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In this article, we consider fast direct solvers for nonlocal operators. The pivotal idea is 
to combine a wavelet representation of the system matrix, yielding a quasi-sparse matrix, 
with the nested dissection ordering scheme. The latter drastically reduces the fill-in during 
the factorization of the system matrix by means of a Cholesky decomposition or an LU 
decomposition, respectively. This way, we end up with the exact inverse of the compressed 
system matrix with only a moderate increase of the number of nonzero entries in the 
matrix.
To illustrate the efficacy of the approach, we conduct numerical experiments for different 
highly relevant applications of nonlocal operators: We consider (i) the direct solution 
of boundary integral equations in three spatial dimensions, issuing from the polarizable 
continuum model, (ii) a parabolic problem for the fractional Laplacian in integral form and 
(iii) the fast simulation of Gaussian random fields.

© 2020 The Author(s). Published by Elsevier Inc. This is an open access article under the 
CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Various problems in science and engineering lead to nonlocal operators and corresponding operator equations. Exam-
ples arise from physical problems like field calculations and Riesz energy problems, from machine learning, and also from 
stochastic simulations and uncertainty quantification.

Traditional discretizations of nonlocal operators result in densely populated system matrices. This feature renders the 
computation very costly in both respects, the computation time and computer memory requirements. Therefore, over recent 
decades, different ideas for the data sparse approximation of nonlocal operators have been developed. Most prominent 
examples of such methods are the fast multipole method [19], the panel clustering [22], the wavelet matrix compression 
[1,9], and the hierarchical matrix format [21]. These techniques are able to represent nonlocal operators in linear or almost 
linear cost with respect to the number of degrees of freedom used for their discretization.

The present article relies on a compression of the system matrix by wavelets. Especially, the matrix representation of 
the nonlocal operator in wavelet coordinates is quasi-sparse, i.e. most matrix entries are negligible and can be treated as 
zero without compromising the overall accuracy. Discarding the non-relevant matrix entries is called matrix compression. 
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Roughly speaking, nonlocal operators become local operators in wavelet coordinates. A fully discrete version of the wavelet 
matrix compression has been developed in [29]. It computes the compressed operator within discretization accuracy with 
linear cost.

Based on the sparsity pattern of the system matrix, which is solely determined by the order of the underlying operator, 
we employ a fill-in reducing reordering of the matrix entries by means of nested dissection, see [16,36]. This reordering 
in turn allows for the rapid inversion of the system matrix by the Cholesky decomposition or more generally by the LU 
decomposition. In particular, besides the rigorously controllable error for the matrix compression in the wavelet format and 
the roundoff errors in the computation of the matrix factorization, no additional approximation errors are introduced. This 
is a major difference to other approaches for the discretization and the arithmetics of nonlocal operators, e.g. by means 
of hierarchical matrices, H-matrices for short. As the hierarchical matrix format is not closed under arithmetic operations, 
a recompression step after each arithmetic (block) operation has to be performed, which results into accumulating and 
hardly controllable consistency errors for matrix factorizations, see [20,21]. We remark that fill-in reducing strategies in 
the context of H-matrices are well established. For example, the combination of H-matrices and nested dissection is 
suggested for the H-LU decomposition of finite element stiffness matrices in [18]. Variants of this approach can be found 
in [3,4,32,34,44,48]. In order to demonstrate the efficacy of the suggested approach, we consider applications from different 
fields. Namely, we consider (i) a boundary integral equation arising from the polarizable continuum model in quantum 
chemistry as a classical example for a nonlocal operator equation, (ii) a parabolic problem for the fractional Laplacian, and 
finally (iii) the fast numerical simulation of Gaussian random fields as an important example from computational uncertainty 
quantification.

One of the most widespread methods to include solvent effects in quantum chemistry is by making use of a continuum 
dielectric: the solvent is represented by a continuum which surrounds the molecule. Solute-solvent interactions are then de-
scribed through appropriate functions supported on the molecule’s surface. For an overview of continuum solvation models, 
we refer the reader to [46], and in particular for the polarizable continuum model to [6,7,38]. Wavelet matrix compression 
for the polarizable continuum model has been considered in [2,47]. Especially, in [23], the use of an incomplete Cholesky 
decomposition based preconditioner has been suggested, which is however inferior to the approach presented here.

The fractional Laplacian is an operator which generalizes the notion of spatial derivatives to fractional orders. It appears 
in image analysis, kinetic equations, phase transitions and nonlocal heat conduction, just to mention some applications. 
We refer to the review article [13] and the references therein for further details. In particular, we will focus here on the 
definition of the fractional Laplacian in its integral form, as it can be found in [12] and also in [13]. To the best of our 
knowledge, the numerical treatment of the parabolic problem for the fractional Laplacian by means of wavelets has not 
been addressed in literature yet.

The rapid simulation of (Gaussian) random fields with a prescribed covariance structure is of paramount importance in 
computational uncertainty quantification. The fast methods, which have been suggested so far are based on the computation 
of matrix square roots employing low-rank factorizations, block-wise low-rank factorizations, such as obtained by hierarchi-
cal matrices, or the discretization of the action of the matrix square root on a given vector by Krylov subspace methods, see 
[25,14]. Further approaches compute the Karhunen-Loève expansion by circulant embeddings and fast Fourier techniques, 
see [17,41], or employ the contour integral method, see [31]. Alternatively, samples from the random field can also be ob-
tained by the stochastic partial differential equation approach, see [35]. In contrast to these approaches, we consider here 
the direct simulation of the random field by the Cholesky decomposition of the covariance matrix, which is very sparse in 
wavelet coordinates.

This article is organized as follows. Wavelet bases and their properties are specified in Section 2. Section 3 briefly repeats 
the main features of the fully discrete wavelet matrix compression scheme from [29]. Then, in Section 4, for the sake of 
completeness, the idea of nested dissection is briefly outlined. Section 5 presents the three different applications considered 
in this article, while Section 6 is devoted to related numerical experiments. Finally, Section 7 contains some concluding 
remarks.

In the following, in order to avoid the repeated use of generic but unspecified constants, we write C � D to indicate that 
C can be bounded by a multiple of D , independently of parameters which C and D may depend on. Then, C � D is defined 
as D � C , while we write C ∼ D , iff C � D and C � D .

2. Wavelets and multiresolution analysis

Let D denote a domain in Rn or a manifold in Rn+1. A multiresolution analysis consists of a nested family of finite 
dimensional approximation spaces

{0} = V−1 ⊂ V 0 ⊂ V 1 ⊂ · · · ⊂ V j ⊂ · · · ⊂ L2(D), (1)

such that⋃
j≥0

V j = L2(D) and dim V j ∼ 2 jn.

We will refer to j as the level of V j in the multiresolution analysis. Each space V j is endowed with a single-scale basis
2
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� j = {ϕ j,k : k ∈ � j},
i.e. V j = span � j , where � j denotes a suitable index set with cardinality |� j | ∼ 2 jn . For convenience, we shall in the sequel 
write bases on the form of row vectors, such that, for v = [vk]k∈� j ∈ �2(� j), the corresponding function can simply be 
written as a dot product according to

v j = � j v =
∑

k∈� j

vkϕ j,k.

In addition, we shall assume that the single-scale bases � j are uniformly stable, i.e.

‖v‖�2(� j)
∼ ‖� j v‖L2(D) for all v ∈ �2(� j)

uniformly in j, and that they satisfy the locality condition

diam(suppϕ j,k) ∼ 2− j.

Additional properties of the spaces V j are required for using them as trial spaces in a Galerkin scheme. The approxima-
tion spaces need to have the regularity

γ := sup{s ∈R : V j ⊂ Hs(D)}
and the approximation order d ∈N , that is

d = sup
{

s ∈ R : inf
v j∈V j

‖v − v j‖L2(D) � 2− js‖v‖Hs(D)

}
.

Rather than using the multiresolution analysis corresponding to the hierarchy in (1), the pivotal idea of wavelets is to 
keep track of the increment of information between two consecutive levels j − 1 and j. Since we have V j−1 ⊂ V j , we may 
decompose

V j = V j−1 ⊕ W j, i.e. V j−1 ∪ W j = V j and V j−1 ∩ W j = {0},
with an appropriate detail space W j . Of practical interest is the particular choice of the basis of the detail space W j in V j . 
This basis will be denoted by

� j = {ψ j,k : k ∈ ∇ j := � j \ � j−1}.
In particular, we shall assume that the collections � j−1 ∪ � j form uniformly stable bases of V j , as well. If � = ⋃

j≥0 � j , 
where �0 := �0, is even a Riesz-basis of L2(D), then it is called a wavelet basis. We require the functions ψ j,k to be localized 
with respect to the corresponding level j, i.e.

diam(suppψ j,k) ∼ 2− j,

and we normalize them such that

‖ψ j,k‖L2(D) ∼ 1.

At first glance it would be very convenient to deal with a single orthonormal system of wavelets. However, it has been 
shown in [9,10,43] that orthogonal wavelets are not optimal for the efficient approximation nonlocal operator equations. 
For this reason, we rather use biorthogonal wavelet bases. In this case, we also have a dual, multiresolution analysis, i.e. dual 
single-scale bases and wavelets

�̃ j = {ϕ̃ j,k : k ∈ � j}, �̃ j = {ψ̃ j,k : k ∈ ∇ j},
which are coupled to the primal ones by the orthogonality condition

(� j, �̃ j)L2(D) = I , (� j, �̃ j)L2(D) = I .

The corresponding spaces Ṽ j := span �̃ j and W̃ j := span �̃ j satisfy

V j−1 ⊥ W̃ j, Ṽ j−1 ⊥ W j . (2)

Moreover, the dual spaces are supposed to exhibit some approximation order ̃d ∈N and regularity γ̃ > 0.
Denoting in complete analogy to the primal basis �̃ =⋃

j≥0 �̃ j , where �̃0 := �̃0, every v ∈ L2(D) has unique represen-
tations
3
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v = �̃(v,�)L2(D) = �(v, �̃)L2(D)

such that

‖v‖2
L2(D)

∼
∑
j≥0

∑
k∈∇ j

∥∥(v, ψ̃ j,k)L2(D)

∥∥2
�2(∇ j)

∼
∑
j≥0

∑
k∈∇ j

∥∥(v,ψ j,k)L2(D)

∥∥2
�2(∇ j)

.

In particular, relation (2) implies that the wavelets exhibit vanishing moments of order ̃d, i.e.∣∣(v,ψ j,k)L2(D)

∣∣� 2− j(n/2+̃d)|v|W d̃,∞(suppψ j,k)
. (3)

Herein, the quantity |v|W d̃,∞(D)
:= sup|α|=̃d ‖∂α v‖L∞(D) is the semi-norm in W d̃,∞(D). We refer to [8] for further details.

Piecewise constant and bilinear wavelets which provide the above properties have been constructed in [28,30]. In what 
follows, we will refer to the wavelet basis of V J by � J = {ψλ : λ ∈ ∇ J }, where the multi-index λ = ( j, k) incorporates the 
scale j = |λ| and the spatial location k = k(λ).

3. Wavelet matrix compression

For a given domain or manifold D and q ∈R, let

A : Hq(D) → H−q(D)

denote a given (continuous and bijective) nonlocal operator of order 2q. According to the Schwartz kernel theorem, it can 
be represented in accordance with

(Au)(x) =
∫
D

k(x, y)u(y)d y, x ∈ D, (4)

for a suitable kernel function k : D × D → R. The kernel functions under consideration are supposed to be smooth as 
functions in the variables x and y, apart from the diagonal {(x, y) ∈ D × D : x = y}, and may exhibit a singularity on the 
diagonal. Such kernel functions arise, for instance, from applying a boundary integral formulation to a second order elliptic 
problem [42,45]. Typically, they decay like a negative power of the distance of the arguments which depends on the order 
2q of the operator. More precisely, there holds∣∣∂α

x ∂
β
y k(x, y)

∣∣≤ cα,β‖x − y‖−n−2q−|α|−|β|. (5)

We emphasize that this estimate remains valid for the kernels of arbitrary pseudodifferential operators, see [11] for the 
details.

Corresponding to the nonlocal operator from (4), we may consider the operator equation

Au = f

which gives rise to the Galerkin approach:

find u J ∈ V J such that

(Au J , v J )L2(D) = ( f , v J )L2(D) for all v J ∈ V J .

Traditionally, this equation is discretized employing the single-scale basis of V J which results in densely populated system 
matrices. If N J ∼ 2 Jn denotes the number of basis functions in the space V J , then the system matrix contains O(N2

J )

nonzero matrix entries. In contrast, by utilizing a wavelet basis in the Galerkin discretization, we end up with a matrix that 
is quasi-sparse, i.e. it is compressible to O(N J ) nonzero matrix entries without compromising the overall accuracy. More 
precisely, by combining (3) and (5), we arrive at the decay estimate

(Aψλ′ ,ψλ)L2(D) � 2−(|λ|+|λ′|)(̃d+n/2)

dist(Dλ, Dλ′)n+2q+2̃d
, (6)

which is the foundation of the compression estimates in [9]. Herein, Dλ := supp ψλ and Dλ′ := supp ψλ denote the convex 
hulls of the supports of the wavelets ψλ and ψλ′ .

Based on (6), we shall neglect all matrix entries for which the distance of the supports between the associated ansatz 
and test wavelets is larger than a level dependent cut-off parameter B j, j′ . An additional compression, reflected by a cut-
off parameter Bs

j, j′ , is achieved by neglecting several of those matrix entries, for which the corresponding trial and test 
functions have overlapping supports.
4
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Fig. 1. Sparsity patterns of V (left) and its nested dissection reordering V J ,ND (right) for the single layer operator on the benzene geometry and N J = 93184. 
Each dot corresponds to a submatrix of size 64 × 64. Lighter blocks have less entries than darker blocks.

To formulate this result, we introduce the abbreviation Ds
λ := sing suppψλ which denotes the singular support of the 

wavelet ψλ , i.e. that subset of D where the wavelet is non-smooth.

Theorem 1 (A-priori compression [9]). Let Dλ and Ds
λ be given as above and define the compressed system matrix A J , corresponding 

to the boundary integral operator A, by

[A J ]λ,λ′ :=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0, dist(Dλ, Dλ′) >B|λ|,|λ′| and |λ|, |λ′| > 0,

0, dist(Dλ, Dλ′) ≤ 2−min{|λ|,|λ′|} and

dist(Ds
λ, Dλ′) >Bs

|λ|,|λ′| if |λ′| > |λ| ≥ 0,

dist(Dλ, Ds
λ′) >Bs

|λ|,|λ′| if |λ| > |λ′| ≥ 0,

(Aψλ′ ,ψλ)L2(D), otherwise.

(7)

Fixing

a > 1, d < δ < d̃ + 2q, (8)

the cut-off parameters B j, j′ and Bs
j, j′ are set according to

B j, j′ := a max

{
2−min{ j, j′},2

2 J (δ−q)−( j+ j′)(δ+̃d)

2(̃d+q)

}
,

Bs
j, j′ := a max

{
2−max{ j, j′},2

2 J (δ−q)−( j+ j′)δ−max{ j, j′ }̃d
d̃+2q

}
.

(9)

Then, the system matrix A J only has O(N J ) nonzero entries. In addition, the error estimate

‖u − u J ‖H2q−d(D) � 2−2 J (d−q)‖u‖Hd(D) (10)

holds for the solution u J of the compressed Galerkin system provided that u and D are sufficiently regular.

The compressed system matrix can be assembled with linear cost if the exponentially convergent hp–quadrature method 
proposed in [29] is employed for the computation of matrix entries. Moreover, for performing faster matrix-vector multipli-
cations, an additional a-posteriori compression might be applied which reduces again the number of nonzero entries by a 
factor 2–5, see [9]. The pattern of the compressed system matrix shows the typical finger structure, see the left hand side of 
Fig. 1.

4. Nested dissection

The representation of the system matrix corresponding to a nonlocal operator with respect to an appropriate wavelet 
basis leads to a quasi-sparse matrix, i.e. a matrix with many small entries which can be neglected without compromising 
accuracy. Performing a thresholding procedure as discussed in the previous section then yields a sparse system matrix 
whose symmetric sparsity pattern is solely determined by the order of the underlying operator, see the left hand side of 
Fig. 1.
5
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The factorization of the system matrix represented in the canonical levelwise ordering leads to a massive fill-in. This 
means that a huge amount of nonzero entries is generated by a Cholesky decomposition or an LU decomposition, typically 
resulting in dense matrix factors. In order to obtain much sparser factorizations, we employ a nested dissection ordering, cf. 
[16,36], see the right hand side of Fig. 1.

Nested dissection is a divide and conquer algorithm whose foundation is a graph theoretical observation. To each matrix 
A ∈RN×N with a symmetric sparsity pattern, we may assign an undirected graph G = (V , E) with vertices V = {1, 2, . . . , N}
and edges E = {{i, j} : ai, j �= 0

}
. Then, a symmetric permutation P A P ᵀ of the rows and columns of A amounts to a permu-

tation π(V ) of the nodes in V . In particular, we have the following important result from [40], compare also [39], which 
we formulate here only for the Cholesky decomposition P A P ᵀ = LLᵀ .

Lemma 1 ([40]). Assuming that no cancellation of nonzero entries in the Cholesky decomposition of P A P ᵀ takes place, then �i, j �= 0
for i > j, iff there is a path i = v1, v2, . . . , vk+1 = j in G such that π(vt) < min{π(i), π( j)} for 2 ≤ t ≤ k.

The lemma states that the Cholesky decomposition connects all nodes i and j, resulting in a nonzero entry �i, j , for 
which there exists a path of nodes that have been eliminated before i and j.

Finding an optimal ordering is a hard problem in general. Therefore, we resort to the following strategy, which is known 
as nested dissection ordering: We split V = V 1 ∪ V 2 ∪ S such that E ∩ {{v1, v2} : v1 ∈ V 1, v2 ∈ V 2

} = ∅, i.e. the removal 
of the vertices of the separator S and its adjacent edges results into two disjoint subgraphs. Hence, employing an ordering 
which puts first the nodes into V 1 and V 2 and afterwards the nodes in S , leads to a matrix structure of the form

P A P ᵀ =
⎡
⎣ AV 1,V 1 AV 1,S

AV 2,V 2 AV 2,S

AS,V 1 AS,V 2 AS,S

⎤
⎦ .

Recursively applying this procedure then yields a structure similar to the one on the right hand side of Fig. 1. For obvious 
reasons, it is desirable to have a minimal separator S , which evenly splits V into two subsets. We refer to [36] and the 
references therein for a comprehensive discussion of this topic. In order to obtain suitable separators for the computations 
in this article, we will adopt the strategy from [33], which performs very well in terms of reducing the fill-in.

5. Applications

5.1. Polarizable continuum model

Continuum solvation models are widely used to model quantum effects of molecules in liquid solutions, compare [46]
for an overview. In the polarizable continuum model (PCM), introduced in [38], the molecule under study (the solute) is 
located inside a cavity D , surrounded by a homogeneous dielectric (the solvent) with dielectric constant ε ≥ 1. The solute-
solvent interactions between the charge distributions which compose the solute and the dielectric are reduced to those of 
electrostatic origin.

For a given charge ρ ∈ H−1(D), located inside the cavity, the solute-solvent interaction is expressed by the apparent 
surface charge σ ∈ H−1/2(∂ D). It is given by the integral equation

Vσ =
(

1 + ε

2
+ (1 − ε)K

)−1

Nρ −Nρ on ∂ D, (11)

where V is the single layer operator

(Vu)(x) =
∫
∂ D

u(y)

4π‖x − y‖3
dσy,

K is the double layer operator

(Ku)(x) =
∫
∂ D

u(y)
〈n(y), x − y〉
4π‖x − y‖3

dσy,

and Nρ denotes the Newton potential of the given charge

Nρ(x) :=
∫
∂ D

ρ(y)

4π‖x − y‖ d y.

The discretization of the boundary integral equation (11) by means of a Galerkin scheme is performed as follows, com-
pare [26,27]: We make the ansatz
6
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σ J =
∑
λ

σλψλ

and introduce the mass matrix

G J = [(ψλ′ ,ψλ)L2(D)]λ,λ′

and the system matrices

V J = [(Vψλ′ ,ψλ)L2(D)]λ,λ′ , K J = [(Kψλ′ ,ψλ)L2(D)]λ,λ′ .

Then, for a given data vector f J = [(Nρ, ψλ)L2(∂ D)]λ , we need to solve the linear system of equations

V J σ J = G J

(
1 + ε

2
G J + (1 − ε)K J

)−1

f J − f J (12)

in order to determine the sought apparent surface charge.
In quantum chemical simulations, for example when solving the Hartree-Fock equations in a self consistent field approx-

imation, one has to compute the interaction energies between the different particles. This amounts to the determination of 
different apparent surface charges. Therefore, the fast solution of (12) for multiple right hand sides is indispensable for fast 
simulations in quantum chemistry.

5.2. Parabolic diffusion problem for the fractional Laplacian

For a given domain D ⊂Rn and 0 < s < 1/2, the fractional Laplacian Ls : Hs(D)/R → H−s(D)/R is given by

(Lsu)(x) := 2
∫
D

u(y) − u(x)

‖x − y‖n+2s
d y, x ∈ D,

compare [12,13]. We intent to solve the following parabolic diffusion problem

∂t u −Lsu = f in D

for the fractional Laplacian. To this end, we employ the θ -scheme in time and a Galerkin discretization of the problem in 
space. This leads to the linear system of equations

G J
u J (ti+1) − u J (ti)

ti+1 − ti
− L J

{
(1 − θ)u J (ti) + θu J (ti+1)

}= (1 − θ) f J (ti) + θ f J (ti+1). (13)

Here,

L J = [
(Lsψλ′ ,ψλ)L2(D)

]
λ,λ′ , G J = [

(ψλ′ ,ψλ)L2(D)

]
λ,λ′

are the system matrix of the fractional Laplacian and the mass matrix, respectively. In each time step, we have hence to 
invert the matrix A J = G J − θ(ti+1 − ti)L J for computing the new solution u J (ti+1) from the solution u J (ti) of the previous 
time step ti . A factorization of the system matrix A J is favourable in this situation since the system matrix does not change 
with respect to time.

5.3. Gaussian random fields

Let (�, F , P ) denote a complete and separable probability space. We consider a Gaussian random field

a : D × � → R

with expectation

E[a](x) :=
∫
�

a(x,ω)dP (ω)

and covariance

Cov[a](x, x′) :=
∫
�

(
a(x,ω) −E[a](x)

)(
a(x′,ω) −E[a](x′)

)
dP (ω).
7
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If the expectation and the covariance are known, we may represent the field a by its Karhunen-Loève expansion

a(x,ω) = E[a](x) +
∞∑

k=1

√
μkak(x)Yk(ω).

Herein, (μk, ak), k = 1, 2, . . ., denote the eigen pairs of the Hilbert-Schmidt operator

(Cv)(x) :=
∫
D

Cov[a](x, x′)v(x′)dx′,

while Y1, Y2, . . . are independent and standard normally distributed random variables.
In order to discretize the Karhunen-Loève expansion, we proceed in complete analogy to [25] and compute the orthog-

onal projection of C onto V J . Let C J ∈RN J ×N J denote the corresponding coefficient matrix. Obviously, a suitable basis for 
the orthogonal projection is given by the orthogonalized wavelet basis � J G−1/2

J , where

G J = [
(ψλ′ ,ψλ)L2(D)

]
λ,λ′

denotes the mass matrix and G−1/2
J is an inverse matrix root. Thus, in accordance with [25], we arrive at the discretized 

random field

a J (x,ω) = � J (x)G−1/2
J

(
a J + V �Y (ω)

)
, (14)

where Y := [Y1, Y2, . . . , Y N J ]ᵀ is a standard normally distributed Gaussian vector, a J is the orthogonal projection of E[a]
onto V J and V ��V ᵀ = C J is the spectral decomposition of C J .

Hence, for the Galerkin projection, we find the identities

aG
J := [

(E[a],ψλ)L2(D)

]
λ

= G1/2
J a J ,

C G
J := [

(Cψλ′ ,ψλ)L2(D)

]
λ,λ′ = G1/2

J C J G1/2
J .

Thus, we obtain for the expectation

a J = G−1/2
J aG

J ,

while the covariance satisfies

C J = (V �)(V �)ᵀ = G−1/2
J C G

J G−1/2
J = (G−1/2

J L)(G−1/2
J L)ᵀ,

where LLᵀ = C G
J is the Cholesky decomposition of C G

J .

It is well known that any two matrix square roots R Rᵀ = R̂ R̂
ᵀ = C J only differ by an isometry. Consequently, there 

exists an orthogonal matrix Q such that V � = G−1/2
J L Q . Introducing the transformed random vector X(ω) := Q Y (ω), we 

infer ∫
�

X(ω)Xᵀ(ω)dP (ω) = Q
∫
�

X(ω)Xᵀ(ω)dP (ω) Q ᵀ = Q I Q ᵀ = I .

Therefore, X(ω) is a standard normally distributed Gaussian vector as well and we end up with the representation

a J (x,ω) = � J (x)G−1
J

(
aG

J + L X(ω)
)
. (15)

If the singular values in the Karhunen-Loève expansion (14) decay only slowly, as it is typically the case for non-smooth 
covariance functions, the numerical solution of the associated eigenvalue problem becomes prohibitive. In such cases, the 
direct simulation of the random field by means of a sparse Cholesky decomposition in (15) is computationally superior. 
Therefore, the proposed method is in particular useful for rough random fields, which issue from non-smooth covariance 
functions.

We remark that in case of a smooth covariance function, the matrix C G
J becomes numerically positive semidefinite. 

In such cases, the pivoted Cholesky decomposition, see [24], immediately yields a low-rank decomposition of C G
J and is 

computationally superior to other data sparse representations, we refer to [25] for a comprehensive discussion of this 
complementary approach.
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Fig. 2. Solvent excluding surface of benzene.

Table 1
Computation times and numbers of nonzero entries in case of PCM.

N J tWEM tND tChol(V J ) tLU(A J ) anz(V J ) anz(L J )

1456 0.96 0.032 0.19 0.22 134 209
5824 7.10 0.15 0.19 1.59 163 328

23296 52.32 0.74 1.05 14.03 159 419
93184 309.35 3.91 7.66 189.70 165 639

372736 2265.91 19.38 58.28 2211.57 173 890

6. Numerical results

In order to obtain consistent computation times, all computations reported in this section have been carried out on a 
single core of a compute server with Intel Xeon E5-2650 v3 @2.30 GHz CPUs and 512 GB DDR4 @2133 MHz main memory. 
The implementation of the wavelet matrix compression has been performed in ANSI C, while nested dissection orderings, 
Cholesky decompositions and LU decompositions have been computed using Matlab 2020a, compare [37]. In particular, for 
the nested dissection ordering, we employ the function dissect.

6.1. Polarizable continuum model

For PCM, we consider the assembly and the factorization of the matrices

V J and A J := 1 + ε

2
G J + (1 − ε)K J ,

which are required to set up the linear system of equations (12). The dielectric constant is chosen as ε = 78.39, corre-
sponding to the solvent water. The molecule under study is benzene, whose solvent excluding surface is depicted in Fig. 2. 
For the wavelet matrix compression, we use piecewise constant wavelets with three vanishing moments, as developed in 
[28].

Table 1 shows the numerical results. The first column, labelled by N J , corresponds to the number of surface elements. 
The second column, labelled by tWEM, contains the combined computation times in seconds for the assembly of V J and 
A J by the wavelet matrix compression. The third column, labelled by tND, provides the computation times in seconds for 
the nested dissection ordering, as V J and A J have identical sparsity patterns, the same reordering can be applied to both 
of them. The fourth column, labelled by tChol(V J ), denotes the computation times in seconds for the Cholesky factorization 
of V J , while the fifth column shows the computation times in seconds of the LU decomposition of A J . For the purpose of 
measuring the fill-in relative to the matrix size, we introduce for a sparse matrix A ∈RN×N the average number of nonzeros 
per row

anz(A) := nnz(A)

N
.

The values for anz(V J ) and anz(A J ) are identical and can be found in the sixth row of Table 1, while the values anz(L J )

for the Cholesky factor of anz(V J ) are given in the last column of the table. The sparsity pattern of the L-factor of the LU 
decomposition of A J coincides with that of L J , while the U-factor has somewhat less coefficients compared to the L-factor. 
Hence, the average number of nonzeros per row for the LU factorization of A J matches that of anz(L J ).

The sparsity patterns for V J , L J and for the U-factor are shown in Fig. 3 for N J = 93 184. In order to obtain a neat 
representation in this figure, we have merged matrix blocks of size 64 × 64. Darker blocks have a higher density of entries, 
while lower blocks have a lower density of entries.

As can clearly be inferred from Table 1, the times for the computing the nested dissection ordering and the subsequent 
Cholesky decomposition are negligible with respect to the wavelet matrix compression. The average number of nonzero 
entries per row stays rather low and only increases for increasing numbers of unknowns up to a factor of approximately 5 
for N J = 372 736.
9
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Fig. 3. Sparsity patterns of V J as well as A J (left), the Cholesky factor L J (middle), and the upper triangular matrix U J (right) for PCM and N J = 93 184. 
Each dot corresponds to a submatrix of size 64 × 64. Lighter blocks have less entries than darker blocks.

Fig. 4. Computational geometry for the fractional Laplacian.

It can be seen from the fifth column of Table 1 that the LU decomposition is significantly slower than the Cholesky 
decomposition. This issues from the fact that all matrices are stored in a sparse column major format, resulting in a large 
overhead for the access of matrix rows. We remark that, in principle, the LU decomposition could be accelerated by an 
appropriate data structure, which enables direct access to the rows of the matrix as well.

6.2. Parabolic diffusion problem for the fractional Laplacian

We consider the parabolic problem for the fractional Laplacian with s = 3/8. The right hand side is a Gaussian heat spot 
moving on a circular trajectory, given by

f (x, t) = 100 exp
(

− 40
(
x1 − cos(2πt)

)2 − 40
(
x2 − sin(2πt)

)2
)
,

while the initial condition is set to 0. For the solution of the ordinary differential equation in time, we employ the θ -scheme 
with θ = 1/2, which yields the Crank-Nicolson method [5]. The time interval is given by [0, T ] = [0, 3] and we discretize this 
time interval by 150 equidistant time steps.

In the θ -scheme (13), we need to invert the matrix

A J = G J + θ(ti+1 − ti)L J ,

which is assembled with the help of wavelet matrix compression using Haar wavelets. The computational geometry is the 
unit disc depicted in Fig. 4. The solution on the space-time cylinder is visualized for N J = 20 480 in Fig. 5.

We have tabulated the similar characteristics from the previous example for the matrix A J in Table 2, while the sparsity 
patterns of A J and L J are shown in Fig. 6 for N J = 81 920 and after reordering. We observe a similar behaviour as for PCM, 
the computation times for nested dissection and the Cholesky decomposition are negligible compared to the wavelet matrix 
compression. In view of the fill-in, there is an increase of approximately a factor of 5 for the average number of nonzero 
entries per row for N J = 1 310 720. The computation times for the θ -scheme in seconds for the 150 time steps are shown 
in the column labelled by tθ . As can be seen, we obtain a solution time of roughly 11 minutes for N J = 1 310 720 unknowns 
in the spatial discretization.
10
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Fig. 5. Solution of the fractional Laplacian on the space-time cylinder. (For interpretation of the colours in the figure(s), the reader is referred to the web 
version of this article.)

Table 2
Computation times and numbers of nonzero entries in case of the fractional Lapla-
cian.

N J tWEM tND tChol(A J ) tθ anz(A J ) anz(L J )

1280 0.63 0.02 0.01 0.19 88 140
5120 3.35 0.11 0.10 0.96 106 222

20480 22.20 0.53 0.59 5.34 117 315
81920 161.83 2.71 3.89 27.94 129 474

327680 724.60 12.87 23.49 131.30 135 576
1310720 3875.30 62.62 161.65 633.50 142 743

Fig. 6. Sparsity patterns of A J (left) and the Cholesky factor L J (right) for the fractional Laplacian and N J = 81 920. Each dot corresponds to a submatrix 
of size 64 × 64. Lighter blocks have less entries than darker blocks.

6.3. Gaussian random field

For the simulation of a Gaussian random field, we consider an L-shaped domain with three holes, compare Fig. 7. 
The domain has a side length of 4, while the holes have a diameter of 0.8. For the wavelet matrix compression, we use 
piecewise bilinear biorthogonal wavelets with four vanishing moments, see [28]. The expectation is set to E[a](x) ≡ 0, while 
the covariance is given by the circular kernel

Cov[a](rθ ) =
⎧⎨
⎩

2
π

(
arccos(rθ ) − rθ

√
1 − r2

θ

)
, if rθ < 1,

0, else,
where rθ := ‖x − x′‖2

θ

11
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Fig. 7. Computational geometry for the Gaussian random field.

Fig. 8. Four different realizations of the Gaussian random field.

for some θ > 0, see e.g. [15]. In this example, we set θ = 6. Four different realizations of the corresponding field in case of 
N J = 792 688 nodes are depicted in Fig. 8.

The pattern of the covariance matrix C G
J is shown in Fig. 9, while the patterns of the reordered matrix and its Cholesky 

factor are provided in Fig. 10.
Table 3 shows the computation times and the average numbers of nonzero entries as in the previous examples. In 

addition, we have the column tSample, which contains the times for computing a single realization of the random field in 
seconds, computed by (15). These times have been computed by averaging the computation times over 1000 samples. In 
order to compute the inverse of the mass matrix, we could in principle reuse the nested dissection ordering which has 
been computed for the system matrix, as the pattern of the mass matrix is a subset of the pattern of the system matrix. 
However, this will result in a fill-in similar to the system matrix. Hence, it is favourable to use a different ordering for the 
mass matrix, resulting in much less fill-in.

As can be seen from Table 3, the times for sampling the random field only increase moderately. We remark that, due to 
the larger supports of the bilinear wavelets and the higher precision of the discretization, the system matrix contains more 
entries per row on average. This also leads to higher computation times for the matrix assembly. However, as before the 
increase of nonzero entries in the Cholesky factor remains very moderate. In addition, we have provided the average number 
of nonzeros per row for the mass matrix in the column labelled by anz(G J ). The number of nonzeros for the corresponding 
Cholesky factor of the mass matrix is given in the column labelled by anz(̂L J ).
12
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Fig. 9. Sparsity patterns of C G
J of the random field for N J = 199 692. Each dot corresponds to a submatrix of size 108 × 108. Lighter blocks have less entries 

than darker blocks.

Fig. 10. Sparsity patterns of C G
J (left) and the Cholesky factor L J (right) for the random field and N J = 199 692. Each dot corresponds to a submatrix of 

size 108 × 108. Lighter blocks have less entries than darker blocks.

Table 3
Computation times and numbers of nonzero entries in case of the Gaussian random field.

N J tWEM tND tChol(C G
J ) tSample anz(C G

J ) anz(L J ) anz(G J ) anz(̂L J )

972 1.27 0.04 0.24 6.19 · 10−4 247 247 53 31
3468 12.16 0.16 0.28 3.88 · 10−3 356 495 91 72

13068 100.72 0.85 2.29 3.09 · 10−2 444 1060 126 124
50700 662.80 4.43 21.11 2.13 · 10−1 523 2009 156 196

199692 3717.51 23.72 233.62 1.46 · 100 619 3699 184 283
792588 25075.57 127.23 4334.80 1.21 · 101 716 8496 211 390

7. Conclusion

In this article, we have proposed a very efficient direct solver for nonlocal operators. The pivotal idea is to combine the 
wavelet matrix compression with the nested dissection ordering. Thereby, the fill-in resulting from a Cholesky decompo-
sition or an LU decomposition is drastically reduced. This has been numerically investigated into depth for three relevant 
applications, namely the polarizable continuum model, a parabolic problem for the fractional Laplacian in integral form, and 
the fast simulation of Gaussian random fields. In all three cases, wavelet matrix compression yields sparse system matrices, 
while the fill-in in the matrix factorization remains very low thanks to the nested dissection ordering. This behaviour has 
been observed for more then 106 unknowns in the discretization.

A formidable application of the presented approach is the fast simulation of rough (Gaussian) random fields. In such 
cases, the numerical solution of the eigenvalue problem for the covariance is computationally prohibitive and, hence, the 
computation of a Karhunen-Loève expansion is not feasible. In turn, the use of a wavelet basis yields a sparse representation 
13
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of the covariance operator and a matrix root is rapidly computable by employing the nested dissection ordering and the 
Cholesky decomposition.
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