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Abstract—Anomaly detection is a fundamental problem that
consists of identifying irregular patterns that do not conform
to the expected behavior of a system or the generated data.
Many anomaly detection techniques have been proposed for
time series data. However, selecting the most suitable detection
method remains challenging as the proposed techniques widely
vary in performance. The appropriate choice of a detection
method impacts many properties of mission-critical applications
such as in monitoring a patient’s health, where anomalies are
inevitable but need to be detected securely. In this demo, we
present a new evaluator that allows to peruse the performance of
several anomaly detection techniques and supports practitioners
in understanding the behavior and (dis-)advantages of each tech-
nique for a given dataset. In a simple and well-structured way,
practitioners can specify the desired anomaly detection setup,
and our system would tune the parameters of each technique and
analyze their properties in an easily understandable report. The
tool also allows recommending the most appropriate technique
for each anomaly type and evaluation metric.

I. INTRODUCTION

Time series are becoming prevalent in many domains thanks
to recent advances in the Internet of Things (IoT). Sensors
in the IoT are, however, prone to failure, malfunction, and
malicious attacks. As a result, the produced data often contains
patterns that exhibit properties different from normal instances,
i.e., anomalies. Detecting these anomalies helps to find less re-
liable data that needs to be cleansed, which in turn significantly
improves downstream applications such as classification [1].
The detection can also reveal interesting latent phenomena
such as frauds, data leakage or diseases [2].

The detection of anomalies is a well-studied problem, and
several methods have been proposed to address it. However,
there is a lack of practical systems for analyzing these ap-
proaches and their performance, making it very cumbersome
for the user to pick the most suitable detection algorithm for a
given problem. This problem occurs for at least three reasons.

First, existing techniques widely vary depending on their
underlying approach and the type of anomalies they can detect.
One class of methods builds a representation of “correct”
data1, then considers anomalies the instances that do not con-
form to this representation. These methods are often applied to
detect continuous subsequences of anomalies [3]. The second

1The definition of correctness depends on the problem under investigation
itself and is outside the scope of this paper.

class of techniques explicitly separates anomalous points in the
datasets, making them suitable for scattered anomalies such as
single-point outliers [4]. The choice of the appropriate method
is difficult in real-world time series, which include both types
of anomalies [2].

Next, anomaly detection techniques often assume specific
properties of data to achieve good performance. A large
body of techniques assumes temporal continuity, i.e., the
main features of the data vary over time only a little, which
constrains their applicability. For example, statistical methods
can detect anomalies accurately on seasonal instances but
perform poorly on non-periodic data [2]. In contrast, methods
based on isolation [4] can be accurate on non-periodic data but
may fail to distinguish normal seasonal peaks from anomalies.
Real-time applications, such as IoT-based sports monitoring,
produce time series that can be both periodic and bursty,
rendering the choice of the technique very challenging.

The third reason why it is challenging to select a suitable
detection technique is the lack of a unified metric for perfor-
mance evaluation. Classification-based metrics, e.g., F1-score,
measure the performance of a detection method as a binary
classifier. Entropy-based metrics, such as Mutual Information,
quantify the amount of information portrayed by an instance,
assuming anomalies carry less information. Distance-based
metrics, such as Root Mean Squared Error (RMSE), compute
the distance between the ground-truth and the detection labels,
assuming anomaly instances have a higher distance from the
normal data. To evaluate the accuracy of a detection method, it
can be essential to compare the detection results using several
performance metrics simultaneously.

To solve this issue, we introduce VADETIS (Validator for
Anomaly Detection in Time Series), a new graphical tool and
engine to evaluate anomaly detection. Our system implements
several anomaly detection methods and evaluation metrics, and
allows to generate synthetic time series with multiple types,
scales, and frequencies of anomalies. Users can train, tune,
and compare the anomaly detection on different time series.
VADETIS allows to recommend, for a specific dataset, the
most accurate detection technique using a performance metric.
This work was motivated by the need for such a comprehensive
tool to assist our recent time series’ repair benchmarks [5], [6].
Our tool helps identify suitable anomaly-aware techniques for
the recovery of missing values.



II. RELATED WORK

A. Anomaly Detection Systems

Several systems have been proposed to visually explore
time series data, e.g., Qetch [7], RINSE [8], PVD [9], Re-
covDB [10], etc. These systems typically focus on visualizing
and querying time series while highlighting their key features
and properties. The closest system to ours is Metro-Viz [11],
which implements different anomaly detectors and metrics
and performs what-if testing of anomaly detectors. The key
novelty of our system resides in introducing an end-to-end
framework for evaluating anomaly detection. In addition to
the visual exploration of anomaly detectors and performance
metrics, VADETIS offers the following salient features i) it
can generate anomalous time series, ii) it supports anomaly
detection on multiple series, and iii) it can recommend the
optimal detector and metric. VADETIS can also be easily
extended with new algorithms, datasets and metrics.

B. Anomaly Detection Categories

Statistical methods use statistics such as distribution or
variance to build a representation of the data. Techniques in
this category assume that anomalous data instances have a
lower probability of belonging to the representation area. As
such, Histogram-Based Outlier Score (HBOS) [12] generates a
histogram using all the values of each feature of the data. The
anomaly score is inversely proportional to the heights of the
columns in which each feature of the data value resides. Local
Indicators of Spatial Association (LISA) is another statistical
technique that measures the degree of spatial correlation at
specific locations [13]. It uses the location coordinates of data
instances and the weighted connections between them to detect
anomalies by looking for the significant dissimilarity between
instances and their physical neighbors.
Clustering-based methods build classes (or clusters) from the
data and use them to identify as anomalies data points that do
not conform to these classes, e.g., that lie outside the clusters.
For example, the Gaussian mixture model (GMM) [2] assumes
that all the data instances are generated from a mixture of
Gaussian distributions represented by a cluster. During the
detection, the probability that a data instance belongs to
each of the clusters is computed, and anomalies represent
instances that do not pertain to any cluster. One-Class Support
Vector Machine (OC-SVM) [2] operates as a classifier by
constructing a high-dimensional space using training data to
separate the data instances into two classes. OC-SVM starts by
assuming that the data belongs to only one class and learns the
boundaries to derive a binary function that classifies instances
which fall outside of this boundary as anomalies.
Isolation-based methods separate anomalous points in the
dataset from the rest of the data, unlike previous approaches.
The Isolation Forest (iForest) [4] approach builds an isolation
tree (iTree) by recursively splitting the data based on a
randomly selected feature and a splitting value between the
maximum and minimum values of the selected feature. As
anomalies are more likely to be isolated, it is more likely

that they are closer to the root of an iTree. Robust Principal
Component Analysis (RPCA) [2] is an isolation method based
on dimensionality reduction. It computes a compact represen-
tation of a multi-dimensional dataset that maps the number
of features to a lower-dimensional subspace. The detection of
anomalies relies on the reconstruction error obtained from the
information loss of the reduction. Since anomalies are rare,
anomalous data instances have a higher reconstruction error.

III. THE VADETIS SYSTEM

VADETIS is a web application implemented with the
Django framework, an open-source web application frame-
work in Python. Datasets are stored as pickled objects in order
to efficiently handle large time series. In what follows, we
describe the main components of our system (see Figure 1).

Fig. 1: Architecture Overview.

A. Synthetic Anomaly Generation

The scarcity of anomalies creates highly unbalanced
datasets, which impedes anomaly detection. To address this
problem, our tool allows the contamination of the data with the
most common types of anomalies [2]. It also allows controlling
the relative frequency of the generated anomalies compared to
all the data points. We describe below the different types of
injected anomalies.

We define X = {x1, . . . , xn} as a time series, f ∈ R as
a scale factor for the strength of the anomaly, l ∈ N+ as an
offset for the sequence length of the anomaly, and std for the
standard deviation inside X .
Point Outliers: A point anomaly at a position i is obtained

by changing the data value with a delta x′i = xi+∆ such
as ∆ = f × std.

Level shift: A level shift at a position i is obtained by shifting
the sequence of points xj ∈ [xi−l, . . . , xi+l] with a delta
x′j = xj + ∆ such as ∆ = f × std.

Growth Change: A growth change at a position i is obtained
by increasing the values of the sequence following it xj ∈
[xi, . . . , xi+l] with a growing factor. As such, for each
j ∈ [i, i+l], x′j = xj+∆j such that ∆j = (j−i)×f . The
rest of the time series xj ∈ [xi+l, . . . , xn] is corrected
with the delta ∆i+l such that x′j = xj + ∆i+l.

Distortion: We generate a distortion at a position i by adding
to each observation the multiplied difference of its two
previous subsequent observations. As such, for each xj ∈
[xi−l, xi+l], x′j = xj+∆j such that ∆j = (xj−1−xj)×f .
The rest of the time series remains unchanged.

In addition to anomalies, we generate missing values by
setting values of the sequence around it to 0, imitating a sensor



recording failure. Note that if the data is labeled, the generation
only changes the normal data, because the original anomalies
should be preserved.

B. Anomaly Detection

We implemented all the techniques introduced in Section II
in our tool. Each of those techniques returns either anomaly
scores or anomaly labels. In the former case, a score is
assigned to each data instance representing the degree to which
it is considered as an anomaly. The output of such techniques
is a ranked list of anomalies and a user can choose to analyze
the top few anomalies or to use a domain-specific threshold to
select the most relevant anomalies. In the latter case, a label
(normal or anomaly) is assigned to each data instance. Before
the anomaly detection is launched, the data is normalized to
reduce the dominance of a variable over the other.

To further analyze the impact of time series features on
anomaly detection techniques, we extended the implemen-
tation of the LISA technique to embed different types of
correlations (e.g., high/low, positive/negative). In this exten-
sion, we compute anomaly scores using a sliding window,
which allows taking into account local correlations. We apply
Dynamic Time Warping (DTW) [14] on multiple time series
in order to detect the non-linear similarities between the time
series. We then compute the Pearson correlation on the DTW
adjusted windows and a window is considered anomalous if
its computed score is lower than a user-defined threshold δ.

The performance of an anomaly detector largely depends on
its parameterization (e.g. decision threshold, sliding window
size, time range, training size, etc.). VADETIS tunes the
parameters of each technique by evaluating a number (200
by default) of linearly distributed parameter candidates from
each parameter’s range and choosing the value that maximizes
the detection performance. The optimal parameter values are
suggested for each anomaly detector.

C. Detection Recommendation

This component recommends the optimal detection tech-
nique for a given dataset and a performance metric. To achieve
this, VADETIS compares different performance metrics (i.e.,
NMI, RMSE, Accuracy, AUC, Fβ-Score, Precision and Re-
call) across the selected methods. While the component can
recommend a detection method for multiple series, it is also
possible to perform a customized recommendation for a single
time series by comparing the performance metrics separately
for each single time series in the dataset. This is especially
beneficial in datasets where each time series caries different
features and anomaly types (e.g. humidity and temperature).
It is also useful to obtain other metrics for each technique
in addition to the optimal metrics, which allows to compare
the metrics and obtain deeper insight into the performance of
each technique. A detailed report of the recommendation is
provided for each metric once the evaluation is finished.

IV. DEMONSTRATION SCENARIOS

Our demo provides real-world labeled time series from a
broad range of applications. We use the Yahoo S5 dataset2,
which contains seasonal time series with point outliers. We
also use non-periodic humidity time series, which contain
level shift and point outliers [5]. The last dataset we use
is soccer, which represents the position of players during a
football match [6]. The data originates from sensors located
near the players’ shoes and the goalkeeper’s hands. Soccer
dataset contains bursty and very long (15’000 position events
per second) time series with multiple types of anomalies.
Scenario 1: Anomaly detection and threshold adjustment.
In this scenario, the user can select one of the available
anomaly detection techniques and define the parameters for the
algorithm or proceed with the default settings. The detection
will either mark anomalous data instances with training-based
techniques or points in single time series (in the case of LISA).
The detection is initiated by clicking the “Run” button and
applied either on the selected time range or complete (set
of) series. After the results have been computed, the updated
chart with true positives, false positives and false negatives
marked accordingly is provided. The performance metrics,
confusion matrix and threshold-score plots are displayed to
better understand the performance of anomaly detection. Users
can also adjust the threshold level. By doing so, they can
observe which data instances or points are classified correctly
for changing decision boundaries. From this point, users can
directly apply a different detection technique.
Scenario 2: Synthetic anomaly generation. In this scenario,
users can alter the used time series by generating synthetic
anomalies before detection. By clicking the “Inject” button the
selected type of anomaly is added to the chosen time series.
This step can be repeated multiple times for different types of
anomalies and time series. Then, similarly to Scenario 1, the
detection is initiated by clicking the “Run” button. After the
results have been displayed, users can adjust the threshold for
the decision boundary either with the slider or from the field
to a different value and click the “Update” button. The chart,
the performance metrics, confusion matrix and plots will be
updated for the new decision boundary changing the markers
of true positives, false positives and false negatives.
Scenario 3: Metric-based recommendation of the anomaly
detection technique. In this scenario, users select several
detection techniques they want to compare in order to obtain
a recommendation. A performance metric to optimize has
also to be chosen. By clicking the “Recommend” button, a
detection with each selected technique is performed using
default parameters. The results for NMI, RMSE, F1-Score,
Accuracy, Precision and Recall are then compared in a bar
chart for each of the selected techniques. Furthermore, a
summary that lists the best technique for each metric is
provided, and the confusion matrix and threshold-score plots
are loaded for each of the used techniques. From this point,

2This dataset consists of time series representing the metrics of various
Yahoo services. The S5 time series are highly correlated.



Fig. 2: VADETIS allows to (a) visualize (raw and normalized) time series with their metadata and to (b) perform anomaly
detection on them. Users can (c) generate anomalies in specific time series while specifying their type, scale and frequency. They
can also (d) choose a performance metric and the tool then evaluates a set of detection techniques, compares their performance,
and recommends the optimal technique. The tool provides a GUI that enables displaying time series with anomalies highlighted,
as well as the results of the detection/recommendation (e, f, and g).

users can request additional recommendations or adapt exist-
ing recommendations to optimize a different metric. In the
future, we plan to apply pruning-based techniques to filter out
irrelevant error detection algorithms and configurations [15].
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[10] I. Arous, M. Khayati, P. Cudré-Mauroux, Y. Zhang, M. Kersten, and
S. Stalinlov, “Recovdb: Accurate and efficient missing blocks recovery
for large time series,” in 2019 IEEE 35th International Conference on
Data Engineering (ICDE). IEEE, 2019, pp. 1976–1979.

[11] P. Eichmann, F. Solleza, N. Tatbul, and S. Zdonik, “Visual exploration
of time series anomalies with metro-viz,” in Proceedings of the 2019
International Conference on Management of Data, 2019, pp. 1901–1904.

[12] M. Goldstein and A. Dengel, “Histogram-based outlier score (hbos): A
fast unsupervised anomaly detection algorithm,” KI-2012: Poster and
Demo Track, pp. 59–63, 2012.

[13] C. D. Lloyd, Local models for spatial analysis. CRC press, 2010.
[14] T. Rakthanmanon, B. Campana, A. Mueen, G. Batista, B. Westover,

Q. Zhu, J. Zakaria, and E. Keogh, “Searching and mining trillions of time
series subsequences under dynamic time warping,” in Proceedings of the
18th ACM SIGKDD international conference on Knowledge discovery
and data mining, 2012, pp. 262–270.

[15] M. Mahdavi, Z. Abedjan, R. Castro Fernandez, S. Madden, M. Ouzzani,
M. Stonebraker, and N. Tang, “Raha: A configuration-free error detec-
tion system,” in Proceedings of the 2019 International Conference on
Management of Data, 2019, pp. 865–882.


