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Abstract

Computational Geometry is the field of Computer Science that studies algorithmic
problems which can be expressed in terms of Geometry. A geometric structure
that has attracted the interest of researchers over the last centuries is the Voronoi
diagram. It is a powerful geometric object which has diverse applications on
problems where proximity information is required. Given a set of sites, their
Voronoi diagram is the subdivision of the space into regions, such that all points in
a region have the same nearest site. Many generalizations of this simple concept
have been considered, including generalized sites, spaces and distance functions.
In this dissertation we study three problems related to generalized planar Voronoi
diagrams.

The first topic is related to color Voronoi diagrams, where each site is a clus-
ter of points and the distance between a point and a cluster is the minimum
Euclidean distance. Color Voronoi diagrams are motivated by facility location
problems and sampling based approximation schemes for Voronoi diagrams. We
focus on the farthest color Voronoi diagram, which is a min-max type of Voronoi
diagram. We present combinatorial properties, conditions for the diagram to
have linear complexity, and efficient construction algorithms.

Secondly, we study the rotating rays Voronoi diagram, a Voronoi structure
where the input sites are rays and the distance between a point and a ray is an
oriented angular distance. We demonstrate how such a diagram finds applica-
tions in various floodlight illumination problems; coverage problems where a
domain has to be covered by floodlights-wedges. Motivated by these illumina-
tion problems, we study the rotating rays Voronoi diagram in various domains
of interest, as for example the plane, polygons, and curves. For all the domains
considered we present combinatorial and algorithmic results.

Finally, we consider a well-known deterministic linear-time algorithmic scheme
for Voronoi diagrams. We generalize a combinatorial result on selecting leaves in
embedded binary trees that the scheme requires, aiming to make this algorithmic
technique applicable to larger classes of planar Voronoi diagrams.
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Chapter 1

Introduction

Our daily lives are heavily influenced by computers: we carry with us computers,
we work with computers, and we entertain ourselves using computers. These
computers continuously perform computations to serve our needs, and we re-
quire them not only to work correctly, but also to work fast. Underlying, behind
all these computations are algorithms; well-defined procedures that given a cer-
tain input, they will produce a certain output. Algorithms are the roadmaps
which computers use to accomplish any given task. In the world of Computer
Science and Engineering, the quest for correct and efficient algorithms is never-
ending.

Many tasks, or problems, involve discrete geometric objects. Algorithms deal-
ing with such problems are called geometric algorithms, and the corresponding
field of Computer Science is termed Computational Geometry. One of the most fa-
mous objects in Computational Geometry is the Voronoi diagram. The Voronoi Di-
agram is a versatile geometric structure encoding proximity information among
a given set of objects called sites. It subdivides the underlying space into maxi-
mal regions with respect to the neighboring sites, according to a given distance
function.

In its simplest form, the Voronoi diagram is defined on a set of points in the
Euclidean plane; it is the partition of the plane into regions such that any two
points in a region share the same nearest point-site. See an example of a classic
Voronoi diagram of 10 points in Fig. 1.1.

This simple concept can be generalized in numerous ways. For instance, the
sites instead of points, may be circles, polygons, or point-clusters. The underlying
space need not be R2; they are often studied in higher dimensions, but also in
other non Euclidean spaces. The distance function between a point in space and
a site can also vary; for example any Lp distance can be considered, or if the sites
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Figure 1.1. The nearest Voronoi diagram of a set of 10 points in R2. The cor-
responding graph structure is shown with thick segments. The nearest Voronoi
region of a point-site p (regppq) is highlighted. The Euclidean distance be-
tween a point x to its nearest site (point q) is shown dashed. The thin dotted
segments illustrate the Delaunay triangulation of the same set of points.

are more complex, the distance can have various interpretations, as for example
the minimum or the maximum distance.

Voronoi diagrams and their generalizations find applications in different areas
of Computer Science and Engineering, as for instance in surface reconstruction,
operations research, and geographic information systems. They also find appli-
cations in diverse sciences, as for example in Geology, Biology, and Chemistry.
A comprehensive reference with many applications of Voronoi diagrams is the
book of Okabe, Boots, Sugihara, and Chiu [2009]. Another valuable reference is
the book of Aurenhammer, Klein, and Lee [2013], which offers an extensive list
of combinatorial and algorithmic results for various Voronoi diagrams.

Voronoi diagrams have a long history. They owe its name to Georgy Voronoy
(1868-1908) who formalized these structures in [1908a; 1908b], although ear-
lier appearances date back to René Descartes (1596 - 1650) in [1644], and to
Lejeune Dirichlet (1805 - 1859) in [1850]. Another object with a long history,
closely related to the Voronoi diagram is the Delaunay Triangulation. It was first
introduced and studied by Boris Delaunay (1890 – 1980) in [1934] and it is the
geometric dual structure of the Voronoi diagram. An example of a Delaunay tri-
angulation is shown in Fig. 1.1. A nice historical overview of Voronoi diagrams is
given in the book of Okabe et al. [2009], and a discussion on the popularization
of the term "Voronoi diagram" can be found in the memoir of Shamos [1999].
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1.1 Basic concepts of Voronoi diagrams

In this section, we review some basic concepts and results related to Voronoi
diagrams, before proceeding to the specific Voronoi diagrams which we consider.
A standard nearest Voronoi diagram can be formally defined as follows.

Definition 1.1. The nearest Voronoi diagram of a set of sites, in a given space,
is the subdivision of this space into maximal regions such that all points within
one region have the same nearest site. These regions are called Voronoi regions.

In the simplest form, the input sites are points in the plane, and the distance
considered is the Euclidean distance1. This diagram is well-studied, its properties
are known and there exist construction algorithms with optimal time complexity.
More specifically, given a set of n points in R2, the nearest point Voronoi diagram
has Opnq combinatorial complexity. Each Voronoi region is a non-empty convex
polygonal region containing containing the corresponding point-site. An edge on
the boundary of two adjacent Voronoi regions (called a Voronoi edge) is a line-
segment, or a ray, that is part of the bisector of the two corresponding point-sites.
Further, only point-sites on the convex hull2 have unbounded Voronoi regions.
The above can be observed in the diagram of Fig. 1.1.

There are many construction algorithms which employ different paradigms,
as for example divide & conquer, plane sweep, lift-up to 3-space, and (random-
ized) incremental construction. For the nearest Voronoi diagram of points, many
of these algorithms take Opn log nq time, which is optimal, as there exists an
Ωpn log nq lower bound in the time required to construct the diagram. We re-
view some of these algorithmic techniques in more detail in Section 2.1.

As already mentioned the Voronoi diagram is the geometric dual of the, equally
famous, Delaunay triangulation. Given the Voronoi diagram, simply consider a
line segment between any two point-sites that have adjacent Voronoi regions;
this forms the Delaunay triangulation of the set of points. This duality can be
observed in Fig. 1.1. The Delaunay triangulation has the property that the small-
est angle among all triangles is maximized, avoiding essentially the formation of
thin triangles, which are often not desirable.

1The Euclidean distance between two points in the plane p “ tpx , pyu and q “ tqx , qyu is

dpp, qq :“
b

ppx ´ qxq
2` ppy ´ qyq

2

2The convex hull of a set of points is the smallest convex set containing this set of points. An
example of a convex hull is illustrated in Fig. 1.4a
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reg(p)
pq

reg(q)

reg(q)

(a) A set of 7 line segments.

reg(p)

p

(b) A set of 8 points with the L8 distance.

Figure 1.2. Two examples of generalized nearest site Voronoi diagrams.

Generalized Voronoi diagrams

Voronoi diagrams can be generalized in many different ways, and by examining
Definition 1.1, we can observe that some terms, as "nearest", "sites" and "space",
can have multiple interpretations. Each such interpretation results in a different
generalized Voronoi diagram. We now look into some common generalizations,
and give some indicative results and references from the literature.

Input sites. So far we considered points as sites, which are quite simple. The
input sites may consist of any geometric object, as for instance, line segments,
circles, or clusters (sets) of points. More complex input sites often lead to more
challenging structures with higher complexity, as more complex are bisectors in-
volved, which may consist of curves that are non-linear, disconnected, or closed.
Recall that Voronoi edges are induced by bisectors of input sites.

As an example observe a Voronoi diagram of line segments in Fig. 1.2a; a
Voronoi region can have many connected components (when line segments in-
tersect), and the boundary of two Voronoi regions contains also parabolic arcs.
The diagram of n line segments has Opn` Iq complexity, where is I the number
of intersections among the segments. It can be constructed: in Opn log nq time if
the segments are pairwise non-intersecting, or in Opnαpnq log n` Iq time if the
segments intersect; see, Yap [1987] and Bae [2016].

Indicatively, other examples of input sites include curved objects, as e.g., in
Alt et al. [2005] and Emiris et al. [2006], or clusters of objects as, e.g., in Pa-
padopoulou [2004] and Bae [2014].
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x

reg(Q)

reg(P )

(a) Using the minimum cluster distance.

x

reg(Q)

reg(P )

(b) Using the maximum cluster distance.

Figure 1.3. The nearest Voronoi diagrams of 2 clusters of points (cluster P(‚)
with 3 points and cluster Q(‚) with 2 points) under different distance functions.
The distance of a point x to its nearest site is shown dashed.

Distance function. Different Voronoi diagrams occur when different distance
measures are considered. Most commonly the Euclidean distance L2 is used.
Other common measures include the L1 (Manhattan) or L8 distances, or in gen-
eral any Lp distance function. Actually, Voronoi diagrams using the L1 and L8 dis-
tances, are related under a π{2-rotation. In Fig. 1.2b we illustrate a Voronoi dia-
gram of points using the L8 distance. See Lee and Wong [1980] or Papadopoulou
and Lee [2001] for two instances of diagrams using the L8 distance.

Additionally, other common distance functions, include polyhedral distance
functions, as in Boissonnat et al. [1998] and Aurenhammer et al. [2021], and
distance functions which associate weights (multiplicatively or additive) to each
site; see, e.g., Aurenhammer and Edelsbrunner [1984] or Aurenhammer [1987].

When certain generalized input sites are considered the notion of the dis-
tance between a point and an input site can be interpreted in different ways. For
example, given a cluster of points, the distance considered might be the mini-
mum (Euclidean) distance or the maximum (Euclidean) distance. In Fig. 1.3 the
nearest Voronoi diagrams of 2 point-clusters using the minimum and the maxi-
mum distance are illustrated. Most commonly the minimum distance is used but
there are examples of Voronoi diagrams of generalized input sites that use the
maximum distance; see e.g., Papadopoulou and Lee [2004] for point-clusters as
sites, or Setter et al. [2010] for circles as sites.

Underlying space. Apart from the Euclidean space, Voronoi diagrams are often
considered in R3, or in higher, d-dimensional, spaces. The complexity of the
diagrams grow as the number of dimensions grow. For example, the complexity
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p

reg(p)q

reg(q)

(a) The diagram of 8 points. The dashed
polygon bounds the convex hull of the set
of points.

x

reg(p)p

(b) The diagram of 3 line segments. The
distance of a point x to its farthest site
(segment p) is shown dashed.

Figure 1.4. Two farthest site Voronoi diagrams.

of the nearest point Voronoi diagram is exponential in the number of dimensions,
more precisely, the diagram in Rd has Θpnrd{2sq complexity in the worst case.
Further, it can be constructed in time Opnrd{2s`n log nq, using the convex hull of
the set of points in d ` 1 dimensions; see Klee [1980] and Chazelle [1993].

Voronoi structures have also been studied when the underlying space is some
non-Euclidean space, or it is restricted to some geometric object. An example
is the spherical Voronoi diagram, where the space is a a sphere in R3 under the
geodesic distance; see, e.g., Na et al. [2002]. Another diagram using the geodesic
distance is the geodesic Voronoi diagram, where the underlying domain is a simple
polygon in R2; see, e.g., Papadopoulou and Lee [1998] and Oh [2019].

In this dissertation, we deal with planar Voronoi diagrams where the input
site are objects in R2 and the underlying space is the Euclidean plane.

Higher order Voronoi diagrams

Another generalization of Voronoi diagrams concerns, the neighbors with respect
to which the subdivision of the underlying space is done. For example in the near-
est Voronoi diagram, the subdivision is done with respect to the nearest neighbor.
When the subdivision is done with respect to the farthest neighbor, we speak of
the farthest (site) Voronoi diagram. Such a diagram is defined as follows.

Definition 1.2. The farthest Voronoi diagram of a set of sites in a given space,
is the subdivision of this space into maximal regions, such that all points within
one region have the same farthest site.



7 1.1 Basic concepts of Voronoi diagrams
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reg({p, q})

q

Figure 1.5. The order-2 Voronoi diagram of a set of 8 points in R2. The regions
of a pairs of points pp, qq is shown shaded. The distance of a point x to its two
nearest sites (points p and q) is shown dashed.

A farthest Voronoi diagram of a set of points is illustrated in Fig. 1.4a. The
properties of the farthest point Voronoi diagram are well known; see Shamos and
Hoey [1975]. It has Opnq complexity, it can be computed in Opn log nq time, each
Voronoi region is connected, and only points on the boundary of the convex hull
have a non-empty region. It is worth observing in Fig. 1.4a, that the diagram has
a tree structure, and that the circular ordering of the points along the boundary
of the convex hull, is the reverse of the circular ordering of the unbounded faces.

Farthest Voronoi diagrams often have a simpler structure than their nearest
site counterparts. For instance, the farthest point Voronoi diagram in the L1

metric has Op1q complexity. The farthest line segment Voronoi diagram, studied
by Aurenhammer et al. [2006] and Papadopoulou and Dey [2013], has a tree
structure of Opnq complexity. A farthest Voronoi diagram of line segments is
illustrated in Fig. 1.4b.

A more general concept is that of higher-order, or order-k Voronoi diagrams.
In the order-k Voronoi diagram the space is subdivided into regions with respect
to the k nearest neighbors. It can be defined as follows.

Definition 1.3. The order-k Voronoi diagram of a set of sites in a given space,
is the subdivision of this space into maximal regions, such that all points within
one region have the same k nearest sites.

An instance of an order-2 Voronoi diagram of 8 points is illustrated in Fig. 1.5.
The order-k Voronoi diagram for k “ 1 coincides with the nearest Voronoi dia-
gram and for k “ n´1 with the farthest Voronoi diagram. Note that the param-
eter k is meaningful for 1ď k ď n´ 1.
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Higher order diagrams for certain values of k, have more complicated struc-
ture. Lee [1982] showed that the order-k Voronoi diagram of a set of n points
has Opkpn´ kqq complexity, and it can be constructed in Opk2n log nq time. For
the order-k diagram of line segments Papadopoulou and Zavershynskyi [2016]
showed that it has complexity Opkpn´ kqq, if k ě n{2, and Opkpn´ kq` Iq com-
plexity, if k ă n{2 (where I is the number of pairwise segment intersections).

Unifying frameworks for Voronoi diagrams

We already saw that Voronoi diagrams can be generalized in many ways. Since
early times, there has been an interest in defining a unifying framework to cover
various cases of these generalized diagrams. Two notable approaches are that
of Edelsbrunner and Seidel [1986], for Voronoi diagrams in arbitrary dimension,
and of Klein [1989], for planar Voronoi diagrams.

Edelsbrunner and Seidel [1986] described a generic scheme where a Voronoi
diagram in Rd can be seen as the lower envelope of an arrangement of hypersur-
faces in Rd`1. More specifically each input site induces a distance function in one
dimension higher, that is a hypersurface in Rd`1. This yields an arrangement of
hypersurfaces in Rd`1, and the projection of the lower envelope of this arrange-
ment down to Rd corresponds to the Voronoi diagram. Further, this approach
yields not only the nearest site, but all higher order Voronoi diagrams, which are
encoded in different levels of the arrangement. We describe in more detail this
approach and look at some examples in Section 2.1.1.

Klein [1989] introduced the concept of abstract Voronoi diagrams. Instead of
defining a Voronoi diagram via input sites and distance measures, a diagram is
now defined via the underlying system of bisecting curves. There is one bisecting
curve for each pair of input sites, and the only requirement to fall under the
umbrella of abstract Voronoi diagrams, is that the bisecting curves satisfy a set of
simple combinatorial properties, called axioms. This framework covers many of
the generalized Voronoi diagrams described earlier. Abstract Voronoi diagrams
have Opnq complexity and can be constructed in Opn log nq time. We review the
axioms of abstract Voronoi together with related results in Section 2.1.2.

Applications of Voronoi diagrams

Voronoi diagrams efficiently encode proximity information among different ob-
jects, and thus, they can be useful in many different application domains. Follow-
ing, we indicatively describe a few applications. We refer to the book of Okabe
et al. [2009] for a thorough list of applications.
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(a) A set of 7 points ( ). The small-
est enclosing disk is centered ( ) on the
(dotted) farthest Voronoi diagram. The
largest empty disk is centered ( ) on the
(dashed) nearest Voronoi diagram.

(b) The Voronoi diagram of a set of ob-
stacles (polygons) shown dashed. The
robot ( ) can safely reach its target ( )
by following the path along the Voronoi
diagram, shown with thick red segments.

Figure 1.6. Two examples of applications of Voronoi diagrams.

Several applications are related to answering nearest neighbor queries. Sup-
pose that while being located somewhere we need to send a mail, and we want to
find out of n post-offices, the nearest one. The trivial approach (examining all the
distances and keeping the minimum) would take Opnq time. Instead, given then
Voronoi diagram of the post-offices, we could simply locate the Voronoi region of
the post-office in which we would lie, and this can be done in Oplog nq time. Such
type of queries show up in spatial databases and in clustering and classifications
problems. For example, both the standard k-means clustering method, and the
basic k-nearest neighbor (k-nn) classification method perform a large number of
such queries. Note that Voronoi diagrams may not be favorable in higher dimen-
sions, as their complexity has an exponential dependency in the dimension.

Other applications are related to facility location. Consider the following ex-
amples, and refer also to Fig. 1.6a. Suppose that given a set of houses we need
to install a telecommunications antenna, in a way that it covers all the houses
but also its range is minimized. The solution is given by the smallest enclosing
disk which is centered on the farthest Voronoi diagram. Alternatively suppose
we wanted to install a waste dump, in a way that it is as far as possible from the
houses but also not arbitrarily far, so that it can still serve the houses. The solu-
tion is given by the largest empty disk which is realized on the nearest Voronoi di-
agram. Many variants of these objects, as minimum-width annuli, color spanning
objects, or objects allowing outliers are realized using different Voronoi diagrams.
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Some applications of Voronoi diagrams are related to spatial interpolation,
and modeling spatial data or processes. Actually, many early studies were moti-
vated by such applications. In 1644, Dirichlet used Voronoi diagrams to model
the distribution of matter in the solar system, and Thiessen, in 1911, used Voronoi
diagrams for polygonal spatial interpolation related to meteorology. Another
standard example, is the modeling of spatial processes, using the Voronoi growth
model. Conceptually, one can think of circles growing from the input point-sites,
until these circles conflict with each other. Such patterns appear in natural sci-
ences, like crystallography or ecology involving animals or plants.

Another famous application is related to surface reconstruction; see Amenta
et al. [1998b]. Given a sample point set from a surface, the Voronoi diagram
can be used in conjunction with its dual structure, the Delaunay triangulation,
to reconstruct the surface. In Robotics, in path planning, the Voronoi diagram
can be used to model the navigation of a robot in an environment with obstacles.
Given the Voronoi diagram of the obstacles, the robot can safely navigate along
the edges of the Voronoi diagram following a path of large distance from the
obstacles. Refer to the illustration of Fig. 1.6b for an example.

Summing up, Voronoi diagrams are powerful tools that find applications in
problems that distance information is important. Still, even the notion of dis-
tance can be interpreted broadly; we will see later how we can model, a seem-
ingly unrelated art-gallery problem by defining an appropriate distance measure
(and Voronoi diagram) tailored to the problem.

1.2 Voronoi diagrams in this dissertation

In this dissertation, we consider Voronoi diagrams where the underlying space
is R2, and look into generalizations involving different input sites and distance
functions. We focus on three different topics. In the next sections we define each
of the three topics and our related research goals. In Section 1.2.1 we consider
color Voronoi diagrams, in Section 1.2.1 the rotational Voronoi diagram, and in
Section 1.2.1 a linear-time algorithmic scheme for Voronoi diagrams.

1.2.1 Color Voronoi diagrams

The first topic we consider is related to color Voronoi diagrams, where each site is
a set of points, which we refer to as cluster. Conceptually each cluster is identified
by a distinct color; hence the name. The distance between a point and a cluster
P is realized by the nearest point in P. This is formally defined as follows.
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dc(x, P )

p

x

Figure 1.7. A cluster P (‚) consisting of 5 points. The distance of a point x to
P (realized by point p) is shown dashed. Dotted is the nearest point Voronoi
diagram of P and shaded is the Voronoi region of p.

Definition 1.4. Given a cluster P and a point x P R2 the (minimum) distance
from x to P is

dcpx , Pq :“min
pPP

dpx , pq.

Refer to Fig. 1.7 for an illustration of the distance function. Observe that
when the distance dcpx , Pq is realized by a point p, then x belongs into the
Voronoi region of p in the nearest Voronoi diagram of P.

Given a set P of m clusters of points, with n total points, we define the nearest
site Voronoi diagram using the minimum distance as follows.

Definition 1.5. The nearest color Voronoi diagram of a set of clusters P, is the
subdivision of R2 into nearest color (Voronoi) regions.
The nearest color region of a cluster Pi P P is

ncregpPi,Pq :“ tx P R2
| dcpx , Piq ă dcpx , Pjq @ Pj P P z tPiuu.

The nearest color region of a point p P Pi is

ncregpp,Pq :“ tx P ncregpPi,Pq | dpx , pq ă dpx , qq @ p P Pi z tquu.

The nearest color Voronoi diagram is a simple "min-min" diagram, which can
be easily derived from the nearest Voronoi diagram of the points of all clusters.
Thus, the results of the nearest point Voronoi diagram directly apply, i.e., the
diagram has Opnq combinatorial complexity and Opn log nq-time construction al-
gorithms. An example of such a Voronoi diagram, is shown in Fig. 1.3a.

In this dissertation we are particularly interested in the farthest counterpart,
the farthest color Voronoi diagram which we formally define as follows.
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x

Figure 1.8. The farthest color Voronoi diagram of 3 clusters of points (‚, ˛,
‚). Points in a region are farther away from the cluster of the respective color.
The distance of a point x to each cluster is shown dotted, and the farthest
distance (˛) is represented by the dashed circle.

Definition 1.6. The farthest color Voronoi diagram of a set of clusters P, is the
subdivision of R2 into farthest color (Voronoi) regions.
The farthest color region of a cluster Pi P P is

fcregpPi,Pq :“ tx P R2 | dcpx , Piq ą dcpx , Pjq @ Pj P P z tPiuu.

The farthest color region of a point p P Pi is

fcregpp,Pq :“ tx P fcregpPi,Pq | dpx , pq ă dpx , qq @ p P Pi z tquu.

The farthest color Voronoi diagram, is a "max-min" diagram; it can be thought
as generalizing both the nearest and farthest Voronoi diagrams of points. Refer
to Fig. 1.8 for an illustration of a farthest color Voronoi of 3 clusters. Observe
point x: the distance to each of the 3 clusters is shown dotted. Point x belongs to
the farthest color region of cluster (˛) which has the greatest minimum distance.

Regarding the complexity of the diagram, Huttenlocher et al. [1993] showed
an Ωpmnq lower bound in the worst-case complexity, and a matching Opmnq
upper bound was given by Abellanas et al. [2001b]. The current best algorithms
are an Opmn log nq-time algorithm by Huttenlocher et al. [1993] and an Opn2q-
time algorithm using the approach of Edelsbrunner et al. [1989]. A detailed
review of the combinatorial and algorithmic results is given in Section 2.2.1.

In this dissertation we further examine the farthest color Voronoi diagram.
Our motivation comes from the diverse applications it finds. It is useful in facility
location problems, as it can yield minimum color spanning disks. Related to shape
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matching, it can measure the minimum Hausdorff distance, under translation,
between two shapes (represented by clusters). It can also be used to construct
approximate farthest Voronoi diagrams of arbitrary input sites. A detailed review
of the applications of color Voronoi diagrams is given Section 2.2.3.

Research goals related to color Voronoi diagrams

As already mentioned, given a set of m clusters, of n total points, the worst-case
complexity is settled to be Θpmnq. In practice, it seems that instances realizing
a worst-case complexity do not often come up, and it is more likely that the dia-
gram has Opnq complexity. Our goal is to delve further into the structural prop-
erties of the diagram, and understand what are the conditions that contribute
to an increased complexity of the diagram. Using such properties, we are inter-
ested in identifying necessary and sufficient conditions for the diagram to have
Opnq complexity. In this scope, we also examine the connection of color Voronoi
diagrams with the framework of abstract Voronoi diagrams.

A particular class of input clusters are the ones which are pairwise linearly
separable, i.e., that have pairwise disjoint convex hulls. This is perhaps the most
natural class of input clusters to study (apart from arbitrary input clusters), as
linearly separable input sites often come up. Our goal is to study the diagram
of such clusters and to understand if linear separability is a condition for the
diagram to have a nice structure, e.g., having Opnq complexity.

On the algorithmic side, we already mentioned two schemes: An Opmn log nq-
time that is optimal if m“ Θp1q. An Opn2q-time that is optimal if m“ Θpnq and
the diagram achieves the worst-case complexity, i.e., it has Θpmnq “ Θpn2q com-
plexity. Still, these algorithms do not have a satisfactory performance in cases
when the diagram has Opnq complexity. In conjunction with our study for condi-
tions for Opnq complexity, we want to design algorithms whose time complexity
will depend on the specific properties of the input clusters, and which can out-
perform the existing algorithms (assuming an Opnq combinatorial complexity).

1.2.2 Rotating rays Voronoi diagram

A second Voronoi diagram that we consider is the rotating rays Voronoi diagram.
It is a nearest site Voronoi diagram, where the input is a set of rays, and the
distance between a point x to a ray r is the oriented angular distance.

The oriented angular distance is given by the minimum angle α such that,
after counterclockwise rotating r around its apex by α, ray r sees (or touches) x .
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Figure 1.9. The angular
distance (angle α) from a
ray r to a point x .

x

α

r

Figure 1.10. The rotating rays Voronoi diagram of
4 rays (Ó, ÝÑ,Œ,Õ). The distance (angle α) of
a point x P R2 to its nearest site (ray r) is shown.

Refer to Fig. 1.9 for an illustration of the distance definition. The distance can
be formally defined as follows.

Definition 1.7. Given a ray r and a point x P R2, the oriented angular distance
from x to r is the minimum counterclockwise angle from r to a ray with apex pprq
passing through x . We denote this distance by d=px , rq, and set d=ppprq, rq “ 0.

Given set R of n input rays, we can now define the nearest site Voronoi dia-
gram of rays with respect to the oriented angular distance.

Definition 1.8. The rotating rays Voronoi diagram of a set of rays R, is the sub-
division of R2 into nearest ray (Voronoi) regions.
The nearest ray region of a ray r P R is

r=regprq :“ t x P R2
| @s P Rztru : d=px , rq ă d=px , sq u.

An example of a rotating rays Voronoi diagram of 4 rays is illustrated in
Fig. 1.10. The Voronoi diagram draws its name by the following intuitive de-
scription: consider having a set of rays which start rotating counterclockwise
with the same speed, and each point in R2 is assigned to the Voronoi region of
the ray which sees the point first. This is analogous to the circle growing per-
spective for the nearest point Voronoi diagram, which we described earlier.

To the best of our knowledge, the rotating rays Voronoi diagram has not been
considered before, and research on Voronoi diagrams with similar input sites or
distance measure are very limited. This Voronoi diagram is of interest as it can
be used to solve classes of floodlight illumination problems.
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rα

Figure 1.11. A floodlight
( ) of aperture α aligned
with a ray r.

Figure 1.12. Illuminating an art gallery with 4
floodlights of aperture 90˝. The area illuminated by
each floodlight is shaded with the respective color.

Floodlight illumination problems are art-gallery type of problems where a
given domain has to be guarded (covered) by a set of wedges, or using the liter-
ature terminology: a given domain has to be illuminated by floodlights. A flood-
light of aperture α is called an α-floodlight, and given a ray r, an α-floodlight
is said to be aligned with the ray r, if the right side of the wedge coincides with
r. Refer to Fig. 1.11 for an illustration of an α-floodlight aligned with a ray r.
Several variants of floodlight illumination problems require the floodlights to be
of uniform angle; refer to Fig. 1.12 for an example of a polygonal domain illu-
minated by 4 floodlights of aperture π{2. We review some variants and results
on floodlight illumination problems in Section 2.3.1.

A class of floodlight illumination problems is the Brocard illumination prob-
lem which owes its name to Henri Brocard (1845-1922) and an old geometric
problem. The Brocard illumination problem can be defined as follows.

Definition 1.9. Given is a domain D, and a set R of n rays with an α-floodlight
aligned with each ray. What is the minimum angle α˚ needed to illuminate D

with the set of α˚-floodlights? This is called the Brocard illumination problem
and α˚ is called the Brocard angle.

Brocard illumination problems are defined on different domains such as the
plane, polygons, and curves. Results for polygonal domains have been recently
presented by Alegría-Galicia et al. [2017]. We review results on the original
problem by Brocard and the Brocard illumination problem in Section 2.3.2.

Our motivation for studying the rotating rays Voronoi diagram, comes form
its application to Brocard illuminations problems. Interestingly, we can reduce
the Brocard illumination problem to the construction of a rotating rays Voronoi
diagram, as the Brocard angle is realized on the graph structure of the diagram.
We describe this application in detail in Section 2.3.3.
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Research goals related to the rotating rays Voronoi diagram

Our first goal related to the rotating rays Voronoi diagram, is to get a solid under-
standing of the angular distance function and the resulting bisectors. This will
then help us understand the structure of the diagram, as edges of the diagram
are parts of bisectors. First, we want to consider R2 as the underlying space and
to obtain bounds in the combinatorial complexity of the diagram together with
construction algorithms. After having a construction algorithm for the diagram
in R2, we can also solve the Brocard illumination problem within the same time,
as the Brocard angle is realized at a point on the graph structure of the diagram.

Apart from the plane, we want to study the rotating rays Voronoi diagram in
polygons and curves. Such domains are common in the literature of floodlight
illumination problems, and we want to obtain combinatorial and algorithmic
results in order to solve the respective Brocard illumination problems. For the
Brocard illumination problem of polygonal domains, as already mentioned, there
is an Opn log nq-time algorithm for convex polygons and an Opn3 log2 nq for arbi-
trary simple polygons. As a starting point, for polygonal domains we aim to study
the class of convex polygons and to design a faster, opn log nq-time, algorithm.

1.2.3 Linear-time algorithms for planar Voronoi diagrams

Another topic we consider is related to construction algorithms for planar Voronoi
diagrams. As already mentioned, there is an Ωpn log nq lower bound for the time
needed by any algorithm to construct the nearest point Voronoi diagram.

However, for certain settings when additional information is known (as an
ordering of the regions), some diagrams can be constructed faster. In 1989, Ag-
garwal, Guibas, Saxe, and Shor [1989] introduced a deterministic linear-time
algorithm to solve the following problem:

(1) compute the nearest Voronoi diagram of points in convex position, given
the ordering of the points along the convex hull.

The graph of such a Voronoi diagram has a tree structure and its regions are
connected. The algorithm can be easily adapted to also construct other Voronoi
diagrams of point-sites with a tree structure, and connected regions, such as:

(2) update a nearest Voronoi diagram after deletion of a point;
(3) compute a farthest Voronoi diagram, given the ordering of the points along

the convex hull;
(4) compute an order-k Voronoi diagram, given its order-(k´ 1) counterpart.



17 1.2 Voronoi diagrams in this dissertation

Although the algorithm of Aggarwal et al. [1989] is asymptotically optimal with
respect to the time complexity, it is fairly complicated. Around the same time,
Chew [1990] presented a very simple algorithm using a randomized incremental
approach, which has expected Opnq time complexity.

Since then, the framework of Aggarwal et al. [1989] has been used, and
extended, in various ways to tackle various Opnq-time Voronoi constructions, in-
cluding the medial axis of a simple polygon by Chin et al. [1995], the Hamilto-
nian abstract Voronoi diagram by Klein and Lingas [1994], and some forest-like
abstract Voronoi diagrams by Bohler et al. [2014].

For generalized sites, other than points in the plane, or for abstract Voronoi
diagrams, deterministic linear-time algorithms for the counterparts of problems
(1)-(4) have not been known so far. This includes the diagrams of very simple
geometric sites such as line segments and circles in the Euclidean plane. A ma-
jor complication over points is that the underlying diagrams have disconnected
Voronoi regions. Recently, Junginger and Papadopoulou [2018] presented a ran-
domized Opnq-time technique for abstract Voronoi diagrams, using a relaxed
Voronoi structure, called a Voronoi-like diagram. A preliminary algorithm for
the farthest line segment Voronoi diagram was presented by Khramtcova and
Papadopoulou [2017].

Research goals related to linear-time construction algorithms

With the recent advance of Junginger and Papadopoulou [2018] to generalize the
randomized scheme of Chew [1990] to abstract Voronoi diagrams, it remains
an open problem whether this can also be done for the deterministic scheme
of Aggarwal et al. [1989]. It is of particular interest to examine if the relaxed
Voronoi-like structures introduced to generalize the randomized scheme, can also
be used to generalize the deterministic scheme.

The above does not seem to be a simple task, but we want to make a first step
in this direction. The scheme of Aggarwal et al. [1989] is based on a combinato-
rial result on embedded binary trees, and this is necessary to get any Opnq-time
algorithm based on their approach. By generalizing this combinatorial result to
trees inspired by the Voronoi-like structures, we hope to make the scheme appli-
cable to a larger class of planar Voronoi diagrams.

In a nutshell, the result on binary trees shows the existence of a set of leaves
with some desired property and a Opnq-time algorithm to select them. Intuitively,
the binary tree represents the graph structure of a Voronoi diagram, leaves rep-
resent input sites, and the desired property is pairwise disjoint Voronoi regions.
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1.3 Dissertation contributions

We now summarize our contribution for the three problems on planar Voronoi
diagram that we considered in this dissertation.

Farthest color Voronoi diagram

• We study the structural properties and the combinatorial complexity of the
diagram for different configurations of input sites. More specifically:

– We show an one to one correspondence between the unbounded faces
of the diagram and the unbounded faces of the Hausdorff Voronoi di-
agram; this implies that the diagram has only Opnq unbounded faces.

– We identify the straddle3, as a necessary condition for the diagram
to have a large number of bounded faces. More specifically, we show
that the diagram has Opn`spPqq bounded faces, where spPq “ Opmnq
is the straddling number3 of the set of clusters P.

– Using the above results, we refine the existing Opmnq tight upper
bound on the combinatorial complexity to Opn` spPqq.

– We study the connection of the diagram to abstract Voronoi diagrams,
and give a necessary and sufficient for the input clusters to fall under
this framework. We also show that disk-separable clusters4 fall under
the abstract Voronoi diagram framework.

– We study the complexity of pairwise linearly separable clusters and
give a Ωpn ` m2q lower bound in the worst-case complexity of the
diagram. This is quite surprising, as it implies that linearly separable
clusters can realize the Θpn2q worst-case complexity, if m“ Θpnq.

• We look into construction algorithms, mainly by adapting existing algo-
rithmic techniques to the particular setting of the farthest color Voronoi
diagram. We obtain the following results.

3This can be very intuitively seen as a relaxation of a crossing: a pair of points pq1, q2q straddles
a pair of points pp1, p2q if the line through pp1, p2q intersects ("straddles") the line segment q1q2.
The straddling number of a set of clusters is simply the sum of all straddles of all pairs of points.
Refer to Section 3.2.2 for the exact definition.

4A set of clusters is disk-separable, if for each cluster there exists a disk containing that cluster
and no point from any other cluster.
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– An Oppn ` spPqq log3 nq-time algorithm for arbitrary input clusters.
Our algorithm is efficient and requires more time only at the pres-
ence of straddles, which can increase the complexity of the diagram.
For realistic input clusters, the parameter spPq is expected to be small,
i.e., spPq “ Opnq, and our algorithm outperforms the existing ones.

– An optimal Opn log nq-time algorithm for clusters that satisfy the con-
ditions of abstract Voronoi diagrams (such as disk-separable clusters).

Rotating rays Voronoi diagram

• We define and study the structural properties of the rotating rays Voronoi
diagram, a Voronoi structure which had not been considered before.

• Given a set of rays we reduce the Brocard illumination problem to the con-
struction of a rotating rays Voronoi diagram of the same set of rays, and
show that the Brocard angle is realized at a vertex of the diagram. This
paves the way for further research in both Brocard illumination problems
and the rotating rays Voronoi diagram.

• We consider the diagram in the plane and obtain the following results.

– We give an Ωpn2q lower bound for the worst-case complexity of the
diagram. Further, such a bound can be realized even if the rays are
pairwise non-intersecting. We complement this with a Θpn2q worst-
case lower bound for the complexity of a single Voronoi region.

– Regarding an upper bound on the complexity of the diagram, we show
that it is Opn2`εq, where εą 0 is an arbitrarily small positive constant.
Using the same results we get, as a by-product, an algorithm with the
same time complexity, i.e., Opn2`εq time.

– We solve the Brocard illumination in R2 in Opn2`εq time, and we also
show that the Brocard angle takes values between 2π{n and 2π.

• Motivated by the Brocard illumination of convex polygons, we consider the
domain to be a convex polygon bounded by the set of input rays. We show
the following results.

– We study the diagram restricted to the interior of the polygon and
show that it has Θpnq complexity and a tree structure.

– We give an algorithm to construct the diagram in optimal determinis-
tic Θpnq time. To do this we employ diverse techniques, including an
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Θpnq-time construction algorithms for abstract Voronoi diagrams, for
smaller parts of the problem.

– Using the above algorithm, we solve the Brocard illumination problem
of a convex polygon in optimal Θpnq time. We also show that the
Brocard angle takes values between 0 and π{2´π{n.

– We also present a significantly simpler Opn log nq-time algorithm, which
employs a "collapsing" technique.

• We restrict the target domain to be one or more curves. We show how the
Voronoi diagram can be constructed with a generic approach of envelopes
in 2-space, and discuss how this applies to different curved domains.

Towards linear-time construction algorithms

• We generalize the combinatorial result of Aggarwal et al. [1989] to marked
trees, i.e., embedded binary trees whose leaves are partitioned into two
sets, marked and unmarked. As already described, the combinatorial result
shows the existence of a set of leaves with some desired property (pair-
wise disjoint Voronoi regions) and an Opnq-time algorithm to select them.
Intuitively in marked trees, only the marked leaves are important for the
selection and the unmarked leaves can be considered as clutter. Our gen-
eralization is composed of two parts.

– We show that there exists a constant fraction 1{10 of the marked
leaves that have the desired property.

– We give an algorithm to select in time Op 1
1´p nq, a constant fraction p

of the marked leaves with the desired property. This is done by intro-
ducing a trade-off parameter p P p0,1q, to account for the unknown
ratio and distribution among the marked and the unmarked leaves.

1.4 Dissertation outline and publications

The remainder of this dissertation is organized as follows:

• Chapter 2 gives the necessary background for better comprehending this
dissertation and gives a review of the literature. We describe useful con-
cepts and algorithmic techniques related to the Voronoi diagrams which
we consider in the dissertation, and we also review the existing results,
including applications.
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• Chapter 3 deals with the farthest color Voronoi diagram. We present struc-
tural properties, refined combinatorial bounds, conditions for Voronoi dia-
grams of linear complexity, and algorithmic results.

• Chapter 4 is concerned with the rotating rays Voronoi diagram. We present
combinatorial and algorithmic results regarding different domains of inter-
est, and we apply them to floodlight illumination problems.

• Chapter 5 focuses on linear-time construction algorithms for classes of pla-
nar Voronoi diagrams. We generalize part of the deterministic linear-time
framework of Aggarwal et al. [1989].

• Chapter 6 concludes the dissertation and discusses future directions related
to the topics that this dissertation deals with.

Publications

The following is a list of the publications co-authored by me during my time as
PhD candidate. In each publication the authors are ordered alphabetically.

• Chapter 3 is based on the following publication:
Farthest Color Voronoi Diagrams: Complexity & Algorithms
Mantas, Papadopoulou, Sacristán, and Silveira [2021a]

Ñ Journal version (to be submitted)
Ñ Conference version

14th Latin American Theoretical Informatics Symposium (LATIN 2020)
Ñ Preliminary short version

35th European Workshop on Computational Geometry (EuroCG 2019)

• Chapter 4 is based on the following publication:
The Voronoi Diagram of Rotating Rays with Applications to Floodlight
Illumination
Alegría, Mantas, Papadopoulou, Savić, Schrezenmaier, Seara, and Suder-
land [2021]

Ñ Journal version (to be submitted)
Ñ Conference version

29th Annual European Symposium on Algorithms (ESA 2021)
Ñ Preliminary short versions

37th European Workshop on Computational Geometry (EuroCG 2021)
XIX Spanish Meeting on Computational Geometry (EGC 2021)



22 1.4 Dissertation outline and publications

• Chapter 5 is based on the following publication:
On Selecting Leaves with Disjoint Neighborhoods in Embedded Trees
Junginger, Mantas, and Papadopoulou [2021a]

Ñ Journal version
Discrete Applied Mathematics (DAM), Elsevier, 2021
(Special issue of CALDAM 2019 - Invited paper)

Ñ Conference version
5th Annual International Conference on Algorithms and Discrete Applied
Mathematics (CALDAM 2019)

The following publications have been co-authored by me, while I was a PhD
candidate but are not part of this dissertation.

• Certified Approximation Algorithms for the Fermat Point and n-Ellipses
Junginger, Mantas, Papadopoulou, Suderland, and Yap [2021b]

Ñ Conference version
29th Annual European Symposium on Algorithms (ESA 2021)

Ñ Preliminary short version
36th European Workshop on Computational Geometry (EuroCG 2020)

• New Variants of Perfect Non-crossing Matchings
Mantas, Savić, and Schrezenmaier [2021b]

Ñ Journal version (to appear)
Discrete Applied Mathematics (DAM), Elsevier
(Special issue of CALDAM 2021 - Invited paper)
Preprint: arXiv:2001.03252

Ñ Conference version
7th Annual International Conference on Algorithms and Discrete Applied
Mathematics (CALDAM 2021)

Ñ Preliminary short versions
XIX Spanish Meeting on Computational Geometry (EGC 2021)
36th European Workshop on Computational Geometry (EuroCG 2020)



Chapter 2

Background and literature review

In this chapter we give the necessary background to better comprehend this dis-
sertation, and we also review the literature of the topics we deal with, together
with applications. In Section 2.1, we describe some useful basic algorithmic
paradigms and notions related to Voronoi diagrams. In Section 2.2, we review
the existing results on Voronoi diagrams which have clusters as input sites. In
Section 2.3, we discuss results on floodlight illumination problems and Voronoi
diagrams of rays.

2.1 Basic techniques on planar Voronoi diagrams

In Section 2.1.1, we describe basic algorithmic paradigms for the construction of
Voronoi diagrams, and in Section 2.1.2, we review the notion of abstract Voronoi
diagrams. We start by giving some useful notation.

Given a set of sites S, we denote the nearest Voronoi region of a site s P S by

vregps,Sq :“ ts P R2
| dpx , sq ă dpx , rq @ s P S z truu.

The Voronoi diagram of a set of sites S is the union of all the Voronoi regions of the
sites of S. Each Voronoi diagram induces a planar subdivision, hence there exists
a corresponding graph structure. We denote the graph structure of a Voronoi
diagram by

VDpSq :“ R2
z
ď

sPS

vregps,Sq.

To describe the features of such a plane graph we will be speaking of Voronoi
edges and Voronoi vertices. If a Voronoi region has more than one connected

23
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components, we will refer to each connected component as a face. For conve-
nience, when it is clear from the context we may interchangeably refer to both
the planar subdivision and its graph structure as simply the Voronoi diagram.

2.1.1 Algorithmic techniques

Following, we briefly describe some common algorithmic techniques for the con-
struction of Voronoi diagrams. We describe the algorithms in terms of the nearest
point Voronoi diagram. The schemes which we describe is divide & conquer, lift-
ing to 3 dimensions, and (randomized) incremental construction.

Before proceeding, note that there is an Ωpn log nq time lower bound on the
time complexity that any algorithm requires, and this holds true even if the points
are already sorted according to their x-coordinate; see Shamos [1978] and Djid-
jev and Lingas [1991].

Divide & conquer. The algorithm starts by recursively splitting a set of sites S
into two subsets SA and SB, until each set has a constant number of sites. Then,
the two subsets are constructed recursively to obtain VDpSAq and VDpSBq. In a
third phase, the two diagrams are merged in order to obtain VDpSAYSBq “ VDpSq.

To merge the two diagrams it is necessary to construct the merge curve, that
is, the set of Voronoi edges in VDpSAY SBq which are equidistant to sites p P SA

and q P SB. Intuitively, if we think of the merging phase, as "gluing together" the
Voronoi diagrams, the merge curve is the part where this "gluing" happens. To
construct the merge curve a starting point/edge has to be identified from which
we can start tracing the merge curve, i.e., constructing it edge by edge until it is
completely constructed. Refer to Fig. 2.1 for an illustration of a merging phase
of two nearest point Voronoi diagrams.

When the sites are points, the splitting phase can be done according to the x-
coordinate, that is, SA contains the leftmost half points and SB the rightmost half
points. This split guarantees a nice merge curve consisting of a single unbounded
chain; see the curve in Fig. 2.1. As a result a starting point can be easily found
and the overall merging phase takes Opnq time, yielding an Opn log nq overall
time complexity. This algorithm was first described by Shamos and Hoey [1975].

Unfortunately, such a nice merge curve is not always possible to obtain. In
several diagrams, the merge curve consists of many components which can also
be bounded. In these cases, identifying starting points is not easy, as it may
require performing multiple point location queries. Using standard techniques,
a single point location query in a Voronoi diagram can be performed in Oplog nq
time; see Kirkpatrick [1983]. Hence, merging efficiently two Voronoi diagrams
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Figure 2.1. A merging phase of a nearest point Voronoi diagram. The two
diagrams VDpSAq and VDpSBq are shown dashed. The black thick curve is the
merge curve of VDpSAYSBq . The arrows (ÝÑ) schematize tracing, where (‚)
indicates the starting and ending points.

is a non-trivial task for any divide & conquer algorithm. We will see an example
of a divide and conquer algorithm dealing with such cases in Section 3.5.

Incremental construction. Let S“ ts1, s2, . . . , snu be the set of input point-sites,
and let Si :“ ts1, s2, . . . , siu. The algorithm starts by constructing the Voronoi
diagram of a constant number of points, and then it incrementally inserts the
points of S, one by one, until the final diagram VDpSq is obtained. At step i of
the algorithm, point si is inserted into the existing diagram VDpSi´1q, to obtain
VDpSiq. This method was first described by Green and Sibson [1978].

The insertion operation of a point si can be seen a special case of a merging
operation described earlier, where the merge curve is the boundary of the region
vregpsi,Siq. To construct vregpsi,Siq, first the point si has to be located in the
diagram VDpSi´1q, as this will reveal a starting point to start tracing the boundary
of the region. Then, tracing can be done in time linear in the number of the
neighbors of si in VDpSiq. It is not hard to see that si might be incident to Opiq
sites, hence the insertion of site si can take time Opiq, and this can lead to a total
ř

i“1...n Opiq “ Opn2q time complexity.
The above worst-case scenario, although possible, is not expected to happen

often. A common approach is to resort to randomization, by taking a random
permutation of the input points in the beginning. Refer to Clarkson and Shor
[1989] and Guibas et al. [1992], for randomized schemes yielding algorithms
with expected Opn log nq-time complexity.
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qp

u(p)

(a) A site p is lifted to the parabola
(point uppq), and induces the hyperplane
tangent to the parabola at uppq (line,
shown dashed). The upper envelope pro-
jected to R1 yields the Voronoi diagram

qpx

fp(x)

(b) A site p induces a distance function
fp, where a point x P R1 is lifted to the
point fppxq “ px , dpx , pqq (wedge, shown
dashed). The lower envelope projected
to R1 yields the Voronoi diagram

Figure 2.2. A nearest Voronoi diagram of a set of 4 points (˝, ˝, ˝, ˝) in R1

(horizontal line) constructed as the envelope of functions in R2, based on two
different approaches. The envelopes are shown with solid colored segments, and
the Voronoi vertices with (‚). The Voronoi region of a site q (˝) is highlighted.

Lift-up to 3 dimensions. Planar Voronoi diagram are closely related to ar-
rangements of surfaces in the 3-dimensional space. More generally, a Voronoi
diagram in Rd is related to an arrangement of hypersurfaces in Rd`1 dimensions.
We describe two different approaches, both of which are based on the framework
of Edelsbrunner and Seidel [1986]. The description is given for the diagram in
R2, and an accompanying illustration is given in Fig. 2.2 for the diagram in R1 .

The first approach is to lift up each point-site p P S to the unit paraboloid
in R3, i.e., p “ pp1, p2q ÞÑ uppq “ pp1, p2, p2

1 ` p2
2q. Then for each lifted point

uppq take the plane that is tangent to the paraboloid at point uppq. As a result,
each site p yields a surface (plane) Fp. The collection F of these n surfaces is
an arrangement of surfaces in R3. Now if we take the upper envelope (pointwise
maximum) ofF and project it down toR2, this yields the nearest Voronoi diagram
of S. Refer to Fig. 2.2a for the illustration of an 1-dimensional instance.

The second approach is to define for each point-site p P S a 3-dimensional
distance function fp which takes each point x P R2 and lifts it up to a point fipxq
with height equal to the distance of x to p, i.e., x ÞÑ fppxq “ px , dpx , pqq As
a result, each site p yields a surface (cone) Fp, and the collection F of these n
surfaces induces an arrangement of surfaces inR3. The lower envelope (pointwise
minimum) of F projected down to R2, yields the nearest Voronoi diagram of S.
Refer to Fig. 2.2b for the illustration of an 1-dimensional instance.
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The aforementioned method is a very general and powerful approach. Apart
from being applicable to higher dimensional Voronoi diagrams, it can also be
used to derive all higher order Voronoi diagrams. Each of the n´ 1 levels of the
arrangement of surfaces corresponds to a Voronoi diagram of different order.

Overall, to construct any planar Voronoi diagram it suffices to obtain the
lower envelope of an arrangement of appropriately defined 3-dimensional sur-
faces. Sharir [1994] showed that the lower envelope of surfaces which are well-
behaved has Opn2`εq combinatorial complexity and it can also be constructed in
Opn2`εq time. We will see the requirements for surfaces to be well-behaved to-
gether with some examples of Voronoi diagrams modeled via this approach in
Sections 4.2 and 4.4.

2.1.2 Abstract Voronoi diagrams

We now review the framework of abstract Voronoi diagrams, introduced by Klein
[1989], which unifies various concrete instances of planar Voronoi diagrams.

In this framework, instead of sites and distances, Voronoi diagrams are de-
fined on the underlying system of bisectors. Given two sites s and r, their bisector
bps, rq divides the plane into two regions: the dominance region of s over r, de-
noted drps, rq, and drpr, sq defined analogously. The nearest Voronoi region of a
site s, can be simply defined as the intersection of all related dominance regions:

vregps,Sq :“
č

rPSztsu

drps, rq.

Refer to Fig. 2.3 for an illustration of the above notions. To fall under the
abstract Voronoi diagram framework, the system of bisectors has to satisfy a set
of simple combinatorial properties, called axioms. The axioms require that for
each subset of sites S1 Ď S, the following hold.

(A1) For any two sites r, s P S1, their bisector bps, rq is an unbounded Jordan curve.
(A2) For any site s P S1, its Voronoi region vregps,S1q is non-empty and connected.
(A3) The closure of the union of all the Voronoi regions in VDpS1q covers R2.

We collectively refer to the three previous conditions as AVD axioms. Refer to
the diagram of Fig. 2.3b and observe how the AVD axioms are satisfied. Note that
in the original definition of Klein [1989] there was also a fourth axiom, but was
later proved by Klein et al. [2009] that it can be subsumed without complications.

Voronoi diagrams satisfying the AVD axioms, have Opnq complexity, and they
can be constructed in deterministic Opn log nq time with a divide & conquer al-
gorithm; see Klein [1989]. Alternatively, Klein et al. [1993] gave a randomized
incremental construction with expected Opn log nq time complexity.
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dr(s, r)

dr(r, s)

b(s, r)

(a) A bisecting curve bps, rq and
the resulting dominance regions drps, rq
(shown shaded) and drpr, sq.

dr(s, r)b(s, r)

b(s, t)

b(r, t)

dr(s, t)

(b) The set of bisectors (dashed), the
Voronoi diagram VDpts, r, tuq (solid),
and the region vregps, ts, r, tuq (shaded).

Figure 2.3. A set of 3 sites ts, r, tu and their Voronoi diagram from the per-
spective of Abstract Voronoi diagrams.

Higher order abstract Voronoi diagram have also been considered in the lit-
erature. Mehlhorn et al. [2001] studied the farthest abstract Voronoi diagram.
They proved that although a single region can have Θpnq faces, the diagram
has Opnq overall complexity, a tree structure, and that it can be computed in
expected Opn log nq time. Recently, Bohler, Cheilaris, Klein, Liu, Papadopoulou,
and Zavershynskyi [2015] studied the order-k abstract Voronoi diagram show-
ing that it has complexity Opkpn´kqq. Algorithms to construct order-k diagrams
have been given by Bohler et al. [2016, 2019].

Classes of abstract Voronoi diagrams have also been studied in conjunction
with the aforementioned linear-time construction schemes. The scheme of Ag-
garwal et al. [1989] was applied by Klein and Lingas [1994] to Hamiltonian ab-
stract Voronoi diagrams1, and it was applied by Bohler et al. [2014] to forest-like
abstract Voronoi diagrams2. Junginger and Papadopoulou [2018] applied the
scheme of Chew [1990], to the fundamental problem of updating an abstract
Voronoi diagram after deletion of a site (without additional assumptions).

Other recent extensions of the framework include bisecting curves which are
closed (relaxed axiom A1) and sites having disconnected Voronoi regions (re-
laxed axiom A2); see Bohler et al. [2014; 2017].

1In Hamiltonian abstract Voronoi diagram there exists a Hamiltonian curve which visits each
Voronoi region exactly once, in every subset of sites. See Section 4.3.3 for more details.

2Forest-like abstract Voronoi diagrams extend over the Hamiltonian ones, and allow the Hamil-
tonian curve to visit each Voronoi region more than once (but still remain connected).
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Figure 2.4. The nearest color Voronoi diagram of a set P of m“ 4 clusters (‚,
˛, ‚, Î) of n“ 8 total points. The dashed edges indicate the finer subdivision
of each Voronoi region.

2.2 Cluster Voronoi diagrams

In this section, we review results on Voronoi diagrams where the input sites are
clusters of objects. In Section 2.2.1, we consider color Voronoi diagrams of points
clusters, which is a topic this dissertation deals with, and review related algorith-
mic and combinatorial results. In Section 2.2.2, we review other cluster Voronoi
diagrams which have been considered in the literature. In Section 2.2.3, we
discuss different applications of color Voronoi diagrams.

2.2.1 Color Voronoi diagrams

Let the input be a set P“ tP1, ..., Pmu of m clusters of points, where no two clus-
ters share a common point and mą 1. Let the set of all points be P˚ :“

Ť

PiPP
Pi,

with |P˚| “ n. We consider the minimum distance as described in Definition 1.4.

Nearest Color Voronoi Diagram. The nearest color Voronoi diagram, as de-
scribed in Definition 1.5, is the nearest site Voronoi diagram of point clusters,
under the minimum distance. An instance of a nearest color Voronoi diagram of
4 clusters is shown in Fig. 2.4. Note that each nearest color region of a cluster of
P can be augmented by an internal subdivision coming from the Voronoi diagram
VDpPq; see the dashed edges in Fig. 2.4.

The nearest color Voronoi diagram can be directly derived from the near-
est Voronoi diagram of the points of all clusters, as the graph structure of the
augmented nearest color Voronoi diagram coincides with VDpP˚q, the Voronoi
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Figure 2.5. The farthest color Voronoi diagram of a set of 4 clusters of 8 total
points. (It is the same set of clusters as the one shown in Fig. 2.4).

diagram of all points. As a consequence, the diagram in R2 has Opnq complex-
ity and it can be constructed in Opn log nq time. The diagram in Rd , d ě 3, has
Θpnrd{2sq worst-case complexity and it can be constructed in Opnrd{2sq time.

An output-sensitive3 algorithm to compute the nearest color Voronoi diagram
in R2 was given by Bremner et al. [2005], with time Opn log kq, where k ď n is
the number of points that contribute to the complexity of the diagram. For Rd ,
d ě 3, an output-sensitive algorithm can be derived from the results of Eppstein
[2022]. Note that both of these algorithms do not explicitly study color Voronoi
diagrams, but classification problems; we give more details regarding such prob-
lems in Section 2.2.3.

Farthest Color Voronoi Diagram. The farthest color Voronoi diagram, as de-
scribed in Definition 1.6, is the farthest site Voronoi diagram of point clusters,
under the minimum distance. An example of a farthest color Voronoi diagram of
4 clusters is shown in Fig. 2.5. Similar to its nearest counterpart, each farthest
color region of a cluster P can be augmented by the diagram VDpPq; see the
dashed edges in Fig. 2.5.

The farthest color Voronoi diagram was first studied by Huttenlocher et al.
[1993]. They showed that the combinatorial complexity of the diagram is upper
bounded by Opmnαpmnqq, and they gave anΩpmnq lower bound in the worst case
complexity. The worst case complexity was later settled to Θpmnq by Abellanas
et al. [2001b] who gave an Opmnq upper bound.

3An algorithm is called output-sensitive, if its time complexity, depends on the size of the
output, instead of, or in addition to, the size of the input.
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Algorithms for the farthest color Voronoi diagram. We briefly describe the
current two best algorithms, of Huttenlocher et al. [1993] and Edelsbrunner et al.
[1989], which have Opmn log nq and Opn2q time respectively. Both are based on
a lifting to 3-space approach, as described in Section 2.1.1. We only describe the
lifting transformations and not the details regarding the envelopes computation.

The algorithm of Huttenlocher et al. [1993] can be described as follows. For
each cluster Pi P P, we take every point x P R2 and lift it to 3-space, with height
equal to the nearest point in Pi, i.e., x ÞÑ x i “ px , dcpx , Piqq. This yields a surface,
called the Voronoi surface of cluster Pi. Then, we take the upper envelope of all
m Voronoi surfaces, and project it down to R2. This induces the farthest color
Voronoi diagram of P.

The algorithm of Edelsbrunner et al. [1989] can be described as follows.
For each cluster Pi P P, we take every point p P Pi and lift it in 3-space to the
paraboloid, at point ppar . Then, we take the unique plane that touches paraboloid
at a point ppar . Following, we consider the upper envelope of all |Pi| planes,
which yields a surface corresponding to cluster Pi. If we consider the lower en-
velope of all m surfaces and project it down to 2-space, we obtain the farthest
color Voronoi diagram of P.

Note that the algorithm of Edelsbrunner et al. [1989]was originally designed
for the Hausdorff Voronoi diagram, a "minmax" diagram, which we define shortly
after. Its was observed that it can be adapted for the farthest color Voronoi dia-
gram by simply reversing the procedure (compute the lower envelope of all upper
envelopes, instead of the upper envelope of all lower envelopes) by Claverol et al.
[2018], who studied point clusters of cardinality 2.

Other results on the farthest color Voronoi diagram of points. Recently
some special configurations of input clusters were examined that admit a diagram
of Opnq combinatorial complexity. Bae [2012] considered "well-clustered sites",
essentially clusters satisfying some nice properties and yielding a Opnq-size dia-
gram. Iacono et al. [2017] considered clusters being the vertices of axis-aligned
rectangles (clusters of cardinality 4), and gave an Opn log2 nq-time algorithm.
Claverol et al. [2018] studied clusters being the endpoints of segments (clusters
of cardinality 2), and gave an Opn log nq-time algorithm for parallel segments.

Some other settings were also considered by Huttenlocher et al. [1993] in
their paper. They studied the diagram in R3 and gave an Opmn2αpmnqq com-
plexity bound and an Opn2m1`εq-time algorithm, for any ε ą 0. Further, they
considered the diagram under the L8 metric in R2, and they gave an Opmnq
upper bound on the complexity and a matching Ωpmnq worst case lower bound.
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Figure 2.6. The Hausdorff Voronoi diagram of a set of 4 clusters of 8 total
points. (It is the same set of clusters as the one shown in Figs. 2.4 and 2.5).

2.2.2 Other cluster Voronoi diagrams

We now review some other Voronoi diagrams where the input sites are clusters
(sets) of objects and have been considered in the literature.

Hausdorff Voronoi diagram. A cluster Voronoi diagram that has been widely
studied is the Hausdorff Voronoi diagram. It is a "max-min" type of diagram, and
essentialy the "dual" of the farthest color Voronoi diagram (which is a "min-max"
diagram). Given a set of of m clusters of n total points, the Hausdorff Voronoi
diagram is a nearest site Voronoi diagram, where the distance between a point
x P R2 and a cluster P is the maximum distance, i.e.,

d f px , Pq :“max
pPP

dpx , pq.

An example of a Hausdorff Voronoi diagram is illustrated in Fig. 2.6.
The Hausdorff Voronoi diagram was first considered by Edelsbrunner et al.

[1989], who gave an Opn2αpnqq upper bound, and an algorithm with the same
time complexity. Papadopoulou and Lee [2004] improved the upper bound to
Opn2q, reducing also the time complexity of the aforementioned algorithm to
Opn2q. The diagram has been extensively studied since then. It has Opn` crpPqq
combinatorial complexity where crpPq is the number of crossings4 between clus-
ters in P. Further, if the clusters are pairwise non-crossing it falls under the
abstract Voronoi diagram framework; see Papadopoulou and Lee [2004]

4The number of crossings between two clusters P and Q, is the number of pairs of segments
on the boundary of the convex hull of P YQ, which have one endpoint in P and one in Q.
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Many different algorithmic paradigms have been considered for its construc-
tion. The current fastest algorithms are a randomized incremental construction
by Arseneva and Papadopoulou [2019]with expected time complexity OppcrpPq`
n log mq log nq, a divide and conquer algorithm by Iacono et al. [2017] with time
Oppn` crpPqq log3 nq, and the lifting to 3-space algorithm of Edelsbrunner et al.
[1989] with time Opn2q. Additional algorithms include a plane-sweep by Pa-
padopoulou [2004] and a parallel divide and conquer by Dehne et al. [2006].

Farthest color Voronoi diagram of line segments. Another related diagram is
the farthest color Voronoi diagram of line segments. Each input now is a cluster
(set) of line segments, and the distance between a point to a cluster, is realized
by the nearest segment belonging to the cluster.

The diagram was first studied in the paper of Huttenlocher et al. [1993].
They showed that the diagram has complexity Opn22αpnqq and it can be com-
puted in Opn2αpnq log nq time. When the L8 metric is considered it has complex-
ity Opn2αpnqq and Opn2 log nq construction time. Later, Bae [2014] gave a tight
worst case complexity bound of Θpkn` hq, where h is the number of crossings
between the line segments (for any Lp metric). Using these bounds, Bae [2014]
also improved the time complexity of the algorithm of Huttenlocher et al. [1993].

A special case occurs, when the segments of each input cluster form a simple
polygon; this is known as the farthest polygon Voronoi diagram. The case of
pairwise disjoint polygons was studied by Cheong et al. [2011], who showed
that each Voronoi region is connected, an Opnq complexity upper bound, and an
Opn log3 nq-time construction algorithm. The farthest polygon Voronoi diagram
was also studied by Zhu and Xu [2013].

Other Voronoi diagrams of clusters. For completeness, we mention some
other cluster Voronoi diagrams which have been considered in the literature.

In the 2-site Voronoi diagram, given are pairs of points, i.e., clusters of size 2,
and various distance measures are considered between a point in the plane and
a site, as for example, the sum, product or the difference of the two distances.
Refer to Barequet et al. [2002, 2013] for some results related to such diagrams.

Another work is by Huang et al. [2021] regarding influence-based Voronoi
diagrams of clusters. Here, the input is a set of (possibly overlapping) clusters
of points and the distance function is a collective distance measure defined by
all points in a cluster. These diagrams are studied in an approximate sense, and
they build over an earlier work by Chen et al. [2017]
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2.2.3 Applications of color Voronoi diagrams

In this section, we discuss some applications of color Voronoi diagrams that have
been considered in the literature.

Facility Location problems. Farthest-site related problems involving clusters
appear in several different situations. Clusters may represent locations of facil-
ities of the same type that can be accessed interchangeably, while the farthest
distance allows to give worst-case scenario bounds on the distance to reach an
object of each type. For instance, consider the following typical facility location
problem: given locations of multiple types of facilities (e.g., hospitals, schools,
etc.), each type represented by a cluster, we want to find a location such that the
distance to all services is minimized. This can be found using the minimum color
spanning disk, a disk containing a point of each color, which can be extracted
efficiently from the farthest color Voronoi diagram, as it is realized at a vertex
or an edge of the diagram; see Abellanas et al. [2001b]. Refer to Fig. 2.7a for
an illustration. Such problems can also arise in spatial databases, see Guo et al.
[2015] or Chen et al. [2020] for examples.

Many other color spanning objects have been considered in the literature,
which can also be obtained using analogous Voronoi diagrams, like the mini-
mum color spanning annulus, or the minimum color spanning square. For related
results on color spanning objects see Abellanas et al. [2001a], Das et al. [2009],
Fleischer and Xu [2010], Khanteimouri et al. [2013], or Acharyya et al. [2018].

Minimum Hausdorff distance. The farthest color diagram finds applications
in shape matching problems, where the similarity between two shapes, repre-
sented by finite point sets, has to be measured. One such similarity measure is
the Hausdorff distance5. Huttenlocher et al. [1993] showed how to find the trans-
lation that minimizes the Hausdorff distance between two sets A and B, by using
the upper envelope of |A| ` |B| Voronoi surfaces (as discussed in Section 2.2.1),
defined by the sets Ai “ tai ´ b j | b j P Bu and B j “ tai ´ b j | ai P Au. The min-
imum Hausdorff distance under translation between A and B is realized at the
global minimum of the upper envelope of these Voronoi surfaces. A similar tech-
nique in a dynamic setting, was used by Huttenlocher et al. [1992] to solve the
same problem allowing additionally rotation. Refer to Veltkamp and Hagedoorn
[2001] for more information on shape matching.

5The Hausdorff distance between two sets A and B is HpA, Bq “ maxphpA, Bq, hpB, Aqq, where
hpA, Bq “maxaiPA minb jPB dpai , b jq is the directed Hausdorff distance between A and B.
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(a) The farthest color Voronoi diagram,
of 4 clusters ( , , , ). The minimum
color spanning disk is centered (‚) on the
diagram.

(b) The nearest color Voronoi diagram
of 2 clusters (‚, ‚). The relevant points
are highlighted. 3 query points (ˆ) are
classified using the nearest neighbor rule.

Figure 2.7. Two examples of applications of color Voronoi diagrams.

Classification problems. In classification problems given is a set of point clus-
ters (training set), and new (query) points need to be assigned (classified) to one
of the existing clusters. A standard classification method is the nearest neighbor
rule, where the query point is assigned to the cluster of its nearest neighbor; see
Cover and Hart [1967]. It is not hard to see that such a classification rule induces
a nearest point Voronoi diagram. The diagram can be constructed in Opn log nq
time and queries can be answered in Oplog nq time using standard methods. Of-
ten large datasets are involved, so it is natural to look for ways to reduce the size
of the clusters without altering the quality of the nearest neighbor rule.

From the viewpoint of color Voronoi diagrams, it is not hard to see that the
nearest color Voronoi diagram (without internal subdivision) is useful, as it pro-
vides a way to correctly reduce the size of the dataset: points which do not induce
Voronoi edges are not relevant and can be safely removed without affecting the
correctness of the nearest cluster query. Refer to the example of Fig. 2.7b; ob-
serve that out of the 100 points, only 13 are relevant, and suffice to correctly
classify any given query. This is interesting as, if we are given a diagram, with k
relevant points, we can answer queries in Oplog kq time, instead of Oplog nq.

The above brings the question of efficient output-sensitive algorithms for the
the nearest color Voronoi diagram. Bremner et al. [2005] constructs the diagram
in the plane in Opn log kq time, calling it the decision boundary. Recently, Epp-
stein [2022] gave in higher dimensions output-sensitive algorithms for finding
the relevant points, from which the diagram can be obtained as a by-product.
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Other applications. Other farthest-site problems involving point-clusters ap-
pear when considering imprecision in geometric data, as points clusters are a
natural way to represent the possible locations of an object, whose exact loca-
tion is unknown; see e.g., Jørgensen et al. [2011]. In this setting, the farthest
color Voronoi diagram encodes proximity information, allowing to efficiently
solve problems involving pairs of points or larger clusters; see e.g., Ding and
Xu [2011] or Arkin et al. [2015].

The farthest color Voronoi diagram has also been used by Bae et al. [2010]
to solve variants of the Steiner tree problem and sensor deployment problems in
wireless sensor networks by Lee et al. [2013]. Finally, another recent application
was given by Claverol et al. [2018], who combined the diagram in a novel way
with the "dual" Hausdorff Voronoi diagram, in order to find stabbing circles for
line segments.

2.3 Voronoi diagrams of rays and illumination problems

In this section, we review the literature related to the Voronoi diagrams of rays
and the respective illuminations problems. In Section 2.3.1, we review general
floodlight illumination problems. In Section 2.3.2 we discuss results on Brocard
illumination. In Section 2.3.3 we describe how the rotating rays Voronoi diagram
can solve Brocard illumination problems and review related Voronoi structures.

2.3.1 Floodlight illumination

In art gallery problems given is a domain, which is often polygonal, and the goal
is to appropriately place guards in order to guard (or cover) the domain. Most
commonly, the guards have an unrestricted field of view, and can guard any point
that is visible6 by them. Most questions related to art gallery problems revolve
around minimizing the number of guards used, and there are many interesting
variants. The guards may be restricted to lie on the boundary of the domain
(edges or vertices) or may have to be assigned to some predefined candidate
positions. Refer to O’Rourke [1987, 2017] for a list of results.

Modeling the guards as having an unrestricted field of view is not always real-
istic. There are many applications where the "guards" have a limited field of view,
as for instance, (surveillance) cameras, directional antennae, or even humans.
To correctly model these problems, the field of view should be represented by a

6Given a guard p in a domain D, a point x PD is visible by p, if the line segment px does not
intersect the boundary of D.
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Figure 2.8. Stage (line segment) illumination by 4 floodlights of aperture 40˝.

wedge, with aperture depending on the intended application. Such art gallery
problems involving wedges as guards, are called floodlight illumination problems,
and a guard with field of view of angle α is called an α-floodlight. Following we
briefly review the literature of floodlight illumination problems.

Floodlight illumination results. Consider the following problem. Given is a
set of n angles, representing the aperture of n floodlights, and a set of n points,
representing the location of the apices of the floodlights. The goal is to assign the
floodlights to the points and then orient them appropriately, such that a target
domain is illuminated. Different domains have been examined in the literature.

When the target domain is R2, Bose et al. [1997] showed that if each flood-
light has an angle of at most π, then a solution exists only if the sum of all angles
exceeds 2π, and in such cases a solution can be found in Opn log nq time. They
also considered the target domain to be a wedge. Hardness results for illuminat-
ing wedges were given by Steiger and Streinu [1998] and Cary et al. [2010].

Another variant is the stage illumination problem, where the domain is a line
segment, called stage; see an example in Fig. 2.8. Ito et al. [1998] showed that
the general problem is NP-complete. A significantly easier problem, is when the
location of the apices is fixed, but they are free to rotate around, and the goal
is to minimize the sum of all angles. Opn log nq-time algorithms for this problem
were given by Contreras et al. [1998b] and Dietel et al. [2008]. An energy-aware
variant of stage illumination was studied by Eisenbrand et al. [2008].

Polygonal domains are also a common domain of interest for floodlight il-
lumination problems. Given a convex polygon of n vertices, O’Rourke [1987]
asked whether we can illuminate the polygon using a set of k ď n vertex flood-
lights whose apertures sums up to π. The authors gave a negative answer to
that. Urrutia [2000] showed that any convex polygon can be illuminated by 3
vertex floodlights whose apertures sums up to π, and Ismailescu [2008] showed
that the same can be achieved using 4 floodlights of aperture π{2. Another re-
lated question is whether a convex polygon can be illuminated using n vertex
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π{n-floodlights. O’Rourke [1987] gave a negative answer (counterexample) for
large n, and positive answers are currently known only for n“ 3,4.

For arbitrary simple polygons Estivill-Castro et al. [1995] and Spillner and
Hecker [2002] study the problem of finding the minimum angle α such that a
set of n (uniform angle) α-floodlights illuminates the input polygon. Tóth [2000,
2002, 2003] asks for the minimum number of (uniform) α-floodlights necessary
to illuminate the polygon, and gives bounds for different values of α. Some
other related results are given by Bagga et al. [1996], Abello et al. [1998], and
Abdelkader et al. [2015].

2.3.2 Brocard illumination

A particular type of floodlight illumination is the Brocard illumination, which we
described in Definition 1.9. The Brocard illumination problem is a generaliza-
tion of on an old geometric problem, called the Brocard problem. We describe
this problem using the following extract from Guggenbuhl [1953], which nicely
defines the original problem and highlights its importance.

"During the last half of the nineteenth century there was a great revival of interest
in the field of geometry. A large part of this interest had its origin in a simple
problem submitted to a contemporary mathematical periodical by a French army
officer. The problem was to find a point O within a triangle ABC such that the
angles OAB, OBC and OCA would be equal. The name of the army captain who
submitted the problem was Brocard; Pierre René Jean-Baptiste Henri Brocard."

The aforementioned point O is called the Brocard point, and the angle which
realizes it is called the Brocard angle. The problem of finding the Brocard point,
after being solved for triangles, was later generalized to convex polygons with
more vertices. For ną 3, a Brocard point does not always exist; a polygon which
admits such a point is called a Brocard polygon. Despite the long history, except
triangles, only harmonic polygons7 are known to be Brocard; see Casey [1888].
An overview of the early history of the problem is given by Bernhart [1959].

Brocard illumination problems. An alternative way of viewing the Brocard
problem is in terms of floodlight illumination. Suppose an α-floodlight is aligned
with each edge of the polygon, and assume that α is initially set to 0, and it starts
growing in the counterclockwise direction (facing the interior), until the entire

7Harmonic polygons are either regular polygons or polygons obtainable from regular polygons
after cyclic inversion.
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(a) The floodlight angle (>) is α“ 20˝. (b) The floodlight angle (>) is α“ 35˝.

Figure 2.9. Brocard illumination of a convex polygon with 8 vertices.

interior of the polygon is illuminated; see an illustration of the setting in Fig. 2.9.
If the last point of the polygon to be illuminated, is illuminated simultaneously
by all the floodlights, then this point is the Brocard point, and the angle realizing
it is the Brocard angle.

As already mentioned though, very few classes of polygons admit a Brocard
point. Hence, motivated by the floodlight illumination interpretation, it is nat-
ural to generalize the problem and ask for the last point to be illuminated (not
necessarily by all rays), and the (minimum) angle realizing this, which is the
Brocard angle. Further, it is reasonable to generalize the problem of finding
the Brocard angle to domains other than polygons, such as the entire plane and
curves. A formal definition of the Brocard illumination problem was given in
Definition 1.9.

Known results for the Brocard illumination problem. Given a convex poly-
gon with n vertices, we can trivially detect if it is a Brocard polygon in Opnq
time (by checking the angles of three pairs of consecutive vertices), and then
compute the Brocard angle in such cases in Op1q time. An algorithm for the
computation of the Brocard angle of arbitrary simple polygons was recently pre-
sented by Alegría-Galicia et al. [2017], who first studied this problem. The au-
thors gave an Opn3 log2 nq time algorithm, and complemented this result with
an Opn log nq-time algorithm for convex polygons8. There are no results for the
Brocard illumination problem for domains other than polygonal ones.

8The Opnq-time complexity for convex polygons claimed in Alegría-Galicia et al. [2017] is not
correct. The correct time complexity of the algorithm is Opn log n).
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(a) The domain is R2.
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(b) The domain is a convex polygon.

Figure 2.10. Two examples of the application of the rotating rays Voronoi dia-
gram to Brocard illumination problems. The Brocard angle, shown highlighted
(>), is realized at a Voronoi vertex (‚) by the 3 rays r, s and t.

2.3.3 Voronoi diagrams of rays and their applications

We now describe how the rotating rays Voronoi diagram can be useful for the Bro-
card illumination problem. More specifically, given a set of rays R each aligned
with a floodlight and a target domain D to be illuminated, the Brocard angle
is realized on the graph structure of the rotating rays Voronoi diagram of R re-
stricted to D.

To see that, consider the rotating rays perspective described earlier. Assume
that the floodlights are initially aligned with the rays, and then they start rotating
counterclockwise, i.e., they start with α “ 0, and α keeps growing. As they
rotate, points in the domain D become illuminated, and this rotation is being
done, i.e., α keeps growing, until the entire D is illuminated. The last point in
D to be illuminated, will be the point that has maximum angular distance to its
nearest ray, and so the Brocard angle will be

α˚ “max
xPD

min
rPR

d=px , rq.

By the properties of the angular distance function, the last illuminated point will
be on a vertex or an edge of the diagram; more details are found in Section 4.1.

For a better comprehension, refer to the two examples of Fig. 2.10. In Fig. 2.10a
given is a set of 5 rays and the target domain is R2. In Fig. 2.10b given is a set
of 8 rays bounding a convex polygon, and the target domain is the interior of
the polygon. In both examples, the Voronoi vertex realizing the Brocard angle is
highlighted together with the 3 rays that induce it.

Since the Brocard angle is realized at a vertex or an edge of the diagram, this
means that once we are given the diagram we can traverse its graph structure to
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find the vertex or edge of maximum distance. Traversing a planar graph can be
done using standard methods in linear time in its size. Hence, there is an interest
in studying the rotating rays Voronoi diagram in diverse settings. We will see in
Chapter 4 some properties of the points realizing the Brocard angle.

As a final note, we remark, that apart from the application of the rotating
rays Voronoi diagram to the Brocard illumination problem, there are many real-
world problems where devices have a limited field of view, and can be modeled
as floodlight illumination problems with floodlights of uniform aperture. For in-
stance, these can be (surveillance) cameras, or directional antennae; see Berman
et al. [2007], Kranakis et al. [2011], Neishaboori et al. [2014], and Czyzowicz
et al. [2015] for some examples. It would be interesting to examine how the ap-
plications of the rotating rays Voronoi could be broadened by considering such
problems.

Other related Voronoi diagrams. As already mentioned, the rotating rays Voronoi
diagram has not been considered before. Following, we describe two diagrams
that have been studied in the literature and demonstrate some similarities.

In their work, de Berg et al. [2017] defined a Voronoi diagram with rota-
tional distance costs. The sites are rays and the angular distance they consider
is unoriented (bidrectional) in contrast to the one we consider which is oriented
(unidirectional). In the simple angle-only case they consider, the two diagrams
present similarities. In their more general case they consider, they incorporate
in the distance measure some sense of movement; this is because they were mo-
tivated by the study of dominance regions in the analysis of soccer matches, as
proposed by Taki et al. [1996].

Another diagram, which is in some sense related, is the angular Voronoi dia-
gram studied by Asano et al. [2006] for the purpose of mesh improvement. There
the input sites are line segments and the distance measure is the visual angle.
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Chapter 3

Farthest color Voronoi diagram

This chapter presents our results on the farthest color Voronoi diagram. It is
based on the following publication:

I. Mantas, E. Papadopoulou, V. Sacristán, and R. Silveira. Farthest Color Voronoi
Diagrams: Complexity and Algorithms. In Proceedings of the 14th Latin Ameri-
can Symposium on Theoretical Informatis (LATIN 2020), pages 151-164. Springer,
2021.

In Section 3.1 we give some notation, and basic notions related to the dia-
gram. In Section 3.2 we look into the structural properties of the diagram and
refine its combinatorial complexity bound. In Section 3.3 we study necessary and
sufficient conditions under which the diagram has linear combinatorial complex-
ity. In Section 3.4 we consider classes of linearly separable input clusters, and
give a lower bound construction that achieves a worst-case quadratic complexity.
Section 3.5 is concerned with construction algorithms, and Section 3.6 concludes
the chapter.

3.1 Preliminaries

Let the input be P :“ tP1, ..., Pmu, a set of m clusters of points inR2, mą 1, where
no two clusters share a common point. Let the set of all points be P˚ “

Ť

PiPP
Pi,

with |P˚| “ n. For simplicity, we assume that P˚ is in general position, i.e., no
three points are collinear and no four points are cocircular.

Notation and definitions. Throughout this chapter we use the following no-
tation. Given two points p and q, we denote by dpp, qq the Euclidean distance

43
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(a) Diagram NCVDpPq (augmented).

x

(b) Diagram FCVDpPq (augmented). The
circle shows the farthest color disk of x .

Figure 3.1. The color Voronoi diagrams of a set P, where m“ 4 and n“ 8.

between p and q, by Lpp, qq the line through p and q, by pq the line segment
with endpoints p and q, and by bpp, qq the Euclidean bisector of p and q. Given
three points p, q and r, we denote by Cpp, q, rq the circle through p, q and r and
by Dpp, q, rq the corresponding disk.

The convex hull of a set of points P is denoted by CHpPq. Given a planar
region f Ă R2, we denote by B f its boundary, and by f its closure. We call each
connected component of a planar region f , a face of f .

Two clusters P and Q are called linearly separable if their convex hulls are
disjoint, i.e., CHpPqXCHpQq “H. A set of clusters is called linearly separable if
all clusters are pairwise linearly separable.

Recall, that the ordinary Voronoi diagram of a point set P is the subdivision of
R2 into ordinary Voronoi regions, where the region of a point p P P is vregpp, Pq “
tx P R2 | dpx , pq ă dpx , qq @q P Pztpuu. Further, the graph structure of the dia-
gram, sometimes called the Voronoi skeleton, of P is VDpPq “ R2z

Ť

pPP vregpp, Pq.
In color Voronoi diagrams, we consider the minimum distance (see Defini-

tion 1.4) between a point x P R2 and a cluster P, i.e.,

dcpx , Pq “ minpPP dpx , pq.

Recall that the nearest color Voronoi diagram of P is a subdivision of R2 into near-
est color (Voronoi) regions (see Definition 1.5), where the nearest color region of
a cluster Pi P P is

ncregpPi,Pq “ tx P R2
| dcpx , Piq ă dcpx , Pjq @Pj P PztPiuu.

The nearest color Voronoi diagram of P can be directly derived from the ordi-
nary Voronoi diagram of P˚, as the nearest color Voronoi region of a cluster Pi
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corresponds to the union of the ordinary Voronoi regions of its points in P˚, in
particular, ncregpPi,Pq “

Ť

pPPi
vregpp,P˚q. We denote the graph structure of the

nearest color Voronoi diagram by

NCVDpPq :“ R2z
ď

PiPP

ncregpPi,Pq.

An example of a nearest color Voronoi diagram is illustrated in Fig. 3.1a.
We defined the farthest color Voronoi diagram of P, as the subdivision of R2

into farther color (Voronoi) regions (see Definition 1.6), where the farthest color
region of a cluster Pi P P is

fcregpPi,Pq “ tx P R2
| dcpx , Piq ą dcpx , Pjq @Pj P PztPiuu,

and the farthest color region of a point p P Pi is

fcregpp,Pq “ tx P fcregpPi,Pq | dpx , pq ă dpx , qq @q P Piztpuu.

We denote the graph structure of the farthest color Voronoi diagram of P by

FCVDpPq :“ R2
z
ď

PiPP

fcregpPi,Pq.

As we have already discussed, a farthest color region fcregpPi,Pq is subdivided
into finer regions by the Voronoi skeleton VDpPiq. We call the subgraph VDpPiqX

fcregpPi,Pq the internal skeleton of fcregpPi,Pq, We denote the graph structure of
the farthest color Voronoi diagram, augmented by the internal skeletons, by

FCVDapPq :“ R2
z
ď

pPP˚

fcregpp,Pq.

An example of a farthest color Voronoi diagram is illustrated in Fig. 3.1b,
where internal skeletons are shown with dashed edges.

Color bisectors. We now define the bisector between two clusters of points
under the minimum distance.

Definition 3.1. Given two clusters P and Q, their color bisector is

bcpP,Qq :“ tx P R2
| dcpx , Pq “ dcpx ,Qqu.

Refer to Fig. 3.2 for an illustration of various cases of color bisectors. Color
bisectors have the following properties.
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(a) CHpPq XCHpQq “H (b) CHpPq Ă CHpQq

(c) CHpPq XCHpQq ‰H (d) CHpPq XCHpQq ‰H

Figure 3.2. Different color bisectors of two clusters P (‚) and Q (‚). The dashed
edges are BCHpPq and BCHpQq. The thin dotted edges are the segments on
BCHpP YQq with one endpoint in P and one in Q.

Lemma 3.1. The bisector bcpP,Qq is a subgraph of VDpPYQq consisting of disjoint
unbounded chains and cycles. Each unbounded chain of bcpP,Qq corresponds to a
distinct pair of edges on BCHpP YQq with one endpoint in P and one in Q.

Proof. The bisector bcpP,Qq is a subgraph of VDpPYQq, by its definition. The cor-
responding Voronoi diagram can be seen as a 2-colorable map, where vregpp, PY
Qq is colored blue and vregpq, PYQq is colored red, for any p P P and q PQ. The
boundary of this map is exactly the color bisector bcpP,Qq, thus, it may only con-
sist of disjoint unbounded chains and cycles; refer, e.g., to Preparata and Shamos
[2012]. The remaining properties of bcpP,Qq directly derive from the well-known
relation between unbounded Voronoi edges in VDpP YQq and edges on the con-
vex hull CHpPYQq.

As a corollary, a color bisector has complexity Op|P| ` |Q|q. From the corre-
spondence between segments on the boundary of CHpPYQq and the unbounded
chains of bcpP,Qq, it follows that if P and Q are linearly separable, then bcpP,Qq is
a single unbounded chain; see Fig. 3.2a. Further, bcpP,Qq consists only of cycles
if and only if P Ă CHpQq or Q Ă CHpPq; see Fig. 3.2b.
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Color vertex
Internal vertex
Mixed vertex

Internal skeleton
Color edge

fcreg(p,P)

p

Visibility decomposition

Figure 3.3. The features of the augmented farthest color Voronoi diagram
illustrated on a bounded face of a point p.

Features of the farthest color Voronoi diagram. The augmented farthest color
Voronoi diagram contains different types of edges and vertices; see Fig. 3.3 for
an illustration of these features. These are the following.

• A color edge is a subset of a color bisector, so any point on a color edge is
equidistant to the two clusters which induce it.

• An internal edge is an edge of the internal skeleton, so it is an edge of the
ordinary Voronoi diagram of a cluster.

• A color vertex is incident to three color edges, so it is equidistant to the
three clusters that induce the three color edges.

• A mixed vertex is incident to two color edges and one internal edge, so it is
equidistant to the two clusters inducing the color edges.

• An internal vertex is a vertex of the internal skeleton, so it is a vertex of the
ordinary Voronoi diagram of a cluster.

The combinatorial complexity of the farthest color Voronoi diagram is given
by the sum of the number of edges, vertices and faces of FCVDapPq. By Euler’s
formula it suffices to bound the number of any of these elements and the com-
plexity of the diagram follows.

The augmented FCVDapPq defines a farthest color disk, for every point x P R2.
This is the disk centered at x of radius dpx , pq, where x P fcregpp,Pq and p P P;
see for example the circle centered at x in Fig. 3.1b. This disk contains no point
of P in its interior, and it contains at least one point from every cluster in P.

Cluster hull. We now review the definition of the cluster hull of P from Pa-
padopoulou and Lee [2004]; refer to Fig. 3.4 for an illustration. It is a (non-
simple) closed polygonal chain, which characterizes the unbounded faces of the
Hausdorff Voronoi diagram. It is of interest, as we later show in Section 3.2.1 that
it also characterizes the unbounded faces of the farthest color Voronoi diagram.
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p

q
L(p, q)

Figure 3.4. The polygonal chain is the cluster hull of the set of clusters P

shown in Fig. 3.1. Points p and q are hull vertices and pq is a hull edge. The
arrow depicts the unit vector normal to pq. The surrounding frame illustrates
the sequence of unbounded edges and faces of FCVDapPq.

Definition 3.2. Given a set of clusters P, a point p P P is a hull vertex if there
exists a line ` through p such that P lies entirely in one halfplane defined by `,
while every cluster Q in PztPu intersects the other halfplane.

Given two hull vertices p P P and q P Q (with possibly P “ Q), the segment
pq is a hull edge if the line Lpp, qq leaves P and Q entirely on one side and every
cluster in PztP,Qu intersects the other halfplane. The hull edge pq is associated
with a unit vector normal to pq, that points in the direction away from P and Q.

The hull edges sorted by the circular ordering of their normal vectors define
a closed polygonal chain, called the cluster hull of P and denoted by CLHpPq.

Note that given a cluster P P P, only points on BCHpPq can be hull vertices of
CLHpPq, as only points on BCHpPq can have unbounded faces in FCVDpPq. This
is because given a point p P P, vregpp, Pq is unbounded if and only if p lies on
BCHpPq, combined with the fact that fcregpp,Pq Ă vregpp, Pq.

3.2 Properties and combinatorial complexity

In this section we study the properties and the complexity of the farthest color
Voronoi diagram. In Section 3.2.1, we look into the structure of farthest color
regions and we bound the number of unbounded faces. In Section 3.2.2, we
bound the number of bounded faces and refine the complexity bounds.

3.2.1 Structural properties and unbounded faces

Farthest color regions satisfy the following visibility property.
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fp ∈ P

vreg(p, P )

x

Vor(P )

(a) A bounded face with
empty T ; point x violates
Proposition 3.2.

f
p ∈ P

x′

Vor(P )

x

(b) A bounded face with
disconnected T ; point x vi-
olates Proposition 3.2.

f

p ∈ P

vreg(p, P )

(c) An unbounded face
with a tree of T having
two unbounded edges;
point p lies in f .

Figure 3.5. Illustrations for the proof of Proposition 3.3. The blue highlighted
area is the face f . The dashed lines are the internal skeleton T “ f XVDpPq.
The gray area is vregpp, Pq.

Proposition 3.2. For any point x P fcregpp,Pq, let r be the ray emanating from x,
along Lpp, xq, in the direction away from p. Then the region fcregpp,Pq contains
the entire segment r X vregpp, Pq, where p is a point in P.

This property is symmetric to a corresponding visibility property of the Haus-
dorff Voronoi diagram (see Papadopoulou and Lee [2004]) and has already been
pointed out in Bae [2012]. Using this we can prove the following structural
property of a farthest color region.

Proposition 3.3. A face f of fcregpP,Pq satisfies the following:
(1) If f is bounded, then its internal skeleton f XVDpPq is a non-empty tree whose

leaves are mixed vertices of B f .
(2) If f is unbounded, then its internal skeleton f X VDpPq may be empty. If

non-empty, it is a forest whose leaves are mixed vertices of B f and points at
infinity; each leaf at infinity is the root of a distinct tree of this forest.

Proof. Let T “ f X VDpPq be the internal skeleton of f . T may not contain a
cycle, as no point p P P is contained in f (as m ě 2), and so vregpp, Pq cannot
be entirely contained in f . Thus, T must be a tree or a forest. By definition, the
leaves of T are mixed vertices of f , or points at infinity, if f is unbounded.

Suppose now that f is bounded; refer also to Fig. 3.5a. If f X VDpPq “ H,
then f Ă vregpp, Pq, for some p P P. But then the visibility property would not
hold for any point x in f . Thus, T ‰H.
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Suppose further that T is not connected; refer also to Fig. 3.5b. Then, f
splits the region vregpp, Pq, for some p P P, in two connected components. Point
p lies in one of the two components, as p R f . For any point x 1 in the other
component there exists a point x P f not satisfying the visibility property. Hence,
T is connected.

Finally, suppose that f is unbounded. Then T may be empty, as for example
the blue region in the diagram of Fig. 3.1b. If T is non-empty, each tree of T
must have exactly one unbounded edge; refer to Fig. 3.5c. Suppose a tree has
two unbounded edges, then there exists a point p P P, having vregpp, Pq bounded
by these two edges, and since these two edges are connected, this implies that
vregpp, Pq Ď f , so p P f , a contradiction.

The following lemma shows that unbounded faces of FCVDpPq are character-
ized by the cluster hull CLHpPq.

Lemma 3.4. Given a set of clusters P the following two hold:
(1) A region fcregpp,Pq is unbounded if and only if p is a vertex of CLHpPq.
(2) A counterclockwise traversal of CLHpPq corresponds to the clockwise ordering

of the unbounded edges in FCVDapPq.

Proof. We first show that there is a 1-to-1 correspondence between the unbounded
edges of the farthest color Voronoi diagram and the Hausdorff Voronoi diagram.
Refer also to Fig. 3.6. More specifically, let e “ pq be an edge of CLHpPq, with
p P P, q P Q (it is possible that P “ Q), and let HR and HL be the two halfplanes
induced by the line Lpp, qq. We show that FCVDapPq has an unbounded edge
e f Ă bpp, qq, which is a ray pointing towards HL, if and only if the HVD has
an unbounded edge eh Ă bpp, qq pointing on the opposite direction of e f , i.e.,
towards HR.

Let eh be an unbounded edge of the Hausdorff Voronoi diagram of P directed
towards HR. By Papadopoulou and Lee [2004], this is equivalent to: paq HR

entirely contains clusters P and Q; and pbq HR does not entirely contain any
cluster R P PztP,Qu.

Let e f be an unbounded edge of FCVDapPq directed towards HL. By the defi-
nition of a farthest color disk (degenerated to a halfplane) this is equivalent to:
pa1q HL does not contain any point from clusters P and Q; and pb1q HL contains
at least one point from every cluster R P PztP,Qu.

But both these statements are equivalent, i.e., paq ô pa1q and pbq ô pb1q,
defining the one-to-one correspondence between the unbounded edges of the
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HRHL

p

q

DHVD

DFCV D

ef

eh

Figure 3.6. Illustration for the proof of Lemma 3.4. DFCV D is a farthest color
disk and DHV D a Hausdorff disk1. DFCV D with infinite radius degenerates to the
halfplane HL and DHV D degenerates to the halfplane HR.

two diagrams. Hence, statement (1) follows from an analogous statement re-
garding the Hausdorff Voronoi diagram; see Papadopoulou and Lee [2004].

In the farthest color Voronoi diagram, the cyclic orientation of the unbounded
edges is reversed from the Hausdorff Voronoi diagram. This is because each
normal vector associated to a hull edge which corresponds to an unbounded
edge of FCVDapPq) points to the opposite direction as compared to the Hausdorff
Voronoi diagram of P. Hence, statement (2) also follows.

The cluster hull ofP has Opnq complexity, and in combination with Lemma 3.4,
this directly implies the following property.

Proposition 3.5. FCVDapPq has Opnq unbounded faces.

Proof. We argue that CLHpPq has Opnq complexity, as implied by Papadopoulou
and Lee [2004]. Then, in combination with Lemma 3.4, the claim can be directly
derived.

Papadopoulou and Lee [2004] proved that the Hausdorff Voronoi diagram
of P has complexity Opn` xq, where x is the number of mixed vertices of the
diagram (defined analogously to the farthest color Voronoi diagram). A mixed
vertex is incident to an internal edge, and each bisector can have at most two oc-
currences as internal edge at infinity (two occurrences can appear only if the cor-
responding cluster is of size two). There are Opnq overall internal edges, hence,
there are Opnq mixed vertices related to the unbounded edges of the Hausdorff
Voronoi diagram. Thus, CLHpPq has complexity Opnq, and because of Lemma 3.4,
FCVDapPq has Opnq unbounded faces.

1A Hausdorff disk is defined analogously to a farthest color disk: a Hausdorff disk defined
by p P P and q P Q, contains P and Q in its interior, but does not contain any other cluster
R P PztP,Qu.
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q1

q2

D(p1, p2, q2)

D(p1, p2, q1) p1

p2

Figure 3.7. Illustration of a straddle (q1, q2 (‚) straddles p1, p2 (‚)) and the
proof of Lemma 3.6.

3.2.2 The straddling number and bounded faces

It follows Proposition 3.5 that only bounded faces can contribute to the possibly
non-linear combinatorial complexity of FCVDpPq. Thus, we it suffices to count
the mixed vertices incident to bounded faces. To this aim we define the notion
of straddles.

Definition 3.3. A cluster Q, and in particular a pair of points q1, q2 P Q, is said
to straddle a pair of points p1, p2 P P if the disks Dpp1, p2, q1q and Dpp1, p2, q2q

contain no points of P and Q in their interior.

Refer to Fig. 3.7 for an illustration of a straddle. The term straddle is moti-
vated by the following necessary condition for a straddle to occur.

Lemma 3.6. If Dpp1, p2, q1q and Dpp1, p2, q2q contain no points of P and Q in their
interior, then the segment q1q2 intersects (straddles) the line Lpp1, p2q.

Proof. Refer to Fig. 3.7. Suppose that the disks Dpp1, p2, q1q and Dpp1, p2, q2q

are empty. Then, point q1 lies on Cpp1, p2, q1qzDpp1, p2, q2q and point q2 lies on
Cpp1, p2, q1qzDpp1, p2, q2q. Hence, line Lpp1, p2q separates them and so q1q2 X

Lpp1, p2q ‰H.

Note that if points q1, q2 straddle points p1, p2, then the segments q1q2 and
p1p2 may or may not intersect. We define the straddling number parameter as
follows.

Definition 3.4. Given a set of clusters P, let sppi, p jq denote the number of clus-
ters in P that straddle pi, p j. The straddling number of P is

spPq :“
ÿ

PPP

ÿ

ppi ,p jqPP

sppi, p jq.
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Lemma 3.7. The straddling number spPq is Opmnq.

Proof. A straddle induced to ppi, p jq by a pair pqa, qbq corresponds to a pair of ver-
tices of the color bisector bcpP,Qq, which are the centers of the disks Dppi, p j, qa)
and Dppi, p j, qbq. Such vertices are incident to a Voronoi edge of VDpP Y Qq,
which is a portion of the bisector bppi, p jq.

A bisector bppi, p jq can have only one occurrence as a Voronoi edge in the
ordinary Voronoi diagram VDpPYQq, thus, Q may straddle ppi, p jq at most once;
hence sppi, p jq ď m ´ 1. Further, only pairs ppi, p jq inducing Voronoi edges in
VDpPq can be straddled by some other Q P P. Overall, there are

ř

PPP Op|P|q “
Opnq Voronoi edges in VDpPq, so Opnq pairs of points out of all m clusters may
be straddled. Summing up the straddling number is Opmnq.

In the following lemma, we show a property of consecutive mixed vertices
along a bisector, which we then use to bound the total number of mixed vertices.

Lemma 3.8. Let v1, v2 be two consecutive mixed vertices on bisector bpp1, p2q, where
p1, p2 P P, such that the segment v1v2 is outside of fcregpP,Pq (see Fig. 3.8). Then
v1 and v2 are induced by two points q and r respectively, which belong to the same
cluster Q P P.

Proof. Refer to Fig. 3.8. Let q and r be the two points that together with p1 and
p2 induce vertices v1 and v2 respectively. Then v1 is the center of Dpp1, p2, qq,
and v2 is the center of Dpp1, p2, rq. We show that if q PQ, then r PQ as well.

Without loss of generality let bpp1, p2q be horizontal and v1 be to the left of
v2. This implies that q is to the left of Lpp1, p2q and r to the right. Suppose
for contradiction that r P R ‰ Q. Disk Dpp1, p2, rq is a farthest color disk. It
contains at least one point from every cluster PztP, Ru, so it contains a point
qx P Q. Disk Dpp1, p2, qq is also a farthest color disk and contains no point from
clusters P and Q in its interior. So, qx lies in Dpp1, p2, rqzDpp1, p2, qq. Point qx

also defines a farthest color disk Dpp1, p2, qxq; the center vx of Dpp1, p2, qxq is a
mixed vertex along bpp1, p2q, and since qx P Dpp1, p2, rqzDpp1, p2, qq, the vertex
vx lies between v1 and v2. This is a contradiction as v1v2 lies outside fcregpPi,Pq
and no other vertex vx can be on bpp1, p2q between v1 and v2.

Proposition 3.9. FCVDpPq has Opn` spPqq bounded faces.

Proof. For any cluster P P P and for any pair ppi, p jq inducing an edge e in VDpPq,
we count the number of mixed vertices appearing along e. By Lemma 3.8, only
the two outermost mixed vertices along e may not be the result of a straddle,
as any other consecutive such pair of vertices must be. Thus, there at most
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v2

p1

v1

q
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p2

qx

b(p1, p2)

Figure 3.8. Illustration for the
proof of Lemma 3.8. Point
qx P Dpp1, p2, rqzDpp1, p2, qq (shown
shaded), so ux P u1u2.

v2

q1 ∈ Q

v1

R S

p1 ∈ P

Q

p2 ∈ P

q2 ∈ Q

Figure 3.9. A sequence of consecu-
tive pairs of mixed vertices appear-
ing along bisector bpp1, p2q. The red
shaded regions indicate fcregpP,Pq.

2¨sppi, p jq`2 mixed vertices incident to e. These vertices, if present, appear con-
secutively along e; see Fig. 3.9. Each pair of consecutive mixed vertices may cre-
ate one bounded face incident to e, so, in total, are at most sppi, p jq`1 bounded
faces incident to e; see the red regions in Fig. 3.9.

The ordinary Voronoi diagrams of the clusters in P have
ř

PPP Op|P|q “ Opnq
Voronoi edges, hence,

ř

PPP

ř

ppi ,p jqPPp1 ` sppi, p jqq “ n ` spPq, concluding the
proof.

Combining Proposition 3.5 and Proposition 3.9, we can obtain the following.

Theorem 3.1. FCVDpPq has Opn` spPqq combinatorial complexity.

The above theorem refines the Opmnq upper bound of Abellanas et al. [2001b],
and also gives a first sufficient condition for FCVDpPq to have Opnq complexity,
that is, if spPq “ Opnq.

3.3 Conditions for linear combinatorial complexity

In this section we delve further into the structural properties of the farthest color
Voronoi diagram and look for conditions under which the diagram has Opnq com-
plexity.

Admissible clusters. We first consider its relation with abstract Voronoi di-
agrams. The AVD axioms, described in Section 2.1.2, in the context of color
Voronoi diagrams can be described as follows. For every subset P1 Ď P:
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(A1) The color bisector bcpP,Qq, for any two clusters P,Q P P1, is an unbounded
Jordan curve.

(A2) The nearest color region ncregpP,P1q, for any cluster P P P1, is non-empty
and connected.

(A3) The closure of the union of all nearest color regions in NCVDpP1q covers R2.

Recall that we call admissible a set of input sites that satisfies the AVD axioms.
For an admissible set of clusters, the properties of the farthest abstract Voronoi
diagrams (see Mehlhorn et al. [2001]) directly apply to FCVDpPq, and we can
derive the following.

Proposition 3.10. If P is admissible, then FCVDpPq is a tree of complexity Opnq.

The tree structure of FCVDpPq can be observed in the instance of Fig. 3.11b.
Note that the augmented FCVDapPq might have some faces bounded by internal
edges. Following we give a necessary and sufficient condition for a set of clusters
to be admissible.

Proposition 3.11. A set of clusters P is admissible if and only if the following two
conditions hold for every P P P:

(1) P is not contained within the convex hull of any other cluster in P.
(2) The nearest color region ncregpP,Pq is connected.

Proof. Suppose P is admissible. Then by (A2), condition (2) trivially holds. By
(A1), any bisector is unbounded, thus, by Lemma 1, condition (1) holds as well.

Suppose P satisfies conditions (1) and (2), and let P1 be a subset of P. The
ordinary Voronoi diagram of P1˚ covers R2, and for any P P P1, the closure of
ncregpP,P1q equals

Ť

pPP vregpp,P1˚q. So, it follows that each region ncregpP,P1q is
non-empty, and that axiom (A3) holds for FCVDpP1q.

In ordinary Voronoi diagrams, given a point set P and a subset P 1 Ď P,
it is known that vregpp, Pq Ď vregpp, P 1q, for any p P P 1 Ď P. As a result,
ncregpP,Pq Ď ncregpP,P1q for any P1 Ă P, and since ncregpP,Pq is connected, then
also ncregpP,P1q is connected. So, the connectivity requirement of axiom (A2) is
satisfied.

It remains to show axiom (A1). Recall that the bisector bcpP,Qq is a subgraph
of VDpP YQq. We already proved that ncregpP,P1q is connected for every P1 Ď P,
where P P P1. Thus, for any P,Q P P, both ncregpP, PYQq and ncregpQ, PYQq are
connected, and by the properties of color bisectors, bcpP,Qq is a single connected
component. Finally, by condition (1), no cluster is contained in the convex hull
of another cluster, hence, due to Lemma 3.1, every color bisector is a single
unbounded curve, satisfying (A1).
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R

B

G

bc(G,R)

bc(G,B)

Figure 3.10. A set of 3 linearly separable clusters R(‚), G (˛), and B(‚),
where two bisectors bcpG, Bq and bcpG, Rq intersect Θpnq times. This causes
the (shaded) nearest color region ncregpG, tR, G, Buq to have Θpnq faces.

We remark that linear separability is not a condition under which the far-
thest color Voronoi diagram falls under the framework of abstract Voronoi di-
agrams. For example, the bisectors of three linearly separable clusters bcpP,Qq
and bcpQ, Rq, may intersect Θp|P|` |Q|` |R|q times, as shown in Fig. 3.10, which
directly violates the region-connectivity requirement of axiom (A2). Thus, unlike
the Hausdorff Voronoi diagram (see Papadopoulou and Lee [2004]), linear sepa-
rability is not a condition that can guarantee an a farthest color Voronoi diagram
of Opnq complexity.

Deciding admissibility of clusters. After having a necessary and sufficient con-
dition for clusters to be admissible, we want to examine how efficiently we can
check this condition. Following, we show that we can check the admissibility
of linearly separable clusters in Opn log nq time. This is of particular interest, as
later in Section 3.5, we describe how to construct the diagram of such clusters
in Opn log nq time as well.

Proposition 3.12. Given a linearly separable set of clusters P, we can decide if P
is admissible in Opn log nq time.

Proof. P is linearly separable, so by Lemma 3.1 color bisectors are unbounded
curves, satisfying condition (1) of Proposition 3.11. Hence, it suffices to check
condition (2). This can be done by constructing the diagram NCVDpPq using
standard Opn log nq-time algorithms and then traversing NCVDpPq in Opnq time
to check the connectivity of the nearest color regions.

If the input clusters are not linearly separable then the question is how ef-
ficiently can we check condition (1), i.e., that no cluster is contained with the
convex of another. For this question, there exists a quadratic lower bound. More
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(a) Diagram NCVDpPq. (b) Diagram FCVDpPq (tree structure).

Figure 3.11. A set P of 4 disk-separable clusters together with the correspond-
ing empty disks, and the two color Voronoi diagrams.

precisely, it is not possible to find containing pairs among m k-sided polygons in
time Opm2´εq, for any k “ Opmδq and any ε,δ ą 0. This was pointed out to us
by David Eppstein in a post on the Stack Exchange platform2; see the post for the
exact statement with its proof.

The above result is also interesting for the related farthest polygon Voronoi
diagram studied by Cheong et al. [2011]. Bounded regions in this diagram occur
when polygon containment relations are present, and dealing with them domi-
nates the time complexity of the algorithms. A potential efficient identification
of these relations could lead to improved algorithms.

Disk separable clusters. We now define disk-separability and show that it gives
a sufficient condition for a set of clusters to be admissible. A set of clusters P is
called disk-separable if, for every cluster P P P, there exists a disk EDpPq, which
contains P and does not contain any point from any other cluster Q P P. Refer
to Fig. 3.11 for an example of disk-separable clusters.

Theorem 3.2. If P is disk-separable, then P is admissible.

Proof. Suppose P is disk-separable. Then axiom (A3) and the non-emptiness of
regions of (A2) trivially hold, similarly to the proof of Proposition 3.11. Further,
axiom (A1) is satisfied as disk-separability implies linear separability. For any
two P,Q we can find a separating line: if EDpPq X EDpQq ‰ H, consider the
line through the intersection points of EDpPqX EDpQq, else if EDpPqX EDpQq “
H, consider any line leaving EDpPq and EDpQq in two different halfplanes. It
remains to show that ncregpP,Pq is connected, for every cluster P P P.

2url: https://cstheory.stackexchange.com/questions/46154

https://cstheory.stackexchange.com/questions/46154
https://cstheory.stackexchange.com/questions/46154/convex-polygons-inclusion-relation
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p
q

O
x

q′
p′

(a) For any x P Op : dpx , pq ă dpx , qq.

p

qO
x

(b) For any p P P : Op P ncregpP,Pq.

Figure 3.12. Illustrations for the proof of Theorem 3.2.

First, observe that given a disk B centered at O, a point p P B and a point
q R B, for any point x P Op: dpx , pq ă dpx , qq holds; see Fig. 3.12a. Indeed,
the circle centered at x passing through p is fully contained in B, so the distance
from x to any point outside B, such as q, is larger than the distance from x to p.

Let P be a cluster of P, p be a point of P, and let EDpPq denote a disk that
contains P and no point from another cluster. Consider the line segment Op,
where O is the center of the disk EDpPq; refer also to Fig. 3.12b. For any point
x P Op the distance dpx , pq is smaller than dpx , qq, for any q P P˚ztPu. So,
x P ncregpP,Pq and segment Op lies entirely in ncregpP,Pq. Therefore, @x P Op
and @p P P, point x P ncregpP,Pq, and thus region ncregpP,Pq is connected.

We already saw that linear separability does not guarantee the admissibility
of a set of clusters. In the next section, we further investigate linear separability
and show that it does not even guarantee a diagram of linear complexity.

3.4 A lower bound for linearly separable clusters

In this section we show that the farthest color Voronoi diagram may have quadratic
complexity, even if the input set of clusters is linearly separable. To this aim,
we define a set P of m linearly separable clusters of cardinality 2 such that the
FCVDpPq contains Θpm2q mixed Voronoi vertices. For the rest of the section, P
is a set of clusters defined as

P :“ tPi :“ tli, uiu, 1ď i ď mu.

We construct the set P as follows; refer also to Fig. 3.13. Let l1 “ p0,0q and
u1 “ p0,2mq. Let Ci, 2ď i ď m, be a set of concentric circles centered at u1, each
of radius 2´m`i´2. Each upper point ui is placed on circle Ci. Each lower point li
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l2

u2

u1

b(l1, u1)

L(u1, u2)

C2

x = 0 x = w

l1

(a) Placement of P1 (‚) and P2 (‚).

l2

u1

b(l2, u2)

L(u2, u3)

C3

C(l1, u1, l2)

l1

u2
l3

u3

(b) Placement of P3 (‚).

Figure 3.13. Construction of the set P. For Pi, with i ą 4, the placement is
analogous to P3.

is placed on bisector bpli´1, ui´1q. We control the placement of all points using
a parameter w, with 0 ď w ! 2´m. In particular, point u2 is placed at the upper
intersection point of circle C2 and the vertical line x “ w. Each lower point
li, for i ě 2, is placed at the intersection point of line Lpui´1, uiq and bisector
bpli´1, ui´1q. Each upper point ui, for i ě 3, is placed on the upper intersection
of circles Ci and Cpli´2, ui´2, li´1q.

The construction of the set of clusters P is summarized as follows:

li “

#

p0,0q, if i “ 1

Lpui´1, uiq Xup bpli´1, ui´1q, if i ě 2
ui “

$

’

&

’

%

p0,2mq, if i “ 1

Ci Xup px “ wq, if i “ 2

Ci Xup Cpli´2, ui´2, li´1q, if i ě 3

Observe that quantity w controls the placement of all points except l1, u1. As
we later show, for w“ 0, all points lie on the y-axis. As w increases, lower points
are translated up and left, while upper points are translated down and right. The
effect of w on the points can be observed in Fig. 3.14. Quantity w needs to be
sufficiently small, so that, for every i ă j, point l j lies within the disk DDi whose
diameter is defined by li, ui; see the example in shown in Fig. 3.15. Refer to our
Geogebra applet3 for an interactive visualization of the set P and the effect of
changing w.

3url: http://compgeom.inf.usi.ch/FCVD/lowerbound

http://compgeom.inf.usi.ch/FCVD/lowerbound
http://compgeom.inf.usi.ch/FCVD/lowerbound
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L(u∗i-1, u
∗
i )

L(ui-1, ui) y = 0

ui-1

ui

Ci-2

Ci-1

u∗i-1
u∗i

(a) Shifting of upper points

li

b(ui-1, li-1)

l∗i

y = 0
L(ui-1, ui)

L(u∗i-1, u
∗
i )

b(u∗i-1, l
∗
i-1)

(b) Shifting of lower points

Figure 3.14. Illustration of how points are shifted for w˚ ą w.

We will prove the following regarding the complexity of the constructed FCVDpPq.
The proof is given in Section 3.4.1.

Proposition 3.13. The diagram of the constructed set FCVDpPq has combinatorial
complexity Θpm2q “ Θpn2q.

Combining the lower bound stemming from Proposition 3.13 with the trivial
Ωpnq lower bound, we conclude the following, which is the main result of the
section.

Theorem 3.3. Given a linearly separable set of clusters P, FCVDpPq has Ωpn`m2q

combinatorial complexity in the worst case.

3.4.1 Correctness of the lower bound construction

In this section we give all the statements needed to prove Proposition 3.13. Let
xppq, resp. yppq, denote the x-coordinate, resp. y-coordinate, of a point p, and
assume that a line Lpa, bq is oriented from a to b.

Lemma 3.14. For w “ 0, all points lie on the y-axis, with their y coordinates
ordered as follows: ypliq ă ypl jq ă ypuiq ă ypu jq for any 1ď i ă j ď m.

Proof. If w“ 0, then xpu2q “ 0. Then, by simple induction, every line Lpui´1, uiq

and every circle Cpli´2, ui´2, li´1q coincides with the y-axis. Thus, all points lie
on the y-axis. For any i ě 2, the coordinates of the points are the following:

li “ p0,2m
´ 2m´i`1

` 2i´2´m
{3´ 22´i´m

{3q (3.1)
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uj

L(li, ui)

L(lj, uj)

ui

lj

li

DDi

Figure 3.15. The relation between two clusters Pi and Pj, for i ą j.

ui “ p0,2m
` 2i´2´m

q (3.2)

The claimed ordering of the y coordinates then immediately follows from Eqs. (3.1)
and (3.2) concluding the proof.

Using Eqs. (3.1) and (3.2) of Lemma 3.14 we can derive the following.

Corollary 3.15. For w “ 0, and for any 1 ď i ă j ď m, dpli, l jq “ Θp2
m´i`1q and

dpui, u jq “ Θp2
j´mq.

The above corollary implies that the distance between any two upper points
is negligible compared to the distance between any two lower points. Further,
this property is maintained for any valid quantity w, since the distance between
a point and the respective point for w“ 0, is larger by at most a constant factor.

The following lemma points out properties of the clusters in P. Refer to
Fig. 3.15 for an illustration of these properties.

Lemma 3.16. Assuming that l j P DDi, for any i ă j, the following hold:
(a) Point l j is to the left of line Lpli, uiq and point u j is to its right.
(b) 0ă slopepLpl j, u jqq ă slopepLpli, uiqq.
(c) ypliq ă ypl jq ă ypuiq ă ypu jq and xpuiq ă xpu jq.
(d) Cluster Pi is to the right of line Lpl j, u jq.

Proof. First note that ypl jq ă ypu1q, i.e., all lower points lie below u1. This is
because l j P DD1 and the disk DD1 lies below the horizontal line y “ xpu1q, since
the segment l1u1 is vertical.

We prove the statements (a)-(d) by induction on j. Base case: for j “ 2 the
statements can be directly verified by the construction; see Fig. 3.13a. Inductive
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uk−2

lk−1

lk−2

uk−1

L(li, ui)

lk

uk

(a) For property (a).

y = y(u1)

lk−1

uk−1

lk

u′′k

u′k

u′k−1

(b) For property (b).

lk−1

uk

uk−1
lk

y = y(lk)

y = y(uk)

x = x(uk)

(c) For property (c).

uk−1
uk

uk−1

lk y = y(uk)

L(lk−1, uk−1)

L(lk, uk)

(d) For property (d).

Figure 3.16. Illustrations for the proof of the properties of P of Lemma 3.16.

hypothesis: suppose that the statements hold for any j ă k. We show that they
also hold for j “ k.

(a) Refer to Fig. 3.16a. By the inductive hypothesis lk´1 is to the left of
Lplk´2, uk´2q and lk´1 P DDk´2, thus, uk “ Ck Xup Cplk´2, uk´2, lk´1q lies to the
right of Lplk´1, uk´1q. Point lk is placed on Lpuk´1, ukq below uk´1, so lk lies
to the left of Lplk´1, uk´1q. By the inductive hypothesis, for any i ă k ´ 1,
slopepLpli, uiqq ą 0 and lk´1uk´1 intersects Lpli, uiq. Thus, Lpli, uiq also inter-
sects lkuk, leaving lk on the left side and uk on the right side.

(b) From statement (a), it follows that slopepLplk, ukqq ă slopepLplk´1, uk´1qq.
Further, by the inductive hypothesis slopepLplk, ukqq ă slopepLpli, uiqq @i ă k´
1. It remains to show that slopepLplk, ukqq ą 0. We proved that lk is to the
left of Lplk´1, uk´1q and that yplkq ă ypu1q. Suppose for contradiction, that
slopepLplk, ukqq ď 0; refer also to Fig. 3.16b. Then uk lies either in the bot-
tom right quadrant defined by lk (see u1k in Fig. 3.16b), or in the top left quadrant
(see u2k in Fig. 3.16b) If it is in the bottom right quadrant, then by construction
point uk´1 lies on Lpuk, lkq, and so ypuk´1q ă yplkq ă ypu1q violating statement
(c). If it is in the top left quadrant, the uk is to left of line Lplk´1, uk´1q violating
statement (a). In both cases we derive a contradiction.

(c) Refer to Fig. 3.16c. As discussed in the proof of (b), if ypukq ď ypuk´1q,
then this leads to a contradiction as it results in slopepLplk, ukqq ď 0. Thus,
we have ypukq ą ypuk´1q, and by the inductive hypothesis ypukq ą ypuiq @i ă
k ´ 1. Since slopepLplk, ukqq ă slopepLplk´1, uk´1qq and uk is to the right of
Lplk´1, uk´1q, it follows that xpukq ą xpuk´1q, and by the inductive hypothesis
xpukq ą xpuiq @i ă k ´ 1. Point lk is to the left of Lplk´1, uk´1q and by the
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li

ui
uk

uj

b(li, ui)

lj

D(li, ui, uk)

D(li, ui, uj)
D(li, ui, lj)

Figure 3.17. Cluster Pi straddled by clusters Pj, Pk, with i ă j ă k. The farthest
color disks Dpli, ui, u jq, Dpli, ui, l jq, Dpli, ui, ukq are shown, and the corresponding
centers (potential mixed vertices) along the bisector bpli, uiq.

lemma assumption lk P DDk´1. Since slopepLplk´1, uk´1qq ą 0, it follows that
yplkq ą yplk´1q. By the inductive hypothesis we have yplkq ą ypliq @i ă k´ 1.

(d) By the placement of Pk it follows directly that Pk´1 lies to the right of
Lplk, ukq. By the inductive hypothesis, for any i ă k´ 1, cluster Pi is to the right
of Lplk´1, uk´1q, and since ypuk´1q ą ypuiq, it follows that Pi is also to the right
of Lplk, ukq; see the shaded wedge in Fig. 3.16d.

By Lemma 3.16(d), it follows thatP is linearly separable, and by Lemma 3.16(a)
it follows that cluster Pj straddles cluster Pi, for any i ă j, since both clusters have
only 2 points. So we can derive the following.

Corollary 3.17. The constructed set P is linearly separable with spPq “ Θpm2q.

Following, we show that for any m there exists a valid w to construct P. Recall
that quantity w is valid if point l j lies within the disk DDi, for any i ă j.

Lemma 3.18. For any m, there exists wą 0 such that l j P DDi, @i ă j.

Proof. For w “ 0, the lower point l j lies in the interior of DDi, for all 1 ď i ă
j ď m, as it can be easily verified by the coordinates of the points given in
Lemma 3.14. Suppose we slightly increase w to be infinitesimally positive. Then
by the construction, the slope of Lpu1, u2q decreases infinitesimally from the y-
axis, displacing point l2 infinitesimally to its left. In turn, the entire construction
rotates infinitesimally clockwise, with slopepLpui, ui`1qq ă slopepLpui´1, uiqq de-
creasing infinitesimally over the y-axis. Since the displacement of all points re-
mains infinitesimally close to the y-axis, while dpli, uiq remains almost intact and
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uj

ui

lj

li

L(li, uj)

L(li, ui)

D(li, ui, lj)

(a) Point u j lies in the highlighted wedge,
so rpDpli , ui , u jqq ą rpDpli , ui , l jqq.

Dj+1

x = 0

I0i
u0j-1

u0i

(b) Simplified setting showing that the
intersection I0

i (highlighted) lies in Dj`1.

Figure 3.18. Illustrations for the proof of Lemma 3.19.

being much larger than the maximum point displacement, l j must continue to
lie in the interior of DDi for all i ă j, by continuity. Thus, for small enough w,
point l j P DDi, for all i ă j.

From now on we assume that w is sufficiently small, so that l j P DDi @i ă j.
In the sequel we focus on a bisector bpli, uiq of a cluster Pi and point out the
possible ordering of mixed vertices along bpli, uiq; see an example in Fig. 3.17.
Each mixed vertex corresponds to the center of a disk through li, ui, and the disks
are ordered according to their radii as follows.

Lemma 3.19. For any i ă j ă k, rpDpli, ui, u jqq ą rpDpli, ui, l jqq ě rpDpli, ui, ukqq.

Proof. First we show that rpDpli, ui, u jqq ą rpDpli, ui, l jqq, refer to Fig. 3.18a. Con-
sider the disk Dpli, ui, l jq. By Lemma 3.16(a), point u j lies to the right of Lpli, uiq.
By Lemma 3.16(d), segments liui and l ju j do not intersect, thus, u j lies to the left
of Lpl j, uiq. So, u j lies in the upper wedge defined by Lpl j, uiq and Lpli, uiq; see
the shaded wedge in Fig. 3.18a. This wedge is outside of Dpli, ui, l jq, therefore,
rpDpli, ui, u jqq ą rpDpli, ui, l jqq.

To show the second inequality, we first show that rpDpli, ui, l jqq ě rpDpli, ui, u j`1qq

(the equality trivially holds only for j “ i ` 1). By the configuration of the clus-
ters, as proved in Lemma 3.16, rpDpli, ui, l jqq ą rpDpli, ui, u j`1qq is equivalent
to u j`1 P Dpli, ui, l jq. To prove that u j`1 P Dpli, ui, l jq, let Ii :“ Cpli, ui, l jq Xup

Cpl j´1, u j´1, l jq be the upper intersection point of the two circles. Recall that
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u j`1 “ C j`1 Xup Cpl j´1, u j´1, l jq, hence, it suffices to show that Ii P Dj`1, where
Dj`1 is the disk of circle C j`1.

Refer to Fig. 3.18b. Let us first prove a simplified version of this statement
using points u0

i , l0
i , for w “ 0. Let I0

i :“ Cpl0
i , u0

i , l jq Xup Cpl0
j´1, u0

j´1, l jq. We
consider all points li, ui, with i ă j, as being collinear, while l j is not. We allow
l j to be translated on bpl0

j´1, u0
j´1q to the left by a small amount t as long as l j

remains in DDi. We can prove that I0
i P Dj`1 by solving the respective system of

equations using the Wolfram Mathematica software4.
In particular, we show that if u1 “ p0, 2mq, u0

i “ p0, 2m ` 2i´2´mq, u0
j´1 “

p0, 2m ` 2 j´3´mq, l0
i “ p0, 2m ´ 2m´i`1 ` 2i´2´m{3´ 22´i´m{3q, l0

j´1 “ p0,2m ´

2m´ j`2`2 j´3´m{3´23´ j´m{3q and l j “ p´t, 2m´2m´ j`1`2 j´2´m{3´22´ j´m{3q,
for 0ă t ă dpl0

j´1, u0
j´1q{2. Then, I0

i P Dj`1, for any 3ď i ď j´ 2ď m´ 3.
The intuition for studying I0

i , comes from the fact that as w goes to 0, all points
continuously move towards the y-axis, until when w “ 0, and all points are on
the y-axis. So, we investigate a construction of this form (having sufficiently
small w), and by treating points accordingly. On the contrary, since we need to
compare circles, we do not want them to degenerate to lines, so we allow l j to
be translated on bpl j´1, u j´1q to the left of the y-axis.

We now go back from the simplified statement, i.e., I0
i P Dj`1, to the one we

want to prove, i.e., Ii P Dj`1. Consider the points li, ui and Ii for some wą 0 and
let l˚i , u˚i , I˚i denote the respective points for some quantity w˚ ą w. We will show
that dpu1, I˚i q ă dpu1, Iiq. As described earlier, by increasing w, the set of clusters
P rotates clockwise, and slopepLpl˚i , u˚i qq ă slopepLpli, uiqq (see also Fig. 3.14).
Consider now the distance dpli, uiq; we argue that the minimum of dpli, uiq,
over all valid values of w, is realized when w “ 0, i.e., when li “ l0

i , ui “ u0
i

and both li, ui lie on the y-axis. Then by the continuity of the construction
dpl˚i , u˚i q ą dpli, uiq holds. To see that minw dpli, uiq “ dpl0

i , u0
i q, consider the

distance between points discussed in Corollary 3.15; as w increases the displace-
ment of the points from the y-axis increases, and hence dpli, uiq ą dpl0

i , u0
i q. Us-

ing the same arguments we can show that dpl˚j , Lpl˚i , u˚i qq ą dpl j, Lpli, uiqq holds.
Refer to Fig. 3.19. Since dpl˚j , Lpl˚i , u˚i qq ą dpl j, Lpli, uiqq, the two disks defin-

ing point I˚i have smaller radii as opposed to the disks defining Ii. Combining
this property with the aforementioned (clockwise) rotation of the complete set
of clusters, it follows that the intersection point l˚i is rotated around u1 with
dpu1, I˚i q ă dpu1, Iiq (observe the trajectories of the points Ii in Fig. 3.19).

Since dpu1, I˚i q ă dpu1, Iiq, for w˚ ą w, then the upper bound of dpu1, Iiq, over
all valid w, is realized when w Ñ 0. This coincides with the value of dpu1, I0

i q

4url: https://www.wolfram.com/mathematica

https://www.wolfram.com/mathematica/
https://www.wolfram.com/mathematica/
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u8

u7

u6

I6

u9

I5I4

u4
u5

Figure 3.19. An instance drawn with our Geogebra applet, with m “ 9, j “ 8.
The black circle is Cpl j´1, u j´1, l jq, i.e., Cpl7, u7, l8q, and the thin colored circles
are Cpli, ui, l j´1q, for i “ 1 . . . j ´ 2, i.e., Cpli, ui, l7q, for i “ 1 . . . 6. The thick
curves show the trajectory of points Ii, as w increases (starting at w“ 0). For
an increased w˚ ą w, point Ii is rotated clockwise, moving slightly closer to u1.

when the translation of l j along bpl0
j´1, u0

j´1q is infinitesimally small (t Ñ 0).
Thus, dpu1, Iiq ă dpu1, I0

i q for a small enough t, and since we already proved
that I0

i P Dj`1, it follows that Ii P Dj`1, and so ui P Dj`1.
Since rpDpli, ui, l jqq ą rpDpli, ui, u j`1qq and rpDpli, ui, u jqq ą rpDpli, ui, l jqq,

it follows that rpDpli, ui, u jqq ą rpDpli, ui, u j`1qq, and so thus, rpDpli, ui, u jqq ą

rpDpli, ui, ukqq, for any k ą j. Combining this with rpDpli, ui, l jqq ą rpDpli, ui, u j`1qq,
we get rpDpli, ui, l jqq ą rpDpli, ui, ukqq, concluding the second part of the proof.

Following, we show that all the disks induced by triplets of points, as de-
scribed before, are farthest color disks and induce vertices in FCVDpPq.

Lemma 3.20. Disks Dpli, ui, l jq and Dpli, ui, u jq are farthest color disks, @i ă j,
i.e., they contain one point of every cluster Pk, k ‰ i, j. In particular:

(a) if k ă i ă j then uk P Dpli, ui, l jq and uk P Dpli, ui, u jq (see Fig. 3.20a);
(b) if i ă k ă j then lk P Dpli, ui, l jq and lk P Dpli, ui, u jq (see Fig. 3.20b);
(c) if i ă j ă k then uk P Dpli, ui, l jq and uk P Dpli, ui, u jq (see Fig. 3.20c);

Proof. (a) Suppose k ă i ă j; refer to Fig. 5.8a. Since i ą k, by Lemma 3.16(c),
xpuiq ą xpukq, thus, uk is to the left of the vertical line x “ xpuiq. Also, uk is to
the right of line Lpli, uiq, due to Lemma 3.16(a). So, uk lies in the lower wedge
defined by Lpli, uiq and x “ xpuiq. This wedge intersects Dpli, ui, l jq, because
both Lpli, uiq and x “ xpuiq define chords on the disk and the apex of the wedge
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D(li, ui, lj)

uk

x = x(ui)

y = y(u1)

(a) Case (a): k ă i ă j.
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lj
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(b) Case (b): i ă k ă j.
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x = x(ui)
uk

y = y(ui)

D(li, ui, lj)

(c) Case (c): i ă j ă k.

Figure 3.20. Illustrations for the proof of Lemma 3.20.

ui lies on Cpli, ui, l jq. Moreover, ypukq ą ypu1q, by Lemma 3.16(c), so uk lies
above the horizontal line y “ ypu1q, which also defines a chord on Dpli, ui, l jq.
So the triangle defined by Lpli, uiq, y “ ypu1q, x “ xpuiq lies entirely in Dpli, ui, l jq

(see the red shaded region in Fig. 5.8a). Point uk lies in this triangle, thus, uk P

Dpli, ui, l jq. Using the same arguments, we can show that this triangle is a also a
subset of Dpli, ui, u jq, thus uk P Dpli, ui, u jq.

(b) Suppose i ă k ă j; refer to Fig. 5.8b. Since i ă k ă j, we know by
Lemma 3.16(c) that ypliq ă yplkq ă ypl jq ă ypuiq, and thus, both points lk, l j lie
in the horizontal strip defined by y “ ypliq and y “ ypuiq. Moreover, both l j, lk

are to the left of line Lpli, uiq, by Lemma 3.16(a). Since k ă j, by Lemma 3.19,
the disks have radii: rpDpli, ui, lkqq ą rpDpli, ui, l jqq. So, Dpli, ui, lkq Ă Dpli, ui, l jq

in the halfplane to the left of the oriented line Lpli, uiq (see the red shaded region
in Fig. 5.8b). Therefore, the part of Dpli, ui, lkq to the left of Lpli, uiq is contained
in Dpli, ui, l jq. Further, since that part of Dpli, ui, lkq is contained in the horizontal
strip defined by y “ ypliq and y “ ypuiq, it also contains lk. Thus, lk P Dpli, ui, l jq.
From Lemma 3.19, the disks have radii: rpDpli, ui, lkqq ą rpDpli, ui, u jqq, so with
the same arguments we can show that lk P Dpli, ui, u jq.

(c) Suppose i ă j ă k; refer to Fig. 5.8c. Since k ą i, then ypukq ą ypuiq, due
to Lemma 3.16(c), and thus uk is above the horizontal line y “ ypuiq. Moreover,
uk is to the right side of the line Lpli, uiq, by Lemma 3.16(a). Thus, uk lies in
the upper wedge defined by Lpli, uiq and y “ ypuiq. Also k ą j, so, due to
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Lemma 3.19, the disks have radii: rpDpli, ui, l jqq ą rpDpli, ui, ukqq. So, the part
of Dpli, ui, ukq to the right of Lpli, uiq is contained in Dpli, ui, l jq. Therefore, this
also holds for the part of Dpli, ui, ukq in the upper right wedge defined by Lpli, uiq

and y “ ypuiq, where uk lies (see the red shaded region in Fig. 5.8c). Thus, uk P

Dpli, ui, l jq. Due to Lemma 3.19, rpDpli, ui, u jqq ą rpDpli, ui, ukqq holds. Similarly,
we can infer that uk P Dpli, ui, u jq.

Summarizing, regarding the constructed set of clusters P, we can prove (and
re-state) the following regarding the complexity of FCVDpPq.

Proposition 3.13. The diagram of the constructed set FCVDpPq has combinatorial
complexity Θpm2q “ Θpn2q

Proof. By Lemma 3.20, Dpli, ui, l jq and Dpli, ui, u jq are farthest color disks for any
i ă j, each inducing a mixed vertex in FCVDpPq. More specifically, the bisector
of cluster Pi is incident to 2pm ´ iq mixed vertices. These vertices appear in
consecutive pairs (as in Fig. 3.9) and each pair of them delimits a bounded face
as proved in Proposition 3.9. Overall, there are Θpm2q mixed vertices, as well as
bounded faces, and the claim follows.

As we mentioned earlier, the above result, combined with the Ωpnq lower
bound, yields the Ωpn`m2q lower bound in the worst-case combinatorial com-
plexity of the diagram of linearly separable families (stated in Theorem 3.3).

As a final note, observe that as defined, the constructed set of clusters P does
not satisfy the general position assumption, as every four points pli´2, ui´2, li´1, uiq

are cocircular and every three points pli, ui, ui´1q are collinear. However, if de-
sired, general position can be easily enforced by infinitesimally translating the
points during the construction as follows. Point ui, for i ě 3, can be translated
on circle Ci towards the interior of Cpli´2, ui´2, li´1q, and point li, for i ě 2, can
be moved along bisector bpli´1, ui´1q towards the y-axis.

3.5 Construction algorithms

We design an algorithm using the standard divide & conquer paradigm. First
we split P into two sets PA and PB of roughly equal size as follows: if there
exists P, with |P| ě n{2, then PA “ tPu and PB “ PztPu; else, we set PA “

tP1, . . . , Pku and PB “ tPk`1, . . . , Pmu such that |P˚A| “ Θp|P
˚

B|q “ Θpnq. Then,
we recursively compute FCVDpPAq and FCVDpPBq, and finally, we merge them to
obtain FCVDpPq.
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To merge FCVDpPAq and FCVDpPBq we need to construct the merge curve,
which is the set of color edges in FCVDpPA Y PBq belonging to color bisectors
bcpP,Qq with P P PA and Q P PB. The merge curve may consist of linearly many
connected components, either unbounded and bounded. To construct it, a start-
ing point is first identified on each component, and then, the component gets
traced through FCVDapPAq and FCVDapPBq.

We first discuss how each step is performed by our algorithm and then we
describe the algorithmic results which we obtain.

A. Tracing a component of the merge curve given a starting point. To trace a
component efficiently, in time linear in its size, we can adapt standard techniques
exploiting the so-called visibility decomposition, which has been defined for the
Hausdorff Voronoi diagram by Papadopoulou and Lee [2004].

The visibility decomposition further refines the FCVDapPq. For each region
fcregpp,Pq, and for each color or mixed vertex u on Bfcregpp,Pq, we partition the
region by Lpp, uq X fcregpp,Pq (see Fig. 3.3). The visibility property of Proposi-
tion 3.2, guarantees that the intersection Lpp, uq X fcregpp,Pq is connected.

Given a ray (corresponding to an edge of the merge curve) with which we are
tracing, we compare its intersection points with the two diagrams FCVDpPAq and
FCVDpPBq, and keep the one which is closer and discard the other one. When
looking for these intersection points though, it is important to move simultane-
ously on the faces of the visibility decomposition of both diagrams, so that we can
stop when the first intersection point is reached. In this way, we avoid spending
Opnq time to find a single intersection point that may be discarded (recall that a
single face of FCVDapPq can have Θpnq complexity). Secondly, using the visibil-
ity property it follows that (analogously to Papadopoulou and Lee [2004]), the
merge curve does not intersect an edge of the visibility decomposition more than
once. Hence, at each step, no face of the visibility decomposition is visited more
than twice and so, tracing takes linear time in the size of the merge curve.

B1. Finding a starting point on an unbounded component of the merge
curve. To identify such starting points we use the cluster hull, similarly to how
it is used in the Hausdorrff Voronoi diagram by Papadopoulou and Lee [2004].
This is possible due to the one-to-one correspondence between the hull edges and
the unbounded edges of FCVDapPq, proved in Lemma 3.4. More precisely, during
the algorithm, together with the diagrams FCVDpPAq and FCVDpPBq, we keep
their hulls, CLHpPAq and CLHpPBq, and prior to merging the diagrams we merge
the hulls. Merging CLHpPAq and CLHpPBq yields the lines which correspond to
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the unbounded edges of the diagram FCVDpPAXPBq. This can be done in time
Op|CLHpPAq| ` |CLHpPB|q, as shown by Papadopoulou and Lee [2004].

B2. Finding a starting point on an bounded component of the merge curve.
Each bounded component of the merge curve encloses a portion of an internal
skeleton, as shown in Proposition 3.3. Hence, to identify starting points, we can
search for vertices and edges of the internal skeletons that may be enclosed in
such components.

For each internal vertex u of FCVDapPAq, with u P fcregpP,PAq, we point-locate
u in FCVDapPBq to find Q, for which u P fcregpQ,PBq. Then, we compare the
distances dcpu, Pq and dcpu,Qq. If dcpu, Pq ď dcpu,Qq, we start tracing the com-
ponent from u, else if dcpu, Pq ą dcpu,Qq, we discard u. This is repeated for the
internal vertices of FCVDapPBq. There are Opnq internal vertices in total, and
point location of a single vertex can be done in Oplog nq time using standard
methods, see e.g., Kirkpatrick [1983], resulting in Opn log nq overall time at each
step.

However, not every bounded component of the merge curve needs to contain
an internal vertex, so we also need to search for internal edges that can have
portion(s) enclosed in some component. Since by Proposition 3.3, the internal
skeleton of a bounded face is a tree, it follows that if no internal vertex appears,
then the skeleton is a single edge. Our approach is to search each internal edge
in order to find the portion(s) which appear in the merged diagram. We use
the data structure of Iacono et al. [2017], which allows for efficient searches of
intersections between two plane graphs, in an analogous way as it was used for
the Hausdorff Voronoi diagram.

In more detail, for each internal edge e of FCVDapPAq, with e P fcregpP,PAq,
we construct a binary search tree which implicitly stores the intersections of e
with FCVDapPBq. Every node x of the tree corresponds to an intersection point
of an edge uv Ď e (portion of e) with FCVDapPBq. The left child of x contains the
portion ux , and the right child contains the portion x v. To use the data structure
of Iacono et al. [2017], it is necessary to define a rule of how to navigate the
tree, meaning to which child we should move when we are at a node x . We use
the following rule.

Suppose that x is an intersection point of uv Ď e with an internal edge of
FCVDapPBq and suppose x P fcregpQ,PBq. We compare the distances dcpx ,Qq
and dcpx , Pq. piq If dcpx ,Qq ą dcpx , Pq, we consider the two portions ux and
x v separately. For ux (and analogously for x v) we compare the distances at
the endpoint u, i.e., dcpu, Pq and dcpu,Qq. If dcpu, Pq ě dcpu,Qq, we search the
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subtree of ux as there exists some y P ux with y P fcregpP,PA Y PBq. Else if
dcpu,Qq ą dcpu, Pq we do not search further the subtree of ux , as there exists no
such point y . piiq If dcpx , Pq ě dcpx ,Qq, we start tracing the bounded component
from point x . Assume the x l x and x x r were the portions of edge uv contained in
the bounded component that was traced. Then, we continue searching in both
subtrees of ux l and x r v. Finally, suppose that x is an intersection point of uv Ď e
with a color edge of FCVDapPBq. The difference is that x is equidistant to two
clusters Q1,Q2 P PB, i.e., dcpx ,Q1q “ dcpx ,Q2q, so the navigation rules remain
the same, but at each comparison, the distance to both clusters Q1,Q2 has to be
considered.

This is repeated for the internal edges of FCVDapPBq. Each point location
query takes Oplog nq time, and since the search trees are balanced, having a depth
of Oplog nq, a single traversal from the root to a leaf takes Oplog2 nq time.

Algorithmic results. Putting all the above together, we can derive the following
algorithmic result for arbitrary sets of input clusters.

Theorem 3.4. FCVDpPq can be constructed in Oppn` spPqq log3 nq time.

Proof. Consider the algorithm previously described. At each recursive step, start-
ing points on unbounded components are found in Opnq time and given a starting
point a component is traced in linear time. It remains to identify how much time
is overall needed to find starting points on bounded components.

For each internal edge e not entirely contained in the traced components,
we build a search tree. The set of all search trees, for all Opnq edges, can be
constructed in Opn log nq time (see Iacono et al. [2017]). Identifying a portion
of e requires a traversal of the search tree which takes Oplog2 nq time. When
traversing the tree, at some nodes the search might continue to both children, as
portions of e may appear in more than one components, but this has to be a result
of a straddle, as follows from Lemma 3.8. Moreover, a single straddle occurs in at
most one recursive step, since a pair of clusters may be considered at most once
in two sets PA,PB. Hence, an edge e might be considered at most speq “ Opmq
times, over all steps. This bounds the portions to be identified and the time all
search trees are traversed, resulting in Oppn` spPqq log3 nq total time.

The time complexity of our algorithm depends on the parameter spPq. Al-
though spPq is in the worst case Θpmnq for arbitrary clusters, and Ωpn`m2q for
linearly separable clusters, this number could be small in practice. In fact, we
saw that linearly separable clusters, for which spPq “ Θpm2q are quite degener-
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ate. When the straddling number is small, i.e., spPq “ Opnq, our algorithm has
time complexity Opn log3 nq outperforming the existing algorithms.

For admissible sets of clusters, we can derive an improved time complexity
as follows.

Theorem 3.5. Given an admissible set of clusters P, FCVDpPq can be constructed
in Opn log nq time.

Proof. Consider the described divide and conquer scheme. By Proposition 3.10,
FCVDpPq is a tree, hence, the merge curve has only unbounded components.
Starting points on the unbounded components are identified in Opnq time, and
the remaining tracing of the merge curve takes also Opnq time. So, each recursive
step takes Opnq time, and this results in an Opn log nq-time algorithm overall.

Note that for an admissible set of clusters, we can construct FCVDpPq in ran-
domized Opbn log nq time, where b is the time to obtain a color bisector, follow-
ing the construction of the farthest abstract Voronoi diagram by Mehlhorn et al.
[2001]. However, b can be Θpnq for color bisectors, thus, a direct application of
this algorithm would result in Opn2 log nq time.

3.6 Conclusion

In this chapter we presented our work related to color Voronoi diagrams, and
more specifically to the farthest color Voronoi diagram. Our goal was to get a
better understanding of the structural properties of the diagram, and to see how
we can use them to obtain better combinatorial and algorithmic results. The
main results we obtained can be summarized as follows.

Regarding the combinatorial properties of the diagram, we studied the struc-
ture and number of the bounded and unbounded faces. We identified the strad-
dling parameter spPq, as the parameter which is responsible for the creation of
bounded faces, which lead to increased complexity. Using this we refined the up-
per bound on the complexity of the diagram to Opn`spPqq, where spPq “ Opmnq.

Further, we looked for necessary or sufficient conditions for the diagram to
have Opnq complexity, focusing particularly on the connection to the abstract
Voronoi diagrams framework. Looking for conditions for Opnq complexity, we
also studied linearly separable clusters and we proved that linear separability
is not such a condition. In fact, we showed that linearly separable clusters can
realize a diagram with quadratic Ωpn`m2q worst case complexity.

Finally, we also considered construction algorithms. We designed a divide &
conquer algorithm, which has time complexity Opn`spPqq, for arbitrary clusters;
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this is quite nice, as spPq is expected to be small Opnq in practice. For special
cases of input clusters, as for example admissible clusters, we showed that the
algorithm has optimal Opn log nq time complexity.

While studying color Voronoi diagrams, many interesting questions have come
up. We list some open questions and discuss future directions related to color
Voronoi diagrams in Section 6.1.

As a final note, in this chapter, we did not discuss any implementation issues
regarding the construction of the farthest color Voronoi diagram. A useful tool
in the research conducted was the implementation of Panos Cheilaris and Elena
Arseneva, which was also used to create some of the figures. This implementation
uses the CGAL library5, following the exact computing paradigm, and it is based
on an algorithmic approach similar to Setter et al. [2010].

5url: https://www.cgal.org/

https://www.cgal.org/
https://www.cgal.org/
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Chapter 4

Rotating rays Voronoi diagram

This chapter presents our results on the rotating rays Voronoi diagram and the
Brocard illumination problem. It is based on the following publication:

C. Alegría, I. Mantas, E. Papadopoulou, M. Savíc, H. Schrezenmaier, C. Seara,
and M. Suderland. The Voronoi Diagram of Rotating Rays With applications
to Floodlight Illumination. In Proceedings of the 29th Annual European Sympo-
sium on Algorithms (ESA 2021). Schloss Dagstuhl-Leibniz-Zentrum für Infor-
matik, 2021.

In Section 4.1 we give the definitions and the basic concepts related to the di-
agram. In Section 4.2 we study the diagram in the entire plane. In Section 4.3 we
consider the diagram where the underlying domain is a convex polygon bounded
by the input rays, and in Section 4.4 we restrict the domain of interest to be some
curve. In each of the three previous sections, we describe combinatorial and al-
gorithmic results and we also give solutions to the Brocard illumination problem.
Section 4.5 concludes the chapter.

4.1 Preliminaries

Let the input be a set R of n rays in the plane. Given a ray r, we denote its apex
by pprq, its supporting line by lprq, and its direction in the unit circle S1 by pdprq.
For three points A, B, C P R2, we denote by =pA, B, Cq the counterclockwise angle
at point B between the rays BA and BC .

Recall that we defined the (oriented) angular distance (see Definition 1.7)
from a point x to a ray r, as the minimum counterclockwise angle α from r
to a ray with apex pprq passing through x . We denote the angular distance by
d=px , rq, and moreover, we define d=ppprq, rq “ 0.

75
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It is easy to see that the angular distance is not a metric. Further, observe
that the range of d=px , rq is r0,2πq and that there is a discontinuity at 2π.

Angular bisectors. Before examining the properties of the rotating rays Voronoi
diagram, we first need to examine the bisectors between two sites. Using the ori-
ented angular distance, we define the bisector of two rays as follows.

Definition 4.1. Given two rays r and s, the dominance region of r over s, denoted
by drpr, sq, is the locus of points with smaller angular distance to r than to s, i.e.,

drpr, sq :“ t x P R2 | d=px , rq ă d=px , sq u.

The angular bisector of r and s, denoted by b=pr, sq, is the curve delimiting drpr, sq
and drps, rq.

Different instances of angular bisectors are illustrated in Fig. 4.1. Given two
rays r and s, let I :“ lprq X lpsq. The angular bisector b=pr, sq is the union of
the two rays r and s, and a circular arc a that connects pprq to ppsq. The arc a
belongs to the bisecting circle Cbpr, sq, which we define as follows:

• If I , pprq, and ppsq are pairwise different, then Cbpr, sq is the circle through I ,
pprq, and ppsq. The arc a contains I if, and only if, I lies either on none or on
both r and s; see Fig. 4.1a, Fig. 4.1b and Fig. 4.1c.

• If I “ pprq and I ‰ ppsq, then Cbpr, sq is the circle tangent to lprq passing
through pprq and ppsq. Both a and r lie on the same side of lpsq if, and only
if, pprq lies on s; see Fig. 4.1d and Fig. 4.1e. We analogously define Cbpr, sq if
I “ ppsq and I ‰ pprq.

• If pprq “ ppsq, then both Cbpr, sq and a degenerate to a single point; see
Fig. 4.1f.

• If lprq and lpsq are parallel, then Cbpr, sq degenerates to the line through pprq
and ppsq. If pdprq “ pdpsq, then a consists of two halflines; see Fig. 4.1g. If
instead pdprq “ ´pdpsq, then a degenerates to a line segment; see Fig. 4.1h and
Fig. 4.1i.

Note that our definition of a bisector is slightly different than the usual, which
is the locus of points equidistant to two sites. This is due to the discontinuity
of the distance function at 2π. In the following lemma we justify the above
description of the bisectors.

Lemma 4.1. Let r and s be two non-(anti)-parallel rays. The bisector b=pr, sq con-
sists of the two rays and a subset of the bisecting circle Cbpr, sq, as described above.
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Figure 4.1. The bisector of two rays r (ÝÑ) and s (ÝÑ) in different configu-
rations. The bisector consists of r, s, and a subset of the circle Cbpr, sq (black
curve). The dominance regions are shaded with the respective color.

Proof. Any point slightly to the left of ray r has a distance close to 0 to ray r,
whereas any point slightly to the right of ray r has a distance close to 2π. Hence
the rays r and s are part of the bisector b=pr, sq. In the next step we show that
all points equidistant to both rays all lie on a common circle.

Let A and B be two points which are equidistant to both rays r and s; see
Fig. 4.2a. This means that =pB, pprq, Aq “ =pB, ppsq, Aq. We now show that
=ppprq, A, ppsqq “ =ppprq, B, ppsqq, which implies that pprq, ppsq, A, B all lie on a
circular arc connecting pprq and ppsq by the inscribed angle theorem:

=ppprq, A, ppsqq “ π´=pppsq, pprq, Aq ´=pA, ppsq, pprqq

“ π´ p=pppsq, pprq, Bq `=pB, pprq, Aqq

´ p=pB, ppsq, pprqq ´=pB, ppsq, Aqq

“ π´=pppsq, pprq, Bq ´=pB, ppsq, pprqq
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(a) Any two points equidistant to rays r
and s lie on a common circle.

dr(r, s) dr(s, r)
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(b) Point I lies on the common circle with
all the points equidistant to rays r and s.

Figure 4.2. Illustrations for the proof of Lemma 4.1.

“=ppprq, B, ppsqq.

In the final step we show that I “ lprq X lpsq lies on the common circle with
all the equidistant points. If I lies on both (resp. none) of the rays r and s
then d=pI , rq “ d=pI , sq “ 0 (resp. d=pI , rq “ d=pI , sq “ π). In this case I is
equidistant to both rays and therefore clearly on the common circle.

Let us assume that I lies on exactly one of the rays r and s; see Fig. 4.2b. Let
A be a point equidistant to both rays, i.e. =pI , pprq, Aq “ π`=pI , ppsq, Aq. Then,

=pppsq, A, pprqq “ 2π´=pA, pprq, Iq ´=ppprq, I , ppsqq ´=pI , ppsq, Aq

“ π´=ppprq, I , ppsqq.

Therefore by the inscribed angle theorem A, pprq, I and ppsq lie on opposite sides
of a common circle.

Angular difference. Following, we give some deeper insight regarding the prop-
erties of angular bisector, by considering the angular difference of the two rays.

Definition 4.2. The angular difference between r and s, denoted by diff=pr, sq, is
the angle by which you have to rotate s counterclockwise around its apex, such
that r and s become parallel.

The angular difference of two rays is illustrated in Fig. 4.3. Note that for any
two non-parallel rays r and s we have that diff=pr, sq ` diff=ps, rq “ 2π“ 0.

Remark 4.2. Given a pair of rays r and s, the distance function is monotone along
the circular arc of their bisector b=pr, sq, and strictly monotone if the lines lprq and
lpsq are not parallel. If the lines lprq and lpsq are parallel, then the distance is
constant along the entire circular part of the bisector b=pr, sq.
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s

r

β

Figure 4.3. The angular
difference diff=pr, sq “ β .
The angular distance is in-
creasing from pprq to ppsq

w

vu

x

Figure 4.4. Illustration of the features of RVDpRq:
arc vw is a circular edge, segment xw is a ray edge,
u is a proper vertex, v is a mixed vertex, w is an
intersection vertex, and x is an apex vertex.

If instead diff=pr, sq ą diff=ps, rq, or equivalently diff=ps, rq ă π, then the dis-
tance function along the bisector b=pr, sq from ppsq to pprq is monotone increasing.
Moreover, walking along the boundary of dregps, rq in counterclockwise order, the
distance function on the circular part of bisector b=pr, sq is monotone increasing.

Rotating rays Voronoi diagram. Recall that we defined the rotating rays Voronoi
diagram (see Definition 1.8), as the subdivision of R2 into nearest ray (Voronoi)
regions, where the region of a ray r P R is

r=regprq “ t x P R2 | @s P Rztru : d=px , rq ă d=px , sq u.

Observe that a Voronoi region r=regprq can be equivalently defined as the inter-
section of all the dominance regions of r, that is

r=regprq “
č

sPRztru

drpr, sq.

We denote the graph structure of the rotating rays Voronoi diagram of R by

RVDpRq :“

˜

R2
z
ď

rPR

r=regprq

¸

YR.

Note that it is necessary to include R in the above definition, as points along the
rays are not equidistant to two sites and hence are not included inR2z

Ť

rPR r=regprq.
For simplicity, we can assume that unless otherwise stated no two supporting

lines of rays are parallel and that no two rays share an apex. As a result we



80 4.2 Diagram in the plane

have only bisectors of the forms illustrated in Figs. 4.1a to 4.1e. We distinguish
the following two types of edges and four types of vertices of RVDpRq. Refer to
Fig. 4.4 for an illustration.

• A circular edge is a subset the circular part of a bisector, so any point on a
circular edge is equidistant to the two rays which induce it.

• A ray edge is a subset of a ray, so any point on a ray edge has zero distance
to the ray which induces it.

• A proper vertex is incident to three circular edges, so it is equidistant to the
three rays that induce the three circular edges.

• A mixed vertex is incident to one circular edge and two ray edges that are
subsets of the same ray. It is equidistant to the two sites inducing the cir-
cular edge and has zero distance to the site inducing the ray edges.

• An intersection vertex is incident to one circular edge and four ray edges,
all induced by two sites. It is equidistant to the two sites, with distance 0.

• An apex vertex is incident to one circular edge and one ray edge, where the
site inducing the ray edge is one of the two sites inducing the circular edge.
It has distance 0 to the site inducing the ray edge, but is not equidistant to
the other site.

RVDpRq is a planar graph with bounded maximum degree. Hence, when
looking into upper bounds of the complexity of the diagram, it suffices to bound
any of the number of vertices, edges or faces.

4.2 Diagram in the plane

In this section we study RVDpRq in the plane. We first look at some properties and
combinatorial complexity bounds. Then we consider the problem of illuminating
the plane with a set of floodlights aligned with R.

4.2.1 Properties, complexity, and an algorithm

Assuming that no two rays of R are parallel to each other, we show that the
following two simple structural properties hold.

Proposition 4.3. RVDpRq has exactly n unbounded faces, one for each ray.

Proof. Given a ray r, to examine the unbounded portion of r=regprq, consider
the intersection of RVDpRq with a disk D of a sufficiently large radius, so that D
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∂D

r

Figure 4.5. Intersection of a diagram
of 4 rays with a large disk D. Domi-
nance regions are circular arcs on BD.

r6 reg(r1)
r6 reg(r2)

Figure 4.6. Two impossible cases for
a diagram. A "corridor" (r=regpr1q)
and an "island" (r=regpr2q).

contains all vertices of RVDpRq, and the bisecting circles of all bisectors. Refer to
Fig. 4.5 for an illustration.

Given a site s P Rztru, the intersection of the dominance region drpr, sq with
BD is a circular arc of BD going counterclockwise from r XBD to sXBD. Region
r=regprq is the intersection of all the dominance regions of r. Thus, r=regprqX
BD is the intersection of n´1 circular arcs all starting from r. This coincides with
the circular arc ending at the first ray on the counterclockwise ordering along BD
from r. So, for any ray r, region r=regprq has exactly one unbounded face.

Proposition 4.4. RVDpRq is connected.

Proof. Assume that RVDpRq is not connected and that it has two connected com-
ponents. Then, some region r=regprq disconnects RVDpRq by either having an
unbounded face with two occurrences at infinity, creating a "corridor", or by en-
closing a component in it, creating an "island"; refer to the illustration of Fig. 4.6.

The existence of a corridor is excluded by the proof of Lemma 4.3. For the ex-
istence of an island, consider the disconnected component of RVDpRq surrounded
by r=regprq. This component consists of at least a face of a region r=regpsq for
some s P R. Then, also in RVDptr, suq, there is an island inside r=regprq. Thus,
b=pr, sq has a bounded connected component, in contradiction to the fact that
each bisector is a single unbounded curve.

We now study the combinatorial complexity of RVDpRq. Regarding a lower
bound, it is not hard see that if we have a set R of n pairwise intersecting rays,
RVDpRq has pn2q “ Θpn

2q vertices at the intersection of rays and thus the diagram
has Ωpn2q worst-case complexity. Following, we show that this bound also holds
for pairwise non-intersecting rays.
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r1 r2

r6 r7 r10

r5r3 r4

r8 r9

Figure 4.7. A set R of 10 pairwise non-intersecting rays with RVDpRq having
Θpn2q complexity. The region r=regpriq, i “ 1, . . . , 4, has Θpnq bounded faces.

Theorem 4.1. The worst-case combinatorial complexity of RVDpRq has an Ωpn2q

lower bound, even if the rays are pairwise non-intersecting.

Proof. To realize the bound, we describe a construction of a set of rays R, where
Θpnq sites have a Voronoi region with Θpnq bounded faces each. An illustration
of this construction for a set of 10 rays is illsutrated in Fig. 4.7. Observe that the
Voronoi region r=regpriq, for i “ 1, . . . , 4, has a bounded face incident to the ray
r j, for j “ 6, . . . , 10. The construction can be described as follows.

We set n “ 2m and let ppriq “ pi, 0q, i “ 1, . . . , 2m, with rays rm`1, . . . , r2m

pointing vertically upwards. For i “ 1, . . . , m, let the direction of ri be pdpriq “

psinαi, cosαiq with α1 P p3π{2, 2πq and αi “ αi´1 ` εi where εi ą 0 for i “
2, . . . , m. We choose εi one by one, in the increasing order of i, so that both ri

and ri`1 have a face between any two consecutive upward shooting rays. This
is always possible to do since we can choose εi small enough so that, at any x-
coordinate, with x ă 2m, the circular part of b=pri, ri`1q is arbitrarily close to
the x-axis and, thus, it is below the circular part of b=pri´1, riq.

Hence, each region r=regpriq, with i “ 1, . . . m has Θpnq bounded faces and
complexity. So, the constructed diagram has Θpn2q complexity and the lower
bound follows, concluding the proof.

It follows from the construction of Theorem 4.1 that a single Voronoi region
can have Ωpnq combinatorial complexity. We extend this as follows.

Theorem 4.2. A Voronoi region of RVDpRq has Θpn2q complexity in the worst case.

Proof. We first argue that the complexity of a region is Opn2q. A vertex v of
RVDpRq can be defined by a triplet of rays r, s, t P R. The bisectors b=pr, sq



83 4.2 Diagram in the plane

t

(a) Construction zoomed out.

r1

s1

r2 r3 r4 r5

s2

s3

s4

s5

(b) Construction zoomed in.

Figure 4.8. A set R of 11 rays with RVDpRq. The region r=regptq has Θpn2q

faces, one in each cell of the grid formed by tr1, . . . , r5, s1, . . . , s5u.

and b=pr, tq intersect Op1q times, hence, RVDptr, s, tuq has Op1q vertices. Now
consider a ray r and its region r=regprq. All but at most Opnq vertices on the
boundary of r=regprq are defined by r and a pair of sites. There are Θpn2q pairs,
each inducing Op1q vertices on r=regprq, so r=regprq has Opn2q vertices.

We now give a construction of n “ 2m` 1 rays, where a single region has
Θpn2q complexity; refer to the construction of Fig. 4.8. We first create a grid
structure. For i “ 1, . . . , m, let ri be a ray with ppriq “ pi, 0q shooting vertically
upward and let si be a ray with ppsiq “ p0, iq shooting horizontally to the right; see
Fig. 4.8b. For all pi, jq P t1, . . . , m´1u2, let Rpi, jq be the square ri, i`1qˆr j, j`
1q. Each square Rpi, jq is made up of two faces of RVDptr1, . . . , rm, s1, . . . , smuq,
one belonging to r=regpriq and one belonging to r=regps jq. Now let αpi, jq :“
maxtmintd=px , riq, d=px , s jqu | x P Rpi, jq u and let αmin :“ mintαpi, jq | pi, jq P
t1, . . . , m´ 1u2 u. It is easy to see that αmin ă arctan1{pm´ 1q.

We now introduce another ray t, so that maxt d=px , tq | x P r1, n´ 1s2 u ă
αmin. This can be achieved if pptq “ p´n2, 0q and t is shooting horizontally to
the right; see Fig. 4.8a. This means that in each Rpi, jq, for pi, jq P t1, . . . , n´1u2,
t will visit some point before any of the rays ri or s j, implying that r=regptq has
Θpn2q faces.

The above directly implies an Opn3q upper bound on the complexity of RVDpRq.
A similar upper bound can also be obtained using the extended abstract Voronoi
diagram framework of Bohler and Klein [2014]. Following, we show how the dis-
tance function can be adapted in order to apply the general Opn2`εq upper bound
by Sharir [1994]. As a by-product, we also obtain a construction algorithm.
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Theorem 4.3. For any εą 0, RVDpRq has Opn2`εq combinatorial complexity. Fur-
ther, RVDpRq can be constructed in Opn2`εq time.

Proof. Each site r induces a function d r
=
pxq “ d=px , rq which maps a point

x “ px1, x2q P R2 to its angular distance from r. The RVD can be seen as the
projection of the lower envelope of the graphs of these distance functions in
3-space to the plane. For algebraic distance functions, Sharir [1994] gives com-
plexity bounds for this lower envelope accompanied with algorithmic results.
The angular distance functions though are not algebraic. Therefore, our strat-
egy is to find algebraic functions d r

alg that are equivalent to the functions d r
=

for
the computation of the lower envelope, i.e. they fulfill the following property:
d r

=
pxq ă d s

=
pxq ô d r

algpxq ă d s
algpxq for all r, s P R and x P R2.

Without loss of generality, assume that pprq lies on the origin and r is facing
to the right in positive x1-direction of the coordinate system. Let x P R2 and
α :“ d r

=
pxq. Then we want to set d r

algpxq :“ 1 ´ cospαq if 0 ď α ď π, and
d r

algpxq :“ 3`cospαq if πď αă 2π. The function x ÞÑ cospαq is indeed algebraic
since it is obtained by first scaling x to unit length and then mapping it to its first
coordinate. Then we have

d r
algpx1, x2q “

$

’

’

’

&

’

’

’

%

0 if x1 “ x2 “ 0,

1´ x1?
x2

1`x2
2

if x1 ‰ 0, x2 ě 0,

3` x1?
x2

1`x2
2

otherwise.

Since d r
alg consists of three patches, which are all algebraic and have sim-

ple domain boundaries, applying the results of Sharir [1994] to these functions
yields the claimed results.

4.2.2 Brocard illumination of the plane

We now look into the Brocard illumination problem in R2. Recall that given a
set of rays R, and an α-floodlight aligned with each ray, the problem asks for the
Brocard angle (see Definition 1.9), the minimum angle needed to illuminate a
target domain, R2 in this case. The Brocard angle is

α˚ “max
xPR2

min
rPR

d=px , rq.

Let x˚ P R2 be a point that realizes α˚, or the last point to be illuminated consid-
ering the rotating rays perspective.
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rt

s y
y′

(a) α˚ is realized on a vertex of RVDpRq
by rays r, s, t. Point y 1 is further than y
to its nearest ray.

r
t

(b) α˚ is realized on a ray (r) at infinity,
by ray t.

Figure 4.9. Two examples of the Brocard angle (>) on a set R of 4 rays in R2.

Proposition 4.5. The Brocard angle of a set R of rays is realized at a vertex of
RVDpRq, or at a point at infinity along a ray.

Proof. Suppose x˚ is not on RVDpRq, but instead inside a Voronoi region of a
ray r. Then, we can always find a point with larger angular distance by simply
moving in counterclockwise direction on the circle with center pprq and radius
dppprq, x˚q; see for example the points y and y 1 in Fig. 4.9a. Hence x˚ lies on
RVDpRq.

The distance along a circular edge is monotone. Therefore, the distance at
one of its two endpoints is at least as big as the distance at any point in the
interior of the edge. The same argument also holds true for the distances along
ray edges.

Hence, a point with maximum distance, i.e., a point realizing the Brocard
angle, is either at a vertex of RVDpRq (see Fig. 4.9a), or a point at infinity on a
ray of R (see Fig. 4.9b), concluding the proof.

The above implies that we can find x˚, and hence α˚, by first constructing
RVDpRq in Opn2`εq time, as proved in Theorem 4.3, and then traversing the
diagram. RVDpRq is a plane graph, so it can be traversed in linear time in its size
using standard methods. This results in the following theorem.

Theorem 4.4. The Brocard angle of a set R of rays can be found in Opn2`εq time.

We conclude this section by giving tight bounds on the value of the angle α˚.

Proposition 4.6. The set of values that the Brocard angle of a set of rays in R2 can
achieve is r2π{n, 2πs.
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r1
r2
r3
r4
r5
r6
r7

r0

(a) α˚ “ 2π.

r1r2r3

r4

r5 r6 r7

r0

(b) α˚ “ 2π{n.

Figure 4.10. Sets of 8 rays realizing the bounds of the Brocard angle in R2.

Proof. For the upper bound consider a set R of n parallel rays: let ri have ppriq “

pi, 0q and pdpriq “ p1, 0q for i P t0, . . . , n´ 1u. An example of such a set of 8 rays
is illustrated in Fig. 4.10a. Observe that the last point to be illuminated is the
point on r0 at infinity, i.e., point p0,`8q, which will be illuminated by rn´1 when
α reaches 2π; hence the upper bound follows.

For the lower bound, consider that in order to illuminate the entire R2, all
the points at infinity should also be illuminated. To illuminate these points, the
sum of the angles of all rays, should be at least 2π. Hence, in the best case, a
point at infinity is seen by exactly one ray, and a 2π{n lower bound follows.

A construction where the 2π{n lower bound is achieved the following. Let
R be a set of n rays having apex at p0,0q and with the property that any two
consecutive rays have an angular difference of 2π{n. See an example of such
a construction with 8 rays in Fig. 4.10b. The last points to be illuminated will
be all the points on the right side of each ray ri. These points are illuminated
simultaneously by ri´1 when α reaches 2π{n. Further, the above construction
can be easily adapted to attain any value in p2π{n, 2πq, by expanding a wedge
formed by two consecutive rays and shrinking all the other analogously.

4.3 Diagram of a convex polygon

We now turn our attention to the Brocard illumination problem of a convex poly-
gon. We are given a convex polygonal domain P with n vertices, and we want
to find the Brocard angle α˚ of P. By computing a Voronoi diagram of rays re-
stricted to P, we show how to compute α˚ in optimal Θpnq time. For simplicity,
when it is clear from the context we also refer to the boundary BP as simply P.
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P

RP

Figure 4.11. A convex poly-
gon P and the corresponding
set of rays RP.

r1

r4

u

v

Figure 4.12. A polygon P with parallel edges
(r1, r4), together with PRVDpRPq. The brocard
angle is realized at every point on the edge uv.

Let RP be the set of n rays such that each ray has a vertex v P P as apex, and
passes through the successor of v in the counterclockwise order of the vertices
of P. See an example of a polygon P and the set RP in Fig. 4.11. We define

PRVDpRPq :“ RVDpRPq XP,

to be the Voronoi diagram of RP restricted inside the polygon P; see, e.g., the
diagrams in Fig. 4.12 and Fig. 4.13a. Note that we only consider PRVDpRPq,
which we show to be of Θpnq complexity, instead of the entire RVDpRPq, which
may have Θpn2q complexity.

The rest of the section is organized as follows. In Section 4.3.1, we describe
some useful properties of PRVDpRPq. In Section 4.3.2 we describe a simple
Θpn log nq time algorithm to construct PRVDpRPq. In Section 4.3.3 we give an
optimal Θpnq-time construction algorithm. In Sections 4.3.4 and 4.3.5 we give
more details regarding parts of theΘpnq-time algorithm. Finally, in Section 4.3.6,
we apply our results on PRVDpRPq to find the Brocard angle α˚ of P.

4.3.1 Properties of the diagram

For the sake of simplicity we make the following assumptions. First, that no 3
vertices of P are collinear. Second, that no point of P is equidistant to 4 rays;
this implies that every vertex of PRVDpPq is incident to 3 edges. Finally, that
there are no parallel edges in P, i.e., that there are no anti-parallel rays in RP;
this guarantees that the Brocard angle is realized at a unique point, which is a
Voronoi vertex of RVDpRPq. Alternatively, if there are anti-parallel rays in RP, the
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(a) The diagram PRVDpRPq. RVDpRPq

outside P is shown faded.
(b) The diagram DDpRPq. DDpRPq out-
side P is shown faded.

Figure 4.13. A polygon P of 5 vertices together with PRVDpRPq and DDpRPq.

Brocard angle may be realized on any point of a single Voronoi edge, which is
part of the bisector of the 2 anti-parallel edges; see, e.g., the edge uv in Fig. 4.12.

Disk diagram. To help prove some properties of PRVDpRPq, we define an auxil-
iary Voronoi diagram, the disk (Voronoi) diagram (DD). The basic idea of the disk
diagram is to use instead of angular bisectors only the bisecting circles (without
the rays). This is because the structure of the bisector system, and consequently
of the diagram, is simpler to study. Still, as we will show the disk diagram coin-
cides with the rays Voronoi diagram, in the domain of interest, i.e., inside P.

Formally, given two rays r and s, we define the DD bisector of r and s to be
the entire bisecting circle Cbpr, sq. The DD dominance region of r over s, denoted
by drDpr, sq, is either the interior or the exterior of that circle, depending on the
angular difference of the two rays. If diff=pr, sq ă π, then drDps, rq is the interior
of Cbpr, sq and drDps, rq the exterior, and the other way round if diff=pr, sq ě π.

The disk diagram of a set of rays RP, is the union of all DD regions, where for
a ray r P R, its DD region is

dregprq :“
č

sPRPztru

drDpr, sq.

See an example in Fig. 4.13b. We denote the graph structure of the diagram by
DDpRPq. Note that for n ě 3 the diagram does not cover R2, as there are areas
having a cyclic dominance relation among sites (the outer area in Fig. 4.13b).

An interesting observation is that each point in the neighborhood of the cir-
cular part of a bisector is associated to the same ray-site in both the rotating



89 4.3 Diagram of a convex polygon

rays Voronoi diagram and the disk diagram. Since in the interior of P, RVDpRPq

consists only of circular parts of bisectors, RVDpRPq and DDpRPq are exactly the
same in P. Observe this equivalence in the two illustration of Fig. 4.13.

Lemma 4.7. Each region dregprq of DDpRPq is connected and contains pprq on its
boundary.

Proof. By definition, the region dregprq is formed by taking the intersection of
n´ 1 disks and complements of disks. The boundary of each of these disks is
Cbpr, sq for some s, and since by definition the apex pprq lies on Cbpr, sq, it also
lies on the boundary of the intersection of all these disks.

To see that the region dregprq is connected, we perform an inversion of the
plane using pprq as the inversion center, and a circle of arbitrary radius as the
inversion circle. This inversion maps circles passing through the inversion center
to lines passing through the inversion center, so each dominance region drDpr, sq
maps to a halfplane. The intersection of halfplanes is connected, and since the
inversion preserves connectivity, region dregprq is also connected.

The following statement follows immediately from Lemma 4.7 and the cor-
responding equivalence of PRVDpRPq and DDpRPq in P.

Proposition 4.8. PRVDpRPq is a tree structure of Θpnq complexity.

We now turn our attention back to PRVDpRPq; we will use again the disk
diagram in Section 4.3.5.

Lemma 4.9. A region r=regpriq of PRVDpRPq has the following form: it consists of
a single face sharing the polygon edge (of the corresponding ray). The distance
on the boundary Br=regpriq has a global maximum r˚i and the distance along
Br=regpriq is monotone increasing from ri, and ri`1, towards the point realizing
the maximum.

Proof. Refer also to Fig. 4.14 (where ri “ r1). Consider the sequence of sites
whose faces are adjacent to the face of ri in counterclockwise order. We show piq
that this sequence is actually a sub-sequence of pri`1, ri`2, ..., rn, r1, ..., ri´1q, and
piiq that the distance along the sequence is monotonically increasing.
piq Let r j be a ray such that r=regpriq is adjacent to r=regpr jq. By Lemma 4.7,

each region is connected and incident to its corresponding ray, so the union of
and r=regpr jq splits the polygon in two simply connected components; see the
regions r=regpr1q and r=regpr5q in Fig. 4.14. Given a second ray rk whose region
is adjacent to the region r=regpriq, it follows that both rk and the edge between
r=regpriq and r=regprkq have to be in the same connected component, as also
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r1

r5

r3

R≥π

R<π

r∗1

Figure 4.14. Illustration of the properties of a region r=regpr1q. The distance
along the boundary Br=regpr1q is increasing towards the maximum r˚1 (‚). The
sites in RPzr1 are split in two sets Răπ “ tr2, r3, r4u and Rěπ “ tr5, r6, r7u. The
(neighboring) regions of r1 and r5 split P in two connected components.

r=regprkq is connected; see r=regpr3q in Fig. 4.14. Thus, the order of r j and rk

along the boundary of the polygon and the face of ri is the same.
piiqWe partition the set RPzri in two sets depending on the angular difference

with ri. The set Rěπ, of rays with angular difference diff=pr j, riq ě π, and the
set Răπ, of rays with angular difference diff=pr j, riq ă π; see the dashed curves
in Fig. 4.14. Along the chain of rays Răπ (resp. Rěπ) the distance is increasing
from ri`1 (resp. ri) towards the point realizing r˚i .

We give an inductive argument for the monotonicity property along chain
Răπ, starting initially only with the Voronoi diagram of the two rays ri and ri`1,
and then incrementally adding more rays of the set Răπ in counterclockwise
order. The base case follows directly from the properties of the bisectors, see
Remark 4.2. Suppose we are now adding site rk to RVDptri, . . . , r j´1uq. Because
of property piq, if there is an edge between ri and r j, then it is incident to ppriq,
i.e., it is the last one along the chain of edges of face r=regpriq. Let v be the
other endpoint of the edge between ri and r j. Since r j P Răπ, the distance
along the edge ri and r j is monotone increasing, from v to ppriq. Further, by
the induction hypothesis, the distance along the chain of edges between ri and
all sites bounding r=regpriq in RVDptri, . . . , r j´1uq is monotonically increasing in
counterclockwise order, from ri`1 to v.

The proof for Rěπ is analogous, but instead, the distance increases in clock-
wise order.

Corollary 4.10. Given a vertex u P PRVDpRPq at least two incident edges have a
distance increasing towards u.

Proof. Assume for the sake of contradiction, that there is a vertex u with two
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incident edges having distance decreasing towards u. These two edges are part
of a chain of edges bounding a region r=regpriq; this contradicts Lemma 4.9.

Lemma 4.11. Given an angle c, the set of all points in the interior of P, which have
at least distance c to their nearest site, form a convex polygon B.

Proof. Note the set of all points at distance c from a ray of RP is a half-line. Then
B is a convex polygon, since it is the intersection of the halfplanes defined by all
the rays in RP, after being rotated by c.

4.3.2 A simple Opn log nq-time algorithm

Before describing the optimal Θpnq-time algorithm to construct PRVDpRPq, we
first describe a simple Θpn log nq-time algorithm. The algorithm employs a "col-
lapse" strategy: starting at the boundary of the domain (where all the points have
distance zero to its nearest site), the algorithm gradually constructs the diagram
adding edges and vertices with greater distance until the vertex of maximum
distance is reached.

Algorithms employing a similar strategy have been designed to construct
the farthest point Voronoi diagram by Skyum [1991] and the farthest segment
Voronoi diagram by Aurenhammer et al. [2006], gradually discovering the edges
and vertices of the diagram in decreasing distance (from `8 until the vertex
of minimum distance). The Opn log nq-time algorithm of Alegría-Galicia et al.
[2017] finds the Brocard angle in a similar manner, without constructing PRVDpRPq.

Algorithm outline. Refer also to Fig. 4.15. The algorithm starts at the vertices
of P, which are all starting points of edges of PRVDpRPq. For every pair of edges
that are consecutive in circular order, their next intersection point is computed (if
one exists). Out of these intersection points, the one with minimum distance to
its nearest site is the next vertex of the diagram. This "collapse" event is processed
by (i) constructing the vertex, (ii) constructing the edges leading to this vertex,
(iii) removing the edges from further consideration, and (iv) starting a new edge.
At the constructed vertex a face "collapses", since it is fully constructed and will
not be considered again. The new edge is part of the bisector of the two faces
neighboring the collapsed face. This procedure, of computing and processing
new "collapse" events, is repeated until all the remaining edges intersect in a
single point. This point is the vertex of PRVDpRPqwith maximum distance (which
also realizes the Brocard angle).

A pseudocode description is given in Algorithm 1. Let L denote the circular
list of rays, where L.PREVprq and L.NEXTprq return respectively the previous and
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r1

r2 r3
r4

r5

y

(a) 1st event: Vertex y is induced by
pr2, r3, r4q. The region of r3 "collapses".

r1

r2 r3
r4

r5

y

(b) 2nd event: Vertex y is induced by
pr5, r1, r2q. The region of r1 "collapses".

Figure 4.15. Illustration of the Opn log nq-time algorithm on a polygon of 5 ver-
tices. The two first events are shown, together with all candidate vertices (‚).
In a 3rd event (not shown) there is one candidate vertex induced by pr2, r4, r5q.

the next ray in the list, and where L.NEXTprnq “ r1, L.PREVpr1q “ rn. Q denotes
a min priority queue (with standard Q.PUSH and Q.POP operations) which takes
triplets of (distance, ray, vertex) and sorts them according to the distance.

Algorithm 1: Opn log nq-time algorithm to construct PRVDpRPq.
Input : A convex polygon P with ně 3 vertices.
Output: The diagram PRVDpRPq.

1 QÐH ; // Min priority queue by angular distance

2 LÐ pr1, r2, ..., rnq ; // Circular list of rays

3 for each ray r P L do
4 if exists real vertex w in RVDptL.PREVprq, r,L.NEXTprquq then
5 Q.PUSHppd=pr, wq, r, wqq ;
6 while |Q| ą 0 do
7 pd, r, vq Ð Q.POPp q ; // Get the min distance candidate

8 Add v and the edges increasing towards v to PRVDpRPq ;
9 Remove ray r from L ;

10 Remove from Q the events associated with ray r ;
11 if exists real vertex w in RVDptL.PREVprq, r,L.NEXTprquq then
12 Q.PUSHppd=pr, wq, r, wqq ;
13 return PRVDpRPq ;

Proposition 4.12. Algorithm 1 constructs PRVDpRPq in Θpn log nq time.
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Proof. The time complexity of the algorithm is straightforward. The algorithm
take Opn log nq time to sort the first n events, (lines 3-5). Then, there are n´ 2
events and each event takes Oplog nq time (lines 6-12), so the algorithm takes
Opn log nq time overall.

Following we prove the correctness of the algorithm. The main idea is to
construct the features of the diagram (vertices and edges) in increasing distance
to their nearest site. First note, that because of Lemma 4.11, the set of points
with same distance to their closest site form a single cycle. So to keep track of
the edges which are “under construction” it suffices to use a circular list.

Next we argue that the algorithm correctly finds the next vertex, assuming
that all vertices with smaller distance have already been constructed. Corol-
lary 4.10 implies that every vertex has at least 2 edges with increasing distance
towards it, Thus, the next vertex is the intersection of a pair of edges, which
are under construction. Further the 2 involved edges need to be consecutive,
because the cyclic property of Lemma 4.11 would be violated otherwise. Since
we are constructing the diagram in increasing distance, the algorithm picks the
candidate vertex with smallest distance.

At each vertex event, the algorithm starts constructing a new edge. The algo-
rithm does not miss any new edges because edges can only start at vertices. This
is due to the distance function on an edge being monotone and not exhibiting
local minima; see Remark 4.2.

4.3.3 An optimal Opnq-time algorithm

We now show how PRVDpRPq can be constructed in optimal deterministic Θpnq-
time. As we have already seen in Section 4.3.1, PRVDpRPq has a tree structure
and each Voronoi region is connected. This suggest a possible connection to
the abstract Voronoi diagram framework. As we have already discussed in Sec-
tion 2.1.2, if a Voronoi diagram satisfies the AVD axioms, then this framework
provides several results, both combinatorial and algorithmic.

Unfortunately, as we will see in the next section, this framework is not directly
applicable to PRVDpRPq. Still motivated by this, the key ingredient of our algo-
rithm is to appropriately split the problem into sub-problems that admit Voronoi
diagrams with a simpler structure, which can satisfy the AVD axioms.

Algorithm outline. Refer also to the accompanying pseudocode of Algorithm 2.
In a first step, we partition RP into four sets RN ,RW , RS and RE of consecutive
rays, depending on whether a ray points to the (N)orth, (W)est, (S)outh or (E)ast
respectively; see an example in Fig. 4.16a. In a second step we transform each set
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N
W

S
E

RE

RW

RN

RS

(a) The sets of rays RN ,RW ,RS, RE .

N
W

S
E

Rr
W

Rr
S

Rr
E

Rr
N

(b) The sets of rays Rr
N ,Rr

W ,Rr
S, R

r
E .

Figure 4.16. The partitioning of the set of rays in RP before and after rotation.

Rd , d P tN,W,S,Eu into a set Rr
d in which every ray of Rd is rotated clockwise by

an angle ofπ{2 (or equivalently rotated by´π{2q; see the example of Fig. 4.16b.
Then, we construct each diagram RVDpRr

dq independently; see Fig. 4.17 Finally,
in the last phase we merge the four diagrams to obtain PRVDpRPq. This is done in
two phases, we first merge RVDpRr

W qwith RVDpRr
Sq and RVDpRr

Nqwith RVDpRr
Eq;

see Fig. 4.20. Then, we merge RVDpRr
W YRr

Sq with RVDpRr
N YRr

Eq restricted to
P; see Fig. 4.21.

Algorithm 2: Opnq-time algorithm to construct PRVDpRPq.
Input : A convex polygon P with ně 3 vertices.
Output: The diagram PRVDpRPq.

1 tRN ,RW ,RS,REu Ð Split RP ;
2 for each d P tN , W, S, Eu do
3 Rr

d Ð Rotate Rd ;
4 Construct RVDpRr

dq ;
5 RVDpRr

W YRr
Sq Ð Merge RVDpRr

W q and RVDpRr
Sq ;

6 RVDpRr
N YRr

Eq Ð Merge RVDpRr
Nq and RVDpRr

Eq ;
7 PRVDpRPq Ð Merge RVDpRr

W YRr
Sq and RVDpRr

N YRr
Eq ;

8 return PRVDpRPq ;

We describe in detail the construction of the 4 smaller diagrams in Section 4.3.4
and the merging phase in Section 4.3.5. Consequently we will show the follow-
ing, which is the main results of this section.

Theorem 4.5. Given a convex polygon P, we can construct PRVDpRPq in optimal
deterministic Θpnq time.
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RS

(a) Diagram RVDpRSq.

Rr
S

(b) Diagram RVDpRr
Sq.

Figure 4.17. Voronoi diagrams of a set RS and the rotated set Rr
S.

4.3.4 Opnq-time algorithm: Constructing the 4 partial diagrams

In this section, we describe how to construct for each of the 4 subsets of rays
Rr

d , the diagram RVDpRr
dq in Θp|Rr

d |q time. To do so, we use the abstract Voronoi
diagrams framework. We will show that the system of bisectors of Rr

d satisfies
the AVD axioms. For a set R of rays, the AVD axioms can be stated as follows.

(A1) The bisector b=pr, sq, @r, s P R, is an unbounded Jordan curve.
(A2) The region r=regprq in RVDpR1q, @R1 Ď R and @r P R1, is connected.
(A3) The closure of the union of all regions in RVDpR1q, @R1 Ď R, covers R2.

Observe that, in the way we partitioned RP, any two rays r and s on the same
subset have an angular difference of at mostπ{2, i.e., mintdiff=pr, sq, diff=ps, rqu ď
π{2 holds. This is a key property in proving the following statement.

Lemma 4.13. The system of bisectors of Rr
d satisfies the AVD axioms.

Proof. We prove each of the three axioms separately.
Axiom (A1): Let r, s be a pair of rays in Rr

d , let x P rztpprqu, resp. y P
sztppsqu, denote a point lying on r, resp. s, and let L be the line passing through
pprq and ppsq; see Fig. 4.18a. Due to the convexity of the polygon, it follows that
=px , pprq, ppsq and =pppsq, pprq, xq are greater than or equal to π{2; hence r lies
in the closed halfplane orthogonal to L incident to pprq which does not contain
ppsq. Analogously s, lies in the in the closed halfplane orthogonal to L incident
to ppsq that does not contain pprq. Thus, the horizontal strip defined by the two
halfplanes separates r and s, and they are non-intersecting. By Lemma 4.1, the
bisector of two non-intersecting rays is an unbounded Jordan curve.
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r

s

x

y

L

(a) (A1): The horizontal
strip (shown shaded) sepa-
rates r and s.

r

t

I

≤ π
2

< π
2

s

Cb(s, t)

α

β

(b) (A2): pprq is between
ppsq and pptq, so it lies in
Cbps, tq.

p(r∗)

p(s∗)

p(t∗)

Cb(s, t)

c

I∗

r

(c) (A2): The vertical strip
(shown shaded) separates c
and r.

Figure 4.18. Illustrations for the proof of Lemma 4.13.

Axiom (A2): It suffices to prove the property for any subset of Rr
d of size three

(see Klein et al. [2009]). By Lemma 4.3, each Voronoi region has exactly one
unbounded face, so if a region is disconnected, then it has at least one bounded
face. Observe that the diagram of 3 rays can have at most one proper vertex.
Thus, a bounded face in the diagram can appear only incident to a ray, and it
suffices to show that no ray intersects twice the bisecting circle of the other two
rays.

Let tr, s, tu be a subset of Rr
d . We will show that an arbitrary ray of tr, s, tu,

say r, does not intersect twice Cbps, tq. Without loss of generality we assume that
diff=pt, sq ă diff=ps, tq.

In the case that pprq lies in the interior of Cbps, tq, then r intersects Cbps, tq
exactly once and the claim follows. Assume that pprq appears between ppsq and
pptq along the polygon chain, and let I be the intersection of the supporting
lines lpsq and lptq; see Fig. 4.18b. Because of the rotation of rays, we have
=ppprq, ppsq, Iq ď π{2 and =pI , pptq, pprqq ă π{2. Thus, by the properties of
cyclic quadrilaterals, the pprq lies in the interior of Cbps, tq, the circle passing
through ppsq, pptq and I ; see, e.g., that α` β ą π in Fig. 4.18b.

It remains to examine the case that pprq lies outside Cbps, tq, and pprq appears
before or after both ppsq and pptq. We prove the case when pprq appears before
ppsq and pptq. The other case is analogous.

Let c denote the center of Cbps, tq, let r˚ (resp. s˚, t˚) denote the ray r
(resp. s, t) rotated counterclockwise by π{2 around its apex, and let I˚ denote
the intersection point between the supporting lines lps˚q and lpt˚q. Without loss
of generality, we assume that t˚ is a horizontal ray pointing left. Refer also to
Fig. 4.18c. First note that, if r intersects twice Cbps, tq, then c lies to the right
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(a) The Voronoi diagram of the complete set of rays without rotation.

s

(b) A subset of 3 rays rotated by ´π{2.
The region of s (‚) has 2 faces. To be
connected, more rotation is needed.

r

(c) A subset of 3 rays rotated by ´π{2.
The region of r (‚) has 2 faces. To be
connected, less rotation is needed.

Figure 4.19. An example of a (thin) polygon with 5 rays justifying Remark 4.15.

of the (directed) line lpr˚q, so it suffices to prove that c lies to the left of lpr˚q.
To show this observe that ppr˚q lies to the right of the vertical line through pps˚q
since diff=pt

˚, r˚q ď π{2, and to the left of lps˚q since r˚ and s˚ are induced by
a convex polygon; see the red region in Fig. 4.18c. On the other hand, note that
the vertical line through I˚ separates C from ppr˚q. Hence, c lies to the left of
r˚, which proves the claim and concludes the proof.

Axiom (A3): The diagram RVDpRr
dq is defined by distance functions, one for

each site in Rr
d , whose domain is the entire plane. Hence, any point in the plane

belongs to the closure of a region of RVDpRr
dq.

Since each Voronoi region is connected, and it has exactly one unbounded
face, as shown in Lemma 4.3, we can easily infer the following.

Corollary 4.14. RVDpRr
dq is a tree of ΘpRr

dq complexity.

It is worth noting that the original set RP need not satisfy the AVD axioms;
hence the necessity for partitioning into the four subsets and rotating. An exam-
ple of a diagram that satisfies axiom (A2), only after the clockwise π{2 rotation
is shown in Fig. 4.17.

The intuition behind the rotation of the rays comes from the fact that only
circular parts of bisectors appear in PRVDpRPq, and that the bisecting circles
remain the same under a uniform rotation. A clockwise π{2-rotation by itself is
not sufficient and this can be justified by the example in Fig. 4.19: a set RP of 5
rays is given, and there exists a subset of rays which need more rotation in order
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to have each region connected (see Fig. 4.19b), and a subset of rays which needs
less rotation (Fig. 4.19c).

Remark 4.15. There are sets of rays RP for which there exists no unique angle to
rotate the rays in RP, so that axiom (A2) is satisfied.

The results of Klein [1989] on abstract Voronoi diagrams, directly imply an
Opn log nq-time algorithm to construct RVDpRr

dq. We can further improve upon
this time complexity, to Opnq-time, by showing that the system of bisectors of Rr

d
falls under the, more restricted, Hamiltonian abstract Voronoi diagram framework
of Klein and Lingas [1994]. In addition to satisfying (A1)-(A3), the following
axiom should also be satisfied.

(A4) There exists a Jordan curve H of constant complexity such that, H visits
the region r=regprq in RVDpR1q, @R1 Ď R and @r P R1, exactly once.

If a Voronoi diagram satisfies axioms (A1)-(A4) and the ordering of the re-
gions of RVDpR1q along H is given, then RVDpRq can be computed in determin-
istic Θpnq-time. Hence for our problem, it suffices to prove that we can find a
curve H satisfying these properties. We show this in the following.

Lemma 4.16. RVDpRr
dq can be constructed in deterministic Θp|Rd |q time.

Proof. We show that there exists a curve H satisfying axiom (A4), and the order-
ing of the regions of RVDpR1q along H is known, for every R1 Ď Rr

d . Then, the
deterministic linear time algorithm directly follows the existing results of Klein
and Lingas [1994].

Let H be a circle of sufficient large radius, such that all bisecting circles lie
entirely in the interior of H. H is obviously a simple and closed curve of con-
stant complexity. For any R1 Ď Rr

d , the diagram RVDpR1q is a tree, so it has only
unbounded faces. By definition, H does not intersect any bisecting circle, hence
H visits each region of RVDpR1q exactly once, with a change on the visited region
happening when H intersects a ray.

The ordering of the unbounded faces of RVDpRr
dq corresponds to the ordering

of the respective vertices along the polygon P, and this is maintained for any R1 Ă
Rr

d . The ordering of the vertices of P is given, so this concludes the proof.

4.3.5 Opnq-time algorithm: Merging the 4 partial diagrams

We now merge all diagrams to obtain PRVDpRPq. Our merging procedure con-
sists of two steps. In an initial step we merge RVDpRr

W q with RVDpRr
Sq to obtain
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Rr
W

w1

w2

(a) RVDpRr
W q.

Rr
S

s1

s5

(b) RVDpRr
Sq.

s1

w1

Rr
W ∪Rr

S

(c) RVDpRr
W YRr

Sq.

Figure 4.20. 1st merging phase: merging RVDpRr
W q and RVDpRr

Sq. The red
edges correspond to the merge curve, and the arrows schematize tracing.

Rr
W ∪Rr

S

(a) RVDpRr
W YRr

Sq.

Rr
E ∪Rr

N

(b) RVDpRr
E YRr

N q.

e1

w1

RP

(c) PRVDpRPq.

Figure 4.21. 2nd merging phase: merging RVDpRr
W YRr

Sq and RVDpRr
E YRr

Nq

restricted to P.

RVDpRr
WYRr

Sq, and respectively we obtain RVDpRr
EYRr

Nq; see Fig. 4.20. Then, in
a final step we merge the diagrams RVDpRr

W YRr
Sq and RVDpRr

EYRr
Nq, restricted

to the interior of P, to obtain PRVDpRPq; see Fig. 4.21.
We first describe the merging procedure briefly, and then give more details

and prove its correctness. We will ultimately show the following.

Lemma 4.17. Given RVDpRr
dq for all d P tN,W,S,Eu, we can merge the 4 diagrams

to obtain PRVDpRPq in Θpnq time.

Outline of the merging phase. Regarding the first merging step, we describe
how to merge RVDpRr

W qwith RVDpRr
Sq. Merging RVDpRr

Eqwith RVDpRr
Nq is done

analogously. Let w1, . . . , wk be the rays in Rr
W and let s1, . . . , sl be the rays in

Rr
S, as they appear ordered on P. We need to construct the merge curve of the

two diagrams, which partitions R2 in two, and keep from one side the diagram
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s1 w1

(a) The curve EC does not end at ppw1q.

s1

w1

(b) Ray w1 intersects RVDpRr
Sq.

Figure 4.22. Special cases of merging two diagrams RVDpRr
W q and RVDpRr

Sq.

RVDpRr
W q and from the other side we keep RVDpRr

Sq; see Fig. 4.20c. The merge
curve consists of the two rays s1 and w1, and the set of circular edges of RVDpRr

WY

Rr
Sq equidistant to sites w P Rr

W and s P Rr
S, which forms a single connected chain

bounded by pps1q and ppw1q. We denote the set of circular edges by EC .
Then, we merge RVDpRr

W YRr
Sq with RVDpRr

EYRr
Nq restricted into P. In this

case, since we are merging restricted into P, the merge curve is simpler and it
consists only of the set EC , which is again a single connected chain, bounded by
ppe1q and ppw1q; see Fig. 4.21c.

Tracing along the rays (initial step). Tracing along the ray s1 can be done
easily as the ray lies entirely in r=regpwkq. To see that, consider the set RW

(before rotation) and continuously clockwise rotate all rays by an angle of π{2.
During this process, wk does not intersect any of the rays in RW , hence s1 P

r=regpwkq. Thus, s1 does not intersect RVDpRr
W q and it can be trivially traced in

Θp1q time, as there is no vertex to identify.
Tracing along the ray w1 is done in a different way. In contrast to s1, the

ray w1 may intersect many circular edges of RVDpRr
S), each inducing a vertex on

w1; see e.g., Fig. 4.22b. To identify such vertices, we intersect w1 with RVDpRr
Sq.

This can be easily done in Op|RS|q time, as RVDpRr
Sq is proved to be a tree; see

Corollary 4.14. Note that, the curve EC might not intersect w1 at ppw1q but at
some other point; see e.g., Fig. 4.22a. In this case the aforementioned search for
intersections RVDpRr

Sq should start from that point.

Tracing the sequence of circular edges EC . We describe how to trace EC in
Θp|EC |q, for both merging steps. The procedure is similar to the standard Voronoi
diagrams of points (see e.g., Aurenhammer et al. [2013]), adapted to angular
bisectors. Following, to show that EC can be traced in Θp|EC |q time, we need to
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vregL(l)

v

vR

vL

b vL2

b2

Cb(l, r)Cb(l, r2)

b1

(a) Tracing the merge curve (follow-
ing the arrows) in a region r=regLplq
(shown shaded).

s1

s2

s3

s1

s2

α1

α2

α3

s3

(b) Tangents to the circular edges inci-
dent to a proper vertex, and the respective
curvilinear angles pα1,α2,α3q.

Figure 4.23. Illustration of the tracing process while merging EC and the proof
that it is not necessary to backtrack.

prove that there is no need to backtrack, i.e., that we do not have to scan parts
of a Voronoi region more that once; we prove this in Lemma 4.18. Following, we
give a detail description of the tracing procedure.

Assume we want to merge two diagrams along one merge curve. Let L be
the set of rays defining the diagram to the left of the curve EC and R the set to
the right hand side. Initially a starting point for the tracing needs to be found,
which is an apex, as already described.

Without loss of generality assume that we are tracing EC from top to bottom;
refer to Fig. 4.23a. Suppose that the current edge b of EC has just entered the
region r=regLplq, the Voronoi region of site l P L within RVDpLq, at point v.
Let r be the site of the right diagram, in whose region r=regRprq the edge b
lies. We determine the points vL (resp. vR) where b leaves the region r=regLplq
(resp. r=regRprq). The point vL is found by scanning the boundary of r=regLplq
clockwise starting from v. The point vR is found by scanning the boundary of
r=regRprq counterclockwise starting from v. Without loss of generality assume
that vertex vR is reached first, which then describes the endpoint of edge b.

EC continues from vR with another edge b2 along the bisector b=pl, r2q, where
r2 is another site in R. We again determine the points vL2 and vR2, where the edge
b2 leaves the regions of l and r2. We will prove in Lemma 4.18 that vL2 cannot
be on the boundary of r=regLplq, which was already scanned, i.e., we can start
scanning the boundary starting from vL in clockwise direction. Since there is no
backtracking required to trace EC , the tracing takes Θp|EC |q time.

Lemma 4.18. There is no need to backtrack while tracing the curve EC .
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Proof. Let v, vL and vL2 be the points as defined in the above description of tracing
EC . To prove that there is no need for backtracking, it suffices to prove that the
points v, vL and vL2 appear in counterclockwise order along the boundary of face
r=regLplq; see Fig. 4.23a.

The curvilinear angle between two intersecting curves is the angle between
their two tangents at the point of intersection. Each proper vertex of the diagram,
is of degree 3, so, the three edges incident to a vertex induce three curvilinear
angles; see Fig. 4.23b. Each such curvilinear angle can be seen as the angle at
the intersection of two halfplanes. Hence, each such angle is less than π.

The point vR is a proper vertex in the merged diagram. Therefore, the curvi-
linear angle =pvL2, vR, vq between the edges b2 and b is less than π. On the other
hand, the angle =pvL, vR, vq between the edges b1 and b2 is exactly π as both
edges lie on the same bisector. Within the polygon, two related bisectors inter-
sect at most once. Thus, the edge b2 has to hit the boundary of r=regLplq after
vL but before v in counterclockwise order.

Correctness of the construction of EC . We first argue why in the first merg-
ing phase (assuming that we merge RVDpRr

W q with RVDpRr
Sq, EC which starts

at pps1q ends at ray w1. To see that, consider the distance of any point on the
chain to its nearest ray. The distance when EC , at pps1q, is exactly π{2, and it
is monotonically increasing. Moreover, consider the polygonal chain P˚ consist-
ing of the line segments ppw1qppw2q, ppw2qppw3q, . . . , ppwkqpps1q, pps1qpps2q, . . . ,
ppsl´1qppslq and the ray sl . The distance of any point on P˚ to its nearest ray, is
exactly π{2. Hence, since the distance along the chain of circular edges is in-
creasing, the only possibility for this chain to end up is at w1 (but not necessarily
at its apex, see Fig. 4.22a). For the second merging phase it is obvious that EC is
bounded by ppe1q and ppw1q.

We need to show that piq the chain which we traced is the complete set EC ,
i.e., there are no other connected components which we have to identify, and
that piiq EC does not induce any bounded faces in RVDpRr

W YRr
Sq. To prove both

statements we use the disk diagram.
piq By Lemma 4.3, each region has one unbounded face, so if there exists

another connected component in EC , it has to be bounded. Suppose that EC has
another connected component which is bounded only by circular edges. This
implies that the bisecting circles of the bisectors create bounded faces. Since the
bisecting circles of the disk diagrams are supersets of the circular arcs appearing
in RVDpRr

W Y Rr
Sq, RVDpRr

E Y Rr
Nq and PRVDpRPq, such a bounded face would

also appear in the respective disk diagrams, a contradiction to Lemma 4.7.
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piiq Suppose now that the merge curve has a component which is bounded
from one side by a ray. In the final merging step this is clearly not possible, as on
PRVDpRPq all points on an edge/ray of P belong to the region of the respective
ray. For the initial merging step, assume w.l.o.g. that we are merging RVDpRr

W q

with RVDpRr
Sq. Apart from the ray w1, for every other ray, say w.l.o.g. si, the

complete right side of the ray is incident to r=regpsi´1q. This can be proved with
the same argument, used to show that s1 P r=regpwkq (where s1 is the first ray of
Rr

S, and wk is the last ray of Rr
W respectively). As a result no bounded component

of EC could be be incident to a ray. Hence, EC is a single unbounded chain.
Analogously, we can derive that while tracing EC no other bounded faces

are created, as these bounded faces should also appear in the respective disk
diagrams. As a result in the initial merged diagram RVDpRr

W Y Rr
Sq, each ray

si P Rr
S can have at most two faces (the unbounded one and the one incident

to w1) and r=regpwiq is connected @wi P Rr
W . On the contrary in PRVDpRPq,

r=regpriq is connected @ri P RP.

Overall time complexity. In the first step, tracing the rays s1 and n1 takes Θp1q
time, and tracing the rays w1 and e1, takesΘp|RS|q time andΘp|RN |q time respec-
tively. Tracing the curve EC takes Op|RW | ` |RS|q time, and Op|RE| ` |RN |q time
respectively, so in total the first step requires Opnq time. The final step requires
Opnq time to trace EC and Θpnq to restrict the diagram into P. So, the overall
merging of the four diagrams takes Θpnq time.

Putting everything together, we can trivially split, RP into 4 sets in Θpnq time,
we can construct the 4 diagrams in Θpnq time, as shown in Lemma 4.16, and we
can merge them in Θpnq time, as shown in Lemma 4.17. So, we can summarize
(and re-state) the main result of this section as follows.

Theorem 4.5. Given a convex polygon P, we can construct PRVDpRPq in optimal
deterministic Θpnq time.

4.3.6 Brocard illumination of a convex polygon

We now turn to the Brocard illumination problem of a convex polygon P. Our
goal is to find the Brocard angle of P, which is

α˚ “max
xPP

min
rPR

d=px , rq.

Observe that diagram PRVDpRPq is a subset of RVDpRPq, hence Proposition 4.6
applies also in this setting, and so α˚ is realized on PRVDpRPq. However, since
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s1
w1

e1
(a) PRVDpRPq and the rays realizing α˚.

s1
w1

e1
(b) The 3 α˚-floodlights illuminating P.

Figure 4.24. The Brocard angle (>) of a polygon P, realized by pe1, w1, s1q.

the diagram is strictly confined into P, the point x˚ realizing the Brocard angle,
can only lie on Voronoi vertex equidistant to 3 rays; see an example in Fig. 4.24a.

Similarly to the setting in R2, to find α˚ we can first construct PRVDpRPq and
then we can traverse it to find the Voronoi vertex of maximum distance. Both
steps can be done in Opnq time resulting in the following.

Theorem 4.6. The Brocard angle of a convex polygon P can be found in Θpnq time.

Following, we give tight bounds on the value of the Brocard angle.

Proposition 4.19. The set of values that the Brocard angle of a convex polygon can
achieve is r0,π{2´π{ns.

Proof. A π{2´π{n upper bound on the Brocard angle is given by Dmitriev and
Dynkin [1946], as pointed out (and translated) by Besenyei [2015]. Such an
angle is realized by regular polygons, which are Brocard polygons. The last illu-
minated point is the center of the polygon, which is simultaneously illuminated
by all the floodlights at an angle of π{2´π{n.

The lower bound is realized by a polygon whose bounding box has width
w, height h, and an aspect ratio h{w arbitrarily close to zero, so that α˚ is also
arbitrarily close to zero. Further, while preserving convexity, we can smoothly
transform a regular polygon into such an arbitrarily thin polygon. Hence it is
possible to get any Brocard angle in the range p0,π{2´π{ns.

Floodlight illumination of a convex polygon by 3 floodlights. Note that the
three floodlights which realize α˚ suffice to illuminate P. This can be observed
in the illustrated example of Fig. 4.24b, and it implies the following.
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r

g

b

rg

g

gbb

(a) RVDCpRq as the intersection of
RVDpRq in R2 with C.

α∗

(b) RVDCpRq as the lower envelope (high-
lighted) of distance functions (dashed).

Figure 4.25. The curve C is the horizontal line x2 “ 0, and R is a set of 3 rays.

Remark 4.20. A convex polygon P can be entirely illuminated be 3 α˚-floodlights.

We conclude by discussing an implication of the results on the Brocard angle.
Consider the following question posed by O’Rourke et al. [1995]: given a convex
polygon P with n vertices, what is the minimum angle α3, such that 3 vertex
α3-floodlights (not necessarily aligned with the edges) illuminate P. Contreras
et al. [1998a] gave an α3 “ π{6 solution for n“ 3 and an α3 “ π{4 solution for
n“ 4. Urrutia [2000] gave an α3 “ π{3 solution for arbitrary n.

Our results directly imply an α3 “ α
˚ solution for arbitrary n and, as proved

in Proposition 4.19, α˚ ď π{2´π{n. Hence, our results subsume the aforemen-
tioned solutions for n“ 3, 4,6 and also improve the case of n“ 5, to α3 “ 3π{10.

4.4 Diagrams on curves

As we discussed in Section 2.3.1, floodlight illumination problems have also been
considered restricted to curves. Motivated by such problems, in this section, we
assume that R is a set of n rays in R2, and the domain of interest is a curve C. We
denote by RVDCpRq the rotating rays Voronoi diagram of R restricted to C. We
show how RVDCpRq can be viewed as the lower envelope of distance functions in
2-space; see Fig. 4.25. We first consider the curve C to be a line and then discuss
how this approach can be extended to other curves.

Theorem 4.7. Given a line C, RVDCpRq has complexity Opn2αpnqq and it can be
constructed in Opnαpnq log nq time.

Proof. Without loss of generality, let C be the horizontal line x2 “ 0. Each site
r P R induces a distance function in 2-space which maps a point x “ px1, 0q P C
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C

r s

(a) Two rays inside C.

C

r

c

(b) The visible part of a ray.

C

r
s

(c) Two rays outside C.

Figure 4.26. A convex polygon C; dominance regions along C are highlighted.

to point xmap “ px1, d=px , rqq; see Fig. 4.25b. Observe that if a ray r intersects
C at point pi, 0q, then there is a point of discontinuity, and the distance function
is split into two partially defined functions, one with the domain up to i and one
with the domain starting at i.

RVDCpRq is the lower envelope of all these distance functions. The lower
envelope of n partially defined functions, where each pair of functions intersects
at most s times, has Opλs`2pnqq complexity (see Hart and Sharir [1986]) and
it can be constructed in Opλs`1pnq log nq time (see Hershberger [1989]), where
λspnq is the length of the longest pn, sq Davenport-Schinzel sequence.

Observe that the number of intersections of two distance functions is the same
as the number of intersection of their bisecting circle with C. In our case, a pair
of functions intersects at most twice, as C may intersect twice the bisecting circle
of the two respective rays, so s “ 2. Further, we have at most 2n partially defined
functions. Thus, RVDCpRq has complexity Opn2αpnqq and it can be constructed in
Opnαpnq log nq time, where αpnq is the inverse Ackermann function.

Observe that the Brocard angle α˚ needed to illuminate the line C is realized
either at an intersection point between RVDpRq, i.e., a vertex of RVDCpRq, or at
a point of C at infinity; see for example the point p´8, 0q in Fig. 4.25, which
first illuminated by ray b. Hence, after constructing RVDCpRq, the angle α˚ is
revealed by a simple traversal of RVDCpRq in time linear in its size.

The aforementioned approach can be generalized to arbitrary curves in a
straightforward way. Regarding the Brocard angle, note though, that if C is a
bounded curve, α˚ cannot be realized at infinity.

Let us first consider C to be a closed convex curve. Using a similar approach,
and depending on whether we illuminate the interior or the exterior of C, i.e.,
whether the apices of the rays inside or outside C, we obtain the following results.
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r T

x2

x1

x3

Figure 4.27. Illustration for the
proof of Theorem 4.9. Point x3

is not visbile from ray r. Trian-
gle T is a subset of C.

123

4
5

r

C

Figure 4.28. Illumination of C and the pa-
rameter k. The distance function of a ray r is
split into 5 partial functions (k=5) by differ-
ent types of breakpoints.

Theorem 4.8. Let C be a closed convex curve, and let the apices of the rays in R lie
inside C. Then, RVDCpRq has complexity Opλs`2pnqq and it can be constructed in
Opλs`1pnq log nq time, where s is the maximum number of times C intersects a circle.

Proof. Assume that the curve C is parametrized in the following form, C : r0,1s Ñ
R2 with Cp0q “ Cp1q. Analogously to the approach of Theorem 4.7, each site r
induces a distance function on the curve C, which maps a value t P r0, 1s to
the point pt, d=pCptq, rqq, and the result immediately follows the results of the
envelopes of distance functions in 2-space.

As a corollary of Theorem 4.8, if C is a circle, then RVDCpRq has complexity
Opn2αpnqq and it can be constructed in Opnαpnq log nq time, since C intersects a
bisecting circle at most twice; hence, s “ 2. Conversely, if C is an m-sided convex
polygon, then RVDCpRq has complexity Opλ2m`2pnqq and it can be constructed
in Opλ2m`1pnq log nq time. This is because C may intersect a bisecting circle 2m
times, hence s “ 2m; see, e.g., Fig. 4.26a.

We can obtain better results if the apices are lying outside a closed convex
curve C. In this case, only a part of the curve C is visible by each input ray, where
a point x P C is visible by a ray r if the open segment pprqx does not intersect C.
If a point x is not visible by a ray r P R, we set d=px , rq “ `8. For instance, in
Fig. 4.26b, the visible portion of a ray r is shown; point c is not visible by r.

Theorem 4.9. Let C be a closed convex curve, and let the apices of the rays in R lie
outside C. Then, RVDCpRq with visibility restrictions has complexity Opn2αpnqq and
it can be constructed in Opnαpnq log nq time.

Proof. We apply the same approach used as in Theorems 4.7 and 4.8. To get the
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claimed results we show the part of the curve visible by any two rays is intersected
at most twice (s “ 2) by a bisecting circle.

Given a ray r P R consider the portion of C visible by r. Suppose, for the
sake of contradiction, that a bisecting circle defined by r intersects the visible
part of C in at least 3 points x1, x2, x3; refer also to Fig. 4.27. By definition, pprq
lies on the bisecting circle, so pprq lies on one of the circular arcs x1 x2, x2 x3, or
x3 x1; without loss of generality, suppose pprq P x1 x2. By the assumption pprq
lies outside C, so obviously points x1, x2 P C obstruct the visibility of r, and x3 is
not visible by r. But x3 was the intersection point of the bisecting circle with the
visible portion of C, a contradiction.

The part of C visible by two rays is a subset of the part visible by each of the
rays independently, so it is intersected by a bisecting circle at most twice. Hence,
s “ 2 and as in Theorems 4.7 and 4.8 the claim follows.

Our approach can be generalized to other classes of curves as well, although
the visibility restrictions should be taken into account. Given a ray r, the portion
of C visible by r can be split into many maximal connected components; see
Fig. 4.28. A split might be induced by the curve C itself (breakpoint (3-4) in
Fig. 4.28), it can be induced by other curves (breakpoint (2-3) in Fig. 4.28), or
it can be induced by the ray r itself (breakpoint (1-2) in Fig. 4.28).

If the part of C visible by a ray ri is split in ki connected components, this im-
plies that the corresponding distance function of r is split into ki partially defined
functions. Let K “

ř

iPn ki be the total number of partially defined functions, then
from the results on lower envelopes of distance functions in 2-space, of Hart and
Sharir [1986] and Hershberger [1989], we derive that RVDCpRq has complexity
Opλs`2pKqq and it can be constructed in Opλs`1pKq log Kq time.

4.5 Conclusion

In this chapter we presented our work related to the rotating rays Voronoi dia-
gram and the Brocard illumination problem. Our motivation to study the rotating
rays Voronoi diagram was because we showed that solving the Brocard illumina-
tion problem in different domains can be reduced to the construction of such a
diagram. We briefly describe our main results.

We first considered the domain to be the entire plane, and we presented an
Ωpn2q worst-case lower bound on the combinatorial complexity. We also gave
an Opn2`εq upper bound which was complemented by a construction algorithm
with the same time complexity. Using this Voronoi diagram we showed how the
Brocard illumination problem in R2 can be solved in Opn2`εq time.
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Motivated by the Brocard illumination problem we considered convex polyg-
onal domains; the diagram of a convex polygon is a tree of Θpnq complexity. We
presented a simple Θpn log nq-time construction algorithm and we also gave an
algorithm which takes optimal deterministic Θpnq time. This is of particular in-
terest as it enables us to also solve the Brocard illumination problem of a convex
polygon in optimal Θpnq time.

Finally, we considered the domain to be a curve, and we provided a generic
approach to obtain combinatorial and algorithmic results for any given curve.

There are many interesting future directions related to both the rotating rays
Voronoi diagram but also to the Brocard illumination problems. We discuss such
future directions and open question in Section 6.2.

The implementation used to create many of the figures, is based on a sim-
ple pixel-based approach (developed by Marko Savić). So, we did not have to
deal with possible algebraic issues stemming from the implementation of our
algorithms. Despite being a Voronoi diagram with non-linear features (circu-
lar edges) we believe that an efficient exact implementation would be possible.
This is because the bisectors of the Voronoi diagram consist only of rays and cir-
cles which are relatively simple objects, in contrast to other studied non-linear
Voronoi diagrams.

As a final remark, parts of this chapter were the result of collaboration; in
particular, Section 4.3 was joint work with Martin Suderland.
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Chapter 5

Towards linear-time construction
algorithms

This chapter presents our results on linear-time construction algorithms for pla-
nar Voronoi diagrams, and more specifically on a generalization of a combinato-
rial result, part of the algorithmic scheme of Aggarwal et al. [1989]. The chapter
is based on the following publication:

K. Junginger, I. Mantas, and E. Papadopoulou. On selecting a fraction of leaves
with disjoint neighborhoods in a plane tree. Discrete Applied Mathematics.
Elsevier, 2021.

In Section 5.1 we describe the algorithm of Aggarwal et al. [1989], and the
basic definitions and notions which are useful for the rest of the chapter. In Sec-
tion 5.2 we generalize the existence part of the original combinatorial result,
and in Section 5.3 we generalize the algorithmic part of the original result. Sec-
tion 5.4 concludes the chapter.

5.1 Preliminaries

In this chapter we consider planar trees embedded in R2. The trees we consider
are proper without further mention, i.e., they contain no vertex of degree 2, but
only of degree 1 or 3. Observe that each embedded tree induces a topological
ordering of the leaves; see for example the tree in Fig. 5.2a and its topological
ordering in Fig. 5.2c. We will be referring to leaves which are consecutive in the
topological ordering simply as (topologically) consecutive.

We first overview the algorithm of Aggarwal et al. [1989] to compute the
Voronoi diagram of points in convex position, given the ordering of these points

111
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VD(SB ∪ SC)
SC

SG
SR

SB

S

VD(SG)
VD(S)

VD(SB)

Figure 5.1. A sketch of the divide & conquer algorithm of Aggarwal et al.
[1989]. (ÝÑ) indicates the two different divide phases; (ÝÑ) indicates the
recursive constructions; (ÝÑ) indicates the first "incremental" merge phase;
(ÝÑ) indicates the second "standard" merge phase.

along the boundary of the convex hull. Note that in this case the Ωpn log nq does
not apply and recall that such a diagram has a tree structure.

Algorithm of Aggarwal et al. [1989]. The algorithm takes as input a set of
points S, the ordering of the points of S along the boundary of the convex hull of
S, and returns the diagram VDpSq. It is a recursive divide & conquer algorithm
where each step is split in two distinct phases. An outline of the algorithm is also
sketched in Fig. 5.1. It is briefly described as follows.

In an initial divide phase, the set S is split in two sets SR (red) and SB (blue)
of roughly equal size, i.e., |SR| “ Θp|SB|q, with the property that every two con-
secutive red sites in SR have disjoint Voronoi regions in the Voronoi diagram
VDpSq. In a second divide phase, the set SR is split further in sets SC (crimson)
and SG (garnet), so that any two sites in SC have pairwise disjoint Voronoi re-
gions in the diagram VDpSBYSCq, and the cardinality of SC is a constant fraction
of the cardinality of SR, i.e., |SC | “ Θp|SR|q. In the first merge phase, the sites
of SC are inserted one by one in the recursively computed diagram VDpSBq, de-
riving the diagram VDpSC Y SBq. Then, in a second merge phase the resulting
VDpSC Y SBq is merged with the recursively computed diagram VDpSGq, yielding
VDpSG Y SC Y SBq “ VDpSq and concluding the algorithm.

The key factor in obtaining the deterministic linear-time complexity is that the
cardinality of the set SC is a constant fraction of SR, which in turn is Θp|S|q, and
that SC can be obtained in linear time. The above is possible due to the following
combinatorial result on a geometric binary tree embedded in the plane.
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`1

`2

`3

`4`5

(a) T corresponds to the
Voronoi diagram of the 5
points (‚). The neigh-
borhood of `2 is shown
shaded.

(b) The neighborhood of
`2 shows the part of the
diagram (dashed) that will
get deleted if point (‚) is
inserted.

`1

`2

`3

`4`5

(c) The topological order-
ing of the leaves in T.

Figure 5.2. An embedded binary tree T in the setting of Aggarwal et al. [1989].

Theorem 5.1. Let T be a binary tree embedded in R2 with n leaves. Each leaf is
associated with a neighborhood, which is a subtree of T rooted at that leaf, and
topologically consecutive leaves have disjoint neighborhoods. Then:

(1) At least 1{10 of the leaves have pairwise disjoint neighborhoods such that no
tree edge has its endpoints in two different neighborhoods.

(2) Such leaves with disjoint neighborhoods can be found in Opnq time.

Overall, the time complexity of the algorithm is described by the following
recursive equation and can be proved to be Θpnq.

T pnq “ T p|SB|q ` T p|SG|q `Θp|SR|q ` |SC | ¨Θp1q `Θpnq

“ T p|SB|q ` T p|SG|q `Θpnq

“ Θpnq (Because |SC | “ Θpnq)

It is worth understanding what Theorem 5.1 represents, in order to have a
spherical perspective of its connection to Voronoi diagrams. An embedded tree
corresponds to the graph structure of a Voronoi diagram, and leaves are the end-
points of unbounded Voronoi edges "at infinity"; see, e.g., Fig. 5.2a. The neigh-
borhood of a leaf corresponds to part of the diagram (of SB) that gets deleted if a
(missing) point-site is inserted there; see Fig. 5.2b. Hence, Theorem 5.1 aims to
select leaves with pairwise disjoint neighborhoods (SC), as they can easily, and
independently from one another, be inserted in the Voronoi diagram.

Note that the result of Theorem 5.1 is inherently used by any other algorithm
which is based on this linear-time framework.
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`1

`2

`3

`4

(a) Neighborhoods of the marked leaves
are shown shaded. The intersection of
neighborhoods is highlighted with red.

T

(b) A marked tree T, on which the rest of
the notions of Section 5.1 are illustrated
(in Figs. 5.4a, 5.4b, 5.5 and 5.6).

Figure 5.3. Two marked trees, where marked leaves are shown with (‚) and
unmarked leaves are shown with (‚).

Generalized setting. In the rest of the chapter, we generalize the structures
considered, to so-called marked trees. As discussed earlier in Section 1.2.3, such
trees are inspired by the Voronoi-like structures of Junginger and Papadopoulou
[2018], and they are defined as follows.

Definition 5.1. A binary tree T of n leaves embedded in R2, is called a marked
tree if it satisfies the following properties.
‚ m out of the n leaves of T have been marked and the remaining r :“ n´m

leaves are unmarked.
‚ Every marked leaf ` is associated with a neighborhood, denoted nhp`q,

which is a subtree of T rooted at `.
‚ Every two topologically consecutive marked leaves have disjoint neighbor-

hoods.

Refer to Fig. 5.3a for an illustration of the generalized setting: out of n “ 9
leaves only m “ 4 of them are marked. A neighborhood of marked leaf (shown
shaded) might contain also unmarked leaves (see nhp`1q), and neighborhoods
are not defined for unmarked leaves.

Note that we do not make any assumptions on the ratio between r and m,
and we also do not make any assumptions on the distribution of the unmarked
leaves among the marked leaves (in the topological ordering).

The main result of this chapter is the following generalized theorem.
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Tu

(a) Tree Tu.

T ∗u

(b) Tree T˚u : L-nodes are shown with (˝),
C-nodes with (˝), J-nodes with (‚), and
spines are highlighted (colored).

Figure 5.4. Illustration of Definition 5.2 applies to the tree T of Fig. 5.3b.

Theorem 5.2. Let T be a marked tree of n total leaves and m marked leaves.
(1) Then there exist at least 1

10 m leaves in T with pairwise disjoint neighborhoods
such that no tree edge has its endpoints in two different neighborhoods.

(2) We can select at least a fraction p of these 1
10 m marked leaves in time Op 1

1´p nq,
for any p P p0,1q.

Given a marked tree T, let Tu denote the unmarked tree obtained by deleting
all the unmarked leaves of T and contracting the resulting degree-2 nodes; see
Fig. 5.4a. We apply to Tu the following definition, which is extracted from the
proof of Theorem 5.1 in Aggarwal et al. [1989]; see also Fig. 5.4b.

Definition 5.2. Let T be an embeded binary tree and let T˚ be the tree obtained
from T after deleting all its leaves. A node u in T˚ is called:

• Leaf or L-node if degpuq “ 1 in T˚, i.e., u neighbors two leaves in T .
• Comb or C-node if degpuq “ 2 in T˚, i.e., u neighbors one leaf in T .
• Junction or J-node if degpuq “ 3 in T˚, i.e., u neighbors no leaves in T .

A spine is a maximal sequence of consecutive C-nodes, which is delimited by J -
or L-nodes. Each spine has two sides and marked leaves may lie in either side of
a spine.

Let T˚u , be the tree obtained by applying Definition 5.2 to the unmarked tree
Tu. The nodes T˚u are labeled as L-, C- and J -nodes; see, e.g., Figs. 5.4a and 5.4b.
The labeling of nodes in T˚u is then carried back to their corresponding nodes in
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the original marked tree T obtaining a marked tree T with labels, see Fig. 5.5.
Some nodes in T remain unlabeled; see, e.g., node u in Fig. 5.5.

Definition 5.3. Given a marked tree T with labels we define the following two
types of components:

a) L-component: an L-node λ defines an L-component that consists of λ union
the two subtrees of T that are incident to λ and contain no labeled node (see
K2 in Fig. 5.6). The L-component contains exactly the two marked leaves
that labeled λ.

b) 5-component: a group of five successive C-nodes ci, . . . , ci`4 on a spine de-
fines a 5-component that consists of the path Pci :ci`4

from ci to ci`4 (which
may contain unlabeled nodes) union the subtrees of T, which are incident to
the nodes of Pci :ci`4

and contain no labeled node, (see K1 in Fig. 5.6). Nodes
ci and ci`4 are referred to as the extreme nodes of K . The 5-component con-
tains exactly the five marked leaves, which labeled the five C-nodes.

Each spine is partitioned into consecutive groups of 5-components and at most
four remaining ungrouped C-nodes.

These definitions are illustrated in the instance of Fig. 5.6. The tree T has
three L-components and two 5-components which are indicated shaded. The
5-component K1 contains the path Pc1:c5

from c1 to c5, which is shown in thick
black lines, and contains one unlabeled node (node u in Fig. 5.5). Node c6 is an
ungrouped C-node. Further, a spine consisting of the C-nodes c1, c2, c3, c4, c5, c6

is highlighted. The spine is delimited by the L-node λ1 and the J -node ι; it has
five marked leaves from one side and one marked leaf from the other.

Remark 5.1. The components of T are pairwise vertex disjoint. Every L-component
contains exactly two marked leaves and every 5-component contains exactly five
marked leaves.

Among the components of T there may be subtrees of T consisting of unla-
beled nodes and unmarked leaves that may be arbitrarily large. These subtrees
hang off any unlabeled nodes and ungrouped C-nodes. For example, in Fig. 5.6,
node u1 is unlabeled and the gray dotted subtree incident to it consists solely of
unmarked leaves and unlabeled nodes that do not belong to any component.
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T

u

Figure 5.5. The marked tree T of
Fig. 5.3b with labels (˝, ˝, ‚). Node
u is not labeled.

T

λ

Pc1:c5

c1

c2

c3 c5

c4K1 K2

ι

λ′

c6

u′

c3

Figure 5.6. The components of T

shown shaded. The dashed parts do
not belong to any component.

5.2 Existence of leaves with pairwise disjoint neighbor-
hoods

In this section, we generalize statement (1) of Theorem 5.1. Aggarwal et al.
[1989] showed that for every eight ungrouped C-nodes in Tu there exists at least
one L-node. Their argument holds for the marked tree T as well, which is de-
scribed in the following lemma for completeness.

Lemma 5.2. For every eight ungrouped C-nodes in T there exists at least one L-
component.

Proof. We count the L-nodes of T using the tree T˚u following the argument of
Aggarwal et al. [1989]. Let k be the number of leaves in T˚u , which also equals the
number of L-nodes in T. Contracting all degree-2 vertices in T˚u yields a binary
tree T˚b , which has the same leaves as T˚u . Since T˚b is an unrooted binary tree
with k leaves, it has 2k´2 nodes and 2k´3 edges. Every edge in T˚b corresponds
to at most one spine in T˚u and in every spine there are at most four ungrouped
C-nodes. Thus,

|tungrouped C-nodesu| ď 4|tspinesu|

ď 4 ¨ p2k´ 3q

ă 8|tL-nodesu|.

So, there exists at least one L-node for every eight ungrouped C-nodes, and an
L-node corresponds to exactly one L-component.
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The following lemmas establish that there exists a constant fraction of the
marked leaves, which have pairwise disjoint neighborhoods. The counting argu-
ments follow those in Aggarwal et al. [1989] while they are further enhanced
to account for the unmarked leaves, which are arbitrarily distributed among the
marked leaves. We say that the neighborhood nhp`q of a marked leaf ` is confined
to a component K if it is a subtree of K .

Lemma 5.3. In every component K, there exists a marked leaf ` P K whose neigh-
borhood is confined to K. This neighborhood may contain no L-node and no extreme
C-node.

Proof. Let K be an L-component and let s be the L-node that defines K . Let `i

and `i`1 be the two marked leaves of K . Since the neighborhoods nhp`iq and
nhp`i`1q are disjoint, at least one of them cannot contain s. This neighborhood
is, thus, entirely contained in the relevant subtree rooted at s and contains no
labeled node; see Fig. 5.7a

Let K be a 5-component. Since a 5-component has two sides, at least three
out of the five marked leaves of the component must lie on the same side of K , call
them `i´1,`i and `i`1. Let q, s, and t be their corresponding C-nodes, i.e., the first
C-nodes in K reachable from `i´1,`i, and `i`1, respectively; see Fig. 5.7b. There
are three cases. If t P nhp`iq, then t R nhp`i`1q (since the two neighborhoods
are disjoint), and thus, nhp`i`1q is confined to the subtree of t that contains `i`1.
Similarly, if q P nhp`iq, then q R nhp`i´1q, so nhp`i´1q is confined to the subtree of
q containing `i´1. If neither q nor t are in nhp`iq, then clearly nhp`iq is confined
to K . In all cases the confined neighborhood cannot contain neither q nor t. So,
at least one of the five marked leaves must have a neighborhood confined to K
and this neighborhood cannot contain the extreme C-nodes in K .

Lemma 5.4. Let T be a marked tree with m marked leaves. At least 1
10 m marked

leaves have pairwise disjoint neighborhoods such that no tree edge has its endpoints
in two different neighborhoods.

Proof. Every spine of T has up to four ungrouped C-nodes. By Lemma 5.2,
there exists at least one L-component for every eight ungrouped C-nodes. By
Lemma 5.3, every component of T has at least one marked leaf whose neighbor-
hood is confined to the component. So, overall, at least 1

5 of the marked leaves
from each 5-component and at least 1

10 marked leaves of the remaining nodes,
which label ungrouped C-nodes or L-nodes, have a confined neighborhood. The
components are pairwise disjoint, so at least 1

10 marked leaves have pairwise dis-
joint neighborhoods. Furthermore, confined neighborhoods do not contain an
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`i `i+1

s

(a) An L-component

`i−1 `i `i+1

q s
t

(b) A 5-component

Figure 5.7. Marked leaves with their neighborhoods shaded. The neighborhood
nhp`iq is confined to the component in both cases.

L-node or extreme C-node, as shown in Lemma 5.3. Thus, no tree edge may
have its endpoints in two different neighborhoods.

We remark that the neighborhoods implied by Lemma 5.4 may not contain
any L-node nor any extreme C-node. We also remark that these neighborhoods
need not be of constant complexity as their counterparts in Aggarwal et al. [1989]
are. These neighborhoods may have complexity Θprq, where r “ n´ m is the
number of unmarked leaves. Since r may be Θpnq, this poses a challenge on how
we can select these leaves efficiently.

5.3 Selecting leaves with pairwise disjoint neighborhoods

In this section, we generalize statement (2) of Theorem 5.1. Given a marked
tree T with m marked leaves, we have already established the existence of 1

10 m
marked leaves that have pairwise disjoint neighborhoods. In this section, we
present an algorithm to select a fraction p of these leaves, i.e., p

10 m marked leaves
with pairwise disjoint neighborhoods, in time Op 1

1´p nq, where 0ă p ă 1.
The main challenge over the algorithm of Aggarwal et al. [1989] is that the

r unmarked leaves are arbitrarily distributed among the m marked leaves, and
thus, the components of T and the neighborhoods of the marked leaves may
have complexity Θprq. If for each component we spend time proportional to
its size, then the time complexity of the algorithm will be Θpmrq, i.e., Θpn2q if
r, m P Θpnq.

To keep the complexity of the algorithm linear, we spend time up to a prede-
fined number of steps in each component depending on the ratio c “

P

r
m

T

and
the trade-off parameter p P p0,1q. Our algorithm guarantees to find at least a
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fraction p of the possible 1
10 m marked leaves in time Op 1

1´p nq. We first present a
series of results necessary to establish the correctness of the approach and then
describe the algorithm.

Let `1, . . . ,`m be the marked leaves in T ordered in a counterclockwise topo-
logical ordering. Let the interval p`i,`i`1q denote the set of unmarked leaves
between `i and `i`1 in the same order. The interval tree of p`i,`i`1q, denoted
Tp`i ,`i`1q

, is the minimal subtree of T that contains the marked leaves `i and `i`1,
including the unmarked leaves in p`i,`i`1q, see Fig. 5.8b. We show the following
pigeonhole lemma involving unmarked leaves and intervals.

Lemma 5.5. Suppose that r items (unmarked leaves) are distributed in k ě m
containers (intervals), and let c “

P

r
m

T

. For any natural number x ď r, let kx

denote the number of containers that contain more than x items. Then, kx ď
cm

x`1 .

Proof. Each of the kx containers contains at least x ` 1 items. Thus,

kxpx ` 1q ď r ñ kx ď
r

x ` 1
. (5.1)

c “
Q r

m

U

ñ c ě
r
m
ñ r ď cm (5.2)

p5.1q
p5.2q
ùñ kx ď

cm
x ` 1

(5.3)

For a component K , let δK denote the maximum number of topologically
consecutive unmarked leaves in K . The unmarked leaves counted in δK belong
to some interval p`i,`i`1q.

Lemma 5.6. Let K be a component of T and let `i be a marked leaf whose neigh-
borhood nhp`iq is confined to K.

a) If K is an L-component, then nhp`iq has at most 4δK nodes.
b) If K is a 5-component, then nhp`iq has at most 10δK nodes.

Proof. Let K be an L-component whose L-node is s, see Fig. 5.8a. Since nhp`iq

is confined to K then s R nhp`iq. Thus, s disconnects nhp`iq from the rest of T,
making nhp`iq disjoint from any interval tree, other than Tp`i´1,`iq

and Tp`i ,`i`1q
.

Hence, nhp`iq contains at most 2δK ` 1 leaves, and since it is a proper binary
tree, it can have at most 4δK nodes in total.

Suppose K is a 5-component. Since K contains exacly five marked leaves,
there can be at most seven interval trees that may share a node with K . Let a
and b be the two extreme C-nodes of K and let `a and `b be their corresponding
marked leaves, which labeled a and b as C-nodes. Let `˚a (resp. `˚bq be the
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`i

s

`i+1

`i-1

(a) An L-component.

a b

`a = `i `b`∗a `∗b

T(`j,`j+1) `j`j+1

(b) A 5-component with
`i “ `a. The interval tree
Tp` j ,` j`1q

is highlighted.

`i

a

`a

`b

b

`∗a

`∗b

(c) A 5-component with
`i R t`a,`bu. The interval
trees Tp`a ,`˚

a q
and Tp`b ,`˚

b q
are

highlighted

Figure 5.8. Illustration of a component K in different settings for the proof of
Lemma 5.6. The neighborhood nhp`iq is shaded gray. Marked leaves of K are
indicated with (‚) and the other marked leaves with (‚).

neighboring marked leaf of `a (resp. `bq in the topological ordering of the marked
leaves, which does not belong to K . Refer to Figs. 5.8b and 5.8c. Neighborhood
nhp`iq is confined to K , thus, a, b R nhp`iq. If `i “ `a (resp. `i “ `b) the C-
node a (resp. b), disconnects nhp`iq from the rest of T. Thus, nhp`iq has a node
in common with only two interval trees, Tp`i´1,`iq

and Tp`i ,`i`1q
, see Fig. 5.8b. If

`i R t`a,`bu, then nodes a and b disconnect nhp`iq from the rest of T, thus, nhp`iq

is disjoint from both Tp`a ,`˚
a q

and Tp`b ,`˚
b q

, see Fig. 5.8c. Then nhp`iq may have a
node in common with at most five out of the seven interval trees that could be
related to K . Concluding, nhp`iq has at most 5δK ` 1 leaves, and since it is a
proper binary tree, it has at most 10δK nodes overall.

For each component K we define a so-called representative leaf and at most
two delimiting nodes. These are used by our algorithm to identify a confined
neighborhood within the component.

Definition 5.4. For a component K , we define its representative leaf and delim-
iting nodes as follows:

a) If K is an L-component, there is one delimiting node, which is its L-node.
The representative leaf is the first marked leaf of K in the topological order-
ing of leaves (see leaf `i and node s in Fig. 5.7a).

b) If K is a 5-component, consider the side of K containing at least three
marked leaves. The representative leaf is the second leaf among these three
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leaves in the topological ordering. The delimiting nodes are the C-nodes
defined by the other two leaves in the same side (see leaf `i and nodes q, t
in Fig. 5.7b).

Algorithm outline. Our algorithm takes as input a marked tree T and a pa-
rameter p P p0, 1q, and returns p

10 m marked leaves that have pairwise disjoint
neighborhoods. A pseudocode description is given in Algorithm 3. The algo-
rithm iterates over all the components of T, and selects at most one marked leaf
for each component.

For each component K , the algorithm first identifies its representative leaf
and delimiting nodes (lines 6,14), and then traverses the neighborhood of the
representative leaf performing a depth-first-search in the component up to a pre-
defined number of steps (lines 7,15). If, while traversing the neighborhood,
a delimiting node is detected (lines 8,16,19), then a marked leaf is selected
(lines 9,17,20), following the case analysis of Lemma 5.3. If the entire neigh-
borhood is traversed within the allowed number of steps without detecting a de-
limiting node (lines 11,22), then the representative leaf is selected (lines 12,23).
Otherwise, K is abandoned and the algorithm proceeds to the next component.

Algorithm 3: Selecting leaves with pairwise disjoint neighborhoods.
Input : A marked tree T of n“ r `m leaves and a parameter p P p0,1q.
Output: A set sol of marked leaves.

1 Obtain the labeling of T;
2 Partition T into components as indicated in Definition 5.3 ;

3 sol ÐH; c Ð
Q r

m

U

; z Ð
R

10c
1´ p

V

´ 1;

4 for each component K of T do
5 if K is an L-component then
6 `i Ð representative leaf; sÐ delimiting node ;
7 for at most 4z steps traverse nhp`iq

8 if s is visited then
9 sol Ð sol Y t`i`1u ;

10 break;
11 if nhp`iq is traversed and s is not visited then
12 sol Ð sol Y t`iu ;
13 . . .
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12 . . .
13 else if K is a 5-component then
14 `i Ð representative leaf, q, t Ð delimiting nodes ;
15 for at most 10z steps traverse nhp`iq

16 if q is visited then
17 sol Ð sol Y t`i´1u ;
18 break;
19 if t is visited then
20 sol Ð sol Y t`i`1u ;
21 break;
22 if nhp`iq is traversed and q, t are not visited then
23 sol Ð sol Y t`iu ;
24 return sol ;

Lemma 5.7. Algorithm 3 returns at least p
10 m marked leaves with pairwise disjoint

neighborhoods such that no tree edge has its endpoints in different neighborhoods.

Proof. Let K be a component. The algorithm traverses the neighborhood of the
representative leaf `i and takes a decision after at most 4z, or 10z, steps. In
Lemma 5.6, we proved that if nhp`iq is confined, nhp`iq has at most 4δK , or
10δK , nodes. Hence, if δK ď z, the algorithm will succeed to select a marked
leaf from K , because either nhp`iq is confined to K , and thus, the entire nhp`iq is
traversed (lines 11-12,22-23), or else a delimiting node gets visited, and thus, the
corresponding marked leaf is selected (lines 7-10,15-21). In all cases, we follow
the proof of Lemma 5.3 and the neighborhood of the selected leaf is confined to
K . Thus the selected leaf is among those counted in Lemma 5.4.

If on the other hand δk ą z, then the algorithm may fail to identify a marked
leaf of K . We use the pigeonhole Lemma 5.5 to bound the number of these
components. To this aim, we consider the set I of all intervals induced by the
marked leaves and the component of T. For an interval p`i,`i`1q, which is not
disjoint from K , let p`i,`i`1qK :“ p`i,`i`1qXK denote its sub-interval of unmarked
leaves that belong to K; see an example in Fig. 5.9. Let Iz be the intervals in I
that contain more than z unmarked leaves. Then the algorithm may fail in at
most |Iz| components.

To bound |Iz|, we use Lemma 5.5 for x “ z “
R

10c
1´ p

V

´ 1. Then,

|Iz|
p5.3q
ď

cm
z` 1

“
cm

R

10c
1´ p

V

´ 1` 1
ď

cm
10c

1´ p

“
1´ p

10
m (5.4)
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(`i, `i+1)K1 (`i, `i+1)K2

(`i, `i+1)

`i`i+1
(`i, `i+1)K3

K1 K2 K3

Figure 5.9. An interval p`i,`i`1q related to three components K1,K2 and K3.
Interval p`i,`i`1q is further subdivided into three intervals p`i,`i`1qK1

,p`i,`i`1qK2

and p`i,`i`1qK3
.

Thus, the algorithm may fail for at most 1´p
10 m components. By Lemma 5.2,

there exist at least 1
10 m components in T, thus, the algorithm will succeed in

selecting a marked leaf from at least

1
10

m´ |Iz|
p5.4q
ě

1
10

m´
1´ p

10
m “ m

p
10

(5.5)

components, concluding the proof.

Lemma 5.8. Algorithm 3 has time complexity O
ˆ

1
1´ p

n
˙

.

Proof. Labeling and partitioning the tree T into components can be done in Θpnq
time. Then, for each component the algorithm traverses a neighborhood per-
forming at most 10z “ Θp c

1´p q steps. There are Θpmq components, so we have

O
´

c
1´p ¨m

¯

time complexity. Recall that c “
P

r
m

T

. If m “ Θpnq, then c “ Θp1q,
so cm “ Θpnq. Else if m “ opnq, then cm “ Θprq “ Θpnq. In all cases, the time

complexity of the algorithm is O
´

1
1´p n

¯

.

By combining Lemmas 5.4, 5.7 and 5.8 we establish (and re-state) Theo-
rem 5.2.

Theorem 5.2. Let T be a marked tree of n total leaves and m marked leaves.
(1) Then there exist at least 1

10 m leaves in T with pairwise disjoint neighborhoods
such that no tree edge has its endpoints in two different neighborhoods.

(2) We can select at least a fraction p of these 1
10 m marked leaves in time O

´

1
1´p n

¯

,
for any p P p0,1q.
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Note that if the parameter p P p0,1q is a constant, then the algorithm returns
a constant fraction of the marked leaves and the time complexity of the algorithm
is Opnq. This matches the results of the general setting described in Theorem 5.1.

5.4 Conclusion

In this section we focused on generalizing a combinatorial result on embedded
binary trees to, so-called, marked trees. Marked trees were motivated by the
Voronoi-like structures introduced by Junginger and Papadopoulou [2018], as an
object useful for the generalization of the Opnq-time scheme of Chew [1990] to
abstract Voronoi diagram. The generalization of the combinatorial result which
we presented, was motivated by the potential generalization of the Opnq-time
scheme of Aggarwal et al. [1989] using Voronoi-like structures.

The combinatorial result in the original setting, consists of two parts, the
existence, and the algorithmic one. We managed to generalized both parts to
the setting of marked trees. This is important, as the combinatorial result is
inherently used by any other algorithm which is based on the Opnq-time scheme.

Still, our work is only a stepping stone to the generalization of the algorithmic
scheme of Aggarwal et al. [1989] to larger classes of planar Voronoi diagrams.
There are still several open questions that need to be addressed. Refer to the
recent thesis of [Junginger, 2020, Chapter 7] for a detailed discussion of these
open questions.
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Chapter 6

Conclusion

In this dissertation, we aimed to advance the state of the art in some problems
related to planar Voronoi diagrams. Our research revolved around three topics.

In Chapter 3, we considered color Voronoi diagrams, and more specifically the
farthest such diagram. We managed to get a better understanding of the diagram,
by studying its structural properties. We refined the combinatorial complexity
bound, we identified conditions that induce diagrams of linear complexity, and
we studied the case of linearly separable clusters showing a quadratic worst-case
lower bound. Our research was complemented by a construction algorithm.

In Chapter 4, motivated by the Brocard illumination problem, we studied the
rotating rays Voronoi diagram, a newly defined Voronoi structure. We studied the
diagram in R2, giving combinatorial complexity results, and an accompanying
construction algorithm which can be used to obtain the Brocard angle of a set of
rays in R2. We also considered convex polygonal domains bounded by the input
rays. By exploiting the properties of the diagram in such domains we managed
to solve the Brocard illumination problem in optimal linear time.

In Chapter 5, we considered a problem related to a general deterministic
linear-time algorithmic scheme for Voronoi diagrams. We generalized a main
component of this linear-time scheme, a combinatorial result on embedded bi-
nary trees, aiming to make the scheme applicable to larger classes of planar
Voronoi diagrams.

We conclude this dissertation by discussing a few future directions and open
questions related to the topics that we looked into. In Section 6.1, we discuss
open problems related to color Voronoi diagrams, and in Section 6.2, we discuss
open problems related to the rotating rays Voronoi diagram and the Brocard
illumination problem.

127
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6.1 Future directions related to color Voronoi diagrams

We now discuss some open problems related to color Voronoi diagrams. We first
describe two open questions regarding the farthest color Voronoi diagram of lin-
early separable clusters. Then, we discuss future directions related to order-k
color Voronoi diagrams and the application of color Voronoi diagram in con-
structing approximate Voronoi diagrams of arbitrary input sites.

Farthest color Voronoi diagram of linearly separable clusters

A first open question is related to the combinatorial complexity of the farthest
color Voronoi diagram of linearly separable clusters. We proved that FCVDpPq
has complexity Ωpm2 ` nq in the worst case, and we also showed that FCVDpPq
is upper bounded by Opn` spPqq, where spPq “ Opmnq. If m “ Θpnq, our lower
bound is tight, but if m“ opnq, a small gap remains.

Open question 1. Given a set P of linearly separable clusters, how large is spPq
in the worst case? What is the worst-case complexity of FCVDpPq?

We believe that the diagram has complexity opmnq. In fact, we believe that
the straddling number of linearly separable clusters can be proved to be spPq “
opmnq, thus, immediately lowering the bound on the complexity of FCVDpPq (as
the diagram has Opn` spPqq complexity). Our intuition comes from the degen-
eracy of the presented construction that achieves the Θpm2q complexity. This
construction is degenerate in the sense that, if we slightly perturb the clusters,
then the complexity of the diagram would be reduced.

Farthest color Voronoi diagrams in the L8 metric

Oftentimes Voronoi diagrams in the L8 metric present a simpler structure than
their L2 counterparts. Regarding the farthest color Voronoi diagram under the
L8 metric, it has been proved that the diagram has complexity Opmnq, and this
is complemented by a matching Ωpmnq lower bound construction.

The Ωpmnq lower bound construction is given for clusters which have pair-
wise intersecting convex hulls, and clusters which are linearly separable have not
been considered. We are interested in examining whether the Ωpmnq can also be
achieved by linearly separable clusters, or if a tighter upper bound, for example
Opnq, can be proved in such cases.

Open question 2. Given a set P of linearly separable clusters, what is the worst-
case complexity of FCVDpPq under the L8 metric?
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(a) P is a set of 3 clusters (‚, ˛, ‚). The
farthest color region of (‚) in FCVDpPq
has Θpnq complexity.

(b) P is a set of 4 clusters (‚, ˛, ‚, Î) of
size 2. FCVDpPq has complexity Θpnq.
Dashed segments indicate the clusters.

Figure 6.1. Farthest color Voronoi diagrams of linearly separable clusters using
the L8 distance.

Two examples of farthest color Voronoi diagrams of linearly separable clus-
ters under the L8 metric are illustrated in Fig. 6.1. Observe in the instance of
Fig. 6.1a, that a single farthest color region (‚) can have Θpnq complexity. Still
generalizing to a construction where all m clusters have complexity Θpnq does
not seem easy, if possible at all.

In fact, a possible approach to generalize our lower bound construction for
the L2 metric, to the L8 metric, does not seem to work. To verify this refer to the
instance of Fig. 6.1b. The illustrated clusters of cardinality 2 under the L2 metric
would yield a diagram with Θpm2q “ Θpn2q bounded faces, and complexity. On
the contrary, under L8 not even a single bounded face appears in the diagram.

Application of color Voronoi diagrams in approximating Voronoi
diagrams of arbitrary sites

We describe how a well known method for approximating nearest Voronoi dia-
grams can be extended to Voronoi diagrams of higher order, with the use of color
Voronoi diagrams, and the open questions related to this generalization.

Suppose we are given as input sites some curves which are "not very simple",
as for example the curves shown in Fig. 6.2a, and we want to compute the nearest
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(a) The 3 input sites,
which are "not very simple"
curves.

(b) The nearest Voronoi di-
agram of all sample-points.
Thin edges are induced by
points of the same site.

(c) The resulting approxi-
mated nearest Voronoi dia-
gram of the 3 curves.

Figure 6.2. An example of approximating a nearest Voronoi diagram of arbi-
trary sites using the nearest point Voronoi diagram of sample points.

Voronoi diagram of such curves. An exact computation of such a Voronoi diagram
might be too complicated or there might not be any available algorithms at all.
Hence, depending on the input sites, it might make sense to aim for an approxi-
mate Voronoi diagram. A standard method is to approximate nearest site Voronoi
diagrams using sampled points. This method can be described as follows.

1. For each site si in S “ ts1, s2, . . . smu create a (sample) set of points Pi that
approximates the boundary of si.

2. Construct the Voronoi diagram VDptP1 Y P2 Y . . . Pmuq, i.e., the nearest
Voronoi diagram of the set of all points.

3. Keep only the Voronoi edges (and the incident Voronoi vertices) which are
induced by points belonging to different clusters.

4. Return the remaining diagram which approximates VDpts1, s2, . . . , smuq.

Refer to Fig. 6.2 where this method is illustrated on an instance of 3 input curves.
It is not hard to see that the better the sample points approximate the input sites,
the better will the quality of the resulting diagram be. The above method is quite
natural, and is being extensively used. To the best of our knowledge, it was first
formalized in the literature by Sugihara [1993].

Generalization to higher order Voronoi diagrams. Suppose now that instead
of the nearest Voronoi diagram the goal was to construct a higher order Voronoi
diagram of some not very simple sites, e.g., a farthest Voronoi diagram.
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(a) The exact farthest site
Voronoi diagram.

(b) "Approximate" dia-
gram using the farthest
point Voronoi diagram.

(c) Approximate diagram
using the farthest color
Voronoi diagram.

Figure 6.3. An example of approximating the farthest Voronoi diagram of 4
rectangular sites. Illustrated is a comparison of different approaches.

Looking at the simplicity of the aforementioned method, one might be tempted
to generalize it as follows: (1) sample the boundaries of the sites, (2) construct
the farthest Voronoi of all points, and (3) keep only the edges which are induced
by sample-points belonging to different clusters. Such an approach will in gen-
eral fail. To see that, observe Fig. 6.3, where given is a set of 4 axis aligned
polygons and the goal is to construct the farthest Voronoi diagram. In Fig. 6.3a,
the exact Voronoi diagram of the 4 sites is shown. In Fig. 6.3b, the aforemen-
tioned (bad) generalization is illustrated; observe how different the output is
from the exact diagram, despite the densely sampled points.

The problem with the above generalization, is that it fails to capture the na-
ture of the sites and treat all the points corresponding to a sampled curve as a
single object. Instead, the way to effectively encode this, is by considering color
Voronoi diagrams which inherently deal with clusters of points as input sites. Fol-
lowing we formalize a method which generalizes correctly the method to higher
order Voronoi diagrams.

1. For each site si in S “ ts1, s2, . . . smu obtain a (sample) cluster of points Pi

that approximates the boundary of si. This yields a set of clusters P.
2. Construct the order-k color Voronoi diagram of P.
3. Return the order-k color Voronoi diagram of P which approximates the

order-k Voronoi diagram of S.

For an illustration, refer to the Voronoi diagram of Fig. 6.3c, and observe how
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(a) The exact Voronoi dia-
gram. All regions are con-
nected.

(b) The Voronoi diagram of
a "bad" sample (3 points
per site). The region of (‚)
is disconnected.

(c) The Voronoi diagram of
a "good" sample (9 points
per site). All regions are
connected.

Figure 6.4. Exact and approximate nearest Voronoi diagrams of a set of 3
linearly separable sites (line segments).

well it approximates the exact Voronoi diagram of Fig. 6.3a.

The above approach is very interesting, as it reduces the construction of
higher order Voronoi diagram of any input sites, to a simple process of sampling
the sites and to the construction of a higher order color Voronoi diagram. There
are several open question which involve getting a better understanding between
the quality of the sampling and the quality of the approximation.

It would be meaningful to ask for sampled clusters which yield approximate
diagrams that are combinatorially equivalent to the exact ones. As an example,
the approximate diagram of Fig. 6.4c is combinatorially equivalent to the exact
diagram of Fig. 6.4a whereas the diagram of Fig. 6.4b is not. Similarly, it would
be relevant to quantify the difference between an exact and an approximate di-
agram, e.g., in terms of Hausdorff distance, and ask for sampled clusters which
bound this measure. The above questions are very much related to the notion
of local feature size and ε-samples, that have been used in Voronoi-based surface
reconstruction; see Amenta et al. [1998a] and Amenta and Bern [1999]

From an application viewpoint, we think that this perspective of color Voronoi
diagrams will broaden their applicability. It would be interesting to find applica-
tions that can benefit from the existence of these approximate Voronoi structures.



133 6.1 Future directions related to color Voronoi diagrams

(a) Diagram NCVDpPq, or
equivalently 1-CVDpPq.

(b) Diagram NCVDpP zÎq
restricted to the region of
cluster (Î).

x

(c) Diagram 2-CVDpPq.
Point x belongs to the
region of t‚, ‚u.

Figure 6.5. Color Voronoi diagrams of a set P of 4 clusters (‚, ˛, ‚, Î) and
the illustration of an iterative construction algorithm

Higher order color Voronoi diagrams

Order-k color Voronoi diagrams, except the farthest, have not been considered
in the literature, Studying them, both from a combinatorial and an algorithmic
perspective, becomes more interesting, due to the aforementioned application of
color Voronoi diagrams in constructing approximate Voronoi diagrams.

Open question 3. What is the combinatorial complexity of the order-k color
Voronoi diagram k-CVDpPq? How fast can we construct k-CVDpPq?

An order-2 Voronoi diagram of a set of 4 clusters is illustrated in Fig. 6.5c.
Each region is assigned to the two clusters-colors which are present in the region;
for example point p belongs to the region of clusters (‚) and (‚)

On the algorithmic side, one may consider the iterative construction scheme
of Lee [1982]. In the context of color Voronoi diagrams, it can be briefly de-
scribed as follows. The algorithm starts from 1-CVDpPq, i.e., NCVDpPq, and at
each iteration, the diagram i-CVDpPq is constructed using pi-1q-CVDpPq, until it
reaches the target diagram k-CVDpPq. Given the diagram pi-1q-CVDpPq to con-
struct i-CVDpPq, each region R of pi-1q-CVDpPq is considered, and the 1-CVDpPq
of the sites neighboring R is constructed restricted to R. The union of all these
partial diagrams yields i-CVDpPq.

Refer to Fig. 6.5 for an illustration of the algorithm. In Fig. 6.5b, the nearest
color Voronoi diagram of tP zÎu is constructed confined into the region of (Î).
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This reveals the second nearest cluster for each point, and since the first nearest
cluster is already known, this yields the 2-CVDpPq confined into that part of R2.

This iterative scheme is very nice due to its simplicity. It reduces the construc-
tion of the construction of any order-k color Voronoi diagram, to the construction
of order-1 color Voronoi diagrams, which are simply nearest Voronoi diagrams
of points. The complexity of the algorithm, though, depends on the complexity
of k-CVDpPq which is currently an open question.

6.2 Future directions related to the rotating rays Voronoi
diagram

In this section we list some open problems regarding the rotating rays Voronoi
diagram and the Brocard illumination problem. We first discuss an open problem
related to the diagram inR2, and another related to the diagram restricted to sim-
ple polygonal domains. We conclude by suggesting future directions regarding
related Voronoi structures.

Rotating rays Voronoi diagram in the plane

Using the general approach of envelopes in 3-space, we proved that RVDpRq has
complexity Opn2`εq for any arbitrarily small ε ą 0. At the same time we gave a
worst-case lower bound of Ωpn2q. Hence, a gap of Opnεq remains to settle the
complexity of the diagram in the worst case.

Open question 4. What is the combinatorial complexity of RVDpRq in the worst
case? Is it opn2`εq? Is it Θpn2q?

To close this gap, one could study the different vertices of RVDpRq and to
bound their number. Out of the 4 different types, the intersection vertices are
trivially Opn2q, and the apex vertices are triviallyΘpnq; hence it remains to bound
the number of real and mixed vertices. From our preliminary research in this
direction we believe that the diagram has opn2`εq worst-case complexity, and
more specifically Θpn2q.

Given the current Opn2`εq upper bound, the Opn2`εq-time algorithm is worst-
case optimal. Assuming that an opn2`εq bound is given for the complexity, then
the question for faster construction algorithms will become imminent. Such an
algorithm could deploy any of the standard techniques described, like random-
ized incremental construction or divide & conquer.
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r1 r2

r3r4

r5r6

r7r8

(a) Partition of P into visibility cells
(dashed). The gray region is visible by
tr1, . . . , r5u. The visibility region of r8 is
yellow.

(b) The rotating rays Voronoi diagram of
RP restricted to P.

Figure 6.6. A simple polygon P of 8 vertices and the diagram PRVDpRPq.

Finally, as with any Voronoi diagram, there are many standard questions to
ask. For example what are some necessary or sufficient conditions for the dia-
gram to have linear complexity? Or what are the conditions for the diagram to
fall under the abstract Voronoi diagram framework?

Rotating rays Voronoi diagram of non-convex polygons

Regarding the Brocard illumination of polygons, so far we only considered con-
vex polygons. Our approach can be naturally extended to arbitrary simple poly-
gons, although there are some issues that need to be tackled. The main compli-
cation in non-convex polygons is that not all points in P are visible by all rays.
Instead, each ray r P RP has a visibility region and the distance to any non-visible
point x P P is d=px , rq “ `8. See for example the yellow region in Fig. 6.6a.

Open question 5. Given a simple polygon P what is the worst-case complexity
of PRVDpRPq? How much time do we need to construct it?

Using the visibility region of each ray in RP, a possible approach is to de-
compose the polygon in visibility cells, these are maximal connected components
such that any two points p, q in a single visibility cell are visible by the same set
of vertices in P. See an example of such a decomposition in Fig. 6.6a. Given
a decomposition in visibility cells, we can simply construct RVDpRPq in each of
the cells independently, and then concatenate all these partial Voronoi diagrams
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(a) Unoriented angular distance. (b) Oriented angular distance.

Figure 6.7. A set of 5 rays and the corresponding Voronoi diagrams considering
different angular distances functions.

to obtain PRVDpRPq. The Brocard angle is simply the maximum over all the
vertices of maximum angular distance of all visibility cells. An example of a dia-
gram PRVDpRPq of a non-convex polygon is illustrated in Fig. 6.6b. Observe that
in contrast to the diagram of convex polygons, regions can be disconnected.

Such a visibility cell decomposition has been studied by Guibas et al. [1997]
and Bose et al. [2002] It has Opnrq cells, where r “ Opnq is the number of reflex
vertices in P, it can be computed in Opn3q time, and each cell is a convex polygon.
The above discussion already yields a first construction algorithm for PRVDpRPq:
we can simply construct the decomposition in Opn3q time, and then construct
in time Opn2`εq the diagram in each cell of the decomposition. This complexity
calls for improvement but it can serve as a framework to start with. Improving
upon this will require to delve deeper into the literature of polygons.

As a final remark, when the goal is to find the Brocard angle, one might argue
that the construction of the entire diagram is an excessive effort; in the end, the
Brocard angle is realized in just one of the many Voronoi vertices of PRVDpRPq.
Indeed, this is something to consider, especially given the Opn3 log2 nq-time al-
gorithm to find the Brocard angle by Alegría-Galicia et al. [2017]. This is why it
would be of particular interest to construct PRVDpRPq in time Opn3 log2 nq.

Rotating rays Voronoi diagram with unoriented angular distance

Our work on this diagram was motivated by the Brocard illumination polygons.
In order to model the Brocard illumination problem we defined the analogous
distance measure, i.e., oriented angular distance. An alternative meaningful dis-
tance measure would be the unoriented (bidirectional) angular distance. Intu-
itively, each ray instead of rotating only counterclockwise, now rotates in both
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Figure 6.8. Examples of bisectors under the unoriented angular distance.

directions. The Voronoi diagrams, with both distance measures, restricted to a
polygon are equivalent, as the right side of each ray is blocked by the correspond-
ing edge. In R2 though, the two diagrams demonstrate significant differences.

This distance measure was considered by de Berg et al. [2017]. It would be
interesting to further investigate this diagram, its connection to the (oriented)
rotating rays Voronoi diagram and its application to floodlight illumination.

When comparing the two diagrams, we observe that bisectors under the un-
oriented distance demonstrate a more complicated structure. Refer to Fig. 6.8 for
some examples of angular bisectors using the unoriented distance. More specif-
ically, the two rays are not part of the bisector anymore, but additionally to the
circular arc (part of the bisecting circle), the bisector now contains hyperbolic
arcs. On the other hand, using the unoriented distance, the discontinuity of the
oriented angular distance (at the rays) is eliminated. As a result, no mixed ver-
tices are present and the diagram might be easier to study. Refer to Fig. 6.7 for
a set of 5 rays illustrating the differences between the two diagrams.

Finally, note that many of our results for the oriented diagram in R2 can be
easily adapted to the unoriented diagram, as for example the Ωpn2q complexity
lower bound for pairwise non-interecting rays, the Θpn2q worst-case complexity
for a Voronoi region, and the envelopes approach of Sharir [1994] which yields
the Opn2`εq complexity upper bound and the Opn2`εq-time algorithm.

Disk Voronoi diagram of convex polygons

Another interesting direction would be to explore the disk (Voronoi) diagram,
which we defined as an auxiliary structure, in order to study the Voronoi diagram
of a convex polygon. Recall that the two diagrams restricted into the polygon
coincide, thus constructing the disk diagram also yields the Brocard angle.

The disk diagram of a convex polygon is interesting to study on its own, and to
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Figure 6.9. An illustration of an incremental construction of the disk diagram
of a convex polygon with 7 vertices. In each figure, the inserted sites are
highlighted and the remaining are represented by a small dot.

perhaps design a randomized incremental Opnq-time algorithm. Refer to Fig. 6.9
for an illustration of an incremental construction, and observe at each insertion
the shrinking domain (union of the regions). There seems to be some connection
with the recent work of Junginger and Papadopoulou [2018], who presented a
randomized incremental algorithm for tree-like diagrams, where given is a circu-
lar list of the input sites and the domain is shrinking every time a site is inserted.

Concluding, we would like to point out a particularity of this diagram. The
dominance relation of the sites is not transitive, and as a result, there are points
not belonging to any Voronoi region; see the white surrounding region in Fig. 6.9.
From the viewpoint of abstract Voronoi diagrams, this property implies that the
disk diagram does not satisfy axiom (A3), which requires that the union of all
Voronoi regions covers R2. This seems to be quite rare; another example of a
Voronoi structure exhibiting such a behavior is the zone (Voronoi) diagram of
Asano et al. [2007]
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