
https://doi.org/10.1007/s10664-020-09881-0

Testing machine learning based systems: a systematic
mapping

Vincenzo Riccio1 ·Gunel Jahangirova1 ·Andrea Stocco1 ·Nargiz Humbatova1 ·
Michael Weiss1 ·Paolo Tonella1

© The Author(s) 2020

Abstract
Context: A Machine Learning based System (MLS) is a software system including one or
more components that learn how to perform a task from a given data set. The increasing
adoption of MLSs in safety critical domains such as autonomous driving, healthcare, and
finance has fostered much attention towards the quality assurance of such systems. Despite
the advances in software testing, MLSs bring novel and unprecedented challenges, since
their behaviour is defined jointly by the code that implements them and the data used for
training them.

Objective: To identify the existing solutions for functional testing of MLSs, and classify
them from three different perspectives: (1) the context of the problem they address, (2) their
features, and (3) their empirical evaluation. To report demographic information about the
ongoing research. To identify open challenges for future research.

Method: We conducted a systematic mapping study about testing techniques for MLSs
driven by 33 research questions. We followed existing guidelines when defining our
research protocol so as to increase the repeatability and reliability of our results.

Results: We identified 70 relevant primary studies, mostly published in the last years. We
identified 11 problems addressed in the literature. We investigated multiple aspects of the
testing approaches, such as the used/proposed adequacy criteria, the algorithms for test input
generation, and the test oracles.

Conclusions: The most active research areas in MLS testing address automated sce-
nario/input generation and test oracle creation. MLS testing is a rapidly growing and
developing research area, with many open challenges, such as the generation of realistic
inputs and the definition of reliable evaluation metrics and benchmarks.

Keywords Systematic mapping · Systematic review · Software testing · Machine learning

Communicated by: David Lo

� Vincenzo Riccio
vincenzo.riccio@usi.ch

Extended author information available on the last page of the article.

Empirical Software Engineering (2020) 25:5193–5254

Published online: 15 September 2020

http://crossmark.crossref.org/dialog/?doi=10.1007/s10664-020-09881-0&domain=pdf
http://orcid.org/0000-0002-6229-8231
mailto: vincenzo.riccio@usi.ch


1 Introduction

Humanity long dreamed about reproducing intelligence within artificial machines. Back in
1872, the novelist S. Butler was the first to describe machines developing consciousness in
his work entitled “Erewhon”. Scientists did not wait long to investigate in this direction:
in 1950 Alan Turing proposed his famous operational test to verify a machine’s ability to
exhibit intelligent behaviour indistinguishable from that of a human (Turing 2009).

The advent of Machine Learning (ML) along with recent technological advancements
allowed giant steps towards the realisation of this dream. Unlike traditional software sys-
tems, in which developers explicitly program the systems’ behaviour, ML entails techniques
that mimic the human ability to automatically learn how to perform tasks through train-
ing examples (Manning et al. 2008). Instances of such tasks include image processing,
speech, audio recognition, and natural language processing. The huge availability of sam-
ple data, united with the increasing computing capacity of graphical processing units, has
allowed training complex ML architectures which are able to outperform traditional soft-
ware systems and sometimes even humans. Nowadays, it is quite common to integrate one
or multiple ML components within a software system. In this paper, we refer to a system of
this kind as Machine Learning based System (MLS).

MLSs are utilised in safety/business critical domains such as automotive, healthcare and
finance. In these domains, it is essential to check for the reliability of an MLS, i.e., to under-
stand to what extent they can be trusted in response to previously unseen scenarios that
might be not sufficiently represented in the data from which the system has learned. To
this aim, software testing techniques are being used to check the functionality of MLSs and
ensure their dependability. However, the effectiveness of traditional testing approaches for
MLSs is quite limited. First, part of the program logic of an MLS is determined by the data
used for training, thus code coverage metrics are not effective to determine whether this
logic has been adequately exercised. Second, learning processes used in MLSs are stochas-
tic in nature, which makes it challenging to define deterministic oracles for them, since
repetitions of the training phase may lead to different behaviours.

The software engineering (SE) research community is striving to tackle the problem of
adequately testing the functionalities of MLSs, with the number of approaches proposed in
the literature growing exponentially in recent years. Such proliferation of novel ML testing
techniques demands for secondary studies, i.e., studies that review primary studies with the
aim of integrating or synthesising knowledge related to this research area (Kitchenham and
Charters 2007).

Systematic mapping studies (or scoping studies) are secondary studies designed to
structure a research area driven by specific research questions. These studies involve a clas-
sification of the primary studies over a number of dimensions and counting contributions
in relation to the categories of that classification (Petersen et al. 2015). The outcome of a
mapping study is a set of papers relevant to the research questions, mapped to a classifi-
cation (Wieringa et al. 2006; Petersen et al. 2015). In this way, a mapping study allows to
discover research gaps and trends in a research area (Petersen et al. 2008).

In this paper, we present the results of a systematic mapping study we conducted
about functional testing techniques for MLSs. The scope of this work is to help structure,
curate, and unify the literature in this research area, and to analyse it in detail in order
to help shed light on the potential of these techniques, and make them more visible and
accessible (Kitchenham and Charters 2007).

We formulated 33 research questions to fulfil the goal of the study; then we proceeded by
systematically collecting an initial pool of publications, and applied a number of inclusion

Empirical Software Engineering (2020) 25:5193–52545194



and exclusion criteria to select the relevant primary studies. Then, we analysed the retained
70 papers in terms of the problem they address, the approach they propose and their empiri-
cal evaluation. In order to increase the validity, repeatability and reliability of our results, we
designed a systematic protocol for the identification and classification of papers following
the guidelines by Kitchenham et al. (2009) and Petersen et al. (2015). We report all details of
the research process, including also the actions taken to mitigate possible threats to validity,
and we make all data collected and analyses performed during our study available (Riccio
et al. 2019).

The paper is structured as illustrated in Fig. 1. Section 2 gives an overview about rele-
vant ML concepts. Section 3 specifies the goal of this mapping and the research questions
it aims to answer. Section 4 describes the process we followed to retrieve the relevant liter-
ature and to extract the information to answer the research questions. Section 5 synthesises
and classifies the information we obtained from the literature. Section 6 summarises the
weaknesses of the approaches presented in the literature and provides possible directions
for future research. Section 7 provides an overview of the related work. Finally, Section 8
reports conclusions and future work.

2 Background

In this Section, we give an overview about the relevant ML techniques as well as the
challenges of applying classical testing approaches in the machine learning domain.

Goal and 
Research Questions

(Section 3)

Background
(Section 2)

Methodology
(Section 4)

Results
(Section 5)

Context (Sect. 5.1)

Proposed Approach (Sect. 5.2)

Evaluation (Sect. 5.3)

Demographics (Sect. 5.4)

Related Work
(Section 7)

Discussion
(Section 6)

Conclusions and 
Future Work
(Section 8)

addressed problem, testing levels, 
domains, algorithms

artefacts, adequacy, input generation,
oracle, access, context model, etc.

type, method, models, datasets, 
metrics, hw & sw setup, etc.

year, venues, authors, organizations,
countries, citations

Context
(RQs 1.x)

Proposed Approach 
(RQs 2.x)

Evaluation 
(RQs 3.x)

Demographics 
(RQs 4.x) List of Selected 

Primary Studies 
& References

Fig. 1 Organization of the Systematic Mapping

Empirical Software Engineering (2020) 25:5193–5254 5195



Simulation Data

Decision Making
Component

Dataset

Outputs

In-field Data

Inputs

Lane Keeping 
Assistant

Pedestrian
Protection

Data 
Preprocessing

Fig. 2 Self-driving cars are representative examples of modern MLSs

2.1 Machine Learning Based Systems

Generally speaking, Machine Learning (ML) offers statistical techniques to learn complex
functions (patterns) from a provided training data set, allowing to apply the learned func-
tions on new, previously unseen data points. This ability to generalise is often used to make
predictions about unknown properties of observed data. Once trained, ML functions can be
represented and stored as a set of hyper-parameters and variables learned from the training
data – a model, which typically includes weights.

Definition 1 (Model) A machine learning model (short: model) is a trained instance of a
specific machine learning algorithm.

In real world applications, such models are typically part of a larger Machine Learning
Based System (MLS). Besides one or more machine learning models, an MLS may con-
tain also other software components, responsible e.g., for input transformation, corner-case
handling, user interaction or functional logic which is not directly inferred from the training
data.

Definition 2 (Machine Learning Based System) A system in which at least one of the
components relies on machine learning techniques.

Figure 2 shows a simplified architecture of a self-driving car, which we use as an example
of MLS. In the figure, the ML models (pedestrian protection and lane keeping assistant)
are trained using offline training data (Dataset). When the whole system is in operation,
the MLS takes as input online data, which can be either simulated or in-field input data. In
our example, a data processing component is responsible of formatting and scaling the raw
input data, so that they can be processed correctly by the ML models. A decision making
component aggregates the outputs of various components, including the ML models, to
produce the final values of the car’s actuators (e.g., steering angle, brake, throttle).

2.2 Machine Learning Algorithms

Machine Learning has been the subject of research for decades. Foundations for the now
very popular technique called deep learning were laid already in the 1940s (Schmidhuber
2015). Both research and industry are increasingly using ML techiques also thanks to the
recent availability of powerful graphics processing units (GPU) at moderate prices and large
amounts of labeled sample data. Researchers have investigated a wide range of algorithms,
with different strengths and weaknesses. In this Section, we give a quick overview of some
of the most relevant types of ML algorithms, with no claim of completeness. For a more

Empirical Software Engineering (2020) 25:5193–52545196



complete introduction to ML, we refer the reader to the relevant literature (Stuart and Peter
2016; James et al. 2013; Bishop 2006).

Classification vs. Regression Considering predictive ML problems, we often distinguish
between classification problems in which the ML algorithm has to assign a class to a given
input, from regression problems in which the prediction takes the form of one or more con-
tinuous values. Examples of well known algorithms for classification problems are Decision
Trees (Rokach and Maimon 2014), k-Nearest Neighbors (Altman 1992), and Support Vec-
tor Machines (SVM) (Cortes and Vapnik 1995), while Linear Regression (Speed 2010) and
Multilayer Perceptron (Hastie et al. 2009) are basic, yet very frequently used algorithms for
regression problems. Note that some algorithms, such as Multilayer Perceptron or k-Nearest
Neighbors, can be used for both regression and classification with slight adaptations. Clas-
sification and regression algorithms are said supervised learning algorithms, because they
require a training data set with labeled data, where the label is the class or the continuous
value to be predicted.

Clustering Another important class of ML algorithms consists of unsupervised learning
algorithms and among them clustering algorithms are the most widely adopted. Clus-
ter analysis aims at grouping objects into clusters so that the similarity between two
objects is maximal if they belong to the same cluster and minimal otherwise (Kaufman
and Rousseeuw 1990). Popular clustering algorithms include Hierarchical Agglomerative
clustering (Kaufman and Rousseeuw 1990), K-means++ (Arthur and Vassilvitskii 2007), K-
medoids (Kaufman and Rousseeuw 1987), and Gaussian Mixture Models (McLachlan and
Basford 1988).

Neural Networks The one type of ML algorithm that gained most attention recently is Neu-
ral Networks (NN) and the associated learning techniques are named Deep Learning (DL).
NN are inspired by the neurons in the brains of animals and consist of artificial (simulated)
neurons for which an output activation is calculated based on a weighted, often non-linear
aggregation of the inputs. There are various types of NN. In Feedforward Neural Networks
neuron connections are acyclic and values are propagated in one direction, from input to
output. They are useful in non-sequential predictions. Two important types of Feedforward
NN are Multilayer Perceptrons, which consist exclusively of fully connected neural network
layers, and Convolutional Neural Networks (CNN), which are particularly useful in image
processing as their neurons can efficiently handle small subsets of related, close proximity
pixels, acting as feature extractors for image portions. Differently, Recurrent Neural Net-
works (RNN) make use of stateful neurons, which can memorise the internal state reached
after observing a sequence of input data. Thus, they are particularly suitable for processing
of sequential data, such as natural language sentences or speech.

2.3 MeasuringMLModel Effectiveness

After training an ML model, its performance is evaluated as follows:

Effectiveness Evaluation The data available when creating the model is divided into a
training and a test set, two mutually exclusive splits of the available data. Then, the training
set is used to make choices about the model architecture and to train it. Lastly, the test set,
which was ignored during training, is used to calculate and report the performance of the
finalised model. To allow tuning of hyper-parameters and to detect problems like overfitting

Empirical Software Engineering (2020) 25:5193–5254 5197



to the training set, a part of the training set is often defined as validation set. It is not used
directly for training, but instead it is used to evaluate the performance of models with dif-
ferent hyper-parameters or to decide when to stop training (i.e., to fix the hyper-parameter
named epochs). Training terminates when effectiveness does no longer increase if measured
on the validation set. After the optimal hyper-parameters have been chosen, a final model is
trained on the complete training set, including validation set.

In supervised learning, effectiveness is measured differently for classifiers and for regres-
sors. For classifiers, accuracy is one of the most widely used metrics. It measures the
proportion of correct classifications over all samples to be classified. For regressors, mean
squared error is the most preferred metric, computed as the average squared difference
between predicted and correct values. Unsupervised learning makes use of different effec-
tiveness metrics, as it cannot rely on any ground truth labelling of the data. For instance,
in the case of clustering algorithms, the Silhouette metric is used to get insights about the
potential number and the quality of clusters within a dataset (Rousseeuw 1987).

Confidence For any non trivial problem, ML performance on the test set cannot reach the
upper bound (1 for accuracy; 0 for mean squared error). In fact, perfect generalisation from
training data to test data is generally impossible (Gal 2016). Moreover, both training and
test data can be noisy. The probability of mis-prediction due to these reasons is named
uncertainty and its complement is confidence.

2.4 TestingMLSs vs Programmed Software Systems

Testing software systems is a complex task aiming to detect and prevent unintended behav-
ior of the software. Besides the well known challenges of classical (i.e., non-ML based)
software systems, testing MLSs poses additional challenges. First, the behaviour of an MLS
is largely impacted by factors such as the available training data sets, the choice of hyper-
parameters, the model architecture, algorithm and optimiser. On the other hand, the source
code is usually very succinct and less prone to errors, because it consists of a plain sequence
of API function invocations, and the decision-making policy (i.e., the actual algorithm)
is inferred from the training data. Additionally, the exhibited behaviour, encoded by the
learned weights within the model, is very difficult to interpret and debug for humans. Clas-
sical testing techniques are not easily applicable to any of the above mentioned artefacts,
except for the source code. In this section, we describe the main differences between testing
classical software systems vs MLS.

2.4.1 Fault and Failure

When considering unintended behavior in software systems, we distinguish between faults
and failures. According to their definitions in the IEEE Standard Glossary (IEEE 1990):

Definition 3 (Fault) [. . . ] An incorrect step, process, or data definition in a computer
program.

A typical example of a fault in a classical software system is a wrong instruction in a line
of code.

Definition 4 (Failure) The inability of a system or component to perform its required
functions within specified performance requirements.

Empirical Software Engineering (2020) 25:5193–52545198



To prevent failures, testing of classical software systems attempts to identify and elimi-
nate faults. Since uncertainty is unavoidable when using ML techniques and mis-predictions
are hopefully rare, but definitely possible, a robust MLS should capture such uncertainty
and take suitable countermeasures to prevent failures even when an internal ML model fails
to make a correct prediction. The inability of an MLS to do so can be considered as a data
sensitive fault, according to the IEEE Standard Glossary definition (IEEE 1990):

Definition 5 (Data Sensitive Fault) A fault that causes a failure in response to some
particular pattern of data.

Exposing all data sensitive faults is a difficult task in ML applications, given their intan-
gibly big input space. It is the main goal of MLS testing to find ML mis-predictions that
give raise to MLS failures.

2.4.2 Test Input Generation

The large input space is the main root cause for faults in MLS. Thus, generating test data
that represent the input space properly is an important, yet difficult task. The generated data
has to fulfil various criteria, such as diversity and realism, and must be equipped with a
suitable oracle.

The generation should also scale well, allowing for the creation of sufficient testing data
to reliably analyse the robustness of the MLS. Depending on the domain, in practice, this
may be a major challenge (Campos et al. 2016) (consider, e.g., crashing a self-driving car for
testing purposes Cerf 2018). Therefore, tests are conducted within simulated environments,
which enable the detection of failures in a scalable and reproducible manner (Stocco et al.
2020; Cerf 2018). The generation of input data for MLS is particularly challenging since the
validity domain (i.e., the subset of the input space that is considered a valid input) is often
ambiguous and has blurred borders.

2.4.3 Adequacy Criteria

Test Adequacy Criteria aim to evaluate whether the suite of implemented tests is compre-
hensive enough to test the software thoroughly. Classical metrics such as code coverage
are severely limited with respect to ML components, primarily as they saturate with any
test suite, since the ML code is usually just a sequence of library function invocations that
is fully covered when at least one test input is processed. Mutation Adequacy offers an
interesting alternative and is more adequate to MLSs. It is measured as the proportion of
mutations—artificial faults injected into the code—that the test suite detects (i.e., kills), pro-
vided ML-specific mutation operators are defined and implemented. Hence, for MLS new
ML-specific adequacy criteria must be introduced, which typically either analyse the used
test data or the internal states of the ML component.

2.4.4 Oracle

The effectiveness of a set of tests depends strongly on their oracle, i.e., on a way to determine
whether the tested behavior is correct or a problem is observed. In the absence of oracles,
tests can only detect crashes (smoke testing).

While conceptually oracles are the same for both classical software systems as well as
MLSs (i.e., they encode the intended system behaviour), for complex domains the correct

Empirical Software Engineering (2020) 25:5193–5254 5199



behaviour of an MLS can be challenging to define even for humans. Moreover, the non-
deterministic behaviour of MLSs (i.e., repeated training on the same data may result in
different behaviours) require novel notions of statistical correctness. In the context of MLS,
Metamorphic Oracles have emerged as a viable approach to infer oracle information from
data. Metamorphic oracles take advantage of metamorphic relations between input val-
ues: if a metamorphic relation holds between the inputs, the corresponding MLS outputs
must necessarily satisfy a known relation (usually equality or equivalence). For instance, an
image representing a handwritten digit classified as a “5” should remain in such class upon
minimal addition of noise to a small number of pixels.

2.5 MLS Testing Levels

Test levels define the granularity of the tested entity, e.g., whether the tested entity is a small
unit or the system as a whole. Typical test levels in classical software engineering include
unit, integration, and system level testing. All such testing levels can also be used for MLS,
but they may require further specialisation.

In this paper, we distinguish between input testing, model testing, integration testing and
system testing, as defined below. Please note that while the definition of integration testing
and system testing are taken from the IEEE Standard Glossary (IEEE 1990), input testing
and model testing are new test levels we introduce to better capture the specific properties
of MLS testing.

Definition 6 (Input Testing) Input level tests analyse the training data used to train the ML
components as well as the input data used at prediction time.

Input level tests do not attempt to find faults in an MLS directly, but rather identify
potential reasons for unsuccessful training in the used data, thus minimising the risk of faults
due to prediction uncertainty.

Referring to our example of self-driving MLS in Fig. 2, input level testing could either
be performed offline or online. In the former case, it allows e.g. the detection of unbalanced
training data, a common issue detrimental to the ML training process. In the latter case,
online input validation can be used to identify out-of-distribution inputs, i.e., input images
of driving conditions that are underrepresented in the initial training set (e.g., being taken in
extreme weather conditions). The latter is a form of input validation.

Definition 7 (Model Testing) Model level tests consider an ML model in isolation, e.g.,
without taking any of the other components of the MLS into account.

Model level tests aim at finding faults due to, e.g., suboptimal model architectures,
training process or model hyper-parameters.

Typical metrics used when performing model level testing include the classical measures
of accuracy (for classifiers) or mean squared error (for regressors) given a labelled test
dataset.

Model level testing can be considered as the equivalent of unit testing for units that rely
on training (i.e., models). In our self-driving car example, model testing can be used to
identify inputs for which the lane keeping assistant model produces wrong steering angle
predictions, i.e., predictions that deviate substantially from the given ground truth.

Empirical Software Engineering (2020) 25:5193–52545200



Definition 8 (Integration Testing) Testing in which software components (including ML
models), hardware components, or both are combined and tested to evaluate the interaction
between them.

Integration testing focuses on issues that emerge when multiple models and components
are integrated, although each of them behaves correctly in isolation (i.e., for which input or
model level tests pass). For example, in our self-driving car, a critical integration scenario
would be the case in which the decision making component must decide between possi-
bly hitting a pedestrian suddenly crossing the road (resulting in a failure of the pedestrian
protection component), or swerving and possibly crashing the car (i.e., a failure of the lane
keeping assistant component).

Definition 9 (System Testing) Testing conducted on a complete, integrated ML based
system to evaluate the system’s compliance with its specified requirements.

System level testing aims to test the MLS as a whole in the environment in which it is
supposed to operate. For our self-driving car example, system testing would involve running
the car in realistic conditions, for instance by finding tracks and environmental conditions
that are critical to handle, or by checking the behaviour in relation to other vehicles and
obstacles.

System testing can be either simulated, in which synthetic input data and MLS outputs
are processed in a simulation environment, or performed in-field, where the system is tested
in the same runtime conditions experienced by the end-users.

2.5.1 Access to the Tested Component

Tests that rely only on the system’s inputs and outputs are called black-box tests. They usu-
ally generalise well when the software architecture changes from classical software to MLS,
but are limited as they cannot rely on coverage of the internal system states. Techniques that
instead directly observe the program execution and the execution states are called white-
box tests. Traditional white-box techniques relying on code coverage are quite ineffective
on MLS, as coverage of the code is often trivially achieved by any test suite, regardless of
its quality, because the behaviour is not encoded in the code’s conditional logic (usually, the
code for an ML component is just a plain sequence of instructions).

For the aim of this systematic mapping, we found it useful to introduce a new class of
tests called data-box tests, which can be regarded as intermediate between black-box and
white-box tests. The relation between black-box, data-box, and white-box testing levels is
illustrated in Fig. 3. More precisely, we adopt the following definitions of testing accesses:

Definition 10 (Black-Box Testing) A black-box test has only access to the MLS inputs and
outputs.

This definition is conceptually equivalent to black-box testing in traditional software
testing, as black-box tests do not rely on the internal architecture or state of the system
under test. Of course, in their execution the tested systems may use an ML model to make
predictions, which are then reflected in the tested output. Inputs for black-box tests can be
selected e.g. by equivalence class partitioning, boundary value analysis, or diversity.

In MLS testing, the data used to train the model (training set) and to assess its perfor-
mance after training (test set) determine the behaviour exhibited by the MLS at runtime.

Empirical Software Engineering (2020) 25:5193–5254 5201



White-box

Data-box
Black-box

Model's 
Architecture
& Weights

Hyper
parameters

Neuron 
Activations Training 

set Trained Model
Test 
set

Fig. 3 Access Levels during MLS Testing

Correspondingly, several ML testing techniques are based on the training/test data, rather
than the code implementing the ML model. This introduces a new access level to the sys-
tem under test that fits neither the definitions of classical black-box nor white-box testing.
Therefore, in this paper, we introduce a novel testing access for MLS called data-box testing.

Definition 11 (Data-Box Testing) A data-box test has access to everything a black-box
test has access to. In addition, a data-box test makes use of the training/test data that was
originally used to train/assess the ML component.

Data-box testing is more permissive than black-box testing, even though they both do
not rely on the internal architecture or state of the system under test.

Typical use-cases of data-box tests include the modification of the training set followed
by a re-training of the model, in order to observe its change in prediction capability. Train-
ing sets may also be considered in isolation, to check the heterogeneity of the data and
its representativeness of the complete input space. The test set can be also checked for
representativeness and completeness.

Referring to Fig. 2, data-box testing could for instance identify underrepresented weather
conditions in the training set in order to exercise more extensively the self-driving car when
running in such conditions.

Our definition of white-box testing for MLS is consistent with the classical testing
literature, where the test method has access to everything within the tested component.

Definition 12 (White-Box Testing) A white-box test has access to the internals of the tested
component. This includes the ML model, its code, its hyper-parameters, its training/test data
and its runtime state (e.g., neuron activations).

Typical use-cases of ML specific white-box testing include the analysis of the diver-
sity of the states of a model under test given some inputs (e.g., the analysis of the neuron
activations in an NN when presented with the validation or test set) as well as mutation
testing, achieved through ML specific mutation operators, such as changes of the model’s
architecture, weights, hyper-parameters, or training data.

As shown in Fig. 3, black-box testing is subsumed by data-box testing, which in turn
is subsumed by white-box testing, because black-box testing has access only to inputs and
outputs; data-box testing has access to the training/test data in addition to inputs and outputs;
white-box testing has access to the model’s architecture, hyper-parameters, runtime state, in
addition to the features accessible to data-box testing.

Empirical Software Engineering (2020) 25:5193–52545202



3 Goal and Research Questions

The goal of our mapping is:

To analyse the existing proposals for functional testing of machine learning based sys-
tems, when engineering a software system that includes one or more machine learning
components.

To reach this goal, we have analysed the approaches proposed in the literature from
three different perspectives: (1) the context of the problem they address; (2) the features
of the different proposed approaches; and (3) their empirical evaluation. Moreover, we
report demographic information about the ongoing research. The research questions used to
answer our goal are discussed in the following sections.

3.1 Context

Table 1 reports four research questions about the context of the considered studies. We want
to identify the common problems in testing MLS and how they have been addressed. The
answer to RQ 1.1 will provide an overview of the problems addressed, possibly pointing to
gaps in the existing literature.

With RQ 1.2, we want to characterise the proposed solutions by considering the testing
levels to which they can be applied. We classify the MLS testing levels as input, model,
integration or system as described in Section 2.5.

In RQ 1.3, we investigate the domains to which solutions can be applied, e.g.,
autonomous systems, image classification. It is important to highlight that the domains con-
sidered in the experimental evaluation of a testing solution can be a subset of all the possible
ones. In this research question, we are interested in the potential applicability scope in a
broader sense. Indeed, some techniques may be domain-agnostic, even though in the empir-
ical evaluation they have been applied only to a specific domain. The evaluation domain is
analysed in detail in the research questions about the evaluation (Section 3.3).

Finally, RQ 1.4 characterises the ML algorithms to which the proposed solutions can
be applied. An overview of the most important ML algorithms has been provided in
Section 2.2.

Table 1 Research questions about the context

ID Research Question Data Item Values

1.1 What problems in testing
MLSs are tackled?

Addressed problems Textual description of the addressed
problems

1.2 What are the testing levels
addressed by the proposed
solutions?

Testing levels Input, model, integration, system

1.3 What domains can the con-
sidered MLSs be applied to?

Domains Autonomous systems, image classi-
fication, etc.

1.4 Which kind of ML algorithm
can the proposed solutions be
applied to?

ML Algorithm NN, clustering, classification, etc.

Empirical Software Engineering (2020) 25:5193–5254 5203



Table 2 Research questions about the proposed approach

ID Research Question Data Item Values

2.1 What are the generated test
artefacts?

Test artefacts Test inputs, oracle, etc.

2.2 Which test adequacy criteria
have been adopted or pro-
posed?

Test adequacy criterion Coverage, combinatorial,
diversity, etc.

2.3 What approaches are adopted
to generate test input data?

Test input generation approach Random, search-based,
manual, adversarial, etc.

2.4 Which test oracles are used? Test oracle Misclassification, mutation
killing, metamorphic, etc.

2.5 What is the access to the
tested component?

Access type Black-box, data-box, white-
box

2.6 Is the context of the MLS
modelled?

Presence of the context model Yes, No. If Yes a brief descrip-
tion is provided

2.7 Are the proposed solutions
available?

Availability of the solution Yes and open-source, Yes and
closed-source, No

3.2 Proposed Approach

Table 2 reports seven research questions that characterise the testing approaches proposed
in the literature and assess their availability either as open source or closed-source. In RQ
2.1, we report the test artefacts generated by the approaches proposed in the literature, such
as test inputs, or oracles.

RQ 2.2, RQ 2.3 and RQ 2.4 address three fundamental aspects of the testing solutions,
i.e., the test adequacy criteria, the test input generation approach, and the test oracle. In
Section 2, we have described the intrinsic challenges faced when adapting these traditional
testing concepts to MLS. The answers to these three questions will provide an overview of
the existing solutions to the adequacy, input generation and oracle problems tackled when
testing MLS.

With RQ 2.5, we want to characterise the proposed approaches by the access they have
to the tested component. We will classify the MLS access type as black-box, data-box and
white-box as described in Section 2.5.1.

RQ 2.6 aims to investigate whether and how the testing approaches proposed in the liter-
ature leverage a model of the execution context in which an MLS operates (e.g., a model of
the environment in which a self-driving vehicle drives). RQ 2.7 concerns the availability of
the proposed solutions, in order to assess the reproducibility of the research on MLS testing.

3.3 Evaluation

The research questions in Table 3 analyse the empirical evaluations reported in the papers.
RQ 3.1 aims to describe the types of evaluations carried out by the considered studies.
We pre-defined three types of research, i.e., academic, industrial and no evaluation. We
consider an evaluation as academic if it is performed on open-source systems and in a lab
setting. Differently, we deem it as industrial if the evaluation was conducted on proprietary
systems within a company. It is possible that a solution is evaluated in both contexts, i.e.,
the evaluation type may be both academic and industrial. There is also the chance that a
solution is proposed, but it is not empirically evaluated on any test subject.

Empirical Software Engineering (2020) 25:5193–52545204



Table 3 Research questions about the evaluation

ID Research Question Data Item Values

3.1 What type of research has
been conducted?

Evaluation type Academic, industrial, academic
and industrial, no evaluation

3.2 What kind of research
method has been adopted?

Evaluation method Experiment, experiment with
humans, proof of concept, etc.

3.3 Which ML models have
been considered?

ML model Model name, e.g., ResNet50, VGG-
16, Dave-2

3.4 Are the considered ML
models available?

ML model availability Yes, No, NA

3.5 Are the ML models
already trained?

Pre-trained model Yes, No, NA

3.6 What datasets have been
used to train the ML mod-
els?

Dataset Dataset Name, e.g., MNIST, Udac-
ity challenge, ImageNet

3.7 Which systems have been
considered?

System System name

3.8 Are the systems available? System availability Yes, No

3.9 Which simulators have
been used?

Simulator Simulator name

3.10 What type of failures have
been considered?

Failure Failure type

3.11 What metrics have been
adopted?

Metric Metric name

3.12 Are there comparative
studies?

Presence of a comparative study Yes, No

3.13 Is the experimental data
available?

Experimental data availability Yes, No

3.14 What time budget has been
used?

Time budget Time budget length

3.15 What is the software
setup?

Software setup Software setup description (OS,
ML framework, etc.)

3.16 What is the hardware
setup?

Hardware setup Hardware setup description (GPU,
processor, memory)

RQ 3.2 enumerates the evaluation methods used to assess ML testing approaches,
whereas RQ 3.3, RQ 3.4, RQ 3.5 and RQ 3.6 concern the ML models used by the MLS
under test. In particular, RQ 3.3 aims at finding which ML models have been used, while
RQ 3.4 investigates their public availability. RQ 3.5 enquires whether the ML models were
pre-trained, or were trained by the authors of the study. RQ 3.6 describes the datasets that
are used to train the ML models.

RQ 3.7 and RQ 3.8 investigate which MLSs were considered as test objects in the evalua-
tion and if they are publicly available. These questions are restricted to systems that include
but do not coincide with an ML model, i.e., the model has been tested as part of a larger
system, not in isolation (see Definition 7 in Section 2.5). In the latter case information about
the model is already available from RQ 3.3 and RQ 3.4.

Since simulation engines are extremely useful for testing safety-critical systems, RQ 3.9
provides an overview of the simulators used in the literature. RQ 3.10 reports the types

Empirical Software Engineering (2020) 25:5193–5254 5205



Table 4 Research questions about the demographics

ID Research Question Data Item Values

4.1 What is the number of published
studies per year?

Publication Year Four-digit year (yyyy)

4.2 In which fora is research on MLS
testing published?

Venue and venue type Venue name (acronym) and type
(journal, conference, workshop,
preprint)

4.3 Who are the most active researchers
in this area?

List of authors Authors’ names

4.4 Which are the author affiliations? Organisations Organisations’ names

4.5 Which countries have produced
more studies?

Countries Country ISO3 codes

4.6 Which are the most influential stud-
ies in terms of citation count?

Citation count Number of citing papers

of failures that the proposed approaches detect when exercising the objects of the experi-
mental evaluation. RQ 3.11 aims to describe the metrics adopted to evaluate the proposed
approaches. RQ 3.12 and RQ 3.13 investigate the generalisability and repeatability of the
evaluations, by considering the presence of comparative studies and the availability of
experimental data, respectively. RQ 3.14 gives an overview of the time budget allocated for
the evaluation. RQ 3.15 and RQ 3.16 deal with the software and hardware configurations
used in the experimental evaluation.

3.4 Demographics

The six research questions reported in Table 4 aim at providing some descriptive statistics
about the ongoing research in MLS testing. With RQ 4.1, we look at the number of published
studies per year.

In RQ 4.2, we identify the fora in which most of the research on MLS testing is published.
We are interested in the venue type, including also studies that are not already published but
whose preprint is available in open-source repositories. In the answer to this question we
consider also the specific publication venues, not just the publication type.

Questions RQ 4.3, RQ 4.4 and RQ 4.5 are intended to draw a picture of the most active
authors, organisations and countries in this research area. RQ 4.6 is aimed at identifying the
most influential studies. We adopt the citation count as a measure of their influence on the
research community.

4 Methodology

This section describes the process we carried out to obtain the relevant literature and to
extract the information needed to answer the RQs introduced in Section 3. The process has
been designed according to the guidelines proposed by Kitchenham et al. (2007, 2009) and
Petersen et al. 2015).

Figure 4 graphically illustrates the overall process, which consists of four main activities:
(1) database search, (2) study selection, (3) citation-based search, and (4) data extraction.
In the following, we refer to the authors of this paper as the assessors, in order to avoid
confusion with the authors of the analysed primary studies.

Empirical Software Engineering (2020) 25:5193–52545206



arXiv

Database
SearchStart

Study
Selection

Citation-based
Search

1'175 Studies 47 Studies

Literature

Mapping

End
Data

Extraction 23 Studies70 Studies
+

Scopus

Fig. 4 Overview of the mapping process

For the database search, the assessors crafted a search string based on the goal and RQs
of this mapping. They used it to query the relevant scientific databases. They also leveraged the
advanced search feature usually available in these databases to automatically apply further selec-
tion criteria to the retrieved papers. The output of this step is a set of candidate relevant studies.

In the selection step, the studies obtained from the database search were assessed
manually and only those studies that provide direct evidence about the RQs were retained.

Since database search and study selection could miss relevant studies, in the citation-
based search step the assessors complemented the obtained pool of studies with those
reached via snowballing (Wohlin 2014) (i.e., by adding papers that cite those already
included and that satisfy the selection criteria).

In the data extraction step, the assessors read and analysed in detail the relevant studies,
filling out an extraction form with the information gathered from each paper.

4.1 Database Search

The database search step is aimed at finding candidate primary studies using search strings
on scientific databases. In the following, we describe the databases, the search string and
the selection criteria adopted by the assessors to perform the advanced search.

4.1.1 Scientific Databases

The scientific databases considered for the database search step are Scopus1 and arXiv.2

Scopus is a large database of abstracts and citations, containing papers published in
peer-reviewed venues by multiple publishers (e.g., Elsevier, IEEE, ACM, Springer, Wiley).
It offers a rich advanced search feature and is one of the suggested scientific databases
to perform systematic studies in Software Engineering (Kitchenham and Charters 2007;
Petersen et al. 2015).

Additionally, we considered the arXiv database to retrieve relevant papers that were not
already published. This database offers an advanced search feature3 and has been used in
similar studies (Zhang et al. 2020; Borg et al. 2019) as source of grey literature. We believe
that it is worth to consider grey literature since the research about testing MLS is in great

1https://www.scopus.com/search/
2https://arxiv.org
3https://arxiv.org/search/advanced

Empirical Software Engineering (2020) 25:5193–5254 5207

https://www.scopus.com/search/
https://arxiv.org
https://arxiv.org/search/advanced


ferment, with new approaches and results reported each month as preprints for early dis-
semination (Garousi et al. 2019). Our assumption was confirmed by the fact that out of 30
grey literature papers included in this mapping that were available only on arXiv at the time
of the database search, 18 have been recently published on peer-reviewed venues.

4.1.2 Search String

The assessors adopted the following iterative process to define the search string:
(1) define/refine the string, (2) perform the database search, (3) validate the results against
a list of already known relevant primary studies, and (4) discuss the search results.

To formulate the string for the database search, the assessors identified an initial set of
keywords starting from the goal and the research questions reported in Section 3. Each ten-
tative search string was then validated against a list of relevant primary studies, as suggested
in the guidelines (Kitchenham and Charters 2007). This list includes papers which we were
already aware of and which are expected to be included into the search results. The pro-
cess terminated when the assessors were satisfied by the search results, i.e., the number
of retrieved papers was manageable, all relevant primary studies known in advance were
included, and no keyword relevant for our RQs was missing in the search string.

The final search string is:

The first group of terms represents the testing phase in the software lifecycle, with terms
such as “testing”, “quality assurance”, “quality assessment”, along with keywords that char-
acterise common approaches (“mutation”, “fuzzing”, “symbolic execution”) as well as the
keyword “oracle”, due to its relevance in software testing.

The second group of terms defines the MLSs that are targeted by the testing approaches.
Therefore, we included keywords that define ML algorithms (“artificial intelligence”,
“machine learning”, “deep learning”, “neural network”) and systems (“intelligent system”,
“intelligent agent”, “autonomous”).

Since we are interested in papers that propose and implement ML testing approaches,
the third group of terms is composed by the following keywords: “technique”, “approach”,
“method”, “methodology”, “solution”, “tool”, and “framework”.

Keywords within the same group are alternative (OR operator), but a relevant paper
should present all features represented by each group. Thus, groups are connected with the
boolean AND operator.

The search string was then adapted to the syntax of the considered search
engines (Kitchenham 2007, b). In Scopus, the assessors performed this search on the meta-
data of the articles, i.e., the title, the abstract and the keyword list. In arXiv, they performed
the search on the full text, since search on metadata is not available.

Empirical Software Engineering (2020) 25:5193–52545208



55'596 studies

+

Scopus

Search
Terms

51'729 studies

DIC 1

25'528 studies

DIC 3

25'082 studies

DIC 4

1'035 studies

DIC 5

arXiv
353 studies

Search
Terms

& 
DIC 2

159 studies

DIC 3
& 

DIC 5 1'175 studies

DEC  1

Fig. 5 Database search results

4.1.3 Database Search Advanced Selection Criteria

In the database search, the assessors applied also a set of advanced inclusion and exclu-
sion criteria. Hereafter, we refer to them as Database search Inclusion Criteria (DIC) and
Database search Exclusion Criteria (DEC), respectively.

DIC1 (Published in peer-reviewed journals or conference proceedings) this criterion was
applied to Scopus by adding the following condition to the search string:

DOCTYPE (ar OR cp)

DIC2 (Unpublished but preprint available in open access repositories) this criterion was
satisfied by performing the search on arXiv.

DIC3 (Subject area is computer science) in arXiv, the assessors searched for papers in the
subject area identified as cs. In Scopus, they applied the following condition:

LIMIT-TO(SUBJAREA,‘‘COMP’’)

DIC4 (English language) it was not possible to set this criterion in the arXiv search engine.
In the Scopus search, the assessors included only articles whose language is English by
adding the following condition:

LIMIT-TO(LANGUAGE, ‘‘English’’)

DIC5 (In the Software Engineering field) in arXiv, the assessors selected the subcategory
identified as SE. In Scopus, they searched for papers whose venue name contains the term
“software” as follows:

(SRCTITLE(‘‘software’’) OR (CONFNAME(‘‘software’’))

DEC1 (Published first) published versions are chosen over unpublished ones. The assessors
compared the papers based on their name and list of authors. In case of papers that were
present in both databases, they retained only the one retrieved from Scopus. A further, more
accurate manual filtering was carried out in the Study Selection step, since it is possible that
the same paper is made available with different metadata on Scopus and arXiv.

4.1.4 Database Search Result

Both searches were performed on February 27th 2019. Figure 5 shows the results of the
database search. Application of the search string reported in Section 4.1.2 retrieved 55’596

Empirical Software Engineering (2020) 25:5193–5254 5209



results from the Scopus database. Application of the selection criteria DIC1, DIC3, DIC4
and DIC5 narrowed down the number of primary studies to 1’035. In arXiv, we found 353
studies through the search string, which were reduced to 159 by applying DIC3 and DIC5.

The assessors merged the results in a shared Google sheet, obtaining 1’194 studies. They
removed 18 studies by applying the exclusion criterion DEC1 on the duplicate entries. The
final number of candidate primary studies resulting from database search was 1’175.

4.2 Study Selection

Study selection was carried out by four assessors, i.e., the first three authors along with
the last author. In the following, we describe the inclusion and exclusion criteria that were
manually applied to the 1’175 studies resulting from the Database Search. These criteria
were designed to identify primary studies that are relevant to answer our research ques-
tions (Kitchenham and Charters 2007). Moreover, we report how the selection criteria have
been applied, how many assessors evaluated each primary study, and how disagreements
among assessors have been resolved.

4.2.1 Study Selection Criteria

In the study selection step, the assessors manually applied a set of selection criteria to refine
the pool of papers resulting from the database search step. Hereafter, we refer to them as
Manual Inclusion Criteria (MIC) and Manual Exclusion Criteria (MEC), respectively.

MIC1 (AboutMLS testing) only studies that propose a technique to test or help testing MLS
were included. The search string may have included false positives since it can retrieve
studies that propose testing solutions that exploit ML techniques but their target is not an
MLS.

MEC1 (No secondary studies) the assessors included only primary studies, therefore they
excluded mappings, literature reviews and surveys.

MEC2 (Remove duplicates) the assessors kept only one copy of each study that is present in
the results multiple times. This means that published versions are chosen over unpublished
ones. This is similar to criteria DEC1 applied in the database search step, but it was needed
because there is a chance that the same paper is made available with different metadata on
Scopus and arXiv.

MEC3 (Extensions first) the assessors compared the studies and chose extensions over the
original versions. This criterion is applied if the two versions are either both published or
both unpublished.

4.2.2 Study Selection Process

Study selection started with a meeting in which the selection criteria have been reviewed
by the assessors (Petersen et al. 2015). As suggested by Ali and Petersen (2014), we
used a think-aloud protocol in which each assessor speaks out the thought process of
inclusion/exclusion when applying the criteria to a study.

The whole process was performed in six subsequent iterations, as summarised in Table 5.
The first iteration was intended as a pilot, to possibly refine the selection criteria and to

Empirical Software Engineering (2020) 25:5193–52545210



ensure that they were reliably interpreted by all the assessors (Kitchenham and Charters
2007).

At each iteration, a set of studies was randomly drawn without replacement from the
result of the database search. Such set was divided into two equal parts and each subset was
assigned to a pair of assessors. The pairs were changed at each iteration so that, at the end
of the study selection process, each study in the set was assigned to two assessors and each
assessor was paired twice with all the other assessors.

The task of the assessors was to apply the study selection criteria to each study assigned
to them and decide whether the study is relevant for the considered RQs. There was no
single way to apply the selection criteria since it strongly depended on the analysed study.
Some studies were filtered out based on titles and abstracts, while others required a full-
text inspection. A careful reading was needed to determine if the systems targeted by the
study were actually based on ML. In other cases, the authors had to analyse the full text to
understand whether a study proposed an original testing approach rather than summarising
or evaluating existing ones. There were cases in which a deeper analysis was needed to
decide if the proposed approach was intended to test the MLS functionality, rather than
other aspects such as security.

Each iteration was concluded with a consensus meeting in which the assessors compared
their decisions. The studies for which there were conflicting opinions were discussed by the
two designed assessors. In the cases in which an agreement was not found, another assessor
resolved the dispute by acting as a referee.

After the last iteration, the list of relevant studies consisted of 78 papers. The four
assessors checked independently these studies in a final, deeper iteration. They re-applied
inclusion and exclusion criteria in a stricter way, considering the content of the candidate
papers in more detail. They discussed the outcome of such further check and agreed on
removing 31 papers. As a result, 47 relevant studies were selected through the described
process.

The relatively low ratio between relevant and analysed studies (78 out of 1’175, or 6%)
may indicate suboptimal criteria within the database search. We identified the main reason
for this in selection criterion MIC1 (About MLS testing): the database search string cannot
distinguish between studies that use ML for testing and studies on testing of MLS. For such
a distinction, we had to resort to manual analysis.

The final check was also quite selective, with a ratio of relevant over analysed studies
around 60%. The reasons for excluding such studies were mainly: (1) a stricter applica-
tion of the selection criteria, to make sure that no irrelevant paper is read and analysed in
the data extraction phase; and (2) a deeper analysis of the paper content, which was not

Table 5 Study selection process
Iteration Analysed studies Relevant studies

Pilot 100 10

1 200 13

2 200 15

3 200 15

4 200 11

5 275 14

Total 1’175 78

Final Check 78 47

Empirical Software Engineering (2020) 25:5193–5254 5211



carried out in the previous phase, when a large number of papers had to be evaluated and
filtered. In particular, eight studies were included in the previous stages since they propose
a technique to test autonomous systems, but they were excluded in the final check because
a deeper analysis of their content revealed that their target systems are not MLSs but pro-
grammed systems. Whereas, six studies that were included because they address the quality
assessment of autonomous systems, were then excluded since they propose a verification
technique instead of a testing one. The reasons for the exclusion of each paper during the
final check are reported in the replication package accompanying this paper (Riccio et al.
2019).

4.3 Citation-Based Search

In this step, the first three authors and the last author complemented the results of the
database search to reduce the risk of missing relevant studies. Citation-based search is a
practice often referred to as snowballing (Wohlin 2014), which consists of adding stud-
ies mentioned in the references of the already included papers (backward snowballing) or
studies that cite them (forward snowballing). Our initial set of 47 studies identified in the
study selection step was divided into four subsets, each of which assigned to one assessor.
In backward snowballing, the assessors examined the papers cited by the studies assigned
to them, whereas in forward snowballing, they used Google Scholar4 to retrieve the papers
citing them.

The assessors applied the selection criteria described in Sections 4.1.3 and 4.2.1 to the
snowballed papers. Relevance of the analysed papers for software engineering was taken
for granted, given their presence in the citations or references of the starting set. Therefore,
the assessors did not apply criterion DIC5.

At the end of the citation-based search step, 23 papers were added and the pool of relevant
primary studies grew up to 70 papers. The relatively high number of papers added by the
snowballing procedure can be explained by the fragmentation of the research area. In fact,
studies on ML testing are not necessarily published on software engineering venues, which
delimit the scope of our database search. Other neighbouring disciplines, including machine
learning itself, host papers that deal with testing issues and are relevant for our RQs. In fact,
out of the 23 newly added papers, none of them belongs to the output of database search.
So, while all of these papers were missed in the database search, they are indeed relevant
for this mapping. This shows the importance of snowballing, especially for transversal and
cross-discipline fields such as ML testing.

4.4 Data Extraction

In the data extraction step, all authors of this manuscript acted as assessors and extracted the
data items needed to answer the RQs from the selected relevant studies (Kitchenham and
Charters 2007).

A tabular data extraction form was used by the assessors to record the information they
extracted from primary studies. In particular, each row of such form reports a study and
each column corresponds to a research question. The tables in Section 3 show the data item

4https://scholar.google.com

Empirical Software Engineering (2020) 25:5193–52545212

https://scholar.google.com


corresponding to each research question in the third column and the values it can assume
in the fourth column. It can be noticed that for some data items, values are chosen from
a closed set of values, whereas others can be filled with open answers. To highlight this,
we show the values that answer closed-ended questions in italics. The form includes three
additional columns to collect general comments, strengths and weaknesses of each study,
which we used to elaborate the discussion in Section 6.

A pilot study was performed to refine the form and gain confidence in the data extrac-
tion process. The six assessors were divided into three pairs and each pair received four
papers to analyse. Data extraction was performed independently by each member of the
pair on the assigned papers. The pilot was concluded with a meeting in which, for each
paper, the information from the two assigned assessors was compared and disagreements
were resolved either by consensus among them or arbitration by the others. Moreover, the
assessors exploited the experience gained through the pilot to solve minor issues about the
completeness and usability of the form. At the end of the pilot, data was extracted from the
first 12 papers and the final data extraction form was available.

The rest of the papers was assigned to each of the assessors through a bidding procedure.
Each assessor selected 15 papers out of the remaining 58 ones, choosing papers they felt
confident about or they were willing to read. Then, papers were assigned based on the
bidding and trying to balance the overall workload, measured as the sum of the lengths of
the assigned papers (there was substantial length variability, especially between conference
and journal papers). We also conducted a post-extraction meeting (Petersen et al. 2015), in
which ambiguous answers were clarified.

4.5 Threats to Validity

Descriptive Validity Descriptive validity is the extent to which observations are described
accurately and objectively (Petersen et al. 2015). To reduce this threat, a data collection
form has been designed to support the recording of data. However, a poorly designed data
extraction form may have a detrimental effect on the quality of the results. To mitigate
this threat, the data extraction form has been carefully designed in the data extraction step.
We evaluated it through a pilot that involved all the assessors and revised it by address-
ing the encountered issues. Another threat to descriptive validity concerns a poor recording
of information in the data extraction form. We mitigated it by conducting a pilot and eval-
uating the information reported in the form in a post-extraction meeting, as suggested by
guidelines (Petersen et al. 2015).

Theoretical Validity The choice of the scientific database to search might hinder the valid-
ity of the study, since the chosen database could miss relevant studies. We selected Scopus
since it is a large database that contains papers published by multiple publishers. Moreover,
to mitigate the risk of publication bias, i.e., the omission of relevant but unpublished stud-
ies, we included the grey literature by performing a search on the arXiv database, which is
the reference repository for unpublished works in computer science. To further mitigate the
risk of missing relevant studies, we complemented database search with snowballing. The
reliability of the conclusions drawn could have been hindered by a bias of the researchers
involved in the mapping process. For this reason, we made an extensive use of piloting and
consensus meetings during the whole process. As an example, there is a potential researcher
bias in the study selection step. We mitigated it by assigning a pair of assessors to each
potentially relevant study and by conducting a consensus meeting to solve any conflict
between them.

Empirical Software Engineering (2020) 25:5193–5254 5213



Repeatability To ensure the repeatability of the results, we provide a detailed description of
the followed process, including also the actions taken to reduce possible threats to validity.
Repeatability is supported by the adoption of existing guidelines, such as the ones proposed
by Kitchenham et al. (2009) and Petersen et al. (2015). All data collected during our study is
publicly available in the replication package accompanying this paper (Riccio et al. 2019).

5 Results

In this section, we present a synthesis of the data extracted from the primary studies, in
order to provide detailed answers to the research questions.

5.1 Context

5.1.1 Addressed Problem (RQ 1.1)

Figure 6 presents the paper distribution across the different addressed problems. Overall, 11
main problems were identified:

Realism of Test Input Data Input generation should be targeted towards creating input data
that can expose faults in the considered system, yet being representative of real-world sce-
narios (Udeshi and Chattopadhyay 2019; Tian et al. 2018). Indeed, a fault exposed by a test

1212121212121212121212

22222222222

1010101010101010101010

22222222222

888888888882222222222288888888888

1313131313131313131313

55555555555

55555555555
33333333333

Adequacy
Criteria

Boundary
Identification

Cost

Data Quality

Faults and
Debugging

Integration

Online Monitoring
and Validation

Oracle

Realism

Regression

Scenario
Specification

Fig. 6 Addressed Problems

Empirical Software Engineering (2020) 25:5193–52545214



input that cannot occur in practice is not a real fault. Udeshi et al. (Udeshi and Chattopad-
hyay 2019) propose a test input generation approach that mutates inputs in a way that makes
the result conform to a given grammar, which characterises the validity domain. Tian et al.
(2018) produce artificial inputs that represent real driving scenes in different conditions.

A further challenge is assessing whether the results obtained in a simulated environment
would also scale to the real world (de Oliveira Neves et al. 2016; Wolschke et al. 2018; Li
et al. 2016). Two works propose to generate realistic test scenarios from in-field data (de
Oliveira Neves et al. 2016), or by mining test cases from real-world traffic situations or
traffic simulators (Wolschke et al. 2018).

Test Adequacy Criteria Twelve papers define metrics to measure how a test suite is ade-
quate for assessing the quality of an MLS. They often exploit them to drive test input
generation. Since classical adequacy criteria based on the code’s control flow graph are
ineffective with NNs, as typically 100% control flow coverage of the code of an NN can be
easily reached with few inputs, researchers have defined novel test adequacy criteria specif-
ically targeted to neural networks (Kim et al. 2019; Ma et al. 2018b, 2019; Sekhon and
Fleming 2019; Sun et al. 2018a, b; Pei et al. 2017; Shen et al. 2018; Guo et al. 2018; Xie
et al. 2019).

Behavioural Boundaries Identification Similar inputs may unexpectedly trigger different
behaviours of an MLS. A major challenge is identifying the boundaries between different
behaviours in the input space (Mullins et al. 2018; Tuncali and Fainekos 2019), which is
related to boundary-value analysis in software testing (Young and Pezzè 2005). For instance,
Tuncali and Fainekos (2019) investigate similar scenarios that trigger different behaviours
of autonomous vehicles in safety critical settings, e.g., nearly avoidable vehicle collisions.

Scenario Specification and Design For scenario-based test cases, one fundamental chal-
lenge is related to the specification and design of the environment in which the MLS
operates. In fact, only a high fidelity simulation of the environment can produce realistic and
meaningful synthetic data (Klueck et al. 2018; Fremont et al. 2019; Majumdar et al. 2019).

Oracle Overall, we found 13 papers in our pool that tackle the oracle problem for MLSs
(Zheng et al. 2019; Xie et al. 2011; Nakajima and Bui 2016, 2018, 2019; Qin et al. 2018;
Cheng et al. 2018b; Ding et al. 2017; Gopinath et al. 2018; Murphy et al. 2007a, 2008; Saha
and Kanewala 2019; Xie et al. 2018). The challenge is to assess the correctness of MLSs’
behaviour, which is possibly stochastic, due to the non-deterministic nature of training (e.g.,
because of the random initialisation of weights or the use of stochastic optimisers) and
which depends on the choice of the training set. The vast majority of the proposed oracles
leverages metamorphic relations among input data as a way to decide if the execution with
new inputs is a pass or a fail, under the assumption that such new inputs share similarities
with inputs having known labels (Xie et al. 2011; Cheng et al. 2018b; Ding et al. 2017; Saha
and Kanewala 2019).

Faults and Debugging Eight works considered in our mapping are related to faults in
MLSs. Six of them address the problems of studying and defining the spectrum of bugs in
MLSs, and automating the debugging of MLSs (Cheng et al. 2018a; Zhang et al. 2018a;
Ma et al. 2018c; Odena et al. 2019; Dwarakanath et al. 2018; Eniser et al. 2019). Concern-
ing the former, two studies in our pool present an empirical study on the bugs affecting
MLSs (Cheng et al. 2018a; Zhang et al. 2018a). Indeed, the very notion of a fault for an

Empirical Software Engineering (2020) 25:5193–5254 5215



MLS is more complex than in traditional software. The code that builds the MLS may be
bug-free, but it might still deviate from the expected behaviour due to faults introduced in
the training phase, such as the misconfiguration of some learning parameters or the use of
an unbalanced/non-representative training set (Humbatova et al. 2020; Islam et al. 2019).

Regarding debugging automation, four studies address the problem of debugging
an MLS (Ma et al. 2018c; Odena et al. 2019), or localising the faults within an
MLS (Dwarakanath et al. 2018; Eniser et al. 2019). The challenge in this case is to unroll
the hidden decision-making policy of the ML model, which is driven by the data it is fed
with. Other two papers (Li et al. 2018; Rubaiyat et al. 2018) investigate how to inject faults
in MLSs in order to obtain faulty versions of the system under test.

Regression Testing Five papers deal with the regression testing problem in the context of
MLSs (Byun et al. 2019; Shi et al. 2019; Zhang et al. 2019; Groce et al. 2014; Wolschke et al.
2017), i.e., the problem of selecting a small set of test scenarios that ensure the absence of
mis-behaviours on inputs that were managed correctly by the previous version of the MLS.
The works by Byun et al. (2019) and by Shi et al. (2019) both propose a test prioritisation
technique to reduce the effort of labelling new instances of data. Groce et al. (2014) deal
with test selection for MLSs, whereas Wolschke et al. (2017) perform test minimisation by
identifying nearly-similar (likely redundant) behavioural scenarios in the training set.

Online Monitoring and Validation Eight works address the problem of online monitoring
for validating the input at runtime. Since during development/training it is impossible to
foresee all potential execution contexts/inputs that the MLS may be exposed to, it is likewise
essential to keep monitoring the effectiveness of the systems after they are deployed “in
the field”, possibly preventing mis-behaviours when an anomalous/invalid input is being
processed by the MLS.

Six of them leverage anomaly detection techniques to identify unexpected execution con-
texts during the operation of MLSs (Henriksson et al. 2019; Patel et al. 2018; Aniculaesei
et al. 2018; Wang et al. 2019; Bolte et al. 2019; Zhang et al. 2018b), whereas two papers
are related to online risk assessment and failure probability estimation for MLSs (Strickland
et al. 2018; Uesato et al. 2019).

Cost of Testing The cost of performing MLS testing is particularly challenging, especially
in resource-constrained settings (e.g., during system or in-field testing) and in the pres-
ence of high dimensional data. Eight papers tackle this problem in the automotive domain
(Abdessalem et al. 2016, 2018a; Beglerovic et al. 2017; Zhao and Gao 2018; Bühler and
Wegener 2004; Murphy et al. 2009; Abeysirigoonawardena et al. 2019; Tuncali et al. 2018).
In this domain, comprehensive in-field testing is prohibitively expensive in terms of required
time and resources. Therefore, simulation platforms are typically used to test MLSs since
they allow re-testing new system releases on a large number of conditions, as well as in
challenging and dangerous circumstances (e.g., adverse weather, or adversarial pedestrians
suddenly crossing the road) (Stocco et al. 2020).

Integration of ML Models Two papers in our pool test the interplay of different ML mod-
els within the same system (Abdessalem et al. 2018b; Zhang et al. 2016). Abdessalem
et al. (2018b) address the functional correctness of multiple ML models interacting
within autonomous vehicles. Differently, Zhang et al. (2016) focus on different levels of
metamorphic testing applied to two different computer vision components within a pipeline.

Empirical Software Engineering (2020) 25:5193–52545216



Data Quality Assessment MLSs may exhibit inadequate behaviours due to poor training
data, i.e., inputs that are not representative of the entire input space. At the same time,
low quality test data may produce misleading information about the quality of the MLS
under test. Hence, the key step towards improving the MLS quality is by achieving high
training/test data quality (Ma et al. 2018d; Udeshi et al. 2018).

5.1.2 Testing Levels (RQ 1.2)

Figure 7 illustrates graphically the paper distribution across testing levels. Five works (7%)
manipulate only the input data, i.e., they perform input level testing (Bolte et al. 2019; Byun
et al. 2019; Henriksson et al. 2019; Wang et al. 2019; Wolschke et al. 2018). The majority of
the papers (64%) operate at the ML model level (model level testing) (Cheng et al. 2018a;
Ding et al. 2017; Du et al. 2019; Dwarakanath et al. 2018; Eniser et al. 2019; Gopinath et al.
2018; Groce et al. 2014; Guo et al. 2018; Kim et al. 2019; Li et al. 2018; Ma et al. 2018b, c,
d, 2019; Murphy et al. 2007a, b, 2008, b, 2009; Nakajima and Bui 2016, 2018, 2019; Odena
et al. 2019; Patel et al. 2018; Pei et al. 2017; Qin et al. 2018; Saha and Kanewala 2019;
Sekhon and Fleming 2019; Shen et al. 2018; Shi et al. 2019; Spieker and Gotlieb 2019;
Strickland et al. 2018; Sun et al. 2018a, b; Tian et al. 2018; Udeshi and Chattopadhyay
2019; Udeshi et al. 2018; Uesato et al. 2019; Xie et al. 2018, 2019, 2011; Zhang et al.
2018a, b, 2019; Zhao and Gao 2018), whereas 27% operate at the system level (Abdessalem
et al. 2016, 2018a; Abeysirigoonawardena et al. 2019; Aniculaesei et al. 2018; Beglerovic
et al. 2017; Bühler and Wegener 2004; Cheng et al. 2018b; Fremont et al. 2019; Klueck
et al. 2018; Li et al. 2016; Majumdar et al. 2019; Mullins et al. 2018; de Oliveira Neves
et al. 2016; Rubaiyat et al. 2018; Tuncali et al. 2018, 2019; Wolschke et al. 2017; Zhang
et al. 2016; Zheng et al. 2019). Only one work considers multiple interacting ML models
at the integration level (Abdessalem et al. 2018b). This result indicates that ML models are
mostly tested “in isolation”, whereas it would be also important to investigate how failures
of these components affect the behaviour of the whole MLS (i.e., whether model level faults
propagate to the system level).

5.1.3 Domains (RQ 1.3)

Figure 8 illustrates graphically the paper distribution across the MLS domains. Nearly half
of the analysed papers (56%) propose and evaluate a technique which is domain-agnostic,

Fig. 7 Testing Levels

Empirical Software Engineering (2020) 25:5193–5254 5217



i.e., in principle it may be applicable to any MLS (Aniculaesei et al. 2018; Byun et al. 2019;
Cheng et al. 2018a, b; Du et al. 2019; Eniser et al. 2019; Guo et al. 2018; Henriksson et al.
2019; Kim et al. 2019; Li et al. 2018; Ma et al. 2018b, c, d, 2019; Murphy et al. 2007a,
b, 2008, b, 2009; Nakajima and Bui 2016, 2018, 2019; Odena et al. 2019; Pei et al. 2017;
Saha and Kanewala 2019; Sekhon and Fleming 2019; Shen et al. 2018; Shi et al. 2019;
Sun et al. 2018a, b; Tian et al. 2018; Udeshi and Chattopadhyay 2019; Uesato et al. 2019;
Xie et al. 2018, 2019, 2011; Zhang et al. 2018a, 2019; Zhao and Gao 2018). Around 30%
proposed approaches are designed for autonomous systems (Abeysirigoonawardena et al.
2019; Beglerovic et al. 2017; Bühler and Wegener 2004; Klueck et al. 2018; Li et al. 2016;
Mullins et al. 2018; de Oliveira Neves et al. 2016; Patel et al. 2018; Strickland et al. 2018;
Wolschke et al. 2017; Fremont et al. 2019), among which self-driving cars (Bolte et al. 2019;
Majumdar et al. 2019; Rubaiyat et al. 2018; Wolschke et al. 2018; Zhang et al. 2018b) or
ADAS (Tuncali et al. 2018, 2019; Abdessalem et al. 2016, 2018a, b).

The prevalence of autonomous systems and in particular autonomous driving cars indi-
cate that safety critical domains are those in highest demand of techniques to ensure the
dependability and reliability of such systems, with testing approaches specifically designed
for their peculiar features.

5.1.4 Algorithms (RQ 1.4)

Figure 9 illustrates the paper distribution across the ML algorithms to which the proposed
testing solutions are applied. In some papers, the proposed technique has been applied to
more than one algorithm. The majority of techniques are generically applicable to NNs (25
papers), i.e., regardless of the purpose for which the NN is used (Byun et al. 2019; Ding
et al. 2017; Du et al. 2019; Eniser et al. 2019; Gopinath et al. 2018; Guo et al. 2018; Kim
et al. 2019; Li et al. 2018; Ma et al. 2018b, c, d, 2019; Odena et al. 2019; Pei et al. 2017;
Sekhon and Fleming 2019; Shen et al. 2018; Spieker and Gotlieb 2019; Sun et al. 2018a, b;
Tian et al. 2018; Uesato et al. 2019; Wang et al. 2019; Xie et al. 2011; Zhang et al. 2016,
2018b). Only one paper (Du et al. 2019) specifically targets Recurrent Neural Networks
(RNNs), which indicates that SE literature has only barely considered testing NNs related
to sequential data. The second most prevalent category (17 papers) concerns autonomous
driving algorithms (Abeysirigoonawardena et al. 2019; Aniculaesei et al. 2018; Bolte et al.
2019; Fremont et al. 2019; Klueck et al. 2018; Li et al. 2016; Majumdar et al. 2019; Mullins
et al. 2018; de Oliveira Neves et al. 2016; Patel et al. 2018; Rubaiyat et al. 2018; Strickland

Fig. 8 Domains

Empirical Software Engineering (2020) 25:5193–52545218



Fig. 9 Algorithms

et al. 2018; Tuncali et al. 2018, 2019; Wolschke et al., 2017, 2018; Zhao and Gao 2018).
The prevalence of NNs matches the growing popularity and success of this approach to
machine learning. Since NNs are general function approximators, they can be applied to a
wide range of problems. Hence, testing techniques that prove to be effective on NNs will
exhibit an incredibly wide range of application scenarios.

5.2 Proposed Approach

In the following, we present an overview of the approaches proposed in the analysed papers.
We provide information on general properties of these approaches such as their gener-
ated artefacts, context model and public availability. Moreover, we focus on the specific
attributes of the testing process such as the input generation method, test adequacy criteria
and the oracle mechanism adopted in each of the papers.

5.2.1 Test Artefacts (RQ 2.1)

Overall, 55 out of 70 papers generate some artefact as a part of their approach. Figure 10
reports the types of artefacts that have been produced by two or more works. Nearly 60%
(33 out of 55) of the papers present various methods to generate test inputs for the MLS

Fig. 10 Test Artefacts

Empirical Software Engineering (2020) 25:5193–5254 5219



under test (Abdessalem et al. 2016, 2018a, b; Abeysirigoonawardena et al. 2019; Beglerovic
et al. 2017; Bühler and Wegener 2004; Du et al. 2019; Eniser et al. 2019; Fremont et al.
2019; Guo et al. 2018; Klueck et al. 2018; Li et al. 2016; Ma et al. 2018c, 2019; Majumdar
et al. 2019; Murphy et al. 2007a, b; de Oliveira Neves et al. 2016; Odena et al. 2019; Pei
et al. 2017; Sekhon and Fleming 2019; Sun et al. 2018a, b; Tian et al. 2018; Tuncali et al.
2018, 2019; Udeshi et al. 2018, 2019; Wolschke et al. 2017, 2018; Xie et al. 2019; Zhang
et al. 2018b; Zheng et al. 2018b). However, what a test input represents differs across the
proposed approaches and highly depends on the domain of the tested system. As per our
analysis, the most popular forms of test input are images and test scenario configurations.
The inputs in form of images are generally used with classification systems or lane keep-
ing assistance systems of self-driving cars, which aim to predict the steering angle from an
image of a road taken by the camera sensor. In case the MLS under test handles scenarios
with two or more interacting objects, the input for such a system is a test scenario configu-
ration. For example, in the paper by Abdessalem et al. (2018b), the input of the self-driving
car simulation is a vector of configurations for each of the objects involved, such as the
initial position of the car, the initial position of the pedestrians, the positions of the traffic
signs, and the degree of fog.

In 12 out of 55 (22%) papers the produced artefact is an oracle (Qin et al. 2018; Xie et al.
2018; Ding et al. 2017; Dwarakanath et al. 2018, Murphy et al. 2008, 2009; Nakajima and
Bui 2016, 2018, 2019; Saha and Kanewala 2019; Xie et al. 2011; Zhang et al. 2016). The
main focus of 11 papers from this list is a set of metamorphic relationships (MRs), which
are then used to generate a metamorphic oracle. Only one work (Qin et al. 2018) proposes
a differential oracle based on program mirroring.

Compared to input generation, the oracle problem in MLS testing has received substan-
tially less attention, indicating the need for further approaches to produce effective MLS
oracles. System level oracles are particularly difficult to define, being extremely domain
specific (e.g., in the self-driving car domain, they require the definition of safe driving con-
ditions and thresholds). Moreover, they often take the form of continuous quality functions
(e.g., quality of driving metrics) rather than binary ones (e.g., the car crashing or not).

5.2.2 Test Adequacy (RQ 2.2)

Test adequacy criteria have been used in 24 papers out of 70 (Du et al. 2019; Mullins et al.
2018; Murphy et al. 2007a, 2009; Pei et al. 2017; Li et al. 2018; Qin et al. 2018; Abeysiri-
goonawardena et al. 2019; Udeshi et al. 2018, 2019; Ma et al. 2018b, 2019; de Oliveira
Neves et al. 2016; Xie et al. 2018, 2011; Eniser et al. 2019; Odena et al. 2019; Li et al. 2016;
Uesato et al. 2019; Nakajima 2018; Zhang et al. 2019; Nakajima and Bui 2016; Sekhon and
Fleming 2019; Dwarakanath et al. 2018). Overall, 28 test adequacy criteria were used or
proposed in such papers. The work by Pei et al. (2017) is the first one that proposed to use
neuron activations as part of an adequacy criterion. The neuron is considered activated if its
output value is higher than a predefined threshold. Neuron coverage (NC) of a set of test
inputs is defined as the proportion of activated neurons over all neurons when all available
test inputs are supplied to an NN. The authors suggest that at a high level, this metric is sim-
ilar to test coverage of traditional systems, as it measures the parts of NN’s logic exercised
by the input data.

Ma et al. (2018b) propose a set of five fine-grained adequacy criteria that they classify
into neuron-level and layer-level. They use activation values of a neuron obtained from the
training data and divide the range of values for each neuron into k buckets. The ratio of the

Empirical Software Engineering (2020) 25:5193–52545220



number of buckets covered by the test inputs to the overall number of buckets (k multiplied
by the number of neurons) defines the k-multi-section neuron coverage (KMNC). In case
the activation value of a neuron is not in the range found in the training data, it is said to fall
into a corner-case region. If the activation value is higher than the maximum in the range,
then it is in the upper corner case region. Similarly, if it is lower than the minimum value in
the range, then it belongs to the lower corner case region. Strong neuron activation coverage
(SNAC) is defined as the ratio of the number of neurons for which upper corner cases are
covered to the overall number of neurons. Neuron boundary coverage is defined as the ratio
of the number neurons for which both upper and lower corner cases are covered to the total
number of corner cases (the number of neurons multiplied by two).

Kim et al. (2019) note that neuron coverage and k-multi-section neuron coverage are not
practically useful, as they carry little information about individual inputs. They argue that it
is not self-evident that a higher NC indicates a better input, as some inputs naturally activate
more neurons. They also note that KMNC does not capture how far the neuron activations
go beyond the observed range, making it hard to assess the value of each input. To over-
come these limitations they propose a new metric, Surprise Adequacy (SA), which aims to
quantify the degree of surprise (i.e., novelty with respect to the training set) of the neuron
activation vector. Surprise adequacy has two variations: likelihood-based and distance-
based. The Distance-based Surprise Adequacy (DSA) is calculated using the Euclidean
distance between the activation traces of a given input and the activation traces observed
during training. The Likelihood-based Surprise Adequacy (LSA) uses kernel density estima-
tion to approximate the probability density of each activation value, and obtains the surprise
of the input as its (log-inverse) probability, computed using the estimated density.

Neuron Coverage, KMNC and Surprise Adequacy are all metrics that target feed-forward
DL systems. The only work that addresses coverage criteria for Recurrent Neural Networks
(RNNs) is the one by Du et al. (2019). In this work, authors model RNN as an abstract
state transition system to characterise its internal behaviours. Based on the abstract model,
they propose five coverage criteria, two of which address coverage of states and three the
coverage of transitions.

Figure 11 shows how often each adequacy criterion was used. Overall, the data indicate
a relatively wide adoption of the proposed adequacy criteria. Indeed, availability of ML-
specific ways to measure the adequacy of the test data is crucial for MLS testing. Only a
few papers adopted adequacy criteria for black box testing, e.g., scenario coverage, that is
useful when we do not have white box access and we are interested in the behaviour of the
whole system.

5.2.3 Test Input Generation (RQ 2.3)

Overall, 48 out of 70 papers describe how they generate inputs. As some papers use more
than one input generation technique, our final list contains 52 elements, as illustrated in
Fig. 12.

Our analysis (see Fig. 12) shows that the most widely applied technique for input gener-
ation is input mutation (Murphy et al. 2008, b; Odena et al. 2019; Rubaiyat et al. 2018; Tian
et al. 2018; Ding et al. 2017; Du et al. 2019; Dwarakanath et al. 2018; Nakajima and Bui
2016; Nakajima 2019; Saha and Kanewala 2019; Xie et al. 2011, 2018, 2019; de Oliveira
Neves et al. 2016; Guo et al. 2018) (16 out of 52, 31%), which consists of the creation of
new inputs by applying semantic information-preserving transformation to existing inputs.
The majority of papers using input mutation are on metamorphic testing (Ding et al. 2017;
Du et al. 2019; Dwarakanath et al. 2018; Murphy et al. 2008; Nakajima and Bui 2016; 2019;

Empirical Software Engineering (2020) 25:5193–5254 5221



Fig. 11 Test Adequacy

Saha and Kanewala 2019; Xie et al. 2011, 2018, 2019; de Oliveira Neves et al. 2016; Guo
et al. 2018) (11 out of 16), and the corresponding transformations are defined by a meta-
morphic relationship. Examples of such input mutations are affine transformations (Tian
et al. 2018), change of the pixel values (Nakajima 2019), cropping (Ding et al. 2017) for
the images or alterations that mimic the environment interference for the audio files (Du
et al. 2019), designed so that they introduce changes that are imperceptible to humans. In
contrast, the approach by Rubaiyat et al. (2018) changes input images by simulating envi-
ronmental conditions such as rain, fog, snow, and occlusion created by mud/snow on the
camera. The work by Tian et al. (2018) also transforms input images by mimicking different
real-world phenomena like camera lens distortions, object movements, or different weather
conditions. Their goal is to automatically generate test inputs that maximise neuron cov-
erage. Similarly, the work by Guo et al. (2018) has the optimisation objective of reaching
higher neuron coverage, while also exposing exceptional behaviours. To achieve this goal,
they mutate input images and keep the mutated versions that contribute to a certain increase
of neuron coverage for subsequent fuzzing. The applied mutations have to be imperceptible
for humans while the prediction of the MLS for the original and mutated input should differ
(i.e., the MLS exhibits a misbehaviour).

Another widely used methodology to generate test inputs is the search-based approach
(Abdessalem et al. 2016, 2018a, b; Bühler and Wegener 2004; Udeshi et al. 2018; Tuncali

Fig. 12 Test Input Generation

Empirical Software Engineering (2020) 25:5193–52545222



and Fainekos 2019; Eniser et al. 2019; Mullins et al. 2018; Pei et al. 2017; Udeshi and
Chattopadhyay 2019; Sekhon and Fleming 2019; Beglerovic et al. 2017) (13 out of 52,
25%). In six papers the generation of inputs using a search-based approach aims to detect
collision scenarios for autonomous driving systems. Therefore, their fitness functions use
metrics such as distance to other static or dynamic objects (Bühler and Wegener 2004;
Abdessalem et al. 2016, 2018b, d), time to collision (Tuncali and Fainekos 2019; Beglerovic
et al. 2017; Abdessalem et al. 2016), speed of the vehicle (Tuncali and Fainekos 2019;
Abdessalem et al. 2018b) or level of confidence in the detection of the object in front of the
vehicle (Abdessalem et al. 2016, 2018a). In contrast, Mullins et al. (2018) aim to identify
test inputs for an autonomous system that are located in its performance boundaries, i.e., in
the regions of the input space where small alterations to the input can cause transitions in
the behaviour, resulting in major performance changes.

The majority of the works that use adversarial input generation (5 papers out of 52,
10%) employ the existing state-of-the-art attacking methods to generate such inputs (Cheng
et al. 2018a; Kim et al. 2019; Wang et al. 2019; Zhang et al. 2019). In contrast, the
work by Abeysirigoonawardena et al. (2019) has a more targeted approach which aims to
create adversarial self-driving scenarios that expose poorly-engineered or poorly-trained
self-driving policies, and therefore increase the risk of collision with simulated pedestrians
and vehicles. While adversarial inputs can successfully trigger misbehaviours of the MLS
under test, they are often very unlikely or impossible to occur in reality, unless the sys-
tem is under the attack of a malicious user. However, security verification and validation of
MLS is a different research area on its own and the present systematic mapping does not
cover it.

5.2.4 Test Oracles (RQ 2.4)

Figure 13 provides an overview of the types of oracles that have been adopted with MLSs.
The most popular type of oracle is the metamorphic oracle, used in 22 out of 50 (44%)
papers (Aniculaesei et al. 2018; Ding et al. 2017; Du et al. 2019; Dwarakanath et al. 2018;
Guo et al. 2018; Murphy et al. 2008, b, 2009; Nakajima and Bui 2016, 2018, 2019; Saha
and Kanewala 2019; Tian et al. 2018; Udeshi et al. 2018; Xie et al. 2011, 2018, 2019; Zhang
et al. 2016, 2018b; Sun et al. 2018a; Tuncali et al. 2018, 2019). A central element of a
metamorphic oracle is a set of metamorphic relationships that are derived from the innate
characteristics of the system under test. The new test inputs are generated from the existing
ones using MRs so that the outputs for these inputs can be predicted. Out of 22 papers adopt-
ing a metamorphic oracle, 11 focus on proposing and evaluating novel MRs for different
kinds of MLS. However, these papers mostly consider classical supervised learning algo-
rithms, such as k-nearest neighbours, naive Bayes classifier, support vector machine, and
ranking algorithms. The work by Xie et al. (2018) proposes MRs for unsupervised machine
learning algorithms, such as clustering algorithms. The remaining papers (11 out of 22)
use MRs that are already available in the literature or that encode well-known domain-
specific properties of the system.

In 10 out of 50 (20%) papers, domain-specific failure of the MLS under test was used as
an oracle (Abdessalem et al. 2016, 2018a, b; Abeysirigoonawardena et al. 2019; Beglerovic
et al. 2017; Bühler and Wegener 2004; Odena et al. 2019; Rubaiyat et al. 2018; Uesato
et al. 2019; Li et al. 2016). In general, failure is denoted as the weakest form of an oracle.
However, only one of the analysed papers (Odena et al. 2019) conforms to such defini-
tion, i.e., the crash of the system under test. In all remaining cases, more complicated and

Empirical Software Engineering (2020) 25:5193–5254 5223



Fig. 13 Test Oracles

domain-specific deviations from the expected behaviour are adopted, such as collisions with
pedestrians or other vehicles, not stopping at the stop sign, or exceeding the speed limit.

Differential or cross-referencing oracle is a type of “pseudo-oracle” (Davis and Weyuker
1981) in which multiple implementations of the same algorithm are compared against each
other. If the results are not the same, then one or more of the implementations may contain
a defect. This type of oracle was used in six analysed papers (12%) (Murphy et al. 2007b;
2007a; Pei et al. 2017; Sekhon and Fleming 2019; Udeshi and Chattopadhyay 2019; Qin
et al. 2018). While the work by Qin et al. (2018) proposes a program synthesis approach that
constructs twin “oracle-alike mirror programs”, the remaining papers find different imple-
mentations for the MLS under test and use those to cross check the results. A drawback
of this type of oracle is the attribution of the fault when the considered implementations
produce different results. This was the case in the work by Murphy et al. (2007b) and the
authors commented that “there was no way to know which output was correct”. On the
other hand, three papers from our pool (Pei et al. 2017; Udeshi and Chattopadhyay 2019;
Sekhon and Fleming 2019) take advantage of such a situation, as getting different outputs
in each of the different implementations makes the inputs rather interesting and worth fur-
ther investigation by the developers. Pei et al. (2017) and Sekhon and Fleming (2019) use
such differential behaviour along with a coverage criterion as part of a joint optimisation
problem aimed to generate erroneous corner case scenarios for MLSs. Similarly, Udeshi and
Chattopadhyay (2019) propose an approach that, given a pair of ML models and a grammar
encoding their inputs, searches the input space for inputs that expose differential behaviours.

Another commonly used oracle for classifiers (6 papers out of 50, 12%) is the misclas-
sification of manually labeled inputs (Gopinath et al. 2018; Fremont et al. 2019; Ma et al.
2018c, 2019; Zhang et al. 2019; Shi et al. 2019). While using human labels as an oracle
is a pretty straightforward approach (especially for data-driven systems such as MLS), it
may also require substantial effort. Another type of oracle observed during our analysis is
mutation killing, which is used in three different papers (6%) that either propose (Ma et al.
2018d; Shen et al. 2018) or evaluate (Cheng et al. 2018a) mutation operators for MLS.

5.2.5 Access to the System (RQ 2.5)

The proposed testing approaches require different levels of access to the MLS under test. In
29 cases out of 70 (41%), it is enough to have a black-box access to the system (Abdessalem

Empirical Software Engineering (2020) 25:5193–52545224



et al. 2016, 2018a; Abeysirigoonawardena et al. 2019; Aniculaesei et al. 2018; Beglerovic
et al. 2017; Bolte et al. 2019; Bühler and Wegener 2004; Xie et al. 2018; Fremont et al.
2019; Klueck et al. 2018; Li et al. 2016; Majumdar et al. 2019; Mullins et al. 2018; Murphy
et al. 2008, 2009; Nakajima 2018; de Oliveira Neves et al. 2016; Patel et al. 2018; Qin et al.
2018; Rubaiyat et al. 2018; Tuncali et al. 2018, 2019; Udeshi and Chattopadhyay 2019;
Uesato et al. 2019; Wolschke et al. 2018; Wolschke et al. 2017; Zhao and Gao 2018; Zheng
et al. 2019; Zhang et al. 2016). In 11 cases (16%), along with the inputs and outputs of
MLS, training data should also be available: black-box access is not sufficient and data-box
access to the system should be provided (Cheng et al. 2018b; Ding et al. 2017; Henriksson
et al. 2019; Saha and Kanewala 2019; Udeshi et al. 2018; Xie et al. 2011; Dwarakanath
et al. 2018; Groce et al. 2014; Zhang et al. 2018b; Murphy et al. 2007b; Spieker and Gotlieb
2019). This is mostly the case for the papers on metamorphic testing, in which the authors
propose metamorphic relationships that change the training data in some specific way and
then analyse the changes in the output of the retrained system. Another example of data-
box access is the work by Groce et al. (2014), where the distance between the training data
and a test input is used as a metric to address the test selection problem. The remaining 30
cases (43%) require white-box access to the system (Abdessalem et al. 2018b; Byun et al.
2019; Eniser et al. 2019; Kim et al. 2019; Ma et al. 2018b, c, d, 2019; Murphy et al. 2007a,
b; Nakajima and Bui 2016; Odena et al. 2019; Pei et al. 2017; Sekhon and Fleming 2019;
Shi et al. 2019; Strickland et al. 2018; Sun et al. 2018a, b; Tian et al. 2018; Wang et al.
2019; Zhang et al. 2018a, 2019; Li et al. 2018; Du et al. 2019; Shen et al. 2018; Gopinath
et al. 2018; Guo et al. 2018; Xie et al. 2019; Cheng et al. 2018a; Nakajima 2019), as they
need information on the internal state of the trained model. The most prevalent examples in
this category are the approaches that need the values of neuron activations to measure some
adequacy criteria (Pei et al. 2017; Ma et al. 2018b) or the weights and biases of the model
to apply mutation operators on them (Ma et al. 2018d; Shen et al. 2018).

5.2.6 Context Model (RQ 2.6)

As MLSs can be complex systems that have to operate in various environments and inter-
act with different dynamic objects, they need to be able to determine the context in which
they are operating, and adapt their behaviour to context-related norms and constraints. In
our pool of papers, 17 works (24%) model the context in which the MLS operates. All of
them are in the autonomous driving domain (Abdessalem et al. 2016, 2018a, b, Abeysiri-
goonawardena et al. 2019; Beglerovic et al. 2017; Bolte et al. 2019; Bühler and Wegener
2004; Cheng et al. 2018b; Fremont et al. 2019; Klueck et al. 2018; Li et al. 2016; Mullins
et al. 2018; de Oliveira Neves et al. 2016; Tuncali et al. 2018, 2019; Wolschke et al. 2017;
Zhao and Gao 2018). The context models presented in these papers vary in terms of simplic-
ity and number of considered actors. For example, the work by Bühler and Wegener (2004)
addresses the problem of autonomous parking and provides a context model in which the
car is the only dynamic object and the environment is represented just as a set of geomet-
ric points that define the parking space. Similarly, in the work by Beglerovic et al. (2017)
the goal of the ADAS is to avoid collisions and the information about the environment is
provided in the form of the geometric coordinates of the static obstacles. In contrast, in the
work by Abdessalem et al. (2018a) the authors address more complicated scenarios and
their context model is much more detailed. In addition to the ADAS under test, they con-
sider additional mobile objects such as pedestrians and other cars. Moreover, they take into
account roadside objects, such as trees, parked cars, traffic signs, and describe the environ-
ment in terms of types of road, weather conditions and scene light. Considering a complex

Empirical Software Engineering (2020) 25:5193–5254 5225



context can increase the realism of, and thus the confidence on, the testing process, but it is
more expensive, especially because there is no standard context model that can be reused.

5.2.7 Availability (RQ 2.7)

Availability of the proposed solutions is important in the field of software testing, as new
research contributions very often rely on existing tools and prototypes. The availability of
the research artefacts (i.e., experimental data, source code) of the papers on MLS testing
is a strong indicator of how effectively the future research will build on and compare with
the currently existing work. Our results do not draw an optimistic picture on this issue,
as for 50 out of 70 (71%) papers there is no available artefact. For 20 papers (29%), the
proposed solutions are available in open-source format (Bühler and Wegener 2004; Cheng
et al. 2018b; Klueck et al. 2018; Bolte et al. 2019; Fremont et al. 2019; Tuncali et al. 2018,
2019; Wolschke et al. 2017; Uesato et al. 2019; Abdessalem et al. 2016, 2018a, b; Zhao
and Gao 2018; Abeysirigoonawardena et al. 2019; Strickland et al. 2018; Patel et al. 2018;
Mullins et al. 2018; de Oliveira Neves et al. 2016; Beglerovic et al. 2017; Li et al. 2016),
with the exception of one (Zheng et al. 2019) where the tool is available, but the source code
is not. It is worth to note that all such papers were published between the years of 2017 and
2019, which may indicate a growing positive trend toward open research in MLS testing.

5.3 Evaluation

In the following, we describe the empirical evaluations of the testing solutions proposed by
the analysed primary studies. We provide an overview of the evaluation types and methods,
as well as information about the objects and the experimental setup.

5.3.1 Evaluation Type (RQ 3.1)

We split the analysed studies based on the type of experimental evaluation: academic or
industrial. As shown in Fig. 14, the vast majority of the studies (56) carry out an evaluation
in an academic context. Three studies (Bühler and Wegener 2004; Byun et al. 2019; Zheng
et al. 2019) perform an evaluation on proprietary systems belonging to an industrial part-
ner. Five works (Murphy et al. 2007a, 2008, Abdessalem et al. 2016, 2018a, b) adopted a
combined approach, featuring an evaluation in both academic and industrial contexts, while
six works (Zhang et al. 2016; Aniculaesei et al. 2018; Zhao and Gao 2018; Wolschke et al.
2017, 2018, Nakajima 2018) contained no empirical evaluation of any sort. Taking into
account that ML is widely used in industry and its applications are growing exponentially,
the collected data suggest that industrial research should be given greater focus.

5.3.2 Evaluation Method (RQ 3.2)

We observed a number of different evaluation methods, including experiments with no
human involved, experiments with human evaluation and proof of concept studies. The
category representing the experimental approach with no humans is the widest one and fea-
tures 49 works, which is 70% of the total number of papers. Eleven papers (16%) (Bolte
et al. 2019; Cheng et al. 2018b; Fremont et al. 2019; Klueck et al. 2018; Li et al. 2016;
Majumdar et al. 2019; Murphy and Kaiser 2008; Nakajima and Bui 2016; Sekhon and Flem-
ing 2019; Tuncali et al. 2018; 2019) provided small-scale exemplary proofs of viability for
the proposed approach and are united under the “proof of concept” category. An instance of

Empirical Software Engineering (2020) 25:5193–52545226



Fig. 14 Evaluation Type

such an evaluation method is the work by Klueck et al. (2018), where the authors provide
an example of their test case generation process focusing only on one selected ontology
and its conversion into a combinatorial testing input model. Four studies out of 70 (6%)
(Abdessalem et al. 2016, 2018a, b, Groce et al. 2014) included human evaluation in their
empirical approach, while the remaining six (9%) (Zhang et al. 2016; Aniculaesei et al.
2018; Zhao and Gao 2018; Wolschke et al. 2017, 2018; Nakajima 2018) carried out no
evaluation of any kind (see Fig. 15). Overall, the young discipline of ML testing seems to
have already adopted a quite demanding evaluation standard, targeting the empirical method
of controlled experiments. When operating at the system level, experiments with humans
become critical to assess the validity and severity of the reported failures.

5.3.3 MLModels (RQ 3.3, RQ 3.4, RQ 3.5)

We have analysed the usage of existing ML models for the purpose of evaluating the pro-
posed testing approaches. We found that 43 out of 70 papers (61%) contain a mention of the
adopted ML models. Most of them are publicly available; only 26% of these papers used
models that are not open-source.

Figure 16 depicts the most popular models (to keep the size of the picture small, we report
only the models that were used at least three times in the evaluation of the retrieved papers;

Fig. 15 Evaluation Methods

Empirical Software Engineering (2020) 25:5193–5254 5227



Fig. 16 Machine Learning Models

the full list is available in our replication package (Riccio et al. 2019)). Our results show
that authors tend to reuse widely adopted and open-source models, such as LeNet (LeCun
et al. 1998) VGG (Simonyan and Zisserman 2014), or ResNet (He et al. 2016). In three
studies (Murphy et al. 2007b; Murphy et al. 2008; Murphy et al. 2009), Murphy et al.
used Martirank (Gross et al. 2006), a ranking implementation of the Martingale Boosting
algorithm (Long and Servedio 2005).

Among the steering angle prediction models for self-driving cars, five papers (Kim et al.
2019; Tian et al. 2018; Zhang et al. 2018b; Pei et al. 2017; Majumdar et al. 2019) trained
their models using the datasets provided by Udacity.5 Udacity is a for-profit educational
organisation that helps students expand their machine learning skills and apply them to the
area of autonomous driving. Udacity contributed to an open-source self-driving car project
by releasing a self-driving car simulation platform, and by introducing a series of challenges
related to various aspects of autonomous driving (e.g., lane keeping, object localisation and
path planning). According to our results, the model by the team Chauffeur6 is the most used
(3 papers) (Kim et al. 2019; Tian et al. 2018; Zhang et al. 2018b).

In 58% of the cases, researchers did not use pre-trained models, but rather performed
the training themselves. It can be noticed that the most widely used architectures are con-
volutional networks, which in turn suggests that image recognition is a frequent subject for
studies and scientific experiments.

5.3.4 Training Dataset (RQ 3.6)

We studied the datasets that were used to train the ML models considered in the evaluation
of the proposed approaches. Out of the 70 relevant studies, 28 (40%) did not use or did
not mention the usage of any specific dataset. The remaining 42 (60%) studies mention 48
datasets of different size and nature among which 10 are custom ones. According to the
content, these datasets can be classified into a number of broad categories, illustrated in
Fig. 17. We report only categories that contain two or more instances. We can notice that
the digit recognition task is the most frequently tackled one, closely followed by the general
image classification problem. Among the remaining categories, the numbers of datasets

5https://github.com/udacity/self-driving-car/tree/master/datasets
6https://github.com/udacity/self-driving-car/tree/master/steering-models/community-models/chauffeur

Empirical Software Engineering (2020) 25:5193–52545228

https://github.com/udacity/self-driving-car/tree/master/datasets
https://github.com/udacity/self-driving-car/tree/master/steering-models/community-models/chauffeur


used for tasks related to autonomous driving indicate a growing interest for the training of
NN-based autonomous vehicles.

Concerning the datasets used, MNIST (LeCun and Cortes 2010) (a labeled dataset of
hand-written digits that has a training set of 60,000 examples, and a test set of 10,000
examples) is the most popular (29%), which is not surprising due to the frequent occurrence
of digit recognition in our evaluations. CIFAR-10 (Krizhevsky et al. 2009) (a dataset of
colour images in 10 classes that has a training set of 50,000 images, and a test set of 10,000
images) is also quite adopted (16%). In the autonomous driving and ADAS domains, the
datasets of real world driving images released by Udacity are the most used (7%). Among
the seldom used datasets are the ones targeting more specific domains of application, such
as Drebin (Android malware) (Arp et al. 2014), Cityscapes (set of stereo video sequences
recorded in street scenes) (Cordts et al. 2016) or the UCI (University of California, Irvine)
ML Repository: Survive (medical) (Dua and Graff 2017). Moreover, we noticed that the
creation of a custom and tailored dataset is also a relatively frequent practice (21% of all
datasets used).

5.3.5 System & System Availability (RQ 3.7, RQ 3.8)

A relatively small subset (27%) of the papers study the behaviour of the whole MLS
(Abdessalem et al. 2016, 2018a, b; Abeysirigoonawardena et al. 2019; Beglerovic et al.
2017; Bühler and Wegener 2004; Cheng et al. 2018b; Fremont et al. 2019; Li et al. 2016;
Majumdar et al. 2019; Mullins et al. 2018; Murphy and Kaiser 2008; de Oliveira Neves
et al. 2016; Rubaiyat et al. 2018; Strickland et al. 2018; Tuncali et al. 2018, 2019; Uesato
et al. 2019; Zheng et al. 2019). From the data in Fig. 18, we can notice that advanced driver-
assistance systems (ADAS) are the most widely evaluated MLSs, along with other types of
autonomous vehicles (ROS) and unmanned underwater vehicles (UUV). This confirms the
high interest of the academic and industrial communities towards autonomous systems.

For what concerns availability, 74% of the systems used in the relevant literature are
closed-source. The largest proportion of systems that are open source consists of advanced
driver-assistance systems that are contained in the ADAS category.

Fig. 17 Datasets by categories

Empirical Software Engineering (2020) 25:5193–5254 5229



Fig. 18 Systems & Availability

5.3.6 Simulator (RQ 3.9)

Nearly one fourth of the analysed studies (27%) (Abdessalem et al. 2016, 2018a, b;
Abeysirigoonawardena et al. 2019; Beglerovic et al. 2017; Bühler and Wegener 2004; Cheng
et al. 2018b; Fremont et al. 2019; Li et al. 2016; Majumdar et al. 2019; Mullins et al. 2018;
Murphy and Kaiser 2008; de Oliveira Neves et al. 2016; Rubaiyat et al. 2018; Strickland
et al. 2018; Tuncali et al. 2018, 2019; Uesato et al. 2019; Zheng et al. 2019) make use of a
simulator. In such cases, experiments are conducted in a computer simulation of the physi-
cal environment, to avoid the costs and issues associated with experiments conducted in the
field, as well as to reduce the time necessary to run the experiments. Only one study (Li et al.
2016) independently developed a custom simulator that specifically suits the requirements
of the study, while the others adopted and, in some cases, modified the existing simulators.

From the adopted solutions (see Fig. 19), the PreScan (International 2017) and Mat-
lab simulation platforms stand out in terms of the number of mentions, each being used
by three works (Abdessalem et al. 2016, 2018a, b; Beglerovic et al. 2017; Bühler and
Wegener 2004; Tuncali and Fainekos 2019), followed by the Carla (Dosovitskiy et al. 2017)
and Udacity7 simulators, used by two works (Abeysirigoonawardena et al. 2019; Cheng
et al. 2018b; Majumdar et al. 2019; Zhang et al. 2018b). The latter simulators are designed
specifically for autonomous driving systems. Despite the prevalence of simulators tailored
for ADAS and autonomous driving systems, in the list we can see a flight simulator for
unmanned aerial vehicles (X-Plane 11) (Byun et al. 2019) and a robot simulator (V-REP,
now discontinued and replaced by its successor CoppeliaSim) (Strickland et al. 2018).

5.3.7 Failure Type (RQ 3.10)

An important aspect in the evaluation of any testing solution is the definition of fail-
ure. While for 18 (26%) (Aniculaesei et al. 2018; Bolte et al. 2019; Cheng et al. 2018b;
Dwarakanath et al. 2018; Gopinath et al. 2018; Henriksson et al. 2019; Klueck et al. 2018;
Nakajima and Bui 2016, 2018, 2019; de Oliveira Neves et al. 2016; Spieker and Gotlieb
2019; Wang et al. 2019; Wolschke et al. 2018, 2017; Zhang et al. 2016, 2018a; Zhao and
Gao 2018) papers this information is not applicable or not available, 52 (74%) works pro-
vide a description of the failure types detected in the experimental evaluation. In case the

7https://github.com/udacity/self-driving-car-sim

Empirical Software Engineering (2020) 25:5193–52545230

https://github.com/udacity/self-driving-car-sim


Fig. 19 Simulator

object of evaluation is an ML model, the failure type is defined based on the type of pre-
diction (e.g., misclassification for a classifier). As the focus is shifted from isolated ML
components to MLSs such as autonomous vehicles, the failure type frequently involves the
choice of domain-specific parameters (e.g., the amount of deviation from the center line for
a lane keeping assistance system).

In line with the results about Training Dataset (Section 5.3.4) and ML Models
(Section 5.3.3), one of the most frequent failure types is misclassification. The second most
popular category is domain-specific failures defined for autonomous vehicles and driving
assistance systems. This set of failures combines several specific instances, the most fre-
quent being deviation from the expected steering angle (five papers (Ma et al. 2018c; Patel
et al. 2018; Pei et al. 2017; Tian et al. 2018; Zhang et al. 2018b)) and number of colli-
sions (10 papers (Abdessalem et al. 2018b; Abeysirigoonawardena et al. 2019; Beglerovic
et al. 2017; Bühler and Wegener 2004; Li et al. 2016; Majumdar et al. 2019; Rubaiyat et al.
2018; Tuncali et al. 2018; Tuncali and Fainekos 2019; Uesato et al. 2019)). The importance
of metamorphic and mutation testing for MLS is reflected in the relatively large number
of mentions of the associated types of failures: five papers (Xie et al. 2018; Murphy et al.
2008, 2009; Saha and Kanewala 2019; Xie et al. 2011) used the violation of metamorphic
relationships, whereas three papers (Cheng et al. 2018a; Ma et al. 2018d; Shen et al. 2018)
used the notion of mutation killing. The full picture is shown in Fig. 20.

Fig. 20 Failure Types

Empirical Software Engineering (2020) 25:5193–5254 5231



5.3.8 Metrics (RQ 3.11)

In this section, we discuss the metrics most frequently adopted to evaluate the proposed
approaches. The exhaustive list, obtained from 60 papers (85%), covers a wide range,
depending on the task considered in the evaluation as well as the testing approach and can
be divided into eight main categories: (1) Effectiveness, (2) Coverage, (3) Similarity, (4)
Failures, (5) Mutation Score, (6) Error Rate, (7) Time, (8) Domain Expert Opinion. The
categories are listed in descending order with regards to the number of papers that used
such a metric in the evaluation process and leave aside a number of metrics that were used
only once or twice or are too specific to be classified. The numbers for each category are
presented in Fig. 21.

In the Effectiveness category, metrics based on the loss and accuracy are the most often
adopted ones (ten papers (Eniser et al. 2019; Ma et al. 2018c; Strickland et al. 2018; Li et al.
2018; Ding et al. 2017; Byun et al. 2019; Udeshi and Chattopadhyay 2019; Xie et al. 2019;
Kim et al. 2019; Wang et al. 2019)), while precision, recall and F-measure appear in three
works (Zheng et al. 2019; Fremont et al. 2019; Mullins et al. 2018) and AUROC in only
two papers (Kim et al. 2019; Wang et al. 2019). Coverage is the second most extensive class
(14 papers Sun et al. 2018a, b; Cheng et al. 2018b; Du et al. 2019; de Oliveira Neves et al.
2016; Mullins et al. 2018; Ma et al. 2018b, 2019; Tian et al. 2018; Pei et al. 2017; Sekhon
and Fleming 2019; Guo et al. 2018; Xie et al. 2019; Kim et al. 2019), in which we can
distinguish a relatively large family of neuron coverage metrics (Ma et al. 2018b; Tian et al.
2018; Pei et al. 2017; Sekhon and Fleming 2019; Guo et al. 2018; Xie et al. 2019; Kim et al.
2019). The variety of metrics stemming from neuron coverage are reviewed in details in the
Section 5.2.2. Category Time includes execution time or time spent to generate a desired
number of inputs. It served as a metric for performance evaluation in four papers (Shi et al.
2019; Zhang et al. 2019; Udeshi et al. 2018; Guo et al. 2018). Three studies (Abdessalem
et al. 2016, 2018a, b) use domain expert opinions as qualitative indicators to evaluate the
proposed approaches. The time performance of an MLS testing approach is particularly
important when dealing with complex MLSs, such as self-driving cars, because even in
a simulation environment the budget of available system executions is severely limited.
Human feedback is also quite important, since failure scenarios might be useless if falling
outside the validity domain.

Fig. 21 Evaluation Metrics

Empirical Software Engineering (2020) 25:5193–52545232



5.3.9 Comparative Study (RQ 3.12)

In general, comparative studies are important as they show the differences (e.g., pros and
cons) between a novel technique and the state of the art. They can guide researchers and
practitioners in the choice of an appropriate solution for their specific needs. In our list of
relevant papers, 26 (37%) (Abeysirigoonawardena et al. 2019; Bühler and Wegener 2004;
Byun et al. 2019; Cheng et al. 2018a; Ding et al. 2017; Fremont et al. 2019; Groce et al.
2014; Guo et al. 2018; Kim et al. 2019; Ma et al. 2018b, c, 2019; Mullins et al. 2018; Saha
and Kanewala 2019; Sekhon and Fleming 2019; Shi et al. 2019; Spieker and Gotlieb 2019;
Sun et al. 2018a, b; Tuncali et al. 2018, 2019; Udeshi and Chattopadhyay 2019; Udeshi et al.
2018; Xie et al. 2011; Zhang et al. 2019; Zheng et al. 2019) include a comparative evalu-
ation. Test input selection, generation and prioritisation are the techniques most frequently
involved in comparative evaluations. For other MLS testing techniques, comparative stud-
ies are generally lacking, which may be related to the scarce availability of baseline MLS
testing solutions as open-source tools (see results for RQ 2.7).

5.3.10 Experimental Data Availability (RQ 3.13)

Availability of experimental data is crucial for replication studies and for projects that build
on top of existing solutions. Unfortunately, only a fraction of authors of the considered
studies made their experimental data publicly available (despite we considered the cases
when data is partially accessible as “available”). This fraction comprises 13 papers out of
70 (19%) (Abdessalem et al. 2018b; Byun et al. 2019; Eniser et al. 2019; Henriksson et al.
2019; Kim et al. 2019; Pei et al. 2017; Shi et al. 2019; Sun et al. 2018a, b; Tian et al. 2018;
Udeshi and Chattopadhyay 2019; Udeshi et al. 2018; Zhang et al. 2018a). This is a rather
negative result, which may hinder the growth of the research in the field.

5.3.11 Time Budget (RQ 3.14)

Training and testing of MLSs is known to be a very expensive and time consuming process
and getting a rough estimate of the average time spent to conduct an experiment in the field
is indeed quite useful. However, only 8 (11%) (Ma et al. 2018c; Abdessalem et al. 2018a, b;
Sun et al. 2018b; Du et al. 2019; Tuncali and Fainekos 2019; Xie et al. 2019; Mullins
et al. 2018) studies report information about time budget, ranging from 1/2h to 50h, with
an average of 16.4h. This values give an order of magnitude of the time budget allocation
necessary when testing complex MLSs.

5.3.12 Software Setup (RQ 3.15)

Concerning the software libraries and frameworks used for the implementation and evalua-
tion of the proposed approaches, only 22 (31%) papers (Beglerovic et al. 2017; Bühler and
Wegener 2004; Byun et al. 2019; Xie et al. 2018; Ding et al. 2017; Eniser et al. 2019; Groce
et al. 2014; Kim et al. 2019; Ma et al. 2018b; Ma et al. 2018d; Murphy et al. 2009; Odena
et al. 2019; Pei et al. 2017; Saha and Kanewala 2019; Shi et al. 2019; Spieker and Gotlieb
2019; Tuncali et al. 2018; Tuncali and Fainekos 2019; Udeshi et al. 2018; Xie et al. 2019;
Xie et al. 2011; Zhang et al. 2018b) provide such information. As illustrated in Fig. 22,
Keras and Tensorflow are the most used frameworks, followed by Matlab. The Ubuntu oper-
ating system was explicitly mentioned in six papers (Udeshi et al. 2018; Byun et al. 2019;
Eniser et al. 2019; Pei et al. 2017; Murphy et al. 2009; Guo et al. 2018).

Empirical Software Engineering (2020) 25:5193–5254 5233



5.3.13 Hardware Setup (RQ 3.16)

Only 19 (27%) papers (Bolte et al. 2019; Byun et al. 2019; Xie et al. 2018; Ding et al. 2017;
Eniser et al. 2019; Fremont et al. 2019; Guo et al. 2018; Kim et al. 2019; Ma et al. 2018b, d;
Murphy et al. 2009; Pei et al. 2017; Qin et al. 2018; Shi et al. 2019; Spieker and Gotlieb
2019; Sun et al. 2018a, b; Udeshi et al. 2018; Xie et al. 2019) contain information on the
hardware setup used to conduct the experiments. In three works (Ma et al. 2018d, b; Spieker
and Gotlieb 2019), experiments were run on a cluster of computers, while nine mention
the specific GPU model that was used (Bolte et al. 2019; Byun et al. 2019; Fremont et al.
2019; Guo et al. 2018; Pei et al. 2017; Ding et al. 2017; Ma et al. 2018b, d; Xie et al. 2019).
Interestingly, all of the GPU models reported in the papers are NVIDIA products, with the
GeForce series being mentioned five times (Bolte et al. 2019; Byun et al. 2019; Fremont
et al. 2019; Guo et al. 2018; Pei et al. 2017) and the Tesla series four times (Ding et al. 2017;
Ma et al. 2018b, d; Xie et al. 2019). We conjecture this result is influenced by the adoption
of CUDA as parallel computing platform and programming model in the NVIDIA graphical
processing units (GPUs), because Tensorflow supports NVIDIA GPU cards with CUDA.

5.4 Demographics

In the following, we report and comment some statistics about the papers considered in this
study, including year of publication, venue, authors, affiliations and affiliation countries.
Note that for preprint versions that were later published at a conference, journal or work-
shop, we always refer to the latter version. The reported data, as well as the number of
citations, were collected from Google Scholar on May 11th, 2020.

5.4.1 Year of Publication

When analysing the year of publication of the papers considered in this study, we distinguish
between papers that have been made available exclusively in preprint archives and papers
that have been accepted for publication in a peer-reviewed journal, conference or workshop.
The aggregated publication years are shown in Fig. 23. The trend apparent from this figure
is that the number of papers is rapidly increasing in recent years, showing a growing interest
and attention of the software engineering community towards testing MLSs.

Fig. 22 Software setup

Empirical Software Engineering (2020) 25:5193–52545234



Table 6 Venues represented in the mapping (number of papers shown within brackets)

Conferences (40) Workshops (10) Journals (8) Preprint (12)

ASE (6) APSEC (1) PRDC (1) ISSREW (3) TSE (2) arXiv (11)

ICSE (4) ATVA (1) SANER (1) QRS-C (2) JSS (2) CUCS report (1)

ISSTA (4) FASE (1) SEFAIS (1) FAACS SEFM-W (1) CVT (1)

ESEC/FSE (3) IROS (1) SOSP (1) ICSE-Nier (1) IJES (1)

AITest (2) ISSRE (1) MET (1) IV Transactions (1)

ICRA (2) ISSSR (1) RT (1) SAE Tech. Papers (1)

IV Symposium (2) ITSC (1) SOFL+MSVL (1)

QRS (2) PLDI (1)

SEKE (2) PMLR (1)

5.4.2 Venue and Venue Type

Table 6 shows the publication venues of the papers considered in this systematic mapping.
More than half of the papers (40 out of 70) were published at conferences; only a relatively
small number at workshops (10) or journals (8). The high number (30) of papers that we
found only in arXiv at the time when we downloaded all relevant works (February 27th,
2019), some of which (18/30) were published later in a peer-reviewed venue, as well as
the high number of papers published at conferences/workshops, indicate the importance of
fast knowledge transfer in a quickly evolving field like ML testing. It is common practice
for researchers working on ML testing to continuously check for new arXiv submissions
relevant for their research.

5.4.3 Authors

We aggregate statistics about the authors of the considered papers without taking the order
of authors into account. Overall, 241 distinct authors contributed to 70 analysed papers; the

Fig. 23 Distribution of papers per year

Empirical Software Engineering (2020) 25:5193–5254 5235



average number of authors per paper was 4.34. On average, an author contributed to 1.26
of the papers, where 205 authors contributed to one paper, 18 to two papers and 11 to three
papers. The following six authors contributed to more than three (3) papers:

6 papers: Kaiser, G. (Columbia University) (Murphy et al. 2007a, b, 2008, b, 2009; Xie
et al. 2011)
6 papers: Murphy, C. (Columbia University) (Murphy et al. 2007a, b, 2008, b, 2009;
Xie et al. 2011)
5 papers: Liu, Y. (Nanyang Technological University) (Ma et al. 2018b, d, 2019; Xie
et al. 2018, 2019)
4 papers: Li, B. (University of Illinois at Urbana–Champaign) (Ma et al. 2018b, d,
2019; Xie et al. 2019)
4 papers: Ma, L. (Harbin Institute of Technology) (Ma et al. 2018b, d, 2019; Xie et al.
2019)
4 papers: Xue, M. (Nanyang Technological University) (Ma et al. 2018b, d, 2019; Xie
et al. 2019)

5.4.4 Affiliations

Overall, the authors who contributed to the papers considered in this study work for 84 dis-
tinct organisations.8 On average, each of these organisations contributed to 1.68 papers and
each paper was written by authors from 2.0 different organisations. The six organisations
which contributed to the most papers are:

8 papers: Columbia University (Tian et al. 2018; Pei et al. 2017; Murphy et al. 2007a,
b, 2008, b, 2009; Xie et al. 2011)
6 papers: Nanjing University (Shi et al. 2019; Xie et al. 2018, 2011; Cheng et al. 2018a;
Shen et al. 2018; Qin et al. 2018)
6 papers: Nanyang Technological University (Xie et al. 2018, 2019; Ma et al. 2018b,
d, 2019; Du et al. 2019)
5 papers: Carnegie Mellon University9 (Gopinath et al. 2018; Ma et al. 2018b, d, 2019;
Xie et al. 2019)
5 papers: Harbin Institute of Technology (Ma et al. 2018b, d, 2019; Xie et al. 2019; Du
et al. 2019)
5 papers: Kyushu University (Ma et al. 2018b, d, 2019; Xie et al. 2019; Du et al. 2019)
5 papers: University of Illinois at Urbana-Champaign (Ma et al. 2018b, d, 2019; Zheng
et al. 2019; Xie et al. 2019)

For-Profit Organisations It is notable that besides universities, we also observed various
contributions from for-profit companies. This is particularly evident for papers in the auto-
motive domain. For-profit organisations that contributed to papers in this domain include:
IEE S.A. Contern (Luxembourg) (Abdessalem et al. 2016,2018a, b), AVL List (Aus-
tria) (Klueck et al. 2018; Beglerovic et al. 2017) Volkswagen (Germany) (Bolte et al. 2019)
DaimlerChrysler (Germany) (Bühler and Wegener 2004) and Toyota (USA) (Tuncali et al.
2018). This finding is encouraging, but we argue that more industrial involvement should
be actively promoted, especially by non-profit organisations (e.g., through collaborations

8For the analysis of authors’ affiliations, we only considered the affiliations mentioned in the papers.
9Including Carnegie Mellon University at Silicon Valley.

Empirical Software Engineering (2020) 25:5193–52545236



Table 7 Countries (ISO3) of
authors affiliations (number of
papers shown within brackets)

Asia (29) Europe (19) America (33) Oceania (6)

CHN (20) DEU (6) USA (30) AUS (6)

JPN (9) GBR (5) CAN (3)

SGP (8) LUX (3) BRA (1)

IND (2) SWE (2)

TUR (1) AUT (1)

KOR (1) NOR (1)

VNM (1) CHE (1)

with the industrial sector), because of the growing number of industrial products/services
that embed some ML technology and demand for dedicated ML testing techniques. Insights
from the industry can help researchers steer their work towards applicable and relevant top-
ics that can be applied in practice. Moreover, industrial data sets are crucial to evaluate the
proposed techniques in realistic and relevant contexts.

5.4.5 Countries

We analysed the number of papers by country, considering the country of the affiliation
indicated in each paper. If a paper was written by multiple authors from different countries,
we counted that paper for all represented countries. As above, we did not take the author
order into account. Table 7 shows the number of papers by country. At least one author of 31
papers was affiliated to a research institution in the United States of America (USA), more
than any other country. USA is followed by China (20 papers), Japan (9 papers), Singapore
(8 papers) and Australia (7 papers). Germany (6 papers) is the most active European country.
Table 7 reports the paper distribution by continent. The most active continent is America
(33 papers), followed by Asia (29 papers) and Europe (19 papers).10

5.4.6 Citation Counts

We collected the citation counts from Google Scholar on May 11th, 2020. If multiple
versions of a paper were available, we aggregated the citation counts. On average, the con-
sidered papers were cited 37.62 times with a median of 13.5 citations. The most cited papers
in our pool are the following:

377 citations: DeepXplore: Automated Whitebox Testing of Deep Learning Systems by
Pei et al. (2017)
354 citations: DeepTest: Automated Testing of Deep-Neural-Network-driven
Autonomous Cars by Tian et al. (2018)
159 citations: Testing and validating machine learning classifiers by metamorphic
testing by Xie et al. (2011)
113 citations: Properties of machine learning applications for use in metamorphic
testing by Murphy et al. (2008)

10As papers with authors from multiple countries of the same continent are only considered once in the per-
continent aggregation, the number of papers per continent does not necessarily equal the sum of the number
of papers by countries of that continent.

Empirical Software Engineering (2020) 25:5193–5254 5237



Fig. 24 Distribution of citations per paper

111 citations: DeepRoad: GAN-based metamorphic testing and input validation
framework for autonomous driving systems by Zhang et al. (2018b)

Figure 24 illustrates the distribution of the number of citations per paper. It is quite
remarkable that the two most cited papers were published in 2017 and 2018: in the two to
three years since their first publication11 they were cited more than 350 times, once more
indicating the rapid growth of and the increasing interest in the area of MLS testing.

6 Discussion

In this section, we first summarise the weaknesses of the presented approaches and we distill
a set of open challenges, pointing to directions for future research.

6.1 Weaknesses

MLS testing is a new research area that has not yet defined a clear and shared research
methodology. As a consequence, although existing works make important contributions to
advance the state of the art, they have at the same time weaknesses in aspects that are not
yet consolidated, but will definitely play an important role in the future. Such weaknesses
belong to various categories, including: (1) hyper-parameter selection; (2) notions such
as failure, fault, bug fixing; (3) realism and relevance of the test scenarios; (4) empirical
methodology and metrics; (5) nondeterminism and statistical assessment; (6) computational
cost.

Hyper-Parameter Selection the proposed techniques often involve the selection of thresh-
olds (e.g., to distinguish different levels of activation of neurons) and other hyper-
parameters of the algorithms. However, such selection is often not systematic and the
sensitivity of the approach to such choice is not evaluated. No guidance is provided to the
reader to determine the hyper-parameter values that fit the problem at hand, and often the
choice of hyper-parameters sounds quite arbitrary and is not explained in detail.

11Their preprint versions were first available on May 18th, 2017 and August 28th, 2017, respectively.

Empirical Software Engineering (2020) 25:5193–52545238



Failure, Fault, Bug Fixing The nature of failures and faults, as well as the process of bug
fixing, change substantially or require profound adaptations when considering MLSs. How-
ever, in the literature, no consolidated terminology has been introduced yet, which affects
the evaluation of effectiveness of the proposed approaches. For instance, in our surveyed
papers, often a misclassification (for classifiers) or a high prediction error (for regressors)
are regarded as failures of the ML model. However, any ML model is by construction
expected to misclassify some inputs, or to produce a nonzero prediction error on some
inputs. Indeed, in real world scenarios, it is quite unrealistic to achieve perfect classification
(accuracy = 1.0) or prediction scores (MSE = 0.0).

Moreover, MLS testing techniques should not solely expose misclassifications and pre-
diction errors at the ML model level, but rather look at the side-effects of such inaccuracies
at the overall system level. Individual misclassifications (or individual mis-predictions) are
suboptimal definitions of failures if the whole MLS is considered, because they may have
no consequences, or, on the contrary, may lead the overall system to deviate significantly
from its requirements and result in a failure. For example, in the self-driving car domain,
a single mis-prediction of the steering angle component may be irrelevant to the overall
driving experience, if done in a situation in which the overall system is able to compensate
its effects with appropriate mitigation strategies. On the other hand, there may be cases in
which a single mis-prediction is responsible for a chain of subsequent mis-predictions that
ultimately leads to a crash. Thus, the usage of the output produced by these approaches is
sometimes unclear as the detection of misclassifications or prediction errors does not nec-
essarily indicate that the ML model is faulty and insufficient for the task assigned to it. In
other words, it is unclear if the discovered faults are real faults.

For what concerns the actions to be taken when a fault is detected, most approaches sug-
gest re-training and show that re-training is effective in handling the adversarial/corner-case
inputs that caused the misbehaviours. However, re-training is the right corrective action
only if the discovered fault is associated with the training phase, but not all ML faults are
necessarily due to inadequate training, as reported in existing taxonomies of deep learning
faults (Humbatova et al. 2020; Islam et al. 2019; Zhang et al. 2018a). For instance, the model
structure (not its training) may be inadequate for the task being considered. In such a case,
re-training is not the appropriate bug fixing action. Additionally, while it is quite straight-
forward that re-training on adversarial inputs will allow such cases to be handled properly
by the re-trained system, this action may have detrimental effects on the effectiveness of the
system in real operating conditions if adversarial examples are not representative of realis-
tic cases. Thus, the response of the system to adversarial examples may become unclear or
unpredictable, worsening the reliability of the MLS with respect to the original system.

Realism Artificial adversarial inputs are regarded as test cases that expose faults, regardless
of their likelihood of occurrence. Realism of generated inputs is not assessed. Transfor-
mations (e.g., image transformations) that are supposed to preserve the semantics are not
checked to respect such assumption, e.g., by means of a human study. In fact, small input
perturbations do not necessarily ensure that the resulting (adversarial) input is a rele-
vant/realistic test case. For instance, if the starting point is already troublesome to classify
for humans (e.g., a handwritten digit “7” that looks already like a “1”), the transformation
may end up with an input that falls beyond the validity domain of the ML model (Riccio
and Tonella 2020). Hence, a misbehaviour on such input cannot be regarded as a failure and
does not point to any fault. Sometimes the test inputs used to show the effectiveness of the
proposed approach are artificial and unrealistic. Correspondingly, it is quite expected that
the ML model may misbehave when applied to them. The issue of realism affects also the

Empirical Software Engineering (2020) 25:5193–5254 5239



simulated environments where the ML based system operates during testing. In fact, often
over-simplified models of the environment are adopted, making the possibility to gener-
alise the results to the real operational environment at least questionable. The same issue
affects existing proposals of ML mutation operators, which do not mimic real faults and
introduce unrealistic issues. For instance, mutation operators that modify the weights of a
neural network after it has been trained do not match any ML fault reported in the existing
taxonomies (Humbatova et al. 2020; Islam et al. 2019; Zhang et al. 2018a) and look quite
unrealistic.

Empirical Methodology and Metrics Metrics have been proposed (e.g., to prioritise test
cases, to measure adequacy of test data) without any form of theoretical foundation, or
empirical validation (Briand et al. 1998, 1999). Only their capability to react to adversar-
ial examples is demonstrated, i.e., (accuracy) metrics improve if the test suite is augmented
with adversarial examples. However, their usefulness in practice, to improve the thorough-
ness of MLS testing, is still to be demonstrated. Overall, empirical validation of MLS testing
techniques lacks a shared, well-defined methodology. A small number of datasets (often
just one) is used for the empirical validation. Empirical validation focuses mostly on clas-
sification problems. Regression problems are rarely included, especially because they often
require nontrivial adaptation of the proposed techniques. In general, empirical validation
does not aim for the exposure of real faults, since no dataset of real faults is available yet,
and surrogate evaluation targets (inaccuracies on adversarial inputs) are immature and quite
unconvincing.

Nondeterminism ML systems behave differently if trained on a different dataset or even
when re-trained on the same dataset, if the training algorithm is nondeterministic (this is
always the case of neural networks, whose weights are initially assigned a small random
value). However, assessment of MLS testing techniques often do not consider that results
may differ upon re-execution, if the system is re-trained. A notable example is the notion
of mutation killing. In fact, drop of accuracy or prediction error cannot be used as the only
signal of a test suite being able to kill a mutant. In fact, the exposed performance drop may
be just due to the re-training of the mutated ML system, not to the effectiveness of the test
suite. In fact, even the original, un-mutated system may be “killed” by a test suite if it is
trained multiple times and its performance (accuracy or prediction error) drops upon some
re-training.

Computational Cost Test generation techniques may require the execution of the sys-
tem under test to assess the quality (e.g., adequacy) of the generated test scenarios. This
may be computationally expensive, for instance, if execution involves complex and long-
running simulations. The majority of existing approaches do not consider the algorithmic
and runtime cost of the proposed solutions. However, practical adoption of the proposed
MLS testing techniques in the daily activity of developers demands for computationally
affordable solutions that can deliver their results in a reasonable time.

6.2 Open Challenges

Most of the weaknesses discussed in the previous section can be turned into open challenges
and opportunities for future research. Correspondingly, many of the categories of weak-
nesses appear in this section as open challenges. Our analysis of the literature highlighted
several opportunities for future research that can potentially lead to major breakthroughs

Empirical Software Engineering (2020) 25:5193–52545240



in the area. We can group the open challenges into the following categories: (1) hyper-
parameters; (2) failures, faults, bug fixing; (3) empirical methodology and metrics; (4)
realism; (5) nondeterminism; (6) computational cost; (7) scope of MLS testing.

Hyper-Parameters we should define and adopt a systematic methodology for the selection
and reporting of hyper-parameters of the proposed MLS testing techniques. Assessment of
the sensitivity of the proposed techniques to their hyper-parameters should become standard
practice.

Exposing Failures, Finding Faults, Fixing Bugs ML models should be evaluated in the
context of the software system they are part of. In fact, inaccuracies of an isolated ML
model (misclassifications or prediction errors) may or may not have consequences that can
be regarded as failures at the system level. Hence, the effectiveness of test input genera-
tors should be measured on relevant, practical usage scenarios where a failure is a failure
of the whole system, not an inaccuracy of the ML model alone. Indeed, this is what dis-
tinguishes the software engineering perspective on testing from the machine learning one.
Correspondingly, bug fixing should amount to any intervention (e.g., on the model archi-
tecture or the training phase) to improve the system level performance, so as to reduce the
possibility of system level failures. Hence, bug fixing may include, but should not be limited
to, re-training.

Empirical Methodology and Metrics We should introduce and adopt a solid empirical
validation methodology, with associated metrics, that can assess the effectiveness of the
proposed testing techniques directly, without resorting to proxies (e.g., ML inaccuracies,
such as misclassifications or prediction errors). The goal is to be able to show that the
proposed testing approaches are effective in exposing and fixing relevant ML issues, i.e.,
issues that can make the whole system fail in realistic execution scenarios, not just inac-
curacies of the ML model alone, because the latter are intrinsic to the process of learning
a behaviour from a training dataset and are hence unavoidable: the overall system should
respect the functional requirements, despite the occasional occurrence of ML inaccuracies.
Correspondingly, we need a solid benchmark for the evaluation of the proposed approaches.
Such repositories exist in traditional software engineering research, such as SIR (Do et al.
2005), Defects4J (Just et al. 2014), SF100 (Fraser and Arcuri 2012), and BugsJS (Gyimesi
et al. 2019). This has not been the case, however, for ML techniques in software engineer-
ing. Ideally, such a benchmark should include a variety of real ML based systems, not just
simple classifiers, with known ML faults. It should include both systems that make use
of regressors and systems that make use of classifiers. When it comes to systems that use
regressors (e.g., for the prediction of the steering angle in self-driving cars), an open chal-
lenge is the definition of the oracle, which could take the form of metamorphic relations.
Indeed, each application domain has its own constraints and requirements. More instances
of domain specific oracles should be made available to ensure a fair assessment of the
detection of system failures.

Realism ML models produce an output for any input in their huge input domain, but the sys-
tem that uses those ML models has usually a much narrower validity domain. For instance,
an ML regressor that predicts the steering angle of a self-driving car from the image col-
lected by its camera will produce a steering angle for any input image, including pictures

Empirical Software Engineering (2020) 25:5193–5254 5241



that can never be taken by the car camera, pictures that do not represent any road and pic-
tures that contain just noise or geometrical shapes. The frontier between valid inputs and
invalid ones can be blurred and difficult to define, but MLS testing techniques should focus
on the generation of inputs within the validity domain of the overall system in which the
ML model is used (Riccio and Tonella 2020). Otherwise, the detected misbehaviours are
only hypothetical and do not represent any problematic scenario that can occur in the real
world. Techniques that manipulate the inputs to artificially generate new inputs (e.g., dur-
ing the test generation process or in the definition of metamorphic relations) have the same
problem: when an input within the validity domain of the system is mutated and becomes a
new potential input, the result should be shown to be still a valid and realistic input for the
system. Some of the proposed metamorphic relations (e.g., introducing black bands upon
image translation) do not respect such constraints. We need to define a set of input trans-
formations that produce realistic scenarios, not artificial ones. In the case of metamorphic
relations, such transformations are also supposed to be semantic preserving. Human studies
may be needed to ensure that semantic preservation is indeed guaranteed by the proposed
metamorphic relations. Realism of the transformed inputs could be also assessed empirically
in human studies. We should produce a catalog of input transformations that are ensured to
preserve realism, a subset of which is also ensured to preserve the semantics of the input
(metamorphic relations). When a misbehaviour is exposed, we should be able to distinguish
between realistic/possible vs unrealistic/unlikely test scenarios (e.g., by a measure of real-
ism/likelihood). ML mutations are also affected by the realism issue. In fact, mutations that
do not match any real fault may be useless in exposing failures of the MLS. Ideally, mutation
operators should be based on real faults that developers may introduce into ML compo-
nents when these are designed, developed and trained. Moreover, useful mutation operators
are also required to be nontrivial as well as not impossible to kill, because they are other-
wise not discriminative at all (Jahangirova and Tonella 2020). Simulators are often used to
run ML based systems in a controlled environment, where testing is faster and safer than in
the production environment. However, the degree of realism of the simulated environment
affects the capability to expose all and only relevant faults. We need complex open source
simulation environments that support rich models of the execution contexts (e.g., complete
models of the environment where a self-driving car operates, including pedestrians, other
vehicles, buildings, trees, obstacles, signs, and traffic lights).

Nondeterminism Effectiveness of the proposed MLS testing techniques should take the
intrinsic nondeterminism of ML training into account. Observing a change of behaviour is
not enough to show that the MLS testing technique is effective, because the same change
may be observed when training the system multiple times on the same dataset. A posi-
tive effect of the proposed testing technique can be meaningfully reported only when the
distribution of the effectiveness metric values is shown to be statistically different from
the distribution observed upon multiple training. For instance, a mutant can be said to be
killed by a test suite only if a statistical test, such as Wilcoxon, can reject the null hypothe-
sis (Jahangirova and Tonella 2020) (in this case, the null hypothesis states that the accuracy
distributions for the mutant and for the original system are the same). In general, a statis-
tical test should be executed to compare the distributions of the effectiveness metrics upon
multiple training of the original system vs the mutated/faulty version.

Computational Cost MLS testing techniques may require computationally expensive
executions of the ML system and studies often report long timeouts (e.g., days) and sub-
stantial computational resources (e.g., high performance computing clusters), which may be

Empirical Software Engineering (2020) 25:5193–52545242



unavailable to the ML system testers. Further research is needed to speed up test generation
techniques that require test case execution, e.g., by resorting to surrogate models that can
estimate the output of an ML based system without executing it (see preliminary results by
Beglerovic 2017).

Scope of theMLS Testing Research Area MLS testing is not a well established and consol-
idated area yet. As such, it lacks a shared terminology, experimental methodology, agreed
assessment metrics and benchmark. Its positioning in the broad discipline of computer sci-
ence is also not completely clear. This was quite apparent when we collected the papers
relevant for this systematic mapping. In fact, while most MLS testing papers appeared in
software engineering and software testing venues, other important works (reached through
snowballing) were published at machine learning, autonomous vehicles and other AI-related
conferences. The tagging of the relevant papers (e.g., in arXiv) is usually “software engi-
neering”, but this is often accompanied by “machine learning” and occasionally only the
latter tag is used. This situation points to the need for finding the most appropriate venue and
community for research works on MLS testing. Some attempts to create new events devoted
to this new field are already emerging, such as the DeepTest workshop,12 co-located with
ICSE, or the IEEE International Conference On Artificial Intelligence Testing.13

7 RelatedWork

To the best of our knowledge, eight secondary studies have been conducted in the area of
MLS testing. Among them, the works by Sherin et al. (2019) and Zhang et al. (2020) are the
most related to this mapping in terms of goals and approach. Our discussion of the former
work is based on the preprint version, since it is not published in any peer-reviewed venue
at the time of writing.

Similarly to our study, Sherin et al. (2019) performed a systematic mapping on testing
techniques for machine learning programs. They considered 37 papers in total. Sherin et al.
have mostly focused on the analysis of ML models in isolation, with a few exceptions, such
as the work by Tuncali et al. (2018). In contrast, our mapping is not limited to ML model
testing, but also considers testing of whole systems that use one or multiple ML models.
Moreover, in the work by Sherin et al. (2019) the considered studies are classified based
only on the type of testing approach, e.g., mutation, combinatorial, evolutionary. We instead
investigate multiple aspects of the testing approaches, and provide a finer-grained, multi-
dimensional classification, by considering, among the others, the used/proposed adequacy
criteria, the algorithms for automated input generation, and the test oracles. There are also
remarkable methodological differences between the two mappings: in the data extraction
phase, Sherin et al. (2019) identified beforehand a closed list of values for each attribute,
and assessors assigned a value from the list to each paper. Hence, their conclusions descend
from the distribution of these attributes. Differently, we allowed the assessors to provide
open answers that were later analysed, grouped and labeled, so as to report an informed dis-
cussion about addressed problems, open challenges and weaknesses of the retrieved papers.
Many of them are not reported among the findings of Sherin et al. (2019), such as our
discussion about hyper-parameter selection, the regression problems potentially introduced

12https://deeptestconf.github.io
13http://ieeeaitests.com/

Empirical Software Engineering (2020) 25:5193–5254 5243

https://deeptestconf.github.io
http://ieeeaitests.com/


when re-training is used as a corrective action, or the effect of non-deterministic training
algorithms on the oracle problem. Moreover, open-ended questions allowed us to propose
new concepts such as data-box access, ML model testing level, domain-specific failure and
scenario coverage, which are specific for MLS testing. This allowed us to provide additional
insights about weaknesses common to many existing studies, such as evaluating ML mod-
els mostly in isolation and not as a part of the whole MLS. We also identify unique open
challenges not reported by Sherin et al. (2019), among which: (1) evaluating whether inac-
curacies of an isolated ML model have consequences that can be regarded as failures at the
system level, and (2) generating inputs within the validity domain of the overall system in
order to detect misbehaviours that can occur in the real world. In conclusion, our mapping
focuses on whole MLSs, covers multiple dimensions, and provides open-ended analyses
that cannot be found in the systematic mapping by Sherin et al. (2019).

Zhang et al. (2020) provide a comprehensive survey on MLS testing. The authors col-
lected 128 relevant primary studies through multiple search methods. The work is broader in
scope than our systematic mapping, since it considers testing aspects other than functional
testing, such as security, data privacy, efficiency and interpretability, and their analysis is
not restricted to the software engineering field. On the other hand, we investigated soft-
ware engineering aspects not considered by J. M. Zhang et al., such as the testing levels
and the type of access to the ML model; the kind of experimental evaluation (e.g., aca-
demic vs industrial); the types of ML models and systems; the availability of artefacts; the
metrics adopted in the experiments; the baselines used for comparison (in case of compar-
ative studies); the availability of experimental data; the software and hardware setup used
in the experiments. We believe that both works provide useful and complementary informa-
tion to researchers interested in MLS testing. However, it should be noted that their study
is designed as a survey, whose goal is to provide a generic yet comprehensive overview on
the body of literature related to MLS testing. Differently, our work is a systematic mapping
that was driven by 33 carefully formulated research questions. Accordingly, we investigated
in detail the retrieved papers along multiple dimensions (e.g., test level, access, metrics) to
synthesise new evidence based on the analysis of the literature. For instance, analysis of the
testing level allowed us to identify a gap between model level faults and system level fail-
ures, which definitely deserves further investigation. The high computational costs for the
execution of test cases in simulators challenge researchers to find time-efficient approaches
for test generation. As in the survey by J. M. Zhang et al., we also identify nondeter-
minism as a weakness of the existing MLS testing techniques. Zhang et al. address it by
proposing flaky test detection as an open challenge for research. Instead, we suggest to exe-
cute statistical tests to compare the distributions of the effectiveness metrics upon multiple
trainings.

In addition to the two studies discussed above, there are six secondary studies that
investigate research areas partially overlapping with ML testing.

Masuda et al. (2018) report a short survey about software quality of learning-based appli-
cations. They collected 101 papers from artificial intelligence and software engineering
conferences, including five magazines, and tagged each paper with one keyword from an
artificial intelligence vocabulary. The research questions are quite specific to quality, ver-
ification, and design aspects. Differently, our work focuses on functional aspects of MLS
testing, for which we classified the retrieved papers considering multiple dimensions and a
set of research questions biased toward software testing.

Braiek and Khomh (2018) reviewed 39 papers about verification and testing practices
for ensuring the quality of ML models and their training data. Similarly to Braiek and
Khomh (2018), we outline the main features of the proposed testing approaches. However,

Empirical Software Engineering (2020) 25:5193–52545244



the scope of our mapping is wider, since we considered techniques that test systems con-
taining one or more ML models, not just isolated ML models. Moreover, we performed a
deeper decomposition of the testing aspects into multiple, detailed research questions, and
investigated how the considered techniques have been evaluated.

Borg et al. (2019) performed a literature review focused on challenges and solution pro-
posals for verification & validation and safety analysis (including test case design) in the
automotive industry. The findings were validated through a semi-structured survey submit-
ted to practitioners from the automotive domain. On the contrary, our scope includes testing
approaches for MLSs in any domain, which includes, but it is not limited to the automotive
domain.

Huang et al. (2018) surveyed 178 papers on safety and trustworthiness of deep neural
networks, including aspects like verification, testing, adversarial attacks, and interpretabil-
ity. They reviewed testing as one of the NN certification approaches along with verification.
On the contrary, we focused specifically on testing approaches and on systems that are not
limited to isolated NN: any system that includes an NN as a component (or more generally
an ML model) is in the scope of our mapping. Moreover, the authors focused only on cov-
erage criteria, test case generation and model-level mutation, whereas we included a more
thorough set of dimensions and research questions.

Ma et al. (2018a) surveyed 223 papers about quality assurance and security of DL com-
ponents and proposed a DL software development process. Our work has a different scope,
i.e., we focus on testing techniques instead of quality/security assurance. As for the analy-
sis, they identified the main challenges but did not investigate the features of the considered
techniques. On the other hand, we answer research questions designed to provide a detailed
characterisation of several features of the proposed approaches.

Hains et al. (2018) surveyed 26 papers about secure DL, including works about testing
DL systems. We differ from this work as we conducted a systematic mapping instead of a
survey, and we focus on functional testing rather than on safety and security assurance.

8 Conclusions and FutureWork

A fast growing trend in nowadays software is to adopt ML components, which are very
effective in practice, but raise novel and unprecedented challenges with respect to testing
their correctness and dependability. In this paper we adopted a rigorous methodology to
gain a better understanding of the trends and the state-of-the-art concerning MLS testing,
along with the limitations they bear. We have identified several key open challenges that
researchers should focus on in future work. From an initial pool of 1’175 papers retrieved
from scientific databases, we systematically selected 47 papers and complemented them
with other 23 papers obtained through snowballing. We analysed the final pool of 70 papers
using a large number of research dimensions.

Our findings show that the most prevalent testing problems addressed in these papers
are the oracle problem (19%), followed by the design and adoption of test adequacy criteria
(17%). This is further confirmed by our analysis of test artefacts produced by each paper,
where 60% of the artefacts are test inputs and 22% are test oracles. For the generation of test
inputs, the most popular techniques are input mutation (31%) and search-based approaches
(25%). In half of the papers, the test adequacy criterion to assess the quality of the inputs is
measured using recently proposed metrics based on neuron activation of the NN. The main
type of oracle used is the metamorphic oracle (44%), followed by domain-specific failures
(20%). The papers mostly address model level testing (63%), with only one paper focusing

Empirical Software Engineering (2020) 25:5193–5254 5245



on integration level testing. When it comes to the access to the system under test, white box
access is required in 43% and black box in 41% of the cases.

We further investigated whether the proposed approaches and the produced experimental
data are shared with the research community by the authors of each publication. Our results
show that these artefacts are not available for more than 74% of papers. Moreover, a very
small fraction of the papers report details about the experimental process, such as software
setup (31%), hardware setup (27%) and allocated time budget (11%).

The demographic overview shows that 51 out of 70 papers were produced in recent years,
i.e. starting from 2016. When it comes to venue, 40 of the papers (57%) have been published
in conferences.

Overall, our analysis revealed that novel testing techniques need to be devised to account
for the peculiar characteristics of MLS and highlights the most challenging problems,
among which the notion of fault for an ML system, the precise characterisation of the
decision boundaries of such systems, the generation of realistic inputs, within the validity
domain of the MLS under test, and the creation of automated and reliable oracles for sys-
tems governed by intrinsic uncertainty, affected by nondeterminism and dealing with a huge
input space.

Our suggestions for future work include the development of common frameworks and
benchmarks to collect and evaluate the state-of-the-art techniques, to avoid relying on ad-
hoc solutions and to support replication and comparative research. We believe that the
findings of this work can help newcomers to the field in better understanding the research
landscape, as well as active researchers in defining the roadmap toward future testing
techniques for ML-based software.

Acknowledgments This work was partially supported by the H2020 project PRECRIME, funded under
the ERC Advanced Grant 2017 Program (ERC Grant Agreement n. 787703).

Funding Open access funding provided by Università della Svizzera italiana.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons
licence, and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommonshorg/licenses/by/4.0/.

References

Abdessalem RB, Nejati S, Briand LC, Stifter T (2016) Testing advanced driver assistance systems using
multi-objective search and neural networks. In: Proceedings of the 31st IEEE/ACM International
Conference on Automated Software Engineering. ASE, pp 63–74

Abdessalem RB, Nejati S, Briand LC, Stifter T (2018a) Testing vision-based control systems using learnable
evolutionary algorithms. In: Proceedings of the 40th International Conference on Software Engineering,
ICSE ’18. ACM, New York. https://doi.org/10.1145/3180155.3180160, pp 1016–1026

Abdessalem RB, Panichella A, Nejati S, Briand LC, Stifter T (2018b) Testing autonomous cars for feature
interaction failures using many-objective search. In: Proceedings of the 33rd ACM/IEEE Interna-
tional Conference on Automated Software Engineering, ASE 2018. ACM, New York, pp 143–154.
https://doi.org/10.1145/3238147.3238192

Empirical Software Engineering (2020) 25:5193–52545246

http://creativecommonshorg/licenses/by/4.0/
https://doi.org/10.1145/3180155.3180160
https://doi.org/10.1145/3238147.3238192


Abeysirigoonawardena Y, Shkurti F, Dudek G (2019) Generating adversarial driving scenarios in high-
fidelity simulators. In: International conference on robotics and automation, ICRA 2019, montreal, QC,
Canada, May 20-24, 2019, pp 8271–8277. https://doi.org/10.1109/ICRA.2019.8793740

Ali NB, Petersen K (2014) Evaluating strategies for study selection in systematic literature studies. In:
Proceedings of the 8th ACM/IEEE International Symposium on Empirical Software Engineering and
Measurement, ESEM ’14. ACM, New York, pp 45:1–45:4. https://doi.org/10.1145/2652524.2652557

Altman NS (1992) An introduction to kernel and nearest-neighbor nonparametric regression. Amer Stat
46(3):175–185. https://doi.org/10.1080/00031305.1992.10475879

Aniculaesei A, Grieser J, Rausch A, Rehfeldt K, Warnecke T (2018) Towards a holistic software sys-
tems engineering approach for dependable autonomous systems. In: Proceedings of the 1st Interna-
tional Workshop on Software Engineering for AI in Autonomous Systems - SEFAIS. ACM Press.
https://doi.org/10.1145/3194085.3194091

Arp D, Spreitzenbarth M, Hubner M, Gascon H, Rieck K, Siemens C (2014) Drebin: Effective and
explainable detection of android malware in your pocket. In: Ndss, vol 14, pp 23–26

Arthur D, Vassilvitskii S (2007) K-means++: The advantages of careful seeding. In: Proceedings of the
18th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2007. Society for Industrial and
Applied Mathematics, pp 1027–1035. http://dl.acm.org/citation.cfm?id=1283383.1283494

Beglerovic H, Stolz M, Horn M (2017) Testing of autonomous vehicles using surrogate models and stochastic
optimization. In: 20Th IEEE international conference on intelligent transportation systems, ITSC ’17,
pp 1–6

Bishop CM (2006) Pattern recognition and machine learning. Springer Science+ Business Media
Bolte J, Bar A, Lipinski D, Fingscheidt T (2019) Towards corner case detection for autonomous driving. In:

2019 IEEE Intelligent vehicles symposium (IV), pp 438–445. https://doi.org/10.1109/IVS.2019.8813817
Borg M, Englund C, Wnuk K, Duran B, Levandowski C, Gao S, Tan Y, Kaijser H, Lönn H, Törnqvist J (2019)

Safely entering the deep: a review of verification and validation for machine learning and a challenge
elicitation in the automotive industry. J Autom Softw Eng 1:1–19. https://doi.org/10.2991/jase.d.190131.
001

Braiek HB, Khomh F (2018) On testing machine learning programs
Briand LC, Daly JW, Wu̇st J (1998) A unified framework for cohesion measurement in object-oriented

systems. Empir Softw Eng 3(1):65–117
Briand LC, Daly JW, Wu̇st J (1999) A unified framework for coupling measurement in object-oriented

systems. IEEE Trans Softw Eng 25(1):91–121
Bühler O, Wegener J (2004) Automatic testing of an autonomous parking system using evolutionary

computation. Technical report, SAE Technical Paper
Byun T, Sharma V, Vijayakumar A, Rayadurgam S, Cofer D (2019) Input prioritization for testing neural

networks
Campos GO, Zimek A, Sander J, Campello RJ, Micenková B, Schubert E, Assent I, Houle ME (2016) On

the evaluation of unsupervised outlier detection: measures, datasets, and an empirical study. Data Min
Knowl Discov 30(4):891–927. https://doi.org/10.1007/s10618-015-0444-8

Cerf VG (2018) A comprehensive self-driving car test. Commun ACM 61(2):7–7. https://doi.org/10.
1145/3177753

Cheng D, Cao C, Xu C, Ma X (2018a) Manifesting bugs in machine learning code: an explorative study with
mutation testing. In: 2018 IEEE International conference on software quality, reliability and security
(QRS). IEEE, pp 313–324

Cheng CH, Huang CH, Yasuoka H (2018b) Quantitative projection coverage for testing ml-enabled
autonomous systems. In: Lahiri SK, Wang C (eds) Automated technology for verification and analysis.
Springer International Publishing, Cham, pp 126–142

Cordts M, Omran M, Ramos S, Rehfeld T, Enzweiler M, Benenson R, Franke U, Roth S, Schiele B (2016)
The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE conference
on computer vision and pattern recognition, pp 3213–3223

Cortes C, Vapnik V (1995) Support-vector networks. Mach Learn 20(3):273–297. https://doi.org/10.1023/A:
1022627411411

Davis MD, Weyuker EJ (1981) Pseudo-oracles for non-testable programs. In: Proceedings of the ACM’81
Conference. ACM, pp 254–257

de Oliveira Neves V, Delamaro ME, Masiero PC (2016) Combination and mutation strategies
to support test data generation in the context of autonomous vehicles. IJES 8(5/6):464–482.
https://doi.org/10.1504/IJES.2016.10001345

Ding J, Kang X, Hu X (2017) Validating a deep learning framework by metamorphic testing.
In: 2017 IEEE/ACM 2Nd international workshop on metamorphic testing (MET), pp 28–34.
https://doi.org/10.1109/MET.2017.2

Empirical Software Engineering (2020) 25:5193–5254 5247

https://doi.org/10.1109/ICRA.2019.8793740
https://doi.org/10.1145/2652524.2652557
https://doi.org/10.1080/00031305.1992.10475879
https://doi.org/10.1145/3194085.3194091
http://dl.acm.org/citation.cfm?id=1283383.1283494
https://doi.org/10.1109/IVS.2019.8813817
https://doi.org/10.2991/jase.d.190131.001
https://doi.org/10.2991/jase.d.190131.001
https://doi.org/10.1007/s10618-015-0444-8
https://doi.org/10.1145/3177753
https://doi.org/10.1145/3177753
https://doi.org/10.1023/A:1022627411411
https://doi.org/10.1023/A:1022627411411
https://doi.org/10.1504/IJES.2016.10001345
https://doi.org/10.1109/MET.2017.2


Do H, Elbaum S, Rothermel G (2005) Supporting controlled experimentation with testing techniques: an
infrastructure and its potential impact. EMSE 10(4):405–435

Dosovitskiy A, Ros G, Codevilla F, Lopez A, Koltun V (2017) CARLA: An open urban driving simulator. In:
Levine S, Vanhoucke V, Goldberg K. In:Proceedingsofthe1stAnnualConferenceonRobotLearning Pro-
ceedings of Machine Learning Research (eds), vol 78, pp 1–16. PMLR. http://proceedings.mlr.press/
v78/dosovitskiy17a.html

Du X, Xie X, Li Y, Ma L, Liu Y, Zhao J (2019) Deepstellar: Model-based quantitative analysis of stateful deep
learning systems. In: Proceedings of the 2019 27th ACM Joint Meeting on European Software Engineer-
ing Conference and Symposium on the Foundations of Software Engineering. ACM, pp 477–487

Dua D, Graff C (2017) UCI machine learning repository. http://archive.ics.uci.edu/ml
Dwarakanath A, Ahuja M, Sikand S, Rao RM, Bose RPJC, Dubash N, Podder S (2018) Identifying imple-

mentation bugs in machine learning based image classifiers using metamorphic testing. In: Proceedings
of the 27th ACM SIGSOFT International Symposium on Software Testing and Analysis, ISSTA 2018.
ACM, New York, pp 118–128. https://doi.org/10.1145/3213846.3213858

Eniser HF, Gerasimou S, Sen A (2019) Deepfault: Fault localization for deep neural networks. In: Hähnle
R, van der Aalst W (eds) Fundamental approaches to software engineering. Springer International
Publishing, Cham, pp 171–191

Fraser G, Arcuri A (2012) Sound empirical evidence in software testing. In: Proceedings of ICSE ’12,
pp 178–188

Fremont DJ, Dreossi T, Ghosh S, Yue X, Sangiovanni-Vincentelli AL, Seshia SA (2019) Scenic: a language
for scenario specification and scene generation. In: Proceedings of the 40th ACM SIGPLAN Confer-
ence on Programming Language Design and Implementation, PLDI 2019. ACM, New York, pp 63–78.
https://doi.org/10.1145/3314221.3314633

Gal Y (2016) Uncertainty in deep learning. PhD thesis, University of Cambridge
Garousi V, Felderer M, Mäntylä MV, Rainer A (2019) Benefitting from the grey literature in software

engineering research
Gopinath D, Wang K, Zhang M, Pasareanu CS, Khurshid S (2018) Symbolic execution for deep neural

networks. CoRR arXiv:1807.10439
Groce A, Kulesza T, Zhang C, Shamasunder S, Burnett M, Wong W, Stumpf S, Das S, Shinsel A, Bice F,

McIntosh K (2014) You are the only possible oracle: Effective test selection for end users of interactive
machine learning systems. IEEE Trans Softw Eng 40(3):307–323. https://doi.org/10.1109/TSE.2013.59

Gross P, Boulanger A, Arias M, Waltz D, Long PM, Lawson C, Anderson R, Koenig M, Mastrocinque
M, Fairechio W, Johnson JA, Lee S, Doherty F, Kressner A (2006) Predicting electricity distribution
feeder failures using machine learning susceptibility analysis. In: Proceedings of the 18th Conference
on Innovative Applications of Artificial Intelligence - Volume 2, IAAI’06. AAAI Press, pp 1705–1711.
http://dl.acm.org/citation.cfm?id=1597122.1597127

Guo J, Jiang Y, Zhao Y, Chen Q, Sun J (2018) Dlfuzz: differential fuzzing testing of deep learning systems.
In: Proceedings of the 2018 ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering, ESEC/SIGSOFT FSE, pp 739–743

Gyimesi P, Vancsics B, Stocco A, Mazinanian D, Beszedes A, Ferenc R, Mesbah A (2019) BugsJS: a
benchmark of JavaScript bugs. In: Proceedings of the International Conference on Software Testing,
Verification, and Validation (ICST). IEEE Computer Society

Hains G, Jakobsson A, Khmelevsky Y (2018) Towards formal methods and software engineering for
deep learning: security, safety and productivity for dl systems development. In: 2018 Annual IEEE
international systems conference (syscon), pp 1–5. https://doi.org/10.1109/SYSCON.2018.8369576

Hastie T, Tibshirani R, Friedman J (2009) The elements of statistical learning: data mining, inference and
prediction, 2 edn. Springer. http://www-stat.stanford.edu/∼tibs/ElemStatLearn/

He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: Proceedings of the
IEEE conference on computer vision and pattern recognition, pp 770–778

Henriksson J, Berger C, Borg M, Tornberg L, Englund C, Sathyamoorthy SR, Ursing S (2019) Towards
structured evaluation of deep neural network supervisors. In: 2019 IEEE International conference on
artificial intelligence testing (AITest). IEEE. https://doi.org/10.1109/aitest.2019.00-12

Huang X, Kroening D, Ruan W, Sharp J, Sun Y, Thamo E, Wu M, Yi X (2018) A survey of safety and
trustworthiness of deep neural networks

Humbatova N, Jahangirova G, Bavota G, Riccio V, Stocco A, Tonella P (2020) Taxonomy of real faults
in deep learning systems. In: Proceedings of 42nd International Conference on Software Engineering,
ICSE ’20. ACM, pp 12

IEEE (1990) Ieee standard glossary of software engineering terminology. IEEE Std 610.12-1990 Reaffirmed
12-9-2002, pp 1–84. https://doi.org/10.1109/IEEESTD.1990.101064

Empirical Software Engineering (2020) 25:5193–52545248

http://proceedings.mlr.press/v78/dosovitskiy17a.html
http://proceedings.mlr.press/v78/dosovitskiy17a.html
http://archive.ics.uci.edu/ml
https://doi.org/10.1145/3213846.3213858
https://doi.org/10.1145/3314221.3314633
http://arxiv.org/abs/1807.10439
https://doi.org/10.1109/TSE.2013.59
http://dl.acm.org/citation.cfm?id=1597122.1597127
https://doi.org/10.1109/SYSCON.2018.8369576
http://www-stat.stanford.edu/~tibs/ElemStatLearn/
https://doi.org/10.1109/aitest.2019.00-12
https://doi.org/10.1109/IEEESTD.1990.101064


International T (2017) Prescan simulation of adas and active safety. https://www.tassinternational.com/
prescan

Islam MJ, Nguyen G, Pan R, Rajan H (2019) A comprehensive study on deep learning bug characteristics.
In: Proceedings of the 2019 27th ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering, ESEC/FSE 2019. ACM, New York,
pp 510–520. https://doi.org/10.1145/3338906.3338955

Jahangirova G, Tonella P (2020) An empirical evaluation of mutation operators for deep learning systems. In:
Proceedings of the International Conference on Software Testing, Verification, and Validation (ICST).
IEEE Computer Society

James G, Witten D, Hastie T, Tibshirani R (2013) An introduction to statistical learning, vol 112. Springer
Just R, Jalali D, Ernst MD (2014) Defects4J: A Database of Existing Faults to Enable Controlled Testing

Studies for Java Programs. In: Proceedings of the ISSTA ’14, pp 437–440
Kaufman L, Rousseeuw P (1987) Clustering by means of medoids. Statistical Data Analysis Based on the

L1-Norm and Related Methods, pp North–Holland
Kaufman L, Rousseeuw PJ (1990) Finding groups in data: an introduction to cluster analysis. Wiley series in

Probability and Mathematical Statistics. Wiley. A Wiley-Interscience publication
Kim J, Feldt R, Yoo S (2019) Guiding deep learning system testing using surprise adequacy. In: Proceedings

of the 41st International Conference on Software Engineering, ICSE, pp 1039–1049
Kitchenham B, Charters S (2007) Guidelines for performing systematic literature reviews in software

engineering
Kitchenham BA, Mendes E, Travassos GH (2007) Cross versus within-company cost estimation studies: a

systematic review. IEEE Trans Softw Eng 33(5):316–329. https://doi.org/10.1109/TSE.2007.1001
Kitchenham B, Brereton OP, Budgen D, Turner M, Bailey J, Linkman S (2009) Systematic lit-

erature reviews in software engineering – a systematic literature review. Inf Softw Technol
51(1):7–15. https://doi.org/10.1016/j.infsof.2008.09.009, http://www.sciencedirect.com/science/article/
pii/S0950584908001390. Special Section - Most Cited Articles in 2002 and Regular Research Papers

Klueck F, Li Y, Nica M, Tao J, Wotawa F (2018) Using ontologies for test suites generation for auto-
mated and autonomous driving functions. In: 2018 IEEE International symposium on software reliability
engineering workshops (ISSREW), pp 118–123. https://doi.org/10.1109/ISSREW.2018.00-20

Krizhevsky A, Hinton G et al (2009) Learning multiple layers of features from tiny images. Technical report,
Citeseer

LeCun Y, Cortes C (2010) MNIST handwritten digit database. http://yann.lecun.com/exdb/mnist/
LeCun Y, Bottou L, Bengio Y, Haffner P et al (1998) Gradient-based learning applied to document

recognition. Proc IEEE 86(11):2278–2324
Li L, Huang W, Liu Y, Zheng N, Wang F (2016) Intelligence testing for autonomous vehicles: a new

approach. IEEE Trans Intell Veh 1(2):158–166. https://doi.org/10.1109/TIV.2016.2608003
Li G, Pattabiraman K, DeBardeleben N (2018) Tensorfi: a configurable fault injector for tensorflow applica-

tions. In: 2018 IEEE International symposium on software reliability engineering workshops (ISSREW),
pp 313–320. https://doi.org/10.1109/ISSREW.2018.00024

Long PM, Servedio RA (2005) Martingale boosting. In: Auer P, Meir R. In:Learningtheory (eds). Springer,
Berlin, pp 79–94

Ma L, Juefei-Xu F, Xue M, Hu Q, Chen S, Li B, Liu Y, Zhao J, Yin J, See S (2018a) Secure deep learning
engineering: A software quality assurance perspective

Ma L, Juefei-Xu F, Zhang F, Sun J, Xue M, Li B, Chen C, Su T, Li L, Liu Y, Zhao J, Wang Y (2018b)
Deepgauge: Multi-granularity testing criteria for deep learning systems. In: Proceedings of the 33rd
ACM/IEEE International Conference on Automated Software Engineering, ASE 2018. ACM, New York,
pp 120–131. https://doi.org/10.1145/3238147.3238202

Ma S, Liu Y, Lee WC, Zhang X, Grama A (2018c) Mode: Automated neural network model debugging
via state differential analysis and input selection. In: Proceedings of the 2018 26th ACM Joint Meet-
ing on European Software Engineering Conference and Symposium on the Foundations of Software
Engineering, ESEC/FSE 2018. ACM, New York, pp 175–186. https://doi.org/10.1145/3236024.3236082

Ma L, Zhang F, Sun J, Xue M, Li B, Juefei-Xu F, Xie C, Li L, Liu Y, Zhao J et al (2018d) Deepmutation:
Mutation testing of deep learning systems. In: 2018 IEEE 29Th international symposium on software
reliability engineering (ISSRE). IEEE, pp 100–111

Ma L, Juefei-Xu F, Xue M, Li B, Li L, Liu Y, Zhao J (2019) Deepct: Tomographic combinatorial testing for
deep learning systems. In: 2019 IEEE 26Th international conference on software analysis, evolution and
reengineering (SANER). IEEE, pp 614–618

Majumdar R, Mathur A, Pirron M, Stegner L, Zufferey D (2019) Paracosm: A language and tool for testing
autonomous driving systems

Empirical Software Engineering (2020) 25:5193–5254 5249

https://www.tassinternational.com/prescan
https://www.tassinternational.com/prescan
https://doi.org/10.1145/3338906.3338955
https://doi.org/10.1109/TSE.2007.1001
https://doi.org/10.1016/j.infsof.2008.09.009
http://www.sciencedirect.com/science/article/pii/S09505849080 01390
http://www.sciencedirect.com/science/article/pii/S09505849080 01390
https://doi.org/10.1109/ISSREW.2018.00-20
http://yann.lecun.com/exdb/mnist/
https://doi.org/10.1109/TIV.2016.2608003
https://doi.org/10.1109/ISSREW.2018.00024
https://doi.org/10.1145/3238147.3238202
https://doi.org/10.1145/3236024.3236082


Manning CD, Raghavan P, Schütze H (2008) Introduction to information retrieval. Cambridge University
Press, New York

Masuda S, Ono K, Yasue T, Hosokawa N (2018) A survey of software quality for machine learning applica-
tions. In: 2018 IEEE International conference on software testing, verification and validation workshops
(ICSTW), pp 279–284. https://doi.org/10.1109/ICSTW.2018.00061

McLachlan GJ, Basford KE (1988) Mixture models: Inference and applications to clustering, vol 38. M
Dekker, New York

Mullins G, Stankiewicz P, Hawthorne R, Gupta S (2018) Adaptive generation of challenging scenarios for
testing and evaluation of autonomous vehicles. J Syst Softw 137:197–215. https://doi.org/10.1016/j.jss.
2017.10.031. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85037521968

Murphy C, Kaiser G, Arias M (2007a) An approach to software testing of machine learning applications.
SEKE 2007:167

Murphy C, Kaiser G, Arias M (2007b) Parameterizing random test data according to equivalence classes. In:
Proceedings of the 2nd international workshop on Random testing: co-located with the 22nd IEEE/ACM
International Conference on Automated Software Engineering (ASE 2007). ACM, pp 38–41

Murphy C, Kaiser G (2008) Improving the dependability of machine learning applications
Murphy C, Kaiser G, Hu L, Wu L (2008) Properties of machine learning applications for use in metamorphic

testing. SEKE 2008:867
Murphy C, Shen K, Kaiser G (2009) Automatic system testing of programs without test oracles. In:

Proceedings of the eighteenth international symposium on Software testing and analysis. ACM,
pp 189–200

Nakajima S (2018) Generalized oracle for testing machine learning computer programs. In: Cerone A, Roveri
M (eds) Software engineering and formal methods. Springer International Publishing, Cham, pp 174–
179

Nakajima S (2019) Dataset diversity for metamorphic testing of machine learning software. In: Structured
object-oriented formal language and method. Springer international publishing, pp 21–38

Nakajima S, Bui H. N (2016) Dataset coverage for testing machine learning computer programs. In:
Proceedings of the 23rd Asia-Pacific Software Engineering Conference, APSEC ’16, pp 297–304.
https://doi.org/10.1109/APSEC.2016.049

Odena A, Olsson C, Andersen D, Goodfellow I (2019) TensorFuzz: Debugging neural networks with
coverage-guided fuzzing. In: Chaudhuri K, Salakhutdinov R (eds) Proceedings of the 36th International
Conference on Machine Learning, Proceedings of Machine Learning Research, vol 97. PMLR, Long
Beach, pp 4901–4911. http://proceedings.mlr.press/v97/odena19a.html

Patel N, Saridena AN, Choromanska A, Krishnamurthy P, Khorrami F (2018) Adversarial
learning-based on-line anomaly monitoring for assured autonomy. In: 2018 IEEE/RSJ Inter-
national conference on intelligent robots and systems, IROS 2018, Madrid, pp 6149–6154.
https://doi.org/10.1109/IROS.2018.8593375

Pei K, Cao Y, Yang J, Jana S (2017) Deepxplore: Automated whitebox testing of deep learning systems. In:
Proceedings of the 26th Symposium on Operating Systems Principles, pp 1–18

Petersen K, Feldt R, Mujtaba S, Mattsson M (2008) Systematic mapping studies in software engineering. In:
Ease, vol 8, pp 68–77

Petersen K, Vakkalanka S, Kuzniarz L (2015) Guidelines for conducting systematic mapping studies in soft-
ware engineering: An update. Inf Softw Technol 64:1–18. https://doi.org/10.1016/j.infsof.2015.03.007.
http://www.sciencedirect.com/science/article/pii/S0950584915000646

Qin Y, Wang H, Xu C, Ma X, Lu J (2018) Syneva: Evaluating ml programs by mirror program synthe-
sis. In: 2018 IEEE International conference on software quality, reliability and security (QRS). IEEE,
pp 171–182

Riccio V, Tonella P (2020) Model-based exploration of the frontier of behaviours for deep learning system
testing. In: Proceedings of the ACM Joint European Software Engineering Conference and Symposium
on the Foundations of Software Engineering (ESEC/FSE). ACM

Riccio V, Jahangirova G, Stocco A, Humbatova N, Weiss M, Tonella P (2019) Replication package. https://
github.com/testingautomated/deepthoughts

Rokach L, Maimon O (2014) Data mining with decision trees: Theory and applications, 2nd edn. World
Scientific Publishing Co., Inc., River Edge

Rousseeuw PJ (1987) Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. J
Comput Appl Math 20:53–65

Rubaiyat AHM, Qin Y, Alemzadeh H (2018) Experimental resilience assessment of an open-source driving
agent. In: 2018 IEEE 23Rd pacific rim international symposium on dependable computing (PRDC),
pp 54–63. https://doi.org/10.1109/PRDC.2018.00016

Empirical Software Engineering (2020) 25:5193–52545250

https://doi.org/10.1109/ICSTW.2018.00061
https://doi.org/10.1016/j.jss.2017.10.031
https://doi.org/10.1016/j.jss.2017.10.031
https://www.scopus.com/inward/record.uri?eid=2-s2.0-850375219 68
https://doi.org/10.1109/APSEC.2016.049
http://proceedings.mlr.press/v97/odena19a.html
https://doi.org/10.1109/IROS.2018.8593375
https://doi.org/10.1016/j.infsof.2015.03.007
http://www.sciencedirect.com/science/article/pii/S09505849150 00646
https://github.com/testingautomated/deepthoughts
https://github.com/testingautomated/deepthoughts
https://doi.org/10.1109/PRDC.2018.00016


Saha P, Kanewala U (2019) Fault detection effectiveness of metamorphic relations developed for testing
supervised classifiers. In: 2019 IEEE International conference on artificial intelligence testing (AITest),
pp 157–164. https://doi.org/10.1109/AITest.2019.00019

Schmidhuber J (2015) Deep learning in neural networks: an overview. Neural Netw 61:85–117
Sekhon J, Fleming C (2019) Towards improved testing for deep learning. In: 2019 IEEE/ACM 41St inter-

national conference on software engineering: New ideas and emerging results (ICSE-NIER), pp 85–88.
https://doi.org/10.1109/ICSE-NIER.2019.00030

Shen W, Wan J, Chen Z (2018) Munn: Mutation analysis of neural networks. In: 2018 IEEE International
conference on software quality, reliability and security companion (QRS-c). IEEE, pp 108–115

Sherin S, khan MU, Iqbal MZ (2019) A systematic mapping study on testing of machine learning programs
Shi Q, Wan J, Feng Y, Fang C, Chen Z. (2019) Deepgini: Prioritizing massive tests to reduce labeling cost
Simonyan K, Zisserman A (2014) Very deep convolutional networks for large-scale image recognition
Speed T (2010) Statistical models: Theory and practice, revised edition by david a. freedman. Int Stat Rev

78(3):457–458. https://doi.org/10.1111/j.1751-5823.2010.00122 11.x
Spieker H, Gotlieb A (2019) Towards testing of deep learning systems with training set reduction. CoRR

arXiv:1901.04169
Stocco A, Weiss M, Calzana M, Tonella P (2020) Misbehaviour prediction for autonomous driving systems.

In: Proceedings of 42nd International Conference on Software Engineering, ICSE ’20. ACM, pp 12
Strickland M, Fainekos G, Ben amor H (2018) Deep predictive models for collision risk assessment in

autonomous driving. In: 2018 IEEE International Conference on Robotics and Automation, ICRA 2018,
Proceedings - IEEE International Conference on Robotics and Automation. Institute of Electrical and
Electronics Engineers Inc, pp 4685–4692. https://doi.org/10.1109/ICRA.2018.8461160

Stuart R, Peter N (2016) Artificial intelligence - a modern approach, 3rd ed, Berkeley
Sun Y, Huang X, Kroening D, Sharp J, Hill M, Ashmore R (2018a) Testing deep neural networks
Sun Y, Wu M, Ruan W, Huang X, Kwiatkowska M, Kroening D (2018b) Concolic testing for deep neural

networks. In: Proceedings of the 33rd ACM/IEEE International Conference on Automated Software
Engineering, ASE ’18. ACM, New York, pp 109–119. https://doi.org/10.1145/3238147.3238172

Tian Y, Pei K, Jana S, Ray B (2018) Deeptest: Automated testing of deep-neural-network-driven autonomous
cars. In: Proceedings of the 40th International Conference on Software Engineering, ICSE ’18. ACM,
New York, pp 303–314. https://doi.org/10.1145/3180155.3180220

Tuncali CE, Fainekos G (2019) Rapidly-exploring random trees-based test generation for autonomous
vehicles. CoRR arXiv:1903.10629

Tuncali CE, Fainekos G, Ito H, Kapinski J (2018) Simulation-based adversarial test generation for
autonomous vehicles with machine learning components. In: 2018 IEEE Intelligent vehicles symposium
(IV). IEEE, pp 1555–1562

Turing AM (2009) Computing machinery and intelligence. In: Parsing the turing test. Springer, pp 23–65
Udeshi S, Chattopadhyay S (2019) Grammar based directed testing of machine learning systems
Udeshi S, Arora P, Chattopadhyay S (2018) Automated directed fairness testing. In: Proceedings of the 33rd

ACM/IEEE International Conference on Automated Software Engineering, ASE 2018. ACM, New York,
pp 98–108. https://doi.org/10.1145/3238147.3238165

Uesato J, Kumar A, Szepesvȧri C, Erez T, Ruderman A, Anderson K, Dvijotham KD, Heess N, Kohli P
(2019) Rigorous agent evaluation: an adversarial approach to uncover catastrophic failures. In: 7Th
international conference on learning representations, ICLR 2019, New Orleans

Wang J, Dong G, Sun J, Wang X, Zhang P (2019) Adversarial sample detection for deep neural network
through model mutation testing. In: Proceedings of the 41st International Conference on Software Engi-
neering, ICSE ’19. IEEE Press, Piscataway, pp 1245–1256. https://doi.org/10.1109/ICSE.2019.00126

Wieringa R, Maiden N, Mead N, Rolland C (2006) Requirements engineering paper classification and
evaluation criteria: a proposal and a discussion. Requir Eng 11(1):102–107

Wohlin C (2014) Guidelines for snowballing in systematic literature studies and a replication in software
engineering. In: Proceedings of EASE ’14, pp 1–10

Wolschke C, Kuhn T, Rombach D, Liggesmeyer P (2017) Observation based creation of minimal test suites
for autonomous vehicles. In: 2017 IEEE International symposium on software reliability engineering
workshops (ISSREW), pp 294–301. https://doi.org/10.1109/ISSREW.2017.46

Wolschke C, Rombach D, Liggesmeyer P, Kuhn T (2018) Mining test inputs for autonomous vehicles. In:
Berns K, Dressler K, Fleischmann P, Görges D, Kalmar R, Sauer B, Stephan N, Teutsch R, Thul M (eds)
Commercial vehicle technology 2018. Springer Fachmedien, Wiesbaden, pp 102–113

Xie X, Ho JW, Murphy C, Kaiser G, Xu B, Chen TY (2011) Testing and validating machine learning
classifiers by metamorphic testing. J Syst Softw 84(4):544–558

Xie X, Zhang Z, Yueh Chen T, Liu Y, Poon PL, Xu B (2018) Mettle: A metamorphic testing approach to
validating unsupervised machine learning methods. arXiv:1807.10453

Empirical Software Engineering (2020) 25:5193–5254 5251

https://doi.org/10.1109/AITest.2019.00019
https://doi.org/10.1109/ICSE-NIER.2019.00030
https://doi.org/10.1111/j.1751-5823.2010.00122_11.x
http://arxiv.org/abs/1901.04169
https://doi.org/10.1109/ICRA.2018.8461160
https://doi.org/10.1145/3238147.3238172
https://doi.org/10.1145/3180155.3180220
http://arxiv.org/abs/1903.10629
https://doi.org/10.1145/3238147.3238165
https://doi.org/10.1109/ICSE.2019.00126
https://doi.org/10.1109/ISSREW.2017.46
http://arxiv.org/abs/1807.10453


Xie X, Ma L, Juefei-Xu F, Xue M, Chen H, Liu Y, Zhao J, Li B, Yin J, See S (2019) Deephunter: a coverage-
guided fuzz testing framework for deep neural networks. In: Proceedings of the 28th ACM SIGSOFT
International Symposium on Software Testing and Analysis, ISSTA ’19. ACM, New York, pp 146–157.
https://doi.org/10.1145/3293882.3330579

Young M, Pezzè M (2005) Software Testing and Analysis: process, Principles and Techniques. Wiley, USA
Zhang J, Jing X, Zhang W, Wang H, Dong Y (2016) Improve the quality of arc systems based on the metamor-

phic testing. In: 2016 International symposium on system and software reliability (ISSSR), pp 137–141.
https://doi.org/10.1109/ISSSR.2016.029

Zhang Y, Chen Y, Cheung SC, Xiong Y, Zhang L (2018a) An empirical study on tensorflow program bugs.
In: Proceedings of the 27th ACM SIGSOFT International Symposium on Software Testing and Analysis,
ISSTA 2018. ACM, New York, pp 129–140. https://doi.org/10.1145/3213846.3213866

Zhang M, Zhang Y, Zhang L, Liu C, Khurshid S (2018b) Deeproad: Gan-based metamorphic testing and
input validation framework for autonomous driving systems. In: Proceedings of the 33rd ACM/IEEE
International Conference on Automated Software Engineering, ASE, pp 132–142

Zhang L, Sun X, Li Y, Zhang Z (2019) A noise-sensitivity-analysis-based test prioritization technique for
deep neural networks. CoRR aRxiv:1901.00054

Zhang JM, Harman M, Ma L, Liu Y (2020) Machine learning testing: survey, landscapes and horizons. IEEE
Trans Softw Eng:1–1

Zhao X, Gao X (2018) An ai software test method based on scene deductive approach. In: 2018 IEEE
International conference on software quality, reliability and security companion (QRS-c). IEEE,
pp 14–20

Zheng W, Wang W, Liu D, Zhang C, Zeng Q, Deng Y, Yang W, He P, Xie T (2019) Testing untestable neural
machine translation: an industrial case. In: Proceedings of the 41st International Conference on Software
Engineering: Companion Proceedings. IEEE Press, pp 314–315

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Vincenzo Riccio received the Master’s degree in computer engineer-
ing and the Ph.D. degree from the University of Naples Federico
II, in 2015 and 2019, respectively. He is currently a Postdoctoral
Researcher with the Software Institute of Università della Svizzera
Italiana (USI) in Lugano, Switzerland. His current research is focused
on automated test input generation for mobile and machine learning-
based applications. He serves as a reviewer for software engineering
journals including EMSE, JSEP, and STVR.

Gunel Jahangirova is a PostDoctoral Researcher at the Software
Institute of Universita’ della Svizzera Italiana (USI) in Lugano,
Switzerland. She had her PhD in a joint program between Fondazione
Bruno Kessler, Trento, Italy and University College London, London,
UK. Her PhD work was about oracle problem in software testing, in
particular, assessment, improvement and placement of test oracles.
Her current research interests include automatic generation of pro-
gram assertions, mutation testing, failed error propagation and testing
of deep learning systems.

Empirical Software Engineering (2020) 25:5193–52545252

https://doi.org/10.1145/3293882.3330579
https://doi.org/10.1109/ISSSR.2016.029
https://doi.org/10.1145/3213846.3213866
http://arxiv.org/abs/1901.00054


Andrea Stocco is a postdoctoral fellow at the Software Institute
(USI) in Lugano, Switzerland. His research interests include software
testing and empirical software engineering, with particular emphasis
on misbehavior prediction for machine learning-based systems, and
automated repair, robustness and maintainability of test suites for web
applications. He is the recipient of the Best Student Paper Award at
the 16th International Conference on Web Engineering (ICWE 2016).
He serves on the program committees of top-tier software engineer-
ing conferences such as FSE and ICST, and reviews for numerous
software engineering journals including TSE, EMSE, TOSEM, JSS,
and IST.

Nargiz Humbatova is a PhD student at Software Institute (SI) of
Università della Svizzera Italiana (USI) in Lugano, Switzerland. Her
research interests cover testing of deep learning based systems, in par-
ticular, mutation testing and its applications to other software testing
problems such as input generation.

Empirical Software Engineering (2020) 25:5193–5254 5253



Michael Weiss is a Phd student at the Software Institute, Università
della Svizzera italiana (USI). He co-authored three papers at top tier
artificial intelligence and software engineering venues. His research
interests include software engineering and software robustness of
systems that rely on artificial intelligence.

He focuses on designing novel fail-safe approaches for machine
learning based systems, as well as on the development of tools to
facilitate the use of such approaches for developers.

Paolo Tonella is Full Professor at the Faculty of Informatics and at
the Software Institute of Universita’ della Svizzera Italiana (USI) in
Lugano, Switzerland. He is also Honorary Professor at University
College London, UK. Until mid 2018 he has been Head of Soft-
ware Engineering at Fondazione Bruno Kessler, Trento, Italy. Paolo
Tonella is the recipient of an ERC Advanced grant as Principal Inves-
tigator of the project PRECRIME. In 2011 he was awarded the ICSE
2001 MIP (Most Influential Paper) award, for his paper: “Analysis
and Testing of Web Applications”. He is the author of “Reverse Engi-
neering of Object Oriented Code”, Springer, 2005, and of “Evolu-
tionary Testing of Classes”, ISSTA 2004. Paolo Tonella was Program
Chair of ICSM 2011 and ICPC 2007; General Chair of ISSTA 2010
and ICSM 2012. He is/was associate editor of TOSEM/TSE and he is
in the editorial board of EMSE and JSEP. His current research inter-
ests include deep learning testing, web testing, search based test case
generation and the test oracle problem.

Affiliations

Vincenzo Riccio1 ·Gunel Jahangirova1 ·Andrea Stocco1 ·Nargiz Humbatova1 ·
Michael Weiss1 ·Paolo Tonella1

Gunel Jahangirova
gunel.jahangirova@usi.ch

Andrea Stocco
andrea.stocco@usi.ch

Nargiz Humbatova
nargiz.humbatova@usi.ch

Michael Weiss
michael.weiss@usi.ch

Paolo Tonella
paolo.tonella@usi.ch

1 Università della Svizzera Italiana (USI), Via Buffi, 13 Lugano, Switzerland

Empirical Software Engineering (2020) 25:5193–52545254

http://orcid.org/0000-0002-6229-8231
mailto: gunel.jahangirova@usi.ch
mailto: andrea.stocco@usi.ch
mailto: nargiz.humbatova@usi.ch
mailto: michael.weiss@usi.ch
mailto: paolo.tonella@usi.ch

	Testing machine learning based systems: a systematic mapping
	Abstract
	Introduction
	Background
	Machine Learning Based Systems
	Machine Learning Algorithms
	Classification vs. Regression
	Clustering
	Neural Networks


	Measuring ML Model Effectiveness
	Effectiveness Evaluation
	Confidence


	Testing MLSs vs Programmed Software Systems
	Fault and Failure
	Test Input Generation
	Adequacy Criteria
	Oracle

	MLS Testing Levels
	Access to the Tested Component


	Goal and Research Questions
	Context
	Proposed Approach
	Evaluation
	Demographics

	Methodology
	Database Search
	Scientific Databases
	Search String
	Database Search Advanced Selection Criteria
	DIC1 (Published in peer-reviewed journals or conference proceedings)
	DIC2 (Unpublished but preprint available in open access repositories)
	DIC3 (Subject area is computer science)
	DIC4 (English language)
	DIC5 (In the Software Engineering field)
	DEC1 (Published first)

	Database Search Result

	Study Selection
	Study Selection Criteria
	MIC1 (About MLS testing)
	MEC1 (No secondary studies)
	MEC2 (Remove duplicates)
	MEC3 (Extensions first)

	Study Selection Process

	Citation-Based Search
	Data Extraction
	Threats to Validity
	Descriptive Validity
	Theoretical Validity
	Repeatability



	Results
	Context
	Addressed Problem (RQ 1.1)
	Realism of Test Input Data
	Test Adequacy Criteria
	Behavioural Boundaries Identification
	Scenario Specification and Design
	Oracle
	Faults and Debugging
	Regression Testing
	Online Monitoring and Validation
	Cost of Testing
	Integration of ML Models
	Data Quality Assessment

	Testing Levels (RQ 1.2)
	Domains (RQ 1.3)
	Algorithms (RQ 1.4)

	Proposed Approach
	Test Artefacts (RQ 2.1)
	Test Adequacy (RQ 2.2)
	Test Input Generation (RQ 2.3)
	Test Oracles (RQ 2.4)
	Access to the System (RQ 2.5)
	Context Model (RQ 2.6)
	Availability (RQ 2.7)

	Evaluation
	Evaluation Type (RQ 3.1)
	Evaluation Method (RQ 3.2)
	ML Models (RQ 3.3, RQ 3.4, RQ 3.5)
	Training Dataset (RQ 3.6)
	System & System Availability (RQ 3.7, RQ 3.8)
	Simulator (RQ 3.9)
	Failure Type (RQ 3.10)
	Metrics (RQ 3.11)
	Comparative Study (RQ 3.12)
	Experimental Data Availability (RQ 3.13)
	Time Budget (RQ 3.14)
	Software Setup (RQ 3.15)
	Hardware Setup (RQ 3.16)

	Demographics
	Year of Publication
	Venue and Venue Type
	Authors
	Affiliations
	For-Profit Organisations

	Countries
	Citation Counts


	Discussion
	Weaknesses
	Hyper-Parameter Selection
	Failure, Fault, Bug Fixing
	Realism
	Empirical Methodology and Metrics
	Nondeterminism
	Computational Cost


	Open Challenges
	Hyper-Parameters
	Exposing Failures, Finding Faults, Fixing Bugs
	Empirical Methodology and Metrics
	Realism
	Nondeterminism
	Computational Cost
	Scope of the MLS Testing Research Area



	Related Work
	Conclusions and Future Work
	References
	Affiliations




