
Advanced Metaheuristics for the
Probabilistic Orienteering Problem

Doctoral Dissertation submitted to the

Faculty of Informatics of the Università della Svizzera italiana

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

presented by

Xiaochen Chou

under the supervision of

Prof. Luca Maria Gambardella

co-supervised by

Prof. Roberto Montemanni

October 2020

Dissertation Committee

Prof. Evanthia Papadopoulou Università della Svizzera italiana, Switzerland
Prof. Olaf Schenk Università della Svizzera italiana, Switzerland

Prof. Philipp Baumann Universität Bern, Switzerland
Prof. Carlo Filippi Università degli Studi di Brescia, Italy

Dissertation accepted on October 2020

Prof. Luca Maria Gambardella
Research Advisor

Università della Svizzera italiana, Switzerland

Prof. Roberto Montemanni
Research Co-Advisor

University of Modena and Reggio Emilia, Italy

Prof. Binder Walter
PhD Program Director

i

I certify that except where due acknowledgement has been given, the work presented in
this thesis is that of the author alone; the work has not been submitted previously, in whole
or in part, to qualify for any other academic award; and the content of the thesis is the result
of work which has been carried out since the official commencement date of the approved re-
search program.

Xiaochen Chou
Lugano, October 2020

ii

To my beloved

iii

iv

Abstract

Stochastic Optimization Problems take uncertainty into account. For this reason they are
in general more realistic than deterministic ones, meanwhile, more difficult to solve. The chal-
lenge is both on modelling and computation aspects: exact methods usually work only for
small instances, besides, there are several problems with no closed-form expression or hard-
to-compute objective functions. A state-of-the-art approach for several stochastic/probabilistic
vehicle routing problems is to approximate their cost using Monte Carlo sampling.

The Orienteering Problem is a routing problem aiming at selecting a subset of a given set
of customers to be visited within a given time budget, so that a total revenue is maximized.
Multiple stochastic variants of the problem have been studied. The Probabilistic Orienteering
Problem is one of these variants, where customers will require a visit according to a certain given
probability. The objective is to select a subset of customers to visit within a given time budget,
so that an expected total reward is maximized while the expected travel time is minimised.
The problem is NP-hard. In this work we propose different metaheuristics based on hybrid
Monte Carlo sampling approximation to solve the problem. Detailed computational studies are
presented, with the aim of studying the performance of the metaheuristics in terms of precision
and speed, while positioning the new method within the existing literature.

In this work, we also study the use of Machine Learning tools to help solve optimization
problems. By shifting the problem of selecting the number of samples used by the Monte Carlo
approximation to that of choosing a trade off between speed and precision, the best number of
samples can be predicted by using Machine Learning models in a fast and efficient way.

The Tourist Trip Design Problem (TTDP) is a variant of a route-planning problem for tourists
interested in visiting multiple points of interest. A practical application of the POP to the prob-
abilistic version of the TTDP is also discussed, and this provides inspiration for more possible
applications.

v

vi

Acknowledgements

I am deeply grateful to my Research Advisor Prof. Luca Maria Gambardella, Research Co-
Advisor Prof. Roberto Montemanni and Academic Advisor Prof. Jürgen Schmidhuber, who
generously rendered help and encouragement during the process of this thesis. Whatever I
have accomplished in pursuing this undertaking is due to their guidance and thoughtful advice.

I would also like to thank my dissertation committee (in alphabetical order): Prof. Carlo
Filippi from Università degli Studi di Brescia, Prof. Evanthia Papadopoulou from Università
Della Svizzera Italiana (USI), Prof. Olaf Schenk from Università Della Svizzera Italiana (USI)
and Prof. Philipp Baumann from Universität Bern. All of them have already provided valuable
feedback, ideas and advice related to my research.

At this point, I would like to thank everyone who helped me through my doctoral studies
culminating and contributed to my research in one way or another (again in alphabetical or-
der): Aleksandar Stanic, Arpitha Bharathi, Bingrong Chen, Francesco Faccio, François Févotte,
Hui Yan, Krsto Prorokovic, Mengke Ren, Micheal Wand, Murodzhon Akhmedov, Paulo Rauber,
Ricardo Omar Chavez-Garcia, Robert Csordas, Thi Viet Ly Nguyen, Vasileios Papapanagiotou
and Yingjie Li.

Last but not least I would like to thank my family. Thank you all for your care, support and
encouragement all the time. Thank you for the wise counsel and sympathetic ear, always be
there for me.

vii

viii

Contents

Contents ix

List of Figures xi

List of Tables xiii

1 Introduction 1
1.1 Research Motivation . 1
1.2 Structure of the Thesis . 2
1.3 Literature Review . 3

1.3.1 Stochastic Combinatorial Optimization Problems 3
1.3.2 Machine Learning techniques in Optimization 5

2 The Probabilistic Orienteering Problem 7
2.1 Problem Definition . 7

3 Monte Carlo sampling for the Probabilistic Orienteering Problem 11
3.1 A Monte Carlo sampling approach . 11

3.1.1 Methodology . 11
3.1.2 Experimental data sets . 13
3.1.3 Customers selection . 14
3.1.4 Tuning of the number of samples . 19

3.2 A heuristic speed-up criterion for the Monte Carlo sampling method 20
3.2.1 Methodology of the heuristic speed-up criterion 21
3.2.2 Tuning of the tolerance value y . 23

3.3 Conclusions . 25

4 A Random Restart Local Search Heuristic Algorithm 27
4.1 A 2-opt Local Search heuristic . 27
4.2 Methodology of the RRLS algorithm . 28
4.3 Tuning of the MC evaluator embedded in the RRLS algorithm 29

4.3.1 General case . 29
4.3.2 Tuning of the tolerance value y based on DIMENSION 31
4.3.3 Tuning of the tolerance value y based on PRIZE TYPE 35
4.3.4 Summary and considerations . 37

4.4 A wiser selection of starting solutions . 37
4.4.1 Generation of initial solutions for the random restart phase 37

ix

x Contents

4.4.2 Effectiveness of parameter k . 40
4.4.3 Statistical significance of the results on parameter k 41

4.5 Conclusions . 43

5 A Tabu Search Heuristic Algorithm 45
5.1 The role of Monte Carlo sampling within the heuristic 45
5.2 Comparison between the TS and RRLS methodologies 45
5.3 Memory Structure . 46
5.4 Local Searches . 47
5.5 The Complete Tabu Search Algorithm . 49
5.6 Experimental Results . 54

5.6.1 Random Restart Local Search TS: 2-opt and 3-opt 54
5.6.2 Tuning for the length of the Tabu List: the 2-opt case 55
5.6.3 Tuning for the length of the Tabu List: the 3-opt case 57
5.6.4 Comparison of the TS algorithm with other methods from the literature . 60
5.6.5 Results of the TS algorithm on large instances 61

5.7 Conclusions . 61

6 Parameters Tuning and Machine Learning 65
6.1 Introduction . 65
6.2 Features Selection . 65
6.3 Predicting the best number of samples for an instance 66

6.3.1 The Concept of Satisfaction . 66
6.3.2 Method NN1 . 68
6.3.3 Method NN2 . 69

6.4 Computational Experiments . 70
6.4.1 Training . 71
6.4.2 Testing . 71

6.5 Conclusions . 75

7 The Probabilistic Tourist Trip Design Problem 77
7.1 Introduction . 77
7.2 Problem Definition . 77
7.3 Experimental Results . 78

7.3.1 Touristic application in Paris, France . 79
7.3.2 A comparison between the POP solvers for small instances 81

7.4 Models with extra features . 82
7.5 Conclusions . 83

8 Conclusions 85

A 2-opt and 3-opt operators inside the Tabu Search algorithm: Extended Results 89

Bibliography 97

Figures

3.1 Example of s scenarios generated from a tour τ . 12
3.2 u(τ) of an example instance with pi = 1,πi = 0.5 15
3.3 u(τ) of an example instance with pi = 1,πi random 16
3.4 u(τ) of an example instance with pi random, πi = 0.5 17
3.5 u(τ) of an example instance with pi random, πi random 18
3.6 Relative difference between x s and x re f for 8 test instances 20
3.7 Relative standard deviation for 8 test instances . 21
3.8 Computational speed for 8 test instances . 22
3.9 An instance with profit increase until the deadline D is incurred 23
3.10 An instance with irregular profit before the deadline D is incurred 24

4.1 Example of a 2-opt move . 28
4.2 Average gap (%) over time for 264 POP instances 30
4.3 Analysis of Variance of the POP characteristics . 31
4.4 Average gap (%) over time for 84 POP instances with n< 30 32
4.5 Average gap (%) over time for 84 POP instances with 30≤ n< 50 33
4.6 Average gap (%) over time for 96 POP instances with n≥ 50 34
4.7 Average gap (%) over time for 132 POP instances with πi = 1 35
4.8 Average gap (%) over time for 132 POP instances with πi = random 36
4.9 Evolution of the best solution retrieved by RRLS over time with three initializa-

tion methods (instance att48FSTCII_q1_g1_p1) . 39

5.1 Comparison between the TS algorithm and the RRLS algorithm for an example
instance . 47

5.2 All the possible combination cases of a 3-opt move 48
5.3 Converging speed of the TS algorithm on the new 24 POP instances with different

dimension . 62

6.1 Values of speed(I , s) for different values of s for an example instance 68
6.2 Values of prec(I , s) for different values of s for an example instance 69
6.3 Values of speed(I , s), prec(I , s) and sat(I , s) for different values of s for an ex-

ample instance . 70
6.4 Feed Forward Neural Network: Architecture NN1 71
6.5 Values of sat(I , s) for different values of s for an example instance 72
6.6 Feed Forward Neural Network: Architecture NN2. The differences with respect

to architecture NN1 are highlighted in red. 73

xi

xii Figures

6.7 Distribution of the best number of samples predicted for 252 POP instances . . . 74
6.8 Satisfaction level of the prediction . 75

7.1 Locations of 15 Top Attractions in Paris, France . 80
7.2 Optimal solution for the case with equal satisfaction score for all POIs 81
7.3 Optimal solution for the case with different satisfaction scores for the POIs . . . 82

Tables

3.1 The average gap increase (%) for different values v for parameter y 24
3.2 The average speed gain (%) for different values v for parameter y 25

4.1 Average gap (%) for 264 POP instances . 31
4.2 Detailed average error ek(%) for different k values 41
4.3 Detailed p-value between k = 2 and k = 3 . 42
4.4 p-value over time for different k values . 42

5.1 RRLS - Comparison between 3-opt and 2-opt heuristics for the POP 55
5.2 Average results for the TS algorithm (2-opt) with different tabu lengths 56
5.3 Best results obtained by TS algorithm (2-opt) for different tabu lengths 57
5.4 Average results for the TS algorithm (3-opt) with different tabu lengths 58
5.5 The 42 instances on which the 3-opt heuristic achieves more accurate results

than 2-opt for the TS algorithm . 59
5.6 Comparison between different heuristics for the POP 60
5.7 Best results found by the TS algorithm for the 24 new POP instances 62

6.1 Features selected to feed the predictors . 66
6.2 Prediction results for the two Neural Network-based methods. Average differ-

ence between the predicted value of s and the optimal one 76

7.1 List of the 15 top attractions in Paris . 79
7.2 Experimental comparison of heuristic methods on small instances 82

A.1 TS - 2-opt vs 3-opt for 264 POP instances . 89
A.1 TS - 2-opt vs 3-opt for 264 POP instances (cont’d) 90
A.1 TS - 2-opt vs 3-opt for 264 POP instances (cont’d) 91
A.1 TS - 2-opt vs 3-opt for 264 POP instances (cont’d) 92
A.1 TS - 2-opt vs 3-opt for 264 POP instances (cont’d) 93
A.1 TS - 2-opt vs 3-opt for 264 POP instances (cont’d) 94
A.1 TS - 2-opt vs 3-opt for 264 POP instances (cont’d) 95

xiii

xiv Tables

List of Algorithms

1 Random Restart Local Search . 29
2 Random Restart Local Search version 2 . 38

3 Random Restart Local Search (TS) . 50
4 Tabu Search algorithm with a 2-opt operator . 51
5 Tabu Search algorithm with a 3-opt operator . 52

xv

xvi LIST OF ALGORITHMS

Chapter 1

Introduction

In this chapter, the motivation of the research and the contributions of our study are intro-
duced, along with the structure of the thesis. A literature review on the research areas relevant
to the thesis is also presented.

1.1 Research Motivation

Stochastic Combinatorial Optimization Problems have drawn the attention of many re-
searchers in recent years. With respect to classic optimization approaches, uncertainty fac-
tors are taken into account, thus the resulting models are more realistic. However, stochastic
problems are also more difficult to solve. The challenge is both on modelling and computa-
tion aspects: exact methods usually work only for small instances, besides, there are several
problems with no closed-form expression or hard-to-compute objective functions. Designing
efficient (meta)heuristics to produce high quality solutions in a reasonable amount of time is
an actual research goal.

Metaheuristics based on (hybrid) Monte Carlo sampling have become state-of-the-art ap-
proaches for several stochastic/probabilistic vehicle routing problems, such as the Probabilistic
Traveling Salesman Problem (PTSP), the Probabilistic Traveling Salesman Problem with Dead-
lines (PTSPD) and the Orienteering Problem with Stochastic Travel and Service Times (OPSTS).

Given a problem with stochastic input data, non-stochastic constraints and an objective func-
tion which is the expectation of a certain random variable, the Monte Carlo sampling method
is able to deal with different scenarios regarding the complexity of the objective function. For
problems either with or without a close-form expression available for the objective function,
the Monte Carlo sampling method can approximate the objective function in a fast and efficient
way. Even for problems with objective functions that have already been computed efficiently,
the Monte Carlo sampling method is still a strong competitor in speed and efficiency. This makes
the Monte Carlo Approximation an effective evaluator to be used inside heuristic methods. In
this work, we approximate the objective function of the Probabilistic Orienteering Problem by
using the Monte Carlo sampling method and solve it with metaheuristic algorithms.

The Probabilistic Orienteering Problem (POP) was first introduced in Angelelli et al. [1].
It is a variant of the Orienteering Problem (OP) [63] where customers are requiring a visit
with certain probabilities. In the OP, there is a set of customers at different locations and with

1

2 1.2 Structure of the Thesis

associated prizes. A prize is collected only if the respective customer is visited. The aim is
to maximize the total prize collected within a given time budget. In the POP, the potential
customers will require a visit according to given probabilities, correspondingly, a prize can be
collected only when a customer actually requiring a visit is served before the given deadline.
Thus, the target of the POP is to construct a planning that consists in selecting a subset of the
given customers, in such a way that the respective expected prize collected is maximized and
the expected total travel time cost is minimized.

Given a tour, the analytical approximation of the expected total travel time cost requires
cumulative products considering all combinations in which each customer requires a visit or
not. Given a feasible tour, the objective function value can be evaluated in quadratic time.
However, optimizing the feasible tour is a complex task. The MILP model presented in [1] based
on feasible solutions has an exponential number of constraints. The Monte Carlo sampling
method is also able to approximate the objective function in polynomial time. By using it as
an interrelated part of a simple local search heuristic, the POP can be solved. However, the
searching process may get stuck in local extrema. We proposed a Random Restart Local Search
algorithm and a Tabu Search algorithm to solve the POP. Both methods are designed to escape
from local extrema and they both embed a Monte Carlo evaluator. An innovative integration of
the local search heuristics and the Monte Carlo sampling method allows the creation of simple
and effective algorithms. With this technique, we provide solutions for the POP with low error
in a very short time.

One crucial parameter in the Monte Carlo sampling evaluator is the number of samples to be
used. More samples means precision, while less samples means speed. An instance-dependent
trade-off has to be found. Machine Learning techniques have been recently used in Optimization
contexts. Apart from the classic experimental tests, we are also interested in understanding
whether a Machine Learning model can effectively predict the number of samples required for
an instance or not. Two methods are presented and compared from an experimental point of
view. It is shown that a less intuitive and slightly more complex method is able to provide more
precise estimations.

Finally, we are also interested in the possible application of the POP. The Touristic Trip Design
Problem (TTDP) is a variant of a classic route-planning problem for tourists interested in visiting
multiple points of interest. A simple formulation of the TTDP is proven to be identical with the
OP. Adhering to the practicality, we also take uncertainties into consideration for the TTDP. In
fact, a variety of uncertainties could affect the availability of the points of interest. For example,
popular places may probabilistically require a long waiting time and open-air places may not
be visitable due to unseasonable weather. In this work, we define the Probabilistic Tourist Trip
Design Problem (PTTDP) and show that simple POP solvers can efficiently provide solutions for
this application.

1.2 Structure of the Thesis

The structure of the document is as follows.

A review of the literature focusing on the POP and on common methods used for several
related stochastic combinatorial problems is presented in Section 1.3. In Chapter 2, a detailed
formal definition of the problem studied is provided. A Monte Carlo evaluator is presented in

3 1.3 Literature Review

Chapter 3. The Monte Carlo evaluator is then embedded in a Random Restart Local Search
algorithm presented in Chapter 4 to solve the POP. In Chapter 5, we describe a Tabu Search
algorithm based on the Monte Carlo evaluator as well. Experimental tests on the performance
of the metaheuristic algorithms proposed are carried out in both Chapters, with an analysis of
limitation and advantages of the approach with respect to other methods from the literature. In
Chapter 6 we discuss the use of Machine Learning technologies for parameter tuning purposes.
In Chapter 7 a stochastic Tourist Trip Design Problem with personalized customisation is pre-
sented and solved by using the methods proposed in the previous chapters. Finally, conclusions
are drawn in Chapter 8.

1.3 Literature Review

In this section, we give an overview about publications regarding stochastic combinatorial
problems related to our research, technical aspects of the Monte Carlo sampling methods, the
metaheuristics using the Monte Carlo sampling approximation of the objective function, and
the use of Machine Learning techniques in Optimization contexts.

1.3.1 Stochastic Combinatorial Optimization Problems

The Probabilistic Orienteering Problem (POP) was first introduced by Angelelli et al. [1]. It
is a variant of the Orienteering Problem (OP) where customers are requiring a visit with certain
probabilities. Detailed information of the OP along with survey can by found in Vansteenwegen
et al. [63] and Gunawan et al. [27].

As shown in Feillet et al. [5] and Bérubé et al. [21], the OP can be formulated as a Travelling
Salesman Problem with Profits. The problem has been proven to be NP-hard by Golden et al.
[26]. To solve the OP, a brand-and-bound method is used by Laporte and Matello [38] and
Ramesh et al. [50]. Improved approaches based on branch-and-cut have been proposed by
Fischetti et al. [22] and Gendreau et al. [24]. There have been continuous improvements to
the solving methods over the years, and a classification of the exact algorithms and details about
the applied techniques can be found in Feillet et al. [21]. The OP arises in several real domains.
A recent application is the Mobile Tourist Guide introduced in Souffri et al. [56], which makes
feasible plan for tourists to visit the most valuable attractions among all the places that they wish
to visit in the limited time of the trip. Such planning problems are called Tourist Trip Design
Problems (TTDP) (Vansteenwegen and Van Oudheusden [60]). Similar Tourist Trip problems
of selecting the most interesting combination of attractions is mentioned in Chou et al. [18]
and Wang et al. [66]. In general, the application of the TTDP requires high quality solutions in
a short calculation time, which helps to make real-time decisions.

There are several deterministic extensions to the OP. The Team Orienteering Problem (TOP)
[12, 59, 3] considers multiple routes limited by the deadline and the goal is to maximise the total
prize collected. The Orienteering Problem with Time Windows (OPTW) and the Team Orien-
teering Problem with Time Windows (TOPTW) add time window constraints for the customers,
and a visit to a customer can only starts during this time window. The OPTW and TOPTW have
been solved with Ant Colony optimization by Montemanni and Gambardella [46, 47], and It-
erated Local Search metaheuristic by Vansteenwegen et al. [62]. Another interesting variation
of the OP is the Clustered Orienteering Problem (COP) proposed by Angelelli et al. [2], where

4 1.3 Literature Review

each profit is associated with a cluster of customers and is gained only when all customers in
the cluster are served.

The probabilistic variations of the OP are mainly considering uncertainty on time and/or
profit. From the objective perspective, the POP we study in this work is similar to the Proba-
bilistic Travelling Salesman Problem with deadline (PTSPD) [11]. In the PTSPD, a minimum
expected cost a priori tour is to be find through a set of customers with probabilities of requiring
service. Each customer has a deadline, and service at each customer should begin at or before
its deadline. The objective is to minimize the expected travel time and the expected penalty
caused by violation of the deadline. In Campbell et al. [11], different models are considered
such as paying a penalty for any violation of a deadline, or paying penalties for skipping the
customers whose deadline would be violated. In both the POP and the PTSPD, the stochas-
ticity is on the probability of a customer requiring service. The main difference is that in a
POP feasible solution every customer on the tour must be visited before the global deadline,
while in PTSPD customers can be visited after the deadline, paying a penalty. Other variants of
the OP with stochasticity on service or travel time have been studied in Tang and Miller-Hooks
[58] and Campbell et al. [10]. A vehicle routing problem with stochastic travel times and soft
time windows is considered in Russel and Urban [52]. An OP with uncertain prizes has been
considered in Ilhan et al. [33]. From an application perspective, a tourism-related practical
application of the POP has been studied in [18].

The basic models can be extended with extra feature. For example, a Probabilistic Team
Orienteering Problem (PTOP) based on the Team Orienteering Problem (TOP) is discussed in
Chao et al. [12] and Tang and Miller-Hooks [59]. The PTOP can be open to more applications,
such as planning a different tour for each day during the length of the stay, or determine same
or separate tours for a tour group, regarding the different satisfaction scores given by each
member in the group and the availability of the points of interests on the list. A much further
probabilistic extension of the problem can also be based on the variations of the OP, such as
OPTW and TOPTW.

The POP inherits the NP-hardness from the OP [1]. To solve the POP, a MILP model has been
proposed and the problem is solved by branch-and-cut methods in Angelelli et al. [1]. Since
solving with a basic branch-and-cut method is computationally demanding, three matheurstic
methods to reduce the solution time (detailed in Section 3.1.2) have also been also studied in
[1]. The use of Monte Carlo sampling techniques in the context of the POP has been studied
in Chou et al. [14]. A fast objective function cost approximator for the problem using Monte
Carlo sampling method has been proposed. Similar uses of the Monte Carlo sampling approach
for stochastic/probabilistic vehicle routing problems can be found in Weyland et al. [67] and
Papapanagiotou et al. [48]. Given the characteristics of an instance, a Machine Learning-based
study on estimating the best number of samples to use in such a Monte Carlo sampling evaluator
for the POP can be found in Montemanni et al. [45].

Local search methods provide fast and efficient heuristic solutions for problems with high
computational complexity [30]. For example, the 2-opt heuristic ([19, 23, 40, 34]) is proven to
be crucial to obtain high quality results for the TSP and OP. However, a standard technique like
2-opt and 3-opt [6] which only searches in the neighborhood of the solution may get trapped
in local extrema [54]. To take care of this undesired phenomenon, random restart strategies
applied on top of the local search adopted are normally used, in order to increase the probability
of success in searching procedures. The method works by restarting the optimization search

5 1.3 Literature Review

once no further improvement is possible by the embedded local search component. In our work,
a solver with heuristic speedup criterion for the POP (details in Chapter 4) using Random Restart
mechanism is proposed, which proved to be fast and efficient for small instances problems. A
study on improving the performance of the solver by modifying the generation of re-initialising
solutions is also presented in [17].

Tabu Search (TS) is a metaheuristic search technique that has been widely used in combi-
natorial optimization problems since it was introduced by Glover [25]. It is another effective
method to deal with local extrema. The basic idea is to accept a sequence of non-improving
solutions to escape from local extrema. This is achieved by the use of an explicit memory called
Tabu List during the search process. It avoids visiting solutions that have been visited recently.
A variety of implementations of Tabu Search in the context of the Travelling Salesman Prob-
lem and related problems is reviewed and compared in Basu [4]. Other methods have been
proposed, such as Simulated Annealing in Kirkpatrick et al. [35], Genetic Algorithms in Hol-
land [29] and Ant Colony Optimization in Dorigo and Gambardella [20]. They are other tech-
niques frequently used to escape from local extrema. The Tabu Search method implemented
by Kulteral-Konak et al. [37] has been compared with a Multi-Level Variable Neighbourhood
Search (MLVNS) algorithm on solving large OP instances in Liang et al. [39]. In the MLVNS, in-
stances with identical settings (i.e. dimension, coordinates, and associated scores of the nodes)
differing only in the constraint levels will be solved concurrently. In this way, information from
the searching process can be shared among the instances to improve the efficiency. Experimen-
tal results show that the MLVNS performances better on the quality of the solutions, while the
TS requires shorter computing time.

1.3.2 Machine Learning techniques in Optimization

Machine Learning techniques have been recently used in Optimization domain. Examples
of such methods can be found in the context of branch and bound solvers for Mixed Integer
Programming: the branching strategy has a key role in the performance of methods. In Hutter
et al. [31] some methods are devised to learn which is the best strategy. The idea is to identify
some features of the present sub-problems or the present search-tree node, based on which the
branching strategy to employ is selected, in order to mimic in a fast way the so-called strong
branching that guarantees the best performance, but is time-consuming [42]. The training
phase of the neural network can either be done before or during the run of the branch-and-
bound algorithm. A successful combination of Monte Carlo Tree Search and Deep Learning can
be found in Silver et al. [55] and Parascandolo et al. [49].

Another trend is to use Machine Learning techniques to tune the parameters of the solving
methods such as in Calvet et al. [9], Hutter et al. [32], and Lodi et Zarpellon [41]. Such
methods again rely on the identification of some features and as it was happening with the
previous application the identification of such features is very crucial for the performance of
the methods. A similar application, based on a similar concept of features identification and
evaluation, is to adopt Machine Learning techniques to forecast the running time of an algorithm
([32]) or classifying quadratic programming problems in terms of the best algorithm to use to
solve them [41]. The use of Artificial Neural Networks in Optimization has been considered in
Villarrubia et al. [65]. Another Machine Learning-based study on Reinforcement Learning for
the Travelling Salesman Problem is discussed in Mele et al. [44].

6 1.3 Literature Review

Chapter 2

The Probabilistic Orienteering Problem

2.1 Problem Definition

The Probabilistic Orienteering Problem answers the following question: given a time budget
and a list of customers at different locations with different probabilities of requiring a visit and
deterministic prizes to be collected, what is the best subset of customers to visit (and in which
order) so that the expected total collected prize is maximized and the travel time is concur-
rently minimized? This problem, faced by companies while organising their day-ahead plan or
general users having to take real time decisions [18], is a variation of the Orienteering Problem
which takes uncertainties of the customers’ requirements into consideration, with uncertainty
modelled through probabilities.

As described in [63], the Orienteering Problem can be defined on a graph G = (V, A) where
V = {0,1...n, n + 1} is the node set representing customers with the depot being node 0 and
the destination being node n+ 1 and A is the arc set representing the paths between pairs of
customers. A prize pi is associated with each node, a travel time t i j is associated with each
arc ai j ∈ A and a deadline D is finally provided. A feasible tour σ is defined as a sequence
of customers that can be visited before the deadline incurs. With this notation, the OP can be
described as the problem of finding the tour that collect the largest possible amount of prizes
from customers within the given deadline [63]. This of course implies a selection of the shortest
tour among the selected customers. The objective function of the OP can be reduced therefore to
the maximization of the following quantity o(σ), given a feasible (partial) tour σ not exceeding
the deadline D:

o(σ) =
∑

i∈σ

pi (2.1)

Differently from the OP, the objective function of the POP is no longer a simple sum. Due to
the probabilistic nature of the problem, customers that offers a large prize may require a visit
with a very low probability. With this consideration, the POP is defined as follows.

A POP instance contains the information (V, t,π, D, p) where:

• V = {0,1...n, n + 1} is the set of n customers (nodes) with the depot being node 0 and
the destination being node n+ 1.

• D is the global deadline.

7

8 2.1 Problem Definition

• t i j is the deterministic travelling time from customer i to customer j defined, for all i, j ∈
V .

• πi is the probability of a customer i ∈ V to require a visit and is modeled in our study by
a Bernoulli variable bi = {0, 1}. bi takes value 1 with an independent probability πi for
each customer. Depot and destination are required to be visited by definition, therefore
πo = πn+1 = 1.

• pi is the prize collected when a customer i ∈ V is served before the global deadline D.
There is no prize for depot and destination, therefore p0 = pn+1 = 0.

Formally, we define a feasible solution σ = (i0 = 0, i1, i2, ..., iq, iq+1 = n+1) as a tour starting
from the depot, allowing to serve a sequence of q customers even when all customers on the
route require visits and going to the destination before the global deadline D. A complete tour
τ = (0 = i0, i1, i2, ..., in, in+1 = n + 1) is defined as a sequence of n customers, plus the depot
and the destination node. For a given complete tour τ, the associated prize is P(τ) and the
associated travel time is T (τ).

The POP is a combinatorial optimization problem with the objective of maximizing the total
expected prizes collected while visiting customers before the given deadline, minus a measure
of the total expected travel time. The last factor helps to make a choice when several tours
are associated with a same total prize, and in this case we pick the one associated with smaller
travel cost. Note that the travel time component is not present in the classic formulation of the
OP described above.

The objective function of the POP is to retrieve a feasible solutionσ among all possible tours
that maximize the following quantity:

u(σ) = E[P(σ)]− C E[T (σ)] (2.2)

where the difference between the expected total prize and the expected total travel time is
multiplied by a given coefficient C that is normally set by the decision maker [1].

From a computational perspective, solving the POP is computationally demanding. Given
a feasible tour, the objective function value can be evaluated in quadratic time by using the
following formulas ([1]):

E[P(σ)] =
q
∑

k=1

πk pk (2.3)

E[T (σ)] =
q
∑

h=0

[πh

q+1
∑

k=h+1

(thk ·πk ·
k−1
∏

j=h+1

(1−π j))] (2.4)

where it is assumed that
∏k−1

j=h+1(1−π j) = 1 whenever h+ 1> k− 1.

However, optimizing the feasible tour is a complex task. The MILP model presented in [1]
based on feasible solutions has an exponential number of constraints.

The main purpose of our study is to design simple heuristics to solve the POP in a simple
and effective fashion. To achieve this, we think from another perspective to work with complete
tours directly generated from the POP instances. The best complete tour can be easily obtained

9 2.1 Problem Definition

by local search heuristics, and the best feasible solution can be extracted from the best complete
tour. In this way, the bottlenecks are transferred to the evaluating part in our approach. We
design a smart Monte Carlo evaluator. It not only evaluates the objective function value of a
given complete tour, but also extracts the best feasible solution out of the given tour with the
maximum profit, which is consistent with the objective function, during the evaluation. In this
way, when two complete tours are associated with a same feasible solution, the evaluator is
be able to tell the difference within the local search procedure, and picks the one that is more
likely to lead to a better searching space and eventually improves the accuracy of the solving
method. The smart Monte Carlo evaluator is described in the following Chapter 3, and it is
used as an interrelated part of heuristics we propose (see Chapter 4 and Chapter 5)) to solve
the POP eventually.

10 2.1 Problem Definition

Chapter 3

Monte Carlo sampling for the
Probabilistic Orienteering Problem

3.1 A Monte Carlo sampling approach

In this section we propose a way of evaluating the objective function value of the Proba-
bilistic Orienteering Problem described in Chapter 2 by using a Monte Carlo sampling method.
The work presented has appeared in [14].

3.1.1 Methodology

The objective function value is approximated by the Monte Carlo sampling method (MC) in
the following way: for a given complete tour τ with n customers, according to the probability
of each customer to require a visit, a set of s deterministic scenarios is generated. Each scenario
is a fully connected graph with a fixed set of customers requiring a visit and implies therefore a
tour τJ obtained by τ by cancelling the customers not present in scenario J . For each scenario
J ∈ {1 . . . s}, a deterministic objective function value can be evaluated in linear time as ud(τJ) =
P(τJ)− C · T (τJ), thus the objective function value u(τ) of the tour τ can be approximated by
averaging these values in time O(ns).

Figure 3.1 shows an example of generating s scenarios for a given complete tour τ =
(0,1, 2,3, 4,5, 6), with 0 being the depot and 6 being the destination. Each block represents
a scenario and each dot in the block represents a node, which can be either a customer or the
depot/destination. In each scenario, whether a customer requires a visit (yellow) or not (grey)
is deterministic. When a customer i does not require a visit, he will be skipped while travelling
on the tour τ, and the truck moves from the previous customer directly to the next customer
that requires a visit. For example in scenario 1, customer 1 and 4 do not require a visit, there-
fore, a tour τ1 = (0, 2,3, 5,6) is obtained, and straightforwardly, its objective function value
ud(τ1) can be calculated. Similarly, a total of s scenarios are generated regarding the probabil-
ity of each customer in tour τ requires a visit. With ud(τJ) being the deterministic cost of the
tour τJ adapted to the deterministic scenario J , the approximation value for u(τ) is given by

11

12 3.1 A Monte Carlo sampling approach

Figure 3.1. Example of s scenarios generated from a tour τ

the average objective function value of the deterministic costs of all the scenarios considered:

u(τ)≈

s
∑

J=1
ud(τJ)

s
(3.1)

By design, our solver treats complete tours touching all customers, while a feasible solution
only visits a subset of customers that can be served before the deadline D. Thus the Monte
Carlo evaluator is also delegated to extract a feasible solution σ(τ) as a prefix of a complete
tour τ.

By the definition of the problem, the travel time of going from the last visited customer
back to the depot has always to be considered. Due to this feature, when a complete tour
τ = (i0 = 0, i1, i2, ..., in, in+1 = n+ 1) is being evaluated over a given deterministic scenario s,

13 3.1 A Monte Carlo sampling approach

the tour stops at the last customer iq (q ≤ n) before the deadline D is incurred, and then goes
directly to the destination node. The best feasible POP solution selected out of a complete tour
can also be easily obtained in this way by supposing all customers on the route require visits.
However in certain situation, it is possible that some customers visited within the deadline are
not offering enough prize to make an increase on profit. Therefore, to make a smarter selection
that is consistent with the objective function, we take the best feasible solutionσ(τ) selected out
of a complete tour τ as the one with the peak value of (3.1) encountered during the evaluation
of τ, denoted as u(σ(τ)). This coincide with the fact that during the evaluation of a complete
tour τ, after the deadline is incurred only the travel time component increases, but no more
prize is collected.

Experimental examples on customer selection regarding this peak value during evaluation
can be found in Section 3.1.3. A detailed design choice for the heuristic speed-up criterion with
parameters tuning is presented in Section 3.2, where the Monte Carlo evaluator is able to un-
derstand how to cut the best feasible solutions from given complete tours, and stops evaluating
at proper time to improve the speed of the evaluation while not losing precision.

In conclusion, the Monte Carlo Approximation component receives in input a (complete)
tour τ and outputs:

• a POP feasible solution σ(τ) extracted from the complete tour τ;
• an approximation for the objective function value u(τ) of the complete tour τ;
• an approximation for the objective function value u(σ(τ)) of the POP solution σ(τ).

Due to the heuristic nature of the approach, the approximation of the objective function
value is more accurate when more scenarios are used, but this requires more computational
time. In the following subsections, experiments are carried out to understand which could be
promising values for the number of samples to be used for evaluation.

3.1.2 Experimental data sets

The POP benchmark instances used for the main experiments in this work are the 264 in-
stances introduced in [1]1. They are based on 22 TSP benchmark instances from the TSPLIB95
library2 [51]. With reference to the definition in Section 2.1, the characteristics of the POP
instances are set as follows:

• The customers information and distances are taken directly from the corresponding orig-
inal TSP instances. The first customer of the original instance is considered as the depot.
The destination vertex coincides with the depot.

• The global Deadline D takes value of ω · Tmax , with Tmax being the known optimal value
of the original TSP instance and ω = { 1

4 , 1
2 , 3

4} representing short, medium and long
deadlines.

• The probabilities of the customers to require visits are either πi = 0.5 for all customers,
or πi is a random number in the interval [0.25, 0.75] for each customer i.

• The prizes collected while visiting the customers are either pi = 1 for all customers, or pi

is a pseudo-randomly generated integer in {1,2, ..., 100} for each customer i.
1The POP instances are available at http://or-brescia.unibs.it/instances
2The TSPLIB library can be found at http://iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95/

14 3.1 A Monte Carlo sampling approach

The coefficient C of the objective function (2.2) used to balance between the travel times
and the prizes components is taken as C = 0.001, in order to maintain full compatibility and
comparability with the results of [1], where the same setting is considered.

The testing environment is a computer equipped with a Quad-Core Intel Core i7 processor
2.0 GHz (only one core is used for the experiment) and 8GB of RAM. The Monte Carlo evaluator
was implemented in C++. These settings are used for all the experiments reported in this
Chapter.

3.1.3 Customers selection

As mentioned in Section 3.1.1, the Monte Carlo evaluator is able to extract the best feasible
solution out of a given complete tour during evaluation. Instead of using simple strategies such
as calculating the average of maximum number of customers served before the deadline, we
calculate the value of objective function for each node with all samples, supposing that it is
the last customer visited. In such a way, by arriving at each customer on the tour, there is
an objective function value of the corresponding feasible solution. The peak value will show
the best feasible solution that can be extracted from the given complete tour. The approach is
heuristic but it provides good results in practice.

First, we test the idea on two instances with the same location information and prize values,
but different probability types of requiring a visit. In this two instances, the prize pi = 1,∀i ∈ V ,
and the probability πi of requiring a visit is either fixed with value 0.5 or random. The results
are plotted in Figure 3.2 and Figure 3.3, where the x-axis shows all nodes {0,1...n} in the order
of a given solution, and the y-axis shows the approximated value for the objective function at
each node, as described in Section 3.1.1.

From the results in Figure 3.2 and Figure 3.3 we can observe that, given two instances with
the same location information and prize values, the slopes of the evolution of the objective
function value are similar for both instances with random and fixed probability of requiring a
visit. In both cases there exists a significant maximum at node 14 showing the best node to stop
serving customers.

Then we try on two instances still with the same location values, but with random prize pi

for each customer. The probability πi of requiring a visit is still either fixed with value 0.5 or
random. The results are plotted in Figure 3.4 and Figure 3.5. This time total prize collected
at local maximum has much higher value than in Figure 3.2 and 3.3, but the travel time after
the local maximum is increasing as in the previous experiments. Therefore the curve is almost
flat after the local maximum. A maximum can however be observed, showing again the best
stopping point.

By inspecting the curves, the best feasible solution of a given complete tour τ can be ex-
tracted during the evaluation process. Therefore the idea provides an heuristic idea to perform
the evaluation only on the subset of customers of the best feasible solution. This will speed
up the evaluation and lead to more accurate results within appropriately designed heuristic
solvers, since an external tool to select the customers to visit is not required. Further discussion
on how to detect the peak value without evaluating until the end of the tour can be found in
Section 3.2.

15 3.1 A Monte Carlo sampling approach

Figure 3.2. u(τ) of an example instance with pi = 1,πi = 0.5

16 3.1 A Monte Carlo sampling approach

Figure 3.3. u(τ) of an example instance with pi = 1,πi random

17 3.1 A Monte Carlo sampling approach

Figure 3.4. u(τ) of an example instance with pi random, πi = 0.5

18 3.1 A Monte Carlo sampling approach

Figure 3.5. u(τ) of an example instance with pi random, πi random

19 3.1 A Monte Carlo sampling approach

3.1.4 Tuning of the number of samples

In this part, we study the influence of number of samples s when approximating the objective
functions using Monte Carlo sampling.

In the experiments, the Monte Carlo evaluator is run 50 times on the solutions of 8 different
POP instances, with different number of samples s ∈ {10, 20, ... , 90, 100, 200, ... 1000}.
Given a solution, we compute x s as the average value of the objective function approximated
with s samples. Since an exact solution is not available for all the instances considered, the
best (feasible) solution and the corresponding objective function value reported in [1] for each
instance is considered as a reference value X re f .

Two indicators are set for the analysis of the results on each instance. δ1 is the relative
difference between x s and x re f , which indicates the accuracy of the results. δ2 is relative
standard deviation for each number of sample s, which indicates the stability and consistency.
The indicators are calculated as follows:

δ1 =
�

�x s − x re f

�

� ·
100
x s

(3.2)

δ2 =

√

√

√

∑50
i=1(x i − x s)2

N
·

100
x s

(3.3)

Notice: Both indicators are calculated with the relative values instead of absolute values, in
such a way that the results obtained on different instances can be compared together for more
general conclusions.

Figures 3.6 and 3.7 show the values of indicator δ1 and δ2 on the y-axis, for the different
number of samples s on the x-axis. Each curve represents a test instance of the 8 considered.
In Figure 3.6 we can observe that generally δ1 reduce to 1% when s ≥ 50, but δ2 in Figure
3.7 is still relatively high around s = 50. Considering δ1 and δ2 together, if a small number of
samples is wanted for the experiments, 50 could be the choice, while considering stability of the
results, 400 is a better choice. It is worth noting that, in a more instance-dependent analysis,
for some instances, values of s lower than 50 work well, for others higher values are needed.
Therefore, the choice of the number of samples can be instance dependent.

We are also interested in the computing speed as a function of the number of samples. We
remind the reader that the theoretical computational time for the evaluation of a solution is
O(ns), where n is the dimension of an instance and s the number of samples. The computation
time is longer for instances with larger dimension and when more samples are used for evalu-
ation. However in practice, the evaluation is extremely fast. Therefore, we use the number of
evaluations per second instead of computation time for a more meaningful observation. Fig-
ure 3.8 shows the number of evaluations per second on the y-axis, for the different number of
samples s on the x-axis. Each curve represents a test instance among the 8 considered. With t
being the actual computation time, the number of evaluation per second represents the value
of 1

t .

Theoretically, the computation time t increases linearly with increasing s, while the number
of evaluations per second decreases gradually as a consequence. In Figure 3.8 we observe
the same: for s ≤ 100, the number of evaluations per second drops dramatically when s is

20 3.2 A heuristic speed-up criterion for the Monte Carlo sampling method

Figure 3.6. Relative difference between x s and x re f for 8 test instances

increased, while for s > 100 there is a trend of a more gradual decrease. The size of the
instances n influences the computational speed as well as mentioned.

In general, the relative difference between x s and x re f is less than 1% when s ≥ 50 according
to Figure 3.6, and the computational speed is over 105 evaluations per second when s ≤ 250
according to Figure 3.8. Therefore, number of samples 50≤ s ≤ 250 is a considerable choice to
be used for the Monte Carlo sampling method which gives a good balance between the quality
of the approximation and the computation speed.

More in general, we can conclude that Monte Carlo sampling is an extremely fast and precise
method, and appears to be suitable to be used inside heuristic solvers.

3.2 A heuristic speed-up criterion for the Monte Carlo sampling
method

In Section 3.1 we have proven the Monte Carlo sampling approximation is fast and efficient
to be used for evaluating the objective function of the POP. In this section we build a Monte Carlo
evaluator with a heuristic speed-up criterion based on the characteristics of the POP, which offers
the possibility of further improvements on evaluating speed. The work presented has appeared

21 3.2 A heuristic speed-up criterion for the Monte Carlo sampling method

Figure 3.7. Relative standard deviation for 8 test instances

in [15].

3.2.1 Methodology of the heuristic speed-up criterion

By design, when the Monte Carlo evaluator is embedded in heuristic solvers for the POP
(see Chapter 4 and Chapter 5), complete tours including all customers from the input instances
are fed directly to the evaluator. As mentioned in Section 3.1.3, during the evaluation of a
complete tour τ, a peak objective function value will be encountered, and only the customers
visited until this peak are selected for a visit. Therefore, a heuristic approach could be used to
identify this last customer visited at the peak value and stop the evaluation of the remaining
customers. Since finding this maximum value is consistent with the objective of the POP, by
stopping the evaluation after the deadline is incurred, unnecessary calculations will be avoided
and the computation time can be reduced.

Ideally, the objective function value increases when we visit one customer after another,
and the maximum value is obtained at the last node visited before the deadline D (Figure 3.9).
This fits the usual situation encountered in real life problems: the customers of the sequence
are visited with a positive profit until the deadline is incurred. At this point, a maximum value
can be observed, and after that it is not worth to continue the tour because the balance only
decreases due to the extra travel time incurred without picking up any prize.

22 3.2 A heuristic speed-up criterion for the Monte Carlo sampling method

Figure 3.8. Computational speed for 8 test instances

However, the profit of the POP is the difference between the expected prize and expected
travel time, and this subtraction causes an issue: we cannot guarantee a positive profit for all
customers visited before the deadline, especially for instances in which customers are far away
from each other and each of them has a relatively low prize associated. In such a case, a few
customers might be visited with negative profit before the deadline incurred, thus the heuristic
speed-up criterion cannot simply stop the evaluation once the first drop in the expected profit
is detected by the Monte Carlo evaluator (Figure 3.10). To deal with this problem, a tolerance
value y that allows the profit to drop several times is introduced to prevent the evaluation from
stopping too early due to a temporary negative profit, while not wasting time to evaluate the
whole tour anyway. With an appropriate value of y , the accuracy of the best feasible solution
extracted during evaluation can also be improved, by excluding the circumstances when the
travel time still allows to visit a few more customers before the deadline, but the prizes collected
are not enough to make an increase of profit.

When y=1, the evaluation stops when the objective function value first starts to decrease.
This would save the most time for the instance in Figure 3.9 but will severely affect the ap-
proximation accuracy for the instance in Figure 3.10. If y takes the value of the dimension n
of a given instance, the evaluator always computes until the last node without stopping (and
returns the maximum value and the corresponding position for the best feasible solution). This
is equivalent to the case where the heuristic speed-up criterion is not implemented, thus no

23 3.2 A heuristic speed-up criterion for the Monte Carlo sampling method

Figure 3.9. An instance with profit increase until the deadline D is incurred

speed is gained, and no accuracy is lost.

In the following subsection, we study on the impact of the heuristic speed-up criterion in
terms of precision and speed.

3.2.2 Tuning of the tolerance value y

With the same data sets and testing environment described in Section 3.1.2, experiments
are run for each instance of the 264 POP instances with the number of samples set to s = 100.
As alternatives for the parameter y , four fixed values {1,5, 10,20} and four flexible values
{1/10n, 1/4n, 1/2n, 3/4n} are tested, with n being the number of customers of the instance
under investigation. The solutions considered for these tests are the best known solutions avail-
able for each instance.

We denote as X v the evaluation value of a complete tour obtained by the Monte Carlo eval-
uator with a certain value v for parameter y . The value Xn obtained with v = n is considered
as a baseline. The gap for a given value v for parameter y is calculated as follows:

gap(v) = |X v − Xn| ·
100
Xn

(3.4)

24 3.2 A heuristic speed-up criterion for the Monte Carlo sampling method

Figure 3.10. An instance with irregular profit before the deadline D is incurred

Table 3.1. The average gap increase (%) for different values v for parameter y

Fixed v 1 5 10 20
gap(v) 8.627 0.321 0.005 0

Flexible v 0.1n 0.25n 0.5n 0.75n
gap(v) 0.408 0 0 0

We calculate the average gap for the 264 instances in Table 3.1.

From Table 3.1 we can observe that when v = 1, the evaluation has a relatively large gap
in average, which shows the negative profit situation described in Figure 3.10 exists among the
264 test instances considered. The gap goes down as v increases, and there is no gap between
X v and Xn when v ≥ 20 or v ≥ 0.25n.

We then consider the average computation speed for different v value. We again consider
the computation speed with v = n as a baseline Sn and the average computation speed with
a certain v value is denoted as Sv . The average speed gained with different values of v for
parameter y is calculated as follows:

speed gain(v) = |Sv − Sn| ·
100
Sn

(3.5)

25 3.3 Conclusions

Table 3.2. The average speed gain (%) for different values v for parameter y

Fixed v 1 5 10 20
speed gain(v) 8.9 7.5 5.3 2.1

Flexible v 0.1n 0.25n 0.5n 0.75n
speed gained(v) 6.6 5.3 3.3 0.03

We calculate the average speed gained with different v values for each instance, then com-
pute the average speed gained for all the 264 instances in Table 3.2.

From Table 3.2 we can observe that the speed is improved by 8.9% when we take v = 1. The
speed decreases when v takes larger values. When the value reaches v = 0.75n, the speed-up
effect is negligible.

From the Monte Carlo evaluator perspective, we conclude that v = 0.25n or v = 10 are good
choice for general case. Note that when the Monte Carlo evaluator with speed-up criterion is
embedded into a solver (see the RRLS solver in Chapter 4), the value of tolerance y influences
as well the search path, which may lead to different solutions. Therefore, the choice for the
value of tolerance y could be peculiar in different solvers.

3.3 Conclusions

In this chapter we introduced a method of approximating the objective function of the Prob-
abilistic Orienteering Problem based on Monte Carlo sampling. The same Monte Carlo sampling
procedure is used to decide how many customers of a given complete tour should be visited in
order to maximize the profit, and a relevant best feasible solution is extracted. Such a novel
characteristic is going to be very useful once the evaluator is embedded into metaheuristic al-
gorithms introduced in the coming chapters. Computational studies on the performance of the
Monte Carlo evaluator with a speed-up criterion we introduced, both in terms of precision and
speed, were also presented.

26 3.3 Conclusions

Chapter 4

A Random Restart Local Search
Heuristic Algorithm

In Chapter 3 we have discussed the use of Monte Carlo sampling method for the approxi-
mation of the objective function value of the Probabilistic Orienteering Problem. Our purpose
is to use the Monte Carlo evaluator described in Section 3.2 as interrelated part of heuristic
methods to solve the problem. In this chapter, a POP heuristic solver based on the embedding
of the Monte Carlo evaluator in a Random Restart Local Search heuristic is proposed. The work
has appeared in [15]. A study on different methods of (re-)initialising solutions to improve the
performance of the algorithm is also discussed. This related work has appeared in [17].

4.1 A 2-opt Local Search heuristic

In the searching process of an optimization algorithm, we move from one complete tour to
another based on the concept of neighbourhood of a given tour. The neighbourhood is defined
by a local search method. By combining the local search method and the Monte Carlo evaluator
we propose, a POP solver is designed.

The first local search method we use in this work is a 2-opt heuristic proposed by Croes [19]
with basic move suggested by Flood [23], which deletes two non-adjacent edges of a tour and
reconnects the two paths resulting from this break in the other possible way without creating
sub-tours. To be more specific, for a given tour τ= (i0 = 0, i1, i2, ..., in, in+1), we pick all possible
first customer j from {i1, ..., in−1} and all possible second customer k from {i j+1, ..., in}, then
reverse the path between these two customers, obtaining τ′ = (i0, i1, ..., i j , ik, ik−1, ..., i j+1, ik+1,
..., in, in+1). A corresponding example of the 2-opt move is shown in Figure 4.1. More details
on the 2-opt heuristic can be found in [34]. The sequence of the new tours generated from τ

is referred to as the neighborhood of τ, and is denoted as N (τ).

Some theoretical results about the number of complete tours and feasible solutions present
in the 2-opt neighbours are considered, which help to understand the searching process more
intuitively, especially when metaheuristics are built on top of the local search procedure (for
example, the Tabu Search heuristic presented in Chapter 5).

Given a complete tour τ with n customers, the total number of complete tours contained

27

28 4.2 Methodology of the RRLS algorithm

Figure 4.1. Example of a 2-opt move

in the 2-opt neighbourhood N (τ) is determined by the number of combinations of picking 2
customers out of n:

|N (τ)|=
n(n− 1)

2
(4.1)

Given a feasible solution σ(τ), the total number of feasible solutions contained in the 2-opt
neighbourhood N (σ(τ)) is determined by the number of combinations of picking 2 customers
out of q, with q = |σ(τ)| being the number of customers in the feasible solution σ(τ) extracted
from the complete tour τ:

|N (σ(τ))|=
q(q− 1)

2
(4.2)

4.2 Methodology of the RRLS algorithm

The method starts with a complete tour τ0 generated at random. The tour is then optimized
by crossing over with a 2-opt heuristic operator that iteratively deletes two edges of a first-
improve tour and reconnects the two paths resulting from this break in the other possible way
(as described in Section 4.1). The evaluation of each tour is done by the Monte Carlo sampling
approximation (see Section 3.2), that evaluates the objective function value u(τ) of a given tour
τ, as well as deciding the subset of customers to serve, by extracting the best feasible solution
σ(τ) with the objective function value u(σ(τ)). The current best tour τlocal is updated every
time a better tour is found in the neighborhood N (τ) generated by the 2-opt method, and a
new sequence of swaps is generated from the current best tour. When no improving tour can be
found in the neighborhood of the current best tour, a new tour is generated at random, and the

29 4.3 Tuning of the MC evaluator embedded in the RRLS algorithm

process restart from the beginning until the time limit is reached. Every time a new random tour
is generated, the update of the current tour restart from it. This prevents the algorithm from
being stuck on a bad search space area. The final output is the best feasible solution extracted
from the best complete tour among all the runs of the method.

The pseudo code of the RRLS algorithm we propose is outlined in Algorithm 1.

Algorithm 1: Random Restart Local Search

τ0 = RandomTour();
τbest = τlocal = τ0;
while runtime ≤ max_runtime do

for τ ∈N (τlocal) do
if u(σ(τ))> u(σ(τlocal)) then
τlocal = τ;

end
end
if u(σ(τlocal))> u(σ(τbest)) then
τbest = τlocal ;

end
if no improving 2-opt move exists then
τlocal = RandomTour();

end
end
return σ(τbest);

In Section 3.2 we have proposed a heuristic speed-up criterion in the Monte Carlo evaluator
and studied the influence of the tolerance value y to balance between precision and speed.
When the Monte Carlo evaluator is embedded in the RRLS algorithm, with the heuristic speed-
up criterion, active the tolerance value y influences as well the searching path. This may lead
to different tours and affect the performance of the algorithm. Experimental studies in this
direction are carried out in the following Section 4.3.

4.3 Tuning of the MC evaluator embedded in the RRLS algorithm

4.3.1 General case

With the same data sets and testing environment as described in Section 3.1.2, the experi-
ments are run with a maximum solving time of 600s for each instance, with number of samples
s = 100 (according to the experiments in Chapter 3). From previous experimental results in
Section 3.1.4, the computation time required by the Monte Carlo evaluator to approximate for
a given tour with this number of samples is about 10−5 to 10−4 seconds, which is almost negli-
gible. Therefore, the running time of the experiments is dominantly consumed by finding the
best feasible solution among random restart 2-opt-moves.

In order to study the impact of the tolerance value y (see Section 3.2) on the RRLS solver, we
denote as Cv the cost of the best feasible solution retrieved with a certain value v for tolerance
y in {1,5, 10,20, 1/2n, 3/4n, n} . The results reported in [1] are considered as reference values

30 4.3 Tuning of the MC evaluator embedded in the RRLS algorithm

Figure 4.2. Average gap (%) over time for 264 POP instances

Cre f . The indicator of precision is defined as the gap in percentage between Cv and Cre f . For a
given instance, the gap is calculated by:

gap(v) =
�

�Cv − Cre f

�

� ·
100
Cre f

(4.3)

The average gap for all the 264 instances with different v value at different times during the
evaluation is shown in Table 4.1. In order to appreciate also the speed of convergence, Figure
4.2 shows the corresponding graph. We observe that the average gap drops dramatically below
10% in 30 seconds for all v values except for v = 1. In general, v = 1 gives the worst results,
v = n and v = 0.5n perform the best, and flexible values are better than fixed values. This
suggests that the choice of tolerance value y is quite instance dependent.

As described in Section 3.1.2, the characteristics of the POP instances are: DIMENSION,
DEADLINE TYPE, PRIZE TYPE, PROBABILITY TYPE, and EDGE WEIGHT TYPE. The last characteristic
is inherited from the TSP library thus not specially mentioned for the POP characteristics in
Section 3.1.2. In order to figure out which are the more significant characteristics that influence
the results, a multivariate analysis has been done using R1.

First, we fit an analysis of variance model using the “aov” function, which produces regres-

1https://www.r-project.org/

31 4.3 Tuning of the MC evaluator embedded in the RRLS algorithm

Table 4.1. Average gap (%) for 264 POP instances

v\ time 30s 60s 180s 300s 600s
1 11.4 10.4 9.5 8.9 8.4
5 9.9 8.8 7.7 7.3 6.7

10 9.7 8.6 7.6 7.1 6.6
20 9.5 8.6 7.6 7.2 6.8

0.5n 8.3 7.6 6.5 6.1 5.6
0.75n 8.4 7.7 6.7 6.3 5.8

n 8.1 7.4 6.5 6.2 5.6

Figure 4.3. Analysis of Variance of the POP characteristics

sion coefficients, fitted values, residuals, etc. Then we produce a type I (sequential) ANOVA
table, which is an extension of the independent samples t-test for comparing in a situation
where there are more than two groups [64]. For each of the characteristics, the hypothesis H0

is that "there is no difference between results obtained by this characteristic and other charac-
teristics". The alternative hypothesis H1 is the opposite. When the p-value is less than 0.05, it
indicates strong evidence against the null hypothesis, then we reject the null hypothesis. Fig-
ure 4.3 shows the output of the test, with 1 to 5 referring to the five characteristics:DIMENSION,
DEADLINE TYPE, PRIZE TYPE, PROBABILITY TYPE, and EDGE WEIGHT TYPE.

In Figure 4.3 we observe that DIMENSION, PRIZE TYPE and EDGE WEIGHT TYPE are significant
different from the other characteristics, therefore we consider them as the main factors. Since
EDGE WEIGHT TYPE influences mainly the way of calculating distances (e.g. Euclidean distance
or Manhattan distance, 2D or 3D, etc), it is relatively less relevant for our study on POP. In the
following subsections, we study separately the influence of the tolerance value y regarding the
two factors: "DIMENSION" and "PRIZE TYPE". This discovery matches the assumption that the
tolerance value y has effect mainly on certain instances that has either long travelling time in
between the customers or small prize values, which might cause negative profit when visiting
a customer.

4.3.2 Tuning of the tolerance value y based on Dimension

The dimension n of the POP instances varies from 14 to 99, we divide the 264 instances into
3 groups, as in [1]:

32 4.3 Tuning of the MC evaluator embedded in the RRLS algorithm

Figure 4.4. Average gap (%) over time for 84 POP instances with n< 30

• n< 30 (84 instances)
• 30≤ n< 50 (84 instances)
• 50≤ n< 100 (96 instances)

In Figure 4.4, Figure 4.5 and Figure 4.6 each curve presents the average gap (4.3) over
the evaluating time obtained with a certain v ∈ {1,5, 10,20, 1/2n, 3/4n, n} representing the
tolerance value y . Each figure shows the results obtained for a certain dimension group.

From the perspective of dimension we found that, for instances with dimension n< 30, the
average gap drops below 1% in 10 seconds. The influence of y value is not significant, v = 1 is
the worst and v = 5 is slightly better at the time limit. For instances with dimension 30 ≤ n <
50, the average gap drops below 5% after around 150 seconds, and reaches approximately 4%
in 600 seconds. The influence of y value is not significant either, v = 1 is the worst and v = 10
is slightly better at the time limit. For dimension 50≤ n< 100, the average gap becomes larger
and the influence of y value is significant. We can observe that v = 1 is the worst and v = 20
is the best.

The conclusion is that larger values are needed for y for large dimension instances to main-
tain an acceptable accuracy. For small dimension instances, the gap is small whatever the tol-
erance value y is, therefore we can simply pick the one with the highest calculation speed to
save computing time.

33 4.3 Tuning of the MC evaluator embedded in the RRLS algorithm

Figure 4.5. Average gap (%) over time for 84 POP instances with 30≤ n< 50

34 4.3 Tuning of the MC evaluator embedded in the RRLS algorithm

Figure 4.6. Average gap (%) over time for 96 POP instances with n≥ 50

35 4.3 Tuning of the MC evaluator embedded in the RRLS algorithm

Figure 4.7. Average gap (%) over time for 132 POP instances with πi = 1

4.3.3 Tuning of the tolerance value y based on Prize Type

In this part we study the influence of the tolerance value y based on the “PRIZE TYPE” of
the instances (see Section 3.1.2). The 264 instances are divided into 2 groups:

• PRIZE TYPE g1: all the prizes are equal to 1 for all customers (132 instances)
• PRIZE TYPE g2: the prize of each customer is a pseudo-randomly generated integer in
{1, 2, ..., 100} (132 instances)

In Figures 4.7 and Figure 4.8, curves represent the average gap obtained with a certain
v ∈ {1, 5,10, 20,1/2n, 3/4n, n} being the tolerance value y . Each figure shows the result of a
certain PRIZE TYPE group.

Figure 4.7 shows the results obtained on instances with PRIZE TYPE g1. The prizes are all
equal and small, thus negative profit issue is high probable to appear. Not surprisingly, v = 1
performs bad in this case and v = 20 leads to the most accurate results. Figure 4.8 shows the
results obtained on instances with PRIZE TYPE g2. The results obtained with different values of
v are similar, thus the influence of parameter y is not significant.

From the perspective of Prize types, we can conclude that for instances with small prize
values, large values are needed for the tolerance value y to maintain the accuracy. For instances
with random prize, the heuristic speed-up criterion is quite applicable. The difference between

36 4.3 Tuning of the MC evaluator embedded in the RRLS algorithm

Figure 4.8. Average gap (%) over time for 132 POP instances with πi = random

37 4.4 A wiser selection of starting solutions

gap with different tolerance values is quite small, therefore, we can pick the one with the best
calculation speed to save computing time, e.g. v = 1.

4.3.4 Summary and considerations

From the previous experiments we can conclude that, for instances with dimension greater
than 50, large values should be taken for the tolerance value y to ensure the accuracy, e.g. y =
20. This value is not strictly specified for the reason that, even though higher value of y means
higher accuracy in the Monte Carlo evaluator, lower value of y has higher computation speed,
which will result in more iterations in RRLS, that possibly improves the probability of finding
a better tour in the metaheuristic algorithm for the POP. For small instances with dimension no
greater than 50, when the prize values are small, we should consider large tolerance values
y as well for the same reason, and for other cases we can take y = 1. In such a way a good
balance between speed and precision can be achieved, and the POP can be solved by using the
RRLS method fast, simple, and with reasonably small gaps in practice with respect to the best
known solutions for the instances.

With the parameters taking values as described, the average gap with respect to the best
known solutions drops below 6% in 250s with RRLS method (Figure 4.2). For dimension n <
30, the average gap drops below 1% in 10 seconds (Figure 4.4). The conclusion is that RRLS
performs particularly well on small instances. For large instances, 2-opt local search might not
be sufficient, stronger local search methods and further improvements are to be employed for
more accurate results. In Section 4.4, a different initialization method is proposed to improve
the performance of the RRLS algorithm.

4.4 A wiser selection of starting solutions

In this section we study the use of a wiser selection of starting solutions after restart (not
completely at random as it happens in the previous version of the method described in Algorithm
1). A method has been proposed to effectively select such (re-)initialising solutions, and we
present an empirical study to validate the idea. Our purpose is to show the important role of
an effective restarting strategy in achieving better results within a RRLS algorithm.

4.4.1 Generation of initial solutions for the random restart phase

In Section 4.2, the Random Restart Local Search algorithm was starting with a complete tour
τ0 generated at random, and the searching procedure was associated with a new initial solution
for the optimization when no improving tour can be found in the neighborhood, generated again
at random. The configuration of these solutions from which the RRLS methods re-optimize after
a restart phase plays an important role in finding out a good solution using local search based
heuristics. Therefore, we propose to modify the generation of the re-initialising solutions inside
the RRLS algorithm.

The same algorithm is used with slightly adjustment on a more generalised version. A
function Initialising() takes the place of RandomTour(), which represents different initialization
methods under investigation. The pseudo code of the algorithm is outlined in Algorithm 2.

38 4.4 A wiser selection of starting solutions

Algorithm 2: Random Restart Local Search version 2

τ0 = Initialising();
τbest = τlocal = τ0;
while runtime ≤ max_runtime do

for τ ∈N (τlocal) do
if u(σ(τ))> u(σ(τlocal)) then
τlocal = τ;

end
end
if u(τlocal)> u(τbest) then
τbest = τlocal ;

end
if no improving 2-opt move exists then
τlocal = Initialising();

end
end
return σ(τbest);

In the implementation of the Algorithm 1 in the original RRLS algorithm, a Random Insertion
method [8] is adopted for the initial solution. The method starts from a tour initially containing
only the depot 0, then proceeds iteratively. Nodes not included in the current partial tour are
randomly inserted into the tour. The procedure is repeated on the incrementally larger partial
solution and the method stops when all nodes in the graph have been included in the tour,
and we add the destination n+ 1. Solutions generated in this way are fully randomised, thus
the searching space is explored more thoroughly comparing to other initialization methods,
however, there is a drawback: the method takes longer time to converge due to the low quality
of such initial solutions.

We here propose to use a Nearest Neighbour method [8] to generate initial solutions. Such
a method represents a simple way to generate an initial solution which offers fast converging
speed for local searches, but on the other hand is more prone to get stuck in local optima, that
are often clearly worse than the global optimum. The method starts also from a tour initially
containing only the depot 0. Then at each iteration the nearest feasible node (not yet part of
the tour) from the last added node in the current partial tour is added to expand the partial
tour itself. The procedure is repeated until all nodes in the graph have been included in the
tour, the destination n+ 1 is finally added.

Figure 4.9 shows an example of evolution of the best cost retrieved by the RRLS algorithm
over time, when different initialization methods are considered. The results are reported for
a representative instance (att48FSTCII_q1_g1_p1) from the POP benchmark set introduced in
[1]. The objective function value u(τ) of the instance is depicted on the y-axis, presenting the
evolution of the optimal solution found over time on the x-axis (seconds). At this stage we
focus on the trajectories obtained while using Random Insertion or Nearest Neighbour as initial-
ization method. When Nearest Neighbour is employed, the search process converges extremely
fast to a local maximum. However, no improvement takes place for a long time afterwards,
and the best known solution is not achieved in the given time. On the other hand, when the
Random Insertion method is employed, the search process converges substantially slower, but

39 4.4 A wiser selection of starting solutions

Figure 4.9. Evolution of the best solution retrieved by RRLS over time with three initial-
ization methods (instance att48FSTCII_q1_g1_p1)

the best known solution can be achieved in the given time, notwithstanding the computation
time required is long.

The ideal initialization method needs to guarantee a fair exploration of the search space,
while delegating the identification of local minima to the embedded local search algorithms.
Based on the observations above regarding the characteristics of the Nearest Neighbor and Ran-
dom Insertion methods, and their impact on the results retrieved by the RRLS procedure, we
here introduce a third initialization method, that in our vision should maintain the best char-
acteristics of the previous two approaches, while minimizing their drawbacks.

The k-Nearest Random Insertion method is inspired by the analogous one described in [53].
In the new method, while generating an initial solution, instead of picking the Nearest feasible
Neighbour at each step, we carry out a Random Insertion where the candidate nodes are the
k feasible ones closest to the last node added in the previous iteration. In this way, rapid
convergence and enough randomness can be retained at the same time upon an appropriate
tuning of parameter k. In Figure 4.9 the behaviour of a k-Nearest Random Insertion with k = 2 is
also depicted, and the trajectory is clearly the most desirable of the lot, being able to guarantee
a fast and precise convergence to the best value.

Note that when k = 1, the initial solution is a greedy solution generated by the standard

40 4.4 A wiser selection of starting solutions

Nearest Neighbour method. When k > 1, the larger the k value is, the more randomized the
initial solution will be. In the extreme case when k = n, the initial solution is a random solution
generated by the standard Random Insertion method.

In the following Section 4.4.2 we study from an experimental point of view the impact of
this re-initialization strategy on the performance of the Random Restart Local Search algorithm
for the POP. In particular, we assess the performance of the new re-initialization procedure for
different values of parameter k.

4.4.2 Effectiveness of parameter k

The data set used for this set of experiments are the same as described in Section 3.1.2.
In the experiments we are more interested in the searching procedure, therefore less samples
are used comparing to Section 4.3.1. We select s = 50 samples to be used by the Monte Carlo
evaluator embedded in the RRLS method. According to the previous study in Section 3.2, this
number of samples is in the range that provides a good balance between the quality of the
approximation of the objective function value, and the computation speed. Meanwhile the
computational speed is faster, more iterations are expected and the search space is more likely
to be better explored.

The main study we present is about parameter k, used by the k-Nearest Random Insertion
method adopted for re-initialising solutions within the RRLS metaheuristics. We test the follow-
ing values for parameter k: 1,2,3,4,5. A maximum computation time of 180 seconds is allowed
to each run in all the experiments reported.

The objective function value of the best solution retrieved by the RRLS method with a cer-
tain value of k for the k-Nearest Random Insertion component, at a certain time t for a certain
instance i is denoted as Xk,t,i . The quality of the best solutions retrieved is compared with a

baseline X re f
i given by the results reported in [1]. For an in-depth and more precise study, the

264 instances are partitioned into different groups as in [1] according to their characteristics
(see Section 3.1.2), and a separate analysis is reported for each group in Table 4.2. To be more
specific, when considering the dimension, there are 84 small instances with n< 30, 84 medium
instances with 30≤ n< 50, and 96 large instances with 50≤ n≤ 98. When considering Dead-
line values, there are three groups with 88 instances in each with ω = { 1

4 , 2
4 , 3

4} representing
short, medium and long deadlines. The instances are finally partitioned with respect to the
distribution of the prizes and to the distribution of the probability of requiring a visit.

For every subgroup sub with a certain number of instances we calculate, for each setting
k, the average error ek over the instances of the subgroup at time t. The error is calculated as
the average of the relative difference between Xk,t,i and X re f

i calculated for each instance i, as
follows:

ek(%) =

∑|sub|
i

�

�

�Xk,t,i − X re f
i

�

�

� · 100
X re f

i

|sub|
(4.4)

First, we are interested in the final results obtained with different values of k when the
maximum computation time is reached. The detailed average error ek(%) for each subgroup
and for different k values obtained at time limit is presented in Table 4.2.

41 4.4 A wiser selection of starting solutions

Table 4.2. Detailed average error ek(%) for different k values

#instances k = 1 k = 2 k = 3 k = 4 k = 5
n< 30 84 13.320 0.632 0.436 0.492 0.486

30≤ n< 50 84 29.417 4.674 5.765 5.836 5.303
n≥ 50 96 37.433 10.730 13.904 15.191 15.675
ω= 1/4 88 28.716 4.298 5.052 5.516 5.423
ω= 2/4 88 29.127 6.228 8.012 8.836 8.923
ω= 3/4 88 23.787 6.245 8.023 8.260 8.279

pi = 1 132 31.215 4.897 6.711 7.519 7.256
pi ∈ {1, . . . , 100} 132 23.205 6.284 7.347 7.556 7.828

πi = 0.5 132 27.590 5.063 7.045 7.393 7.168
πi ∈ [0.25,0.75] 132 26.830 6.118 7.013 7.682 7.916

All 264 27.210 5.590 7.029 7.537 7.542

In Table 4.2 we observe that the results obtained by re-initialising solutions with the Nearest
Neighbor method (k = 1) performs bad. This is because every time the searching procedure
restarts from very similar solutions, and the searching space is not explored well. As described
in Section 4.4.1, the larger the k value is, the more randomized the initial solution will be. In
the table we observe a trend that for k ≥ 2 the average error in general goes up as k increases. A
possible explanation is that with more randomness, it relatively takes longer to converge, thus
within the given fixed time limit, larger k values perform worse.

Preliminary observation from Table 4.2 shows that the setting k = 2 is the best in general.
It performs well in multiple subgroups, except for the group of small instances, where k = 3
is better. In the following Section 4.4.3 we calculate the p-value between k = 2 and k = 3 to
check if the difference is significant. In order to check if it is possible that better values can be
found when k increases and larger than 5, we also perform a hypothesis test between each pair
of k values over time.

4.4.3 Statistical significance of the results on parameter k

First, a hypothesis test is performed on the results obtained with k = 2 and k = 3. The
hypothesis H0 is that “there is no difference between results obtained with k = 2 and k = 3
for a certain sub-group”. The alternative hypothesis H1 is the opposite. When the p-value is
less than 0.05, it indicates strong evidence against the null hypothesis, then we reject the null
hypothesis. We carried out a p-value test for all the subgroups and the results are presented in
Table 4.3.

In Table 4.3 we observe that the difference between k = 2 and k = 3 for small instance
groups with n < 30 and deadline type group ω = 1

4 is not statistically significant, while for
all the rest characteristics the difference is significant. This indicates that even though k = 3
is better than k = 2 on small instances, this difference is not significant, but in other groups
where k = 2 is better than k = 3 the difference is significant. Therefore, we can conclude that
k = 2 is the best choice among the 5 values we tested for k-Random Insertion method for the
POP in general.

As mentioned in Section 4.4.2 we also observe a trend that for k ≥ 2 the average error in
general goes up as k increases. In order to check if this indicates that no better values can

42 4.4 A wiser selection of starting solutions

Table 4.3. Detailed p-value between k = 2 and k = 3

#instances p values: 2 vs 3
n< 30 84 0.656671275

30≤ n< 50 84 0.009421352
n≥ 50 96 0.000138711
ω= 1/4 88 0.132253417
ω= 2/4 88 0.002397467
ω= 3/4 88 0.003500878

pi = 1 132 2.02315E-06
pi ∈ {1, . . . , 100} 132 1.45938E-05

πi = 0.5 132 0.000254197
πi ∈ [0.25,0.75] 132 0.01019796

All 264 1.37962E-05

Table 4.4. p-value over time for different k values

k values \t 1s 10s 30s 60s 180s
1 vs 2 1.4E-12 2.4E-17 9.0E-20 4.0E-21 5.1E-21
1 vs 3 4.0E-12 5.8E-17 1.9E-20 2.6E-21 1.7E-21
1 vs 4 2.0E-12 1.3E-15 1.7E-19 1.8E-21 1.1E-20
1 vs 5 1.4E-11 1.3E-17 9.3E-21 1.4E-21 5.7E-21
2 vs 3 7.4E-08 2.2E-07 1.0E-05 2.5E-05 1.4E-05
2 vs 4 2.0E-08 4.9E-08 8.3E-07 1.3E-06 3.0E-06
2 vs 5 3.0E-10 8.2E-09 1.2E-07 5.1E-08 6.5E-07
3 vs 4 0.0008 0.0036 0.0114 0.0776 0.3555
3 vs 5 7.0E-07 8.4E-05 9.9E-06 0.0003 0.0203
4 vs 5 0.0068 0.3094 0.0174 0.0213 0.1508

be found when k increase, we perform a hypothesis test between each pair of k values over
time. The hypothesis H0 is that “there is no difference between results obtained with k = i and
k = j at a given time”. The alternative hypothesis H1 is the opposite. By calculating p-value
over time between each pairs of k, we have a better view of if the difference between k values
are significant and whether the difference is influenced by calculation time. In Table 4.4 we
perform p-value test between Xk,t,i for i ∈ {all the 264 instances} in pairs of k value at some
relevant times t ∈ {1s, 10s, 30s, 60s, 180s}.

The result in Table 4.4 shows that k = 1 is highly significant different from all k > 1 of all
time. k = 2 is also significant different from all k > 2 of all time. k = 3 is significant different
from k > 3 from the start, but as time goes, the results are no longer significant different. The
results between k = 4 and k = 5 are not significant different of all time. The results indicate
that there is no much difference after k ≥ 4. It is also possible to extrapolate that considering
even larger values of k, which means going towards a Random Insertion initialization method,
would lead to worsening results in the given time, due to a much slower convergence.

In general, we can draw the conclusion that k = 2 is the best choice for the k-Nearest Random
Insertion re-initialising method to improve the performance of the Random Restart Local Search
algorithm for POP.

43 4.5 Conclusions

4.5 Conclusions

In this chapter we have solved the Probabilistic Orienteering Problem by using a metaheuris-
tic algorithm based on a Monte Carlo sampling objective function evaluator with a speed-up
criterion and a Random Restart Local Search method. Computational studies on precision and
speed with different values of a tolerance parameter y to be used in the algorithm have been
performed. We have discussed separately the appropriate choice of the tolerance value to be
used inside a metaheuristic algorithm for different types of instances, in such a way that the
Probabilistic Orienteering Problem can be solved even faster with the same accuracy.

In this work we have also shown how a more effective re-initialization procedure, achieved
by a k-Nearest Random Insertion method, can significantly improve the performance of the
overall metaheuristic method. A detailed computational study has also revealed the influence
of parameter k in the performance of the overall method. This method will also be used for the
Tabu Search algorithm, that we will present in Chapter 5.

44 4.5 Conclusions

Chapter 5

A Tabu Search Heuristic Algorithm

In this Chapter, we embed the Monte Carlo evaluator described in Chapter 3 into a Tabu
Search (TS) algorithm. The method is designed to be fast, simple, and with reasonably small
optimality gaps. A detailed computational study of the new approach is presented, with the aim
of studying the performance of the algorithm in terms of precision and speed, while positioning
the new method within the existing literature. The work presented has appeared in [13] and
[16].

5.1 The role of Monte Carlo sampling within the heuristic

As mentioned in Chapter 2, solving the POP is computationally demanding. In this work,
we use again the Monte Carlo sampling method described in Chapter 3 as an interrelated part
of a simple heuristic to solve the POP. Due to the heuristic nature of the approach, the approx-
imation of the objective function value u(τ) is more accurate when more scenarios are used,
but this requires more computational time. Previous experimental results from Section 3.1.4
show that in general the approximation error for u(τ) is less than 1% when s ≥ 50, and the
computational speed is over 105 evaluations per second when s ≤ 250 on a normal modern
personal computer. A number of samples in this interval is a considerable choice. When the
Monte Carlo approximation is embedded in a metaheuristic algorithm for the POP, high speed
is desirable for a better exploration of the searching space, while precision is less crucial, since
the overall approach is heuristic in native. Therefore, s = 50 is adopted as setting for all the
experiments presented in this work.

By design, the TS algorithm treats complete tours touching all customers, while a POP so-
lution only visits a subset of customers that can be served before the deadline D. As described
in Chapter 3, the Monte Carlo sampling component is also delegated to extract a POP solution
σ(τ) as a prefix of a complete tour τ.

5.2 Comparison between the TS and RRLS methodologies

The main idea of the Tabu Search method we use is similar to that of the Random Restart
Local Search algorithm described in Chapter 4. Similarly as in the Random Restart Local Search
method, we assume that every time a complete tour with all customers in a given instance is

45

46 5.3 Memory Structure

considered. The Tabu Search algorithm embeds with the same Monte Carlo component to eval-
uate and extract feasible solutions out of complete tours. Both the RRLS and the TS algorithms
are designed to escape from local extrema during the local search procedure. The basic idea
of TS is to accept a sequence of non-improving solutions to achieve this goal. This is realized
by the use of an explicit memory called Tabu List during the search process. It avoids visiting
solutions that have been visited recently.

To be more specific, an initial complete tour will be generated by the k-Nearest Random
Insertion method (see Section 4.4) and fed to the TS solver. Experimental results in Section
4.4.2 show that k = 2 works well for the POP, therefore we adopt this value for the experiments
in this work. The initial tour is then reordered with the a 2-opt local search method (see Section
4.1). In this way a group of neighboring tours is generated. With the Tabu List as a filter, for each
of the remaining neighboring tours that has not been visited recently, a POP feasible solution is
extracted and its objective function value is evaluated by the Monte Carlo evaluator. The best
tour in the neighborhood is selected as the tour for the next iteration. Differently from the RRLS
method, the new neighbourhood is generated from the best tour of the previous neighbourhood,
which is not necessarily the best tour overall, due to the Tabu list. The attributes of the best
tour is then stored in the Tabu List. The searching process continues until a given time limit is
reached.

5.3 Memory Structure

Figure 5.1 shows the evolution of the objective function value u(τ) (on y-axis) over time
(on x-axis) for an example instance ba y g29FST C I I_q1_g2_p1 in the 264 POP benchmarks
introduced in Section 3.1.2. With the RRLS method (with 2-opt operator), the result converges
very close to the exact value in 2 seconds, but finally reaches the exact value in 39 seconds.
With an appropriate tuning of the TS algorithm (with 2-opt operator), the result converges to
the exact value in 0.31 seconds. In the following section, we explain in details the memory
structure of the TS algorithm.

The function of the memory structure is to filter out some tours and define which tours
in the neighborhood N (τ) can be explored by the search. The memory commonly consists of
tours recently encountered when moving from one tour to another, which remain consequently
forbidden for a certain amount of time (iterations).

In order to reduce storage requirements, usually a set of rules, such as a collection of for-
bidden moves, are stored in the list instead of complete banned tours. The list is called Tabu
List. Thus, finding an appropriate way to describe the forbidden tours in a compact structure
is also part of the design of a TS algorithm. In this work, the attribute we store in the list is the
pair of customers swapped by the 2-opt heuristic (see Section 4.1).

During the searching procedure, each time we select the best non-forbidden tour in the
neighborhood N (τ) as the incumbent solution τinc (no matter it is better or worse than current
best solution). The two customers j and k between which the route is reversed by the 2-opt
operation transforming τ into τinc are stored in the Tabu List. Any 2-opt operation involving
customers in the Tabu List as pivots j and k is consequently now forbidden.

The length of the Tabu List l (also known as Tabu tenure) decides the number of Tabu
Search iterations for which customers remain forbidden. When the TS algorithm embeds a

47 5.4 Local Searches

Figure 5.1. Comparison between the TS algorithm and the RRLS algorithm for an example
instance

2-opt operator, l pairs of customers are forbidden to move at the same time when the Tabu
List is full, thus the maximum value of l should be less than 1

2 n. In different Tabu Search
implementations the Tabu tenure can either be a fixed number or a flexible value that changes
deterministically with problem parameters [4]. Detailed experimental results about the tuning
of parameter l can be found in Section 5.6.2.

5.4 Local Searches

In the solving architecture we propose, local search methods are used to provide heuristic
solutions in a limited time. The 2-opt heuristic operator introduced in Section 4.1 is a simple
climber that has been proven to be efficient for Orienteering Problems, therefore we adopted it
in this work for the POP. However, the operator can actually be replaced with any other operator
(for example, 3-opt, 4-opt [6]) as a consequence of the flexibility design of our algorithm. In this
section, we take a 3-opt operator as an example for the possible replacement, and to understand
if it can improve the results of 2-opt.

In a 3-opt move of out implementation, three non-adjacent edges of a tour are deleted and
the tour is reconnected in seven different ways. An example of all the possible combination

48 5.4 Local Searches

Figure 5.2. All the possible combination cases of a 3-opt move

cases of a 3-opt move is shown in Figure 5.2. In tour (a), the three edges to break are shown
in dotted line. Among all the possible recombination, it happens when one edge keeps the
original connection and the other two are reconnected, in this case we can obtain the tours
(b), (c) and (d). These three tours are equivalent to the results of a single 2-opt move, which
picks two customers of the given tour (a) and reverse the path between two chosen customers.
By continue doing 2-opt moves on tours (b), (c) and (d) we can obtain tours (e), (f) and (g).
Similarly, tour (h) can be obtained by doing three subsequent 2-opt moves. The complexity of
a 3-opt execution for a tour with n customers is O(n3).

Some theoretical results about the number of complete tours present in the neighbourhood
generated by the 3-opt move are considered.

Given a complete tour τwith n customers, with 0 being the depot and destination, there are
n+1 edges in total. In a single 3-opt move, when removing 3 edges there are 7 alternative tours
that can be generated. Theoretically, the total number of 3-opt moves that can be operated in
tour τ is determined by the number of combinations to pick 3 edges out of n+1 edges where no
two adjacent edges can be selected. This is similar to the famous problem of selecting k people
from m people sitting around a round table, where no two adjacent people can be selected [7].
The problem was initially introduced in Lucas [43]. The formula for the total number of ways
to select is already known as:

C k
m−k+1 − C k−2

m−k−1 (5.1)

49 5.5 The Complete Tabu Search Algorithm

By taking k = 3 and m= n+1 into the formula (5.1), the total number of 3-opt moves that
can be operated in τ is given by:

C3
n−1 − (n− 3) (5.2)

With straightforward expansion of formula (5.2) and multiply it by 7, the total number of
complete tours contained in the 3-opt neighbourhood N (τ) is then determined by:

|N (τ)|=
7(n3 − 6n2 + 5n+ 12)

6
(5.3)

Note that the 3-opt operator works for instances with dimension n≥ 5.

With the help of formula (5.1), more choices for the operators such as 4-opt up to k-opt can
also be considered with intuitive theoretical results. However, due to the complexity of these
k-opt operators with k ≥ 3, in this Chapter we will only focus on the 2-opt and 3-opt operator
for the Tabu Search algorithm, since being simple and efficient is the original intention.

When the memory structure described in Section 5.3 is applied on top of the 3-opt heuristic,
we use the same memory as for the 2-opt heuristic, which forbids the customers in the position
that have been swapped to obtain the current best tour in the neighborhood. Since there are
three positions in the 3-opt move, each time when a better solution is found, three customers
will be forbidden for a certain amount of time (iterations).

As mentioned in Section 5.3, a main parameter to tune in the Tabu Search is the length
of the Tabu List. When a 3-opt operator is embedded in the TS algorithm, l triples (instead
of pairs) of customers are forbidden to move at the same time when the Tabu List is full, thus
smaller value of the Tabu tenure should be considered. Detailed experimental results about the
tuning of parameter for the 3-opt approach can be found in Section 5.6.3.

5.5 The Complete Tabu Search Algorithm

First of all, we propose a general framework for the local search procedure and the restart
conditions we use for the Tabu Search algorithm. It is a Random Restart Local Search algorithm
slightly different from the RRLS algorithm in Chapter 4, but more adaptable to the Tabu Search
structure. The precise differences will be detailed later with explanations. The pseudo code of
the algorithm is outlined in Algorithm 3. By taking experimental results of this algorithm as a
reference, we are able to understand how the local search approaches can benefit from the use
of a Tabu Search paradigm.

The input of the algorithm is a POP instance. The initial tour τ0 is a complete tour generated
by a k-Nearest-Random-Insertion method (see Section 4.4) with k = 2. To be more intuitive,
while constructing a solution, a random customer is iteratively picked between the two nearest
customers from the current customer. By using the Monte Carlo evaluator (see Chapter 3),
a corresponding feasible solution σ(τ0) is obtained together with an evaluation value of the
objective function u(σ(τ0)). We then apply a local search (2-opt or 3-opt in our case) to the
initial solution obtaining the group of neighboring tours N (τ0). For each tour of the neighbor-
hood, we approximate the value of the objective function (of the feasible solution) by using the
Monte Carlo evaluator. The current best incumbent tour τinc is updated consequently. After
comparing all the tours in the neighborhood, a new group of neighboring tours will be gen-
erated from the best tour τinc in the previous neighborhood. When no improving tour can be

50 5.5 The Complete Tabu Search Algorithm

Algorithm 3: Random Restart Local Search (TS)

i terat ions = 0;
τ0 = k_Nearest_Random_Insertion();
τbest = τcur rent = τ0;
while runtime ≤ max_runtime do
τinc = −∞;
for τ ∈N (τcur rent) do

if u(σ(τ))> u(σ(τinc)) then
τinc = τ;

end
end
τcur rent = τinc;
if u(σ(τinc))> u(σ(τbest)) then
τbest = τinc;
i terat ions = 0;

end
i terat ions = i terat ions+ 1;
if i terat ions ≥ max_non_improving_i terat ions then
τcur rent = k_Nearest_Random_Insertion();
i terat ions = 0;

end
end
return σ(τbest);

found after a certain number of iterations (max_non_improving_i terat ions, set to 50 in this
work), a new tour is generated again by k-Nearest-Random-Insertion method and the process
is restarted until a given time limit is reached.

The main difference between Algorithm 3 and the RRLS algorithm described in Algorithm
2 (see Chapter 4) is that, in Algorithm 2 the new neighborhood is generated whenever a better
solution is found. The restarting condition is different as a consequence, the searching pro-
cess restarts when no improving moves can be found in the neighbourhood in Algorithm 2. In
Algorithm 3, the new neighborhood is generated after searching the whole current neighbor-
hood. This more consistent way is introduced to be fully aligned with the Tabu Search logic
and to have a clear vision of the role of the Tabu memory. Pseudo codes for the full Tabu Search
algorithm with 2-opt or 3-opt operator are outlined in Algorithm 4 and Algorithm 5.

The input of the algorithms is always a POP instance. A complete tour τ0 is generated
as initial tour by k-Nearest Random Insertion method and is evaluated by the Monte Carlo
evaluator. A corresponding feasible solutionσ(τ0) is obtained by deciding to visit the customers
that can be visited before the deadline. We then apply a local search (see Section 4.1 and
Section 5.4) to τ0, by considering a group of neighboring tours N (τ0). A memory structure
(see Section 5.3) is used to prevent the local search from re-visiting the same tours that has
been visited recently. For each neighboring tour τi ∈ N (τ0) that has not been visited recently,
its objective function value u(τi), the corresponding feasible solution σ(τi) and the objective
function value u(σ(τi)) are calculated by the Monte Carlo evaluator, and the incumbent solution
τinc is updated consequently.

51 5.5 The Complete Tabu Search Algorithm

Algorithm 4: Tabu Search algorithm with a 2-opt operator

Tabulist = [];
i terat ions = 0;
τ0 = k_Nearest_Random_Insertion();
τbest = τcur rent = τ0;
while runtime ≤ max_runtime do
τinc = −∞;
for j = 1, . . . , |σ(τcur rent)|+ 1 do

for k = j + 1, . . . , |σ(τcur rent)|+ 1 do
if (τcur rent[j] /∈ Tabulist) & (τcur rent[k] /∈ Tabulist) then
τi = 2-opt(τcur rent) ;
if u(σ(τi))> u(σ(τinc)) then
τinc = τi;
(c1, c2) = (τcur rent[j],τcur rent[k]);

end
end

end
end
τcur rent = τinc;
for j = |σ(τcur rent)|+ 1, . . . , n+ 1 do

for k = j + 1, . . . , n+ 1 do
τi = 2-opt(τcur rent);
if u(τi)> u(τinc) then
τinc = τi;

end
end

end
if u(σ(τinc))> u(σ(τbest)) then
τbest = τinc;
i terat ions = 0;

end
i terat ions = i terat ions+ 1;
if i terat ions ≥ max_non_improving_i terat ions then
τcur rent = k_Nearest_Random_Insertion();
i terat ions = 0;

end
Insert (c1, c2) in the Tabulist ;
if Tabulist is full then

remove oldest pair;
end

end
return σ(τbest);

52 5.5 The Complete Tabu Search Algorithm

Algorithm 5: Tabu Search algorithm with a 3-opt operator

Tabulist = [];
i terat ions = 0;
τ0 = k_Nearest_Random_Insertion();
τbest = τcur rent = τ0;
while runtime ≤ max_runtime do
τinc = −∞;
for τ ∈N (τcur rent) do

if (τ[i],τ[j],τ[k] /∈ Tabulist) then
if u(σ(τ))> u(σ(τinc)) then
τinc = τ;
(c1, c2, c3) = (τ[i],τ[j],τ[k]);

end
end

end
τcur rent = τinc;
if u(σ(τinc))> u(σ(τbest)) then
τbest = τinc;
i terat ions = 0;

end
i terat ions = i terat ions+ 1;
if i terat ions ≥ max_non_improving_i terat ions then
τcur rent = k_Nearest_Random_Insertion();
i terat ions = 0;

end
Insert (c1, c2, c3) in the Tabulist ;
if Tabulist is full then

remove oldest triple;
end

end
return σ(τbest);

53 5.5 The Complete Tabu Search Algorithm

In Algorithm 4, the local search proceeds in two steps. We first swap between the customers
that can be visited before the deadline and compare the objective function value u(σ(τi)). The
pair of customers (τi[j],τi[k]) in the position j and k that have been swapped to obtain the
incumbent solution τinc are saved consequently. After finish searching among the customers
that can be visited before the deadline, a local search procedure without memory structure
will run for the rest of the customers who are visited after the deadline incurred. The value of
u(τi) is used here to discriminate between tours that differ only for the customers appearing
after the deadline. In this way, when two different complete tours are associated to the same
feasible solution, priority is given to the tour with a better tail after the customers included
in the feasible solution. This strategy is very important in the economy of the metaheuristic
strategy we developed, since promising chunks of tours are prepared in complete tours after
the end of the respective feasible solution, and these parts are used by the 2-opt component to
improve the feasible solutions in subsequent iterations.

After comparing all applicable tours in the neighborhood, a new group of neighboring tours
N (τinc) will be generated from the incumbent solution τinc , and attributes of τinc are stored
in the memory structure. When no improving tour can be found after a certain number of
iterations (set to 50 in this work), a new random tour is generated and the process is restarted
until a given time limit is reached.

Some theoretical results about the number of tours left in the 2-opt neighbourhood when a
Tabu List is implemented, are presented.

Given a complete tour τ with q = |σ(τ)| customers in the associated feasible solution σ(τ),
and a Tabu List of length l containing 2 · l distinct customers, the total number of meaningful
tours left in the 2-opt neighbourhood N l(σ(τ)) is given by the number of combinations of
picking 2 customers out of q− 2l customers:

L =
�

�N l(σ(τ))
�

�=
(q− 2l)(q− 2l − 1)

2
(5.4)

L represents the number of meaningful tours left in the neighborhood when a Tabu List of
length l is full. In general we expect L >> 0 in order to ensure that the search space is not
(almost) empty, and the search can proceed fruitfully.

The actual value q = |σ(τ)| for the certain complete tour τ is given by the Monte Carlo
evaluator. Given the value q and a Tabu List length l, L can be easily calculated, and the number
of meaningful tours in the 2-opt neighbourhood can be easily checked. A closed formula for the
total number of non-forbidden tours of the 2-opt neighbourhood of a specified complete tour τ
forbidden by the Tabu mechanism is therefore given by:

|N (σ(τ))| −
�

�N l(σ(τ))
�

�= (2q− 2l − 1) · l (5.5)

The logic of the Tabu Search algorithm is the same in Algorithm 5 with the 3-opt operator.
We denote tours in the neighborhood of τcur rent as τ, with i, j, and k being the position of the
customers being swapped to obtain τ. The triple of customers (τ[i],τ[j],τ[k]) in the relevant
position i, j and k that have been swapped to obtain the incumbent solution τinc are saved
consequently. Different from the algorithm for the 2-opt operator, the memory structure is not
only applied on the customers visited before the deadline. For the reason that in a 3-opt move,
even if all the broken edges are on the route visited after the deadline, the reconnecting of the

54 5.6 Experimental Results

edges still could generate meaningful new tours. Therefore, the memory structure is working
during the entire searching process. Theoretical computations on the number of tours left in
the 3-opt neighborhood are not intuitive, thus we did not do it. Since l triples of customers are
forbidden to move in the 3-opt heuristic instead of l pairs for the 2-opt heuristic, smaller value
of the Tabu tenure should be considered.

5.6 Experimental Results

In this section we test the performance of the TS algorithm. First, we run the Random
Restart Local Search algorithm designed for TS (without memory structure) with 2-opt and
3-opt operator. Then we tune the length of the Tabu List separately for the 2-opt and 3-opt
heuristic in the TS algorithm. Finally the TS algorithm is compared with other heuristic methods
for the POP.

The testing environment is computer equipped with an Intel Core i7-9700K processor run-
ning at 3.6 GHz and with 16GB of RAM. A single thread was used for all the experiments. The
algorithm we propose was implemented in C++.

5.6.1 Random Restart Local Search TS: 2-opt and 3-opt

The benchmark instances used for experiments are those from Angelelli et al. [1] described
in Section 3.1.2. A maximum computation time of 600 seconds is allowed to each run in all
the experiments reported in this section, with number of samples s = 50 and C = 0.001 as the
coefficient of the objective function (2.2).

Similar as in Section 4.4.2, the 264 instances are divided into different groups based on
their characteristics. According to the dimension, there are 84 small instances with n < 30,
84 medium instances with 30 ≤ n < 50, and 96 large instances with n ≥ 50. In terms of the
deadline, there are also three groups. For Prize type and Probability type, there are two groups
with 132 instances for each.

First, we run the TS algorithm with Tabu length l = 0 with 2-opt and 3-opt operators.
Table 5.1 shows the results obtained by Algorithm 3 presented in Section 5.5. For each of the
characteristic group, the average error together with the corresponding number of best-known
solutions found (best_sol, comparing to the best solutions disclosed in [1]) and the average
computation time are reported. The computing time reported are the time at which the final
solutions are found. The last row in the table contains the average results over all the instances.

In Table 5.1 we can observe that the average error of 2-opt and 3-opt heuristics are similar.
However, the 2-opt heuristic finds more best-known solutions, taking advantage of more restarts
and faster runs. The 3-opt requires shorter computing time in this perspective.

In Table 5.1 we can also observe that the 2-opt heuristic is better for a variety of instance
characteristics such as small to medium dimension (n < 50), small to medium deadlines, ran-
dom prizes (πi = random) and equal probabilities (pi = 0.5). While the 3-opt heuristic is
better than 2-opt for certain instance characteristics. By using the 3-opt heuristics, the average
error is smaller for instances with large dimension n≥ 50, long deadlines, small prizes (πi = 1)

55 5.6 Experimental Results

Table 5.1. RRLS - Comparison between 3-opt and 2-opt heuristics for the POP
XXXXXXXXXXinstances

operators 2-opt 3-opt
error(%) best_sol time(s) error(%) best_sol time(s)

n< 30 0.018 61 1.29 0.112 60 1.75
30≤ n< 50 1.169 26 43.24 1.677 22 20.16

n≥ 50 9.056 15 72.29 8.529 14 55.47
1/4Tmax 1.936 50 20.96 2.160 42 13.52
2/4Tmax 4.711 34 39.95 4.996 29 27.29
3/4Tmax 4.365 18 60.46 3.855 25 40.62
πi = 1 5.022 54 29.39 4.502 52 31.02

πi = random 2.320 48 51.52 2.839 44 23.26
pi = 0.5 3.226 49 42.14 3.580 45 27.05

pi = random 4.115 53 38.77 3.761 51 27.23
ALL 3.671 102 40.46 3.670 96 27.14

and random probabilities (pi = random). The 3-opt heuristic works noticeable better on in-
stances with long deadlines: more best-known solutions are found and in a shorter computing
time comparing to the results obtained by 2-opt heuristic.

5.6.2 Tuning for the length of the Tabu List: the 2-opt case

In this section we consider the tuning of the Tabu list length for the case where 2-opt is used
as an inner local search.

With the same data sets as described in Section 3.1.2, the experiments are run with a max-
imum solving time of 180s for each instance, with number of samples s = 50.

As alternatives for the length of the Tabu List l, in order to find a tuning that performs well
in general case, four flexible values l = f · n are tested, with f ∈ {0.02,0.05,0.1,0.15} being a
coefficient and n being the number of customers of the instance under investigation (note that
the number of customers ranges between 15 and 97 for the 264 instances from [1]).

For each final solution σ retrieved by the algorithm, its objective function value is evaluated
by substituting the exact evaluation formulas (2.3) and (2.4) into the equation:

u(σ) =
q
∑

k=1

πk pk − C ·
q
∑

h=0

[πh

q+1
∑

k=h+1

(thk ·πk ·
k−1
∏

j=h+1

(1−π j))] (5.6)

where it is assumed that
∏k−1

j=h+1(1−π j) = 1 whenever h+ 1> k− 1.

The objective function value of the best solution retrieved with a certain Tabu List length l is
denoted as X l . Since an exact solution is not available for all the instances considered, the best
solution reported in [1] for each instance is considered as a reference value X re f . We calculate,
for each setting l, the error in percentage by computing the relative difference between X l and
X re f :

er ror(%) =
�

�X l − X re f

�

� ·
100
X re f

(5.7)

56 5.6 Experimental Results

Table 5.2. Average results for the TS algorithm (2-opt) with different tabu lengths
PPPPPPPinstances

l 0.02n 0.05n 0.1n 0.15n
error(%) time(s) error(%) time(s) error(%) time(s) error(%) time(s)

n< 30 0.059 0.16 0.055 0.15 0.040 0.21 0.029 0.24
30≤ n< 50 1.683 6.25 1.618 5.37 1.707 4.46 2.201 4.31
n≥ 50 6.172 10.82 6.012 11.10 6.871 6.73 8.420 4.26
1/4Tmax 1.313 3.59 1.225 2.89 1.803 1.86 2.829 1.44
2/4Tmax 3.626 6.31 3.507 6.31 3.681 4.64 4.522 3.19
3/4Tmax 3.458 8.04 3.425 8.17 3.679 5.30 3.964 4.36
πi = 1 2.724 5.78 2.721 5.62 3.053 3.91 3.834 2.95
πi = random 2.874 6.18 2.716 5.96 3.056 3.96 3.710 3.05
pi = 0.5 2.720 5.97 2.583 5.80 3.0345 4.24 3.662 2.91
pi = random 2.878 5.99 2.854 5.78 3.074 3.63 3.881 3.08
ALL 2.800 5.98 2.719 5.79 3.054 3.93 3.772 3.00

In the experiment, for each Tabu List length l, we report the average and best error over 5
runs.

Table 5.2 shows the average error and computation time over 5 runs for different values of
l. The last row of the table shows the average results for all the 264 instances. In Table 5.2
we observe that the choice of the Tabu List length l is different for each dimension group. For
small instances with n < 30, the best result is obtained with l = 0.15n, for medium instances
with 30≤ n< 50 and large instances with n≥ 50, the best result is obtained with l = 0.05n. It
is worth noting that, when l = 0.02n, the Tabu List length is 0 for some of the small instances
(n < 30). In this case the TS mechanism simply does not get activated. Apart from this,
smaller values of l appear more indicated for larger n. This shows that the choice of l might be
independent of n. In particular, fixed values like 2 or 3 seem to be a good choice according to
the emerging trend.

As mentioned in Section 5.5, the memory structure for the 2-opt heuristic works only on
the q customers visited before the deadline D. The value of q is mainly influenced by the
instance size and deadline type. From the table we can also observe that the algorithm performs
differently on relevant subgroups. Among the given POP benchmarks, the actual value of q
normally varies from 4 to 21 for small instances, from 7 to 40 for medium instances, and from
1 to 85 for large instances. Considering equations (4.2) and (5.5), when appropriate values of
Tabu List lengths are taken (e.g. l = 2 from the previous conclusion of Table 5.2), 57.6% of
meaningful complete tours on average are forbidden by the Tabu mechanism for small instances,
32.5% for medium instances, and 20.2% for large instances. Theoretical and empirical results
are therefore consistent.

In general, a smaller value of Tabu List length requires longer computation time, and the
average computing time is less that 10 seconds for all settings. This shows that the TS algorithm
with 2-opt heuristic is able to give a relatively good result for a POP instance within a very short
time.

In Table 5.3 we present the best results over 5 runs obtained by the TS algorithm with 2-opt
operator. For each characteristic group, the error with the corresponding number of best known
solutions found bs (comparing to the best solutions disclosed in [1]) and the computation time

57 5.6 Experimental Results

Table 5.3. Best results obtained by TS algorithm (2-opt) for different tabu lengths
PPPPPPPinstances

l 0.02n 0.05n 0.1n 0.15n
error bs time error bs time error bs time error bs time

n< 30 0.049 74 0.10 0.024 77 0.09 0.024 73 0.08 0.024 79 0.12
30≤ n< 50 1.207 41 5.99 1.032 39 6.29 0.964 41 4.99 1.491 32 4.03
n≥ 50 4.337 16 11.00 4.255 20 11.66 5.016 12 8.73 5.894 12 5.84
1/4Tmax 0.703 60 3.57 0.631 66 2.70 0.944 62 2.25 1.711 55 1.52
2/4Tmax 2.626 42 6.33 2.498 42 7.27 2.676 38 5.65 3.392 39 3.86
3/4Tmax 2.602 29 7.92 2.521 28 8.84 2.795 26 6.47 2.773 29 4.95
πi = 1 1.696 75 6.78 1.784 77 6.37 1.935 73 4.82 2.443 69 3.87
πi = random 2.258 56 5.10 1.983 59 6.16 2.341 53 4.75 2.807 54 3.02
pi = 0.5 1.978 67 5.99 1.755 69 6.41 2.101 65 5.33 2.591 61 3.37
pi = random 1.975 64 5.89 2.012 67 6.13 2.176 61 4.24 2.660 62 3.53
ALL 1.977 131 5.94 1.883 136 6.27 2.138 126 4.79 2.625 123 3.45

are reported. Again, the last row contains the average results over all the instances. The best
choice of Tabu List length is again slightly different for different characteristics. The algorithm
performs extremely well on small instances with n< 30, with l = 0.15n being the best with an
error of 0.024% and 79 out of 84 instances solved to optimal. For medium size instances with
dimension 30 ≤ n < 50, l = 0.1n performs the best, and the instances can be solved with an
average error of 0.964%. For large instances with dimension n ≥ 50, l = 0.05n performs the
best with an error of 4.255%. For all the rest of characteristics l = 0.05n performs the best,
with 30%-40% of the meaningful complete tours forbidden. Therefore, at this stage we choose
l = 0.05n as representative of the TS algorithm (with 2-opt operator) for the comparison with
other heuristic methods from the literature provided in Section 5.6.4.

5.6.3 Tuning for the length of the Tabu List: the 3-opt case

In this section, we consider the tuning of the Tabu list length for the case where 3-opt is
used as an inner local search.

Similar to what done in Section 5.6.2, four flexible values {0.01n, 0.05n, 0.1n, 0.15n} are
proposed as alternatives for the length of the Tabu List, with n being the dimension of the
instances. Note that the smallest candidate of Tabu list length for 2-opt was 0.02n. As explained
in Section 5.4, the length of the Tabu List should be smaller for the 3-opt, therefore we take
0.01n as the smallest candidate. We report results over one run only.

The results of the 3-opt heuristic with different lengths of the Tabu List is shown in Table
5.4. By comparing results in Table 5.4 and Table 5.1 and Table 5.2 we can observe that Tabu
Search does not offer impressive results with the 3-opt heuristic as it was happening with the
2-opt case, but it can improve the results for certain instance characteristics. For instances with
small dimension n < 30, an improvement on both error and computing time can be observed
for length l = 0.1n. For medium size instances with 30 ≤ n < 50, improvements on quality
of the solutions can be observed for length l = 0.01n, but the computing time increases. For
large instances with n ≥ 50, no improvements can be observed when the Tabu mechanism is
activated.

In the perspective of Deadline values, there is no improvement on instances with short
deadlines. The Tabu Search mechanism improves the quality of solution with length l = 0.01n

58 5.6 Experimental Results

Table 5.4. Average results for the TS algorithm (3-opt) with different tabu lengths
PPPPPPPinstances

l 0.01n 0.05n 0.1n 0.15n
error bs time error bs time error bs time error bs time

n< 30 0.07 57 2.1 0.10 55 1.6 0.08 59 1.3 0.05 59 2.1
30≤ n< 50 1.53 25 45.9 2.16 23 19.8 2.14 16 20.0 2.24 18 20.0
n≥ 50 9.80 12 124.9 10.60 11 50.4 10.26 9 47.0 11.09 10 44.5
1/4Tmax 4.37 41 24.9 3.62 41 11.6 2.83 37 13.7 3.93 39 12.5
2/4Tmax 4.43 31 63.8 5.31 24 26.3 5.65 25 25.8 5.39 27 23.2
3/4Tmax 3.42 22 93.2 4.79 24 37.5 4.83 22 32.1 4.97 21 33.9
πi = 1 5.93 55 63.0 5.57 52 28.7 5.23 45 27.3 5.95 47 24.1
πi = random 2.22 39 58.2 3.57 37 21.6 3.64 39 20.4 3.58 40 22.4
pi = 0.5 3.96 45 57.6 4.40 46 25.1 4.36 41 23.8 4.55 43 23.4
pi = random 4.18 49 63.7 4.75 43 25.1 4.50 43 23.9 4.98 44 23.1
ALL 4.07 94 60.6 4.57 89 25.1 4.43 84 23.8 4.76 87 23.2

on instances with medium to long deadlines, but the computing time increases as well. There is
not much improvements for instances with different Prize type or Probability type: the error of
the solution is slightly improved with length l = 0.01n for instances with random probabilities,
but the number of best known solution found decreased and the computing time increased as
well, therefore it is not a considerable choice.

In general, from Table 5.4 we can conclude that Tabu Search improves both the quality and
the speed of the 3-opt heuristic on instances with medium to long deadlines. It can also improve
the quality of solutions for instances with small dimension and random probabilities.

A further study can be carried out on all the 264 POP instances. We compare the best results
obtained by 3-opt with Tabu Search and 2-opt with Tabu Search for each instance. The results
show that the 3-opt heuristic achieves better results than the 2-opt on 42 instances in terms of
accuracy. The 42 instances are listed out in Table 5.5. The majority (90%) of these instances are
of medium to long deadline types. Among the 42 improved instances, there are also 9 instances
that have reached the best-known solution that have not been reached by the 2-opt heuristic.
However, the 3-opt heuristic is slower than 2-opt in most of the cases. A detailed comparison
between the 2-opt and 3-opt operators within the Tabu Search algorithm on all the 264 instances
can be found in Appendix. Among the 222 instances left, there are 116 instances on which the
2-opt heuristic achieves better results than the 3-opt, and 106 instances that the 2-opt and 3-opt
heuristics are equally good in terms of accuracy, but the 2-opt heuristic is faster in computing
speed. Therefore, we can conclude that the 3-opt heuristic and the 2-opt heuristic have different
adaptability on the POP instances. The 2-opt heuristic works better on the majority of the POP
instances generated in [1], while the 3-opt heuristic works better especially on instances with
medium to long deadlines.

We conclude that 2-opt is more suitable to be used within the TS algorithm being faster and
taking more advantage of the memory structure. For this reason we will only consider 2-opt in
the remainder of the chapter.

59 5.6 Experimental Results

Table 5.5. The 42 instances on which the 3-opt heuristic achieves more accurate results
than 2-opt for the TS algorithm

XXXXXXXXXXinstances
operators 2-opt 3-opt

error(%) time(s) error(%) time(s)
att48FSTCII_q3_g2_p2 4.64 12.85 1.55 5.62

bayg29FSTCII_q3_g1_p2 0.41 4.59 0.00 3.32
berlin52FSTCII_q2_g1_p2 0.57 15.30 0.19 79.05
berlin52FSTCII_q3_g2_p2 2.90 9.97 2.75 32.72
brazil58FSTCII_q1_g2_p2 2.73 0.38 1.36 10.51
brazil58FSTCII_q3_g2_p1 0.003 17.14 0.00 101.70
brazil58FSTCII_q3_g2_p2 0.01 15.34 0.00 32.23

dantzig42FSTCII_q3_g1_p1 0.002 13.65 0.00 3.01
dantzig42FSTCII_q3_g1_p2 1.76 2.52 0.59 4.72
dantzig42FSTCII_q3_g2_p1 5.18 10.2 3.51 34.45

eil51FSTCII_q2_g1_p2 1.52 7.41 0.00 5.13
eil76FSTCII_q2_g1_p1 6.69 21.14 4.42 27.44
eil76FSTCII_q3_g1_p1 4.81 8.91 1.58 75.16
eil76FSTCII_q3_g2_p1 6.94 16.20 4.40 112.88
eil76FSTCII_q3_g2_p2 5.36 7.82 3.44 27.96
gr24FSTCII_q3_g2_p1 0.75 0.5 0.32 0.4
gr24FSTCII_q3_g2_p2 1.28 0.36 0.00 12.92
gr48FSTCII_q1_g2_p2 3.67 3.78 1.80 14.71
gr48FSTCII_q3_g1_p2 3.85 27.99 2.95 61.23
gr48FSTCII_q3_g2_p2 3.18 9.35 2.07 61.46
gr96FSTCII_q3_g2_p1 4.16 10.90 2.90 147.97
gr96FSTCII_q3_g2_p2 5.15 8.04 4.66 174.93
hk48FSTCII_q3_g1_p1 2.91 12.47 0.86 50.06
hk48FSTCII_q3_g1_p2 1.35 11.29 1.27 27.27
pr76FSTCII_q2_g2_p1 8.10 25.72 7.87 56.70
rat99FSTCII_q1_g2_p2 6.67 4.5 0.00 21.57
rat99FSTCII_q2_g2_p2 18.27 5.03 16.68 79.44
rat99FSTCII_q3_g1_p1 11.69 24.19 10.43 140.12
rat99FSTCII_q3_g1_p2 12.03 12.27 9.13 175.53
rat99FSTCII_q3_g2_p1 11.47 5.11 8.43 51.75
rat99FSTCII_q3_g2_p2 12.41 11.15 9.44 54.31
st70FSTCII_q2_g1_p2 5.62 10.34 1.19 70.98
st70FSTCII_q2_g2_p1 4.19 17.48 1.37 17.27
st70FSTCII_q2_g2_p2 5.66 13.86 4.24 24.01
st70FSTCII_q3_g1_p1 3.57 6.63 1.76 74.92
st70FSTCII_q3_g1_p2 3.73 3.94 2.63 43.08
st70FSTCII_q3_g2_p1 5.30 23.04 4.00 14.59
st70FSTCII_q3_g2_p2 5.23 33.05 3.78 51.02

swiss42FSTCII_q2_g2_p2 0.19 19.59 0.17 103.92
swiss42FSTCII_q3_g1_p2 1.99 6.15 0.73 43.47
swiss42FSTCII_q3_g2_p1 1.45 3.68 0.27 7.02
swiss42FSTCII_q3_g2_p2 0.63 26.65 0.41 42.71

60 5.6 Experimental Results

Table 5.6. Comparison between different heuristics for the POP
PPPPPPPinstances

methods sChain[1] sPath[1] s2Path[1] TS
error bs time error bs time error bs time error bs time

n< 30 2.52 63 21 3.93 56 120 2.72 60 168 0.02 77 0.09
30≤ n< 50 0.38 49 27 0.75 37 6 1.05 34 5 1.03 39 6.29
n≥ 50 0.77 41 223 1.17 26 181 1.34 23 127 4.26 20 11.66
1/4Tmax 1.02 56 40 1.25 50 11 1.57 48 14 0.63 66 2.70
2/4Tmax 0.23 54 22 0.63 37 94 0.58 39 17 2.50 42 7.27
3/4Tmax 0.35 43 232 0.61 32 209 0.65 30 288 2.52 28 8.84
πi = 1 0.78 65 136 0.88 58 174 1.11 54 153 1.78 77 6.37
πi = random 0.29 88 60 0.78 61 36 0.75 63 60 1.98 59 6.16
pi = 0.5 0.37 82 126 0.72 58 127 0.87 61 123 1.75 69 6.41
pi = random 0.70 71 71 0.94 61 82 1.00 56 89 2.01 67 6.13
ALL 0.53 153 98 0.83 119 104 0.93 117 107 1.88 136 6.27

5.6.4 Comparison of the TS algorithm with other methods from the litera-
ture

In this section we compare the general performance of the TS algorithm using the 2-opt
heuristic with other heuristic methods for the POP. For each method we present the error in per-
centage (again with reference to the best results published in [1]), the number of best solutions
found and the computing time for each of the characteristic groups, as well as the aggregated
results for all the 264 instances.

Three matheuristics based on a branch-and-cut framework are proposed by Angelelli et
al. [1]: Smart-Chain (sChain), Smart-Path (sPath), and Smart-Two-ways-path (s2Path). The
Chain, Path and Two-ways-path are alternative branching strategies proposed for the POP fo-
cusing on chains starting in 0 or ending in n+ 1. The corresponding matheuristics are branch-
and-cut algorithms with heuristic branching and variable fixing to reduce the solution space.
We refer the interested reader to [1] for complete details of the methods. Up to our knowledge,
these are the only relevant methods available in the literature.

The experiments presented in [1] are carried out on a Intel Xeon E5-1650 processor, 3.50GHz
and 16GB of RAM with a max computation time of 7200 seconds. In order to have here a fair
comparison, we normalized the computation times from [1], obtained on a <Xeon E5-1650
processor, 3.50GHz> to our machine, which according to CPU Benchmarks1 is faster by a fac-
tor of about 38%. The results are reported in Table 5.6, where the results of TS with 2-opt
operator are obtained with l = 0.05n (see Section 5.6.2) and a time limit again of 180 seconds.

From Table 5.6 we can observe that the TS algorithm performs very well on instances with
small dimension and short deadline. For instances with dimension less than 30, the TS algo-
rithm retrieves more best known solutions with much shorter times when compared to the other
methods. The three Matheuristic methods takes from 21 seconds up to 168 seconds, among
which the smallest average error is 2.52%. The TS algorithm takes only 0.09 seconds on av-
erage, 77 out of 84 instances are solved to the best known solution, with an average error of
0.02%. For medium size instances, the TS algorithm is competitive with the other methods on

1https://www.cpubenchmark.net/

61 5.7 Conclusions

accuracy and computing time. sChain method performs the best on error (0.38%), but also re-
quires longer computing time (27s). The TS algorithm has an average error of 1.03% in 6.29s,
which is similar to the other two matheuristic methods. For large instances, the matheuristics
from [1] are much more accurate (0.77% - 1.34%), but with longer computational times (127s
- 223s). The TS algorithm converges in an average of 11.66s with an error of 4.26%. This
shows that the 2-opt local search used in TS algorithm might not be sufficient, and stronger
local search methods might lead to more accurate results. The TS algorithm remains anyway
always much faster.

In general, we can conclude that the TS algorithm is extremely fast, and with small errors.
In practical terms, TS could be a precious approach for application where you need to take
quick decisions (e.g. within an online decision support system, see [18]).

5.6.5 Results of the TS algorithm on large instances

The TS algorithm considered in this section is again using the 2-opt as inner local search.

The dimension of the 264 POP benchmarks for the previous experiments are up to 96 cus-
tomers. In order to have a vision of how our approach performs on instances with more than
100 nodes, we generated more POP instances from the TSPLIB95 in the same way as described
in [1]. The 24 new POP instances are based on 2 TSP instances of dimension 120 and 535,
considering different characteristics (i.e. Deadline type q, Prize type g and Probability type p).

We solve the 24 new POP instances with the TS algorithm presented in Algorithm 4. The
computation time limit is set at 1200 seconds for these experiments. To show the converging
speed, we calculate the relative difference (%) between the objective function value u(σt) of the
best feasible solution σt retrieved at a certain time t and the objective function value u(σ1200)
of the best solution found at time limit, as follows:

gap%(t) = |u(σt)− u(σ1200)| ·
100

u(σ1200)
(5.8)

we use u(σ1200) as a reference because no other known solution is available.

The converging speed of the 24 new POP instances are shown in Figure 5.3, with gap%(t) of
the instance on y-axis and the time t on x-axis. We can observe that the differences drop below
3% within 60s and below 1% within 180s for all the example instances. This shows that the
computation converges very fast in general even for large instances, indicating that scalability
is promising for the method. We speculate that when larger instances without requirements for
extremely high accuracy are considered, the TS is the only approach currently available able to
deal with the optimization. The relevant best results found by the TS algorithm are reported in
Table 5.7, for completeness.

5.7 Conclusions

In this chapter we have solved the Probabilistic Orienteering Problem by using a Tabu Search
algorithm based on a Monte Carlo sampling objective function evaluator. The integration of
the two methods allows the design of a simple Tabu Search metaheuristic. We compared the
2-opt heuristic with the 3-opt heuristic as inner local searches for the Tabu Search algorithm.

62 5.7 Conclusions

Figure 5.3. Converging speed of the TS algorithm on the new 24 POP instances with
different dimension

Table 5.7. Best results found by the TS algorithm for the 24 new POP instances

instance result instance result
gr120_q1_g1_p1 57.68 si535_q1_g1_p1 85.94
gr120_q1_g1_p2 56.20 si535_q1_g1_p2 82.93
gr120_q1_g2_p1 2904.35 si535_q1_g2_p1 4628.16
gr120_q1_g2_p2 2815.31 si535_q1_g2_p2 4502.85
gr120_q2_g1_p1 56.91 si535_q2_g1_p1 84.01
gr120_q2_g1_p2 56.02 si535_q2_g1_p2 82.71
gr120_q2_g2_p1 2936.01 si535_q2_g2_p1 4614.98
gr120_q2_g2_p2 2824.68 si535_q2_g2_p2 4481.41
gr120_q3_g1_p1 57.29 si535_q3_g1_p1 83.90
gr120_q3_g1_p2 55.76 si535_q3_g1_p2 84.87
gr120_q3_g2_p1 2902.13 si535_q3_g2_p1 4628.27
gr120_q3_g2_p2 2768.52 si535_q3_g2_p2 4521.03

63 5.7 Conclusions

Computational studies on the performance of the algorithm both in terms of precision and speed
were carried out. We discussed separately the performance of the algorithms for different types
of instances, that gave us a vision on how the 2-opt and 3-opt heuristic can improve the speed
and efficiency on some classes of POP instances.

With appropriate parameter tuning, the Tabu Search algorithm is overall extremely fast, and
with errors comparable with those of considerably more complex heuristics from the literature.
This ability of offering high quality solutions in a short calculation time is going to be very prac-
tical for applications where real-time decisions need to be made. Furthermore, the algorithm
performs also well on the new POP instances we generate with large dimension. The promising
scalability opens up more possibilities on the development in both research and applications.

64 5.7 Conclusions

Chapter 6

Parameters Tuning and Machine
Learning

In this chapter, we adopt Machine Learning tools to help evaluate efficiently and effectively
the solutions of the Probabilistic Orienteering Problem. A crucial parameter in the Monte Carlo
evaluator described in Chapter 3 is the number of samples to be used. More samples mean high
precision, while less samples mean high speed. In this work, we shifted the problem of selecting
the appropriate number of samples to that of finding a trade-off between precision and speed,
the problem is then solved with Machine Learning models. The work has appeared in [45].

6.1 Introduction

In Chapter 3 we introduced a Monte Carlo sampling technique that creates a set of alterna-
tive realistic scenarios, evaluate the objective function over them and return the average as an
approximation for the objective function of the POP. Since the aim of such a Monte Carlo-based
evaluator is to be used inside Heuristic methods (see Chapter 4 and Chapter 5), speed is an
important factor and a trade-off between speed and precision has be to found. In this chapter
we propose techniques to use Machine Learning to predict such a parameter.

Our main contribution of this work is represented by two Machine Learning-based methods:
one is more intuitive, the other more driven by technical considerations. By taking the repre-
sentative features of the POP instances into the neural network-based methods, both methods
able to predict the number of samples required to obtain the desired trade-off between speed
and precision for the Monte Carlo evaluator.

In the following sections we are going to present the two approaches to predict the correct
number of samples and some experimental results to validate the predictors.

6.2 Features Selection

Feature Selection is an important step in the model design. The aim is to select features that
influence most the prediction and guide it. With such a process, the modeling tend to be more
accurate due to less misleading data. Given the problem characteristics, we need to select the

65

66 6.3 Predicting the best number of samples for an instance

Table 6.1. Features selected to feed the predictors

Name Description
Nr. of customers The number of customers of the given instances

(before selecting how many customers to actually visit)
Deadline The duration of the working day D
Avg Travel Time The average of the travel times t between pairs of

customers (and the depot)
St Dev Travel Time The standard deviation of the travel times t between pairs of

customers (and the depot)
Avg Presence Probability The average of the presence probability π associated with

customers
St Dev Presence Probability The standard deviation of the presence probability π

associated with customers
Avg Prize The average of the prizes p associated with customers
St Dev Prize The standard deviation of the prizes p associated with

customers

appropriate features as an input for the neural network-based models. The features selected
are reported in Table 6.1.

The eight features selected should synthesize the characteristics of each instance in the most
possible complete way without introducing more complex features with the risk of confusing the
neural networks. The predictors themselves are able to learn and exploit complex interactions
of the input parameters if such interactions exist, so it is correct to delegate such a task to the
networks themselves.

Understanding eventual mutual interactions among the selected features, as well as having
an estimation of how much each of them is important in the economy of the whole learning
process, is beyond the scope of the present study, which could be the topic of a future work.
Eliminating features that prove to be of marginal utility might lead to a slightly more efficient
learning, but in terms of computational performance and global error of the predictor, we do
not expect great differences, especially taking into account that the neural networks we propose
are not large (see Section 6.3).

6.3 Predicting the best number of samples for an instance

In the Monte Carlo sampling method, more samples means precision, while less samples
means speed. In order to predict the best number of samples for an instance, a trade-off between
precision and speed has to be found. Therefore, we shift the problem from samples to a concept
of satisfaction.

6.3.1 The Concept of Satisfaction

Given an instance I and a generic solution with known objective function value TOF(I) for
this instance and a range of possible values for parameter s ∈ S = {10,11, . . . , 1000}, we define:

67 6.3 Predicting the best number of samples for an instance

• speed(I , s) between 0 (low) and 1 (high) indicating the speed achieved by the Monte
Carlo evaluator with s samples on instance I . Let sec(I , s) be the computation time in
seconds required by the evaluator on instance I with s samples, then

speed(I , s) =
sec(I , 1000)− sec(I , s)

sec(I , 1000)− sec(I , 10)

• prec(I , s) is a number between 0 (low) and 1 (high) measuring the quality achieved by
the Monte Carlo evaluator with s samples on instance I . Let AOF(I , s) be the approxi-
mated objective function value returned by the Monte Carlo evaluator on instance I with
s samples (average over 10 runs), and E(I , s) = |AOF(I , s)−TOF(I)| be the approximation
error, then

prec(I , s) =
maxx∈S(E(I , x))− E(I , s)

maxx∈S(E(I , x))−minx∈S(E(I , x))

Note that the definition of speed(I , s) here is different from the speed evaluation in Chapter
3. With sec(I , s) being the actual computation time of a given instance I with s samples, in
Chapter 3 we use the number of evaluations per second to evaluate speed, which actually rep-
resents the value of 1

sec(I ,s) . When the number of samples s increases, the number of evaluations
per second decreases gradually as a consequence. Differently in this chapter, the definition of
speed(I , s) actually represents the value of −sec(I , s) with some coefficients. Therefore, when
the number of samples s increases, the speed(I , s) decreases linearly as shown in Figure 6.1.
The choice of changing the concept of speed is motivated by the different context.

The values of prec(I , s) for different values of s for an example instance is shown in Figure
6.2. We can observe that when the number of samples s increases, the prec(I , s) increases
logarithmically.

We will search for a trade-off between speed and precision that varies from 0 (only speed
is important) to 1 (only precision is important) to help find the best number of samples to use.
The trade-off is finally defined as the satisfaction level sat(I , s) provided by using s samples on
instance I :

sat(I , s) = α · speed(I , s) + (1−α) · prec(I , s)

where α is a parameter defined by the user and expressing the derived relative importance of
speed with respect to precision.

Figure 6.3 shows the relationship between speed(I , s), prec(I , s) and sat(I , s) for an example
instance, with α= 0.5. We can observe that the highest satisfaction score is obtained at s = 120,
which is also the cross point of precision and speed.

With the concept of the satisfaction score, we want to predict the best number of samples to
use to maximize this indicator. The target is to create a Neural Network that, given in input a set
of Features F able to characterize a POP instance I (see Section 6.2), is capable of predicting a
value for the number of samples s required by the Monte Carlo evaluator to provide the highest
possible value of sat(I , s). The Neural Networks will therefore be regressor models capable of
combining the values of the input features into a proper (not necessarily linear) function.

Two alternative methods are designed for the prediction, both based on Feed-Forward Neu-
ral Networks. They are described in the following subsections.

68 6.3 Predicting the best number of samples for an instance

Figure 6.1. Values of speed(I , s) for different values of s for an example instance

6.3.2 Method NN1

The first Neural Network takes the features F from the instance I under investigation as
input. There are two inner layers with 32 neurons each and a ReLu activation function [57]
and an output layer with one neuron and a Linear activation function (as recommended for
regression tasks) [57]. The output of the network provides a prediction for s, the number of
samples of the Monte Carlo evaluator. During the training of the method, the Neural Network
adapts its weights to predict s with the highest possible precision for each training instance.
The adaptation of the weights is based on the distance from the predicted s to the desired s. The
model is shown in Figure 6.4. The training is carried out as a standard back propagation neural
network [28].

This architecture has however a drawback. For a given instance I , the predicted value sp

might be relatively far away from the desired value sd , and the training would modify the
weights of the network substantially if sp and sd are substantially different from each other. To
be more specific, an example is provided in Figure 6.5.

Figure 6.5 shows the chart of the sat function for a given instance I , on the x-axis the dif-
ferent values of s are reported, together with the respective values of sat(I , S) on the y-axis.
Our target is to predict the number of samples s = argmaxz∈S{sat(I , x)} for a given instance
I , considering equal importance of precision and speed, i.e. α = 0.5. Note that the value of α

69 6.3 Predicting the best number of samples for an instance

Figure 6.2. Values of prec(I , s) for different values of s for an example instance

does not affect the conclusions we will draw about the prediction of the best value of samples
s. Margin (1) is the difference between two s values (sp and sd) and margin (2) is the corre-
sponding difference in terms of sat(I , s) (difference between sat(I , sp) and sat(I , sd)). We can
observe that the value of sat(I , sp) might be very similar to that of sat(I , sd), notwithstanding
the big difference between sp and sd . In such a case, sp could already be classified as a promising
solution and the weights considered already as fairly good. Therefore, another method based
on the learning of the satisfaction function sat for a given value of s instead of the position of
its maximum value only is designed, and will be described in Section 6.3.3.

6.3.3 Method NN2

In the second Neural Network, the input layer receives the features F extracted from the
instance I under investigation and also a value of s. There are also two inner layers with 32
neurons each and a ReLu activation function and an output layer with one neuron and a Linear
activation function. The output is a prediction for the satisfaction level sat(I , s). The desired
value of s will therefore be the one producing the highest output of the associated network
(likely, the highest satisfaction value). This method will have to evaluate |S| different values
of s through the |S| corresponding neural networks, and choose the most promising one. The
model is shown in Figure 6.6. The training is carried out again as a standard back propagation
network [28].

70 6.4 Computational Experiments

Figure 6.3. Values of speed(I , s), prec(I , s) and sat(I , s) for different values of s for an
example instance

The second method is less intuitive comparing to the first, but the methodology is based on
the learning of the satisfaction function sat instead of the number of samples s, which allows
the possibility of selecting a smaller sample size within a certain range of the satisfaction score.
The Method NN2 has however additional computational complexity when compared to Method
NN1 both during training (|S| independent networks have to be trained instead of just one)
and during prediction (|S| predictions have to be done and the best selected). This is however
not a problem, since the training phase is carried out once only, while prediction has negligible
computation times anyway (see Section 6.4.1).

6.4 Computational Experiments

In this section we study the performance of neural networks proposed in Section 6.3. The
experiments have been run on a computer equipped with a quadcore 2.6GHz Intel Core i7
processor and 32GB of RAM. All Neural Networks have been implemented in Keras1 2.2.0 and
all the data processing has been carried out using Python 3.5.2.

1https://github.com/keras-team/keras

71 6.4 Computational Experiments

Figure 6.4. Feed Forward Neural Network: Architecture NN1

6.4.1 Training

For each instance I of the 264 instances available, we pre-calculate the value of sat(I , s)
(see Section 6.3) for a given solution and each value of s ∈ S as the average of 10 runs of the
Monte Carlo evaluator (see Chapter 3) with s samples. This preprocessing task is at the basis
for the training and evaluation of our Machine Learning-based regressors.

We select 85% random instances among the 264 from [1] to be used for training purposes,
forming the training set T . The training time is below 500 epochs for the Neural Network of
Method NN1 and between 2000 and 10000 epochs for each of the |S| Neural Network of the
Method NN2. This translate in a total time for training of about 10-12 seconds for Method NN1
and 10-20 minutes for Method NN2.

Note that the substantial difference in the training steps is motivated by the different com-
plexity of the information learnt by the two methods. We would like also to remark again that
the longer training time for Method NN2 is acceptable, since it has to be carried out only once,
and offline.

6.4.2 Testing

The evaluation of the networks is carried out on the 264 instances from [1], both seen and
unseen. The error for the prediction of s on the instances of a set Ev is calculated as:

Average Error=
1
|Ev|

∑

I∈Ev

|Pred(I , M)− True(I)|

72 6.4 Computational Experiments

Figure 6.5. Values of sat(I , s) for different values of s for an example instance

73 6.4 Computational Experiments

Figure 6.6. Feed Forward Neural Network: Architecture NN2. The differences with respect
to architecture NN1 are highlighted in red.

where Pred(I , M) is the value of s predicted by the method M (either NN1 or NN2 in our case)
for the input associated with instance I and True(I) is the actual best value of s for the instance
I , according to the preprocessing and function sat (see Section 6.3). In practice we measure
by how many units we fall apart from the optimum value of s on average.

The distribution of the best number of samples predicted are present in Figure 6.7. The
results for the two methods proposed in Section 6.3.2 and Section 6.3.3 are shown in Figure
6.8 and summarized in Table 6.2.

First, we analyse the distribution of the the best number of samples predicted for the POP
instances. In Figure 6.7 we can observe that the choice of the best number of samples to use
is instance independent. With an average value of 166, the best number of samples predicted
are mainly distributed in the range [0,110] and [270,330]. The peak frequency is in the range
[0,10], however it contains several outliers that are actually instances with large dimension
and hard to compute, thus not representative. They also coincide with the units that fall apart
from the optimum value of s mentioned in Table 6.2. The second high frequency appears in
range [300,310]. It is worth noting that, for several instances based on one same TSP instance
with the same location information (see Section 3.1.2), the best number of samples to use is
actually different according to different characteristics. A significant result is that the average
best number of samples predicted for instances with PRIZE TYPE g2 (see Section 4.3.3) is 111,
which is much smaller than PRIZE TYPE g1 with the average value 225.

74 6.4 Computational Experiments

Figure 6.7. Distribution of the best number of samples predicted for 252 POP instances

We then move on to the satisfaction level of the prediction. In Figure 6.8, the 264 instances
are ordered by increasing number of best samples required on the x-axis, and the corresponding
satisfaction score is shown on the y-axis. We can observe that the bad predictions happen mainly
at both ends. The models appear to be confused by outliers with either very small or big number
of samples, which is probably due to not enough instances. Considering the distribution of the
best number of samples predicted in Figure 6.7, the values at both ends actually account for
a large proportion, while in Figure 6.8 only very few instances have bad prediction results.
This indicates that the problem occurs only with certain extreme outliers. In Figure 6.8 we can
also observe that the majority instances in the middle have very high satisfaction scores. This
shows that both methods are able to predict the number of samples s required to maximize
the satisfaction of the end user with a good precision. In particular, a difference of s of a few
dozens of units is expected to have a marginal impact on the performance of the Monte Carlo
evaluator, both in terms of precision and speed.

The average satisfaction score for Method NN1 is 0.944, and 0.952 for Method NN2. In
general, the Method NN2 is able to reduce the average error, providing a slightly more precise
prediction. Since the training time is carried out offline, we can conclude that the second neural
network is superior to the first, considering the precision and speed.

75 6.5 Conclusions

Figure 6.8. Satisfaction level of the prediction

In general we can conclude that, the predicted values of the best number of samples to use is
instance independent and the results from the neural networks we propose show a comprehen-
sive consideration of the interactions between multiple features. The values are more precise
comparing to those suggested in Chapter 3 since it depends on the different metric used. By
considering both precision and speed, the best number of samples to use are predicted better,
but this study was carried out later in time.

6.5 Conclusions

In this chapter we have shown that it is possible, by adopting Machine Learning tools, to
shift the problem of selecting the number of samples to that of selecting a trade off between
speed and precision, which is intuitively a much simpler concept to model.

In particular, two neural network-based approaches have been proposed, showing (exper-
imentally and with logical motivations) that the second one, although less intuitive, is able
to provide a more precise prediction for the best value of the number of samples required to
maximize the satisfaction function selected by the user. The overall prediction is extremely pre-
cise, with a negligible prediction error, especially while taking into account the nature of the

76 6.5 Conclusions

Table 6.2. Prediction results for the two Neural Network-based methods. Average difference
between the predicted value of s and the optimal one

Method Average Error in the prediction of s Satisfaction score
NN1 36.5 units 0.944
NN2 29.3 units 0.952

predicted parameter.

It is also worth mentioning that the approach we proposed for predicting a parameter of
a given problem, can be easily generalized and applied other optimization problems for the
prediction of any algorithmic parameter.

Chapter 7

The Probabilistic Tourist Trip Design
Problem

In this chapter we present an application of the POP on a probabilistic version of the Tourist
Trip Design Problem. The work has appeared in [18].

7.1 Introduction

The Tourist Trip Design Problem (TTDP) ([61]) is a variant of a route-planning problem
for tourists interested in visiting multiple points of interest (POI). Suppose that a tourist has
her/his own rank of POIs that she/he wants to visit most, that each of the places has different
availability, and a certain satisfaction score can be achieved when visited. The objective is to
select a subset of POIs to visit within the length of the stay, in such a way that the satisfaction
score of the tourist is maximized, while the total time spent between attractions and the total
travel time is minimized.

For POIs with deterministic availability, a simple formulation of the TTDP is proven to be
identical with the OP ([63]), where a route with maximum score is determined for a subset of
locations with fixed depot and destination, limited by the time budget. However, in practice,
popular POIs may probabilistically require long waiting time and open-air POIs may not be vis-
ited in case of unseasonable weather. A variety of uncertainties could then affect the availability
of the POIs, and modelling the availability of POIs with probabilities can therefore lead to more
realistic models. In this chapter we demonstrate that the existing model of the POP fits what we
define as the Probabilistic Tourist Trip Design Problem (PTTDP). A simple heuristic solver such
as the RRLS solver (see Chapter 4) can efficiently provide noble solutions for this application,
which is intrinsically characterized by relatively small POP instances.

7.2 Problem Definition

A PTTDP instance contains the information (V, t,π, Tmax , p) where:

• V = {0,1...n, n+ 1} is a set of n points of interests (POI) with the starting location being
node 0 and the final destination being node n+ 1.

77

78 7.3 Experimental Results

• t i j is the expected travel time from POI i to POI j defined, for all i, j ∈ V .

• Tmax is the length of the stay.

• πi is the probability of a POI i ∈ V to be visitable (according to weather forecast and/or
waiting time information) and is modeled by a Bernoulli variable bi = {0,1}. bi takes
value 1 with an independent probability πi for each POI.

• pi is the satisfaction score representing how valuable is the attraction.

In the reality, the starting location 0 and the final destination n+1 can coincide (e.g. hotel)
or not (e.g. hotel + airport). The probabilities πi might not be independent (e.g. weather in
a same city), but the Bernoulli distribution gives a good approximation. The role of the length
of the stay Tmax is equivalent to the deadline D in the POP (see Chapter 2).

In the PTTDP, a point of interest may be valued differently by different people, therefore the
satisfaction score pi is a set of integers in {1,2, ..n} given representing by the personal interests
of the person planning the tour, and has to be provided directly by the user. The more you
she/he wants to visit a POI, the higher the score is. This personal selection may be based on
information from websites or the weather conditions. For example, pi of outdoor POIs decreases
when it rains. Besides, if the tourist had already visited a POI before, the corresponding pi will
decrease as well, going down to 0 possibly.

For a given tour σ, the total satisfaction score is P(σ), and the travel time is T (σ). We
aim at simultaneously maximizing the expected satisfaction score E(P(σ)) and minimizing the
expected travel time E(T (σ)), since a tourist does not like to spend too much time travelling.
Thus, the objective function of the TTDP is the same as the POP equation (2.2) defined in
Chapter 2:

u(σ) = E[P(σ)]− C E[T (σ)] (7.1)

where the coefficient C represents a balance between the distance travelled and the satisfaction
score in the PTTDP, that is normally set to a standard value and eventually changed by the user
based on her/his attitude to move. When C is small it means the satisfaction score is more
important. In this case, if there is one point of interest that the tourist really want to visit, even
though it is far away or it has high probability of being crowded, we still tend to search for a
tour that includes this POI. When C takes large values, it is the opposite and the trip will tend
to cover attractions grouped together.

The PTTDP model allows the tourist to do both day-ahead scheduling and real-time deci-
sions. Note that in a real-time decision making scenario, the depot and destination can also be
changed according to the actual situation.

7.3 Experimental Results

In this section we create a test instance based on real data information and show how the
application works.

79 7.3 Experimental Results

Table 7.1. List of the 15 top attractions in Paris

Number Name
1 Pyramides (Hotel)
2 Louvre Museum
3 Eiffel tower
4 Cathédrale Notre-Dame de Paris
5 La Seine
6 Orsay Museum
7 Arc de triomphe
8 Basilique du Sacré-Coeur
9 Palais Garnier
10 Montmatre
11 Champs-Élysées
12 Concorde
13 Le centre Georges Pompidou
14 Panthéon
15 Jardin des Tuileries

7.3.1 Touristic application in Paris, France

Since no specific instance is available in the literature for the PTTDP, we generated a test
instance by the 15 top attractions in Paris, France. The detailed list of POIs is shown in Table
7.1. We collected online information for the travelling times1 between POIs, the average staying
time at each POI, and the average queues situation of each POI in order to generate the test
instance. The average staying time at each POI varies from 15 minutes to 180 minutes, and it
is inserted directly into travel times t i js that vary from 2 minutes to 40 minutes. The length of
the stay Tmax is set to 480 minutes. We set the visitable probability from 0.6 to 0.9 based on
the historical statistics of the average queuing time in inverse proportion. The ideal calculation
of the probability should also take into account an additional small parameter that measures
the probabilities of meeting bad weather for outdoor POIs. We did not add this parameter
in this test, but this would not have an impact on the performance of the solver. Figure 7.1
shows the locations of the 15 top attractions2. The red pinpoint is the location of the hotel
from which the tour starts and ends. In the test instance we pick a hotel very close to one of the
attractions, and we solve the instance with the RRLS heuristic solver proposed in Chapter 4 with
a number of samples s = 100 for the Monte Carlo evaluator (see Chapter 3) and a tolerance
value y = n. Since the solving for this size of instance is already fast enough, the heuristic
speed-up criterion is not activated here to ensure accuracy. With this setting, the test instance
can be solved within one second on a normal personal computer, making the approach suitable
also for mobile devices and applications, eventually.

Figure 7.2 and Figure 7.3 show the optimal solution for POIs with same and different sat-
isfaction scores. Among the 15 top attractions, the Louvre Museum is a POI that is always
crowded and requires long visiting time. When we set equal satisfaction score for all POIs, it

1https://maps.google.com
2Note that the work reported in this chapter was carried out before Notre-Dame Cathedeal was severely damaged

by a fire.

80 7.3 Experimental Results

Figure 7.1. Locations of 15 Top Attractions in Paris, France

will never appear on the optimal route, for the reason that we care more about saving time and
visiting more places during the length of the stay (Figure 7.2). The solution provided clearly
fulfills this demand. However, the Louvre Museum is a very worthwhile place to visit. There-
fore, we give Louvre Museum a relatively high score when setting different satisfaction score
for each POI, and we obtain the personalized optimal solution that covers less POIs but includes
places that the average tourist really wants to see (Figure 7.3).

The optimal tour found for POIs with equal satisfaction score (shown in Figure 7.2) is Pyra-
mides (Hotel) - La Seine - Cathédrale Notre-Dame de Paris - Palais Garnier - Arc de triomphe
- Champs-Élysées - Montmatre - Concorde - Jardin des Tuileries - Eiffel tower - Pyramides (Ho-
tel). The optimal tour found for POIs with different satisfaction score (shown in Figure 7.3) is
Pyramides (Hotel) - Palais Garnier - Arc de triomphe - Champs-Élysées - Eiffel tower - Cathédrale
Notre-Dame de Paris - La Seine - Louvre Museum - Pyramides (Hotel). It is worth noting that
some of the attractions are adjacent, therefore the optimal solution might not be unique, being
different solutions virtually equivalent. But in general, from this experiment we prove that the
PTTDP can be solve efficiently by using a simple solving method proposed for the POP such as
the RRLS algorithm.

81 7.3 Experimental Results

Figure 7.2. Optimal solution for the case with equal satisfaction score for all POIs

7.3.2 A comparison between the POP solvers for small instances

In Section 7.3.1 we show that the PTTDP can be solved easily with a simple POP solver like
the RRLS solver. Here in this section, we give a comparison between the performances of all
the currently known POP solvers for small instances with dimension up to 30 from [1], that are
considered to be relevant to our application.

As reported in [1], a basic branch-and-cut algorithm requires approximately 2000 seconds
on average to solve a small POP instance. The fastest variant requires 1500 seconds. Consid-
ering this exact approach as benchmark, we compare the performance of all the POP heuristic
solvers mentioned in the previous chapters: Smart-Chain (sChain)[1], Smart-Path (sPath)[1],
Smart-Two-ways-path (s2Path)[1], the RRLS solver (described in Chapter 4), and the TS solver
(described in Chapter 5). For each solver we report the average gap from the best-known solu-
tion, and the average time to incumbent (normalized to the same machine) over a total of 84
small POP instances (described in Section 3.1.2) with dimension n < 30 that are relevant for
PTTDP applications. The average time to incumbent shows the average time at which the final
solution has been found. The computing times are normalized to our machine mentioned in
Section 5.6.

Table 7.2 shows that the two solvers we propose (RRLS and TS) are both extremely competi-
tive with state-of-the-art heuristics on small POP instances with dimension n< 30. As proven in

82 7.4 Models with extra features

Figure 7.3. Optimal solution for the case with different satisfaction scores for the POIs

Table 7.2. Experimental comparison of heuristic methods on small instances

Methods sChain[1] sPath[1] s2Path[1] RRLS TS
gap(%) 2.52 3.93 2.72 0.75 0.02
time(s) 21 120 168 3 0.09

Section 7.2, the POP model is adaptive to the PTTDP. By taking personal interests, time limits,
the POIs’ locations and real-time availabilities as input, they will be able to return the selec-
tion and the routing of the POIs in a very short time, which allows an application of an online
decision support system.

7.4 Models with extra features

There is also some additional flexibility in the PTTDP model: in the example instance of
Section 7.3.1 we set the depot and destination at the hotel. As we mentioned in Section 7.2,
the starting and ending points do not have to coincide. For example, the tour can start at the
hotel and finish at a bus or train station or at an airport. With up-to-date POI information and
changeable personal preference, a feasible selection of POIs and a tour can always be suggested
in a reasonable time.

83 7.5 Conclusions

On the other hand, a drawback of the POP model we propose is that it can only solve the
problem for one day, or a fraction of it (e.g. the afternoon of a business trip when all the
work is carried out in the morning). In case the tour covers multiple days, since hotel is a
special location with unpredictable staying time, it could be natural to extend the approach we
propose by solving several sub-problems for each day and each POI appears only once in one
day. Unfortunately, the pre-allocation of POIs to days of such an approach might compromise
the optimality of the solution. In order to overcome this issue, a possible extension of this model
would be to consider a Probabilistic Team Orienteering Problem, where the POIs are split to the
different days of the stay automatically by the solver, then organise predefined number of non-
overlapping tours, one for each day of the staying.

Besides, in our current model the calculation of the availability of a POI is based on waiting
time and/or weather forecast only. However, investigation shows that most tourists prefer to
move within a limited area with very attractive POIs for safety reasons and because they feel
more in control [36]. When dealing with similar situation with our model, it is high probable
that our solver suggests a less attractive POI with less people, but this does not meet tourists’
needs. Therefore, putting more specified preference constraints apart from satisfaction scores
into the model could lead to another improvement. Furthermore, the probabilities are modeled
by a sequence of independent Bernoulli trials in this work. It is also possible that we treat mutual
dependent πis by modifying the MC evaluator in order to model the reality even better.

7.5 Conclusions

In this chapter we demonstrate that the existing model of the POP fits a stochastic variation
of the Tourist Trip Design Problem. We show that the problem can be efficiently and effectively
solved by the heuristic solvers we proposed. We finally discuss several possible improvements on
the model. Extensions of the model to make it even closer to tourist needs are finally identified.

84 7.5 Conclusions

Chapter 8

Conclusions

In this thesis, we have studied and developed metaheuristic methods for the Probabilistic
Orienteering Problem. A detailed computational study of the new approaches is presented, with
the aim of studying the performance of the evaluators in terms of precision and speed, while
positioning the new metaheuristic methods within the existing literature.

At the beginning of the study, we have investigated the use of Monte Carlo sampling ap-
proach for the evaluation of the objective function of the POP. As a state-of-the-art approach for
several stochastic vehicle routing problems, we extended its use to the POP. We also explored
the use of the same Monte Carlo sampling procedure to decide how many customers of a given
complete tour should be visited in order to maximize the profit, and this is an innovation. Such
a characteristic has been proved to be very useful once the evaluator is embedded into meta-
heuristic algorithms. This innovation is not limited to POP, it can be applied to similar problems
where a subset of customers need to be chosen. More broadly, when certain decisions need to
be made originally in the searching procedure, we have opened a way to shift in part of the
decision-making in the evaluation phase, which will improve the overall efficiency. Another
outcome of the research was a Monte Carlo evaluator with a heuristic speed-up criterion. By
tuning the number of samples, we found the considerable choice to be used which gives a good
balance between the quality of the approximation and the computation speed.

We then solved the POP by using a Random Restart Local Search method. The aim of our
approaches is to find high quality solutions in a short time. With this goal, the same speed-up
criterion in the Monte Carlo evaluator are heavily used. We performed computational studies
on precision and speed with different values of a tolerance parameter defining the speed-up
criterion. From the experimental results we gave suggestions for the choice of parameters based
on different characteristics of the problem instances. This analysis allowed us to understand the
problem more thoroughly, and made it easier to extend the use of the algorithm to new instances
with similar characteristics. After tuning, the average error with respect to best known solutions
dropped below 6% in 250s with RRLS method. For dimension n< 30, the average error dropped
below 1% in 10 seconds. This showed that a combination of the Monte Carlo evaluator and a
simple RRLS method can solve the POP, and it performed particularly well on small instances.
However, an insufficient performance on large instances showed that the 2-opt local search we
use within the RRLS might not be sufficient for large instances, stronger local search methods
and further improvements were needed for more accurate results. We then proposed to use
the k-Nearest Random Insertion method to generate initial solutions. In the new method, while

85

86

generating an initial solution, instead of picking the nearest feasible neighbour at each step or
a random one, we carried out a Random Insertion where the candidate nodes are the k feasible
ones closest to the last node added in the previous iteration. A detailed computational study
has also revealed the influence of the parameter k in the performance of the overall method. It
was shown that by adopting this re-initialising method, the performance of the RRLS algorithm
for POP improves. We expect that it is also applicable to similar use of the random restart
mechanism or other heuristic methods.

We then applied this initialising method on the Tabu Search algorithm, another method
that we proposed for solving the POP. In the TS algorithm, local search methods are again used
to provide heuristic solutions. As a consequence of the flexibility design of our algorithm, the
operators in the local search procedure can be easily replaced. To verify our assumption that
stronger local search methods may improve the results, we made a comparison between the
2-opt and 3-opt operators to evaluate which is more suitable for the POP. Experimental results
showed that the 2-opt heuristic works better on 84% of the instances (for the POP benchmarks
studied in this work), therefore it is more suitable for the solving method we propose for the
POP. The majority of the instances for which the 3-opt heuristic works better are of medium
to long deadline types. This indicates that the 2-opt heuristic and the 3-opt heuristic have
different adaptability on the POP instances. After tuning, the average error with respect to
best known solutions dropped below 1.88% in 6s with TS algorithm. For small instances with
dimension n < 30, the TS algorithm took only 0.09 seconds on average to solve the problem
with an average error of 0.02%. It also retrieved more best known solutions with much shorter
times when compared to the other state-of-the-art heuristic methods. The TS algorithm remains
competitive for medium size instances on accuracy and speed, but loses advantage on accuracy
for large instances. In general, we can conclude that the TS algorithm is extremely fast, and with
small errors comparable with those of considerably more complex heuristics from the literature.
In practical terms, it could be a precious approach for application where quick decisions are
required, such as an online decision support system. Studies on stronger local search methods
are expected for further improvements. Meanwhile, the outcome of our research is designed
in a flexible way to have a general approach that can be easily adapted to other stochastic
combinatorial optimization problem that have similar structure. A very close target can be a
probabilistic variation of the Team Orienteering Problem (PTOP), we expect the TS algorithm
to achieve promising results on this problem too.

In this thesis we also showed that it is possible to use Machine Learning tools to help to solve
the POP. An example of parameter tuning with neural network-based approaches was presented.
With experimental results and logical motivations, we showed that both models we propose are
able to predict the best number of samples to use in the Monte Carlo evaluator for an instance
by maximizing the satisfaction function selected by the user. The overall prediction is extremely
precise, with a negligible prediction error, especially while taking into account the nature of the
predicted parameter. The approach can be easily generalized and applied other optimization
problems for the prediction of any algorithmic parameter. With more solving methods in the
literature for the POP or related problems, the potential of learning-based approaches are also
expected to help with selecting the appropriate solving methods to be used. The integration
of machine learning and classical optimization techniques is nowadays of a big interest in the
field.

From the application point of view, we demonstrated that the existing model of the POP fits
a stochastic variation of the Tourist Trip Design Problem we propose. This application transfers

87

the queuing time at a tourist attraction into a probability representing the willingness of visiting
the place. This allows research in different fields to work together, for example using crowd
psychology to build different probabilistic models to achieve more realistic simulations. The
problem itself can be efficiently and effectively solved by the POP heuristic solvers we proposed.
Considering that the Monte Carlo sampling method is used for evaluation, different probabilistic
models can be easily employed. A study on PTOP can be generalized to other stochastic Tourist
Trip Design - related applications, such as planning a different tour for each day during the
length of the variability of the stay, or determine same or separate tours for a tour group, while
taking into account availability of the points of interests on the wish list of attractions to visit.
A much further probabilistic extension of the problem can also be based on other variations of
the OP, such as the Orienteering Problem with Time Windows or Team Orienteering Problem
with Time Windows. Future work on building applications that are close to tourist needs and
take into account more realistic factors is not far away.

To conclude, we strongly believe that the work presented in this thesis is able to contribute
to the state-of-the-art literature for solving methods for the POP and indicated new directions
for future research. We are grateful to leave footprints in the sand of time, and guide the way
forward.

88

Appendix A

2-opt and 3-opt operators inside the
Tabu Search algorithm: Extended
Results

These are the complete results of the comparison between 2-opt and 3-opt operators inside
the Tabu Search algorithm from Section 5.6.3.

Table A.1. TS - 2-opt vs 3-opt for 264 POP instances
PPPPPPPPinstances

operators 2-opt 3-opt
error(%) time(s) error(%) time(s)

att48FSTCII_q1_g1_p1 0.00 0.63 0.00 18.94
att48FSTCII_q1_g1_p2 0.00 0.51 0.00 41.53
att48FSTCII_q1_g2_p1 0.00 0.82 0.00 1.26
att48FSTCII_q1_g2_p2 0.00 0.25 0.00 1.28
att48FSTCII_q2_g1_p1 0.00 3.33 0.00 16.25
att48FSTCII_q2_g1_p2 0.26 1.46 0.63 54.07
att48FSTCII_q2_g2_p1 0.24 2.63 2.92 14.41
att48FSTCII_q2_g2_p2 0.39 8.17 1.76 23.39
att48FSTCII_q3_g1_p1 0.06 27.9 2.79 74.20
att48FSTCII_q3_g1_p2 1.44 22.58 2.00 65.51
att48FSTCII_q3_g2_p1 4.49 27.37 9.57 44.41
att48FSTCII_q3_g2_p2 4.64 12.85 1.55 5.62

bayg29FSTCII_q1_g1_p1 0.00 0.04 0.35 0.06
bayg29FSTCII_q1_g1_p2 0.00 0.00 0.09 0.14
bayg29FSTCII_q1_g2_p1 0.00 0.00 0.00 0.02
bayg29FSTCII_q1_g2_p2 0.00 0.00 0.00 0.06
bayg29FSTCII_q2_g1_p1 0.00 0.26 0.24 2.31
bayg29FSTCII_q2_g1_p2 0.00 0.96 0.00 6.99
bayg29FSTCII_q2_g2_p1 0.00 4.56 0.00 13.65
bayg29FSTCII_q2_g2_p2 0.00 0.26 0.00 4.39

Continued on next page

89

90

Table A.1. TS - 2-opt vs 3-opt for 264 POP instances (cont’d)
PPPPPPPPinstances

operators 2-opt 3-opt
error(%) time(s) error(%) time(s)

bayg29FSTCII_q3_g1_p1 0.06 2.4 0.15 6.96
bayg29FSTCII_q3_g1_p2 0.41 4.59 0.00 3.32
bayg29FSTCII_q3_g2_p1 0.47 7.53 1.44 0.21
bayg29FSTCII_q3_g2_p2 0.99 11.14 2.03 7.91
bays29FSTCII_q1_g1_p1 0.00 0.04 0.03 1.47
bays29FSTCII_q1_g1_p2 0.00 0.00 0.00 1.49
bays29FSTCII_q1_g2_p1 0.00 0.16 0.00 4.07
bays29FSTCII_q1_g2_p2 0.00 0.90 0.50 0.04
bays29FSTCII_q2_g1_p1 0.00 0.86 0.00 20.36
bays29FSTCII_q2_g1_p2 0.00 0.50 0.07 2.92
bays29FSTCII_q2_g2_p1 0.94 4.21 0.94 7.97
bays29FSTCII_q2_g2_p2 0.00 1.05 0.00 0.40
bays29FSTCII_q3_g1_p1 0.02 3.37 0.13 3.60
bays29FSTCII_q3_g1_p2 0.00 0.17 0.00 6.77
bays29FSTCII_q3_g2_p1 0.47 0.02 0.47 26.24
bays29FSTCII_q3_g2_p2 0.52 3.25 0.97 6.18

berlin52FSTCII_q1_g1_p1 0.00 0.36 0.00 9.32
berlin52FSTCII_q1_g1_p2 0.00 0.43 0.00 4.94
berlin52FSTCII_q1_g2_p1 0.48 4.77 1.11 4.71
berlin52FSTCII_q1_g2_p2 0.00 0.26 0.00 20.6
berlin52FSTCII_q2_g1_p1 0.98 8.86 1.65 79.73
berlin52FSTCII_q2_g1_p2 0.57 15.30 0.19 79.05
berlin52FSTCII_q2_g2_p1 0.82 30.1 1.73 21.12
berlin52FSTCII_q2_g2_p2 3.11 14.6 4.73 23.74
berlin52FSTCII_q3_g1_p1 2.24 10.84 3.62 73.81
berlin52FSTCII_q3_g1_p2 1.70 15.89 3.41 66.57
berlin52FSTCII_q3_g2_p1 2.63 8.74 2.68 43.17
berlin52FSTCII_q3_g2_p2 2.90 9.97 2.75 32.72
brazil58FSTCII_q1_g1_p1 0.00 2.38 1.28 22.93
brazil58FSTCII_q1_g1_p2 0.00 0.33 0.00 16.85
brazil58FSTCII_q1_g2_p1 0.00 1.70 2.56 49.61
brazil58FSTCII_q1_g2_p2 2.73 0.38 1.36 10.51
brazil58FSTCII_q2_g1_p1 3.81 20.03 6.75 71.79
brazil58FSTCII_q2_g1_p2 1.07 9.52 2.31 94.21
brazil58FSTCII_q2_g2_p1 2.45 14.09 3.53 51.10
brazil58FSTCII_q2_g2_p2 2.31 12.56 3.53 40.11
brazil58FSTCII_q3_g1_p1 0.02 10.04 12.11 180.86
brazil58FSTCII_q3_g1_p2 0.24 35.71 0.62 182.10
brazil58FSTCII_q3_g2_p1 0.003 17.14 0.00 101.70
brazil58FSTCII_q3_g2_p2 0.01 15.34 0.00 32.23
burma14FSTCII_q1_g1_p1 0.00 0.00 0.00 0.00
burma14FSTCII_q1_g1_p2 0.00 0.00 0.00 0.00

Continued on next page

91

Table A.1. TS - 2-opt vs 3-opt for 264 POP instances (cont’d)
PPPPPPPPinstances

operators 2-opt 3-opt
error(%) time(s) error(%) time(s)

burma14FSTCII_q1_g2_p1 0.00 0.00 0.00 0.00
burma14FSTCII_q1_g2_p2 0.00 0.00 0.00 0.00
burma14FSTCII_q2_g1_p1 0.00 0.00 0.00 0.02
burma14FSTCII_q2_g1_p2 0.00 0.01 0.00 0.02
burma14FSTCII_q2_g2_p1 0.00 0.02 0.00 0.01
burma14FSTCII_q2_g2_p2 0.00 0.00 0.00 0.01
burma14FSTCII_q3_g1_p1 0.00 0.00 0.00 0.03
burma14FSTCII_q3_g1_p2 0.00 0.00 0.00 0.07
burma14FSTCII_q3_g2_p1 0.00 0.00 0.00 0.00
burma14FSTCII_q3_g2_p2 0.00 0.00 0.00 0.00
dantzig42FSTCII_q1_g1_p1 0.00 0.01 0.01 0.13
dantzig42FSTCII_q1_g1_p2 0.00 0.04 0.00 8.43
dantzig42FSTCII_q1_g2_p1 0.00 0.04 0.00 0.11
dantzig42FSTCII_q1_g2_p2 0.00 0.01 0.00 0.14
dantzig42FSTCII_q2_g1_p1 0.00 1.14 0.00 10.16
dantzig42FSTCII_q2_g1_p2 0.00 0.51 0.00 18.33
dantzig42FSTCII_q2_g2_p1 1.49 2.62 1.49 7.38
dantzig42FSTCII_q2_g2_p2 1.60 6.72 3.42 12.72
dantzig42FSTCII_q3_g1_p1 0.002 13.65 0.00 3.01
dantzig42FSTCII_q3_g1_p2 1.76 2.52 0.59 4.72
dantzig42FSTCII_q3_g2_p1 5.18 10.2 3.51 34.45
dantzig42FSTCII_q3_g2_p2 4.49 2.48 4.56 10.88

eil51FSTCII_q1_g1_p1 0.00 0.81 7.23 5.21
eil51FSTCII_q1_g1_p2 0.00 19.27 2.80 87.57
eil51FSTCII_q1_g2_p1 0.00 6.98 0.00 50.60
eil51FSTCII_q1_g2_p2 0.00 0.11 2.58 4.44
eil51FSTCII_q2_g1_p1 3.53 0.79 3.56 36.29
eil51FSTCII_q2_g1_p2 1.52 7.41 0.00 5.13
eil51FSTCII_q2_g2_p1 0.00 16.43 2.99 5.22
eil51FSTCII_q2_g2_p2 2.44 3.16 6.17 21.84
eil51FSTCII_q3_g1_p1 2.48 23.84 2.48 47.20
eil51FSTCII_q3_g1_p2 0.99 8.54 2.02 88.36
eil51FSTCII_q3_g2_p1 1.86 2.86 1.99 27.56
eil51FSTCII_q3_g2_p2 0.80 5.82 2.79 25.56
eil76FSTCII_q1_g1_p1 0.00 12.69 4.64 25.15
eil76FSTCII_q1_g1_p2 2.49 13.78 6.27 12.26
eil76FSTCII_q1_g2_p1 2.89 5.88 16.47 16.86
eil76FSTCII_q1_g2_p2 2.84 8.05 9.82 37.91
eil76FSTCII_q2_g1_p1 6.69 21.14 4.42 27.44
eil76FSTCII_q2_g1_p2 5.99 1.77 10.60 28.65
eil76FSTCII_q2_g2_p1 8.12 7.37 17.89 21.15
eil76FSTCII_q2_g2_p2 8.10 13.97 16.66 26.69

Continued on next page

92

Table A.1. TS - 2-opt vs 3-opt for 264 POP instances (cont’d)
PPPPPPPPinstances

operators 2-opt 3-opt
error(%) time(s) error(%) time(s)

eil76FSTCII_q3_g1_p1 4.81 8.91 1.58 75.16
eil76FSTCII_q3_g1_p2 4.81 17.10 5.85 94.69
eil76FSTCII_q3_g2_p1 6.94 16.20 4.40 112.88
eil76FSTCII_q3_g2_p2 5.36 7.82 3.44 27.96
fri26FSTCII_q1_g1_p1 0.00 0.00 0.00 0.00
fri26FSTCII_q1_g1_p2 0.00 0.00 0.00 0.00
fri26FSTCII_q1_g2_p1 0.00 0.00 0.00 0.00
fri26FSTCII_q1_g2_p2 0.00 0.00 0.00 0.00
fri26FSTCII_q2_g1_p1 0.00 0.00 0.00 0.34
fri26FSTCII_q2_g1_p2 0.00 0.47 0.44 1.76
fri26FSTCII_q2_g2_p1 0.00 0.04 0.00 24.56
fri26FSTCII_q2_g2_p2 0.00 0.15 0.00 2.29
fri26FSTCII_q3_g1_p1 0.00 0.05 0.00 0.89
fri26FSTCII_q3_g1_p2 0.00 0.03 0.00 3.39
fri26FSTCII_q3_g2_p1 0.00 0.02 0.00 2.09
fri26FSTCII_q3_g2_p2 0.00 0.09 0.00 0.17
gr17FSTCII_q1_g1_p1 0.00 0.00 0.00 0.00
gr17FSTCII_q1_g1_p2 0.00 0.00 0.00 0.00
gr17FSTCII_q1_g2_p1 0.00 0.00 0.00 0.00
gr17FSTCII_q1_g2_p2 0.00 0.00 0.00 0.09
gr17FSTCII_q2_g1_p1 0.00 0.00 0.00 0.03
gr17FSTCII_q2_g1_p2 0.00 0.00 0.00 0.07
gr17FSTCII_q2_g2_p1 0.00 0.00 0.00 0.03
gr17FSTCII_q2_g2_p2 0.00 0.00 0.00 0.01
gr17FSTCII_q3_g1_p1 0.00 0.00 0.00 0.17
gr17FSTCII_q3_g1_p2 0.00 0.02 0.00 0.48
gr17FSTCII_q3_g2_p1 0.00 0.01 0.00 0.08
gr17FSTCII_q3_g2_p2 0.00 0.00 0.00 0.08
gr21FSTCII_q1_g1_p1 0.00 0.00 0.00 0.00
gr21FSTCII_q1_g1_p2 0.00 0.00 0.00 0.00
gr21FSTCII_q1_g2_p1 0.00 0.00 0.00 0.00
gr21FSTCII_q1_g2_p2 0.00 0.00 0.00 0.00
gr21FSTCII_q2_g1_p1 0.00 0.00 0.00 0.10
gr21FSTCII_q2_g1_p2 0.00 0.02 0.00 4.41
gr21FSTCII_q2_g2_p1 0.00 0.00 0.00 0.70
gr21FSTCII_q2_g2_p2 0.00 0.00 0.00 1.25
gr21FSTCII_q3_g1_p1 0.00 0.08 0.00 0.26
gr21FSTCII_q3_g1_p2 0.00 0.07 0.00 20.15
gr21FSTCII_q3_g2_p1 0.00 0.05 0.92 3.87
gr21FSTCII_q3_g2_p2 0.00 0.02 0.60 7.99
gr24FSTCII_q1_g1_p1 0.00 0.00 0.00 0.00
gr24FSTCII_q1_g1_p2 0.00 0.00 0.00 0.32

Continued on next page

93

Table A.1. TS - 2-opt vs 3-opt for 264 POP instances (cont’d)
PPPPPPPPinstances

operators 2-opt 3-opt
error(%) time(s) error(%) time(s)

gr24FSTCII_q1_g2_p1 0.00 0.00 0.00 0.00
gr24FSTCII_q1_g2_p2 0.00 0.00 0.00 0.00
gr24FSTCII_q2_g1_p1 0.00 0.22 0.28 6.18
gr24FSTCII_q2_g1_p2 0.00 0.11 0.62 = 6.38
gr24FSTCII_q2_g2_p1 0.00 0.04 0.00 6.19
gr24FSTCII_q2_g2_p2 0.00 0.08 2.25 0.18
gr24FSTCII_q3_g1_p1 0.00 0.06 0.00 3.17
gr24FSTCII_q3_g1_p2 0.00 3.14 2.89 7.55
gr24FSTCII_q3_g2_p1 0.75 0.5 0.32 0.4
gr24FSTCII_q3_g2_p2 1.28 0.36 0.00 12.92
gr48FSTCII_q1_g1_p1 0.00 0.4 0.15 20.13
gr48FSTCII_q1_g1_p2 0.00 0.05 4.44 5.35
gr48FSTCII_q1_g2_p1 3.23 7.03 4.68 45.59
gr48FSTCII_q1_g2_p2 3.67 3.78 1.80 14.71
gr48FSTCII_q2_g1_p1 3.32 10.03 4.09 29.79
gr48FSTCII_q2_g1_p2 3.55 6.91 3.64 29.75
gr48FSTCII_q2_g2_p1 1.49 33.5 3.03 29.72
gr48FSTCII_q2_g2_p2 3.47 18.61 3.78 39.47
gr48FSTCII_q3_g1_p1 2.26 14.06 2.35 73.71
gr48FSTCII_q3_g1_p2 3.85 27.99 2.95 61.23
gr48FSTCII_q3_g2_p1 2.30 8.38 2.53 47.89
gr48FSTCII_q3_g2_p2 3.18 9.35 2.07 61.46
gr96FSTCII_q1_g1_p1 0.00 8.71 8.53 112.31
gr96FSTCII_q1_g1_p2 2.28 20.87 4.48 81.27
gr96FSTCII_q1_g2_p1 1.10 14.65 9.67 50.69
gr96FSTCII_q1_g2_p2 4.00 7.38 8.13 29.9
gr96FSTCII_q2_g1_p1 19.02 45.63 91.67 81.03
gr96FSTCII_q2_g1_p2 14.92 58.11 93.83 127.85
gr96FSTCII_q2_g2_p1 8.50 26.52 8.72 100.80
gr96FSTCII_q2_g2_p2 12.41 12.47 18.66 80.70
gr96FSTCII_q3_g1_p1 31.94 49.06 78.90 192.64
gr96FSTCII_q3_g1_p2 22.01 33.18 88.01 183.45
gr96FSTCII_q3_g2_p1 4.16 10.90 2.90 147.97
gr96FSTCII_q3_g2_p2 5.15 8.04 4.66 174.93
hk48FSTCII_q1_g1_p1 0.00 4.08 10.36 3.97
hk48FSTCII_q1_g1_p2 4.86 10.98 12.36 40.12
hk48FSTCII_q1_g2_p1 0.00 0.93 3.60 11.47
hk48FSTCII_q1_g2_p2 0.00 0.03 2.84 12.46
hk48FSTCII_q2_g1_p1 3.37 12.09 7.48 42.08
hk48FSTCII_q2_g1_p2 4.14 6.45 5.44 107.45
hk48FSTCII_q2_g2_p1 0.00 6.07 3.00 26.57
hk48FSTCII_q2_g2_p2 4.03 6.96 4.70 20.68

Continued on next page

94

Table A.1. TS - 2-opt vs 3-opt for 264 POP instances (cont’d)
PPPPPPPPinstances

operators 2-opt 3-opt
error(%) time(s) error(%) time(s)

hk48FSTCII_q3_g1_p1 2.91 12.47 0.86 50.06
hk48FSTCII_q3_g1_p2 1.35 11.29 1.27 27.27
hk48FSTCII_q3_g2_p1 1.26 18.41 1.48 30.09
hk48FSTCII_q3_g2_p2 0.16 15.41 1.98 3.97
pr76FSTCII_q1_g1_p1 0.00 0.05 0.00 0.00
pr76FSTCII_q1_g1_p2 0.00 0.04 0.00 0.00
pr76FSTCII_q1_g2_p1 0.70 8.07 4.50 22.45
pr76FSTCII_q1_g2_p2 3.75 13.05 4.11 40.12
pr76FSTCII_q2_g1_p1 0.00 0.08 0.00 0.00
pr76FSTCII_q2_g1_p2 0.00 0.07 0.00 0.00
pr76FSTCII_q2_g2_p1 8.10 25.72 7.87 56.70
pr76FSTCII_q2_g2_p2 8.26 13.17 11.95 52.98
pr76FSTCII_q3_g1_p1 0.00 0.08 0.00 0.00
pr76FSTCII_q3_g1_p2 0.00 0.08 0.00 0.00
pr76FSTCII_q3_g2_p1 3.42 4.97 8.07 103.86
pr76FSTCII_q3_g2_p2 3.61 5.39 5.70 114.41
rat99FSTCII_q1_g1_p1 0.01 5.51 4.25 59.63
rat99FSTCII_q1_g1_p2 5.22 21.32 9.32 19.19
rat99FSTCII_q1_g2_p1 4.84 4.56 5.91 23.05
rat99FSTCII_q1_g2_p2 6.67 4.5 0.00 21.57
rat99FSTCII_q2_g1_p1 9.84 4.53 9.87 115.02
rat99FSTCII_q2_g1_p2 10.90 6.09 15.97 100.44
rat99FSTCII_q2_g2_p1 11.51 16.54 11.93 78.95
rat99FSTCII_q2_g2_p2 18.27 5.03 16.68 79.44
rat99FSTCII_q3_g1_p1 11.69 24.19 10.43 140.12
rat99FSTCII_q3_g1_p2 12.03 12.27 9.13 175.53
rat99FSTCII_q3_g2_p1 11.47 5.11 8.43 51.75
rat99FSTCII_q3_g2_p2 12.41 11.15 9.44 54.31
st70FSTCII_q1_g1_p1 0.00 0.22 0.00 73.01
st70FSTCII_q1_g1_p2 0.62 5.00 7.09 15.44
st70FSTCII_q1_g2_p1 3.19 1.14 11.03 11.02
st70FSTCII_q1_g2_p2 0.00 11.13 12.47 10.32
st70FSTCII_q2_g1_p1 2.49 16.30 4.92 21.29
st70FSTCII_q2_g1_p2 5.62 10.34 1.19 70.98
st70FSTCII_q2_g2_p1 4.19 17.48 1.37 17.27
st70FSTCII_q2_g2_p2 5.66 13.86 4.24 24.01
st70FSTCII_q3_g1_p1 3.57 6.63 1.76 74.92
st70FSTCII_q3_g1_p2 3.73 3.94 2.63 43.08
st70FSTCII_q3_g2_p1 5.30 23.04 4.00 14.59
st70FSTCII_q3_g2_p2 5.23 33.05 3.78 51.02

swiss42FSTCII_q1_g1_p1 0.00 0.73 0.00 1.40
swiss42FSTCII_q1_g1_p2 0.00 0.07 0.00 1.25

Continued on next page

95

Table A.1. TS - 2-opt vs 3-opt for 264 POP instances (cont’d)
PPPPPPPPinstances

operators 2-opt 3-opt
error(%) time(s) error(%) time(s)

swiss42FSTCII_q1_g2_p1 0.00 0.56 1.97 1.71
swiss42FSTCII_q1_g2_p2 0.00 1.45 1.35 1.7
swiss42FSTCII_q2_g1_p1 0.00 2.79 0.00 2.08
swiss42FSTCII_q2_g1_p2 0.00 3.68 1.19 1.82
swiss42FSTCII_q2_g2_p1 0.07 2.56 1.46 33.08
swiss42FSTCII_q2_g2_p2 0.19 19.59 0.17 103.92
swiss42FSTCII_q3_g1_p1 0.00 20.61 0.25 19.19
swiss42FSTCII_q3_g1_p2 1.99 6.15 0.73 43.47
swiss42FSTCII_q3_g2_p1 1.45 3.68 0.27 7.02
swiss42FSTCII_q3_g2_p2 0.63 26.65 0.41 42.71

ulysses16FSTCII_q1_g1_p1 0.00 0.00 0.00 0.03
ulysses16FSTCII_q1_g1_p2 0.00 0.00 0.00 0.21
ulysses16FSTCII_q1_g2_p1 0.00 0.00 0.00 0.00
ulysses16FSTCII_q1_g2_p2 0.00 0.00 0.00 0.00
ulysses16FSTCII_q2_g1_p1 0.00 0.00 0.00 0.09
ulysses16FSTCII_q2_g1_p2 0.00 0.00 0.00 0.07
ulysses16FSTCII_q2_g2_p1 0.00 0.06 0.00 22.04
ulysses16FSTCII_q2_g2_p2 0.00 0.01 0.00 0.72
ulysses16FSTCII_q3_g1_p1 0.00 0.03 0.00 0.18
ulysses16FSTCII_q3_g1_p2 0.00 0.00 0.00 0.12
ulysses16FSTCII_q3_g2_p1 0.00 0.01 0.00 0.06
ulysses16FSTCII_q3_g2_p2 0.00 0.00 0.00 0.05
ulysses22FSTCII_q1_g1_p1 0.00 0.00 0.00 0.04
ulysses22FSTCII_q1_g1_p2 0.00 0.00 0.00 0.12
ulysses22FSTCII_q1_g2_p1 0.00 0.00 0.00 0.02
ulysses22FSTCII_q1_g2_p2 0.00 0.00 0.00 0.03
ulysses22FSTCII_q2_g1_p1 0.00 0.01 0.00 0.53
ulysses22FSTCII_q2_g1_p2 0.00 0.01 0.00 0.50
ulysses22FSTCII_q2_g2_p1 0.00 0.00 0.00 0.05
ulysses22FSTCII_q2_g2_p2 0.00 0.62 1.04 0.11
ulysses22FSTCII_q3_g1_p1 0.00 0.05 0.08 1.32
ulysses22FSTCII_q3_g1_p2 0.00 0.66 0.00 1.17
ulysses22FSTCII_q3_g2_p1 0.00 0.01 0.00 0.34
ulysses22FSTCII_q3_g2_p2 0.00 0.05 0.00 0.25

96

Bibliography

[1] E. Angelelli, C. Archetti, C. Filippi, and M. Vindigni. The probabilistic orienteering prob-
lem. Computers and Operations Research, 81:269–281, 2017.

[2] E. Angelelli, C. Archetti, and M. Vindigni. The clustered orienteering problem. European
Journal of Operational Research, 238(2):404–414, 2014.

[3] C. Archetti, A. Hertz, and M. Speranza. Metaheuristics for the team orienteering problem.
Journal of Heuristics, 13(1):49–76, 2007.

[4] S. Basu. Tabu search implementation on traveling salesman problem and its variations:
A literature survey. American Journal of Operations Research, 2:163–173, 2012.

[5] J.F. Bérubé, M. Gendreau, and J.Y. Potvin. An exact ε-constraint method for bi-objective
combinatorial optimization problems: Application to the traveling salesman problem with
profits. European Journal of Operational Research, 194:39–50, 2009.

[6] A. Blazinskas and A. Misevicius. Combining 2-opt, 3-opt and 4-opt with k-swap-kick per-
turbations for the traveling salesman problem. In Proceedings of the 17th International
Conference on Information and Software Technologies, pages 50–401, April 2011.

[7] K.P. Bogart and P.G. Doyle. Non-sexist solution of the ménage problem. The American
Mathematical Monthly, 93(7):514–518, 1986.

[8] O. Bräysy and M. Gendreau. Vehicle routing problem with time windows, part i: Route
construction and local search algorithms. Transportation Science, 39(1):104–118, 2015.

[9] L. Calvet, J. de Armas, D. Masip, and A.A. Juan. Learnheuristics: hybridizing metaheuris-
tics with machine learning for optimization with dynamic inputs. Open Mathematics,
15:261–280, 2017.

[10] A.M. Campbell, M. Gendreau, and B.W. Thomas. The orienteering problem with stochastic
travel and service times. Annals of Operations Research, 186:61–81, 2011.

[11] A.M. Campbell and B.W. Thomas. Probabilistic traveling salesman problem with deadlines.
Transportation Science, 42(1):1–21, 2008.

[12] I. Chao, B. Golden, and E. Wasil. Theory and methodology - the team orienteering prob-
lem. European Journal of Operational Research, 88:475–489, 1996.

97

98 Bibliography

[13] X. Chou, L.M. Gambardella, P. Luangpaiboon, P. Aungkulanon, and R. Montemanni. 3-
opt metaheuristics for the probabilistic orienteering problem. In Proceedings of the 8th
International Conference on Industrial Engineering and Applications (ICIEA 2021-Europe).
Association for Computing Machinery, to appear.

[14] X. Chou, L.M. Gambardella, and R. Montemanni. Monte Carlo sampling for the probabilis-
tic orienteering problem. In Daniele P., Scrimali L. (eds) New Trends in Emerging Complex
Real Life Problems, volume 1 of AIRO Springer Series, pages 169–177. Springer, Cham,
December 2018.

[15] X. Chou, L.M. Gambardella, and R. Montemanni. A metaheuristic algorithm for the prob-
abilistic orienteering problem. In MLMI 2019: Proceedings of the 2019 2nd International
Conference on Machine Learning and Machine Intelligence, pages 30–34. Association for
Computing Machinery, 2019.

[16] X. Chou, L.M. Gambardella, and R. Montemanni. A tabu search algorithm for the proba-
bilistic orienteering problem. Computers and Operations Research, 126:105107, 2021.

[17] X. Chou, U.J. Mele, L.M. Gambardella, and R. Montemanni. Re-initialising solutions in a
random restart local search for the probabilistic orienteering problem. In 2020 IEEE 7th
International Conference on Industrial Engineering and Applications (ICIEA), pages 159–
163. IEEE, 2020.

[18] X. Chou, R. Montemanni, and L.M. Gambardella. Monte Carlo sampling for the tourist
trip design problem. Millenium, 10(2):83–90, 2019.

[19] G.A. Croes. A method for solving traveling salesman problems. Operations Research,
6:791–812, 1958.

[20] M. Dorigo and L.M. Gambardella. Ant colonies for the traveling salesman problem. BioSys-
tems, 43(2):73–81, 1997.

[21] D. Feillet, P. Dejax, and M. Gengreau. Travelling salesman problems with profits. Trans-
portation Science, 39:188–205, 2005.

[22] M. Fischetti, J. Salazar, and P. Toth. Solving the orienteering problem through branch-
and-cut. INFORMS Journal on Computing, 10:133–148, 1998.

[23] M.M. Flood. The traveling-salesman problem. Operations Research, 4:61–75, 1956.

[24] M. Gengreau, G. Laporte, and F. Semet. A branch-and-cut algorithm for the undirected
selective travelling salesman problem. Networks, 32:263–273, 1998.

[25] F. Glover. Future paths for integer programming and links to artificial intelligence. Com-
puters and Operations Research, 13(5):533–549, 1986.

[26] B. Golden, L. Levy, and R. Vohra. The orienteering problem. Naval Research Logistics,
34:307–318, 1987.

[27] A. Gunawana, H.C. Laua, and P. Vansteenwegen. Orienteering problem: A survey of recent
variants, solution approaches and applications. European Journal of Operational Research,
255(2):315–332, 2016.

99 Bibliography

[28] R. Hecht-Nielsen. Theory of the backpropagation neural network. In Neural networks for
perception, pages 65–93. Elsevier, 1992.

[29] J. H. Holland. Adaptation in Natural and Artificial Systems: An Introductory Analysis with
Applications to Biology, Control and Artificial Intelligence. MIT Press Cambridge, MA, USA,
1992.

[30] H. H. Hoos and T. StÃ¼tzle. Generalised local search machines. In Stochastic Local Search,
The Morgan Kaufmann Series in Artificial Intelligence, pages 113–147. Elsevier, 2005.

[31] F. Hutter, H.H. Hoos, and K. Leyton-Brown. Automated con- figuration of mixed integer
programming solvers. Integration of AI and OR Techniques in Constraint Programming for
Combinatorial Optimization Problems, pages 186–202, 2010.

[32] F. Hutter, L. Xu, H.H. Hoos, and K. Leyton-Brown. Algorithm runtime prediction: Methods
and evaluation. Artificial Intelligence, 206:79–111, 2014.

[33] T. Ilhan, S.M.R. Iravani, and M.S. Daskin. The orienteering problem with stochastic profits.
IIE Transactions, 40(4):406–421, 2008.

[34] D. Johnson and L. McGeoch. The traveling salesman problem: A case study in local opti-
mization. In E. Aarts and J. Lenstra, editors, Local Search in Combinatorial Optimization,
pages 215–310. John Wiley & Sons, New York, 1997.

[35] S. Kirkpatrick, C.D. Gelatt, and M.P. Vecchi. Optimization by simulated annealing. Science,
220(4598):671–680, 1983.

[36] R. Kramer, M. Modsching, and K. ten Hagen. A city guide agent creating and adapting
individual sightseeing tours based on field trial results. International Journal of Computa-
tional Intelligence Research, 2(2):191–206, 2006.

[37] S. Kulturel-Konak, B.A. Norman, D.W. Coit, and A.E. Smith. Exploiting tabu-search mem-
ory in constrained problems. INFORMS Journal on Computing, 16(3):241–254, 2004.

[38] G. Laporte and S. Martello. The selective travelling salesman problem. Discrete Applied
Mathematics, 26:193–207, 1990.

[39] Y.C. Liang, S. Kulturel-Konak, and M.H. Lo. A multiple-level variable neighborhood search
approach to the orienteering problem. Journal of Industrial and Production Engineering,
30(4):238–247, 2013.

[40] S. Lin. Computer solutions of the traveling salesman problem. Bell System Technical Jour-
nal, 44:2245–2269, 1965.

[41] A. Lodi and G. Zarpellon. On learning and branching: a survey. TOP: An Official Journal
of the Spanish Society of Statistics and Operations Research, 25(2):207–236, 2017.

[42] A. Lodi, G. Zarpellon, and P. Bonami. Learning a classification of mixed-integer quadratic
programming problems. Technical Report G-2017-106, Departement de Mathematiques et
de Genie Industriel, Polytechnique Montreal, Canada, 2016.

[43] E. Lucas. Théorie des nombre. Gauthier-Villars, Paris, 1891.

100 Bibliography

[44] U.J. Mele, X. Chou, L.M. Gambardella, and R. Montemanni. Reinforcement learning and
additional rewards for the traveling salesman problem. In 2020 IEEE 7th International
Conference on Industrial Engineering and Applications (ICIEA), pages 170–176. IEEE, 2020.

[45] R. Montemanni, F. D’ignazio, X. Chou, and L.M. Gambardella. Machine learning and
Monte Carlo sampling for the probabilistic orienteering problem. In 2018 Joint 10th In-
ternational Conference on Soft Computing and Intelligent Systems (SCIS) and 19th Interna-
tional Symposium on Advanced Intelligent Systems (ISIS), pages 14–18. IEEE, 2018.

[46] R. Montemanni and L.M. Gambardella. Ant colony system for team orienteering problems
with time windows. Foundations of computing and Decision Sciences, 34(4):287–306, 2009.

[47] R. Montemanni, D. Weyland, and L. M. Gambardella. An enhanced ant colony system for
the team orienteering problem with time windows. In 2011 International Symposium on
Computer Science and Society, pages 381–384, 2011.

[48] V. Papapanagiotou, R. Montemanni, and L.M. Gambardella. Hybrid sampling-based eval-
uators for the orienteering problem with stochastic travel and service times. Journal of
Traffic and Logistics Engineering, 3(2):108–114, 2015.

[49] G. Parascandolo, L. Buesing, J. Merel, L. Hasenclever, J. Aslanides, J.B. Hamrick, N. Heess,
A. Neitz, and T. Weber. Divide-and-conquer Monte Carlo tree search for goal-directed
planning. arXiv:2004.11410, 2020.

[50] R. Ramesh, Y. Yoon, and M. Karwan. An optimal algorithm for the orienteering tour
problem. ORSA Journal on Computing, 4:155–165, 1992.

[51] G. Reinelt. TSPLIB - A Traveling Salesman Problem library. ORSA Journal on Computing,
3(4):267–384, 1991.

[52] R. Russell and T. Urban. Vehicle routing with soft time windows and Erlang travel times.
Journal of the Operational Research Society, 59(9):1220–1228, 2008.

[53] R.G. Mbiadou Saleu, L. Deroussi, D. Feillet, N. Grangeon, and A. Quilliot. An iterative two-
step heuristic for the parallel drone scheduling traveling salesman problem. Networks,
72(4):459–474, 2018.

[54] P. Shaw. A new local search algorithm providing high quality solutions to vehicle routing
problems. Technical report, 1997.

[55] D. Silver, A. Huang, C. Maddison, and al. Mastering the game of go with deep neural
networks and tree search. Nature, 529:484–489, 2016.

[56] W. Souffriau, P. Vansteenwegen, J. Vertommen, G. Vanden Berghe, and D. Van Oudheus-
den. A personalised tourist trip design algorithm for mobile tourist guides. Applied Arti-
ficial Intelligence, 22(10):964–985, 2008.

[57] D.F. Specht. A general regression neural network. IEEE Transactions on Neural Netoworks,
2(6):568–576, 1991.

[58] H. Tang and E. Miller-Hooks. Algorithms for a stochastic selective travelling salesperson
problem. Journal of the Operational Research Society, 56(4):439–452, 2005.

101 Bibliography

[59] H. Tang and E. Miller-Hooks. A tabu search heuristic for the team orienteering problem.
Computer and Operations Research, 32:1379–1407, 2005.

[60] P. Vansteenwegen and D. Van Oudheusden. The mobile tourist guide: An or opportunity.
OR Insights, 20(3):21–27, 2007.

[61] P. Vansteenwegen, W. Souffriau, G. Vanden Berghe, and D. Van Oudheusden. Metaheuris-
tics for tourist trip planning. Lecture Notes in Economics and Mathematical Systems, pages
15–31, 2009.

[62] P. Vansteenwegen, W. Souffriau, Vanden Berghe G, and D. Van Oudheusden. Iterated local
search for the team orienteering problem with time windows. Computers and Operations
Research, 36(12):3281–3290, 2009.

[63] P. Vansteenwegen, W. Souffriau, and D.Van Oudheusden. The orienteering problem: A
survey. European Journal of Operational Research, 209(1):1–10, 2011.

[64] J. Verzani. Using R for Introductory Statistics, Second Edition. CRC Press, CUNY/College
of Staten Island, New York, USA, 2014.

[65] G. Villarrubia, J. F. De Paz, P. Chamoso, and F. De la Prieta. Artificial neural networks used
in optimization problems. Neurocomputing, 272:10–26, 2018.

[66] Q. Wang, B. Golden, and E. Wasil. Using a genetic algorithm to solve the generalized
orienteering problem. In B. Golden, S. Raghavan, E. Wasil (Eds.), The Vehicle Routing
Problem: Latest Advances and New Challenges, pages 263–274, 2008.

[67] D. Weyland, R. Montemanni, and L.M. Gambardella. Heuristics for the probabilistic trav-
eling salesman problem with deadlines based on quasi-parallel Monte Carlo sampling.
Computers and Operations Research, 40(7):1661–1670, 2013.

102 Bibliography

	Contents
	List of Figures
	List of Tables
	Introduction
	Research Motivation
	Structure of the Thesis
	Literature Review
	Stochastic Combinatorial Optimization Problems
	Machine Learning techniques in Optimization

	The Probabilistic Orienteering Problem
	Problem Definition

	Monte Carlo sampling for the Probabilistic Orienteering Problem
	A Monte Carlo sampling approach
	Methodology
	Experimental data sets
	Customers selection
	Tuning of the number of samples

	A heuristic speed-up criterion for the Monte Carlo sampling method
	Methodology of the heuristic speed-up criterion
	Tuning of the tolerance value y

	Conclusions

	A Random Restart Local Search Heuristic Algorithm
	A 2-opt Local Search heuristic
	Methodology of the RRLS algorithm
	Tuning of the MC evaluator embedded in the RRLS algorithm
	General case
	Tuning of the tolerance value y based on Dimension
	Tuning of the tolerance value y based on Prize Type
	Summary and considerations

	A wiser selection of starting solutions
	Generation of initial solutions for the random restart phase
	Effectiveness of parameter k
	Statistical significance of the results on parameter k

	Conclusions

	A Tabu Search Heuristic Algorithm
	The role of Monte Carlo sampling within the heuristic
	Comparison between the TS and RRLS methodologies
	Memory Structure
	Local Searches
	The Complete Tabu Search Algorithm
	Experimental Results
	Random Restart Local Search TS: 2-opt and 3-opt
	Tuning for the length of the Tabu List: the 2-opt case
	Tuning for the length of the Tabu List: the 3-opt case
	Comparison of the TS algorithm with other methods from the literature
	Results of the TS algorithm on large instances

	Conclusions

	Parameters Tuning and Machine Learning
	Introduction
	Features Selection
	Predicting the best number of samples for an instance
	The Concept of Satisfaction
	Method NN1
	Method NN2

	Computational Experiments
	Training
	Testing

	Conclusions

	The Probabilistic Tourist Trip Design Problem
	Introduction
	Problem Definition
	Experimental Results
	Touristic application in Paris, France
	A comparison between the POP solvers for small instances

	Models with extra features
	Conclusions

	Conclusions
	2-opt and 3-opt operators inside the Tabu Search algorithm: Extended Results
	Bibliography

