empirical

analysis is based on US banks. In the second step, we optimize the objective function, given by

the sum of the two options, evaluating risk appetite simultaneously with respect to leverage,

volatility and the policy rate. The �rst-order derivatives of this function determines the bank

risk appetite. The determinant of the Hessian matrix tells us in which direction the manager

optimizes this function. In our model, the bank manager should align her policy within the

regulator framework. The bank manager sets the Vega4 equal to zero (volatility-driven risk

appetite) simultaneously with the derivative with respect to the leverage (leverage-driven

3We refer to Basel III de�nition.
4Objective function pricing sensitivity with respect to change in the implied volatility.
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risk appetite), and with the rho5 equal to zero (policy rate-driven risk appetite). We stress

the importance of performing simultaneously this optimization among the three variables,

since, in our framework, it is important their joint impact over the bank risk appetite. The

second order and joint derivatives are relevant in the optimization procedure, since the sign

of the determinant of the Hessian matrix gives us the direction of the bank policy. The

manager has discretionary power over volatility and leverage. Nevertheless, we focus also

on the optimal value of the policy rate in order to understand the level that would grant

stability for each bank and, thus, for the whole banking system. In our case, it is the rate

that, together with the optimal values for the other two variables, maximizes the bank value.

We stress the di�erence between our optimal policy rate and the risk-free rate given by the

monetary policy. The latter is determined by a number of other factors that are not the

subject of this paper. The pricing of the two options is designed to have di�erent impact

on the appetite for risk of our bank depending on the cluster we focus on and the variable

we consider. The regulators should tune their recommendations depending on the targeted

cluster in order to be e�ective. This is an element of primary interest because regulation

does not di�erentiate enough in the banking industry and �at recommendations do not �t

all the peculiarities we �nd in clustering the industry. Our speci�cation of objective function

returns a three-dimensional perspective and addresses the main instruments of regulation.

Thus, it can be a useful instrument for the regulator, allowing for a more comprehensive

understanding of the joint impact of the three optimizing variables.

Our empirical sample consists of 1436 listed US banks and the time span considered is

1980-2014. We perform a cluster analysis in order to accommodate for the main di�erences

across the industry. First of all, we distinguish between banks with franchise value and

without. We �nd that about the 15% of the banks in the sample do not have franchise value

at least in one year of the time span considered. Second, we cluster our sub-samples into

three categories depending on leverage. The main results for the sub-sample of banks without

franchise value are easy to predict since the put option is the only player in the objective

function optimization and in determining the shape of risk appetite. More interestingly, we

assess the sub-sample of banks with a portfolio of growth opportunities and we cluster it as

follows: (i) �over-capitalized� banks (cluster 21), with an actual average leverage of 11.12%,

(ii) �average capitalized� banks (cluster 22) with 7.41% and (iii) �under-capitalized� banks

(cluster 23) with 4.28%.

We perform a sensitivity analysis with respect to the three optimizing variables in order

5Objective function sensitivity with respect to change in the policy rate.
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to understand the shape of risk appetite moving one of the three variables given the optimal

quantities for the other two. Furthermore, we disentangle which option is the main driver

among the three clusters6. Considering leverage, the risk appetite is determined �rst by the

default put option, then by the down-and-out call one. There is a di�erence in the leverage-

driven risk appetite at a cluster level related to the positioning of the peak. On the volatility

side, both the options contribute in shaping the objective function but the default put option

is an early operator with respect to the down-and-out call one. As the leverage decreases, the

volatility-driven risk appetite is smaller, since the risk appetite peaks goes to the left-hand

side. Concerning the policy rate, the shape of risk appetite is a concave function in all the

three cases, with minor di�erences among the clusters. The down-and-out call option drives

the shape at the beginning leaving the place to the put one afterwards. In cluster 21, the

bell-shape is quite symmetric, instead in the other two it is right-skewed. Empirically, we

always �nd that the estimated policy rate is higher relative to the actual one in the last

period. Increasing the leverage, the optimized objective function naturally decreases (since it

is partly determined by the franchise value, but this is due to our de�nition of leverage). The

risk appetite is assessed through the behaviour of its three main drivers and the associated

shape is quite di�erent among the clusters.

The paper proceeds as follows. Section 2 introduces a literature review. Section 3 presents

the model and the pricing of the options. The two step optimization problem is described

in Section 4. Section 5 shows the empirical results. Section 6 concludes. Further material is

given in the appendix.

2 Literature review

This paper is related to several di�erent strands of the literature. First of all, the building

blocks of the literature about structural models are considered. Second, regulation issues are

reviewed from both a theoretical and an empirical perspective. Third an overview on growth

opportunities evaluation issues is presented.

Our paper is based on the seminal works by Black and Scholes (1973) and Merton (1973a),

where the liabilities of a company are seen as an European option written on the assets of

a �rm. In the case of Merton (1973a), the capital structure of a �rm is composed by a

zero-coupon bond, as debt, and equity. At the beginning of the period, debt holders hold a

6These results are in line with the signs of the �rst order derivatives of the objective function with respect
to the optimizing variables.
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portfolio consisting of the face value of debt and a short position on a European put option.

Instead, equity holders hold a European call option on the market value of assets, with strike

equal to the face value of debt. Under the non arbitrage assumption, the price of this option

is equal to the market value of equity. Default can happen only at maturity and standard

Black-Scholes world assumptions7hold.

Several studies extend the original model considering the assumptions by Black and Sc-

holes. Black and Cox (1976) and Longsta� and Schwartz (1995) allows for default also prior

to maturity. Merton (1977, 1978) examines default risk in banks, with several issues that

were addressed by recent literature. In those cases, equity is considered as a barrier option

and the default event is triggered at the �rst hitting time of an exogenously determined

barrier.

The endogenization of the default threshold, proposed by Leland and Toft (1996), pro-

vides alone not a clear improvement with respect to the standard Merton model, unless a

jump component is introduced, as in Leland (2006). Our study is more related to Brockman

and Turtle (2003), who introduce in equity path dependency, i.e. equity can be knocked

out whenever a legally binding barrier is breached. We assess the market value of equity

building on Babbel and Merrill (2005). In their model, the franchise value and the default

put option accrue to equity holders Barone-Adesi et al. (2014) argue that the risk appetite

of �nancial intermediaries is determined by the interplay of default put option and growth

opportunities.Our contribution to the existent literature is the modelling framework we pro-

pose. Starting from those seminal studies, we assess risk appetite in a three-dimensional

framework, in order to understand the joint impact our three variables have on each other

and on the bank risk appetite.

The model we propose relies on regulatory principles: Basel III indicates a bank is insol-

vent if the common equity tier one (from now on CET1) is below 4.5%. It is true that in

some countries banks, that would be declared insolvent for Basel III, still run their assets.

Thus, a possible extension to this model would consider the interplay between an exogenous

default barrier set by the regulator and the endogenous one chosen by the bank, highlighting

an important weakness in monitoring by the regulator.

From a social point of view, Hugonnier and Morellec (2017) provide a measure for social

bene�ts of regulation, in order to avoid the burden of a bank default to be beared by the

taxpayers. It would be interesting to extend our model to the too-big-to-fail banks. In this

case, Lucas and McDonald (2006) build their modelling of the public guarantee in a Sharpe

7Such as perfect markets, continuous trading, constant volatility, deterministic and constant interest rates,
in�nite liquidity and Ito dynamics for the process of the market value of the assets in place
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(1976) and Merton (1977) framework, where the insurance is a put option on the assets'

value. For a �rm with guaranteed debt, equity value has another component with respect

to the standard call option on the operating assets: the public guarantee. It is assumed to

accrue to equity holders, since it is equivalent to writing a put option, from the government

point of view.

Another main ingredient in our study is franchise value, which is the net present value of

future growth opportunities.

The underlying framework, for our model, is given by Froot and Stein (1998) who found

the rational for risk management arises from the concavity of the franchise value.

3 Research methodology

3.1 The model

The subject of our study is a bank held by shareholders who bene�t from limited liability.

They discount cash �ows at a constant interest rate.

The structure of the balance sheet, in book values, is given as follows. The bank owns a

portfolio of risky assets and liquid reserves, and is �nanced by insured deposits, risky debt

and equity. On the left hand side of the balance sheet, risky assets are relative illiquid due to

informational problems (see e.g. Hugonnier and Morellec (2017) and Froot and Stein (1998).

For the while, assuming there are no costs of raising funds, liquidity reserves do not play a

role. On the right hand side of the balance sheet, the focus of the analysis is on risky debt

and equity, instead deposits are seen as a relative stable source of �nancing for the bank (see

Hanson et al. (2014)).

Going to market values, debt is seen as a portfolio of cash plus a short position in a put

option on �rm value as in Merton (1974) and equity as a call option on assets as in Black

and Scholes (1973). In our model, we focus on the interplay between the standard default

put (PUT def ) option and the down-and-out call (DOC) option that accrue to shareholders.

Main assumptions and model description

In this subsection, we introduce the main assumptions of our model, building on the funda-

mental work of Black and Scholes (1973) and Merton (1974), and the following insights by

Babbel and Merrill (2005) and Barone-Adesi et al. (2014).
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The setting of the underlying model deals with continuous time, with initial date t = 0

and terminal date t = T . No frictions, like transaction costs, taxes and costs of raising funds,

nor limits on short sales are considered and no riskless arbitrage opportunities exist. Agents

are risk-neutral and there are no con�icts of interest between shareholders and managers. The

focus of the project is to understand how the regulator should set appropriate risk-taking

incentives, given that the bank is maximizing its end of the period equity market value.

Initially, shareholders contribute the entire equity of the bank and, subsequently, consider

operating a debt-equity swap at t0, where debt has face value FV
SD. The proceeds from debt

issue are invested in the assets in place and future growth opportunities (i.e. franchise value)

that at time T are worth A (T ) and Fr (T ), respectively. The franchise value materializes

only at the end of the period, T , but it might vanish previously, as soon as the liabilities

exceeds the asset value in 0 ≤ t ≤ T , that is when

τFr=0 = inf
{
t ≥ 0 : A (t) ≤ FV SD +Dep

}
. (1)

This is slightly di�erent with respect toDemsetz et al. (1996) or Jones et al. (2011), because

in their model this value is lost in case of bankruptcy. We call the market value of the assets

(MVA) the sum of the tangible value of the assets and franchise value. Their dynamic is:

d ln (MVA (t)) =

(
µMVAt −

σ2
MVA

2
t

)
dt+ σMVAdBt, (2)

where Bt is a standard Brownian motion, the drift, µt, is time-varying and σ is constant

and both are referred to the sum of the tangible value of the assets and the franchise value.

The default can occur only at the end of the period, T , in case liabilities exceed assets.

For simplicity, we �x the risk-free rate and dividend issues equal to zero. Similar to

Babbel and Merril (2005) and Barone-Adesi, Farkas and Medina (2014), we split the value

of the bank into three components. First, considering the limited liability, the market value

of the equity of our bank is a call option on the assets:

E(T ) := max(A(T )− L), (3)

where A is the value of the banks' assets and L the face value of the liabilities. Second, let's

split the value of equity into the following two components:

E(T ) := X(T ) + Putdef (T ), (4)
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where X(T ) := A(T ) − L is the net tangible value of the bank, without considering the

limited liability, which is represented through the default put option. Third, we allow the

bank to be able to invest in value creating opportunities at time T, through the introduction

of the franchise value (Fr(T )). Hence,

E(T ) := X(T ) + Putdef (T ) + Fr(T ). (5)

The bank's balance sheet at time zero can be summarized as follows:

Assets Liabilities and Net Worth

Deposits: D(0)
Short term liabilities: SL(0)
Long term Liabilities: LL(0)

Tangible Assets: A(0)

Default Put Option: PutDef (0)

DOC Option: DOC(0)

Intangible Assets: PutDef (0) +DOC(0) Total Liabilities: D(0) + L(0)

Shareholder Equity: MVE(0)

Total: A(0)+PutDef (0)+DOC(0) Total: D(0) + L(0) +MVE(0)

Table 1: Bank balance sheet at time zero.

Taking into account the di�erent sources of �nancing for our bank (deposits, standard
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debt and CoCos), the end of the period equity market value is given by the three components:

the net tangible value, the shareholders' option to default and the franchise value.

MVE(T )=

 A(T )+Fr(T )+Putdef (T )−L(T )−D(T ) if MV A(T )≥(L(T )+D(T ))

(L(T )+D(T ))−A(T ) if MV A(T )<(L(T )+D(T ))

. (6)

In the expressions above, we show that the franchise value come to fruition in case the

tangible value of the assets do not fall below the contemporaneous value of the liabilities and

deposits. We comment on the barrier in the context of the DOC pricing. Furthermore, in case

the franchise value do not vanish, the put option is out of the money and the shareholders

do not exercise the put option and its present value is still given by the option price that can

be potentially exercised in the future. The opposite is true when the tangible value of the

assets is eroded. In order to clarify the economic interpretation of the table above, we show

here the terminal claim on the DOC option is:

DOC(T )=

 F (T ) if MV A(T )≥(L(T )+D(T ))

0 otherwise

; (7)

At time zero, equity market value exceeds the capital supplied by the shareholders and this

di�erence comes from the value at time zero of the franchise value and the option shareholders

have to default. We give the pricing of those options in the following sections.

3.2 Pricing the default option

Following the reasoning in Barone-Adesi et al. (2014), bank shareholders are long on the

default option, which the manager has to maximize acting on behalf of the shareholders.

The pricing formula for the value of the put option at time zero together with the DOC

one we present in the following section, considers the franchise value as major ingredient

both in the underlying value and in the volatility. The franchise value has to be taken into

account in the market value of the assets. This is necessary in order to prevent potential

arbitrage opportunities, that could arise otherwise, buying the bank and selling short the

tangible assets and the franchise value, if this last one would not be considered. The put

option is a convex, decreasing function of the asset value and is maximized when the value

of the liabilities, as well as the riskiness of the assets is magni�ed. This means it is a a
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driver for risk-taking. The underlying is given by MVA, the value of the net tangible assets

at the beginning of the period, and Fr the franchise value. The strike price is the market

value for straight debt, MV SD8. T is the time to maturity, σMVA is the volatility of both

the assets and the franchise value and rf is the policy rate. From this paragraph on, we

relax the hypothesis regarding the risk-free rate, allowing it to �uctuate both in the positive

and negative domain. We de�ne leverage following Basel regulators criterion, i.e. the ratio

between the Tier1 and the total exposure, which we subsume in the market value of the

assets considering this way both the value of the tangible assets and the value of future

growth opportunities. Our pricing of the default put option is given by:

Putdef (lev, σMVA, rf) =
(
MV SD +D

)
Φ (−d2) +

(− (MVA) Φ (−d1)) ,

with {τFr=0 > T},

where d1 =

 ln( 1
1−lev )+

(
rf+

σ2MVA
2

)
T

σMVA

√
T

 ,

lev =
(
T ier1
MVA

)
, d2 = d1 − σMVA

√
T ,

(8)

We consider without loss of generality Φ the standard Normal. In absence of growth

opportunities, the pricing formula goes back to the standard one. The greeks for this option

are given as follows:

Sensitivity to leverage :

[
δPutdefi,t

δlevi,t

]
< 0

Sensitivity to volatility :

[
δPutdefi,t

δσMVAi,t

]
> 0

Sensitivity to policy − rate :

[
δPutdefi,t

δrfi,t

]
< 0.

(9)

This option push the bank manager to adopt a risk-taking policy. We present further infor-

8We proxy the market value for the straight debt with the KMV model (KMV corporation).
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mation about the sensitivity of the default put option with respect to volatility, leverage and

policy rate in the optimization section.

3.3 Pricing the DOC option, in presence of non-observable under-

lying

At time T , F (T ) represents a portfolio of positive net present value growth opportunities.

Before maturity, the expected value of Fr(T ) is embedded in the value of the risky assets

of the bank and is the franchise value which is given by the DOC option (see Barone-Adesi

et al. (2014)). This option is a down and out call, with a pricing formula that is slightly

di�erent from a mathematical point of view with respect to the standard one in Black-Scholes

framework (Merton (1973a)), but it confers a much di�erent economic interpretation, where

Fr(0) constitutes the value of potential growth net of investment cost in the case the bank

does not opt for default. Since investment costs are already considered in Fr(0), the strike

for this option is set to zero. The barrier is given by the market value of standard debt and

deposits. This option is priced in an European framework given that the franchise value

comes to fruition only at maturity9, but it is path dependent. In case the barrier is breached

before maturity the option expires and the franchise value is driven immediately to zero. The

extended standard pricing is given as follows:

DOC (lev, σMVA, rf) = Fr [Φ (v1) +

− (1− lev)2λ Φ (y1)
]

with {τFr=0 > T} ,

where λ =
rf+

σ2MVA
2

σ2
MVA

v1 =
ln( 1

1−lev )
σMVA

√
T

+ λσMVA

√
T , y1 = ln(1−lev)

σMVA

√
T

+ λσMVA

√
T

(10)

The franchise value, Fr(0), is not directly observable. However, we present below how to

estimate it in the framework of our model. Indeed, the value of the DOC option is a part of

the market value of the assets, where the remaining is given by the tangible assets. The term

in parenthesis gives the pricing probability that the intermediary will survive long enough for

9that is equivalent to say that we can exercise it only at maturity
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the growth opportunities to come to fruition. The standard greeks for this option are given

as follows:
Sensitivity to leverage :

[
δDOCi,t
δlevi,t

]
> 0

Sensitivity to volatility :
[
δDOCi,t
δσMVAi,t

]
> 0

Sensitivity to policy − rate :
[
δDOCi,t
δrfi,t

]
> 0

(11)

We show in the following sections when the DOC prevails over the default put one in deter-

mining the shape of objective function and consequently the one of risk appetite.

3.4 The optimization problem for risk appetite

Risk appetite is a non-negative real number that describes investor's appetite for risk, with

higher values corresponding to a greater degree of aggression. Risk appetite is commonly

de�ned as the level and type of risk a �rm is able and willing to assume in its exposures and

business activities, given its business objectives and obligations to stakeholders. We prefer to

understand the appetite for risk of the bank, rather than concentrate on risk-taking, because,

in the de�nition we propose, the default put option promote risk-seeking instead the DOC

one is designed to refrain the bank to undertake excessive risk. A rising risk appetite implies

that investors are willing to hold riskier assets, obtained through assets' substitution. Since

it is not possible to observe directly risk appetite, we need to understand how it is determined

and where to extract information about its manifestation. From both a risk-management and

a regulation point of view, it is a priority to infer some information about objective function

in the banking system.

In case the market value of the assets exceeds the bank liabilities, the two determinants of

the market value of the equity are the down-and-out call option and the default put option.

Hence, we de�ne the manager objective function (O.f.) as the sum of the two options:

O.f.i,t := DOC
(
levi,t, σMVAi,t , rfi,t

)
+ PUT def

(
levi,t, σMVAi,t , rfi,t

)
. (12)

We investigate the risk appetite of the bank over three variables: leverage, assets and

franchise value volatility and the policy rate. The bank manager has decision power only

over the �rst two, but we aim to understand the optimal policy rate which should grant

stability. The risk appetite is determined in the optimization problem we present in Section
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5.2 and is given by the �rst order derivatives and the determinant of the Hessian matrix.

The optimization problem is twofold because in the �rst step we estimate the franchise

value and the market value of the tangible assets that are not observable in the market, but

are embedded in the equity market value. Those two variables are key in order to perform the

second optimization step, where we look for the optimal level of leverage, assets and franchise

value volatility and policy rate, that simultaneously optimize the objective function.

3.4.1 First step ingredients

In the �rst step, the goal is to estimate the unobservable franchise value and the consequent

market value of the assets. We argue that our unobservable quantities are embedded in the

equity market value. We model the bank equity market value through the put-call parity, as

the sum of the call option on the assets, the default put option and the franchise value, priced

as the DOC option, considering the value of the bank at the time in which the franchise value

comes to fruition.

At the beginning of the period, we consider the following system of equations:

MVEi,t= (Ai,t−(MV SD+D)i,t+DOCi,t+Put
def
i,t ),

σMVEi,t
MVEi,t= σMVAi,t

(MVAi,t)Φ(d1i,t),

where d1i,t =

 ln

(
MVAi,t

(MV SD+D)i,t

)
+

(
rfi,t+

σ2MVAi,t
2

)
T

σMVAi,t

√
T


(13)

This extension of the Merton speci�cation allows us to consider the franchise value both at

the underlying and implied volatility level. Since the equity market value incorporates the

information regarding both the assets market value and the franchise value, consequently the

implied volatility estimated in this model refers to the one considering both the assets and

the franchise value. At the beginning of the period we do not have information regarding the

franchise value, so that we consider its price through the DOC option. We solve this problem

through the non-linear least squares criterion function, for each bank at any time t on the

whole time span considered, optimizing the distance between the data concerning the equity

market value and the model extended accommodating for both the default put option and

the DOC one. We perform a step by step optimization for Θi,t := Fri,t, Ai,t, σMVAi,t , building

on the Bellman's Principle of Optimality (Bellman (1952)), applied also in Merton (1973b).
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In order to perform this, we build on the following error function, solving simultaneously: e1,i,t= MVEi,t−(Ai,t−(MV SD+D)i,t+DOC(Θi,t)+Putdef (Θi,t)),

e2,i,t= σMVEi,t
MVEi,t−σMVAi,t

MVAi,tΦ(d1i,t),

(14)

where {i}n1 is the bank identi�cator and {t}m1 the year considered. In this speci�cation, we

perform our analysis at the beginning of the period, because we need to estimate the major

ingredients for the objective function optimization. The non linear least square function is

the following:

Θ∗i,t = argmin
∑2,n,m

j,i,t=1

[
e2
j,i,t

]
(Θi,t)

(15)

where the optimal quantities are Θ∗i,t, that optimize the sum of the squared deviations, which

are the non-linear least squares estimators. Thus, we can proceed to the next step opti-

mizing the objective function10. At this step, empirically, we proceed in our �rst clustering

distinguishing among banks with franchise value and without.

3.4.2 Second step

In this step, we optimize the objective function to cope with the regulator standard indi-

cations concerning leverage and assets' volatility. Furthermore, we derive also the optimal

policy rate for the stability, �rst, of each bank, and second, of each cluster, aggregating

together the results. The manager optimizes the objective function of the bank, modifying

its exposure to risky assets and adjusting bank's leverage at time zero, operating always for

allowing the franchise value to come to fruition at time T . The shape of risk appetite is

assessed through the determinant of the Hessian matrix in a three-dimensional perspective.

We propose a volatility-driven risk appetite, as well as a leverage-driven one and a policy

rate-driven one. The outline of those optimal quantities di�ers among clusters depending

on which option drives the behaviour in that speci�c case. This is an element of primary

interest because regulation does not di�erentiate enough in the banking industry and �at

recommendations do not �t all the peculiarities we �nd in clustering the industry. Fur-

thermore, the impact can be counter-productive, given that di�erences among clusters are

relevant and consequences can go in an opposite direction with respect to what is intended

by the regulator.

10As we explain in the following step, we perform the optimization at each time step t, following Bellman
(1952) and Merton (1973b), in order to allow the franchise value of the bank to come to fruition at time T .
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In our framework, where the objective function is driven by the two options, we insist

in setting also rho equal to zero, focusing on the sensitivity of the objective function with

respect to the policy rate (policy rate-driven risk appetite). This is relevant to understand

the joint impact of the three variables and, thus, to derive an optimal rate which should

grant stability at both single bank level and at cluster level, and consequently, for the whole

banking system. The decision variables over which, instead, the manager has discretionary

power at time zero are volatility and leverage. On the bank manager side, the shape of risk

appetite is determined setting equal to zero vega (volatility-driven risk appetite) and the

�rst order derivative with respect to the leverage (leverage-driven risk appetite) 11. All of

those �rst order derivatives are obtained given optimal values for the other two variables.

Our optimization procedure goes beyond what presented till now. We accommodate for

a joint optimization, where the three optimal quantities are estimated simultaneously The

optimization variables are the leverage, the assets' volatility and the policy rate, so our theta

in this case is: Θi,t :=
(
levi,t, σAi,t+Fri,t , rfi,t

)
. When MV SD < (MVA (0) + Fr (0)), the

optimization problem is:

Θ∗i,t =
argmax

Θi,t

[Ofi,t] (16)

In this framework our three-dimensional risk appetite (R.A.) is given by:

leverage− driven R.A. :
[
δOfi,t
δlevi,t

]
= 0 |σ∗Ai,t+Fri,t ,rf∗i,t

volatility − driven R.A. :
[

δOfi,t
δσAi,t+Fri,t

]
= 0 |lev∗i,t,rf∗i,t

policy − rate− driven R.A. :
[
δOfi,t
δrfi,t

]
= 0 |lev∗i,t,σ∗Ai,t+Fri,t

(17)

Numerically, we use the methodology developed by Byrd et al. (1995) which allows box

constraints, that is each variable can be given a lower and/or upper bound. The initial value

must satisfy the constraints. This uses a limited-memory modi�cation of the BFGS quasi-

Newton method (Broyden (1970); Fletcher (1970); Goldfarb (1970); Shanno (1970)). The

algorithm always achieve the �nite convergence.

In presence of interest rate risk, diversi�cation provides an additional risk management

opportunity. Indeed, if the interest rate and asset risk exposures are of similar magnitude,

11In standard literature, it does not exist a �greek letter� identifying the sensitivity of an option price with
respect to leverage.
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and if these risks are uncorrelated, then one would expect diversi�cation to be very important,

especially if franchise values are high. In this case we perform a pointwise optimization since

we are interested in the parameters that optimize the objective function of each bank on the

whole time span. The optimal objective function do not have theoretical bounds, but we

focus on 0 ≤ O.f.i,t ≤ 1, since it is hard to �nd empirically a bank having the sum of the two

options greater than the market value of the assets (our normalizing quantity). Although

it is well known what is the behaviour of the default put option with respect to the three

variables assessed, the same is not straightforward for the DOC pricing and, consequently,

for our speci�cation of objective function. In the appendix we show the derivation of both

the �rst order derivatives and the cross ones, taken into account given the simultaneous

approach. In order to understand which option is the main driver for the objective function

we need to perform a cluster analysis. Section 6 presents the main theoretical results before

showing the empirical ones, thus it will become clearer the shape of the objective function

and the consequent risk appetite one. Our di�erentiation among clusters is crucial for setting

e�ective regulatory recommendations, because �at rules miss the peculiarities of the di�erent

patterns of objective function we could appreciate in the clustering. In section 5 we present

results both aggregated and clustered, pointing out the importance of more accurate analysis

in this domain.

4 Results

4.1 What drives our three-dimensional risk appetite? A simulation

exercise

In our de�nition of the objective function, two options play a role. When the bank does not

have any consistent portfolio of growth opportunities, the DOC option is worthless so that the

default put option is the only determinant of the objective function and of the risk-appetite.

In this case, it is well known what is the impact of the optimizing variables and consequently

what is the shape for risk appetite. But what happens when the bank has an embedded

franchise value? In this case in a theoretical framework it is not clear which option has the

main impact on the objective function, theoretically which is the main driver and also the

optimization procedure is not trivial. We assess this issue for the banks in the sample having

growth opportunities at stake clustered by leverage12. We cluster our sub-sample of banks

12We present our clustering empirical analysis in Section 6.3.
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with consistent franchise value into three categories: �over capitalized� banks (cluster 21),

with an actual average leverage13 of 11.12%, �average capitalized� banks (cluster 22), with

7.41% and �under capitalized� banks (cluster 23) with 4.28%. Those �gures are in line with

standard literature, given our de�nition of leverage that is the ratio between tier 1 and the

bank total exposure (i.e. the sum of the assets' market value and franchise value).

We simulate the option prices, and consequently the objective function value, building on

winsorized average data per cluster. We perform a sensitivity analysis with respect to the

three optimization variables in order to understand the shape of the risk appetite. We assess

the shape of risk appetite moving one variable, given the optimal quantities for the other two.

We can see how the optimal path changes among di�erent clusters when considering leverage

and volatility. Interestingly, when looking at the policy rate, the objective function shape

is similar in the three clusters. The patterns are entirely presented in the Appendix. We

perform the simulation exercise also in the negative domain for interest rates. We show those

results in the Appendix as well. The negative interest rates impact negatively the optimized

objective function but the magnitudo of this impairment in value is not that relevant relative

to a similar change e.g. in volatility. It would be interesting to see the e�ect negative rates

have on the other variables and thus assess the joint impact on the objective function.

Leverage

The put option value decreases fast when the tier 1 value increases. The DOC option price

is easy to see that is also a decreasing function of leverage, de�ned as in Basel III, given that

we put the franchise value at the denominator. In the �rst cluster (21, i.e. �over capitalized�

banks), the optimal leverage we �nd in the simulation is on average similar to the one we

�nd in the empirical analysis and it decreases with the clusters. Our simulation records as

optimal result the lowest level of leverage (between 5% and 6%), larger than what we �nd

empirically and slightly above the threshold considered by the regulator, even for the cluster

whose average level of leverage is below the threshold recommended.

Volatility

When considering volatility, the put options price is an increasing function, instead the DOC

one is �at and relative high for smaller volatility values and decreasing afterwards. This last

results looks puzzling at a �rst glance, since the DOC is an option and we are used to be

sure about their increase in value when considering volatility. The DOC is a barrier option

13Actual leverage is computed adjusting to our model Basel III de�nition.
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and when volatility is too high, there might be a breaching of the barrier and in this case

we could have a sharp decrease to zero of the option value. The optimal objective function

shape is determined for smaller values of sigma by the default put option and by the DOC

one for larger values of our variable. As the leverage decreases, going from cluster 21 to 23,

the peak for the volatility-driven risk appetite is smaller, since the objective function peaks

goes to the left-hand side. This is the case because a smaller tier 1 means that our barrier

is much higher and I need smaller values of volatility in order to be sure not to cross the

barrier.

Policy rate

When assessing the policy rate change impact on the two options prices we show that the

default put one is a decreasing function, instead the DOC option is an increasing function.

This is due to the design of the option pricing. Risk appetite shape is a concave function in

all the three cases, with minor di�erences. In the case of cluster 21, the two options have

almost the same impact in determining objective function, the curve is almost symmetric. In

the cluster 22 and 23, the main driver is the default put option since the risk appetite shape

is skewed to the right. Overall, the optimal policy rate level results slightly high because in

our model we do not consider for the while economic growth in a comprehensive framework.

This will be considered in further work because the franchise value is in�uenced by de�nition

from economic growth.

4.2 Empirical results at aggregate level

Our empirical sample consists of 1436 listed US banks and the sample period is 1980-2014.

Balance sheet items are taken from COMPUSTAT and considered on an annual basis. Market

prices from the Center for Research in Security Prices (CRSP). Price data are taken on a

monthly basis to accommodate the constant volatility hypothesis.

Summary statistics for both the input and the results at aggregate level are presented

in the appendix. We perform our optimizations with several initial values in order to check

we have results numerically stable. Furthermore, we calculated the con�dence intervals. We

show those results in the appendix as well. We �nd that the estimate of the risk-free rate is

slightly higher with respect to the actual one especially in the last period, this is due to the

fact that we do not consider economic growth. The following �gure shows the evolution of

both the actual policy rate (on the right y axis) and the optimal one we estimated (on the
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left y axis). In our model we allow for negative interest rates (in order to be coherent with

the current economic situation) but the optimized values are always greater than zero.

Figure 1: Optimal versus Actual policy rate evolution.

We show in the next �gure that our average evaluation of the objective function aggregated

on the whole sample per year and the optimal average quantities for the policy rate-, volatility-

and leverage-driven risk appetite. Aggregated results loose a lot in terms of interpretability

and meaning. In this aggregate dimension the objective function seems to follow the leverage

pattern. On the volatility side, the two move in opposite directions. This means that some

franchise value is eroded but not fully compensated by the default put option. Considering

periods of lower policy rates as signaling a crisis, we can see that our measure for risk appetite

is driven relative higher (that is the case after 2010). We investigate deeper the dynamic of

our optimized objective function with respect to the three variables in the analysis cluster

by cluster. We always represent graphically the objective function as a ratio between the

sum of the two options (i.e. the objective function) and the market value of the assets,

for normalisation reasons. In our model the manager chooses the optimal level of leverage,

asset's volatility at the beginning of the period on the basis of past information so the present

action has an impact on the following period. Our manager's policy considers the franchise

value in its potential status at time t, but is backward looking, in the sense that builds on

past information. The pattern is not straightforward to be interpreted, but in the time span

considered, especially recently, during periods of lower interest rates optimal assets' volatility
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is relative higher because our manager has to shift the bank investments to riskier assets in

order to perform earnings. Vice versa, during periods of relative higher interest rates we can

see a �ight to quality, because the bank investing in the risk-free asset is already achieving

a satisfactory performance. This last consideration becomes clearer and more evident when

considering clusters of banks with growth opportunities.

Figure 2: Objective function versus optimal variables evolution.

4.3 Empirical results in a cluster analysis

Results di�er a lot when considering our cluster analysis. We perform a two step-clustering,

since we �rst distinguish between banks with franchise value and without, second we cluster

the two subsets of banks with respect to the leverage. The sub-sample of banks without

franchise value accounts for about the 15% of the whole sample. In this case the optimization

of the objective function and risk appetite are driven by the default put option. Thus we

focus on the sub-sample of banks having the franchise value at stake. We categorize this sub-

sample as follows: (i) �over capitalized� banks (cluster 21), with an actual average leverage of
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11.12%, (ii) �average capitalized� banks (cluster 22), with 7.41% and (iii) �under capitalized�

banks (cluster 23) with 4.28%. The input variables for our optimization and the results

are presented cluster by cluster in the appendix, here we present the main results and their

implications. The population of banks is not uniformly distributed across the clusters, this

has an impact on quality of estimates of the sub-sample, but are a close representation of

the reality.

In the following set of pictures, we can see that our estimates for the policy rate is always

tracking the actual one. Only during the last years, where the actual one is driven too low

by the central bank (and even in�ation is zero), our estimate is relative higher because. The

greater spread across the two is present in the sub-sample of banks which have a portfolio of

growth opportunities (cluster 22), because our optimized objective function and consequently

our risk appetite is driven upwards by the DOC option. This together with a relative low

volatility lead to a very low objective function, since the bank manager optimizes his strategy

investing in the risk-free asset. Banks in cluster 23, with the greatest level of debt, ask for a

remarkably lower optimal policy rate especially in the last �ve years where the actual risk-free

rate set by the regulator was at its minima levels, this is possible because of a relative lower

assets' volatility necessary for franchise value preservation.
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Table 2: Actual risk-free rate vs Optimal policy rate, cluster by cluster.

In the next set of pictures we present the resulting optimal estimates for the optimized

objective function and its corresponding variables-driven risk appetite. Even if we do not

present the results of the sub-sample of banks without franchise value, clusters 21, 22 and 23
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point out results much more in line with the aggregated ones, being the greater sub-sample in

terms of number of banks involved. The objective function optimal average values increases

with the clusters, since we �nd that in cluster 21 the average level of objective function is

about 16% instead in cluster 23 it approaches 41%: those clusters present smooth paths.

This is not the case of cluster 22 where we can �nd many swings eve if the average value of

the optimized objective function is about 23%. It is relevant for the regulators to take into

account this evolution since banks in cluster 22 are just above the threshold recommended

by the FED.
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Table 3: optimized objective function evolution against its optimal determinants , cluster by
cluster.
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The simulation results are coherent with what we �nd to be optimal in this empirical

analysis. On average optimal volatility is low due to the fact that on average all the clusters

are characterized by a relative high barrier. At a �rst glance, it seems that under capitaliza-

tion does not harm pro�table growth opportunities, hence, the optimized objective function

moves in an opposite direction with respect to leverage. Of course this is partially explained

with the de�nition we gave to leverage, where we can �nd the market value of the assets

and the franchise value at the denominator. On the optimal policy rate side, we �nd relative

higher data because we should complete our model taking into account the economic growth.

The evolution of the optimal policy rate moves in line with the optimized objective function,

even if the latter presents wider and delayed �uctuations with respect to this variable.

5 Conclusion

In this paper, we investigate the shape of the risk appetite of our bank. Bank objective

function and its risk appetite are determined by the interplay of the default option and the

down-and-out call (DOC) option, pricing the franchise value, i.e. the net present value of

non-observable bank's growth opportunities. We de�ne the objective function as the ratio

between the sum of the two options' prices and the market value of the tangible assets. Our

major contribution consists in assessing risk appetite in a three-dimensional space, providing

an insight of the importance of taking into account the joint impact of the three variables at

both single bank level and cluster one.

First, we estimate the franchise value, and we discriminate banks with and without fran-

chise value. Second, at the beginning of each period, we optimize the objective function

adjusting simultaneously the level of leverage, volatility and the policy rate. The decision

maker sets rho equal to zero considering also the other two variables of her risk manage-

ment policy (policy rate-driven risk appetite). The bank manager sets the Vega equal to

zero (volatility driven-risk appetite) simultaneously with the derivative with respect to the

leverage (leverage-driven risk appetite), and the one with respect to the policy rate. Those

three optimizations are conditional to the other two optimal quantities. We aim to stress the

importance of the joint optimization. It results to convey a more comprehensive understand-

ing of the bank behaviour, rather than sticking on the single elements, whose explanatory

power is much more reduced.

We test our optimizations on a sample of 1436 banks, listed in the US, over 1980-2014. We

�nd that the optimal risk-free rate is higher with respect to the existing one in the last period.
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A clustering analysis is necessary in order to understand the shape of risk appetite, what are

its underlying main drivers and what is the impact of changes in the optimizing variables.

We show that the impact of the single variable on risk appetite is not always the same among

the clusters, this is a result of both structural di�erences among the clusters and the joint

impact of the other variables that are simultaneously optimized. The objective function is

magni�ed for lower values of leverage, which is straightforward given our speci�cations and

optimal volatility should stay low in order not to erode the franchise value. We �nd di�erent

patterns among the clusters and this imposes a cluster analysis in order to understand risk

appetite behaviour. We show that regulators should tune their recommendations depending

on the targeted cluster, since the driver of risk appetite alternates between the two options

depending on the cluster and on the underlying variable considered, given the other two.

Our three dimensional risk appetite speci�cation could be an e�ective instrument for the

regulator because it comprehends the three most important dimensions for shaping risk

appetite in presence of franchise value. It is determined by the joint optimization, thus

we need to condition on two optimal quantities in order to optimize with respect to the third

one. We consider also a world where interest rates are negative, which is the case for Europe

nowadays. Given our speci�cation of objective function, negative interest rates impair the

moneyness of the options but the curve are quite �at, thus ceteris paribus we can argue that

the negative rates in our optimization procedure impact negatively on the objective function,

with a limited magnitudo. Furthermore, introducing the franchise value in the speci�cation of

risk appetite, we propose an incentive for the manager to adopt a policy long-term oriented.

There is still ample room for the regulator to �nd the proper instruments in order to boost

banks growth on one side, and consequently help economic growth, and to prevent them

undertaking excessive risks on the other side.
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Appendix

A: Who drives the risk appetite? A simulation exercise

In the following table we perform a sensitivity analysis to change in the three optimization

variables. We comment in Section 6 how the shape of risk appetite di�ers among the clusters.

Optimal value ranges:

• for leverage:

Cluster 21 : 0.10 ≤ lev∗ ≤ 0.11

Cluster 22 : 0.07 ≤ lev∗ ≤ 0.08

Cluster 23 : 0.06 ≤ lev∗ ≤ 0.07

(18)

FED benchmarks are:0.08 for 6 Systemically important �nancial institution banks; 0.05

for their insured bank holding �rms.

• for volatility:

Cluster 21 : 0.04 ≤ σ∗ ≤ 0.06

Cluster 22 : 0.02 ≤ σ∗ ≤ 0.04

Cluster 23 : 0.01 ≤ σ∗ ≤ 0.02

(19)

Under-capitalized banks should have a relative lower volatility: higher probability to

cross the barrier and the DOC to expire.

• for policy rate:

Cluster 21 : 0.13 ≤ rf ∗ ≤ 0.15

Cluster 22 : 0.11 ≤ rf ∗ ≤ 0.14

Cluster 23 : 0.04 ≤ rf ∗ ≤ 0.07

(20)

We �nd relative higher optimal values because we do not consider economic growth

and the simulation is based on input values derived from our empirical sample, time

span (1980-2014).
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A simulation exercise: which is the main driver of the objective function between

the two options? 1/3

• The optimal value for leverage in all the three clusters is above the actual levels and

slightly above FED recommendation.

• Our results take into account the franchise value (in the denominator of "leverage")

and this is a main di�erence between our results and the regulator ones.

• Given the pricing of the DOC option and the de�nition of leverage, the DOC is maxi-

mized for lower levels of leverage.

A simulation exercise: which is the main driver of the objective function between

the two options? 2/3

• The DOC option, being a barrier option, is optimized in our context for relative lower

volatility values: when volatility is too high, there might be a breaching of the barrier

and, consequently, a collapse of the franchise value.

• With smaller values of tier1, going from cluster 21 to 23, the peak of the optimized

objective functions moves to the left.

• For relative smaller tier1, our barrier is much higher and smaller values of volatility

ensure the franchise value preservation.
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Which is the main driver of the objective function between the two options? 3/3

• The optimized objective function displays a concave shape, with minor di�erences in

the peak depending on the cluster.

• Once it is clear our risk appetite speci�cation, the policy maker change in the rate has

a clear impact.

• Overall, our optimal policy rate results slightly high because in our model we do not

consider economic growth and in�ation.

Life below zero: optimization results taking into account negative interest rates

Interest rates' decline dates back to the 1990s14. Since the global �nancial crisis, in�ation

has been low worldwide, and output below potential. This is the reason why in our model

we do not di�erentiate between real and nominal rate15. Central bankers set policy rates at

record low levels in advanced economies, and in the past few years16, the European Central

14"Assessing the implications of negative interest rates", Speech by Benoit Coeure', YALE, July 28, 2016
15Negative real rates are have been a reality on German deposits.
16June 2014
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Bank (ECB) became the �rst central bank to lower the rate of interest on their deposit

facility into the negative domain. Furthermore, we take into account that also the return

on government bonds is negative for most European countries17 and Japan, even at long

maturities. Hence, we need to accommodate for a negative discount rate in our model. In

the previous sections, we optimize our model allowing the policy rate to range from −5% to

+33% but the optimization �gures are always in the positive domain and greater than zero.

In this section we re-perform both the simulation exercise and the optimization for negative

policy rates ranging only in the negative domain. Given that our objective function is fully

characterized by the default put and DOC option, negative interest rate (in simpli�ed terms)

implies that it's less likely for the option to be in the money at expiration (for both the

options) and add a discount to the option instead of a premium (on the DOC side). The

major results concerning this procedure are converging for the three clusters, as we show in

the following graph.

Figure 3: Optimal objective function simulation for varying negative policy rates, cluster by
cluster.

The options determining the objective function loose value for negative rates and recover it

when approaching the zero upper bound. In this simulation we allowed the negative rate

to decrease till −5%. The shape of the curve in this negative domain for the interest rate,

do not di�er too much between the two options because for both of them the moneyness

is impaired. In this graph we show that in the simulation we reach an upper bound for

17including Switzerland, with a negative rate on the longest maturity
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the objective function at a zero level of the policy rate, when constraining it to the range

[−5%, 0]. Allowing for such a range, we perform the optimization of the objective function

and we found that the optimal policy rate is always zero. This is reasonable given the

de�nition of the objective function itself. In the real world, hopefully, the policy rate is not

going so far in the negative domain. Thus, we propose the following graph to focus on a

narrower range [−1%; 0].

Figure 4: Optimal objective function simulation for small variations in negative policy rates,
cluster by cluster.

In this case we are able appreciate the magnitudo of the impact such discount rate has on the

option value. The curve are quite �at, thus ceteris paribus we can argue that the negative

rates in our optimization procedure impact negatively on the objective function, but e�ect

is not that relevant as in the case of small change in values of the other optimizing variables.

We estimate that with a variation of −1% in the policy rate, the objective function decrease

by 1.2% in case of cluster 22, 0.8% in case of cluster 23. In case of cluster 21, there is an

almost zero variation in this second case and a decrease of 1% when the policy rate decrease

by 5%. Nevertheless, we cannot forget the burden the monetary policy maker puts on the

bank manager shoulders setting negative rates. Negative rates provide a strong motivation

to shift the the bank's investments from safer to riskier ones. A possible extension to this

model would consider the required increase in assets' and franchise value's volatility required

to compensate for the negative interest rates.
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B: Con�dence intervals

cluster Lower bounds Upper bounds number of observations

21 427347502 1087468847 4244

Average (Franchise Value (NPV)) 22 1294026829 3492363319 4024

(in US$) 23 42450671293 59844573718 1071

21 1828805281 3155078155 4244

Average (Assets (MV)) 22 3531649196 7928260545 4024

(in US$) 23 85686878091 120446364427 1071

21 0.1092981 0.1104778 4244

Average (Optimal leverage) 22 0.07247293 0.07305315 4024

23 0.03814159 0.03974975 1071

21 0.03989881 0.04163346 4244

Average (Optimal volatility) 22 0.03538589 0.03696676 4024

23 0.02201921 0.02396731 1071

21 0.1261484 0.1323115 4244

Average (Optimal policy rate) 22 0.1621953 0.1682553 4024

23 0.1658552 0.1776327 1071

Table 4: Con�dence intervals for average optimal estimates.

C: Summary statistics of the optimization �gures at aggregate level

and cluster by cluster

First of all we present summary statistics of our input variables: end-of-year equity market

value, its monthly volatility adjusted on an annual basis, the risk-free rate, existent in the

market in the time span considered, the market value of debt, calculated according to KMV

model in order to account for the value that triggers the franchise value of the bank and the

leverage de�ned as the ratio between the sum of the market value of the assets (MVA) and

the franchise value (Fr)and the equity market value 18(MVE).

18Leverage data are in line with �ndings in Kalemli-Ozcan et al. (2012).

37



Variable\Summary statistics Min. 1st Qu. Median Mean 3rd Qu. Max. sd

Equity market value 1.922e+05 4.324e+07 1.012e+08 1.050e+09 2.784e+08 2.339e+11 7522590845

(in US$)

Equity volatility 0.0610 0.2553 0.3073 0.3484 0.3991 0.4234 0.1474

(annualized)

Risk-free rate 0.0100 0.0700 0.1600 0.1521 0.2200 0.3300 0.0863

Debt market value 3.140e+05 3.971e+08 8.661e+08 1.812e+10 2.263e+09 2.782e+12 124251669021

(in US$)

Leverage 0.02849 0.07118 0.08927 0.09417 0.11500 0.15000 0.03322

tier17 (MVA + Fr)

Table 5: Model inputs summary statistics.

Those are the inputs used to estimate the franchise value �rst and consequently to proceed

in our objective function maximization. We provide in the following table, the summary

statistics for the results of our two-steps optimization at aggregate level: the net present

value (NPV) of the franchise value, the market value (MV) of the assets, the parameters

optimizing pointwise the objective function (leverage, franchise value and assets' volatility

and the optimal risk-free rate).

Variable\Summary statistics Min. 1st Qu. Median Mean 3rd Qu. Max. sd

Franchise Value (NPV) 0.000e+00 2.667e+06 6.914e+07 6.164e+09 2.450e+08 1.638e+12 52747617409

(in US$)

Assets (MV) 0.000e+00 3.526e+08 7.621e+08 1.342e+10 1.881e+09 3.275e+12 105421665638

(in US$)

Optimal leverage 0.02759 0.07025 0.08802 0.09378 0.11380 0.14840 0.03182165

Optimal volatility 0.00010 0.02561 0.03807 0.04363 0.06247 0.08260 0.02508671

Optimal risk-free rate -0.0500 0.0700 0.1600 0.1461 0.2207 0.33000 0.1012666

Table 6: Results summary statistics.

In the table below we present the output variables for our optimization cluster by cluster.
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Summary statistics/ cluster Min. 1st Qu. Median Mean 3rd Qu. Max. sd

Variable

21 0.06737 0.09436 0.10490 0.10990 0.12440 0.14250 0.01960008

Optimal leverage 22 0.05112 0.06558 0.07330 0.07276 0.08049 0.09549 0.009386614

23 0.00437 0.02614 0.04046 0.03895 0.05134 0.07656 0.01341079

21 0.001042 0.027460 0.038180 0.040750 0.054170 0.075310 0.02118565

Optimal volatility 22 0.002282 0.025110 0.034470 0.036160 0.047450 0.066650 0.01773035

23 0.00872 0.01791 0.02175 0.02295 0.02810 0.03478 0.0072292

21 -0.0500 0.0500 0.1463 0.1292 0.2100 0.3300 0.1023966

Optimal risk-free rate 22 -0.0500 0.1000 0.1712 0.1652 0.2400 0.3300 0.09803755

23 -0.0500 0.0900 0.1800 0.1717 0.2500 0.3300 0.09821578

Table 7: Model results summary statistics, cluster by cluster.

C: Rho, Vega, derivative with respect to leverage and the joint deriva-

tives

In this paragraph, for exposition reasons, leverage is de�ned as the ratio between the market
value of straight debt and the market value of the assets together with the franchise value.
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First joint derivative with respect to both leverage and volatility:
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Vomma, second-order derivative with respect to volatility:
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Second-order derivative with respect to the policy rate:
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Chapter 2

Optimal Bank Risk Appetite in a World
of CoCos19

Abstract

We investigate the shape of risk appetite when the bank is �nanced also with con-

tingent convertible bonds (CoCos). Our contribution to the existent literature is to

assess risk appetite in a multi-dimensional perspective and to account for di�erences

among banks' clusters, especially in a world with CoCos and policy rates approaching

zero or negative �gures. In our model, the bank objective function is given by the

sum of the default put option and the down-and-out call (DOC) option, pricing the net

present value of growth opportunities. The manager maximizes the market value of the

bank, adjusting jointly the level of leverage, the amount of CoCos to issue, assets and

franchise value volatility and the policy rate. Risk appetite is given by the �rst order

derivatives. Our model and Basel III recommendation converge over their incentives

regarding volatility and leverage. For banks with higher franchise value, it is optimal

to issue an average amount of CoCos (over the market value of the assets) of 3%. A

decrease in volatility accrues to the DOC option, in particular for under capitalized

banks. The optimal policy rate is always higher with respect to the actual one. The

optimal value for the decision variables di�ers among the clusters. We show that for

the bank, it is always better to issue CoCos with respect to write-down bonds.

Keywords: Contingent Convertible Bonds, risk appetite, franchise value, Basel III.

JEL classi�cation: G21, G32, G38, E52

19We acknowledge the �nancial support of the Europlace Institute of Finance (EIF) and the Labex Louis
Bachelier (Grant 2014).
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6 Introduction

Following the failure of Lehman Brothers, governments announced the end of the too big to fail.

In this context, issuing loss absorbing instruments has gained increasing popularity. Between 2009

and 2015, banks issued more than USD380 billion of CoCos 20. Regulation plays a crucial role in

determining CoCos' issuance. Under Basel III, CoCo bonds are eligible as either Additional Tier 1

(AT1) or Tier 2 (T2), which are types of capital apparently preferred by banks with respect to equity

to accomplish regulatory requirements, given that they are cheaper and less dilutive than issuing

equity. Their introduction into the �nancing structure of our banks is relevant from a regulation

and risk management point of view. There is no convergence in the opinions concerning those

instruments mainly due to the uncertainty around their impact and the di�culties in understanding

their conversion mechanisms. There are CoCos supporters, like Switzerland's FINMA and Bank

of England, and opponents, such as Deutsche Bank.21 Our analysis is driven by the concerns

economists have regarding the impact of CoCos and WDs on bank risk appetite. Neel Kashkari,

Minneapolis FED's President, warns against instruments like CoCos, suggesting that �..transferring

risk to investors won't protect taxpayers from bailout�.22

In this paper, we introduce CoCo bonds in the �nancing structure of our bank and see how the shape

of the bank risk appetite changes. In our model, the manager acts in order to accomplish regulatory

requirements. Focusing on capital requirements, banks, accomplishing to Basel III rule, have to

fund themselves with at least 4.5% of common equity of risk-weighted assets (RWAs). The regulator

allows for an extra 1.5% of Additional Tier 1 (AT1) that together with the Common Equity Tier 1

(CET1) concurs to compose the minimum level of 6% of Tier 1 capital over RWAs. Hence, in order

to be compliant with this ratio, the manager has discretionary power over two variables: CoCos

issuance and assets' volatility. On one side, issuing CoCos, which are eligible for AT1, the manager

increases the numerator of the ratio, enlarging the Tier 1. On the other side, the manager might

decrease the RWAs. RWAs are a weighted sum of banks' assets, weighted for their contribution to the

total assets' volatility. Through this capital requirement ratio, the regulator provides an incentive

for decreasing assets' volatility. In our model, optimizing the level of risk appetite, the manager

should focus on the maximization of the bank objective function, which is given by the sum of the

two options (default put option and down-and-out call (DOC) option). We assess the impact on our

20This amount refer to the face value of the CoCos issued, Data from Moody's Investors Service, Moody's
Quarterly Rated and Tracked CoCo Monitor Database- Year End 2015.

21Financial Times, ECB is having second thoughts on CoCo bonds, 04.24.2016, https :
//www.ft.com/content/23d61e50− 08a7− 11e6− b6d3− 746f8e9cdd33.

22The Wall Street Journal, Fed's Kashkari Says Transferring Risk to Investors Won't Protect Taxpayers
From Bailout, 04.18.2016, http : //www.wsj.com/articles/feds− kashkari− says− transferring− risk−
to− investors− wont− protect− taxpayers− from− bailout− 1460997006.
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objective function of issuing CoCos, in order to enlarge Tier1 capital, for being compliant with the

capital requirement. We concentrate on the situation in which the bank deteriorates over its capital

ratio, as de�ned in Basel III, and chooses to improve it by either decreasing assets' volatility, through

assets' substitution and a change in the growth opportunities' strategy, or (and) to enlarge its Tier1

capital. The objective function is given by the sum of the two options (default put and DOC), thus

the objective function is increasing with respect to volatility, but the risk to breach the barrier in the

DOC option bounds volatility optimal values. In this context is not always unfavourable a decrease

in volatility, this is what allows us to �nd an optimal value for this variable. In our case, a decrease

in volatility and an increase in Tier 1 Capital favour the DOC option over the default put option.

In the case of assets' deterioration, the decision to issue some instruments in order to improve its

capital ratio, favour the franchise value, since the distance to the franchise barrier is again increased.

This happens for CoCos both before and after the conversion, because before conversion they are

eligible for AT1 and after the conversion they convert to equity concurring to increase CET1. We

�nd that both our model and Basel III recommendation converge over their incentives regarding

volatility and leverage. We show that for banks with higher franchise value it is optimal to issue an

average amount of CoCos over the market value of the assets and the franchise value of 3%. CoCos

do not only enlarge the distance to the default barrier but also to the franchise value's one. The

optimized objective function value with CoCos is always higher than the one without CoCos, this is

true both at aggregate level and in the cluster analysis. On the optimal volatility side, a decrease in

this �gure accrues to the DOC option, in particular for under capitalized banks even if it can't be

pushed too low in order to preserve the default put option. This can be obtained by changing assets'

composition and growth opportunities strategies. The other optimizing decision variables are crucial

in shaping risk appetite and help in understanding the di�erences among the clusters. We do not

di�erentiate before conversion between write down bonds and CoCos but only afterwards. In this

context, it is always optimal to have a conversion ratio greater than zero, even if loss absorbing, thus,

smaller than one, for ensuring compliance with Basel III. Our contribution to the existent literature

is to assess risk appetite in a multi-dimensional perspective and to account for di�erences among

banks' clusters which are even more relevant in a world with CoCos and policy rates approaching

zero or negative �gures, in a Basel III friendly framework.

7 Literature review

Our paper is mainly related to three di�erent strands of the literature. First, the building blocks

are the seminal works by Black and Scholes (1973) and Merton (1973a), where the liabilities of a

company are seen as an European option written on the assets of a �rm. In this context, we assess
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the market value of equity building on Babbel and Merrill (2005). They introduce the concept that

the franchise value, together with the default put option accrue to equity holders Barone-Adesi et al.

(2014) argue that the risk appetite of banks is determined by the interplay of default put option

and growth opportunities, assessed with a DOC option.In this domain, we contribute to the existent

literature providing a three-dimensional framework for assessing risk appetite. We supply a superior

understanding of the joint impact of the three optimizing variables (leverage, assets and franchise

value volatility, and policy rate) have on each other and on the bank risk appetite. Our study takes

into account Brockman and Turtle (2003), who show that equity can be knocked out whenever a

legally binding barrier is breached, even if we look at this work for the pricing of our franchise value.

Second, a relevant issue for our model is the impact Basel III has on our bank's de�nition of risk

appetite. The impact of the key instruments of Basel III is widely analysed by Hugonnier and Morel-

lec (2017), proposing a dynamic model of banking. They �nd that leverage requirements decrease

default risk and increase growth opportunities of the bank, on the long-run, which is in line with

our �ndings. Another key point is that, raising equity requirements make the loss to be borne by

shareholders and the distance to default increases (see e.g. Admati and Hellwig (2013)), we mitigate

this counter e�ect by considering the issue of loss absorbing CoCos with respect to equity.

Third, we refer also to the literature of hybrid capital. An interesting literature review of the basics

of this instruments is given in De Spiegeleer et al. (2014). A relevant part of the literature focuses

on credit spreads, e.g. Attaoui and Poncet (2015) develop the model showing that credit spread on

straight debt is lower if the �rm has write-down (WD) bonds in its �nancing structure, given the

cushion function of the WDs with respect to the senior straight debt. CoCos are nearer to equity

because in some states of the world they are not debt. Chen et al. (2013) show that replacing

some straight debt with CoCos lowers the endogenous default barrier and therefore increases the

�rm's ability to mitigate a loss in asset value. A natural direction for future research is to consider

the impact of wealth transfer among di�erent categories of stakeholders, which should be relevant

for governments. Roy and El-Herraoui (2016) demonstrate the complexity of designing a fair and

e�ective bail-in regime. The regulator is mainly confronted with the choice of implementing or not

the wealth transfer. If it chooses to do so, it faces the risk of requests for compensation and ar-

bitrage behaviour in �nancial markets. Our results show that banks with great positive franchise

value would bene�t from the inclusion of CoCos in the capital structure, and together with a low

volatility and an appropriate optimal discounting rate, ensuring stability, the market value of the

bank would be magni�ed over standard �nancing. This �ndings add to the existent literature which

provides controversial results with respect to those instruments. We prove that those hybrid instru-

ments increase the bank market value, saving its growth opportunities, when they are appropriately
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counterbalanced with relative low volatility values and relative high policy rates23.

8 The model

The subject of our study is the risk appetite of a bank held by shareholders who bene�t from limited

liability and who bear the down-side of a potential loss together with the CoCo holders. They

discount cash �ows at a constant interest rate.

The structure of the balance sheet, in book values, is given as follows. The bank owns a portfolio

of risky assets and liquid reserves, and is �nanced by insured deposits, risky debt, CoCos and equity.

At this stage we do not di�erentiate between CoCo bonds and WDs, because we consider only loss-

absorbing CoCos. On the left hand side of the balance sheet, risky assets are relative illiquid due to

informational problems (see e.g. Hugonnier and Morellec (2017) and Froot and Stein (1998).

Going to market values, debt is seen as a portfolio of cash plus a short position in a put option

on �rm value as in Merton (1974) and equity as a call option on assets as in Black and Scholes

(1973). In our model, we focus on the interplay between the default put (PUT def ) option and the

down-and-out call (DOC) option that accrue to shareholders, pricing the net present value of growth

opportunities, i.e. the franchise value.

8.1 Main assumptions and model description

We introduce the main assumptions of our model, building on the seminal work of Black and Scholes

(1973) and Merton (1974), and the following intuitions of Babbel and Merrill (2005) and Barone-

Adesi et al. (2014).

We operate in continuous time, with initial date t = 0 and terminal date t = T . The usual

assumptions regarding standard frictions are considered: we do not contemplate transaction costs,

taxes24, costs of raising funds, limits on short sales and riskless arbitrage opportunities. Agents are

risk-neutral and con�icts of interest between shareholders, managers and CoCo holders is not a topic

of this paper25. The focus of the project is to understand how the regulator should set appropriate

risk-taking incentives in a framework where the manager has to deal together with the default put

option and the DOC one. Hence, in the Optimization Problem section, we propose the objective

23Overall the results over the policy rates are free from considerations dealing with in�ation, other macroe-
conomic variables and a number of factors, usually taken into account by the monetary policy. In our paper
we obtain the ideal optimal discount rate, ensuring stability, given that it is determined by the interplay of
the two options which display opposite sensitivities with respect to the policy rate.

24We brie�y relax this assumption, assessing directions of future development of this model in the extensions
section

25Again, extensions are very interesting in this domain.
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function to be maximized as the sum of the two options, normalized by the market value of the

assets, representing at that stage a neutral scaling value. Initially, shareholders contribute the entire

equity of the bank and, subsequently, consider operating a debt-equity swap at t0. The proceeds

from debt issue are invested in the assets in place and future growth opportunities that at time T

are worth A (T ) and Fr (T ), respectively26.

The default can occur only at the end of the period, T , in case liabilities exceed assets. We

de�ne the market value of the total exposure, MVA, as the sum of the value of the tangible assets

and the franchise value, subsuming the future growth opportunities of the bank. The value of the

total exposure at time t is given by:

MVA (t) = MVA (0) exp

(
µMVAt −

σ2
MVA

2
t+ σMVABt

)
, (21)

where Bt is a standard Brownian motion de�ned on (Ω,F , Q), so that, their dynamic is:

d ln (MVA (t)) =

(
µMVAt −

σ2
MVA

2
t

)
dt+ σMVAdBt, (22)

where the drift, µt, is time-varying and σ is constant and both are referred to the sum of the tangible

value of the assets and the franchise value. For simplicity, we �x the risk-free rate and dividend

issues equal to zero27. Similar to Babbel and Merril (2005) and Barone-Adesi, Farkas and Medina

(2014), we split the value of the bank into three components. First, considering the limited liability,

the market value of the equity of our bank is a call option on the assets:

E(T ) := max(A(T )− L), (23)

where A is the value of the banks'assets and L the face value of the liabilities. Second, let's split

the value of equity into the following two components:

E(T ) := X(T ) + Putdef (T ), (24)

where X(T ) := A(T ) − L is the net tangible value of the bank, without considering the limited

liability, which is represented through the default put option. Third, we allow the bank to be able

26We consider as future growth opportunities not only the potential increase in credits, but all the chances
the bank has to open new lines of business, to enter new markets and more in general all the potential results
due to research and development.

27In the next subsections, we relax the assumption regarding the policy rate, allowing it to be di�erent
from zero, instead the assumption concerning the dividend yield is a topic considered in the extension as an
interesting variable to take into account when comparing an issue of CoCos issue with an equity one.
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to invest in value creating opportunities at time T, through the introduction of the franchise value

(Fr(T )). Hence,

E(T ) := X(T ) + Putdef (T ) + Fr(T ). (25)

Future growth opportunities materialize only at the end of the period, T , being Fr (T ) but the

franchise, which is the net present value of future growth opportunities value might vanish previously,

as soon as the liabilities exceeds the asset value in 0 ≤ t ≤ T , that is when

τFr=0 = inf
{
t ≥ 0 : A (t) ≤ FV SD +Dep

}
, (26)

where, A are the assets in place, FV SD the face value of the straight debt and Dep the value of

deposits. Our franchise value barrier is higher with respect to Demsetz et al. (1996) or Jones et al.

(2011), because in their model this value is lost in case of bankruptcy. In our model, the ability

of the �rm to engage in new projects, leading to growth opportunities, may be impaired if it is

perceived that the bank is experiencing a weak �nancial position. Some further assumptions have to

be considered, because in this framework, CoCo bonds are introduced in the �nancing structure. At

t = 0, the bank issues also CoCo bonds eligible for Additional Tier 1 (AT1), with in�nite maturity,

conforming to Basel III regulation. In contrast to straight debt, that is a zero coupon, CoCo bonds

pay a coupon cCoCo > 0 and conversion from debt to equity is triggered when the value of the �rm's

assets fall below an exogenously speci�ed threshold VConv. This trigger is set larger than the face

value of the standard debt, so that FV SD < VConv < A (t). Consequently, CoCos conversion occurs

at

τConv = inf {t ≥ 0 : A (t) ≤ VConv} .

This implies that the optimal bankruptcy level does not depend on the conversion trigger, because

it is a �post-conversion� threshold. This is relevant especially in case bankruptcy is determined

endogenously, which is not the case in this model, since we rely on Basel recommendations28. In

our model, CoCos could qualify only as AT1, under Basel III, as explained by Avdjiev et al. (2013),

so that they operate in favour to franchise value as explained in the next paragraph. It means that

the CoCos' threshold is higher with respect to the franchise barrier, because we consider that banks

having converted CoCos still have some growth opportunities at stake. Both CoCos and franchise

threshold are obviously higher with respect to bankruptcy one. The overall value for CoCo's holder

is given by the sum of the face value plus the coupon payment, cCoCo > 0, if the conversion is

28It would be considered in an extension in order to assess whether bank's choice would be aligned with
regulation or would behave di�erently.
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not taking place before T and the fraction of shares, 4EτConv , CoCo holders receive, becoming

shareholders in case of conversion, as identi�ed in Alvemar and Ericson (2012):

V CoCo
T = FV CoCo1{τConv>T} + cCoCo1{t<τConv} +4EτConv1{τConv≤T}.

This relation is evaluated at time T , except for the CoCos' coupon, that is due until conversion

takes place. At conversion in presence of CoCos, shareholders receive a fraction of shares 4EτConv ,
so that the value of the overall equity increases by such an amount. In our model, we focus only

on loss-absorbing CoCos, meaning that delta is between zero and one (0 < 4 < 1). When it is

exactly equal to zero, the banks issues a write-down bonds, that is a contingent convertible bond

converting to zero in case of a trigger event. Being in the context of banks that could consider a

CoCos' issuance, we focus on Tier 1, rather than the end of the period equity market value. Thus,

the end of the period Tier 1, for any t = 0, ..., T is:

T ier1(T )=

 A(T )−Dep−FV SD(T )+Fr(T )+Putdef (T ) if MV A(t)≥(SD(t)+Dep(t))

(SD(T )+Dep(T ))−A(T ) if MV A(t)<(L(t)+D(t))

. (27)

We assume that the bank can default only at time t = T , but the franchise value might vanish

before, as soon as the liabilities exceed the assets at any time between t = 0 and t = T . From this

speci�cation, we can easily understand that the main variables that determine the Tier 1 at the end

of the period are the franchise value and the default put option. Hence, we de�ne the objective

function at time t, as the sum of the down-and-out call option and the default put option. We

present the optimization procedure in the next sections.

In the expressions above, we show that the franchise value come to fruition in case the tangible

value of the assets do not fall below the value of the total liabilities, considering also deposits.

Furthermore, in case the franchise value is positive we have a �rst intuition regarding the superiority

of the DOC option over the default put one, since the put option would be out of the money. Thus

the shareholders do not exercise the put option and its present value would still be given by the

option price that can be potentially exercised in the future. The opposite is true when the tangible

value of the assets is eroded.

8.2 Pricing the default option in presence of CoCos

Bank shareholders are long on the default option, which the manager has to maximize acting on

the behalf of the shareholders, as in Barone-Adesi et al. (2014). We propose a slight modi�cation

in the pricing formula of the default put option. We introduce also the franchise value Fr as
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underlying together with the standard market value of the assets MVA. This is necessary in order

to prevent potential arbitrage opportunities, that could arise otherwise, buying the bank and selling

short the tangible assets and the franchise value, if this last one would not be considered. Another

major di�erence with standard literature deals with volatility which remains the volatility of the

underlying, but in our case the underlying is jointly given by the market value of the assets and the

franchise value(σMVA). Furthermore, introducing the CoCos in the �nancing, impairs the power of

straight debt in stimulating the shareholders to opt for default. We account for them in leverage,

i.e. lev, which is given by the ratio between the Tier1 and the sum of the market value of the assets

and franchise value, following Basel III de�nition, which impose the ratio to be evaluated over the

total exposure. In this case, CoCos accrue to the Tier1, being eligible for AT1.The strike price is

the market value for straight debt and deposits, MV SD +Dep 29. T is the time to maturity and rf

is the policy rate. Our pricing for the default put option is given by:

Putdef (lev, σMVA, rf) =
(
MV SD +Dep

)
Φ (−d2) +

(− (MVA) Φ (−d1)) ,

with {τFr=0 > T},

where d1 =

 ln( 1
1−lev )+

(
rf+

σ2MVA
2

)
T

σMVA

√
T

 ,

lev =
(
T ier1
MVA

)
, d2 = d1 − σMVA

√
T ,Φ− standardNormal

(28)

We consider without loss of generality Φ the standard Normal. In absence of growth opportunities

and CoCos, the pricing formula goes back to the standard one. At a �rst glance, the standard greeks

for this option are given as follows:

Sensitivity to leverage :

[
δPutdefi,t

δlevi,t

]
< 0

Sensitivity to volatility :

[
δPutdefi,t

δσMVAi,t

]
> 0

Sensitivity to policy − rate :

[
δPutdefi,t

δrfi,t

]
< 0

(29)

29We proxy the market value for the straight debt with the KMV model (KMV corporation).
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The default put option is increasing in volatility and decreasing in leverage, de�ned as above, and the

policy rate. This option push the bank manager to adopt a risk-taking policy, but this is mitigated,

with respect to standard case, by the presence of the franchise value and CoCos, when we control

also for volatility and the policy rate, as we show in the results section.

8.3 Pricing the DOC option, in presence of non-observable under-

lying and CoCos

We refer to the portfolio of growth opportunities at time T as F (T ). Before maturity, the expected

value of Fr(T ) is not observable and embedded in the market value of the bank. At the beginning

of the period, before observing the Fr(T ), we can price this portfolio of growth opportunities in the

option framework (see for the basic �nancing the one proposed in Barone-Adesi et al. (2014)). The

DOC is a down and out call option, with a pricing formula whose underlying is the franchise value

net of investment cost in the case the bank does not opt for default. Since investment costs are

already considered in the franchise value, the strike price for this option is set to zero. The barrier is

given by the sum of the market value of standard senior debt and deposits. This option is priced in

an European framework given that the franchise value comes to fruition only at maturity30, but it is

path dependent. In case the barrier is breached before maturity the option expires and the franchise

value is driven immediately to zero. Taking into account the CoCos in the �nancing framework,

we notice that with respect to a context with standard �nancing the distance to the barrier for

franchise value is enlarged, both before and after conversion. This is true because before conversion

CoCos accrue to Tier1 being eligible for AT1 and after conversion they become equity or nothing

(depending on the conversion ratio), accruing to Tier1 directly being part of CET1. The pricing is

given as follows:

DOC (lev, σMVA, rf) = Fr [Φ (v1) +

− (1− lev)2λ Φ (y1)
]

with {τFr=0 > T} ,

where λ =
rf+

σ2MVA
2

σ2
MVA

v1 =
ln( 1

1−lev )
σMVA

√
T

+ λσMVA

√
T , y1 = ln(1−lev)

σMVA

√
T

+ λσMVA

√
T

(30)

30That is equivalent to say that we can exercise it only at maturity.
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This pricing formula is not applicable directly in an empirical context because the franchise value,

as well as the market value of the assets and their volatility are not directly observable in the market,

but we provide our model in order to estimate them in a framework considering the two options

presented. We provide the standard greeks also for this option, in the context of the presence

of CoCos in the �nancing structure of the bank which are considered in the leverage variable.

Accordingly to the existent literature, the DOC option is increasing in volatility and in the policy

rate. With respect to volatility we show in the empirical application that both at aggregate level and

in the cluster analysis, we relation is increasing but bounded. Hence, the numerical optimization

procedure, we propose in the following sections, reach the optimum in presence of relative low values

for volatility. This happens because of the higher probability, in case of relative higher value of this

variable, to breach the barrier and thus to set to zero the value of the franchise value. The "greek"

with respect to leverage is non standard in the literature. We �nd it to be positive for the DOC

option because, given the Basel III de�nition of leverage, a greater value of leverage increase the

distance to the franchise value barrier. The results are given below:

Sensitivity to leverage :
[
δDOCi,t
δlevi,t

]
> 0

Sensitivity to volatility :
[
δDOCi,t
δσMVAi,t

]
≶ 0

Sensitivity to policy − rate :
[
δDOCi,t
δrfi,t

]
> 0

(31)

The default put option is increasing in volatility and decreasing in leverage, de�ned as above, and

the policy rate. We show in the following sections when the DOC prevails over the default put one

in determing the shape of the objective function and consequently the one of risk appetite.

9 The optimization problem for risk appetite

In standard literature, we commonly refer to risk appetite as an assessment of the riskiness of the

assets in the bank portfolio. The regulator, through the capital ratio proposed in Basel III, considers

also the joint e�ect of volatility together with the amount of Tier1 at stake, that we can translate

in our model into our leverage variable. We propose to go a step further, assessing the joint impact

of these �rst two variables together with an ideal policy rate31 which is determined by the interplay

of the two options, driving our objective function. This rate is an ideal candidate ensuring stability

between the opposite forces a bank decision maker has to face when shaping risk appetite. In our

31In the paper we refer to the policy rate or to the discount rate indiscriminately.
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model we concentrate on the maximization of the market value of equity of the bank. From the

relations exposed above, we know that the key determinants of the market value are the default

put and the DOC option. The two options provide di�erent incentives concerning the variables

taken into account for understanding our three-dimensional risk appetite, which are leverage, assets

and franchise value volatility and the policy rate. Following our reasoning, we de�ne the objective

function (O.f.) as the sum of the two options:

O.f.i,t := DOC
(
levi,t, σMVAi,t , rfi,t

)
+ PUT def

(
levi,t, σMVAi,t , rfi,t

)
. (32)

We propose this de�nition for the objective function because we propose a speci�cation of the

market value of the bank which is determined by the sum of the two options and is consequently

driven by our decision variables (leverage, volatility and the policy rate)32. The bank manager has

decision power over the �rst two variables, instead the we examine only the impact of an ideal

candidate for the third one. The regulator on her side, should take into account this perspective in

order to better understand banks' strategy and to set the appropriate incentives in its regulation

framework. The risk appetite is determined in the optimization problem we present in Section 2.2

and is given by the �rst order derivatives and the determinant of the Hessian matrix.

The optimization problem is twofold. In the �rst step we estimate the franchise value and the

market value of the assets that are not observable in the market, but are embedded in the equity

market value. Those elements are necessary inputs to perform the second optimization, where we

look for the optimal level of leverage, and consequently the optimal amount of CoCos to issue, the

assets and franchise value volatility and the policy rate that simultaneously optimize the objective

function.

9.1 First step ingredients

In the �rst step, the goal is to estimate the unobservable franchise value and the market value of

the assets that are embedded in the equity market value. By put-call parity, we establish this �rst

system of equations:

We solve the following system of equation simultaneously:

32In the section "Main assumptions and model description" and in the "First step ingredients" of the
optimization problem we display how we determine the market value of the equity and thus the motivation
of our objective function.
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

MVEi,t= (Ai,t−(MV SD+Dep)i,t+DOCi,t+Put
def
i,t ),

σMVEi,t
MVEi,t= σMVAi,t

(MVAi,t)Φ(d1i,t),

where d1i,t =

 ln

(
MVAi,t

(MV SD+Dep)i,t

)
+

(
rfi,t+

σ2MVAi,t
2

)
T

σMVAi,t

√
T

 .

(33)

In the �rst equation,
(
MV SD +Dep

)
is the market value of the sum of the market value of the

straight debt and deposits, considering in this �rst element the value of the total amount of both

short term and long term liabilities. This extension of the Merton speci�cation allows us to

consider the franchise value both at the underlying and implied volatility level. We base our

analysis on the intuition that the equity market value incorporates the information regarding both

the assets market value and the franchise value, consequently the implied volatility estimated in

this model refers to the one considering both the assets and the franchise value. The manager

performs her analysis at the beginning of the period, when the franchise value is considerable only

through the pricing relation of the DOC option33. We solve this problem through the non-linear

least squares criterion function, for each bank at any time t on the whole time span considered. We

minimize the distance between the data concerning the equity market value and the model

extended accommodating for both the default put option and the DOC one. We perform a step by

step optimization for Θi,t := Fri,t, Ai,t, σMVAi,t , building on the Bellman's Principle of Optimality

(Bellman (1952)), applied also in Merton (1973b). We build on the following error function:

 e1,i,t= MVEi,t−(Ai,t−(MV SD+Dep)i,t+DOC(Θi,t)+Putdef (Θi,t)),

e2,i,t= σMVEi,t
MVEi,t−σMVAi,t

MVAi,tΦ(d1i,t),

(34)

where {i}n1 is the bank identi�cator and {t}m1 the year considered. The non linear least square

function is the following:

Θ∗i,t = argmin
∑2,n,m

j,i,t=1

[
e2
j,i,t

]
(Θi,t)

(35)

where the solution value is Θ∗i,t, which is the non-linear least squares estimators, optimizing the

sum of the squared deviations. Hence, the needed inputs to perform the subsequent

optimization34. At this step, empirically, we proceed in our �rst clustering distinguishing among

banks with franchise value and without.

33Given that the franchise value Fr comes to fruition only at time T .
34As we explain in the following step, we perform the optimization at each time step t, following Bellman

(1952) and Merton (1973b), in order to allow the franchise value of the bank to come to fruition at time T .

56



9.2 Second step

This is the central step of our optimization procedure. The key determinants of our objective function

are leverage, assets and franchise value volatility and the policy rate. Thus, it would be simplistic to

focus only on one dimension when considering the risk appetite of a bank. Furthermore, we will see

that empirically there are major di�erences among banks' clusters. Hence a �at regulation, "one size

�ts all", is not convenient for neither the regulator nor the bank itself. In addition, we underline that

the policy rate have an impact in the pricing of the two options at stake, even if the magnitudo of this

variable is relatively small compared to the �rst two35. The strength of this paper is to consider these

three dimensions and to derive a three dimensional risk appetite de�nition. Introducing the franchise

value, we go beyond standard literature and regulation. In our model, the franchise value, gives the

shape to the objective function together with the well known default put option36. The third key

element for understanding the following relation is given by the bank's �nancing, including also the

CoCo bonds. Accordingly to this perspective, the manager has to optimize the objective function of

the bank, modifying its exposure to risky assets and changing (even if only in part, given the nature

of a portfolio of growth opportunity that materializes only at T ) the strategy concerning the growth

opportunity portfolio(short-term - being a stepwise optimization)and adjusting bank's leverage at

time zero, operating always for allowing the franchise value to come to fruition at time T . The shape

of risk appetite is assessed through the determinant of the Hessian matrix in a three-dimensional

perspective. We propose a volatility-driven risk appetite, as well as a leverage-driven one and a policy

rate-driven one. The cluster analysis adds information, helping in the understanding of which option

determines the shape of risk appetite. This element could be crucial for a more e�cient regulation,

which for the while di�erentiate only between systemically important �nancial institution and the

rest of the banks. A priori, the sensitivity analysis of each option's value with respect to the variables

at stake and we reported those results in the previous section. Overall, what is the impact of each

variable marginal changes on the whole objective function in presence of franchise value and CoCos?

In our framework, there is not a monetary policy maker contribution, but we assess the optimal

policy rate for stability. Thus, we analyse the sensitivity of the objective function with respect to

the policy rate (policy rate-driven risk appetite), setting rho equal to zero. The decision variables

over which, instead, the manager has discretionary power at time zero are volatility and leverage.

On the bank manager side, the shape of risk appetite is determined evaluating at zero both vega

(volatility-driven risk appetite) and the �rst order derivative with respect to the leverage (leverage-

35In the empirical analysis we show sensitivity results concerning this intuition. An extension to this work
would consider a quanti�cation of the magnitudo each variable over the objective function.

36In our model the default put option is peculiar having as underlying the franchise value as well and with
the presence of the CoCos in the �nancing of the bank.
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driven risk appetite) 37. The optimization variables are the leverage, the assets and franchise value

volatility and the policy rate, so our theta in this case is: Θi,t :=
(
levi,t, σMVAi,t , rfi,t

)
. When the

franchise value is available, the optimization problem is:

Θ∗i,t =
argmax

Θi,t

[Ofi,t] (36)

In this framework our three-dimensional risk appetite (R.A.) is given by:

leverage− driven R.A. :
[
δOfi,t
δlevi,t

]
= 0 |σ∗MVAi,t

,rf∗i,t

volatility − driven R.A. :
[

δOfi,t
δσMVAi,t

]
= 0 |lev∗i,t,rf∗i,t

policy − rate− driven R.A. :
[
δOfi,t
δrfi,t

]
= 0 |lev∗i,t,σ∗MVAi,t

(37)

We perform a simultaneous optimization over the three variables, hence we express the �rst order

partial derivatives of each single variable given the optimal �gures of the other two. We accommodate

for a joint optimization, which helps us to go beyond the single impact of each variable, stressing

the importance of taking into account the joint e�ect of them over the objective function. We de�ne

our optimal value of CoCos to issue per bank per year as:

CoCoi,t :=
(
lev∗i,t − levacti,t

)
, (38)

where levacti,t is the actual level of leverage in Basel terms and lev∗i,t is the optimal level derived in the

optimization process, when the optimal level is above the actual one, otherwise we do not have an

issue of CoCos. This is straightforward because the optimal leverage if greater than the actual one

enlarges the Tier1 and this can be done either through an issue of equity, which is never optimal (we

discuss this in the extensions), or through an issue of CoCos eligible for AT1, with a loss absorbing

conversion ratio, i.e. a conversion ratio (that we call delta) smaller than one. If the conversion ratio

is equal to zero, the CoCo bonds is a write down bond converting to zero, otherwise it is a proper

CoCo bond. Numerically, we use the methodology developed by Byrd et al. (1995) allowing us to

give lower and upper bounds for each variable (box constraints), whose initial value must satisfy the

constraint. This uses a limited-memory modi�cation of the BFGS quasi-Newton method (Broyden

(1970); Fletcher (1970); Goldfarb (1970); Shanno (1970)) and in our procedure, the algorithm always

37In standard literature, it does not exist a "greek letter" identifying the sensitivity of an option price with
respect to leverage.
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achieve the �nite convergence.

We perform a pointwise optimization since we are interested in the optimal values of the pa-

rameters for each bank on the whole time span. Our objective function is given by the sum of our

two options, but we prefer to assess its shape considering the market value of the assets as our

normalizing variable. In this optimization step, the market value of the assets is an input derived

in the �rst step, thus our variables are totally neutral to this scaling �gure. In this context, the

optimal objective function do not have theoretical bounds, but we focus on 0 ≤ O.f.i,t ≤ 1, since it

is hard to �nd empirically a bank having the sum of the two options greater than the market value

of the assets (our normalizing quantity).

9.3 A sensitivity analysis of the objective function

In the literature, we �nd plenty of studies concerning the greeks of the options we consider in our

model. Nevertheless, given the speci�cation we give to the DOC option and the introduction in the

leverage �gure of the CoCos, we give in the appendix the derivation of both the �rst order derivatives

and the components of the Hessian matrix. For a better understanding of the empirical results of

our model, we perform in the subsequent appendix a simulation for a better understanding of the

optimal solutions of our objective function. The simulation is performed letting one variable free

and setting the other two on average cluster input values. Given our de�nition of leverage, i.e. the

ratio between Tier1 and the market value of the assets and franchise value, the sign of the �rst

order derivative of the objective function with respect to leverage is positive if we consider only

the case where the franchise value is positive. This is true because in this case the DOC option

dominates over the default put one and this is favoured with a higher distance to the barrier for

the franchise value. If we consider the policy rate, the two options display di�erent sensitivities and

the greeks display opposite signs. For these two variables, it is straightforward to �nd an optimum

for our speci�cation of objective function. This is not so obvious for volatility. At a �rst glance,

considering an option framework, it is demanding to perceive that we can �nd an optimal solution

for our volatility variable. On one side, the default put option is strictly increasing in volatility, but

on the other side, the down-and-out call option is increasing in volatility for relative small values, but

it is decreasing for larger values of this variable. This is the case because for relative higher values

of volatility, there is an increasing probability to touch the barrier of our DOC, thus to drop to zero

its value. This is the reason why we �nd relative low optimal volatility values. Summing up, for

relative lower values both the options are increasing in volatility, but for relative higher values, the

DOC option prevails over the default put one and the whole objective function exhibits a decreasing

shape. Hence, we can �nd an optimal solution also for volatility.
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10 Results

We implement our model on a dataset consisting of 1436 US banks, whose sample period is 1980-

2014 . This is of particular interest because no US banks issued CoCos up to 2014, thus we show

for which banks it would have been optimal to issue CoCos and for which not and the impact this

choice, together with the others decision variables, have on the franchise value and on the objective

function of the banks assessed. Balance sheet items are taken from COMPUSTAT and considered

on an annual basis. Market prices from the Center for Research in Security Prices (CRSP). Price

data are taken on a monthly basis to accommodate the constant volatility hypothesis. We perform

our optimizations with several initial values in order to check we have results numerically stable.

10.1 Bridging our model to Basel III recommendations

Our optimization procedure leads us to the following results. First, in Figure 5 we show that

the optimal volatility is below the actual embedded one. We obtain the assets' and franchise's

volatility from the second step of our optimization procedure. The distance between the two �gures

enlarges in the years after 2008 relative to the rest of the time series. The rational for decreasing

volatility following the incentive of the capital ratio (Tier1 over RWAs), where we proxy RWAs for

assets' and franchise's value volatility, is also motivated by our model results. We �nd that optimal

volatility is always smaller than the volatility embedded in the market value. We demonstrate that

the objective function, being determined by two options, is an increasing function of volatility, but

optimal values are bounded in a relative low environment. This is important in order to preserve the

franchise value which can be destroyed with high volatility given the higher probability of hitting

the franchise barrier.
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Embedded versus optimal volatility
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Figure 5: Embedded versus optimal volatility.

Second, we show that optimal leverage is above the actual one. We can see that the distance

between the actual level and the optimal one increases substantially when the crisis of 2008 exploded.

The leverage is expressed in Basel regulation terms, meaning that at the numerator we have Tier1

which has to be increased following both our model, considering the two options, and Basel rule. The

enlargement of the Tier1 promotes the DOC option and helps maintaining the franchise value also

during bad times, where in general we might expect an erosion of the growth opportunities of the

bank. The regulation do not consider the franchise value and banks growth but in this case gives an

aligned incentive. We have two ways for increasing Tier1. From one side, the bank can issue equity;

on the other side it might opt for issuing hybrid capital eligible for AT1, i.e. CoCo bonds with a loss

absorbing conversion ratio. We consider in the extension paragraph some pitfalls related to the issue

of equity in comparison to the issue of CoCos. Issuing equity should not be optimal for both the

pecking order theory, which is even more true during bad times, and for the consequences directly

related to our model, dealing with discretionary coupon savings, which is greater with respect to

discretionary dividends savings and the opportunity given by the tax shield. This last element is

one of the main reasons why in the US banks do not issue CoCos even if we show that it should be

optimal. On the other side, the �scal regulation in Europe allow for tax shield also of this hybrid
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capital, thus we can see empirically an increasing market for CoCos after LLOYDs 2009 �rst issue.

The following graph, Figure 6, represents the amount of leverage of the banks considered in our

sample and is given by the ratio between Tier1 and the total exposure. In our model we consider as

total exposure the franchise value together with the assets. This element is one of the characteristic

of our model. Thus, considering also the franchise value, the banks assessed present a median yearly

leverage well above Basel III recommendation (3%).
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Figure 6: Actual versus optimal leverage in Basel III terms.

We conclude that the results of our model considering the decision variables over which the

manager has discretionary power are in line with Basel III recommendations concerning both the

leverage ratio and the capital ratio. We further propose how to understand banks potential optimal

quantities of CoCos to issue and the impact an ideal optimal policy rate has over the banks' objective

function.

10.2 Empirical results at aggregate level

In this subsection we present the main results at aggregate level. In Figure 7, we show the optimal

average percentage amount of CoCos to issue per year. We obtain this �gure as an output of our
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optimization procedure and it is expressed in percentage terms with respect to the market value of

the assets and franchise value. Interestingly, we �nd a sharp increase in the last period assessed

from 2007 on, starting a year before the boost of the �nancial crisis of 2008, leading to Basel III.

1980 1990 2000 2010

0.
00

0.
02

0.
04

Optimal average amount of CoCos to issue

Years

C
oC

os
 o

ve
r 

to
ta

l e
xp

os
ur

e

Figure 7: Optimal amount of CoCos over the market value of the assets and franchise value
to issue per year.

From now on, we do consider only banks with franchise value, cluster2, instead it is not interesting

for our model to consider the banks without it. Indeed, cluster1 comprehends the banks for which

the franchise value is equal to zero and, in this case, the only determinant in the optimization

procedure is the default put option. We further distinguish between other two sub clusters, the �rst

one where it is optimal to issue CoCos, cluster2a, and the one for which is not optimal to issue

CoCos, cluster2b. In the appendix, we display the summary statistics of the key �gures for both

the clusters in table 11 and table 12 as well as the related con�dence intervals for the optimized

variables. In Figure 8, we show a comparison of the objective function with and without CoCos.

The objective function of the cluster for which is optimal to issue CoCos is always above the one

of the cluster for which is not optimal to issue further hybrid capital enlarging Tier1. For both

the clusters, the franchise value is greater than zero, thus the default put option incentives are
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counterbalanced by the DOC option. On one side, the sub sample for which is not optimal to issue

CoCos, i.e. cluster2b, has relative lower optimal volatility and higher policy rate, this two factors

are even more depressing the default put option, which pull down the whole optimized objective

function. On the other side, the sub sample for which is optimal to issue CoCos, i.e. cluster2a,

promotes heavily the DOC option, but thanks to a relative higher volatility and lower policy rate it

maintains also the default put option value. Overall, the optimal amount of CoCos to issue is not

that large with respect to total leverage and this is consistent with regulators' recommendation.
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Figure 8: A comparison of the objective function with and without CoCos.

However, the DOC option is the one which drives upwards the objective function, sustained by the

higher optimal leverage, which is enlarged by the CoCos issued.
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DOC options'value over MVA

0.0

0.1

0.2

0.3

0.4

0.5

W
ith

ou
t C

oC
os

0.0

0.1

0.2

0.3

0.4

0.5

W
ith

 C
oC

os

Aggregated results

1980 1990 2000 2010
Years

Figure 9: A comparison of the DOC option over MVA with and without CoCos.

In the context of a cluster analysis, cluster 2a is characterized by a higher franchise value, optimal

volatility and leverage but lower policy rate relative to the cluster 2b. We argue that in the cluster

2a, enlarging the Tier1 through an average issue of CoCos of 5% in the US (or 3% in Europe), the

DOC option is promoted over the default put option. We argue this is a �rst reason why in this

cluster the average optimal volatility is relative higher (even if the median �gure is aligned with the

one in cluster 2b) and the optimal policy rate is relative lower. The optimal policy rate �gure does

not consider the in�ation and other macro issues.

10.3 Empirical results cluster by cluster

In the following paragraphs we assess what happens when we further apply cluster analysis to our

data by leverage obtaining the following clusters: 2a1, 2a2, 2a3 and 2b1, 2b2, 2b3. Cluster 2a1

(or 2b1) have the highest capitalization, thus the largest Tier1 and represent our over capitalized

clusters for which is optimal to issue (or not) CoCos, instead cluster 2a3 (or 2b3) have the lowest

one, being our undercapitalized clusters. The clustering is de�ned on the basis of actual leverage in

Basel terms, considering from one side the Tier1 �gure reported by the banks, on the other side the
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total exposure given by the market value of the assets and franchise value obtained in the �rst step

of the optimization procedure. Hence we show in the following table the value for leverage of our

clusters.

Table 8: Leverage �gures, cluster analysis.

Clusters 1 2 3

2a 0.1257 0.0850 0.0507
2b 0.1231 0.0872 0.0613
Aggregate 0.1112 0.0741 0.0429

This table shows us a relevant issue for the regulator. Taking into account the franchise value, at

the aggregate level the under capitalized cluster is truly under capitalized for US regulation because

leverage is below 5%,we show it to be almost 4.3%. This is corroborating our model results for the

cluster 2a for which it is optimal to issue CoCos. In the next �gure we show the optimal amount of

CoCos to issue cluster by cluster. After 2000, this �gure moves in the same direction for all the three

clusters a part from the last year considered where the estimates diverge a lot where the average

capitalized cluster demands the highest quantity of CoCos. Over the whole time span considered,

the largest swings are present in cluster2a3, which is the under capitalized cluster. In particular, we

show that right before the last �nancial crisis, it would have been optimal to issue CoCos for those

under capitalized banks. It is only in the last year considered that they increase the Tier1 and we

derive in our model an embedded market value of the assets and franchise value lower with respect

to previous times38.

38More on this in �gure 13 presented in the appendix.
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Figure 10: Optimal amount of CoCos over the market value of the assets and franchise value
to issue per year, cluster by cluster.

Overall we notice that in the clusters for which is optimal to issue CoCos, going from the most

capitalized cluster to the least one, the amount of franchise value increases, the optimal volatility

decreases and the policy rate decreases as well. In example, the most under capitalized cluster would

favour the default put option more with respect to the other two, because of the nature itself of the

cluster. Thus, in order to maintain the franchise value and to promote it, given that the DOC is part

of the optimization procedure, the other decision variables optimally adapt to preserve the overall

optimized value of the whole objective function. Another relevant result is that the average optimal

amount of leverage do not change on average, but di�erences emerges considering median optimal

results, even if this variation is not so important with respect to the change in the other variables.

Hence, we underline through these results that even if the CoCos contribution is important for the

objective function maximization, the di�erences in the risk appetite among the clusters are mainly

driven by the other optimizing variables. The clusters for which is not optimal to issue CoCos

report always a lower franchise value, because the other variables (volatility and policy rate) are not

enough to promote the DOC option as in the case for which the leverage is increased by the CoCos'
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issue. In the �gure below we represent the optimized objective function per year, cluster by cluster,

comparing the banks for which is optimal to issue CoCos and the ones for which is not optimal. The

greater di�erence among the two emerges in the �rst cluster, this is due to the higher relative value

in the optimized key variables. In third cluster, which is the most under capitalized one, after the

�nancial crisis of 2008 the optimized objective functions diverge a lot between the two categories

(with and without CoCos). This results is driven by the DOC option as we can see in Figure 11.

Figure 11: Optimal objective function: a comparison between the banks for which is optimal
to issue CoCos and the ones for which is not optimal, per year, cluster by cluster.

In Figure 12, we display the DOC option, which represents the net present value of the growth

opportunities for the banks we consider. The results are driven to zero only during the oil crisis in

the '80s. Nevertheless, the greatest di�erence between the two optimal �nancing strategies drives

upwards the DOC especially in the third cluster. Given the information obtained through the results

above we do not attribute the whole explanation to the di�erence in the �nancing but also to the

di�erences in the optimized values of the other decision variables.
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Figure 12: DOC: a comparison between the banks for which is optimal to issue CoCos and
the ones for which is not optimal, per year, cluster by cluster.

10.4 The world after conversion with di�erent policy rates

The results presented above are before a potential trigger and conversion event. What happens if

the value of the underlying falls into the trigger area? First of all, the optimal amount of CoCos to

issue is on average 3% for all the clusters contemplated, which is relatively small compared to the

total amount of leverage, thus they contribute to the overall objective function maximization but

with a bounded power. Second, the above results are valid for a pre-conversion scenario or if after

conversion the value of the converted CoCos is the same. This means that if the delta conversion

ratio is smaller than one, virtually, the pre-conversion total amount of optimal CoCos to issue is

above the value estimated above, consequently we can use our results. Third, considering the optimal

amount of CoCos estimated above pre-conversion, we show below the impact of di�erent conversion

ratio (delta) on the optimized default put option, DOC option (both of them standardized for the

market value of the assets and franchise value, which are inputs in the second optimization) and the

objective function. In absolute terms, we notice that the optimized functions do not change much
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but the di�erences are substantial in relative terms. The di�erences in the behaviour are even more

important when we consider di�erent policy rates. We show the results in the following �gures,

considering di�erences in the policy rates. In Figure 13, we show the behaviour after conversion

with an average optimal policy rate.
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Figure 13: From write-down bonds to CoCos: behaviour after conversion, with an average
optimal policy rate.

We assess the dynamics of our objective function in the zero environment for the policy rate. First,

we exhibit in Figure 14 the dynamics with a generic policy rate equal to 0.5%. In this case, the

default put option sensitivity presents a delayed decreasing behaviour. For the DOC option and the

objective function, the directions are the same but there is more variability with respect to the one

with average policy rate. Indeed, the objective function reaches its maximum after the case in which

we use an average policy rate.
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Figure 14: From write-down bonds to CoCos: behaviour after conversion, with a policy rate
of 0.5%.

Second, we introduce the negative side of the policy rates, performing a sensitivity analysis with a

rate of −0.5%, as reported in Figure 15.
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Figure 15: From write-down bonds to CoCos: behaviour after conversion, with a policy rate
of −0.5%.

In this last case we can see that the dynamics for the default put option is again decreasing from the

beginning, but the speed with which the objective function reaches the maximum is slowed down.

Hence, in this section, we learn that the conversion ratio has an impact on the shape of the elements

that accrue to the objective function. Nevertheless, the greatest determinant of the shape of the

objective function remains the DOC option, dominating over the default put one.

11 Extensions

In our model, we consider an increase in the leverage, ceteris paribus, given by an issue of CoCos.

We do not contemplate the opportunity of issuing equity because of the following concerns. First,

hybrid capital, such as CoCo bonds, are treated as debt before conversion from a �scal point of

view, incentivizing CoCos issue through the bene�ts from tax shield. This is granted in Europe,

it is instead more di�cult in the US, given the strict parameters under which they are eligible

for being considered debt before conversion for the US federal income tax purposes Hammer et al.
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(2011). Second, following the literature, Myers (1984) and Myers and Majluf (1984) propose the

pecking order theory, where �rms issue equity as a "last resort", hence, it is not an ideal candidate

for recapitalization. Stein (1992) refer to convertible bonds as a "backdoor equity �nancing". He

emphasizes the feature of the call provision and reports that �rms where the dividends are less than

after-tax interest payments, conversion takes place earlier, with respect to the opposite case. This

is interesting to motivate our following example. In our model, we consider the possibility to pay

a discretionary CoCos' coupon in case conversion does not take place at time t: cCoCo1{t<τConv}.

Shifting our focus from the balance sheet perspective to the income statement and to the cash �ow

(CF), we consider as a cost before taxes our coupon and thus, at least conforming to the European

�scal regulation, the bank enjoys the tax shield over the tax deductible coupon. We compare the

following two income statement for a bank producing the same revenue, facing the same operational

expenses structure and di�ering only for the �nancing39. In the following table we consider the case

in which both coupons and dividends are payout.

Table 9: Bank income statements: a comparison between equity �nancing and CoCos �nanc-
ing.

Variables Income statement and CF Income statement and CF
- bank with equity �nancing - bank with CoCos �nancing

Revenue R R
Operational Expenses E E

EBIT R-E R-E
Interest payments 0 cCoCo

EBT R-E R-E-cCoCo

Tax η(R− E) = ψ η(R− E − cCoCo) = ψ − η(cCoCo)
Net Income R− E − ψ R− E − ψ + η(cCoCo)

Dividens dEq dCoCo
Cash position40 IC −R− E − ψ − dEq IC −R− E − ψ + η(cCoCo)− dCoCo

Tax shield and coupon savings is greater for CoCos even if compared to subordinated debt, given

the smaller coupon rate. The di�culties in the tax deductibility in the US is one of the main reasons

why in our sample, none of the banks issued CoCos in the time span considered. On the other

39Please note that the variable R is positive and greater than the whole amount of expenses E. We are
considering a bank whose net income is very low but still greater than zero. Interest payments for the bank
opting for recapitalization via equity are zero because straight debt is considered to be a zero-coupon, as
explained in the main assumptions of this model.
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side, the �scal regulation in Europe allowing for tax shield facilitated a massive issue of CoCos in

response to the �nancial crisis. In example, we can see empirically an increasing market for CoCos

after Lloyds Banking Group 2009 �rst issue. We show that the cash position even if impaired by

the CoCos' coupon payout enjoys the savings due to the tax shield and the lower dividend to be

payout41 Third, CoCos' coupons are discretionary, if the CoCos are eligible as AT1. In case of

subsequent bank value deterioration, the bank might choose not to pay the coupon, which is on

average 7%, which is always greater than the average dividend yield, which is on average for the

banking industry 1.63%42. In case of bad times the bank might decide to save the coupon amount,

since it is reasonable that during bad times dividends are zero or very low and it would be incoherent

to payout high CoCos coupons. This choice accrues to the market value of the bank and returns a

greater saving amount with respect to the saving of the dividend global amount to payout. In the

next table we compare the same two banks proposed in the example above, with neither the CoCos'

coupon payment nor the dividend payment and we propose a summary of the potential savings.

Table 10: Bank savings and Cash improvement: a comparison between equity �nancing and
CoCos �nancing.

Variables Income statement and CF Income statement and CF
- bank with equity �nancing - bank with CoCos �nancing

Revenue R R
Operational Expenses E E

EBIT R-E R-E
Interest payments 0 0

EBT R-E R-E
Tax η(R− E) = ψ η(R− E − 0) = ψ

Net Income R− E − ψ R− E − ψ
Dividends 0 0

Savings/Cash improvement43 dEq dCoCo + cCoCo

Cash position with savings44 IC −R− E − ψ + dEq IC −R− E − ψ + dCoCo + cCoCo

In this case the two banks looks identical from a pro�t and loss point of view, but the cash �ows

of the two di�er substantially. In the �rst case the cash �ow is improved by an amount of dEq,

which is the amount of dividends the bank opting for standard equity recapitalization is able to save

41Even if the dividend for the bank �nanced via equity is lower with respect to the CoCos' coupon.
42Data are obtained from the (2014) and the A. Damodaran website: http :

//people.stern.nyu.edu/adamodar/NewHomePage/home.htm.
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deciding not to payout dividends. The bank, enlarging its Tier1, through a CoCos issue, if opt for

not paying the discretionary coupon would have paid to its shareholders a dividend equal to the

one of the other bank. Up to this point the amount of savings and consequent improvement of the

cash position is the same for the two banks. Nevertheless, the bank, that has issued CoCos, enjoys

a further saving equal to the coupon amount that would have been payout. We do not consider

bankruptcy costs because we assess the bank risk appetite behaviour when assets are deteriorating

but the bank is still able to run its assets and we concentrate on understanding which is the best

set of instruments in order to preserve the franchise value. We do not compare the subordinated

debt in this case because it does not accrue to the Tier1. Subordinated debt posticipates default,

but does not play a role over the franchise barrier. Subordinated debt is a Tier2 instruments and

frees resources to bank only for avoiding default, thus after that our franchise value would have been

eroded. Hence, the default barrier level is the same if a bank opt for a CoCo or subordinated debt

issue. Overall, the default put option value, ceteris paribus, do not change, but, a subordinated deb

issue would harm the DOC option, because the trigger barrier for franchise value would be relative

higher with respect to a CoCos' issue.

12 Conclusion

The �nancial crisis of 2007-2008 has been the greatest global �nancial crisis since the Great Depres-

sion. Therefore, regulators and governments all over the world favoured the issuance of contingent

capital instruments, being potentially a useful tool for strengthening banks' capital positions and for

facing losses, as highlighted in the Financial Stability Oversight Council Report Council (2012). In

this context, we investigate the shape of risk appetite when the bank is �nanced also with contingent

convertible bonds (CoCos). In our model, the manager acts in order to maximize the bank objective

function, given by the sum of the default put option and the down-and-out call option, pricing the

net present value of growth opportunities. The optimization procedure adjusts jointly the assets and

franchise value volatility, the policy rate, the level of leverage, and the consequent level of CoCos to

issue. Risk appetite is given by the �rst order derivatives. We �nd that both our model and Basel

III recommendations converge over their incentives regarding volatility and leverage. We show that

for banks with higher franchise value it is optimal to issue an average amount of CoCos over the

market value of the assets of 3%. CoCos do not only enlarge the distance to the default barrier

but also the franchise value one. The optimized objective function with CoCos is always higher

than the one without CoCos, this is true both at aggregate level and in the cluster analysis. On

the optimal volatility side, a decrease accrue to the DOC option, in particular for under capitalized

banks, even if this �gure can't be pushed too low in order to preserve the default put option. This
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can be obtained by changing assets' composition and growth opportunities strategies. The other

optimizing decision variables are crucial in shaping risk appetite and help in understanding the

di�erences among the clusters. We do not di�erentiate ex-ante with respect to conversion between

write down bonds and CoCos but only afterwards. After conversion for the bank is always optimal

to have a conversion ratio greater than zero even if loss absorbing, thus being smaller than one. In

absolute terms, we notice that the optimized functions do not change much in value, but the di�er-

ences are substantial in relative terms. The di�erences in the behaviour are even more important

when we consider di�erent policy rates. Our contribution to the existent literature is to assess risk

appetite in a multi-dimensional perspective and to account for di�erences among banks' clusters.

We show that those peculiarities are even more important when accounting for CoCos and policy

rates approaching zero or negative �gures, in a Basel III friendly framework. A �at regulation could

harm certain categories of banks, especially considering volatility. On the policy rate side, we argue

that at aggregate level the average optimal rate for stability is far from the optimal �gure at cluster

level. Both at aggregate and cluster level the resulting optimal policy rate is larger with respect

to the actual �gure. This is particularly true in the last period of the time span considered. This

element might be taken into consideration in relative terms, since we do not account for other key

�gures addressed by monetary policy.

Appendix

First order, second order and joint derivatives of the objective func-

tion
In this paragraph, for exposition reasons, leverage is de�ned as the ratio between the market value
of straight debt and the market value of the assets together with the franchise value. This choice is
for exposition reasons.
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First order derivative with respect to leverage:
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Rho, �rst order derivative with respect to the policy rate:
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First joint derivative with respect to both leverage and volatility:
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Second joint derivative with respect to both leverage and policy rate:
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Third joint derivative with respect to the policy rate and volatility:
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Second-order derivative with respect to leverage:
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Vomma, second-order derivative with respect to volatility:
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Second-order derivative with respect to the policy rate:
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Who drives the risk appetite? A simulation exercise

In the following table we perform a sensitivity analysis to change in the three optimization variables.

We comment in Section 6 how the shape of risk appetite di�ers among the clusters. Optimal value

ranges:

• for leverage:

Cluster 21 : 0.10 ≤ lev∗ ≤ 0.11

Cluster 22 : 0.07 ≤ lev∗ ≤ 0.08

Cluster 23 : 0.06 ≤ lev∗ ≤ 0.07

(39)

FED benchmarks are:0.08 for 6 Systemically important �nancial institution banks; 0.05 for

their insured bank holding �rms.

• for volatility:

Cluster 21 : 0.04 ≤ σ∗ ≤ 0.06

Cluster 22 : 0.02 ≤ σ∗ ≤ 0.04

Cluster 23 : 0.01 ≤ σ∗ ≤ 0.02

(40)

Under-capitalized banks should have a relative lower volatility: higher probability to cross the

barrier and the DOC to expire.

• for policy rate:
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Cluster 21 : 0.13 ≤ rf∗ ≤ 0.15

Cluster 22 : 0.11 ≤ rf∗ ≤ 0.14

Cluster 23 : 0.04 ≤ rf∗ ≤ 0.07

(41)

We �nd relative higher optimal values because we do not consider economic growth and the

simulation is based on input values derived from our empirical sample, time span (1980-2014).

A simulation exercise: which is the main driver of the objective function between

the two options for leverage?

• The optimal value for leverage in all the three clusters is above the actual levels and slightly

above FED recommendation.

• Our results take into account the franchise value (in the denominator of "leverage") and this

is a main di�erence between our results and the regulator ones.

• Given the pricing of the DOC option and the de�nition of leverage, the DOC is maximized

for lower levels of leverage.

A simulation exercise: which is the main driver of the objective function between

the two options for the volatility?

• The DOC option, being a barrier option, is optimized in our context for relative lower volatility

values: when volatility is too high, there might be a breaching of the barrier and, consequently,

a collapse of the franchise value.

• With smaller values of tier1, going from cluster 21 to 23, the peak of the optimized objective

functions moves to the left.
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• For relative smaller tier1, our barrier is much higher and smaller values of volatility ensure

the franchise value preservation.

Which is the main driver of the objective function between the two options for

the policy rate?

• The optimized objective function displays a concave shape, with minor di�erences in the peak

depending on the cluster.

• Once it is clear our risk appetite speci�cation, the policy maker change in the rate has a clear

impact.

• Overall, our optimal policy rate results slightly high because in our model we do not consider

economic growth and in�ation.

Summary statistics and Con�dence intervals for optimal value of the

decision variables

We display in the following tables the summary statistics with values for actual amount of leverage

that is adapted in order to be compared to our de�nition of optimal leverage which consider the
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franchise value, the market value of the assets and the market value of straight debt and deposits,

but not the actual Tier1. The following table records the summary statistics for the key �gures of

the sub sample of banks for which is not optimal to issue CoCos.

Table 11: Summary statistics, sub sample of banks for which is optimal to issue CoCos

Variables N Mean St. Dev. Min Median Max

leverage_actual_2a 5,344 0.141 0.065 0.033 0.129 0.236
Franchise_overMVA_2a 5,344 0.227 0.178 0.000 0.190 0.623
Optimal_vol_2a 5,344 0.040 0.027 0.001 0.035 0.084
Optimal_leverage_2a 5,344 0.178 0.090 0.034 0.154 0.317
Optimal_policyrate_2a 5,344 0.116 0.104 0.000 0.111 0.330
CoCos_overTotalExposure 5,344 0.032 0.049 0.000 0.006 0.245

In the next table, we show the summary statistics for the key �gures of the sub sample of banks

for which is not optimal to issue CoCos.

Table 12: Summary statistics, sub sample of banks for which is not optimal to issue CoCos

Variables N Mean St. Dev. Min Median Max

leverage_actual_2b 3,896 0.121 0.023 0.024 0.119 0.236
Franchise_overMVA_2b 3,896 0.152 0.139 0.000 0.110 0.408
Optimal_vol_2b 3,896 0.035 0.011 0.011 0.033 0.056
Optimal_leverage_2b 3,896 0.120 0.047 0.023 0.120 0.213
Optimal_policyrate_2b 3,896 0.202 0.068 0.062 0.210 0.330

In the appendix we show the summary statistics and the con�dence intervals for the key optimized

variables. The following two tables reports the value for clusters 2a1 and 2b1.

Table 13: Summary statistics, subsample of banks for which is optimal to issue CoCos, cluster
2a1

Variables N Mean St. Dev. Min Median Max

leverage_actual_2a1 907 0.159 0.059 0.035 0.155 0.236
Franchise_overMVA_2a1 907 0.131 0.126 0.00000 0.092 0.357
Optimal_vol_2a1 907 0.064 0.048 0.0001 0.049 0.133
Optimal_leverage_2a1 907 0.204 0.089 0.039 0.208 0.371
Optimal_policyrate_2a1 907 0.079 0.110 −0.050 0.053 0.330
CoCos_overTotalExposure2a1 907 0.035 0.046 1.0e-08 0.022 0.240
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Table 14: Summary statistics, subsample of banks for which is not optimal to issue CoCos,
cluster 2b1

Statistic N Mean St. Dev. Min Median Max

leverage_actual_2b1 900 0.148 0.039 0.038 0.145 0.236
Franchise_overMVA_2b1 900 0.064 0.063 0.000 0.044 0.173
Optimal_vol_2b1 900 0.037 0.011 0.013 0.036 0.059
Optimal_leverage_2b1 900 0.147 0.037 0.060 0.144 0.215
Optimal_policyrate_2b1 900 0.175 0.070 0.032 0.180 0.328

The subsequent tables show the results for clusters 2a2 and 2b2.

Table 15: Summary statistics, subsample of banks for which is optimal to issue CoCos, cluster
2a2

Variables N Mean St. Dev. Min Median Max

leverage_actual_2a2 2,075 0.132 0.054 0.035 0.122 0.236
Franchise_overMVA_2a2 2,075 0.171 0.137 0.00000 0.138 0.431
Optimal_vol_2a2 2,075 0.043 0.029 0.0001 0.039 0.092
Optimal_leverage_2a2 2,075 0.158 0.067 0.037 0.140 0.270
Optimal_policyrate_2a2 2,075 0.105 0.099 −0.050 0.092 0.304
CoCos_overTotalExposure2a2 2,075 0.027 0.048 1.0e-08 0.008 0.242

Table 16: Summary statistics, subsample of banks for which is not optimal to issue CoCos,
cluster 2b2

Variables N Mean St. Dev. Min Median Max

leverage_actual_2b2 2,000 0.127 0.043 0.034 0.126 0.236
Franchise_overMVA_2b2 2,000 0.131 0.118 0.000 0.099 0.356
Optimal_vol_2b2 2,000 0.036 0.010 0.015 0.035 0.056
Optimal_leverage_2b2 2,000 0.126 0.042 0.033 0.126 0.207
Optimal_policyrate_2b2 2,000 0.198 0.060 0.081 0.200 0.319

This last set of two tables present the results for clusters 2a3 and 2b3.
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Table 17: Summary statistics, subsample of banks for which is optimal to issue CoCos, cluster
2a3

Variables N Mean St. Dev. Min Median Max

leverage_actual_2a3 2,362 0.142 0.074 0.033 0.125 0.236
Franchise_overMVA_2a3 2,362 0.305 0.183 0.00000 0.330 0.833
Optimal_vol_2a3 2,362 0.032 0.020 0.0001 0.029 0.064
Optimal_leverage_2a3 2,362 0.203 0.127 0.034 0.173 0.379
Optimal_policyrate_2a3 2,362 0.139 0.098 −0.050 0.143 0.330
CoCos_overTotalExposure2a3 2,362 0.035 0.049 1.0e-08 0.016 0.245

Table 18: Summary statistics, subsample of banks for which is not optimal to issue CoCos,
cluster 2b3

Statistic N Mean St. Dev. Min Median Max

leverage_actual_2b3 996 0.083 0.042 0.024 0.071 0.236
Franchise_overMVA_2b3 996 0.273 0.161 0.000 0.285 0.693
Optimal_vol_2b3 996 0.028 0.010 0.009 0.027 0.046
Optimal_leverage_2b3 996 0.078 0.031 0.023 0.071 0.133
Optimal_policyrate_2b3 996 0.232 0.072 0.072 0.250 0.330

The following table shows the con�dence intervals for the key optimized variables, taking into

account a con�dence interval at 95% and quantiles are taken from the normal distribution given

the high number of observation and the underlying framework. Con�dence intervals for cluster 21

Table 19: Con�dence Intervals for key optimized variables, con�dence level 95%

Variables Left hand endpoint Right hand endpoint

Franchise_overMVA_2a 0.2219 0.2315
Optimal_vol_2a 0.0392 0.0406

Optimal_leverage_2a 0.1758 0.1806
Optimal_policyrate_2a 0.1129 0.1185

CoCos_overTotalExposure 0.0310 0.0336
Franchise_overMVA_2b 0.1474 0.1561

Optimal_vol_2b 0.0343 0.0350
Optimal_leverage_2b 0.1185 0.1214
Optimal_policyrate_2b 0.1997 0.2039

Con�dence intervals for cluster 22. Con�dence intervals for cluster 23.
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Table 20: Con�dence Intervals for key optimized variables, cluster 21

Variables Left hand endpoint Right hand endpoint

Franchise_overMVA_2a1 0.1224 0.1389
Optimal_vol_2a1 0.0606 0.0669

Optimal_leverage_2a1 0.1985 0.2100
Optimal_policyrate_2a1 0.0718 0.0861

CoCos_overTotalExposure2a1 0.0321 0.0381
Franchise_overMVA_2b1 0.0598 0.0680

Optimal_vol_2b1 0.0364 0.0379
Optimal_leverage_2b1 0.1441 0.1490
Optimal_policyrate_2b1 0.1707 0.1799

Table 21: Con�dence Intervals for key optimized variables, cluster 22

Variables Left hand endpoint Right hand endpoint

Franchise_overMVA_2a2 0.1651 0.1769
Optimal_vol_2a2 0.0416 0.0441

Optimal_leverage_2a2 0.1549 0.1607
Optimal_policyrate_2a2 0.1006 0.1091

CoCos_overTotalExposure2a2 0.0254 0.0296
Franchise_overMVA_2b2 0.1255 0.1359

Optimal_vol_2b2 0.0360 0.0369
Optimal_leverage_2b2 0.1245 0.1282
Optimal_policyrate_2b2 0.1959 0.2011

Table 22: Con�dence Intervals for key optimized variables, cluster 23

Variables Left hand endpoint Right hand endpoint

Franchise_overMVA_2a3 0.2974 0.3121
Optimal_vol_2a3 0.0313 0.0329

Optimal_leverage_2a3 0.1979 0.2081
Optimal_policyrate_2a3 0.1347 0.1427

CoCos_overTotalExposure2a3 0.0335 0.0374
Franchise_overMVA_2b3 0.2626 0.2825

Optimal_vol_2b3 0.0277 0.0289
Optimal_leverage_2b3 0.0762 0.0801
Optimal_policyrate_2b3 0.2272 0.2361
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Evolution of Tier 1 and total exposure cluster 2a3

It is interesting to see the evolution of Tier 1 and the total exposure for cluster2a3. We show that

from one side the Tier 1 has increased sharply in the last period but on the other side the total

exposure is depressed. This may be explained through an issue of Tier 1 instruments, which not

being hybrid capital, it should be equity. This equity issue may have depressed the market value of

the bank and thus the market value of the assets and the related franchise value.

Figure 16: Tier 1 and total exposure evolution cluster 2a3.
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Chapter 3

CoCo bonds and Write Down bonds
impact on banks' risk appetite and

investment policy45

Abstract

This paper investigates the risk appetite of a bank �nanced also with contingent

convertible (CoCo) bonds and Write Down (WD) bonds and the impact this �nancing

has on the investment policy. We conduct an empirical analysis on the whole spectrum

of CoCos and WDs available over the time span 2009 - September 2015. We argue that

the impact of those hybrid instruments on the bank investment policy is non-monotonic.

It is described by a U-shaped curve for bank riskiness and by a inverted-U curve for bank

growth. We show that issuing up to 25 bps of AD Tier 1 hybrids over total assets for the

overall sample (up to 38 bps, considering the non systemic bank sample) is correlated

with lower bank riskiness and higher growth opportunities. In general, there is still room

for issuing hybrids belonging to AD Tier 1, containing bank riskiness and promoting

bank growth but the marginal impact is not statistically signi�cant for systemic banks.

Tier 2 instruments outstanding are too many and have increased bank riskiness and

decreased bank growth. We �nd similar results implementing a di�erent model. Our

results are, thus, relevant for investors, �nancial decision-makers, and regulators.

Keywords: risk appetite, growth opportunities, impact, Tier 1 hybrids, Tier 2 hybrids

45We acknowledge the �nancial support of the Europlace Institute of Finance (EIF) and the Labex Louis
Bachelier (Grant 2016).
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This paper proceeds as follows. In Section 13, we state the main objectives and explain the

relevance of our research in the context of the existing literature. In Section 16, we present the

research methodology and Section 18 shows the results. Finally, we conclude.

13 Introduction

The main goal of our research is to assess empirically banks' risk appetite and investment policy

when their �nancing structure includes contingent convertible (CoCo) bonds and (or) write-down

(WD) bonds, hybrid capital securities that absorb losses when the capital of the issuing bank falls

below a certain threshold. The main di�erence between the two �nancing instruments is that

CoCos convert to equity, while WDs convert to zero. We aim to study pros and cons of issuing

WDs/CoCos with respect to their impact on banks' risk-taking and investments. To the best of

our knowledge, this is the �rst attempt to address these questions empirically. In the post- Lehman

Brothers failure, governments announced the end of the "too big to fail". In this context, issuing

loss absorbing instruments has gained increasing popularity. Between 2009 and 2015, banks issued

more than 380 billion of CoCos46. Regulation plays a crucial role in determining CoCos issuance.

Under Basel III, CoCo bonds are eligible as either Additional Tier 1 (AT1) or Tier 2 (T2), which

are types of capital apparently preferred by banks with respect to equity to accomplish regulatory

requirements, given that they are cheaper and less dilutive than issuing equity. From 2009 to 2014,

about half of the CoCos outstanding were eligible as AT1 and in 2015 about 76% were AT1 CoCos.

The greatest amount of CoCos issued worldwide is in Europe, followed by Asia. In the US, banks

have not yet issued this kind of instrument for many reasons: �rst, while implementing the Basel

III, the US regulators does not allow CoCos to be part of the AT1 capital; second, the uncertainty

related to tax deductibility of interest payments on CoCos is not resolved (von Furstenberg (2014)).

Hence, Europe is the appropriate environment to study CoCos and WDs issues. The conclusions

of this study are relevant for both the US and European regulators, �nancial decision-makers and

investors. There is no convergence in the opinions concerning those instruments mainly due to the

uncertainty around their impact and the di�culties in understanding their conversion mechanisms.

There are CoCos supporters, like Switzerland's FINMA and Bank of England, and opponents, such

as Deutsche Bank47. Our analysis is driven by the concerns economists have regarding the impact of

CoCos and WDs on bank risk appetite. Neel Kashkari, Minneapolis Fed's President, warns against

instruments like CoCos, suggesting that �..transferring risk to investors won't protect taxpayers from

46Data from Moody's Investors Service, Moody's Quarterly Rated and Tracked CoCo Monitor Database-
Year End 2015

47Financial Times, ECB is having second thoughts on CoCo bonds, 04.24.2016
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bailout�48. What is the impact of introducing hybrid capital like CoCos and WDs into banks' the

�nancing structure on their risk appetite and investment decisions? In the time span considered,

banks increased their Tier 1, issuing CoCos and WDs, and it is not clear whether they shift to safer

assets in the period considered as the RWAs do not move a lot. We understand that we have a

loss of information assessing the sample as a whole, thus we distinguish between systemic and non

systemic banks, considering as systemic the largest 25%. Assessing the impact on bank riskiness and

growth opportunities, what makes the di�erence among hybrids is the Tier to which they belong

and not if they are WDs or CoCos. We �nd that the relation between hybrids and bank riskiness is

non monotonic and can be described by a U-shaped curve. Interestingly, the relation between bank

growth opportunities and hybrids is also non monotonic but we display a inverted-U shaped curve.

We show that issuing up to 25 bps of AD Tier 1 hybrids over total assets for the overall sample

(up to 38 bps, considering the non systemic bank sample), is correlated with lower bank riskiness

and higher growth opportunities. Up to those �gures, also the marginal impact is signi�cant. For

systemic banks it is also true that there is still room for issuing hybrids belonging to AD Tier 1,

containing bank riskiness and promoting bank growth but the marginal impact is not statistically

signi�cant. Shifting our focus on Tier 2 instruments, we �nd that there are too many of them

outstanding, meaning that with the actual amount present in the banking �nancing structure, the

banks are increasing their riskiness and depressing their growth potential. The optimal amount of

those kind of instruments is very small (less than 10 bps of Tier 2 hybrids relative to total assets).

In the case of growth opportunities the optimal quantity is even smaller leading to display only

the decreasing side of the parabola describing this behaviour. In the robustness check section, we

propose a comparison of those results with an application of Aquila and Barone-Adesi (2017)'s model

to this dataset. We show that on average it would be optimal to have 1.7% of AD Tier 1 hybrids but

keeping a relative low volatility. This would be more in line with what the Basel regulators suggest

proposing its capital requirement ratio in Basel III rule. In theory, the incentives go in the direction

of the optimization results. From one side, there is an incentive in increasing Tier 1, and, on the

other side, in decreasing RWAs.

14 Practical value

Currently, both academic and professional opinions disagree on the potential impact of CoCo and

WD bonds on banks' �nancing and investing policies. Our ambition is to shed light on the potential

side e�ects arising from including those instruments in the �nancing structure of banks. The results

48The Wall Street Journal, Fed's Kashkari Says Transferring Risk to Investors Won't Protect Taxpayers
From Bailout, 04.18.2016
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of this study should be of major interest for regulators and �nancial decision makers. Additionally,

understanding and assessing the degree of risk-shifting incentives faced by banks is important for

various types of investors (banks' shareholders and debt-holders), but also to the broader class of

investors in those instruments.

15 Literature review

We rely on two main strands of literature on contingent convertible bonds. Given our research

interest, �rst, we focus on the papers assessing the riskiness of banks and their propensity to risk-

shift, second, on those assessing agency issues. Hilscher and Raviv (2014) argue that CoCos are

an e�ective tool for stabilizing �nancial institutions. They �nd the optimal conversion ratio that

eliminates stockholders' incentives to risk-shift. A �rst comprehensive empirical study on CoCos is

conducted by Avdjiev et al. (2015). They interestingly show that CoCos issuance reduces banks'

credit risk and investors in CoCos view those instruments as risky and place a signi�cant likelihood

on the possibility of conversion.The conversion trigger is widely assessed in the literature. Flannery

(2010) proposes that the trigger be based on the market value of equity. Sundaresan and Wang

(2015) illustrate that a market value �based conversion trigger for contingent convertibles may lead

to multiple equilibrium and market manipulations. A unique equilibrium is reached only in the

case in which there is no value transfer between bank equity and contingent debt at conversion.

Wealth transfer among di�erent categories of stakeholders is relevant for governments. Roy and

El-Herraoui (2016) demonstrate the complexity of designing a fair and e�ective bail-in regime. The

regulator is mainly confronted with the choice of implementing or not the wealth transfer. If it

chooses to do so, it faces the risk of requests for compensation and arbitrage behaviour in �nancial

markets. Maes and Schoutens (2012) discuss the impact of the trigger event and the conversion ratio

on hazard contagion and the death spiral of systemic risk. Attaoui and Poncet (2015) develop the

model showing that credit spread on straight debt is lower if the �rm has WD bonds in its �nancing

structure, given the cushion function of the WDs with respect to the straight debt (senior). CoCos

are nearer to equity because in some states of the world they are not debt. Converting to equity,

agency costs of equity are greater for CoCos with respect to write-downs that never transform

into equity. Thus write-downs are more e�cient in solving agency costs of equity. Both of them

diminish debt overhang problem and the bankruptcy costs (the present value of bankruptcy costs).

Furthermore, WDs have some advantages with respect to CoCos: there is no multiple equilibrium,

no market manipulation (to avoid losses), that at least partially solves the death spiral issue. On the

bankruptcy costs side, Chen et al. (2013) show that replacing some straight debt with CoCos lowers

the endogenous default barrier and therefore increases the �rm's ability to mitigate a loss in asset
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value. This reduces bankruptcy costs and increases the value of equity. Albul et al. (2010) provide

a tax shield argument in favour of the hybrid capital. They conclude that banks should substitute

CoCos for straight debt because, on one hand, they provide the same protection as equity, and, on

the other hand, they allow the most of the tax shield bene�ts. Di�erent governments do not allow

the same tax treatment of the hybrid capital, thus di�erences in tax shield could be relevant driver

of the preference to issue WDs over CoCos.

16 Main hypothesis development

16.1 CoCos, WDs and banks' risk-taking behavior

Banks started issuing CoCos in the late 2009, after the enforcement of Basel III rule (even if its full

application starts in 2015), whose focus on capital requirements deals with the ratio between RWA

and Tier1 which has to be larger than 6% a predetermined threshold. In this perspective an issue

of Tier 1 instruments should decrease the ratio (enlarging the denominator) per se even if keeping

RWA constant. Considering the potential impact of a bond converted to equity, we expect that the

existing shareholders would resist to engage in excessive risk-taking projects because otherwise they

would share the bank capital with the new class of "converted" equity-holders. In this spirit we

argue ex-ante that the CoCos of both Tier1 and Tier2 should decrease the riskiness of the assets.

The fact that Basel III allows the banks to issue only small amount of hybrids and the literature

concerning the death-spiral, lead us to think that there might be a non-monotonic relation among

the hybrids outstanding and the riskiness of the assets.

Hypothesis I : For smaller amount of CoCos and WDs issued, the bank riskiness decreases and

the relation is non-monotonic.

We consider the following OLS �xed-e�ects (within) regression, where we want to understand the

non-monotonic relation between the hybrid instruments and the riskiness of the bank. We do not

distinguish between CoCos and WDs, since our focus relies on the di�erence between Tier1 and

Tier2 instruments.

RWAAi,t = α+β1ADTier1i,t+β2Tier2i,t+β3ADTier12i,t+β4Tier22i,t+γControlsi,t+δi+τt+vi,t

(42)

WhereRWAA is our proxy for the bank riskiness. We smooth the bank RWA, assessing it relative
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to the total assets (book value). The explaining variables are (i) ADTier1, the outstanding amount

of CoCos and WDs belonging to Tier 1 over total assets, (ii) Tier2, the outstanding amount of CoCos

and WDs belonging to Tier 2 over total assets, (iii) ADTier12, the square of the outstanding amount

of CoCos and WDs belonging to Tier 1 over total assets, (iv) Tier22, the square of the outstanding

amount of CoCos and WDs belonging to Tier 2 over total assets. Those last two elements capture the

non-monotonic relation. t indexes calendar quarters, ADTier1i,t and Tier2i,t represent the amount

outstanding for bank i in quarter t of CoCo bonds and WD bonds as a fraction of total assets. We

perform the same regression also per year and we observe similar results. δi are bank �xed-e�ects

and τ t are time �xed e�ects. Controlsi,t is a vector of time-varying bank characteristics (for the

while we display the results only for leverage, but we performed the regression controlling also for

the logarithm of the total assets and results do not change).

Before conversion, we could expect that the two di�erent Tier instruments might impact di�er-

ently over the risk appetite of the bank, thinking about it in a Merton framework, where Additional

Tier 1 instruments should decrease the default put option and Tier 2 hybrids should increase it. Af-

ter conversion, instead, they both accrue to the Common equity Tier 1 diminishing the default put.

We expect that it is their contingent convertibility the key argument having an impact in shaping

the risk appetite of the bank. In a scenario where conversion is not such a remote event, the bank

should not be encouraged to undertake too risky projects that would lead to a conversion, without

distinguishing between ADT1 or Tier 2 instruments. Hence, we expect to have β1 and β2 smaller

than zero. β3 and β4, the beta of the quadratic terms should be of the opposite sign, due to the fact

that we expect that after a certain threshold the behaviour might change. We assess for each kind of

hybrids, where is the minimum of the parabola describing the behaviour of the RWAA with respect

to each Tier hybrids instruments. First, we assess the impact those hybrids instruments have on the

bank riskiness for the whole sample we have at disposal. Then we divide it into systemic and not

systemic banks, considering as systemic, the banks with total assets in the top 25%. This lead us

to two other related hypothesis.

Hypothesis II : For non systemic banks, smaller quantities of hybrid capital issued belonging to

Tier 1 play a role in decreasing the bank riskiness and the relation is non-monotonic.

Hypothesis III : Systemic banks have issued already too many CoCos and WDs, thus any further

issue increase the bank riskiness and the relation is non-monotonic.

For systemic banks, we expect that the average value issued of hybrids to be nearer to the min-

imum of the parabola or it might be even larger. CoCos and WDs have been �rst issued by larger
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banks also because of the appeal they had for improving the regulatory requirements �gures without

modifying the investment strategy and consequently the composition of RWAs.

16.2 CoCos, WDs and banks' growth opportunities

On one side the bank has to balance its riskiness, also to accomplish to the Basel requirements.

On the other side, the bank has to prepare a capital structure which is able to sustain also growth

opportunities. As we did above, we do not distinguish between CoCos and WDs, since our focus

relies on the di�erence between Tier1 and Tier2 instruments. Ceteris paribus, the hybrids contribute

to decrease the bank riskiness and promote the growth opportunities. We test this hypothesis on

the whole sample.

Hypothesis IV : For smaller amount of CoCos and WDs issued, the bank growth opportunities in-

crease and the relation is non-monotonic.

We propose the following OLS �xed-e�ects (within) regression, in order to assess the non-

monotonic relation between the hybrid instruments and the banks' growth opportunities.

Qi,t = α+β1ADTier1i,t+β2Tier2i,t+β3ADTier12i,t+β4Tier22i,t+γControlsi,t+δi+τt+vi,t (43)

Where Q is the Q ratio, de�ned as the ratio between market value of the bank its book value,

and is our proxy for the banks' growth opportunities. Given that we want to understand the op-

timal capital structure for the banks in our sample, we do not modify the explanatory side of the

equation. We expect that the hybrids contribute to increase the Q ratio of the bank being resources

available for being invested in new projects. Our argument relies also in this case on the contingent

convertibility of those instruments. Focusing on this element, there is a clear implied incentive for

the bank not to undertake too risky projects otherwise the present shareholders' wealth might be

impaired by the consequent dilution due to the conversion of the hybrids. In this case, β1 and β2

should be positive and, conforming to the non-monotonic relation, β3 and β4 should be negative.

We argue that for smaller amount of hybrids issued there is no signi�cant capital dilution, but for

larger amount of them there are too many fresh �nancial resources available that there might be

the incentive to invest in value-destroying projects. Similarly, we assess this issue in a framework

where we describe the growth opportunities with a Down-and-Out call (DOC) option (as in Aquila

and Barone-Adesi (2017), please refer to the model summarized in the Appendix). On one hand,
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for smaller quantity of hybrids belonging to AD Tier 1 and for relative lower volatility, the DOC

option increases in value because the distance to the barrier is increased and the probability to

touch the barrier is relative smaller. On the other hand, issuing too many hybrids might be corre-

lated with higher bank riskiness which might lead to the touch of the barrier and the consequent

expiration of the growth opportunities. Those elements drive us to test the following two hypothesis.

Hypothesis V : For non systemic banks, smaller quantities of hybrid capital issued belonging to

Tier 1 play a role in increasing the bank's growth opportunities and the relation is non-monotonic.

Hypothesis VI : Systemic banks have issued already too many CoCos and WDs, thus any further

issue decrease the bank's growth opportunities and the relation is non-monotonic.

We expect that too many hybrids may lead to death spiral or other issues discussed in the literature

which could damage growth opportunities. From a methodological point of view, we contribute also

in promoting a new way of interpreting the regression results. Thanks to our analysis concerning

the marginal impact, we understand more deeply the dynamic of the results obtained through the

regression.

17 Data

We collect data on CoCos and WD bonds issued worldwide from Bloomberg. These kind of issues

are available since 2009. Since we distinguish between Tier 1 and Tier 2, we consider only hybrids

clearly attributable to Tier 1 or Tier 2. We get a historical data on the Risk-Weighted Assets (RWAs)

of the issuing banks and their issue characteristics. Relevant issue characteristics include: identi�ers

of the issuer (CUSIP, ISIN, name, Bloomberg Ticker); country of the issuer; issue date; maturity

date; issue type, i.e., whether the issued bond is a CoCo or WD bond; trigger level; amount issued;

tier type and rating; balance sheet items and market prices. Assessing the summary statistics of

the data (Table 23), in a time series perspective, we observe the following key stylized facts. First

of all, the median of the ratio between Tier 1 and the risk-weighted assets double itself in the time

span considered (Figure 17). This is mainly due to an increase in the Additional Tier 1 which is

part of the broader Tier 1 (Figure 18) as it easy to understand the relative preference in issuing

other instruments than equity. Second, the risk-weighted assets do not sink at all during after 2009

(Figure 19), they do not move a lot, thus the improvement in the ratio is mainly driven by the

increase in the Additional Tier 1. This is interesting given that Basel III focusing on the ratio
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between Tier 1 and RWAs, and giving it a lower bound of 6%49, gives the bank two channel for

improving it: from one side, the bank might increase the Tier1, and from the other side, the bank

could decrease the RWAs. We remark that the banks in the sample increase the Additional Tier 1

and do not diminish the RWAs. Given the period considered, it is not too di�cult to understand

that the growth opportunities, identi�ed through the Q ratio, swing. They start recovering in the

second half of 2012 (Figure 20).

18 Results

18.1 Do CoCos and WDs play a role in decreasing banks' riskiness?

This section presents the main results concerning the �rst three hypothesis. The results are reported

in Table 24. Column (1) display the results for Hypothesis I and the other two columns show the

results of the test over Hypothesis II and III. Overall, we �nd that our results are consistent with

our hypothesis. Starting from the regression table, we observe that in all the three regressions the

beta of the �rst order variables are negative and the beta of the squared variables are positive. These

results show that the relation between the RWAA and the explanatory variables can be described via

a U-shaped curve, thus the hybrids outstanding �rst play a role in decreasing banks' riskiness and

after reaching the minimum level banks' riskiness increases. Considering the Hypothesis I, Figure

21 exhibits that the marginal e�ect is negative and signi�cant up to 53 bps. It means that, ceteris

paribus, issuing up to 53 bps of hybrids (relative to total assets) belonging to AD Tier 1 is correlated

with a decrease in the bank riskiness. After this threshold the impact is no more signi�cant. Our

banks have issued exactly 53 bps thus they are at the optimum in terms of relative amount of AD

Tier1 instruments issued for decreasing RWAA. The minimum of the U-shaped curve is at 166 bps

but after 53 bps we show that the impact on RWAA is not statistically signi�cant. Regarding Tier 2

hybrids, it is interesting to see that it is the squared parameter which is signi�cant in the regression

table and Figure 22 shows that in this sample there are already too many Tier 2 hybrids. This

means that we are already in the increasing side of the U-shaped curve where the bank riskiness

increases with the amount outstanding of Tier 2 hybrids. We �nd that the minimum is at 5bps,

thereafter the impact of the Tier 2 hybrids is statistically signi�cant above 13bps. On average we

have 10 bps of those hybrids outstanding meaning that we are already on the increasing side of the

curve. Thus those hybrids are correlated with higher bank riskiness. Moving to the Hypothesis II,

we focus on non systemic banks. At a �rst glance, we might think that for each 1% more of hybrids

49This lower bound has been applicable since 2015, thus we consider the cumulative amount of the hybrids
at stake for each bank
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outstanding the RWAA �gure decrease by 0.08% if the hybrids belong to AD Tier 1 and by 0.55%

if they are Tier 2; however, the marginal e�ect depends also on the squared term, the marginal

e�ect is depicted in �gure 24. For the AD Tier 1 CoCos and WDs this impact is also statistically

signi�cant but the magnitude of the increasing impact is smaller than in the case of Tier 2 hybrids

(Table 24). The marginal impact of ADT1 instruments shows that on average we are at 63bps and

the minimum of the parabola is at 151bps meaning that there is still room for decreasing RWAA

issuing those hybrids. Anyway, we �nd that this �gure might not be taken into account since the

marginal impact is not statistically signi�cant(Table 27, Table 28 and Figure 23). In the case of Tier

2 instruments, we �nd that the bank behaviour moved toward riskier assets, since the minimum of

the parabola is reached for 4bps and the average issue consists of 14bps which is also the threshold

above which the impact is considered to be signi�cant (Table 27, Table 28 and Figure 24).

Hypothesis III is not con�rmed in the data. Larger institutions have already too many hybrids

outstanding (both AD Tier 1 and Tier 2) that the marginal impact of any change in the amount of

issued hybrid capital would not a�ect the bank riskiness. In Figure 25, we can see that in this case

we are in the increasing part of the parabola, but the marginal impact is not statistically signi�cant.

18.2 Do CoCos and WDs impact positively banks' growth oppor-

tunities?

We obtain very interesting results regarding the impact that CoCos and WDs have on banks' growth

opportunities. We �nd that the relation between growth opportunities and hybrids outstanding is

non-monotonic and appears to be well described by a inverted-U shaped curve in conformity with

Hypothesis IV. Hence, this is an opposite result with respect to what we �nd above. For smaller

amount of hybrids outstanding, the impact over the banks' growth opportunities is positive, up to

the maximum level reached by the curve, after which the impact of the hybrids starts depressing

banks' growth. Looking at Table 31, we �nd results consistent with the hypothesis. β1 and β2 are

positive and the beta of the squared variables are negative as predicted in Hypothesis IV.

The inverted-U shape of the ceteris paribus dynamic of the Q ratio with respect to a variation in

the hybrids outstanding shows both its increasing and decreasing side only for AD Tier 1 instruments

belonging to the overall sample and to the non systemic banks sub-sample Assessing the overall

sample, the maximum of the parabola is reached for 220bps and on average our banks have issued

53 bps. We are still on the increasing side of the parabola and there should be room for issuing

hybrids and still increase growth opportunities. Nevertheless, we �nd that this impact is signi�cant

only till 25bps (Table 32, Table 33, Figure 27 and Figure 28). This results are mainly driven by

the sub-sample of non systemic banks. Those banks have issued on average 63bps of hybrids and
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the maximum of the parabola is reached for 227bps. Apparently, Hypothesis V, is satis�ed because

a further issue of hybrids could still be correlated with an increase banks' growth. However, the

impact is signi�cant only till 38bps of hybrids issued. For Tier 2 instruments in both cases the

amount issued are much larger than the maximum of the parabola but none of the results are

statistically signi�cant. For the Q ratio, Tier 2 hybrids, before conversion, are more similar to debt

and less to equity and this is captured by the fact that we can �nd only the decreasing side of the

inverted-U curve for Tier 2 instruments. For systemic banks we �nd not statistically signi�cant

results, even if in general we obtain only the decreasing side of the parabola. Thus the results for

this category of banks are not consistent with Hypothesis VI.

18.3 Robustness check

We have already discussed that our regressions are robust controlling for leverage, banks dimensions,

separate speci�cation of CoCos and WDs. More interestingly, we compare the empirical results we

obtained above with what predicts the model developed by Aquila and Barone-Adesi (2017) applied

to our sample. The model is described in the Appendix. In this model, the bank is assessed in a

Merton framework where the manager maximizes the bank value, which is partly due to the sum of

a down-and-out call option and a default put option. The optimization variables are leverage, and

volatility. We obtain the optimal quantity of hybrids belonging to AD Tier 1 comparing the optimal

leverage to the actual one, expressed in Basel terms, i.e. the ratio between Tier 1 and the total

exposure. In this model we assimilate Tier 2 hybrids before conversion to debt. In this speci�cation,

the default put option is favoured by Tier 2 instruments. On the other side the DOC option is an

increasing function of AD Tier 1 instruments and decreasing one of Tier 2 hybrids. We �nd that

on average the banks in the sample should issue 1.7% of AD Tier 1 instruments, while keeping a

7.7% of optimal leverage and a 3.6% of volatility (Table 38 and Figure 33). In the sample there are

also some banks who have already too many hybrids outstanding, which are the larger ones. We

have to point out that the median optimal volatility is 2.5%. In this model, the optimal parameters

comes from a joint optimization procedure. This is crucial in our analysis, because in Basel III,

the regulator propose as capital requirements target ratio the one given by Tier 1 over RWAs. We

show that for having an average 1.7% of AD Tier 1 instruments outstanding it is necessary to have

a quite low volatility. We stress this important issue because we have seen that on average, in the

sample span considered, the banks didn't decrease the RWAs at all, they kept them constant and the

results of the regression we performed above signal thatceteris paribus there are too many hybrids

outstanding, thus the RWAs are even increased and Q ratio depressed. This might be given also

because the banks didn't shift their investment policy to safer assets.
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19 Conclusions

In this paper, we want to understand the impact Additional Tier 1 CoCos and WDs and Tier 2

hybrid instruments have on the bank riskiness and growth opportunities. This is one of the few

empirical papers on CoCos and WDs, due to the scarcity and bad quality of the data available. We

test our hypothesis over all the data available from banks spread all over the world. In conformity to

our hypothesis we �nd that (i) hybrids have a non monotonic impact on bank riskiness and on bank

growth opportunities. Interestingly, on one side, the relation between hybrids and bank riskiness is

described by a U-shaped curve and, on the other side, with respect to growth opportunities, we have

a inverted-U shaped curve, leading to a trade-o�. Hence, it is relevant to �nd a balance between

containing bank riskiness and contemporaneously promoting bank growth. The banks in our sample

issued an amount of AD Tier 1 hybrids which is correlated with a decrease in bank riskiness and

an improvement in bank growth opportunities. We show that (ii) for a smaller amount of AD

Tier1 hybrids outstanding (up to 25 bps for the overall sample and up to 38 for the non systemic

banks), the impact is signi�cant. (iii) From one side, it is correlated with lower bank riskiness, on

the other side, with higher growth opportunities. Shifting our focus on systemic banks due to the

sample composition we do not �nd any signi�cant marginal impact but as in the previous analysis,

the average issue is still far from the minimum (maximum) of the parabola for the bank riskiness

(growth opportunities). (iv) Considering Tier 2 instruments, we �nd that there are too many of

them outstanding and, in the case of bank riskiness, (v) our banks have overtaken the minimum of

the parabola and place themselves in the increasing side promoting, this way, bank riskiness. Their

marginal impact is also signi�cant for the overall and non systemic bank sample. In the case of the

Q ratio, Tier 2 instruments are also too many but the marginal impact is not statistically signi�cant

and the maximum of the parabola is reached later with respect to the minimum in the case of the

bank riskiness. In the robustness check, we show also that (vi) on average it would be optimal to

have on average 1.7% of AD Tier 1 hybrids but keeping a relative low volatility. This would be

more in line with what the regulators suggest proposing its capital requirement ratio. In theory, the

incentives go in the direction of the optimization results. From one side, there is an incentive in

increasing Tier 1, and, on the other side, in decreasing RWAs.
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Appendix

Tables and Figures
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Figure 17: Tier1 ratio improvement between 2009 and 2015.
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Figure 18: Additional Tier1 improvement between 2009 and 2015.
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Figure 19: RWAs are constant between 2009 and 2015.
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Figure 20: Q ratio swing.
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Table 23: Summary statistics

Statistic N Mean St. Dev. Min Median Max

Tier1_TA 1135 0.050 0.023 0.008 0.048 0.145
ADT1_TA (in bps) 1135 0.010 0.124 0.000 0.000 3.226
T2_TA (in bps) 1135 0.0004 0.006 0.000 0.000 0.143
Q_ratio 1135 0.028 0.021 0.000 0.020 0.100
RWA_TA 1135 0.554 0.257 .000 0.566 5.483

Table 24: In this table, we assess the impact hybrids capital have on banks' riskiness, through
the following regression: RWAAi,t = α + β1ADTier1i,t + β2Tier2i,t + β3ADTier12i,t +
β4Tier22i,t + γControlsi,t + δi + τt + vi,t. The regression has robust standard errors and
includes controls for leverage, bank quarter �xed e�ects. In the �rst column it is performed
on the whole sample, in the second column on the sub-sample of non systemic banks and in
the third column we display results for the systemic sub-sample

(1) (Non Systemic) (Systemic)

ADTier1 -0.1194 -0.0891 -0.3722
(2.54)** (1.71)* (0.76)

Tier2 -0.7065 -0.5587 -7.7206
(1.64) (1.14) (0.82)

ADTier12 0.0358 0.0294 0.9766
(2.20)** (1.69)* (0.53)

Tier22 6.4170 5.8850 440.7535
(3.81)*** (2.96)*** (0.71)

R-squared 0.05 0.06 0.16
N 1,140 857 283

Table 25: Tests: overall results of the hybrids impact over RWArelative to total assets

Statistic for Testnl chi2 Prob>chi2 Min (bps) Not signi�cant bef./aft.

ADT1 overall −β[ADTier1]/(2 ∗ β[ADTier12]) = 0 43.93 0.000 166.76277 53
Tier2 overall −β[Tier2]/(2 ∗ β[Tier22]) = 0 7.61 0.0058 5.5052165 13

Table 26: Mean estimation: mean Tier1

Statistic for Mean Std. Err. Conf. intervals 95%

Tier 1 if ADTier1>0 .5362476 .058966 .4201441 .6523511
Tier 2 if Tier2>0 .1087488 .0120724 .0845919 .1329057
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Figure 21: Tier1 hybrid instruments' impact over RWA relative to total assets.
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Figure 22: Tier2 hybrid instruments' impact over RWA relative to total assets.
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Table 27: Non systemic banks: tests

Statistic for Testnl chi2 Prob>chi2 Min (bps) Not signi�cant bef./aft.

ADT1 non systemic −β[ADTier1]/(2 ∗ β[ADTier12]) = 0 26.95 0.000 151.48119 NA
Tier2 non systemic −β[Tier2]/(2 ∗ β[Tier22]) = 0 3.16 0.0755 4.7465829 14

Table 28: Non systemic banks: Mean estimation

Statistic for Mean Std. Err. Conf. intervals 95%

Tier 1 if ADTier1>0 .6311542 .0683327 .4964904 .7658181
Tier 2 if Tier2>0 .1420174 .0126398 .1165436 .1674913
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Figure 23: Non systemic banks: Tier1 hybrid instruments' impact over RWA relative to total
assets.
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Non systemic banks: Tier2 hybrids' Impact on RWA/TA

0

20

40

60

80

100

120

140

R
W

A
/T

A

Tier2 hybrids' Marginal Impact on RWA/TA

0

10

20

30

40

50

60

m
g 

R
W

A
/T

A

0 1 2 3 4 5
CoCos and WDs Tier2/TA

Figure 24: Non systemic banks: Tier2 hybrid instruments' impact over RWA relative to total
assets.

Table 29: Systemic banks: tests

Statistic for Testnl chi2 Prob>chi2 Min (bps) Not signi�cant bef./aft.

ADT1 non systemic −β[ADTier1]/(2 ∗ β[ADTier12]) = 0 2.63 0.1046 19.058562 NA
Tier2 non systemic −β[Tier2]/(2 ∗ β[Tier22]) = 0 19.11 0.000 .87584093 NA

Table 30: Systemic banks: Mean estimation

Statistic for Mean Std. Err. Conf. intervals 95%

Tier 1 if ADTier1>0 .0489468 .0096185 .0295857 .068308
Tier 2 if Tier2>0 .0089428 .001337 .0060753 .0118103
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Systemic banks: Tier1 hybrids' Impact on RWA/TA
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Figure 25: Systemic banks: Tier1 hybrid instruments' impact over RWA relative to total
assets.
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Figure 26: Systemic banks: Tier2 hybrid instruments' impact over RWA relative to total
assets.
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Table 31: In this table, we display the results the impact hybrids capital have on banks'
growth opportunities. We use the Q ratio as our proxy for banks' growth opportunities and
it is de�ned as the ratio between the market value of the assets and the book value. We
perform the following regression: Qi,t = α + β1ADTier1i,t + β2Tier2i,t + β3ADTier12i,t +
β4Tier22i,t + γControlsi,t + δi + τt + vi,t. The regression has robust standard errors and
includes controls for leverage, bank quarter �xed e�ects. In the �rst column it is performed
on the whole sample, in the second column on the sub-sample of non systemic banks and in
the third column we display results for the systemic sub-sample

(1) (Non Systemic) (Systemic)

ADTier1 0.0359 0.0387 0.3333
(2.09)** (2.17)** (1.42)

Tier2 0.1055 0.1713 -0.3740
(0.60) (0.85) (0.13)

ADTier12 -0.0081 -0.0085 -1.1507
(1.80)* (1.89)* (1.44)

Tier22 -0.6819 -0.9873 -82.5165
(0.96) (1.23) (0.41)

R-squared 0.11 0.14 0.30
N 1,543 1,158 385

Table 32: Tests: overall results of the hybrids impact over Q ratio

Statistic for Testnl chi2 Prob>chi2 Min (bps) Not signi�cant bef./aft.

ADT1 −β[ADTier1]/(2 ∗ β[ADTier12]) = 0 76.84 0.000 220.77335 25
Tier2 −β[Tier2]/(2 ∗ β[Tier22]) = 0 2.24 0.1346 7.733651 NA

Table 33: Overall sample: Mean estimation

Statistic for Mean Std. Err. Conf. intervals 95%

Tier 1 if ADTier1>0 .529807 .0580228 .4155704 .6440436
Tier 2 if Tier2>0 .1087488 .0120724 .0845919 .1329057
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Figure 27: Tier1 hybrid instruments' impact over Q ratio.
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Figure 28: Tier2 hybrid instruments' impact over Q ratio.
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Table 34: Tests for non systemic banks: results of the hybrids impact over Q ratio

Statistic for Testnl chi2 Prob>chi2 Min (bps) Not signi�cant bef./aft.

ADT1 non systemic −β[ADTier1]/(2 ∗ β[ADTier12]) = 0 57.72 0.000 227.2684 38
Tier2 non systemic −β[Tier2]/(2 ∗ β[Tier22]) = 0 6.13 0.0133 8.676156 NA

Table 35: Non Systemic banks: Mean estimation

Statistic for Mean Std. Err. Conf. intervals 95%

Tier 1 if ADTier1>0 .6311542 .0683327 .4964904 .7658181
Tier 2 if Tier2>0 .1420174 .0126398 .1165436 .1674913
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Figure 29: Non systemic banks: Tier1 hybrid instruments' impact over Q ratio.
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Non systemic banks: Tier2 hybrids' Impact on Q ratio
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Figure 30: Non systemic banks: Tier2 hybrid instruments' impact over Q ratio.

Table 36: Tests for systemic banks: results of the hybrids impact over Q ratio

Statistic for Testnl chi2 Prob>chi2 Min (bps) Not signi�cant bef./aft.

ADT1 systemic −β[ADTier1]/(2 ∗ β[ADTier12]) = 0 270.48 0.0000 14.481069 NA
Tier2 systemic −β[Tier2]/(2 ∗ β[Tier22]) = 0 0.01 0.9191 -.22661568 NA

Table 37: Systemic banks: Mean estimation

Statistic for Mean Std. Err. Conf. intervals 95%

Tier 1 if ADTier1>0 .0489468 .0096185 .0295857 .068308
Tier 2 if Tier2>0 .0089428 .001337 .0060753 .0118103
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Figure 31: Systemic banks: Tier1 hybrid instruments' impact over Q ratio.
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Figure 32: Systemic banks: Tier2 hybrid instruments' impact over Q ratio.
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19.1 Robustness check: the model Setup and results

19.1.1 Bank Structure

The Bank Structure is considered in a continuous time framework, with initial date t = 0 and

terminal date t = T . We focus on Fr (T ), i.e. future growth opportunities. They materialize only

at the end of the period, T , but the franchise value might vanish previously, as soon as the liabilities

exceeds the asset value in 0 ≤ t ≤ T , that is when

τFr=0 = inf
{
t ≥ 0 : A (t) ≤MV SD +Dep

}
. (44)

We call the MVA the sum of the tangible value of the Assets and franchise value. Their dynamic

is:

d ln (MVA (t)) =

(
µMVAt −

σ2
MVA

2
t

)
dt+ σMVAdBt, (45)

where Bt is a standard Brownian motion, the drift, µt, is time-varying and σ is constant and both are

referred to the sum of the tangible value of the assets and the franchise value. Similar to Babbel and

Merrill (2005) and Barone-Adesi et al. (2014), we split the value of the bank into three components.

First, considering the limited liability, the market value of the equity of our bank is a call option

on the assets: E(T ) := max(A(T ) − L), where A is the value of the banks' assets and L the face

value of the liabilities.Second, let's split the value of equity into the following two components:

E(T ) := X(T ) + Putdef (T ), where X(T ) := A(T ) − L is the net tangible value of the bank,

without considering the limited liability, which is represented through the default put option.

Third, we allow the bank to be able to invest in value creating opportunities at time T, through the

introduction of the franchise value Fr(T ). Hence, E(T ) := X(T ) + Putdef (T ) + Fr(T ). Taking

into account the di�erent sources of �nancing for our bank (deposits, standard debt and CoCos),

the end of the period equity market value is given by the three components: the net tangible value,

the shareholders' option to default, the franchise value.

Tier1 (T ) = A (T )−Dep− FV SD (T )

+Fr (T ) + Putdef (T ) .

CoCos conversion occurs at

τConv = inf {t ≥ 0 : A (t) ≤ VConv} .

112



19.1.2 Pricing the default option

Potential arbitrage opportunities, that could arise buying the bank and selling short the tangible

assets and the franchise value. To prevent arbitrage: the underlying is given by the sum of both

franchise value and market value of the assets. The extended standard pricing:

Putdef (lev, σMVA, rf) =
(
MV SD +Dep

)
Φ (−d2) +

(− (MVA) Φ (−d1)) ,

with {τFr=0 > T},

where d1 =

 ln( 1
1−lev )+

(
rf+

σ2MVA
2

)
T

σMVA

√
T

 ,

lev =
(
T ier1
MVA

)
, d2 = d1 − σMVA

√
T ,Φ− standardNormal

(46)

The greeks for this option are given as follows:

Sensitivity to leverage :

[
δPutdefi,t

δlevi,t

]
< 0

Sensitivity to volatility :

[
δPutdefi,t

δσMVAi,t

]
> 0

Sensitivity to policy − rate :

[
δPutdefi,t

δrfi,t

]
< 0

(47)

19.1.3 Pricing the DOC option, in presence of non-observable underlying

The unobservable value of potential growth is Fr, which is net of investment costs, thus the strike

is set to zero. When the bank does not default, MVA(0) > MV SD, the pricing is:

113



DOC (lev, σMVA, rf) = Fr [Φ (v1) +

− (1− lev)2λ Φ (y1)
]

with {τFr=0 > T} ,

where λ =
rf+

σ2MVA
2

σ2
MVA

v1 =
ln( 1

1−lev )
σMVA

√
T

+ λσMVA

√
T , y1 = ln(1−lev)

σMVA

√
T

+ λσMVA

√
T

(48)

The standard greeks for this option are given as follows:

Sensitivity to leverage :
[
δDOCi,t
δlevi,t

]
> 0

Sensitivity to volatility :
[
δDOCi,t
δσMVAi,t

]
> 0

Sensitivity to policy − rate :
[
δDOCi,t
δrfi,t

]
> 0

(49)

19.1.4 The optimization problem

We split the optimization problem for risk appetite into two steps.

The �rst step.

We estimate the unobservable franchise value and the market value of the assets, which are embedded

in the equity market value. We minimize the distance between the data concerning the MVE and

the model, through the non linear least squares criterion function. We perform a step by step

optimization for Θi,t := Fri,t, Ai,t, σMVAi,t , solving simultaneously: e1,i,t= MVEi,t−(Ai,t−MV (D+L)+DOC+Putdef ),

e2,i,t= σMVEi,t
MVEi,t−σMVAi,t

(MVAi,t)Φ(d1i,t),

(50)

The non linear least square function is the following:

Θ∗i,t = argmin
∑2,n,m

j,i,t=1

[
e2
j,i,t

]
(Θi,t)

(51)

The second step.

We look for the optimal level of leverage, assets' and franchise value's volatility and policy rate
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(Θi,t :=
(
levi,t, σMVAi,t , rfi,t

)
) that simultaneously optimize the objective function (O.f.), de�ned

as:

O.f.i,t :=
DOC (Θi,t) + PUT def (Θi,t)

Ai,t
. (52)

When MV SD < MV A (0), the optimization problem is:

Θ∗i,t =
argmax

Θi,t

[Ofi,t] (53)

The shape of risk appetite is assessed through the determinant of the hessian matrix in a three-

dimensional perspective. Setting the sensitivity to leverage, vega and rho equal to zero.

leverage− driven R.A. :
[
δOfi,t
δlevi,t

]
= 0 |σ∗MVAi,t

,rf∗i,t

volatility − driven R.A. :
[

δOfi,t
δσMVAi,t

]
= 0 |lev∗i,t,rf∗i,t

policy − rate− driven R.A. :
[
δOfi,t
δrfi,t

]
= 0 |lev∗i,t,σ∗MVAi,t

(54)

Estimating the optimal value of CoCos to issue:

CoCoi,t :=
(
lev∗i,t − levacti,t

)
, (55)

19.1.5 The results: a comparison

Table 38: Summary statistics of the key optimized variables

Statistic N Mean St. Dev. Min Median Max

Opt_Vol 1135 0.036 0.015 0.0001 0.025 0.076
Opt_lev 1135 0.077 0.048 0.0002 0.080 0.167
Opt_ADTier1 1135 0.017 0.056 −0.136 0.020 0.134
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Figure 33: Objective function optimization, maximum reached for an average leverage of 7%
to 8%, that is given our results an average issue of CoCos and WDs belonging to AD Tier 1
of 1.7% and a median optimal volatility of 2.5%.
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Conclusions

In summer 2017, after the high school �nal exam, I was at the seaside discussing with my mother

about my future. She asked why I was interested in studying economics. I answered that this was

the medium I preferred to understand the world where I was living. At that time, newspapers, and

all over the media, you could �nd many articles and pieces of news about worldwide economics and

�nance. It was the beginning of the crisis. I had the privilege to hear about the failure of Lehman

Brothers during microeconomics class, early in my second year of the Bachelor. I �nished one term

in advance my Master in Banking and Finance, a couple of days before my 23rd birthday. I was very

curious and motivated to study and had the privilege to enter the SFI PhD Student Program at USI.

Learning from the crisis makes everyone better o�. Overall, we show that Basel III rule proposes

a great incentive pushing the decrease of the RWAs and the increase in solidity, via the promotion

of the enlargement of the Tier 1. However, there is still room for pushing banks to decrease the

riskiness of its assets. Theoretically, we �nd that hybrids are helpful and promote the increase in

bank value itself only if associated with a relative low level of volatility. Empirically, we �nd that, on

one side, the relation between hybrids and bank riskiness is described by a U-shaped curve and, on

the other side, with respect to growth opportunities, we have a inverted-U shaped curve, leading to a

trade-o�. Hence, banks should make an e�ort in �nding a balance between containing bank riskiness

and contemporaneously promoting bank growth. We leave unanswered questions and, above all, it

should be interesting to assess more deeply the role of the monetary policy, accounting for other

relevant variables, such in�ation rate or unemployment rate.

117



References

A. R. Admati and M. F. Hellwig. The parade of the bankers' new clothes continues: 23
�awed claims debunked. Rock Center for Corporate Governance at Stanford University
Working Paper No. 143, 2013.

B. Albul, D. M. Ja�ee, and A. Tchistyi. Contingent convertible bonds and capital structure
decisions. Haas School of Business, UC Berkeley, Working paper, 2010.

P. Alvemar and P. Ericson. Modelling and pricing contingent convertibles. University of
Gothenburg, 2012.

Cecilia Aquila and Giovanni Barone-Adesi. Optimal bank risk appetite in a world of cocos.
Working Paper, 2017.

Sami Attaoui and Patrice Poncet. Write-down bonds and capital and debt structures. Journal
of Corporate Finance, 35:97�119, 2015.

S. Avdjiev, A. Kartasheva, and B. Bogdanova. Cocos: a primer. BIS Quarterly Review, 2013.

Stefan Avdjiev, Patrick Bolton, Wei Jiang, Anastasia Kartasheva, and Bilyana Bogdanova.
Coco bond issuance and bank funding costs. BIS and Columbia University working paper,
2015.

D. F. Babbel and C. Merrill. Real and illusory value creation by insurance companies. Journal
of Risk and Insurance, 72:1�22, 2005.

G. Barone-Adesi, W. Farkas, and P. Koch-Medina. Capital levels and risk-taking propensity
in �nancial institutions. Accounting and Finance Research, 3:85�89, 2014.

Richard Bellman. On the theory of dynamic programming. Proceedings of the National
Academy of Sciences of the United States of America, 38(8):716, 1952.

F. Black and J. C. Cox. Valuing corporate securities: Some e�ects of bond indenture provi-
sions. Journal of Finance, 31:351�367, 1976.

F. Black and M. Scholes. The pricing of options and corporate liabilities. Journal of Political
Economy, 81:637�654, 1973.

P. Brockman and H. Turtle. A barrier option framework for corporate security valuation.
Journal of Financial Economics, 67:511�529, 2003.

Charles G Broyden. The convergence of a class of double-rank minimization algorithms 2.
the new algorithm. IMA Journal of Applied Mathematics, 6(3):222�231, 1970.

Richard H Byrd, Peihuang Lu, Jorge Nocedal, and Ciyou Zhu. A limited memory algorithm
for bound constrained optimization. SIAM Journal on Scienti�c Computing, 16(5):1190�
1208, 1995.

N. Chen, P. Glasserman, B. Nouri, and M. Pelger. Cocos, bail-in, and tail risk. O�ce of
Financial Research Working Paper, n.4, 2013.

Financial Stability Oversight Council. Report to congress on study of a contingent capital
requirement for certain nonbank �nancial companies and bank holding companies. US
Government Printing O�ce, July, 2012.



Jan De Spiegeleer, Wim Schoutens, and Cynthia Van Hulle. The Handbook of Hybrid Secu-
rities: convertible bonds, coco bonds and bail-in. John Wiley & Sons, 2014.

R.S. Demsetz, M. R. Saidenberg, and P. E. Strahan. The disciplinary role of franchise value:
Banks with something to lose. Federal Reserve Bank of New York Economic Policy Review,
1996.

Mark J Flannery. Stabilizing large �nancial institutions with contingent capital certi�cates.
CAREFIN Research Paper, (04), 2010.

Roger Fletcher. A new approach to variable metric algorithms. The computer journal, 13(3):
317�322, 1970.

K. Froot and J. Stein. Risk management, capital budgeting, and capital structure policy for
�nancial institutions: an integral approach. Journal of Financial Economics, 47:55�82,
1998.

Donald Goldfarb. A family of variable-metric methods derived by variational means. Math-
ematics of computation, 24(109):23�26, 1970.

Viva Hammer, Sam Chen, and Paul Carman. United states-tax treatment of contingent
convertible bonds. Derivatives and Financial Instruments, 13(3):97, 2011.

S. G. Hanson, A. Shleifer, J. C. Stein, and R. W. Vishny. Banks as patient �xed income
investors. FEDS Working Paper No. 2014-15, 2014.

Jens Hilscher and Alon Raviv. Bank stability and market discipline: The e�ect of contingent
capital on risk taking and default probability. Journal of Corporate Finance, 29:542�560,
2014.

Julien Hugonnier and Erwan Morellec. Bank capital, liquid reserves, and insolvency risk.
Journal of Financial Economics, 2017.

J. Jones, S. Miller, and T. Yeager. Charter value, tobin's q and risk during the subprime
�nancial crisis. Journal of Economics and Business, 63:372�391, 2011.

Sebnem Kalemli-Ozcan, Bent Sorensen, and Sevcan Yesiltas. Leverage across �rms, banks,
and countries. Journal of international Economics, 88(2):284�298, 2012.

Hayne E Leland. Predictions of default probabilities in structural models of debt. The credit
market handbook: Advanced modeling issues (H. Gi�ord Fong, Editor), 2006.

H.E. Leland and K.B. Toft. Optimal capital structure, endogenous bankruptcy, and the term
structure of credit spreads. Journal of Finance, 51:987�1019, 1996.

F. A. Longsta� and E. S. Schwartz. A simple approach to valuing risky �xed and �oating
rate debt. Journal of Finance, 50:789�819, 1995.

D. Lucas and R. McDonald. An options-based approach to evaluating the risk of fannie mae
and freddie mac. Journal of Monetary Economics, 53:155�176, 2006.

Stan Maes and Wim Schoutens. Contingent capital: An in-depth discussion. Economic
Notes, 41(1-2):59�79, 2012.

R. Merton. Theory of rational option pricing. Bell Journal of Economics and Management
Science, 4:141�183, 1973a.



R. Merton. On the pricing of corporate debt: The risk structure of interest rates. Journal of
Finance, 29:449�470, 1974.

R.C. Merton. An analytic derivation of the cost of deposit insurance and loan guarantees.
Journal of Banking and Finance, 1:3�11, 1977.

R.C. Merton. On the cost of deposit insurance when there are surveillance costs. Journal of
Business, 51:439�452, 1978.

Robert C Merton. An intertemporal capital asset pricing model. Econometrica: Journal of
the Econometric Society, pages 867�887, 1973b.

Stewart C Myers. The capital structure puzzle. The journal of �nance, 39(3):574�592, 1984.

Stewart C Myers and Nicholas S Majluf. Corporate �nancing and investment decisions when
�rms have information that investors do not have. Journal of �nancial economics, 13(2):
187�221, 1984.

Jean Roy and Moin El-Herraoui. Simulating bail-in and its impact on wealth transfers and
arbitrage. Working Paper, 2016.

David F Shanno. Conditioning of quasi-newton methods for function minimization. Mathe-
matics of computation, 24(111):647�656, 1970.

W. Sharpe. Corporate pension funding policy. Journal of Financial Economics, 3:183�193,
1976.

Jeremy C Stein. Convertible bonds as backdoor equity �nancing. Journal of Financial
Economics, 32(1):3�21, 1992.

Suresh Sundaresan and Zhenyu Wang. On the design of contingent capital with a market
trigger. The Journal of Finance, 70(2):881�920, 2015.

George M. von Furstenberg. Bank heal thyself: Bene�ts of adding cocos to the balance sheet.
CESifo Forum, 15-3:65�71, 2014.


