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Abstract

The adoption of labor-replacing technologies has already displaced thousands of workers in the
US. In this paper, I analyze how the adverse effects of the implementation of robots in firms’
production processes are spreading among the population and how they are shaping the com-
position of labor markets. Exploiting exogenous variation in robot exposure across local labor
markets and over time, I find that the introduction of industrial robots between the mid-1990s
and 2014 contributes to the decline in the gender employment gap but increases the race and
ethnicity employment gap. This finding follows from men and racial and ethnic minorities being
more exposed to robots because of their over-representation in blue-collar jobs. Despite their
predominance in the manufacturing sector, the labor market impacts of robots are not confined
to these industries, but spill over also to the service sector.
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1 Introduction

Advances in labor-replacing technologies such as robotics and artificial intelligence are poised to

shape the future of labor markets. The implementation of robots in firms’ production processes has

increased rapidly over the last decades due to astonishing progress in robotics’ productivity and

the concomitant decline in quality-adjusted prices (Graetz and Michaels, 2018). Economists have

recently started to examine their labor market impacts and found that the adoption of industrial

robots has reduced aggregate employment in the United States (Acemoglu and Restrepo, 2020) and

has displaced thousands of workers from the labor force (Lerch, 2020), fueling the concerns that

automation is going to take over the jobs of millions of workers in the years to come (Brynjolfsson

and McAfee, 2014, Frey and Osborne, 2017). Despite the growing importance of these technologies,

little is known about how their effects are spreading among the population and how they are going

to shape the composition of labor markets.

This paper addresses these questions by investigating the impact of robot adoption on employment

of different demographic groups in the US between 1993 and 2014. Using data from the Census

and the American Community Survey matched with industry-level data about the adoption of

industrial robots from the International Federation of Robotics (IFR), I find that the labor market

effects of robots are distributed unevenly among the population. The adverse effects of robots

mainly affect the employment outlook of men and of racial and ethnic minorities, in particular

Black and Hispanic workers. But why are these demographic groups more exposed to the negative

effects of robot adoption than women and whites?

To guide the analysis, I build a simple production model with heterogeneous individuals and en-

dogenous job sorting in which workers compete with robots in the execution of various tasks. Firms

produce goods combining brawn labor, brain labor and robot capital, where robots are relative

substitutes of brawn labor and relative complements to brain labor. The labor force consists of

individuals who differ in their gender and race/ethnicity. Individuals are endowed heterogeneously

with brawn and brain skills and sort endogenously in jobs according to their comparative skill ad-

vantage (Borghans et al., 2014). On one hand, men are better endowed with brawn skills and are,

therefore, more likely to be employed in brawn-task intensive occupations, while women tend to
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work in jobs with a more intensive use of communication and interpersonal skills (Ngai and Petron-

golo, 2017, Rendall, 2017). On the other hand, racial and ethnic minorities are more likely to include

groups of low-skill immigrants with imperfect knowledge of English and therefore posses, on aver-

age, lower communication skills than white workers (Antecol et al., 2003, Peri and Sparber, 2009,

Llull, 2018). These workers tend to work in brawn-task intensive occupations. The comparative

(dis-)advantages in certain skills imply that the gender employment gap and the race and ethnicity

employment gap are both positive. As firms accumulate robot capital, they decrease their demand

for brawn labor (displacement effect) and increase their demand for brain labor (productivity effect).

The impact of robots on aggregate employment is ambiguous, depending on which effect prevails.

However, the model predicts that the adoption of robots clearly decreases the gender employment

gap, since women benefit more from the productivity effect than men, and increases the race and

ethnicity employment gap, since racial and ethnic minorities suffer from a larger displacement effect

than whites.

The bulk of the paper investigates these predictions empirically using a local labor market analy-

sis. Using data from the Dictionary of Occupation Titles, I impute task measures associated with

the physical intensity (brawn tasks) and the required intellectual ability (brain tasks) of jobs to

build occupational segregation measures in the labor market (Ge and Zhou, 2020). In line with the

predictions of the model, I find that both employment gaps are positive, although on a declining

trend, and that men and racial and ethnic minorities are over-represented in blue-collar occupations

with a high workload of brawn tasks, such as precision production, craft, and repair occupations,

machine operators, and transportation and moving occupations. These occupations are more likely

to be exposed to the adoption of industrial robots, since robots can be programmed to perform

autonomously several manual tasks, including material handling, assembling, welding and process-

ing (IFR, 2018). On the other hand, I find that women and whites are employed more often in

occupations that require more brain and less brawn skills such as white-collar occupations.1 These

occupations are usually less susceptible to automation through the adoption of robots. Moreover,

workers employed in brain task-intensive occupations may potentially benefit from the implementa-
1 These findings are in line with existing evidence which shows that women are over-represented in white-collar
occupations, especially in low- and middle-skill jobs (Blau, 1998, Bacolod and Blum, 2010, Black and Spitz-Oener,
2010, Olivetti and Petrongolo, 2016, Petrongolo and Ronchi, 2020) and Blacks and Hispanics are over-represented
in blue-collar jobs at the lower end of the skill distribution (King, 1992, Couch and Daly, 2002).
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tion of robots, since new technologies are often complementing labor in non-automatable tasks and

they contribute to the creation of new jobs and activities (Autor and Dorn, 2013, Autor, 2015).

To estimate the labor market effects of the adoption of robots, I follow Acemoglu and Restrepo

(2020) and build a shift-share measure constructed from the interaction of baseline industry em-

ployment shares within local labor markets, proxied by Commuting Zones (Tolbert and Sizer, 1996),

with the adoption of industrial robots in the US. Identification builds on the assumption that ad-

vances in robotics vary by industry and expose local labor markets differently depending on their

industrial composition of employment. The adoption of robots, however, could be fueled by domes-

tic shocks that influence also firms’ demand of labor. I account for endogeneity and identify changes

in the adoption of robots that are driven by the technological advances in robotics (supply shock)

using an instrumental variable strategy. The shift component is instrumented using the simulta-

neous adoption of robots in Europe and the share component uses plausibly exogenous industry

employment shares that precede the introduction of industrial robots.

From the results emerges that the adoption of robots alters significantly the composition of labor

markets. I find that robot exposure has reduced local employment both among men and women,

but has decreased it relatively more for male workers, contributing to the decline in the gender

employment gap. According to my estimates, one additional robot displaces, on average, twice

as many male as female workers, where displaced workers are individuals who do not find a job

or who lost their job directly or indirectly due to the adoption of robots.2 Although a narrowing

in the gender employment gap seems to be beneficial for the achievement of gender equality, it is

important to consider that this effect is driven by an aggregate employment loss that is relatively

larger for men than for women, a result which is far from desirable. Furthermore, I find that robots

have increased the race and ethnicity employment gap, curbing its secular decline. This result

follows from an employment reduction among racial and ethnic minorities that, accounting for the

relative population size of demographic groups, is three times as large as for whites. These effects

are particularly pronounced in labor markets with a substantial share of blue-collar jobs, since they
2 The repeated cross-sectional nature of the data does not allow me to disentangle direct from indirect displacement
effects of robots, since I am tracing local labor markets rather than the career progression of individual workers.
Industrial robots are known to replace blue-collar manufacturing workers by taking over tasks previously performed
by labor. As a response, these workers may leave the labor force or move to other non-automated jobs (e.g. low-skill
services), displacing also workers who are not directly competing with robots
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are more susceptible to the adoption of robots.

Industrial robots are mainly implemented to perform blue-collar work in industries of the manu-

facturing sector. Their labor market impacts are, however, not confined to these industries, since

the reduction in manufacturing employment could contract aggregate demand in the local economy,

decreasing also the demand for labor in industries that are not directly affected by the shock (Faber

et al., 2019, Acemoglu and Restrepo, 2020, Helm, 2020). I find such an effect in case of the race

and ethnicity employment gap, which is driven by increasing employment rate differentials between

whites and non-whites in the service sector. This result does not imply that robots do not have

an impact on employment in manufacturing industries, but that they are decreasing it without

significant differences by race and ethnicity. The differences emerge once the effect spills over to

local service-sector industries, where mostly racial and ethnic minority workers are losing their jobs

and do not find re-employment opportunities. This finding could suggest that robots are triggering

employment effects that go beyond broad composition effects, such as discrimination against racial

and ethnic minorities in the service sector, which cannot be explained using observables.

The rest of the paper is organized as follows. Section 2 presents the related literature. Section

3 introduces a model to illustrate the mechanism through which robot capital affects the demand

for human skills and the employment gaps. Section 4 describes the data. Section 5 presents the

empirical strategy and potential threats to identification. Section 6 reports the results and performs

a set of robustness checks. Section 7 concludes.

2 Literature

This paper mainly contributes to two strands of the literature. First, there is a growing number

of studies on the disruptive labor market impacts of technological progress and the demand for

human skills. The debate over the influence of the use of new technologies on the occupational

structure has long been dominated by the assumption that technological change favors highly skilled

occupations (Katz and Murphy, 1992, Goldin and Katz, 2009). However, recent evidence argues that

labor markets are instead undergoing an increasing job polarization, suggesting that automation

technologies are mostly displacing workers employed in middle-skill jobs, causing a reallocation of
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labor towards high-skill and low-skill occupations that are difficult to automate (Acemoglu, 1999,

Goos and Manning, 2007, Goos et al., 2009, Autor and Dorn, 2013). This finding stems from the

fact that automation is increasingly taking over jobs with a large routine task content, but it is

not yet able to perform jobs that require creative, problem-solving and coordination skills (Autor

et al., 2003, Acemoglu and Autor, 2011, Autor and Dorn, 2013). In spite of this observation, the

rapid advances in robotics and artificial intelligence (AI) are likely to widen massively the range

of tasks that are going to be automated in the near future, including non-routine tasks. Recent

evidence finds that AI is currently substituting humans in a subset of tasks, but it is not having

detectable aggregate labor market consequences, since the displacement of workers from non-AI

occupation is compensated by the creation of AI-related jobs (Acemoglu et al., 2020b). In contrast,

the adoption of industrial robots shows substantial negative effects on aggregate employment and

wages (Acemoglu and Restrepo, 2020), having already displaced almost half a million workers from

the US labor market (Lerch, 2020). This paper focuses on the latter shock and explores how the

adverse effects of robots are spreading among the population, a crucial but neglected policy-relevant

outcome.

Second, I complement the literature that studies the determinants of labor market inequalities by

gender, race and ethnicity. Employment and wage gaps are declining since the implementation of

the Civil Right Act in 1964, but are still highly persistent. A vast body of the literature argues

that inequalities persist because of discriminatory reasons (see Guryan and Charles (2013) for a

review) and labor supply factors (Altonji and Blank, 1999, Marianne, 2011, Blau and Kahn, 2017).

However, evidence suggests that also demand-side factors are increasingly important determinants of

the existence and development of pay differences and employment gaps (Ngai and Petrongolo, 2017,

Petrongolo and Ronchi, 2020). A striking example is the rise of white-collar jobs in the service sector

through the diffusion of information and communication technologies (ICT). The transition towards

these occupations has favored the employment opportunities of women, reducing substantially the

gender employment gap (Weinberg, 2000, Black and Spitz-Oener, 2010, Beaudry and Lewis, 2014,

Olivetti and Petrongolo, 2016). This trend, however, is unlikely to hold in the future, since these

jobs are also increasingly threatened by the risks of automation (Brussevich et al., 2019, Ge and

Zhou, 2020, Chuan and Zhang, 2021). I contribute to this literature by providing evidence on
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the impact of industrial robots, an increasingly important demand-side factor (as outlined in the

previous paragraph) on the secular decline in the employment gaps in the US.

To my knowledge, the effect of robots on race and ethnicity gaps has not been subject of study so

far.3 Conversely, there has been growing interest on the differential labor market impact of robots by

gender. Recent work by Ge and Zhou (2020) studies the heterogeneity in the effect of robots on pay

differences between men and women in the US. They find that the adoption of robots is decreasing

average wages and that the reduction is stronger for men than for women, narrowing the gender wage

gap. This trend is fairly different among European countries, where robots have a positive effect on

wages of medium- and high-skill jobs in which women are usually under-represented (Aksoy et al.,

2021).4 These findings are in line with Bacolod and Blum (2010) and Yamaguchi (2018) who argue

that the gender gap is strongly influenced by the relative price of the skills in which men and women

have a comparative advantage. Despite this insightful result, the heterogeneous impact of robots on

the extensive margin of employment of men and women remains unclear. Anelli et al. (2019) address

this question without finding significant differences in the effect of robots on employment by gender

in the short-term. This result is likely to follow from the fact that labor markets need some time

to adjust to the shock. This paper departs from their work as it explores the (existing) long-term

impacts of automation on the gender employment gap and, based on the occupational segregation

observed in the data, investigates the mechanism through which the adoption of industrial robots

affects employment opportunities for men and women, as well as by race and ethnicity.

3 Robots and employment gaps: A task-based model

This section presents a simple Roy model with heterogeneous workers and endogenous job sorting

to exposit the mechanism through which the adoption of robots affects the demand for human skills

and the employment gaps, based on the occupational segregation in the labor market (Roy, 1951).

The model builds on Autor et al. (2003) and Ge and Zhou (2020), but extends their framework
3 There is suggestive evidence from Cook et al. (2019) and Muro et al. (2019) though, showing that Blacks and
Hispanics are employed more often in jobs that are more susceptible to automation in the next decades.

4 This result is not surprising given that, except for France (Acemoglu et al., 2020a, Bonfiglioli et al., 2020), the
adoption of robots in European countries is mainly causing a reallocation of human labor across industries with
negligible effects on aggregate employment (Graetz and Michaels, 2018, Dauth et al., 2019, Dottori, 2020).

6



by allowing workers to choose whether to supply labor or not, a necessary condition to study the

effects of automation on the employment gaps.

I consider a production model with two task inputs, manual and non-manual tasks, that are used to

produce an output good Y in a competitive labor supply-demand framework in a closed economy.

Tasks can be carried out by three factor inputs. Manual tasks (A) can be carried out by brawn labor,

LA, or they can be automated through the adoption of robot capital, R. Non-manual tasks (B)

can be carried out only by brain labor, LB (they cannot be automated). The production of goods

combines both types of labor and robot capital, measured in efficiency units, using the following

technology:

Yt =
(
Rρt + LρA,t

)β
ρL1−β

B,t (3.1)

with β, ρ ∈ (0, 1) and β < ρ. In this simple setting, robot capital is an imperfect substitute of LA

and a relative complement to LB. The elasticity of substitution between manual and non-manual

tasks is equal to 1, while the elasticity of substitution between robot capital and brawn labor is

1
1−ρ and, by assumption, it is greater than 1. Perfect competition in the economy implies that in

equilibrium labor is paid its marginal productivity. The first order conditions of the production

function with respect to labor inputs provide the following endogenous labor demand functions:

ωA,t = β
(
Rρt + LρA,t

)β
ρ
−1
Lρ−1A,t L

1−β
B,t (3.2)

ωB,t = (1− β)
(
Rρt + LρA,t

)β
ρL−βB,t (3.3)

where ωA and ωB are the respective labor wages per efficiency unit.

Robots are produced and competitively supplied each period using the following technology Rt =

YR,t
eδt

θ , where YR,t is the amount of the final output allocated to produce robots and θ = eδ is an

efficiency parameter, with productivity rising at rate δ > 0 due to technological progress (Autor

and Dorn, 2013).5 In the first period (t = 1), one unit of YR can be used to produce one efficiency

unit of R (1 = eδ

θ ). Competition guarantees that the real price of robot capital (per efficiency unit)

is equal to marginal (and average) cost: pt = θe−δt. The price is falling exogenously over time due
5 This assumption implies that robot capital fully depreciates in each period or, in other words, that the flow of
services provided by robots is continuously paid its rental price as these services are consumed (Autor and Dorn,
2013).
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to technical advances and is the causal force of the model. From here on, I omit time subscripts.

Labor is supplied by a unit continuum of individuals i ∈ [0, 1] who are endowed with skills in both

tasks, ξi = [xA,i, xB,i].6 Skills are distributed independently and identically over all individuals

according to a density function f(xA,i, xB,i) with support over xj,i ∈ [εj , 1 + εj ], where εj ≥ 0 and

j = {A,B}. I assume that εB = 0.7 Price-taking workers are equipped with one unit of labor

supply and, given their skill endowment and labor wages, choose the employment allocation that

maximizes their income: max{ωAxA,i, ωBxB,i, ωN}. They may supply labor by choosing between

LA, LB or any convex combination of the two, or, alternatively, they may choose not to supply any

labor and consume one unit of leisure, earning exogenous non-labor income ωN . Hence, workers

supply:


brawn labor if xA,i > ωN

ωA
and xB,i < ωA

ωB
xA,i

brain labor if xA,i > ωN
ωA

and xB,i > ωA
ωB
xA,i or if xA,i < ωN

ωA
and xB,i > ωN

ωB

no labor if xA,i < ωN
ωA

and xB,i < ωN
ωB

(3.4)

The model abstracts from involuntarily unemployment so that labor markets clear. Workers choose

brawn labor over non-employment and over brain labor if they are sufficiently skilled in the execution

of brawn tasks. Analogously, they supply brain labor if they have enough brain skills and do not

supply any labor if they are not sufficiently skilled in either task. The shares of individuals who are

employed in brawn and brain labor and those who are not employed are given by:

NA =

∫ 1+εA

xA

∫ x∗B,i

0
f(xA,i, xB,i)dxB,idxA,i (3.5)

NB =

∫ xA

εA

∫ 1

xB

f(xA,i, xB,i)dxB,idxA,i +

∫ 1+εA

xA

∫ 1

x∗B,i

f(xA,i, xB,i)dxB,idxA,i (3.6)

NN =

∫ xA

εA

∫ xB

0
f(xA,i, xB,i)dxB,idxA,i (3.7)

6 It is important to draw a distinction between skills and tasks. Tasks are units of work activity that produce output,
while skills are a worker’s stock of capabilities for performing tasks in exchange for wages (Autor, 2013).

7 This normalization keeps the model simple without affecting the generality of my results.

8



where xA = ωN
ωA

, xB = ωN
ωB

, x∗B,i = ωA
ωB
xA,i and NN = 1 − NA − NB.8 Figure 5 illustrates the

distribution of individuals in NA, NB and NN graphically in a two-dimensional space in which every

point designates the endowment of brawn and brain skills, (xA,i, xB,i), of an individual i. According

to the skill thresholds described previously, the yellow area denotes the share of individuals who

are employed in brawn labor, the green area denotes the share of individuals employed in brain

labor and the blue area denotes the share of individuals who are not employed. Based on the choice

of individuals, I quantify aggregate labor supplies by summing over workers’ skill endowments in

efficiency units:

LA =

∫ 1+εA

xA

∫ x∗B,i

0
xA,if(xA,i, xB,i)dxB,idxA,i (3.8)

LB =

∫ xA

εA

∫ 1

xB

xB,if(xA,i, xB,i)dxB,idxA,i +

∫ 1+εA

xA

∫ 1

x∗B,i

xB,if(xA,i, xB,i)dxB,idxA,i (3.9)

In equilibrium, wages adjust such that labor supply (Equations 3.8 and 3.9) equals labor demand

(Equations 3.2 and 3.3).

Suppose that there are two types of individuals in equal proportions, let’s say men, M , and women,

W , and that men have a comparative advantage in brawn skills. The comparative advantage is

given by a shift of the support over the distribution of brawn skills, xA,i ∈ [εA, 1 + εA], to the right,

i.e. εMA > 0 and εWA = 0 (Pitt et al., 2012, Rendall, 2017).

Proposition 1 The comparative advantage of men in brawn skills implies that they are employed

more often in brawn labor, while women opt more often for non-employment. In equilibrium, the

employment rate of men is higher than the employment rate of women.

Panel A of Figure 5 shows that this proposition must hold since men have the same support over

the distribution of brain skills as women (εB = 0), but, on average, they have more brawn skills

(εMA > εWA ).9 Using a gender-specific form of Equation 3.7 and by computing the difference in the
8 To ensure that NA ≥ 0, NB ≥ 0 and NN ≥ 0, it must hold that εA ≤ xA. Moreover, ωN must be sufficiently small,
i.e. ωN < min{ωA, ωB} is always true, such that not all workers with εj = 0 choose non-employment over labor
(LA = 0 or LB = 0). Finally, starting from t = 1 the wage per efficiency unit of brain labor has to be larger than
the wage of brawn labor, ωB = ωA + µ with µ > 0. This assumption ensures a well-defined solution of the model
and is based on patterns observed in the data which show that, on average, white-collar labor is paid more than
blue-collar labor (see Figure A1).

9 The claim that fewer men opt for non-employment works with any skill distribution function which assumes that
men have a comparative advantage in brawn skills, conditional on men and women having the same skill density
between [εA, 1].
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employment rates, it is straightforward to show that the gender employment gap is positive:

EG(M,W ) = (1−NM
N )− (1−NW

N ) =

∫ εMA

0

∫ xB

0
f(xA,i, xB,i)dxB,idxA,i > 0 (3.10)

where Equation 3.10 denotes the density of the population in the bottom left rectangle (light blue

area) of Figure 5. Supposing that skills are distributed uniformly between εj and 1 + εj , the

expression of the gender employment gap would simplify to εMA xB.

Analogously, it is possible to compute the race and ethnicity employment gap by changing the

assumption on the skill distribution from a comparative advantage of men in brawn skills because

of εMA > 0 to a comparative advantage of racial and ethnic minorities (non-whites, NW ) in brawn

skills because of εNWB < 0 (see Figure A2). This assumption follows from the fact that racial

and ethnic minorities are more likely to include low-skill immigrants with imperfect knowledge of

English and therefore possess, on average, lower communication skills than white workers (Antecol

et al., 2003, Peri and Sparber, 2009, Llull, 2018). That is, whites have a comparative advantage

in the skills required to perform brain labor, while racial and ethnic minorities have a comparative

advantage in brawn skills.

Proposition 2 The comparative advantage of whites in brain skills implies that they are employed

more often in brain labor, while racial and ethnic minorities opt more often for non-employment. In

equilibrium, the employment rate of whites is higher than the employment rate of racial and ethnic

minorities.

The proof of this proposition is provided in Appendix A1. Next, I show that an increase in robot

capital has employment effects which differ by gender, and analogously by race and ethnicity.

As outlined previously, the driving force of the model is an exogenous decrease in the price of robot

capital over time. As robots become cheaper, firms demand less brawn labor, which is reflected

in a decrease in brawn wages, ωA. Panel B of Figure 5 shows that the decrease in brawn wages

makes brain labor and non-labor income relatively more attractive to workers, who respond by

moving away from brawn task-intensive jobs. This is often referred to as ‘displacement effect’. As

a consequence, workers with sufficiently high brain skills move to brain labor, while less skilled

workers leave the labor force. Moreover, the inflow of robot capital more than offsets the decrease
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in brawn labor, yielding a net increase in the intensity of the manual task input in firms’ production

(it becomes cheaper to produce with capital) which boosts the productivity of brain labor and,

therefore, raises brain wages, ωB. This, in turn, induces even more workers to reallocate their labor

supply from brawn labor towards brain labor and also some previously non-employed individuals

to join the labor force and supply brain labor. I refer to this effect as ‘productivity effect’. The

overall effect of robots on aggregate employment is ambiguous and depends on the relative size of

the displacement and the productivity effect (see Appendix A1). Which of the two effects dominates

is an empirical question, and crucially depends on the elasticity of substitution between capital and

labor (see Figures A3, A4 and A5). Nevertheless, the adoption of robots alters significantly the

composition of labor markets, with the employment effects differing by gender and by race and

ethnicity.

Proposition 3 The comparative advantage of men in brawn skills implies that the adoption of robot

capital reduces the gender employment gap.

This proposition follows from the fact that women benefit more from the productivity effect than

men because of their comparative advantage in brain skills. This claim is also visible in Panel B

of Figure 5 which shows that the productivity effect is larger for women than for men, decreasing

employment rate differentials by gender. Furthermore, the figure shows that robots cause a sharp

decline in the employment gap in brawn labor, since men are leaving these jobs more often than

women. The partial derivative of Equation 3.10 with respect to the price of robots yields:

∂EG(M,W )

∂p
= −

∫ εMA

0
f(xA,i, xB)

xB
ωB

∂ωB
∂p

dxA,i > 0 (3.11)

This result holds also when I relax the assumption that β < ρ, allowing robot capital to be a relative

complement of brawn labor (see Equation A1.17), and follows from one of three different scenarios.

First, robots reduce male employment more than female employment. Second, robots increase male

employment less than female employment. Third, robots reduce male employment and increase

female employment. I investigate which scenario occurs in the empirical analysis.

Analogously, it is possible to compute the effect of robots on changes in the race and ethnicity

employment gap (see Panel B of Figure A2).
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Proposition 4 The comparative advantage of whites in brain skills implies that the adoption of

robot capital increases the race and ethnicity employment gap.

This proposition follows from racial and ethnic minorities suffering from a larger displacement effect

than whites. Again, I provide the proof in Appendix A1. In the remaining part of the paper, I test

Propositions 1 to 4 empirically in the US labor market. The setting of the empirical strategy is

described in the next sections.

4 Data

This section describes the main data sources along with a set of summary statistics.

4.1 Industrial robots

I obtain data about the adoption of robots from the International Federation of Robotics (IFR).

The IFR is a survey that collects data on the shipment and operational stock of industrial robots by

country, industry and year ranging back to 1993 for 50 countries.10 Industrial robots are machines

that can be programmed to autonomously perform several manual tasks (e.g. assembly, material

handling, packing and welding) without the intervention of a human worker.11 The IFR breaks down

the stock of operational robots according to the International Standard Industrial Classification

(ISIC) Rev. 2-4 and provides consistent data for six broad industries outside the manufacturing

sector and 13 industries within the manufacturing sector.

These data are praised for their reliability, but they include also some limitations that I briefly

address in the following. First, a fraction of the stock of industrial robots is not attributed to

any industry and is referred to as ‘unclassified’. I attribute unclassified robots proportionally to

an industry’s share of total classified robots for each year (Graetz and Michaels, 2018). Second,

up to 2011, the IFR provides data on the operational stock of robots only for North America as a

whole, which includes the United States, Canada and Mexico. This aggregation introduces noise,
10 The operational stock is calculated as the sum of robot installations in the previous 12 years.
11 The IFR defines industrial robots as ‘automatically controlled, reprogrammable, multipurpose manipulator(s),

programmable in three or more axes, which can be either fixed in place or mobile for use in industrial automation
applications’ (IFR, 2018, p.29). They do not include conveyor belts, cranes or elevators, since these machines do
not meet the above requirements.
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but is not a major concern for the identification of US robot adoption, since the Unites States

account for more than 90 percent of the North American market and the instrumental variable (IV)

strategy presented in Section 5 purges this type of measurement error (Acemoglu and Restrepo,

2020). Third, the stock of robots by industry going back to the 1990s is only available for a subset

of European countries: Denmark, Finland, France, Germany, Italy, Norway, Spain, Sweden, and the

United Kingdom. The IFR provides data on the total stock of robots in North America from 1993,

but it does not provide industry breakdowns until 2004. For these years, I attribute the aggregate

number of robots to industries proportionally to their shares of the total stock in 2004.12

Between the mid-1990s and 2014, the stock of robots in the US has increased by about 1.5 robots

per thousand workers (a fivefold or roughly 180’000 units compared to its 1993 level, see Figure 1)

and, according to the International Federation of Robotics, it is expected to grow even more in the

future (IFR, 2018, pp.535–540). Following Acemoglu and Restrepo (2020), I use these data to build

a measure of robot adoption at the industry level:

∆MUS
j,(t0,t1)

=
RUSj,t1 −R

US
j,t0

LUSj,1990
− gUSj,(t0,t1)

RUSj,t0
LUSj,1990

(4.1)

where RUSj,t is the US stock of robots in industry j at time t and LUSj,1990 is the industry employment

level in 1990. The second term adjusts the measure of robot adoption for industry growth, where

gUSj,(t0,t1) = ∆ ln(Y US
j,t ) is the growth rate of output in industry j between t0 and t1. I obtain data

on employment and output at the industry level from the Integrated Industry-Level Production

Account (KLEMS) of the Bureau of Economic Affairs (BEA).13

Table 1 reports summary statistics of Equation 4.1 for the US and Europe. The statistics show

that robots are mainly adopted in a subset of industries of the manufacturing sector, including the

automotive, basic metals, electronics, food and beverages, metal products, and the plastics and

chemicals industry. These industries are concentrated in US states of the Rust Belt, as illustrated

in Figure 2. In the following, I refer to them as ‘high robot-intensive manufacturing’ industries. I

refer to the remaining industries of the manufacturing sector as ‘low robot-intensive manufacturing’
12 I use the same procedure to impute the stock of robots for Denmark, for which the industry breakdown starts in

1996.
13 I use comparable data for several European countries from the EU KLEMS database (Jägger, 2017) to construct

the instrument of my IV strategy (see Section 5).
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industries and to industries outside of the manufacturing sector as ‘non-manufacturing’ industries.

4.2 Employment gaps

I obtain data on employment and relevant demographic characteristics from the decennial Census

samples for 1970, 1980, 1990 and 2000, and the American Community Survey (ACS) for the years

2007 and 2014.14 Both datasets are publicly provided by the Integrated Public Use Microdata

Series (IPUMS) and are repeated cross-sectional surveys that include between 1 and 5 percent of

the US population (Ruggles et al., 2019). They provide a rich set of information on each sampled

individual, such as sex, race, ethnicity, age, education, employment, industry, occupation, and the

county group of residence. I restrict my sample to the non-institutionalized civilian population

between 25 and 64 years of age and aggregate the counts to 722 Commuting Zones (CZs) that cover

all metropolitan and rural areas of the US mainland and act as proxies of US local labor markers

(Tolbert and Sizer, 1996).15,16

I use these data to compute measures of the employment gaps by race and ethnicity and by gender

at the local labor market level:

EG
(M,W )
c,t = EMc,t − EWc,t (4.2)

where Egc,t is the employment rate (employment count divided by the working-age population) of

demographic group g ∈ {M,W} in CZ c at time t. In case of the gender employment gap, M and

W represent men and women, while they represent whites and non-whites (or racial and ethnic

minorities) for the race and ethnicity employment gap. Racial and ethnic minorities include Blacks,

Hispanics, Asians, American Indian, Alaska natives and other, not elsewhere classified, races.17

Table 2 reports summary statistics on employment by demographic characteristics in 1990 and its

changes between 1990 and 2014. In line with Propositions 1 and 2, I find that the employment gaps
14 I follow the literature and increase the sample size of the ACS samples using data from the 3-year sample of

2006-2008 and the 5-year sample of 2012-2016.
15 CZs represent economically relevant regions for labor markets and are formed by clusters of counties with strong

commuting ties within CZs and weak commuting ties across CZs (Autor and Dorn, 2013).
16 The IPUMS provide county groups or Public Use Microdata Areas as lowest geographic units. I follow Autor

and Dorn (2013) and aggregate data at the CZ level using a crosswalk that provides a probabilistic matching of
sub-state geographic units in US Census Public Use Files to CZs from David Dorn.

17 Figure A6 shows that the distribution of these minorities is heterogeneous across CZs, with the largest concentration
in states of the Sun Belt (Arizona, Florida, New Mexico, Mississippi, South Carolina, Texas).
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are positive – 7.89 percentage points by race and ethnicity and 18.3 percentage points by gender.

Interestingly, both gaps are on a declining trend with the average decline in the race and ethnicity

employment gap being smaller and the average decline in the gender employment gap being larger

in CZs that are more exposed to the adoption of robots.18

Figure A7 in the Appendix provides further information on the distribution of the employment gaps

across US local labor markets. Specifically, the race and ethnicity gap is largest in states of the

northern part of the Wheat Belt (Minnesota, North Dakota and South Dakota), while the gender

gap is particularly large in Texas and in CZs of the northern part of the Jell-O Belt (especially in

Idaho and Utah).

4.3 Brawn and brain tasks

Besides the existence of employment gaps, Propositions 1 and 2 predict that US labor markets are

characterized by a persistent occupational segregation that exposes workers heterogeneously to the

adoption of robots. I analyze the relative exposure of workers to robots by imputing task measures

associated with their occupations according to the brawn and brain task intensity of labor.

Following Autor et al. (2003) and Ge and Zhou (2020), I measure the task intensity of labor using

information on the skill requirements of jobs at detailed occupation level from the Dictionary of Oc-

cupational Titles (DOT) (US Department of Labor, 1977). Although occupations combine elements

from each task category and task intensity varies among occupations within these broad groups,

they capture the central tendencies of the data (Acemoglu and Autor, 2011). Brawn task-intensive

occupations are jobs with a large workload of manual tasks. In the DOT, they include eye, hand and

foot coordination (EYEHAND); motor coordination (MOTOR); finger and manual dexterity (FIN-

GDEX and MANDEX); and physical strength (STRENGTH). Conversely, brain task-intensive jobs

need less physical skills, but require the following temperaments: quantitative reasoning, language,

and verbal and numerical aptitude (GEDs); direction, control and planning for activity (DCP);

interpreting feeling, ideas, facts in terms of personal viewpoint (FIF); influencing people in their

opinions, attitudes or judgment about ideas or things (INFLU); making generalizations, evaluations,

or decisions based on sensory or judgmental criteria (SJC); making generalization, judgments, or
18 The values of Columns 4 and 6 in Panel B are statistically different at the 1 percent level.
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decisions based on measurable or verifiable criteria (MVC); and dealing with people beyond giving

and receiving instructions (DEPL).

Brawn and brain task measures are computed from the averages of the relevant DOT variables and

are standardized using the percentile values of their ranks in the 1970 employment distribution, a

decade before the introduction of industrial robots in the US (Ge and Zhou, 2020). I match these

measures with 315 occupations from the 1990 Census and, using a double median split, I construct

four broad occupation groups. The first group includes occupations that are both brawn and brain

task intensive (e.g. mechanical engineers). I refer to them as ‘skill-intensive’ occupations. The

second group includes ‘white-collar’ occupations that are intensive in brain tasks, but require only

few brawn skills (e.g. secretaries and teachers). The third group includes ‘blue-collar’ occupations

that are intensive in brawn tasks and need only few brain skills (e.g. material movers and operators).

Finally, I refer to occupations that do not require particular brawn or brain skills as ‘low-skill’

occupations (e.g. household cleaners and servants).

The breakdown of workers in brawn and brain task-intensive jobs by race and ethnicity and by

gender is illustrated in Figure 3. I find that workers from racial and ethnic minorities are employed

more often in blue-collar occupations and that women are employed more often in white-collar

occupations. Moreover, non-white and female workers are also over-represented in jobs that do not

require particular brawn or brain skills. A list of occupations with the highest and lowest shares of

non-white and female workers by task specialization is illustrated in Table A2.

Figure 4 further shows that robots are mostly employed in industries with a larger brawn task

content, while they are adopted least in brain task-intensive industries. This empirical evidence

suggests that robot capital is more substitutable for brawn skills than for brain skills and, therefore,

that male and non-white workers are more likely to be exposed to the adverse effects of robots than

women and whites.19

19 The assumption that ρ in the production of good Y is sufficiently high is justified, i.e. robot capital R is a relative
substitute of LA (see Equation 3.1).
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5 Empirical strategy

This section presents the empirical strategy and the construction of a measure of robot exposure. I

estimate the labor market impact of robots on the employment gaps in first differences over three

time periods (1993-2000, 2000-07, 2007-14).20 The key estimating equation is given by:

∆EG(M,W )
c,(t0,t1)

= β(M,W )US robot exposurec,(t0,t1) + X′c,(t0,t1)Γ
(M,W ) + ε

(M,W )
c,(t0,t1)

(5.1)

where ∆EG(M,W )
c,(t0,t1)

is the change in the employment gap among working-age individuals in CZ c

between year t0 and t1.

Following Acemoglu and Restrepo (2020), I measure a local labor market’s exposure to industrial

robots using a shift-share approach:

US robot exposurec,(t0,t1) =
∑
j∈J

`1990c,j ∆MUS
j,(t0,t1)

(5.2)

where ∆MUS
j,(t0,t1)

is a measure of the growth of robot capital between year t0 and t1 at the industry

level (see Equation 4.1) which is apportioned across local labor markets using CZs’ industry employ-

ment shares, `1990c,j =
L1990
c,j

L1990
c

. The baseline employment shares are kept constant to avoid endogeneity

and serial correlation across periods of my stacked first-difference specification.

Identification builds on the assumption that advances in robotics vary by industry and expose local

labor markets differently depending on the industrial composition of employment. However, US

firms could adopt robots in response to domestic shocks which influence also the demand for labor.

For instance, positive demand shocks might induce US firms to raise both capital and employment,

biasing the estimates of the effect of robots upwards. To address the endogeneity concern and

identify robot adoption that is driven by the supply shock, I apply an IV strategy and instrument

the shift component of Equation 5.2 using contemporaneous changes in the stock of robots in seven
20 Note that in the 1990s the IPUMS includes only data from the 1990 Census. For comparability across periods, I

rescale the 1990-2000 period to a 7-year equivalent change.
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European countries with a comparable adoption of robots as the US:

EU7 robot exposurec,(t0,t1) =
∑
j∈J

1

7

∑
i∈EU7

`1970c,j ∆M i
j,(t0,t1)

(5.3)

where ∆M i
j,(t0,t1)

measures the growth of robot capital at the industry level in country i ∈ EU7.

EU7 countries include Denmark, Finland, France, Italy, Spain, Sweden and the United King-

dom. Furthermore, I instrument the share component with plausibly exogenous employment shares

(Goldsmith-Pinkham et al., 2020). I use industry employment shares from 1970 to focus on the

industrial composition of employment that precedes the introduction of industrial robots, which

started in the 1980s (Acemoglu and Restrepo, 2020).

The IV strategy aims at identifying the labor market effects of exogenous improvements in robotics

available to US firms. It relies on the assumptions that the adoption of robots in European countries

is positively related to the adoption of robots in the US, but it is unrelated to domestic labor

market conditions. The first condition can be easily verified (see Figure A8 and Table A3 for first-

stage estimates). However, the exclusion restriction may not be necessarily fulfilled, since the rapid

adoption of robots in Europe could have made European firms more competitive than their US peers,

unveiling a possible causal link with US labor market conditions via product market competition.

Although I cannot fully rule out this possibility, I address this potential threat to identification

through the construction of the instrument and a set of robustness checks. First, the instrument

purposely does not include the countries with the heaviest adoption of industrial robots, namely

South Korea, Germany, and Japan. These countries are also among the main trading partners of

the US and could directly impact US employment through the national adoption of robots. Second,

I construct an instrument which includes only countries that are least engaged in trade with the US

and whose adoption of robots is unlikely to affect US employment. Third, I account for international

competition in the product market between the US and Europe by including a shift-share measure

of US import exposure à la Autor et al. (2013) from the seven European countries that are included

in the instrument. In Section 6.3, I show that my results are unlikely to be driven by an increase in

product market competition through the heavier utilization of robots in Europe.

Returning to Equation 5.1, it is important to note that the effect of robot adoption on the employ-
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ment gaps may be consistent with different employment paths. As has been mentioned in Section

3, in case of a reduction of the (positive) gender employment gap, robots could be reducing male

employment more than female employment, they could be increasing male employment less than

female employment or they could be reducing male employment and be increasing female employ-

ment. I investigate which scenario occurs by estimating the effect of robots on demographic-specific

employment rates:

∆Egc,(t0,t1) = βgUS robot exposurec,(t0,t1) + X′c,(t0,t1)Γ
g + εgc,(t0,t1) (5.4)

where ∆Egc,(t0,t1) is the change in the employment rate among working-age individuals of demo-

graphic group g ∈ {M,W} in CZ c between year t0 and t1. The measure of robot exposure is the

same as in Equation 5.1, with βg being the effect of robots on the employment rate of group g.

Let’s consider again the case in which robots reduce the (positive) employment gap between M and

W , that is β(M,W ) = βM − βW < 0.21 Estimating βM and βW individually allows me to identify

which of the above mentioned employment paths occurs.

The estimating equations include also a vector of time-invariant regional characteristics and eco-

nomic variables, X′, to control for factors that could confound the estimated effect of robots on

labor market outcomes. These variables include a measure of Chinese import competition (Autor

et al., 2013) and Bartik-style measures of personal computer adoption and IT capital intensity.

Furthermore, they include information on the demographic characteristics of labor markets, the

industrial and occupational composition of employment, and the local composition of industries

and occupations by gender, race and ethnicity. Details about the construction of the variables are

provided in Appendix A2. Finally, I control for state fixed effects and year dummies interacted with

nine census-division fixed effects to account for division-specific business cycles.22

21 Equality β(M,W ) = βM − βW follows from the fact that ∆EG(M,W )

c,(t0,t1)
= ∆EMc,(t0,t1) −∆EWc,(t0,t1) such that the three

scenarios can be written as (i) βM < βW < 0, (ii) 0 < βM < βW and (iii) βM < 0 < βW .
22 Census divisions are administrative divisions of the US territory in nine broad groups of states: New England,

Middle Atlantic, South Atlantic, East North Central, East South Central, West North Central, West South Central,
Mountain and Pacific.
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6 Empirical results

This section presents the empirical results on the labor market effect of robots on the employment

gaps and explores the influence of industries, occupations and other socio-demographic characteris-

tics in the determination of the effects.

6.1 Robots and employment gaps

I start by estimating the labor market effect of robots on the race and ethnicity and the gender

employment gap using Equation 5.1. The IV estimates are reported in Table 3. The coefficients are

standardized and represent the estimated effect of a one standard deviation increase in US robot

exposure on the change in the respective employment gap in percentage points. Regressions are

weighted by the CZ population in 1990 and standard errors allow for arbitrary clustering at the

state level.23 Importantly, the results include only partial equilibrium effects of robot adoption

and do not account for aggregate effects resulting from cross-CZ spillovers that could influence the

gender-specific demand for labor in other areas.24

Column 1 reports the estimates of a parsimonious specification that includes only state fixed effects

and division-specific time fixed effects. The estimates show that robots have a positive effect on

the race and ethnicity employment gap and a negative effect on the gender employment gap, i.e.

the adoption of robots decreases the relative employment rate of racial and ethnic minorities (in

particular for Black and Hispanic workers, see Table A4) and increases the relative employment rate

of women. Since both employment gaps are positive during my sample period, these results suggest

that robots are widening the race and ethnicity employment gap and that they are narrowing the

gender employment gap. However, these estimates have to be interpreted carefully, since they could

be capturing the effect of omitted variables. I include additional controls in the following columns
23 As outlined in Cadena and Kovak (2016), when examining outcomes across labor markets of different sizes, efficient

weights must consider individuals’ sampling weights to account for inherent heteroskedasticity. They also show
that optimal weights are strongly correlated with initial population sizes of the unit of reference. At this point, it is
important to note that there are two sources of heteroskedasticity in the distribution of the population of different
demographic groups. First, CZs strongly differ in their population size. Second, CZs differ in the shares of racial
and ethnic minorities in the local population (see Figure A6). I examine the role of weights in Section 6.3.

24 A parametric model to quantify the general equilibrium effects of robots on employment is presented in Acemoglu
and Restrepo (2020), although is does not allow to differentiate for gender-specific cross-CZ effects.
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to account for potential confounders.

Column 2 includes changes in the employment gaps between 1970 and 1990 to account for pre-

trends that could have influenced both labor market outcomes and the adoption of robots from the

1990s. Column 3 includes also a set of variables that control for other (non-robot) technologies which

could have influenced labor market outcomes simultaneously to the introduction of industrial robots.

Column 4 controls for the China trade shock, which has been shown to have significant effects on US

local labor market outcomes in recent decades (Autor et al., 2013, Acemoglu et al., 2016).25 Column

5 adds a set of covariates that account for systematic differences in demographic characteristics and

the employment composition of CZs. Finally, Column 6 includes a set of covariates that control

for the initial composition of employment within occupations and industries by gender, race and

ethnicity.

The inclusion of these covariates does not alter my estimates of the labor market effect of robots

on the employment gaps, which remain economically and statistically significant at conventional

levels. I find that a one standard deviation increase in the adoption of robots decreases the gender

employment gap by 0.619 percentage points and increases the race and ethnicity employment gap

by 0.817 percentage points. This finding suggests that one additional robot per thousand workers

reduces the local gender employment gap by 1.3 percentage points, contributing to its secular decline,

but increases the race and ethnicity employment gap by 1.7 percentage points.26,27

To uncover the employment path that is driving these results, I estimate the labor market effect

of robots on demographic-specific employment rates using Equation 5.4. Figure 6 illustrates the

results using my preferred specification. I find that robots decrease employment across all demo-
25 Although the China trade shock had a deep impact on US manufacturing employment, Table A5 in the Appendix

shows that it did not significantly affect the employment gaps. The result on the gender employment gap is in
line with Autor et al. (2013), who show that the shock has a similar impact on male and female employment (in
percentage points of the population of reference).

26 In robot units, each additional robots per thousand workers reduces the gender employment gap by 1.261 percentage
points (0.619/0.491 where the denominator is the standard deviation of US robot exposure, see Table A6). I compute
the magnitude of the race and ethnicity employment gap analogously.

27 Note that employment estimates are larger than those reported in Acemoglu and Restrepo (2020), since they are not
exploiting variation within states, but only within broad census divisions. However, as demographic-specific labor
market outcomes are highly heterogeneous across US states, it is important account for systematic differences across
them. As a comparison, Table A7 reports estimates of the effect of robots on employment rates and employment
gaps, controlling only for time-varying division fixed effects. Compared to the estimates of Figure 6 below, the
results show that the relative effects by gender and race and ethnicity are unaffected by the exclusion of these
controls, despite the differences in the absolute size.
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graphic groups, but reduce it more for racial and ethnic minorities and for men. According to my

estimates, the introduction of robots has displaced twice as many male workers as female workers

and, accounting for the relative population size of demographic groups, almost three times as many

non-white workers as white workers. These findings are consistent with the notion that men and

racial and ethnic minorities are employed more often in blue-collar jobs that are more susceptible to

automation through the adoption of robots, leading to a decrease in the gender employment gap but

to an increase in the race and ethnicity employment gap.28 In line with this prediction, I find that

CZs that are more intensive in blue-collar work in 1970, a proxy for a labor market’s specialization

in brawn-task intensive jobs before the introduction of industrial robots, are using more robots (see

Figure A9) and experience larger changes in the employment gaps because of their adoption (see

Figure A10).29

Finally, I analyze the impact of robots on the employment gaps in more detail by breaking down

employment by additional demographic characteristics. The results are reported in Table 4. I find

that the labor market effects of robots are almost entirely driven by workers with less than a college

degree. This finding follows from the fact that these individuals are more likely to be employed

in blue-collar jobs (see Figure A11). However, it does not imply that the employment of college-

educated workers has not been influenced by the adoption of robots (the effect is smaller though,

see Figure A12), but that it has not been influenced differently by race and ethnicity and by gender.

The effect of robots on the race and ethnicity employment gap is relatively stable and persistent

across prime-age workers, with a peak between 45 and 54 years, but it is not significantly different

between men and women and it does not depend on whether individuals are natives or immigrants

(see Table A8). The effect on the gender employment gap is largest among young workers (25 and

34 years) and halves in size from 35 years. Also in this case, I find no significant difference in the

effect of robots on the gender employment gap by race and ethnicity.
28 Table A9 further shows that robots affect labor force participation gaps in the same direction as they do with the

employment gaps, suggesting that a significant share of displaced workers is leaving the labor force (Lerch, 2020).
29 Using the notation of the model in Section 3, a firm’s production intensity in manual tasks is increasing in β. In

line with the empirical results, Figure A5 shows that an increase in robot capital has a stronger effect on the gender
employment gap for large values of β.
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6.2 Employment gaps by industry and occupation

From the model in Section 3, we know that robots are not only decreasing the overall gender

employment gap, but that they are also reducing the gender employment gap among brawn task-

intensive occupations. Analogously, they are increasing the race and ethnicity employment gap in

these occupations. To test these predictions empirically, I break down employment by the task

content of occupations (skill-intensive, white-collar, blue-collar and low-skill jobs, see Section 4

for details) and estimate Equation 5.1 within each occupation group. I repeat this exercise by

industry group (high robot-intensive manufacturing, low robot-intensive manufacturing and non-

manufacturing industries) to analyze the effect of robots on the employment gaps also from an

industrial perspective. The results are presented in Table 5.

I find that industrial robots are indeed narrowing the gender employment gap among brawn task-

intensive jobs, in particular in blue-collar occupations. This effect is almost entirely driven by the

set of industries of the manufacturing sector with the heaviest adoption of robots. In these indus-

tries, robots are displacing more male than female workers by taking over the tasks they used to

perform. However, the effect of robots is not confined to the manufacturing sector and affects also

employment in non-manufacturing industries. Although this effect might seem surprising at first,

it has to be considered that the employment reduction in the manufacturing sector could contract

aggregate demand in the local economy, decreasing also the demand for labor in industries that are

not directly affected by the shock (Faber et al., 2019, Acemoglu and Restrepo, 2020, Helm, 2020).

This finding is visible in case of the race and ethnicity employment gap, which is driven by increas-

ing employment rate differentials in blue-collar jobs of non-manufacturing industries, especially in

the service sector.30 This result does not imply that robots are not decreasing manufacturing em-

ployment, but that they are decreasing it without significant differences by race and ethnicity (see

Figure A13). The differences emerge once the effect spills over to local service-sector industries,

where mostly non-white workers are losing their jobs (0.9 percentage points).31 This effect appears
30 Table A10 breaks down the effect of robots from Column 7 in Table 5 and reports estimates of the effect of

robots on the race and ethnicity employment gap within non-manufacturing industries (agriculture, construction,
education and research, mining, services, and utilities). From the results emerges that the increase in employment
rate differentials in non-manufacturing industries is driven by the service sector.

31 Table A11 shows that the labor market effect of robots on the race and ethnicity employment gap is indeed mostly
caused by the adoption of robots in manufacturing industries.
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strong at first glance. However, it has to be considered that these results are expressed in percent-

age points of the population of reference. While the proportional loss of jobs among non-whites is

large, the magnitude of the loss in absolute terms is similar across racial and ethnic groups. This

result follows from the fact that the population of reference of non-whites is much smaller than the

population of whites.32

These results show that robots are shifting the employment gaps towards zero among blue-collar

occupations and, in case of the gender employment gap, among highly exposed manufacturing

industries (see Table A13). However, the adoption of robots is also widening the (already positive)

race and ethnicity employment gap in the service sector, with mostly non-white workers losing

their job and not finding re-employment opportunities because of robots. This result could follow

from labor market effects of robots that go beyond broad composition effects and which cannot

be explained using observables. For example, the spillover effect of robots on the employment of

racial and ethnic minorities in the service sector could be fueled by non-observable factors such as

discrimination against Black and Hispanic workers in these industries, an interesting question that

should be addressed by future research.

6.3 Robustness checks

This section performs a set of robustness checks in support of the identification strategy and of my

preferred specification. It shows that my results are not driven by an increase in product market

competition from Europe, pre-existing trends or the construction of the measure of a local labor

market’s robot adoption.

Product market competition A concern that I need to address is that the adoption of robots

in Europe is influencing US labor market conditions through increased product market competition,

violating the exclusion restriction of my IV strategy. Although I cannot rule out this possibility, I

can show that it is rather unlikely that my results are driven by this causal link. In Table A14, I

estimate the labor market impact of robots on the employment gaps by controlling for international
32 In 1990, the average proportion of racial and ethnic minorities was about 15 percent. This value increased up to

23 percent in 2014. Table A12 shows that the size of the (indirect) effect of robot adoption on the employment
of whites and non-whites in non-manufacturing industries is not statistically different, if expressed in terms of the
total population.
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competition on the product market using a shift-share measure of US imports from Europe à la

Autor et al. (2013). Between the mid-1990s and 2014, trade flows from Europe to the US have

increased substantially. This increase is mainly driven by a rise in imports of manufacturing goods

that is positively related to the introduction of robots in Europe (see Figure A14). As US imports

could be subject to domestic shocks that affect also local labor demand (demand shocks), I account

for endogeneity of imports by using trade flows from Europe to Canada, a country with a comparable

trade engagement with European countries (see Figure A15). Reassuringly, my estimates are not

significantly affected by the inclusion of these additional controls. In a second approach, I omit from

the instrument the European countries with the largest trade engagement with the US, namely the

UK, Italy and France. By including only countries that are less likely to impact US labor market

conditions through product market competition because of their national adoption of robots, the

results lose some precision (because of the heavier exposure of the instrument to labor market

shocks in Nordic countries and in Spain) but remain statistically significant at conventional levels.

These findings suggest that my estimates are unlikely to be driven by an increase in product market

competition through the heavier utilization of robots in Europe.

Pre-trends The secular decline in the race and ethnicity and the gender employment gap raises

the concern that the decrease in the employment gaps and the adoption of industrial robots are

driven by some common factors. For instance, changes in the employment gaps and the adoption of

robots could both stem from a labor market’s industrial composition of employment. In this case,

my estimates could confound the impact of robot exposure with pre-existing local labor market

trends. I account for this concern in my preferred specification by controlling for past changes in

the employment gaps between 1970 and 1990 and the employment composition of industries and

occupations by gender, race and ethnicity. Furthermore, I perform a ‘placebo test’ in which I test

the relationship between past employment gaps and the adoption of robots between the 1990s and

2000s to verify that my results are capturing the period specific effects of robots on the employment

gaps. The results are reported in Table A15. I find no evidence of the existence of pre-trends

that influence the impact of robots on the employment gaps and that there is no economically or

statistically significant association between robot adoption and past employment gaps.

Weights Figure A6 in the Appendix shows that there is substantial variation in the distribution of
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racial and ethnic minorities in the US, with the largest concentration in states of the Sun Belt because

of their proximity to Mexico and the Caribbean islands. Table A16 examines the role of population

weights and the geographic distribution of non-whites for the determination of the effect of robots

on changes in the race and ethnicity employment gap. I start by estimating Equation 4.2 using as

regression weights the initial population of non-whites in the CZ. The size of the estimates is larger

than in my preferred specification, suggesting that the effect is likely to emerge from labor markets

with a larger population of racial and ethnic minorities. Column 2 estimates the effect of robots

on the employment gaps without any weights. The results are not economically nor statistically

significant, since CZs with a small population of non-whites receive too much weight. Column 3

restricts the sample to CZs with a large population of racial and ethnic minorities and repeats the

exercise of the previous column (see Panel B of Figure A6), showing that the results specific to these

CZs are very similar to my preferred specification’s estimates in Table 3.33 This finding suggests that

my main results are indeed driven by CZs with a sufficiently large population of racial and ethnic

minorities and that this effect is captured by the population weight of my preferred specification.

The homogeneous distribution of men and women across labor markets does not expose my results

to the above mentioned concerns. As illustrated in Panel B of Table A16, the estimates of the labor

market effect of robots on the gender employment gap are economically and statistically significant

across all specifications, independently of the regression weights.

Additional robustness checks Tables A17 to A20 in the Appendix report additional robustness

checks. Table A17 shows that the exact construction of the shift-share measure is not affecting

my results. Panels A and B report estimates with a different mix of European countries used in

the construction of the instrument. Panel C reports estimates using an instrument with baseline

employment shares from 1990, `1990c,j , rather than those from 1970. Panel D reports estimates using

measures that omit the adjustment for industry growth, gj,(t0,t1)
Rj,t0
Lj,1990

. The estimates are not

significantly different from my preferred specification. Table A18 excludes a set of outlying CZs

with the heaviest adoption of robots. Panel A reports estimates when excluding the area around

Detroit (MI), which is the CZ with the largest exposure to robots, while Panel B excludes CZs in

the top 1 percentile of the distribution of robot exposure during my sample period. The results
33 I perform a double median split and select the 275 CZs with a population of non-whites and a share of the non-white

population above the US local labor market median.
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lose some precision, because most of the identification is coming from CZs in the Rust Belt (see

Figure 2), but they are not significantly different from my baseline results, especially for individuals

without a college degree. These findings suggest that my results are not solely driven by the subset

of CZs with the largest adoption of robots. Table A19 shows that unobserved heterogeneity does

not alter my results. Panel A includes covariates of CZ characteristics at the beginning of each

subperiod (1990, 2000 and 2007) instead of covariates from 1990. Panel B uses a more demanding

specification and includes CZ fixed effects. Using both specifications, the results are quantitatively

and qualitatively significant at conventional levels. Finally, Table A20 shows that the effects are

economically and statistically significant already before the Great Recession, which is particularly

reassuring with respect to the fact that the alteration of labor market conditions during this period

of time is not driving my results.

7 Conclusion

The rapid rise in the adoption of industrial robots since the 1990s has already displaced thousands

of workers in the US. However, it remains unclear how the adverse labor market effects of robots

are spreading among the population. This paper addresses this gap by investigating the impact of

robot adoption on employment of different demographic groups. I find that the effects of robots

are distributed unevenly among the population and that they reduce employment relatively more

for men and for racial and ethnic minorities, contributing to the secular decline in the gender

employment gap but increasing the race and ethnicity employment gap. Between 1993 and 2014,

robots have, on average, displaced twice as many male workers as female workers and, accounting for

the relative population size of demographic groups, almost three times as many non-white workers

as white workers. This result is driven by the over-representation of these workers in brawn task-

intensive occupations that are exposed to the adoption of robots, especially in blue-collar jobs.

Although industrial robots are mainly implemented to perform blue-collar work in manufacturing

industries, their labor market impacts are not confined to these industries. I find significant spillover

effects of robots to service-sector industries, in which mostly non-white workers are losing their jobs

and do not find re-employment opportunities. This finding could be fueled by unobservable factors

that go beyond composition effects, such as discrimination against racial and ethnic minorities in
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the service sector, an important question that should be addressed by future research.
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Figures

Figure 1: Industrial robots and employment gaps

Note: This figure illustrates the race and ethnicity employment gap, the gender employment gap and the stock of industrial
robots per thousand workers in the US between 1993 and 2017. The number of workers is kept constant at its 1993 level. I
compute the employment gaps using monthly data from the Current Population Survey.
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Figure 2: Robot exposure at the commuting zone level, 1993-2014

Note: This figure illustrates the geographic distribution of US robot exposure (in robots per thousand workers) at the CZ level
between 1993 and 2014.
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Figure 3: Occupations and demographics

Panel A: Race and ethnicity

Panel B: Gender

Note: This figure illustrates the shares of women and non-whites across different occupation groups in 1990. I perform a
median split of the standardized measures of brawn and brain task content of jobs and assign them to one of four groups:
skill-intensive, white-collar, blue-collar or low-skill jobs. Skill-intensive jobs include occupations that are both brawn and brain
task intensive. White-collar jobs include occupations that are brain task intensive and require only few brawn skills. Blue-collar
jobs include occupations that are brawn task intensive and require only few brain skills. Low-skill jobs include occupations that
do not require particular brawn or brain skills. The share of non-whites among the employed is computed from the number of
non-white workers divided by the employed population. Analogously, I compute the share of women among the employed.
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Figure 4: Industries and tasks

Panel A: Brawn tasks

Panel B: Brain tasks

Note: This figure illustrates the relationship between the growth in the (log) stock of robots per thousand workers at the IFR
industry level between 1993 and 2014 (see Equation 4.1) and the brawn and brain task content in these industries, expressed
as the average standardized task content of workers that are employed in these industries in 1990.
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Figure 5: Robots and employment by gender

Panel A: Employment by gender

Panel B: Robots and employment by gender

Note: This figure illustrates an economy’s population density by employment status and gender in equilibrium, when solving
for Equations 3.2, 3.3, 3.8 and 3.9. NA, NB and NN represent the share of individuals that supply brawn labor, brain labor
and no labor. εA > 0 is the comparative advantage of men in brawn skills, and xA = ωN

ωA
, xB = ωN

ωB
and x∗B,i =

ωA
ωB

xA,i. Panel
B illustrates the impact of a decrease in the price of robot capital on relative wages and the equilibrium allocation of labor.
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Figure 6: Robots and employment rates

Note: This figure illustrates the IV point estimates of the effect of US robot exposure on the change in employment by race and
ethnicity and by gender. Changes are expressed in percentage points of the population subgroup and are multiplied by 100.
Independent variables are standardized to have mean zero and standard deviation of one. There are three time periods and 722
CZs. Standard errors are robust against heteroskedasticity and allow for clustering at the state level. Confidence intervals are
at the 95% level. Regressions include covariates of my preferred specification and are weighted by CZ population in 1990.
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Tables

Table 1: Descriptive statistics: Industrial robots

Robots in the US Robots in EU7 Employment
per thousand countries per in

workers thousand workers thousands

1993 ∆14−93 1993 ∆14−93 1993

[1] [2] [3] [4] [5]

Panel A: High robot-intensive manufacturing
Automotive 24.25 82.69 18.2 57.12 1111
Basic Metals 1.39 5.37 0.84 7.34 712
Electronics 2.01 10.99 2.34 3.31 2868
Food and Beverages 1.02 4.62 0.38 8.93 1862
Metal Products 1.69 6.51 6.91 11.13 1689
Plastics and Chemicals 1.80 7.43 2.85 16.04 2205

Panel B: Low robot-intensive manufacturing
Industrial Machinery 0.39 1.52 3.01 6.18 1541
Minerals 0.04 0.58 0.60 3.64 558
Miscellaneous 0.49 11.66 2.56 2.93 690
Paper and Printing 0.00 0.10 0.19 0.83 2467
Shipbuilding and Aerospace 0.02 0.44 0.73 2.18 1111
Textiles 0.00 0.05 0.24 0.88 1848
Wood and Furniture 0.00 0.12 1.14 2.75 1048

Panel C: Non-manufacturing
Agriculture 0.00 0.03 0.00 0.18 2552
Construction 0.00 0.02 0.00 0.11 7108
Education and Research 0.00 0.04 0.03 0.33 12636
Mining 0.00 0.05 0.23 1.36 763
Services 0.00 0.00 0.00 0.00 84776
Utilities 0.00 0.02 0.00 0.25 745

Note: This table presents the number of robots adopted in the United States and seven European countries (Denmark, Finland,
France, Italy, Spain, Sweden and the United Kingdom) by year and industry. Panel A reports the number of robots in
manufacturing industries with the largest adoption of robots during the sample period. Panel B reports the number of robots
in other manufacturing industries. Panel C reports the number of robots for six sectors outside of manufacturing. Columns 1
and 3 report the stock robots per thousand workers in 1993. Columns 2 and 4 report the change in the stock of robots between
1993 and 2014 per thousand workers in 1993. Column 5 reports the number of workers by industry in 1993.
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Table 2: Descriptive statistics: Employment

All 1st quartile 4th quartile

1990 ∆14−90 1990 ∆14−90 1990 ∆14−90

[1] [2] [3] [4] [5] [6]

Panel A: Employment rates

White 76.7 -1.42 76.3 -2.17 76.4 -0.83
Non-white 68.8 0.94 70.0 1.01 67.2 0.99

Male 84.3 -4.46 83.8 -4.14 84.4 -4.73
Female 66.0 1.64 65.4 1.23 65.8 2.32

Panel B: Employment gaps

Race and ethnicity 7.89 -2.37 6.22 -3.18 9.13 -1.82
Gender 18.3 -6.10 18.3 -5.37 18.6 -7.06

Observations 722 722 181 181 180 180

Note: This table presents the average employment rates for whites, non-whites (or racial and ethnic minorities), men and
women and the average employment gaps in 1990 as well as changes between 1990 and 2014 weighted by CZ population in 1990.
Columns 1 and 2 reports averages over all 722 CZs in the sample. Columns 2 to 6 split the sample into quartiles according to a
labor market’s exposure to robots between 1993 and 2014 and report averages of the employment rates and employment gaps
for the first and the fourth quartile.
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Table 3: Robots and employment gaps

Panel A: Race and ethnicity

[1] [2] [3] [4] [5] [6]

US robot exposure 0.640∗∗∗ 0.669∗∗∗ 0.662∗∗∗ 0.663∗∗∗ 0.797∗∗∗ 0.817∗∗∗
(0.232) (0.231) (0.233) (0.233) (0.267) (0.270)

Observations 2166 2166 2166 2166 2166 2166

Panel B: Gender

[1] [2] [3] [4] [5] [6]

US robot exposure -0.508∗∗∗ -0.516∗∗∗ -0.537∗∗∗ -0.537∗∗∗ -0.609∗∗∗ -0.619∗∗∗
(0.141) (0.139) (0.142) (0.141) (0.156) (0.160)

Observations 2166 2166 2166 2166 2166 2166

Covariates:
Region X X X X X X
Year X X X X X X
Pre-trends X X X X X
Computer & IT X X X X
Chinese imports X X X
Demographics X X
Occupations X X
Industries X X
Composition X

Note: This table presents IV estimates of the effect of US robot exposure on the race and ethnicity employment gap and the
gender employment at the CZ level. Changes are expressed in percentage points of the working-age population subgroup and
are multiplied by 100. Independent variables are standardized to have mean zero and standard deviation of one. There are three
time periods and 722 CZs. Column 1 includes only state fixed effects and time-varying division fixed effects. Column 2 includes
also pre-trends in the change of the employment gaps between 1970 and 1990. Column 3 controls for the adoption of personal
computers and IT capital intensity. Column 4 includes the exposure to Chinese imports. Column 5 includes also demographic
(share of individuals aged between 25 and 34 years, 35 and 44 years, 45 and 54 years, the share of Blacks, Hispanics, women
and individuals with less than a college degree and logarithmic population), industry (share of employment in the contruction,
manufacturing, mining, research, service and utilities sector) and occupation (share of employment in routine, offshorable,
skill-intensive, white-collar, blue-collar and low-skill occupations) characteristics of CZs in 1990. Column 6 controls also for
the initial composition of employment by race, ethnicity and gender within occupation and industry groups. Standard errors
are robust against heteroskedasticity and allow for clustering at the state level. Regressions are weighted by CZ population in
1990. Coefficients with ∗∗∗, ∗∗ and ∗ are significant at the 1%, 5% and 10% confidence level.
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Table 4: Robots and employment gaps: Demographics

Panel A: Race and ethnicity

Gender Education Age

Men Women College
degree

Less than
college

25-34
years

35-44
years

45-54
years

55-64
years

[1] [2] [3] [4] [5] [6] [7] [8]

US robot exposure 0.891∗∗ 0.749∗∗ 0.320 0.948∗∗∗ 0.705∗∗ 0.847∗∗ 1.189∗∗∗ 0.472
(0.344) (0.279) (0.295) (0.294) (0.296) (0.399) (0.316) (0.328)

Observations 2166 2166 2166 2166 2166 2166 2166 2166

Panel B: Gender

Race and ethnicity Education Age

Whites Non-whites College
degree

Less than
college

25-34
years

35-44
years

45-54
years

55-64
years

[1] [2] [3] [4] [5] [6] [7] [8]

US robot exposure -0.620∗∗∗ -0.704∗∗ 0.065 -0.877∗∗∗ -1.036∗∗∗ -0.448∗∗ -0.421∗∗ -0.678∗∗∗
(0.130) (0.338) (0.176) (0.186) (0.293) (0.201) (0.168) (0.190)

Observations 2166 2166 2166 2166 2166 2166 2166 2166

Covariates: X X X X X X X X

Note: This table presents IV estimates of the effect of US robot exposure on the change in the race and ethnicity employment
gap and the gender employment gap by education level and age at the CZ level. Changes are expressed in percentage points of
the working-age population subgroup and are multiplied by 100. Independent variables are standardized to have mean zero and
standard deviation of one. There are three time periods and 722 CZs. All columns include state fixed effects and time-varying
division fixed effects and control for the adoption of personal computers, IT capital intensity, the exposure to Chinese imports,
the demographic (share of individuals aged between 25 and 34 years, 35 and 44 years, 45 and 54 years, the share of Blacks,
Hispanics, women and individuals with less than a college degree and logarithmic population), industry (share of employment in
the contruction, manufacturing, mining, research, service and utilities sector) and occupation (share of employment in routine,
offshorable, skill-intensive, white-collar, blue-collar and low-skill occupations) characteristics of CZs, as well as the employment
composition by race, ethnicity and gender within occupation and industry groups in 1990. Standard errors are robust against
heteroskedasticity and allow for clustering at the state level. Regressions are weighted by CZ population in 1990. Coefficients
with ∗∗∗, ∗∗ and ∗ are significant at the 1%, 5% and 10% confidence level.
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Table 5: Robots and employment gaps: Occupations and industries

Panel A: Race and ethnicity

Occupation Industry

Skill
intensive

White
collar

Blue
collar

Low
skills

High
robot-

intensive

Low
robot-

intensive

Non-
manufac-
turing

[1] [2] [3] [4] [5] [6] [7]

US robot exposure 0.011 0.147 0.611∗∗∗ 0.053 0.152 0.001 0.667∗∗∗
(0.103) (0.130) (0.177) (0.110) (0.176) (0.076) (0.240)

Observations 2166 2166 2166 2166 2166 2166 2166

Panel B: Gender

Occupation Industry

Skill
intensive

White
collar

Blue
collar

Low
skills

High
robot-

intensive

Low
robot-

intensive

Non-
manufac-
turing

[1] [2] [3] [4] [5] [6] [7]

US robot exposure -0.220∗∗∗ 0.109 -0.562∗∗∗ 0.002 -0.476∗∗∗ -0.046 -0.099
(0.047) (0.078) (0.094) (0.062) (0.096) (0.034) (0.160)

Observations 2166 2166 2166 2166 2166 2166 2166

Covariates: X X X X X X X

Note: This table presents IV estimates of the effect of US robot exposure on the change in the race and ethnicity employment
gap and the gender employment gap by industry and occupation group at the CZ level. Occupation groups are computed from
a median split of the standardized measures of the brawn and brain task content of jobs. Skill-intensive jobs include occupations
that are both brawn and brain task intensive. White-collar jobs include occupations that are brain task intensive and require
only few brawn skills. Blue-collar jobs include occupations that are brawn task intensive and require only few brain skills. Low-
skill jobs include occupations that do not require particular brawn or brain skills. Industry groups are created according to the
relative adoption of industrial robots of industries. High robot-intensive manufacturing industries include the industries with
the heaviest adoption of industrial robots. Low robot-intensive manufacturing industries include the remaining manufacturing
industries, while non-manufacturing industries include all industries outside of the manufacturing sector. Changes are expressed
in percentage points of the working-age population subgroup and are multiplied by 100. Independent variables are standardized
to have mean zero and standard deviation of one. There are three time periods and 722 CZs. All columns include state fixed
effects and time-varying division fixed effects and control for the adoption of personal computers, IT capital intensity, the
exposure to Chinese imports, the demographic (share of individuals aged between 25 and 34 years, 35 and 44 years, 45 and
54 years, the share of Blacks, Hispanics, women and individuals with less than a college degree and logarithmic population),
industry (share of employment in the contruction, manufacturing, mining, research, service and utilities sector) and occupation
(share of employment in routine, offshorable, skill-intensive, white-collar, blue-collar and low-skill occupations) characteristics
of CZs, as well as the employment composition by race, ethnicity and gender within occupation and industry groups in 1990.
Standard errors are robust against heteroskedasticity and allow for clustering at the state level. Regressions are weighted by
CZ population in 1990. Coefficients with ∗∗∗, ∗∗ and ∗ are significant at the 1%, 5% and 10% confidence level.
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Online Appendix:

From Blue to Steel-Collar Jobs:
The Decline in Employment Gaps?

Benjamin Lerch

A1 Proofs of propositions

In this part of the Appendix, I provide proofs and further results of the equilibrium labor market
impact of robots on the demand for human skills and the employment gaps.

The model presents a basic production function which combines labor (brawn labor, LA, and brain
labor, LB) and robot capital, R, to produce an output good Y (see Equation 3.1). The perfectly
competitive environment implies that input factors are paid their marginal productivity (see Equa-
tions 3.2 and 3.3). Robot capital is produced and competitively supplied each period using the
following technology, Rt = YR,t

eδt

θ , where YR,t is the amount of the final output allocated to pro-
duce robots and eδ(t−1) is the total factor productivity (Autor and Dorn, 2013). That is, firms can
sell their output good Y at the normalized price of 1 or they can invest a share of their production,
YR,t, in the production of robot capital at price pt:

πt = YR,t − ptRt (A1.1)

Taking the first order condition of Equation A1.1 with respect to YR,t gives:

∂πt
∂YR,t

= 1− pt
eδt

θ
= 0 (A1.2)

which solves pt = θe−δt.

Labor is supplied by a unit continuum of individuals who are endowed with independently and
identically distributed skills on two input tasks, f(xA,i, xB,i) with support xj,i ∈ [εj , 1 + εj ], where
j = {A,B} and εA ≥ 0 and εB = 0. Workers want to maximize their income and may supply labor
by choosing between brawn labor, brain labor or any convex combination of the two, or they may
choose not to supply any labor and consume one unit of leisure. These assumptions imply that
workers choose tasks according to their comparative advantage, given their skills and equilibrium
wages. The share of individuals who supply labor is determined by Equations 3.5 and 3.6, while the
share of individuals who is not employed is given by Equation 3.7. Labor supplies are determined
by Equations 3.8 and 3.9. In equilibrium, wages adjust such that labor demand and labor supply
are equal.

According to Proposition 1, the comparative advantage of men in brawn skills implies that they
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are employed more often in brawn labor and that women opt more often for non-employment.
Analogously, Proposition 2 claims that whites are employed more often in brain labor, given their
comparative advantage in brain skills, and that racial and ethnic minorities opt more often for non-
employment. Consequently, the gender employment gap and the race and ethnicity employment
gap are both positive.

I prove these propositions by supposing that the labor force consists of two types of individuals in
equal proportions, let’s say men, M , and women, W , and that men have a comparative advantage
in brawn skills, εMA > 0 and εWA = 0. The comparative advantage implies that in equilibrium the
employment gap in brawn labor is positive:

EG
(M,W )
A = NM

A −NW
A =

∫ εA

0

∫ x∗B,i

0
f(xA,i, xB,i)dxB,idxA,i > 0 (A1.3)

i.e. men are employed more often in brawn task-intensive jobs than women. The gender employment
gap, expressed as the difference between the employment rate of men and the employment rate of
women, can be computed using gender-specific forms of Equation 3.7:

EG(M,W ) = (1−NM
N )− (1−NW

N ) =

∫ εMA

0

∫ xB

0
f(xA,i, xB,i)dxB,idxA,i > 0 (A1.4)

The positive sign of this expression suggests that the employment rate of men is higher than the
employment rate of women.

To compute the employment gap by race and ethnicity the assumption on the comparative advantage
of racial and ethnic minorities in brawn skills has to be changed to εNWB < 0 and εgA = εWH

B = 0

with g ∈ {WH,NW}. The employment rates are given by the following equations:

NA =

∫ 1

xA

∫ x∗B,i

εB

f(xA,i, xB,i)dxB,idxA,i (A1.5)

NB =

∫ xA

0

∫ 1+εB

xB

f(xA,i, xB,i)dxB,idxA,i +

∫ 1

xA

∫ 1+εB

x∗B,i

f(xA,i, xB,i)dxB,idxA,i (A1.6)

The comparative advantage of whites in brain skills implies that a higher proportion of them supplies
brain labor in equilibrium:

EG
(WH,NW )
B = NWH

B −NNW
B =

∫ 1

0

∫ 0

εB

f(xA,i, xB,i)dxB,idxA,i > 0 (A1.7)

The supply of brawn and brain labor is computed analogously to Equations 3.8 and 3.9. The
proportion of workers who are not employed is equal to:

NN =

∫ xA

0

∫ xB

εB

f(xA,i, xB,i)dxB,idxA,i (A1.8)
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Using Equation A1.8, the computation of the race and ethnicity employment gap is straightforward:

EG(WH,NW ) = (1−NWH
N )− (1−NNW

N ) =

∫ xA

0

∫ 0

εNWB

f(xA,i, xB,i)dxB,idxA,i > 0 (A1.9)

As stated in Proposition 1, Equations A1.3 and A1.4 show that the comparative advantage of men
in brawn skills implies that in equilibrium they are employed more often in brawn labor and that the
gender employment gap is positive. Moreover, Equations A1.7 and A1.9 show that the comparative
advantage of whites in brain skills implies that they are employed more often in brain labor and
that the race and ethnicity employment gap is positive too, confirming the statement of Proposition
2. �

From Equation A1.2, we know that the price of robots decreases over time due to exogenous tech-
nological progress, raising the amount of robot capital adopted in the production of output good
Y . An increase in the adoption of robots has adverse effects on the demand for labor and, through
changes in wages, also on the labor supply. In the following, I provide the relevant proofs of Propo-
sitions 3 and 4 which state that an increase in robot capital decreases the gender employment gap
and increases the race and ethnicity employment gap. To understand the underlying mechanism
through which the adoption of robots influences the equilibrium amounts of labor in the economy,
I compute the components of the following equations, which show the partial derivatives of brawn
and brain labor with respect to the price of robots:

∂LA
∂p

=
∂LA
∂ωA

∂ωA
∂p

+
∂LA
∂ωB

∂ωB
∂p

(A1.10)

∂LB
∂p

=
∂LB
∂ωA

∂ωA
∂p

+
∂LB
∂ωB

∂ωB
∂p

(A1.11)

I start with the computation of the partial derivatives of LA and LB with respect to labor wages:

∂LA
∂ωA

=−

[
∂

∂xA

∫ 1+εA

xA

(∫ x∗B,i

0
xA,if(xA,i, xB,i)dxB,i

)
dxA,i

]
xA
ωA

+

+

∫ 1+εA

xA

(xA,i)
2f(xA,i, ωxA,i)

1

ωB
dxA,i > 0

(A1.12)

where ω = ωA
ωB

such that x∗B,i = ωxA,i.

∂LA
∂ωB

= −
∫ 1+εA

xA

(xA,i)
2f(xA,i, ωxA,i)

ω

ωB
dxA,i < 0 (A1.13)
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∂LB
∂ωA

=−
∫ 1

xB

xB,if(xA, xB,i)
xA
ωA

dxB,i−

−

[
∂

∂xA

∫ 1+εA

xA

(∫ 1

x∗B,i

xB,if(xA,ixB,i)dxB,i

)
dxA,i

]
xA
ωA
−

−
∫ 1+εA

xA

(xA,i)
2f(xA,i, ωxA,i)

ω

ωB
dxA,i < 0

(A1.14)

since the positive term in the second line of Equation A1.14 is outweighed by the other terms.

∂LB
∂ωB

=

∫ xA

εA

f(xA,i, xB)
(xB)2

ωB
dxA,i+

+

∫ 1+εA

xA

(xA,i)
2f(xA,iωxA,i)

ω2

ωB
dxA,i > 0

(A1.15)

These equations show that the supply of brawn (brain) labor increases as brawn (brain) wages
increase and decreases if brain (brawn) wages increase. Next, I compute the change in equilibrium
wages in response to an increase in the price of robots. Taking total differentials of Equations 3.2
and 3.3, I obtain that:

∂ωA
∂p

= −

(
β
ρ − 1

)
ρRρ−1LB(

Rρ + LρA
)[(β

ρ − 1
)
ρLρ−1

A LB
Rρ+LρA

∂LA
∂ωA

+ (ρ− 1)LBLA
∂LA
∂ωA

+ (1− β)∂LB∂ωA
− LB

ωA

] ∂R
∂p

> 0 (A1.16)

∂ωB
∂p

= − βRρ−1(
Rρ + LρA

)[ βLρ−1
A

Rρ+LρA

∂LA
∂ωB
− β

LB
∂LB
∂ωB
− 1

ωB

] ∂R
∂p

< 0 (A1.17)

because of 0 < β < ρ < 1, ∂R
∂p < 0 and Equations A1.12 to A1.15. Inserting Equations A1.12 to

A1.17 in Equations A1.10 and A1.11 already shows that, as the price of robots falls, equilibrium
brawn labor decreases and equilibrium brain labor increases:

∂LA
∂p

=−

[
∂

∂xA

∫ 1+εA

xA

(∫ x∗B,i

0
xA,if(xA,i, xB,i)dxB,i

)
dxA,i

]
xA
ωA

∂ωA
∂p

+

+

∫ 1+εA

xA

(xA,i)
2f(xA,i, ωxA,i)

1

ωB

[
∂ωA
∂p
− ω∂ωB

∂p

]
dxA,i > 0

(A1.18)
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∂LB
∂p

=

∫ xA

εA

f(xA,i, xB)
(xB)2

ωB

∂ωB
∂p

dxA,i−

−
∫ 1

xB

xB,if(xA, xB,i)
xA
ωA

∂ωA
∂p

dxB,i−

−
∫ 1+εA

xA

(xA,i)
2f(xA,i, ωxA,i)

ω

ωB

[
∂ωA
∂p
− ω∂ωB

∂p

]
dxA,i−

−

[
∂

∂xA

∫ 1+εA

xA

(∫ 1

x∗B,i

xB,if(xA,i, xB,i)dxB,i

)
dxA,i

]
xA
ωA

∂ωA
∂p

< 0

(A1.19)

since the positive term in the fourth line of Equation A1.19 is outweighed by the other terms.
This result follows from the fact that there is a more than offsetting increase in the demand for
manual tasks in the form of robot capital (since it becomes relatively cheaper) which increases the
productivity of brain labor (and therefore the respective wages), raising its equilibrium level.

Following the procedure outlined above, I can show that the share of workers who supply brawn
labor decreases. These workers are either reallocating their labor supply towards brain labor, as the
relative wage ωB

ωA
increases, or they opt for non-employment, since also ωN

ωA
increases.

∂NA

∂p
=−

[
∂

∂xA

∫ 1+εA

xA

(∫ x∗B,i

0
f(xA,i, xB,i)dxB,i

)
dxA,i

]
xA
ωA

∂ωA
∂p

+

+

∫ 1+εA

xA

xA,if(xA,i, ωxA,i)
1

ωB

[
∂ωA
∂p
− ω∂ωB

∂p

]
dxA,i > 0

(A1.20)

The share of brain workers increases, since a fraction of workers previously employed in brawn
labor reallocates towards brain task-intensive jobs (see previous equation) and some non-employed
individuals enter the labor force offering brain labor, since ωN

ωB
decreases.

∂NB

∂p
=

∫ xA

εA

f(xA,i, xB)
xB
ωB

∂ωB
∂p

dxA,i−

−
∫ 1

xB

f(xA, xB,i)
xA
ωA

∂ωA
∂p

dxB,i−

−
∫ 1+εA

xA

xA,if(xA,i, ωxA,i)
1

ωB

[
∂ωA
∂p
− ω∂ωB

∂p

]
dxA,i−

−

[
∂

∂xA

∫ 1+εA

xA

(∫ 1

x∗B,i

f(xA,i, xB,i)dxB,i

)
dxA,i

]
xA
ωA

∂ωA
∂p

< 0

(A1.21)
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since the positive term in the fourth line of Equation A1.21 is outweighed by the other terms.34

Altogether, robots could increase or decrease aggregate employment depending on whether the
displacement effect or the productivity effect prevails:

∂NN

∂p
=−

∫ xB

0
f(xA, xB,i)

xA
ωA

∂ωA
∂p

dxB,i−

−
∫ xA

εA

f(xA,i, xB)
xB
ωB

∂ωB
∂p

dxA,i ≶ 0

(A1.22)

or simply:

∂NN

∂p
= 1− ∂NA

∂p
− ∂NB

∂p
≶ 0 (A1.23)

Despite the ambiguous effect of robot adoption on employment, robots clearly reduce the gender
employment gap:

∂EG(M,W )

∂p
= −

∫ εMA

0
f(xA,i, xB)

xB
ωB

∂ωB
∂p

dxA,i > 0 (A1.24)

Analogously, using Equation A1.9, I can show that the adoption of robots is widening the race and
ethnicity employment gap:

∂EG(WH,NW )

∂p
= −

∫ 0

εNWB

f(xA, xB,i)
xA
ωA

∂ωA
∂p

dxB,i < 0. (A1.25)

These results emerge from one of three scenarios. First, robots reduce male (non-white) employment
more than female (white) employment. Second, robots increase male (non-white) employment less
than female (white) employment. Third, robots reduce male (non-white) employment and increase
female (white) employment. One could investigate which case occurs theoretically by assuming
a closed form solution for the skill distribution, f(xA,i, xB,i), as well as values for the exogenous
parameters ωN , ρ, β and εgj with j ∈ {A,B} and g ∈ {(M,W ), (WH,NW )}.

As stated in Propositions 3 and 4, Equations A1.24 and A1.25 show that an increase in the adoption
of robots in the production of output Y decreases the gender employment gap and increases the
race and ethnicity employment gap. �

These findings come along with a decrease (increase) in the gender (race and ethnicity) employment
34 This result is visible from changes in the areas of the shapes in Figure 5, where the share of brain workers, NB , is

formed by a rectangle and a trapezoid. The shift of xA to the left decreases the rectangle (second term) and at
the same time increases the trapezoid (fourth term), without affecting the area of NB . This, however, is going to
change with shifts in x∗B,i and xB .
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gap in brawn labor as robot capital increases:

∂EG
(M,W )
A

∂p
=

∫ εMA

0
xA,if(xA,i, ωxA,i)

1

ωB

[
∂ωA
∂p
− ω∂ωB

∂p

]
dxA,i > 0 (A1.26)

∂EG
(WH,NW )
A

∂p
= −

∫ 0

εNWB

f(xA, xB,i)
xA
ωA

∂ωA
∂p

dxA,i < 0 (A1.27)

where EG(M,W )
A = NM

A − NW
A . Conversely, the adoption of robots generates an ambiguous effect

on the gender employment gap in brain labor:

∂EG
(M,W )
B

∂p
=−

∫ εMA

0
f(xA,i, xB)

xB
ωB

∂ωB
∂p

dxA,i−

−
∫ εMA

0
xA,if(xA,i, ωxA,i)

1

ωB

[
∂ωA
∂p
− ω∂ωB

∂p

]
dxA,i ≶ 0

(A1.28)

where EG(M,W )
B = NM

B − NW
B and does not influence the race and ethnicity employment gap in

brain labor (see Equation A1.7):

∂EG
(WH,NW )
B

∂p
= 0 (A1.29)

Example using a uniform skill distribution
I provide an illustrative example of the impact of robots on the employment gaps using a uniform
skill distribution, f(xA,i, xB,i) = 1. The shares of workers (Equations 3.5 and 3.6 in the main text)
and of non-employed individuals (Equation 3.7) simplify to:

NA =
1

2
ω

[
(1 + εA)2 − (xA)2

]
(A1.30)

NB = 1− xB(xA − εA)− 1

2
ω

[
(1 + εA)2 − (xA)2

]
(A1.31)

NN = xB(xA − εA) (A1.32)

with εA < xA and ωB > ωN + 1
2ωA to ensure that NB > 0 and NN > 0. Using Equation A1.32, we

can again compute the gender employment gap (Equation 3.10 in the main text):

EG(M,W ) = NW
N −NM

N = εMA xB > 0 (A1.33)
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Analogously, the employment rates of whites and non-whites are equal to 1− xA(xB − εB) and the
race and ethnicity employment gap is given by:

EG(WH,NW ) = −εNWB xA > 0 (A1.34)

where εB = 0 for whites and εB < 0 for non-whites.

To calculate the effect of the adoption of robots on employment I need to define again all components
of Equations A1.10 and A1.11. Let’s start with the computation of the brawn and brain labor supply
(Equations 3.8 and 3.9):

LA =
1

3
ω

[
(1 + εA)3 − (xA)3

]
(A1.35)

LB =
1

2

[
1− (xA − εA)(xB)2 − 1

3
ω2
[
(1 + εA)3 − (xA)3

]]
(A1.36)

Next, I take first derivatives of the labor supplies with respect to wages (as in Equations A1.12 to
A1.15):

∂LA
∂ωA

=
1

3ωB

[
(1 + εA)3 + 2(xA)3

]
> 0 (A1.37)

∂LA
∂ωB

= −1

3

ω

ωB

[
(1 + εA)3 − (xA)3

]
< 0 (A1.38)

∂LB
∂ωA

=
1

2

[
xA(xB)2

ωA
− 1

3

ω

ωB

[
2(1 + εA)3 + (xA)3

]]
< 0 (A1.39)

∂LB
∂ωB

=

[
(xB)2

ωB
(xA − εA) +

1

3

ω2

ωB

[
(1 + εA)3 − (xA)3

]]
> 0 (A1.40)

where Equations A1.38 and A1.40 hold since εA < xA and Equation A1.39 holds since ωA > ωN . The
partial derivatives of wages with respect to the price of robot capital are the same as in Equations
A1.16 and A1.17, since they depend on the distribution of skills only through Equations A1.37 to
A1.40.

With these equations, it is again possible to compute the impact of an exogenous decline in the
price of robots on the equilibrium levels of labor and employment:

∂LA
∂p

=
∂ωA
∂p

[
(1 + εA)3 + 2(xA)3

]
1

3ωB
− ∂ωB

∂p

[
(1 + εA)3 − (xA)3

]
ω

3ωB
> 0 (A1.41)
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∂LB
∂p

=
∂ωA
∂p

[
(xA)2xB −

1

3
ω
[
2(1 + εA)3 + (xA)3

]] 1

2ωB
+

+
∂ωB
∂p

[
xB(xA − εA) +

1

3
ω2
[
(1 + εA)3 − (xA)3

]] 1

ωB
< 0

(A1.42)

∂NA

∂p
=
∂ωA
∂p

[
(1 + εA)2 + (xA)2

]
1

2ωB
− ∂ωB

∂p

[
(1 + εA)2 − (xA)2

]
ω

2ωB
> 0 (A1.43)

∂NB

∂p
=− ∂ωA

∂p

[
(1 + εA)2 − (xA)2

]
1

2ωB
+

+
∂ωB
∂p

[
(1 + εA)2 − (xA)2 + 2

xB(xA − εA)

ω

]
ω

2ωB
< 0

(A1.44)

∂NN

∂p
=
∂ωA
∂p

[
− xAxB

]
1

ωA
+
∂ωB
∂p

[
(−xA + εA)xB

]
1

ωB
≶ 0 (A1.45)

where the signs of the equations hold as long as ωN < ωA and εA < xA. Again, an increase in the
stock of robots unambiguously reduces the gender employment gap:

∂EG(M,W )

∂p
= −εMA

xB
ωB

∂ωB
∂p

> 0 (A1.46)

and increases the race and ethnicity employment gap:

∂EG(WH,NW )

∂p
= εNWB

xA
ωA

∂ωA
∂p

< 0. (A1.47)
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Figure A1: Average wages in white-collar and blue-collar occupations

Note: This figure illustrates the average hourly wages in white-collar and blue-collar occupations in 2007 prices. Occupation
groups are computed from a median split of the standardized measures of the brawn and brain task content of jobs. White-collar
jobs include occupations that are brain task intensive and require only few brawn skills. Blue-collar jobs include occupations
that are brawn task intensive and require only few brain skills.
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Figure A2: Robots and employment by race and ethnicity

Panel A: Employment by race and ethnicity

Panel B: Robots and employment

Note: This figure illustrates an economy’s population density by employment status and gender in equilibrium, when solving
for Equations 3.2, 3.3, 3.8 and 3.9. NA, NB and NN represent the share of individuals that supply brawn labor, brain labor
and no labor. εA > 0 is the comparative advantage of men in brawn skills, and xA = ωN

ωA
, xB = ωN

ωB
and x∗B,i =

ωA
ωB

xA,i. Panel
B illustrates the impact of a decrease in the price of robot capital on relative wages and the equilibrium allocation of labor.
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Figure A3: Robots, elasticity of substitution and the gender employment gap

Wage of brawn labor, ωA Wage of brain labor, ωB

Brawn labor, LA Brain labor, LB

Employment Employment gap, EG(M,W )

Note: This figure illustrates the impact of changes in R (through changes in p) and ρ on equilibrium wages, labor, employment
rates and gaps by solving for Equations 3.2, 3.3, 3.8 and 3.9. The model is calibrated using a uniform skill distribution with
the following parameters: β = 0.33 (based on employment in blue-collar jobs in 1970), ωN = 0.25, εMA = 0.2.
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Figure A4: Robots, elasticity of substitution and employment rates by gender

Brawn employment of women, NW
A Employment gap, EG(M,W )

A

Brain employment of women, NW
B Employment gap, EG(M,W )

B

Note: This figure illustrates the impact of changes in R (through changes in p) and ρ on equilibrium gender-specific employment
rates by solving for Equations 3.2, 3.3, 3.8 and 3.9. The model is calibrated using a uniform skill distribution with the following
parameters: β = 0.33 (based on employment in blue-collar jobs in 1970), ωN = 0.25, εMA = 0.2.
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Figure A5: Robots, employment and intensity of manual factor inputs

Employment with ρ = 1 Employment gap with ρ = 1

Employment with ρ = 0.6 Employment gap with ρ = 0.6

Note: This figure illustrates the impact of changes in R (through changes in p), β and ρ on equilibrium employment rates and
gaps by solving for Equations 3.2, 3.3, 3.8 and 3.9. The model is calibrated using a uniform skill distribution with the following
parameters: ωN = 0.25, εMA = 0.2.
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A2 Additional data

A2.1 Import exposure

China Following Autor et al. (2013), I use a shift-share approach to measure a labor market’s
exposure to imports from China. I interact CZs’ industry employment shares in the manufacturing
sector prior to the admission of China to the World Trade Organization in 2001 with the growth in
product trade flows from China to the US:

US import exposurec,(t0,t1) =
∑
j∈J

`1990c,j ∆IMUS
j,(t0,t1)

(A2.1)

where ∆IMUS
j,(t0,t1)

is the change in US imports from China in thousand dollars per worker. Analo-
gously to Equation 5.3, I exploit plausibly exogenous variation in the trade shock by instrumenting
the shift-component of the measure with trade flows from China to other industrialized countries
with a similar trade development as the US:

OT8 import exposurec,(t0,t1) =
∑
j∈J

1

8

∑
i∈OT8

`1990c,j ∆IM i
j,(t0,t1)

(A2.2)

where i ∈ OT8 include Australia, Denmark, Finland, Germany, Japan, New Zealand, Spain, and
Switzerland. I keep the baseline employment shares constant to avoid endogeneity and serial corre-
lation concerns.

I collect product-level data at the six-digit Harmonized System (HS) on Chinese imports from the
UN Comtrade Database which I match with industry employment shares from the 1991 County
Business Pattern (CBP). The CBP classifies industry employment according to the Standard Clas-
sification System (SIC) until 1997 and according to the North American Industry Classification
System (NAICS) afterwards. These systems are more detailed than the industrial classification
system used in the IPUMS. I use crosswalks from Dorn’s website to convert SIC and NAICS man-
ufacturing industries and six-digit HS product-level trade data to 392 four-digit SIC industries. I
construct the import penetration measure by matching local employment shares with converted
product-level trade data on imports from China. For confidentiality reasons, county-industry ob-
servations with few cases are reported as ranges. In reconstructing these data, I follow Acemoglu
et al. (2016).

Europe I build a measure of international product market competition from Europe using a
shift-share approach, as outlined previously. The share component is unchanged and corresponds
to `1990c,j in Equation A2.1, while the shift-component does not account anymore for imports from
China, but includes the change in average trade flows from Denmark, Finland, France, Italy, Spain,
Sweden and the United Kingdom to the US. Since US imports could be subject to domestic shocks
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that affect also the local demand for labor (demand shocks), I instrument imports to the US with
trade flows from Europe to Canada, an industrialized country with a comparable trade engagement
with European countries as the US (see Figure A15), but whose import intensity is less affected by
US domestic shocks than the US itself.

A2.2 Non-robot technology shocks

I account for technology shocks other than industrial robots using Bartik-style measures of the adop-
tion of personal computers and IT capital intensity at the CZ level in 1990. I follow Acemoglu and
Restrepo (2020) and construct a measure of baseline computer adoption by interacting the share
of employees using a computer in each industry from the 1993 Current Population Survey with CZ
baseline employment shares.35 Analogously, I construct a measure of IT capital intensity by inter-
acting the 1992 share of IT investments in each industry (available for 4-digit SIC87 manufacturing
industries from the American Survey of Manufacturing) with the baseline CZ employment shares.

A2.3 Demographic, occupation and industry controls

I construct measures of a local labor market’s demographics (share of women, Blacks, Hispanics,
college-educated individuals, 25-34, 35-44 and 45-54 year old individuals and log-population) and
the industrial (construction, education and research, manufacturing, mining, services, and utilities)
and occupational (routine, offshorability, skill intensive, white-collar, blue-collar and low skills) com-
position of employment from the 1990 Census to account for systematic differences across CZs which
could influence both the adoption of robots and local labor market outcomes. The measures of rou-
tine task intensity and offshorability are build as in Autor and Dorn (2013). Furthermore, I control
for the initial composition of employment of women and racial and ethnic minorities in industry
(high robot-intensive manufacturing, low-robot intensive manufacturing and non-manufacturing)
and occupation (skill intensive, white-collar, blue-collar and low skills) groups. I compute these
measures as the number of women (or racial and ethnic minorities) employed in industry or occu-
pation j divided by total employment in j.

35 Ge and Zhou (2020) show that computer capital in the 1990s is a strong predictor of subsequent computer adoption.
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Table A1: Descriptive statistics: Covariates

US robot exposure
1993-2014

All Q1 Q2 Q3 Q4

[1] [2] [3] [4] [5]

Pre-trends
Race and ethnicity employment gap 5.48 4.30 3.82 4.80 7.34
Gender employment gap -24.9 -24.3 -24.7 -23.1 -26.2
Non-robot technologies
US import exposure 4.88 2.29 4.44 5.82 7.01
OT8 import exposure 3.61 1.70 3.34 4.34 5.06
Imports
Computer 44.8 44.5 44.8 44.2 45.3
IT capital 2.02 1.40 1.92 2.32 2.15
Demographics
Black 10.9 9.33 12.1 9.82 11.5
Hispanic 7.94 15.8 7.92 10.2 3.62
Women 51.1 50.9 51.3 50.7 51.4
Less educated 77.1 76.6 75.4 77.7 78.0
Log population 13.3 12.8 13.4 13.4 13.4
25-34 years 33.9 34.1 34.2 34.5 33.2
35-44 years 29.4 29.4 29.7 29.5 29.3
45-54 years 20.0 19.7 19.8 19.9 20.3
Industries
Construction 6.24 7.72 6.17 6.24 5.73
Manufacturing 24.4 14.8 21.3 27.3 28.3
Mining 0.99 1.45 1.05 0.96 0.81
Research and education 1.91 1.89 1.98 1.76 1.96
Services 63.0 69.4 65.9 60.1 60.5
Utilities 1.49 1.59 1.46 1.40 1.52
Occupations
Skill-intensive 16.1 17.0 16.2 15.5 16.2
White-collar 41.4 42.1 42.6 40.2 41.0
Blue-collar 28.3 26.1 27.1 30.1 29.0
Routine 35.0 33.6 35.1 35.1 35.4
Offshorable 37.2 37.2 38.0 37.4 36.6
Employment composition
Women in high robot-intensive industries 30.8 31.9 32.3 32.2 28.7
Women in low robot-intensive industries 35.3 35.1 36.8 36.8 33.6
Non-whites in high robot-intensive industries 23.8 30.7 24.9 29.3 17.3
Non-whites in low robot-intensive industries 22.7 30.0 25.4 28.1 15.3
Women in skill-intensive occupations 47.3 47.5 47.3 46.2 47.8
Women in white-collar occupations 50.8 51.4 51.0 50.0 50.8
Women in blue-collar occupations 35.3 34.0 36.0 36.1 35.0
Non-whites in skill-intensive occupations 17.9 24.1 19.1 20.9 13.0
Non-whites in white-collar occupations 13.3 19.1 13.6 15.6 9.64
Non-whites in blue-collar occupations 29.2 38.1 31.2 35.2 21.0
Observations 722 181 180 181 180

Note: This table illustrates averages of the covariates used in the main analysis. Column 1 reports averages over all 722 CZs
in the sample. Columns 2 to 5 split the sample into four quartiles, accounting for a labor market’s exposure to robots between
1993 and 2014. Pre-trends account for changes in the employment gaps between 1970 and 1990. Non-robot technologies
include the share of workers using a personal computer and the share of IT investments. Imports includes measures of a local
labor market’s exposure to Chinese imports in thousand dollars per worker between 1993 and 2014. Demographics, industries
and occupations include measures of the population composition in 1990. The remaining variables report the employment
composition by demographic group within industries and occupations.
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A3 Additional figures and tables

Figure A6: Racial and ethnic minorities at the commuting zone level in 1990

Panel A: Share of non-whites

Panel B: Commuting zones with a large population of non-whites

Note: This figure illustrates the geographic distribution of racial and ethnic minorities in the US in 1990. Panel A shows the
CZ share of non-whites (multiplied by 100) in 1990. Panel B highlights the CZs with the total population of non-whites and a
share of non-whites both above the US local labor market median.
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Figure A7: Employment gaps at the commuting zone level

Panel A: Employment gaps in 1990

Race and ethnicity Gender

Panel B: Change in employment gaps between 1990 and 2014

Race and ethnicity Gender

Note: This figure illustrates the geographic distribution of the race and ethnicity employment gap and the gender employment
gap in 1990 and their changes between 1990 and 2014 at the CZ level (all multiplied by 100).
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Figure A8: Robot adoption in the US and Europe at industry level

Note: This figure illustrates the unweighted correlation between the change in the stock of robots (adjusted by industry growth)
in the US and in seven European countries by IFR industries between 1993 and 2014. The size of the circles represent the
baseline US employment in the industry. The solid line corresponds to the 45° line. This is a modified version of Figure 2 in
Acemoglu and Restrepo (2020).
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Figure A9: Robots and blue-collar occupations

Note: This figure illustrates the correlation between US robot exposure and the share of blue-collar workers at the CZ level.
Blue-collar occupations are computed from a median split of the standardized measures of the brawn and brain task content
of jobs and include occupations that are brawn task intensive but require only few brain skills. The circle’s size represent the
relative size of a local labor market’s population in 1970.
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Figure A10: Robots, employment gaps and the share of blue-collar workers

Panel A: Race and ethnicity

Panel B: Gender

Note: This figure illustrates reduced form estimates of the average marginal effect of robot exposure with respect to the share of
blue–collar workers in 1970 on the change in the employment gap by race and ethnicity and by gender. Changes are expressed
in percentage points of the population subgroup and are multiplied by 100. Independent variables are standardized to have
mean zero and standard deviation of one. There are three time periods and 722 CZs. Standard errors are robust against
heteroskedasticity and allow for clustering at the state level. Confidence intervals are at the 95% level. Regressions include
covariates of my preferred specification and are weighted by CZ population in 1990.
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Figure A11: Education and job task content in 1990

Workers in skill-intensive jobs White-collar workers

Blue-collar workers Low-skill workers

Note: This figure illustrates the relationship between the share of workers without a college degree and the share of workers
employed in skill-intensive, blue-collar, white-collar and low-skill jobs at the CZ level in 1990. Occupation groups are computed
from a median split of the standardized measures of the brawn and brain task content of jobs. Skill-intensive jobs include
occupations that are both brawn and brain task intensive. White-collar jobs include occupations that are brain task intensive
and require only few brawn skills. Blue-collar jobs include occupations that are brawn task intensive and require only few brain
skills. Low-skill jobs include occupations that do not require particular brawn or brain skills. Values are weighted for the CZ
population in 1990.
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Figure A12: Robots and employment rates: Education

Note: This figure illustrates the IV point estimates of the effect of US robot exposure on the change in employment by race and ethnicity and by gender by education at
the CZ level. Changes are expressed in percentage points of the population subgroup and are multiplied by 100. Independent variables are standardized to have mean zero
and standard deviation of one. There are three time periods and 722 CZs. Standard errors are robust against heteroskedasticity and allow for clustering at the state level.
Confidence intervals are at the 95% level. Regressions include covariates of my preferred specification and are weighted by CZ population in 1990.

67



Figure A13: Robots and employment rates: Occupations and industries

Panel A: Occupations

Panel B: Industries

Note: This figure illustrates the IV point estimates of the effect of US robot exposure on the change in employment by race and ethnicity and by gender by industry and
occupation group at the CZ level. Occupation groups are computed from a median split of the standardized measures of the brawn and brain task content of jobs. Skill-intensive
jobs include occupations that are both brawn and brain task intensive. White-collar jobs include occupations that are brain task intensive and require only few brawn skills. Blue-
collar jobs include occupations that are brawn task intensive and require only few brain skills. Low-skill jobs include occupations that do not require particular brawn or brain
skills. Industry groups are created according to the relative adoption of industrial robots of industries. High robot-intensive manufacturing industries include the industries with
the heaviest adoption of industrial robots. Low robot-intensive manufacturing industries include the remaining manufacturing industries, while non-manufacturing industries
include all industries outside of the manufacturing sector. Changes are expressed in percentage points of the population subgroup and are multiplied by 100. Independent
variables are standardized to have mean zero and standard deviation of one. There are three time periods and 722 CZs. Standard errors are robust against heteroskedasticity
and allow for clustering at the state level. Confidence intervals are at the 95% level. Regressions include covariates of my preferred specification and are weighted by CZ
population in 1990.
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Figure A14: European robot exposure and imports to the US

Note: This figure presents the unweighted correlation between robot exposure in European countries, as presented in Equation
5.3, and a shift-share measure of imports from these countries to the US. The size of the circles represent a labor market’s size
in terms of population in 1990. The solid line represents a prediction for US import exposure from European countries from a
linear regression on robot exposure in Europe. Source: Lerch (2020).
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Figure A15: Trade flows from Europe to the US and Canada by industry

Note: This figure presents the unweighted correlation between imports from seven European countries (Denmark, Finland,
France, Italy, Spain, Sweden and the United Kingdom) to the US and Canada. Imports are represented by SIC industry of
the manufacturing sector (392) in billions of US dollars in 2017 prices. For visibility reasons, I omitt outlying industries with
imports that exceed five billion US dollars in the US or three billion US dollars in Canada. These industries are ice cream
and frozen desserts (2024), food preparations, nec (2099), hardwood dimension and flooring mills (2426), millwork (2431),
pharmaceutical preparations (2834), petroleum refining (2911), women’s handbags and purses (3171), primary nonferrous
metals, nec (3339), electronic connectors (3678), motor vehicles and car bodies (3711), motor vehicle parts and accessories
(3714), aircraft (3721), aircraft engines and engine parts (3724). The solid line represents a prediction for US import exposure
from European countries from a linear regression on Canadian import exposure from European countries based on all 392 SIC
industries of the manufacturing sector. Source: Lerch (2020).
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Table A2: Occupations with the largest and smallest shares of non-whites and women

Racial and ethnic minorities Women

% Type Brawn Brain % Type Brawn Brain

[1] [2] [3] [4] [5] [6] [7] [8]

Panel A: Top 15 occupations Panel A: Top 15 occupations

Private household cleaners and servants 62.03 Low skill 32 5 Secretaries 98.98 White collar 48 88
Parking lot attendants 59.38 Low skill 1 13 Dental hygenists 98.33 White collar 20 53
Housekeepers, maids, butlers and related 53.58 Low skill 42 5 Kindergarten and earlier school teachers 98.21 White collar 45 64
Elevator operators 50.34 Blue collar 63 24 Dental assistants 97.52 White collar 3 60
Baggage porters 47.50 Low skill 36 28 Receptionists 96.96 Low skill 22 41
Materials movers 47.10 Low skill 41 6 Child care workers 96.58 Low skill 3 37
Garbage and recyclable material collectors 45.56 Low skill 23 1 Typists 95.38 Low skill 35 39
Textile sewing machine operators 45.53 Blue collar 83 7 Private household cleaners and servants 94.80 Low skill 32 5
Laundry workers 45.19 Low skill 49 1 Teacher’s aides 94.62 White collar 4 59
Waiter’s assistant 45.05 Low skill 1 13 Home economics instructors 94.52 White collar 38 100
Taxi cab drivers and chauffeurs 44.74 Skill intensive 87 55 Registered nurses 94.50 Skill intensive 65 84
Farm workers 44.21 Blue collar 50 18 Licensed practical nurses 93.85 Skill intensive 65 50
Tailors 44.04 Blue collar 92 37 Dressmakers and seamstresses 93.66 Blue collar 83 28
Graders and sorters in manufacturing 43.40 Blue collar 50 2 Bank tellers 93.54 Skill intensive 98 65
Vehicle washers and equipment cleaners 42.96 Low skill 21 2 Health record tech specialists 93.40 White collar 1 84

Panel B: Bottom 15 occupations Panel B: Bottom 15 occupations

Tool and die markers and die setters 7.71 Skill intensive 86 53 Automobile mechanics 1.87 Skill intensive 80 56
Psychology instructors 7.61 White collar 1 100 Structural metal workers 1.82 Blue collar 67 25
Lawyers 7.53 White collar 2 96 Excavating and loading machine operators 1.82 Blue collar 64 11
Other health and therapy 7.22 Skill intensive 87 94 Materials movers 1.71 Low skill 41 6
Veterinarians 7.17 Skill intensive 97 75 Operating engineers of construction equipm. 1.70 Blue collar 84 33
Optometrists 7.04 Skill intensive 91 69 Carpenters 1.64 Blue collar 89 45
Writers and authors 6.79 White collar 10 83 Mason, tilers, and carpet installers 1.59 Blue collar 81 31
Podiatrists 6.65 White collar 36 88 Roofers and slaters 1.44 Blue collar 91 27
Foresters and conservation scientists 6.52 Low skill 46 47 Electric power installers and repairers 1.44 Skill intensive 92 48
Dental hygenists 6.00 White collar 20 53 Plumbers, pipe fitters, and steamfitters 1.38 Blue collar 90 46
Geologists 5.44 Skill intensive 63 95 Railroad brake, coupler, and switch operators 1.36 Blue collar 65 23
History instructors 4.74 White collar 1 100 Concrete and cement workers 1.35 Blue collar 80 25
Sales engineers 4.62 White collar 39 94 Heating, air cond., and refrig. mechanics 1.22 Blue collar 67 42
Airplane pilots and navigators 4.60 Skill intensive 97 66 Paving, surfacing, tamping equipm. operators 1.07 Blue collar 91 23
Farmers (owners and tenants) 2.88 White collar 22 58 Heavy equipm. and farm equipm. mechanics 0.86 Blue collar 92 43

Note: This table presents a set of occupations with the corresponding share of non-white and female workers, the percentile of the standardized brawn and brain task content in
the distribution of occupations and the respective occupation group. Occupation groups are computed from a median split of the standardized measures of the brawn and brain
task content of jobs. Skill-intensive jobs include occupations that are both brawn and brain task intensive. White-collar jobs include occupations that are brain task intensive
and require only few brawn skills. Blue-collar jobs include occupations that are brawn task intensive and require only few brain skills. Low-skill jobs include occupations that
do not require particular brawn or brain skills. Panel A shows the 15 occupations with the highest share of non-whites and women. Panel B shows the 15 occupations with the
highest share of whites and men.
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Table A3: First-stage estimates

US robot exposure

[1] [2] [3] [4] [5] [6]

EU7 robot exposure 0.568∗∗∗ 0.566∗∗∗ 0.559∗∗∗ 0.560∗∗∗ 0.498∗∗∗ 0.479∗∗∗
(0.047) (0.044) (0.053) (0.055) (0.049) (0.035)

Kleibergen-Paap F stat 197.7 224.1 184.6 89.0 378.5 386.8

Observations 2166 2166 2166 2166 2166 2166

Covariates:
Region X X X X X X
Year X X X X X X
Pre-trends X X X X X
Computer & IT X X X X
Chinese imports X X X
Demographics X X
Occupations X X
Industries X X
Composition X

Note: This table presents first-stage estimates of the effect of EU7 robot exposure on US robot exposure at the CZ level.
Variables are standardized to have mean zero and standard deviation of one. There are three time periods and 722 CZs.
Column 1 includes only state fixed effects and time-varying division fixed effects. Column 2 includes also pre-trends in the
change of the employment gaps between 1970 and 1990. Column 3 controls for the adoption of personal computers and IT capital
intensity. Column 4 includes the exposure to Chinese imports. Column 5 includes also demographic (share of individuals aged
between 25 and 34 years, 35 and 44 years, 45 and 54 years, the share of Blacks, Hispanics, women and individuals with less than a
college degree and logarithmic population), industry (share of employment in the contruction, manufacturing, mining, research,
service and utilities sector) and occupation (share of employment in routine, offshorable, skill-intensive, white-collar, blue-collar
and low-skill occupations) characteristics of CZs in 1990. Column 6 controls also for the initial composition of employment by
race, ethnicity and gender within occupation and industry groups. Standard errors are robust against heteroskedasticity and
allow for clustering at the state level. Regressions are weighted by CZ population in 1990. Coefficients with ∗∗∗, ∗∗ and ∗ are
significant at the 1%, 5% and 10% confidence level.
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Table A4: Robots and the race and ethnicity employment gap

Panel A: White-Black

[1] [2] [3] [4] [5] [6]

US robot exposure 0.725∗∗ 0.788∗∗ 0.802∗∗ 0.808∗∗ 1.056∗∗ 1.091∗∗∗
(0.352) (0.351) (0.371) (0.370) (0.402) (0.397)

Observations 2127 2127 2127 2127 2127 2127

Panel B: White-Hispanic

[1] [2] [3] [4] [5] [6]

US robot exposure 1.084∗∗∗ 1.120∗∗∗ 1.121∗∗∗ 1.121∗∗∗ 1.347∗∗∗ 1.387∗∗∗
(0.278) (0.276) (0.278) (0.279) (0.341) (0.354)

Observations 2166 2166 2166 2166 2166 2166

Panel C: White-other race

[1] [2] [3] [4] [5] [6]

US robot exposure 0.290 0.319 0.303 0.308 0.368 0.385
(0.202) (0.208) (0.207) (0.207) (0.273) (0.278)

Observations 2166 2166 2166 2166 2166 2166

Covariates:
Region X X X X X X
Year X X X X X X
Pre-trends X X X X X
Computer & IT X X X X
Chinese imports X X X
Demographics X X
Occupations X X
Industries X X
Composition X

Note: This table presents IV estimates of the effect of US robot exposure on the change in the race and ethnicity employment
gap at the CZ level differentiating between Blacks, Hispanics and other non-White races. Panel A reports the results on the
employment gap of Whites and Blacks, Panel B on Whites and Hispanics and Panel C on Whites and other races, such as Asians,
American Indian and Alaska natives. Changes are expressed in percentage points of the working-age population subgroup and
are multiplied by 100. Independent variables are standardized to have mean zero and standard deviation of one. There are three
time periods and 722 CZs. Column 1 includes only state fixed effects and time-varying division fixed effects. Column 2 includes
also pre-trends in the change of the employment gaps between 1970 and 1990. Column 3 controls for the adoption of personal
computers and IT capital intensity. Column 4 includes the exposure to Chinese imports. Column 5 includes also demographic
(share of individuals aged between 25 and 34 years, 35 and 44 years, 45 and 54 years, the share of Blacks, Hispanics, women
and individuals with less than a college degree and logarithmic population), industry (share of employment in the contruction,
manufacturing, mining, research, service and utilities sector) and occupation (share of employment in routine, offshorable,
skill-intensive, white-collar, blue-collar and low-skill occupations) characteristics of CZs in 1990. Column 6 controls also for
the initial composition of employment by race, ethnicity and gender within occupation and industry groups. Standard errors
are robust against heteroskedasticity and allow for clustering at the state level. Regressions are weighted by CZ population in
1990. Coefficients with ∗∗∗, ∗∗ and ∗ are significant at the 1%, 5% and 10% confidence level.
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Table A5: Chinese imports and employment gaps

Panel A: Race and ethnicity

[1] [2] [3] [4] [5]

US import exposure 0.148 0.156 0.038 -0.003 -0.014
(0.097) (0.100) (0.119) (0.153) (0.160)

Observations 2166 2166 2166 2166 2166

Panel B: Gender

[1] [2] [3] [4] [5]

US import exposure -0.072 -0.072 -0.023 -0.049 -0.073
(0.064) (0.057) (0.069) (0.079) (0.080)

Observations 2166 2166 2166 2166 2166

Covariates:
Region X X X X X
Year X X X X X
Pre-trends X X X X
Computer & IT X X X
Robots X X X
Demographics X X
Occupations X X
Industries X X
Composition X

Note: This table presents IV estimates of the effect of US import exposure on the change in the race and ethnicity employment
gap and the gender employment at the CZ level. Changes are expressed in percentage points of the working-age population
subgroup and are multiplied by 100. Independent variables are standardized to have mean zero and standard deviation of one.
There are three time periods and 722 CZs. Column 1 includes only state fixed effects and time-varying division fixed effects.
Column 2 includes also pre-trends in the change of the employment gaps between 1970 and 1990. Column 3 controls also
for the adoption of personal computers, IT capital intensity and US robot exposure. Column 4 includes also for demographic
(share of individuals aged between 25 and 34 years, 35 and 44 years, 45 and 54 years, the share of Blacks, Hispanics, women
and individuals with less than a college degree and logarithmic population), industry (share of employment in the contruction,
manufacturing, mining, research, service and utilities sector) and occupation (share of employment in routine, offshorable,
skill-intensive, white-collar, blue-collar and low-skill occupations) characteristics of CZs in 1990. Column 5 controls also for
the initial composition of employment by race, ethnicity and gender within occupation and industry groups. Standard errors
are robust against heteroskedasticity and allow for clustering at the state level. Regressions are weighted by CZ population in
1990. Coefficients with ∗∗∗, ∗∗ and ∗ are significant at the 1%, 5% and 10% confidence level.
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Table A6: US robot exposure across and within local labor markets

Mean Std. Dev.

[1] [2]

Panel A: Robots per thousand workers
Overall 0.526 0.491
Between 0.452
Within 0.192
Panel B: Standardized
Overall 0.000 1.000
Between 0.921
Within 0.391

Note: This table presents unweighted averages and the between and within CZ standard deviation of US robot exposure. Panel
A reports the mean and standard deviations in robots per thousand workers. Panel B reports standardized measures with mean
zero and overall standard deviation of one.
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Table A7: Robots, employment gaps and employment rate without state fixed effects

Panel A: Race and ethnicity

Employment Employment rate

gap Whites Non-whites

[1] [2] [3]

US robot exposure 0.523∗∗∗ -0.379∗∗∗ -0.903∗∗∗
(0.158) (0.055) (0.172)

Observations 2166 2166 2166

Panel B: Gender

Employment Employment rate

gap Men Women

[1] [2] [3]

US robot exposure -0.372∗∗∗ -0.758∗∗∗ -0.386∗∗∗
(0.104) (0.127) (0.105)

Observations 2166 2166 2166

Covariates: X X X

Note: This table presents IV estimates of the effect of US robot exposure on the change in employment gaps and employment
rates at the CZ level. Panel A reports the results by race and ethnicity, while Panel B reports the results by gender. Column 1
illustrates results about the employment gaps, and Columns 2 and 3 on the employment rates by demographic group. Changes
are expressed in percentage points of the working-age population subgroup and are multiplied by 100. Independent variables are
standardized to have mean zero and standard deviation of one. There are three time periods and 722 CZs. All columns include
state fixed effects and time-varying division fixed effects and control for the adoption of personal computers, IT capital intensity,
the exposure to Chinese imports, as well as for demographic (share of individuals aged between 25 and 34 years, 35 and 44
years, 45 and 54 years, the share of Blacks, Hispanics, women and individuals with less than a college degree and logarithmic
population), industry (share of employment in the contruction, manufacturing, mining, research, service and utilities sector)
and occupation (share of employment in routine, offshorable, skill-intensive, white-collar, blue-collar and low-skill occupations)
characteristics of CZs in 1990 and the initial composition of employment by race, ethnicity and gender within occupation
and industry groups in 1990. Standard errors are robust against heteroskedasticity and allow for clustering at the state level.
Regressions are weighted by CZ population in 1990. Coefficients with ∗∗∗, ∗∗ and ∗ are significant at the 1%, 5% and 10%
confidence level.
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Table A8: Robots and the race and ethnicity employment gap by birthplace

Panel A: Native whites and non-whites

[1] [2] [3] [4] [5] [6]

US robot exposure 0.485∗∗ 0.505∗∗ 0.505∗∗ 0.507∗∗ 0.640∗∗∗ 0.644∗∗
(0.218) (0.217) (0.218) (0.218) (0.236) (0.243)

Observations 2166 2166 2166 2166 2166 2166

Panel B: Native whites and non-white immigrants

[1] [2] [3] [4] [5] [6]

US robot exposure 0.513∗∗ 0.541∗∗ 0.521∗∗ 0.525∗∗ 0.552∗ 0.556∗
(0.226) (0.231) (0.229) (0.230) (0.295) (0.299)

Observations 2166 2166 2166 2166 2166 2166

Panel C: White immigrants and native non-whites

[1] [2] [3] [4] [5] [6]

US robot exposure 0.533∗ 0.550∗ 0.548∗ 0.547∗ 0.817∗∗ 0.855∗∗
(0.283) (0.283) (0.289) (0.288) (0.330) (0.354)

Observations 2166 2166 2166 2166 2166 2166

Panel D: White and non-white immigrants

[1] [2] [3] [4] [5] [6]

US robot exposure 0.561 0.586∗ 0.564 0.564 0.729∗ 0.767∗
(0.340) (0.342) (0.345) (0.344) (0.395) (0.411)

Observations 2166 2166 2166 2166 2166 2166

Covariates:
Region X X X X X X
Year X X X X X X
Pre-trends X X X X X
Computer & IT X X X X
Chinese imports X X X
Demographics X X
Occupations X X
Industries X X
Composition X

Note: This table presents IV estimates of the effect of US robot exposure on the change in the race and ethnicity employment
gap at the CZ level differentiating between natives and immigrants. Panel A reports the results on the employment gap among
native whites and native non-whites. Panel B reports the results on the employment gap among native whites and non-white
immigrants. Panel C reports the results on the employment gap among white immigrant and native non-whites. Panel D
reports the results on the employment gap among white and non-white immigrants. Changes are expressed in percentage points
of the working-age population subgroup and are multiplied by 100. Independent variables are standardized to have mean zero
and standard deviation of one. There are three time periods and 722 CZs. Column 1 includes only state fixed effects and
time-varying division fixed effects. Column 2 includes also pre-trends in the change of the employment gaps between 1970 and
1990. Column 3 controls for the adoption of personal computers and IT capital intensity. Column 4 includes the exposure
to Chinese imports. Column 5 includes also demographic (share of individuals aged between 25 and 34 years, 35 and 44
years, 45 and 54 years, the share of Blacks, Hispanics, women and individuals with less than a college degree and logarithmic
population), industry (share of employment in the contruction, manufacturing, mining, research, service and utilities sector)
and occupation (share of employment in routine, offshorable, skill-intensive, white-collar, blue-collar and low-skill occupations)
characteristics of CZs in 1990. Column 6 controls also for the initial composition of employment by race, ethnicity and gender
within occupation and industry groups. Standard errors are robust against heteroskedasticity and allow for clustering at the
state level. Regressions are weighted by CZ population in 1990. Coefficients with ∗∗∗, ∗∗ and ∗ are significant at the 1%, 5%
and 10% confidence level.
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Table A9: Robots and labor force participation gaps

Panel A: Race and ethnicity

[1] [2] [3] [4] [5] [6]

US robot exposure 0.490∗∗∗ 0.514∗∗∗ 0.509∗∗∗ 0.510∗∗∗ 0.593∗∗∗ 0.617∗∗∗
(0.173) (0.172) (0.174) (0.175) (0.209) (0.220)

Observations 2166 2166 2166 2166 2166 2166

Panel B: Gender

[1] [2] [3] [4] [5] [6]

US robot exposure -0.414∗∗∗ -0.419∗∗∗ -0.438∗∗∗ -0.440∗∗∗ -0.501∗∗∗ -0.508∗∗∗
(0.114) (0.112) (0.114) (0.113) (0.126) (0.131)

Observations 2166 2166 2166 2166 2166 2166

Covariates:
Region X X X X X X
Year X X X X X X
Pre-trends X X X X X
Computer & IT X X X X
Chinese imports X X X
Demographics X X
Occupations X X
Industries X X
Composition X

Note: This table presents IV estimates of the effect of US robot exposure on the race and ethnicity labor force participation
gap and the gender labor force participation gap at the CZ level. Changes are expressed in percentage points of the working-
age population subgroup and are multiplied by 100. Independent variables are standardized to have mean zero and standard
deviation of one. There are three time periods and 722 CZs. Column 1 includes only state fixed effects and time-varying
division fixed effects. Column 2 includes also pre-trends in the change of the employment gaps between 1970 and 1990. Column
3 controls for the adoption of personal computers and IT capital intensity. Column 4 includes the exposure to Chinese imports.
Column 5 includes also demographic (share of individuals aged between 25 and 34 years, 35 and 44 years, 45 and 54 years,
the share of Blacks, Hispanics, women and individuals with less than a college degree and logarithmic population), industry
(share of employment in the contruction, manufacturing, mining, research, service and utilities sector) and occupation (share
of employment in routine, offshorable, skill-intensive, white-collar, blue-collar and low-skill occupations) characteristics of CZs
in 1990. Column 6 controls also for the initial composition of employment by race, ethnicity and gender within occupation and
industry groups. Standard errors are robust against heteroskedasticity and allow for clustering at the state level. Regressions
are weighted by CZ population in 1990. Coefficients with ∗∗∗, ∗∗ and ∗ are significant at the 1%, 5% and 10% confidence level.
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Table A10: Robots and race and ethnicity employment gaps in non-manufacturing industries

Agricul-
ture

Construc-
tion Mining

Research
and

Education
Services Utilities

[1] [2] [3] [4] [5] [6]

US robot exposure 0.069∗ -0.003 -0.016 -0.037 0.607∗∗∗ 0.029∗
(0.039) (0.051) (0.011) (0.024) (0.192) (0.016)

Observations 2166 2166 2166 2166 2166 2166

Covariates: X X X X X X

Note: This table presents IV estimates of the effect of US robot exposure on the change in the employment gap by race and
ethnicity for IFR non-manufacturing sectors (see Table 1) at the CZ level. Changes are expressed in percentage points of
the working-age population subgroup and are multiplied by 100. Independent variables are standardized to have mean zero
and standard deviation of one. There are three time periods and 722 CZs. All columns include state fixed effects and time-
varying division fixed effects and control for the adoption of personal computers, IT capital intensity, the exposure to Chinese
imports, as well as for demographic (share of individuals aged between 25 and 34 years, 35 and 44 years, 45 and 54 years,
the share of Blacks, Hispanics, women and individuals with less than a college degree and logarithmic population), industry
(share of employment in the contruction, manufacturing, mining, research, service and utilities sector) and occupation (share of
employment in routine, offshorable, skill-intensive, white-collar, blue-collar and low-skill occupations) characteristics of CZs in
1990 and the initial composition of employment by race, ethnicity and gender within occupation and industry groups in 1990.
Standard errors are robust against heteroskedasticity and allow for clustering at the state level. Regressions are weighted by
CZ population in 1990. Coefficients with ∗∗∗, ∗∗ and ∗ are significant at the 1%, 5% and 10% confidence level.
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Table A11: Industry employment gaps and robots

Race and
ethnicity Gender

[1] [2]

Robots in high robot-intensive industries 0.394∗∗∗ -0.297∗∗∗
(0.117) (0.082)

Robots in low robot-intensive industries 0.385∗∗ -0.031
(0.149) (0.070)

Robots in non-manufacturing industries 0.044 -0.298∗∗∗
(0.174) (0.080)

Observations 2166 2166

Covariates: X X

Note: This table presents reduced form estimates of the effect of EU7 robot exposure by industry on the change in the
employment gaps by race and ethnicity and gender at the CZ level. Industry groups are created according to the relative
adoption of industrial robots of industries. High robot-intensive manufacturing industries include the industries with the
heaviest adoption of industrial robots. Low robot-intensive manufacturing industries include the remaining manufacturing
industries, while non-manufacturing industries include all industries outside of the manufacturing sector. Changes are expressed
in percentage points of the working-age population subgroup and are multiplied by 100. Independent variables are standardized
to have mean zero and standard deviation of one. There are three time periods and 722 CZs. All columns include state fixed
effects and time-varying division fixed effects and control for the adoption of personal computers, IT capital intensity, the
exposure to Chinese imports, as well as for demographic (share of individuals aged between 25 and 34 years, 35 and 44 years, 45
and 54 years, the share of Blacks, Hispanics, women and individuals with less than a college degree and logarithmic population),
industry (share of employment in the contruction, manufacturing, mining, research, service and utilities sector) and occupation
(share of employment in routine, offshorable, skill-intensive, white-collar, blue-collar and low-skill occupations) characteristics of
CZs in 1990 and the initial composition of employment by race, ethnicity and gender within occupation and industry groups in
1990. Standard errors are robust against heteroskedasticity and allow for clustering at the state level. Regressions are weighted
by CZ population in 1990. Coefficients with ∗∗∗, ∗∗ and ∗ are significant at the 1%, 5% and 10% confidence level.
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Table A12: Robots and industry employment by race and ethnicity as a share of total population

High robot-intensive Low robot-intensive Non-manufacturing

White Non-white White Non-white White Non-white

[1] [2] [3] [4] [5] [6]

US robot exposure -0.285∗∗∗ -0.116∗∗∗ 0.057 0.006 -0.250∗∗∗ -0.210∗
(0.062) (0.032) (0.040) (0.017) (0.086) (0.115)

Observations 2166 2166 2166 2166 2166 2166

Covariates: X X X X X X

Note: This table presents IV estimates of the effect of US robot exposure on the change in the employment rates of whites and
non-whites by industry groups at the CZ level. Industry groups are created according to the relative adoption of industrial
robots of industries. High robot-intensive manufacturing industries include the industries with the heaviest adoption of industrial
robots. Low robot-intensive manufacturing industries include the remaining manufacturing industries, while non-manufacturing
industries include all industries outside of the manufacturing sector. Changes are expressed in percentage points of the total
(white and non-white) working-age population and are multiplied by 100. Independent variables are standardized to have
mean zero and standard deviation of one. There are three time periods and 722 CZs. All columns include state fixed effects
and time-varying division fixed effects and control for the adoption of personal computers, IT capital intensity, the exposure
to Chinese imports, as well as for demographic (share of individuals aged between 25 and 34 years, 35 and 44 years, 45 and
54 years, the share of Blacks, Hispanics, women and individuals with less than a college degree and logarithmic population),
industry (share of employment in the contruction, manufacturing, mining, research, service and utilities sector) and occupation
(share of employment in routine, offshorable, skill-intensive, white-collar, blue-collar and low-skill occupations) characteristics of
CZs in 1990 and the initial composition of employment by race, ethnicity and gender within occupation and industry groups in
1990. Standard errors are robust against heteroskedasticity and allow for clustering at the state level. Regressions are weighted
by CZ population in 1990. Coefficients with ∗∗∗, ∗∗ and ∗ are significant at the 1%, 5% and 10% confidence level.
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Table A13: Descriptive statistics: Employment gaps by occupation and industry

Panel A: Occupation

Skill intensive White collar Blue collar Low skills

1990 ∆14−90 1990 ∆14−90 1990 ∆14−90 1990 ∆14−90

[1] [2] [3] [4] [5] [6] [7] [8]

Race and ethnicity 2.71 -0.99 15.0 -1.40 -5.40 0.23 -4.90 -0.98

Gender 3.47 -4.20 0.53 -1.40 11.8 -0.00 -0.84 0.19

Observations 722 722 722 722 722 722 722 722

Panel B: Industry

High robot-intensive Low robot-intensive Non-
manufacturing manufacturing manufacturing

1990 ∆14−90 1990 ∆14−90 1990 ∆14−90

[1] [2] [3] [4] [5] [6]

Race and ethnicity -0.94 0.13 0.15 0.30 8.67 -3.10

Gender 5.70 -1.50 4.40 -1.10 8.03 -4.20

Observations 722 722 722 722 722 722

Note: This table presents the average employment gaps by race and ethnicity and by gender in 1990 as well as changes between
1990 and 2014 across industry and occupation groups weighted by CZ population in 1990. Occupation groups are computed
from a median split of the standardized measures of the brawn and brain task content of jobs. Skill-intensive jobs include
occupations that are both brawn and brain task intensive. White-collar jobs include occupations that are brain task intensive
and require only few brawn skills. Blue-collar jobs include occupations that are brawn task intensive and require only few
brain skills. Low-skill jobs include occupations that do not require particular brawn or brain skills. Industry groups are created
according to the relative adoption of industrial robots of industries. High robot-intensive manufacturing industries include the
industries with the heaviest adoption of industrial robots. Low robot-intensive manufacturing industries include the remaining
manufacturing industries, while non-manufacturing industries include all industries outside of the manufacturing sector.
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Table A14: Robustness check: Product market competition from Europe

Race and ethnicity Gender

All Less than
college All Less than

college

[1] [2] [3] [4]

Panel A: Import competition in the US

US robot exposure 0.750∗∗∗ 0.866∗∗∗ -0.597∗∗∗ -0.850∗∗∗
(0.257) (0.281) (0.155) (0.175)

US imports from EU7 0.189∗ 0.234∗∗ -0.067 -0.083
(0.104) (0.105) (0.069) (0.078)

Observations 2166 2166 2166 2166

Panel B: Import competition in Canada

US robot exposure 0.818∗∗∗ 0.949∗∗∗ -0.621∗∗∗ -0.880∗∗∗
(0.270) (0.294) (0.162) (0.187)

CAN imports from EU7 -0.079 -0.072 0.042 0.088
(0.122) (0.146) (0.064) (0.082)

Observations 2166 2166 2166 2166

Panel C: Include only countries with least trade with the US

US robot exposure 0.572∗ 0.620∗ -0.307∗∗ -0.443∗∗∗
(0.313) (0.341) (0.127) (0.160)

Observations 2166 2166 2166 2166

Covariates: X X X X

Note: This table presents IV estimates of the effect of US robot exposure on the change in the employment gaps at the CZ level.
Changes are expressed in percentage points of the working-age population subgroup and are multiplied by 100. Independent
variables are standardized to have mean zero and standard deviation of one. There are three time periods and 722 CZs. Panel
A includes a shift-share measure of US imports from the seven European countries included in the instrument. Panel B includes
a shift-share measure of Canadian imports from the seven European countries included in the instrument. Panel C reports
IV estimates using an instrument that includes only the four European countries with the lowest trade engagement with the
US (Denmark, Finland, Spain and Sweden). Columns 1 and 3 report results for all individuals, while Columns 2 and 4 report
results for individuals with less than a college degree. All columns include state fixed effects and time-varying division fixed
effects and control for the adoption of personal computers, IT capital intensity, the exposure to Chinese imports, as well as
for demographic (share of individuals aged between 25 and 34 years, 35 and 44 years, 45 and 54 years, the share of Blacks,
Hispanics, women and individuals with less than a college degree and logarithmic population), industry (share of employment in
the contruction, manufacturing, mining, research, service and utilities sector) and occupation (share of employment in routine,
offshorable, skill-intensive, white-collar, blue-collar and low-skill occupations) characteristics of CZs in 1990 and the initial
composition of employment by race, ethnicity and gender within occupation and industry groups in 1990. Standard errors are
robust against heteroskedasticity and allow for clustering at the state level. Regressions are weighted by CZ population in 1990.
Coefficients with ∗∗∗, ∗∗ and ∗ are significant at the 1%, 5% and 10% confidence level.
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Table A15: Robustness check: Placebo test

Race and ethnicity Gender

All Less than
college All Less than

college

[1] [2] [3] [4]

US robot exposure -0.010 0.074 0.175 0.303
(0.137) (0.204) (0.190) (0.191)

Observations 1444 1444 1444 1444

Covariates: X X X X

Note: This table presents IV estimates of the effect of US robot exposure on the employment gaps prior to 1990 at the CZ level.
Changes are expressed in percentage points of the working-age population subgroup and are multiplied by 100. Independent
variables are standardized to have mean zero and standard deviation of one. There are two time periods (1970-80 and 1980-90
for the employment gaps and 1990-2000 and 2000-07 for robot exposure) and 722 CZs. Columns 1 and 3 report results for all
individuals, while Columns 2 and 4 report results for individuals with less than a college degree. All columns include state
fixed effects and time-varying division fixed effects and control for the adoption of personal computers, IT capital intensity, the
exposure to Chinese imports, as well as for demographic (share of individuals aged between 25 and 34 years, 35 and 44 years, 45
and 54 years, the share of Blacks, Hispanics, women and individuals with less than a college degree and logarithmic population),
industry (share of employment in the contruction, manufacturing, mining, research, service and utilities sector) and occupation
(share of employment in routine, offshorable, skill-intensive, white-collar, blue-collar and low-skill occupations) characteristics of
CZs in 1970 and the initial composition of employment by race, ethnicity and gender within occupation and industry groups in
1970. Standard errors are robust against heteroskedasticity and allow for clustering at the state level. Regressions are weighted
by CZ population in 1990. Coefficients with ∗∗∗, ∗∗ and ∗ are significant at the 1%, 5% and 10% confidence level.
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Table A16: Robustness check: Weights

Panel A: Race and ethnicity

All Less than
college All Less than

college All Less than
college

[1] [2] [3] [4] [5] [6]

US robot exposure 1.214∗∗∗ 1.391∗∗∗ -0.035 0.119 0.834∗∗ 1.039∗∗
(0.349) (0.398) (0.390) (0.486) (0.315) (0.406)

Observations 2166 2166 2166 2166 825 825

Panel B: Gender

All Less than
college All Less than

college All Less than
college

[1] [2] [3] [4] [5] [6]

US robot exposure -0.886∗∗∗ -1.244∗∗∗ -0.860∗∗ -1.139∗∗∗ -0.576∗∗ -0.684∗∗
(0.199) (0.255) (0.320) (0.396) (0.249) (0.291)

Observations 2166 2166 2166 2166 825 825

Covariates:
Division X X X X X X
Year X X X X X X
Computer & IT X X X X X X
Chinese imports X X X X X X
Demographics X X X X X X
Occupations X X X X X X
Industries X X X X X X
Non-white population weights X X
Unweighted X X X X
Non-white CZs X X

Note: This table presents IV estimates of the effect of US robot exposure on the change in the employment gaps at the CZ
level using different regression weights. Changes are expressed in percentage points of the working-age population subgroup
and are multiplied by 100. Independent variables are standardized to have mean zero and standard deviation of one. There
are three time periods and 722 CZs in the first four columns and 275 CZs in the last two columns, which restrict the sample to
CZs with a population of non-whites and a share of non-whites above the respective local labor market median in 1990. Odd
columns report results for all individuals, while even columns report results for individuals with less than a college degree. All
columns include state fixed effects and time-varying division fixed effects and control for the adoption of personal computers,
IT capital intensity, the exposure to Chinese imports, as well as for demographic (share of individuals aged between 25 and 34
years, 35 and 44 years, 45 and 54 years, the share of Blacks, Hispanics, women and individuals with less than a college degree
and logarithmic population), industry (share of employment in the contruction, manufacturing, mining, research, service and
utilities sector) and occupation (share of employment in routine, offshorable, skill-intensive, white-collar, blue-collar and low-
skill occupations) characteristics of CZs in 1990 and the initial composition of employment by race, ethnicity and gender within
occupation and industry groups in 1990. Standard errors are robust against heteroskedasticity and allow for clustering at the
state level. Regressions in the first two columns are weighted by CZ non-white population of non-whites in 1990. Regressions
in the remaining columns are unweighted. Coefficients with ∗∗∗, ∗∗ and ∗ are significant at the 1%, 5% and 10% confidence
level.
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Table A17: Robustness check: Alternative construction of the instrument

Race and ethnicity Gender

All Less than
college All Less than

college

[1] [2] [3] [4]

Panel A: EU7 countries and Germany

US robot exposure 0.704∗∗∗ 0.804∗∗∗ -0.542∗∗∗ -0.765∗∗∗
(0.236) (0.255) (0.142) (0.166)

Observations 2166 2166 2166 2166
Panel B: EU5 countries (Acemoglu and Restrepo, 2020)

US robot exposure 0.901∗∗∗ 1.027∗∗∗ -0.605∗∗∗ -0.850∗∗∗
(0.304) (0.333) (0.158) (0.195)

Observations 2166 2166 2166 2166
Panel C: EU7 countries with `1990j,c

US robot exposure 0.917∗∗∗ 0.986∗∗∗ -0.570∗∗∗ -0.765∗∗∗
(0.274) (0.306) (0.154) (0.194)

Observations 2166 2166 2166 2166

Panel D: EU7 countries without gj,(t0,t1)
Rj,t0

Lj,1990

US robot exposure 0.629∗∗∗ 0.763∗∗∗ -0.484∗∗∗ -0.722∗∗∗
(0.227) (0.249) (0.154) (0.171)

Observations 2166 2166 2166 2166

Covariates: X X X X

Note: This table presents IV estimates of the effect of US robot exposure on the change in the employment gaps at the CZ
level using different instrument measures. Changes are expressed in percentage points of the working-age population subgroup
and are multiplied by 100. Independent variables are standardized to have mean zero and standard deviation of one. There
are three time periods and 722 CZs. Panel A reports estimates using an instrument which includes seven European countries
and Germany. Panel B reports estimates using an instrument that includes only five European countries. I exclude Spain and
the United Kingdom as in the measure of Acemoglu and Restrepo (2020). Panel C reports estimates using an instrument with
seven European countries, but US employment shares of 1990 instead of 1970. Panel D reports estimates using an endogenous
variable and an instrument of robot density without the adjustment term of industry growth. Columns 1 and 3 report results
for all individuals, while Columns 2 and 4 report results for individuals with less than a college degree. All columns include state
fixed effects and time-varying division fixed effects and control for the adoption of personal computers, IT capital intensity, the
exposure to Chinese imports, as well as for demographic (share of individuals aged between 25 and 34 years, 35 and 44 years, 45
and 54 years, the share of Blacks, Hispanics, women and individuals with less than a college degree and logarithmic population),
industry (share of employment in the contruction, manufacturing, mining, research, service and utilities sector) and occupation
(share of employment in routine, offshorable, skill-intensive, white-collar, blue-collar and low-skill occupations) characteristics of
CZs in 1990 and the initial composition of employment by race, ethnicity and gender within occupation and industry groups in
1990. Standard errors are robust against heteroskedasticity and allow for clustering at the state level. Regressions are weighted
by CZ population in 1990. Coefficients with ∗∗∗, ∗∗ and ∗ are significant at the 1%, 5% and 10% confidence level.
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Table A18: Robustness check: Exclude CZs with highest robot exposure

Race and ethnicity Gender

All Less than
college All Less than

college

[1] [2] [3] [4]

Panel A: Exclusion of Detroit area

US robot exposure 1.040∗∗ 1.273∗∗∗ -0.488∗ -0.694∗
(0.422) (0.465) (0.276) (0.350)

Observations 2163 2163 2163 2163
Panel B: Exclusion of CZs with highest US robot exposure

US robot exposure 0.988 1.367∗ -0.505 -0.814∗
(0.619) (0.701) (0.375) (0.448)

Observations 2142 2142 2142 2142

Covariates: X X X X

Note: This table presents IV estimates of the effect of US robot exposure on the change in the employment gaps at the CZ
level excluding the set of CZs with the largest robot exposure. Changes are expressed in percentage points of the working-
age population subgroup and are multiplied by 100. Independent variables are standardized to have mean zero and standard
deviation of one. There are three time periods and 722 CZs. Panel A reports estimates excluding Detroit from the sample.
Panel B reports estimates excluding the CZs in the top 1 percentile of US robot exposure between 1993 and 2014. Columns 1
and 3 report results for all individuals, while Columns 2 and 4 report results for individuals with less than a college degree. All
columns include state fixed effects and time-varying division fixed effects and control for the adoption of personal computers,
IT capital intensity, the exposure to Chinese imports, as well as for demographic (share of individuals aged between 25 and
34 years, 35 and 44 years, 45 and 54 years, the share of Blacks, Hispanics, women and individuals with less than a college
degree and logarithmic population), industry (share of employment in the contruction, manufacturing, mining, research, service
and utilities sector) and occupation (share of employment in routine, offshorable, skill-intensive, white-collar, blue-collar and
low-skill occupations) characteristics of CZs in 1990 and the initial composition of employment by race, ethnicity and gender
within occupation and industry groups in 1990. Standard errors are robust against heteroskedasticity and allow for clustering
at the state level. Regressions are weighted by CZ population in 1990. Coefficients with ∗∗∗, ∗∗ and ∗ are significant at the 1%,
5% and 10% confidence level.
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Table A19: Robustness check: Unobserved heterogeneity

Race and ethnicity Gender

All Less than
college All Less than

college

[1] [2] [3] [4]

Panel A: Inclusion of beginning of subperiod covariates

US robot exposure 0.457∗∗ 0.557∗∗∗ -0.564∗∗∗ -0.753∗∗∗
(0.183) (0.195) (0.113) (0.149)

Observations 2166 2166 2166 2166
Panel B: Inclusion of CZ fixed effects and beginning of subperiod covariates

US robot exposure 1.344∗∗∗ 1.499∗∗∗ -0.855∗∗∗ -1.058∗∗∗
(0.154) (0.169) (0.168) (0.217)

Observations 2166 2166 2166 2166

Covariates: X X X X

Note: This table presents IV estimates of the effect of US robot exposure on the change in the employment gaps at the CZ level
using time-varying covariates (Panel A) and fully exploiting temporal variation in robot exposure within labor markets (Panel
B). Changes are expressed in percentage points of the working-age population subgroup and are multiplied by 100. Independent
variables are standardized to have mean zero and standard deviation of one. There are three time periods and 722 CZs. Columns
1 and 3 report results for all individuals, while Columns 2 and 4 report results for individuals with less than a college degree. All
columns include state fixed effects and time-varying division fixed effects and control for the adoption of personal computers,
IT capital intensity, the exposure to Chinese imports, as well as for demographic (share of individuals aged between 25 and
34 years, 35 and 44 years, 45 and 54 years, the share of Blacks, Hispanics, women and individuals with less than a college
degree and logarithmic population), industry (share of employment in the contruction, manufacturing, mining, research, service
and utilities sector) and occupation (share of employment in routine, offshorable, skill-intensive, white-collar, blue-collar and
low-skill occupations) characteristics of CZs at the beginning of each period and the initial composition of employment by race,
ethnicity and gender within occupation and industry groups at the beginning of each period. Standard errors are robust against
heteroskedasticity and allow for clustering at the state level. Regressions are weighted by CZ population in 1990. Coefficients
with ∗∗∗, ∗∗ and ∗ are significant at the 1%, 5% and 10% confidence level.
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Table A20: Exclusion of the Great Recession period (2007-14)

Panel A: Race and ethnicity

[1] [2] [3] [4] [5] [6]

US robot exposure 0.553∗∗ 0.613∗∗ 0.600∗∗ 0.599∗∗ 0.720∗∗∗ 0.754∗∗∗
(0.230) (0.230) (0.231) (0.230) (0.252) (0.276)

Observations 1444 1444 1444 1444 1444 1444

Panel B: Gender

[1] [2] [3] [4] [5] [6]

US robot exposure -0.457∗∗∗ -0.468∗∗∗ -0.553∗∗∗ -0.553∗∗∗ -0.582∗∗∗ -0.548∗∗∗
(0.106) (0.104) (0.132) (0.133) (0.121) (0.120)

Observations 1444 1444 1444 1444 1444 1444

Covariates:
Region X X X X X X
Year X X X X X X
Pre-trends X X X X X
Computer & IT X X X X
Chinese imports X X X
Demographics X X
Occupations X X
Industries X X
Composition X

Note: This table presents IV estimates of the effect of US robot exposure on the change in the race and ethnicity employment
gap and the gender employment gap at the CZ level, excluding the Great Recession period. Changes are expressed in percentage
points of the working-age population subgroup and are multiplied by 100. Independent variables are standardized to have mean
zero and standard deviation of one. There are two time periods (1990-2000 and 2000-07) and 722 CZs. Column 1 includes only
state fixed effects and time-varying division fixed effects. Column 2 includes also pre-trends in the change of the employment
gaps between 1970 and 1990. Column 3 controls for the adoption of personal computers and IT capital intensity. Column
4 includes the exposure to Chinese imports. Column 5 includes also demographic (share of individuals aged between 25 and
34 years, 35 and 44 years, 45 and 54 years, the share of Blacks, Hispanics, women and individuals with less than a college
degree and logarithmic population), industry (share of employment in the contruction, manufacturing, mining, research, service
and utilities sector) and occupation (share of employment in routine, offshorable, skill-intensive, white-collar, blue-collar and
low-skill occupations) characteristics of CZs in 1990. Column 6 controls also for the initial composition of employment by race,
ethnicity and gender within occupation and industry groups. Standard errors are robust against heteroskedasticity and allow for
clustering at the state level. Regressions are weighted by CZ population in 1990. Coefficients with ∗∗∗, ∗∗ and ∗ are significant
at the 1%, 5% and 10% confidence level.
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