
Geometric problems in higher dimensions:
Voronoi diagrams, the Fermat point, and the

bichromatic discrepancy

Doctoral Dissertation submitted to the

Faculty of Informatics of the Università della Svizzera Italiana

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

presented by

Martin Gerd Suderland

under the supervision of

Prof. Evanthia Papadopoulou

May 2022

Dissertation Committee

Prof. Kai Hormann Università della svizzera italiana, Switzerland
Prof. Piotr Krzysztof Didyk Università della svizzera italiana, Switzerland
Prof. Gill Barequet The Technion—Israel Inst. of Technology, Israel
Prof. Chee Yap New York University, USA

Dissertation accepted on 18 May 2022

Research Advisor PhD Program Director

Prof. Evanthia Papadopoulou Prof. Walter Binder

i

I certify that except where due acknowledgement has been given, the work
presented in this thesis is that of the author alone; the work has not been submit-
ted previously, in whole or in part, to qualify for any other academic award; and
the content of the thesis is the result of work which has been carried out since
the official commencement date of the approved research program.

Martin Gerd Suderland
Lugano, 18 May 2022

ii

Abstract

Research in computational geometry has produced many results in the plane
and low dimensional spaces. These include impossibility and complexity results,
efficient data structures and optimal algorithms. In higher dimensions the situa-
tion is quite different and such results are more sparse. We consider three such
problems.

• We study the order-k Voronoi diagram of lines, line segments and convex
polyhedra under Euclidean and polyhedral distances. We derive properties
and complexity bounds for the diagram and its unbounded features. In
case of the farthest Voronoi diagram, we also discuss optimal time algo-
rithms for deriving the unbounded features in the Euclidean version and for
constructing the complete diagram when the polyhedral distances are used.

• We propose several algorithms for computing ε-approximations of the Fer-
mat point based on subdivision methods. We put an emphasis on robustness
derived through soft predicates and interval arithmetic. We use similar
techniques to derive approximations of n-ellipses in the plane. Our imple-
mentation and experiments suggest practicability of the proposed methods.

• We introduce a new concept called bichromatic discrepancy. It deals with
the question of how uniformly points of two colors can be distributed in the
unit square. We derive a lower bound for this bichromatic discrepancy and
also describe point sets, which induce a small discrepancy. An application
of this new concept to digitalizing Euclidean segments is pointed out.

iii

iv

Acknowledgements

First of all, I would like to thank Evanthia Papadopoulou for supervising my PhD
studies. Her advice and guidance was always enormously helpful.

I would also like to thank all members of the dissertation committee - Gill
Barequet, Piotr Krzysztof Didyk, Kai Hormann, and Chee Yap - for spending their
time to evaluate this thesis.

It was a pleasure to work at the computational geometry group at USI together
with my two colleagues Kolja Junginger and Ioannis Mantas. Thank you for both
the good work on the common research and also for all the nice free time activities
that we did together.

I also thank all my other collaborators with whom I did research related to
this thesis. Thank you Gill Barequet for spending your time to get me started
with my first paper during my PhD. I am grateful for the opportunity to join
Man-Kwun Chiu, Matias Korman, and Takeshi Tokuyama on their project and
shortly visiting them in Sendai. Thank you Chee Yap for introducing me to the
topic of subdivision methods, in particular during your half-year visit in Lugano.
I really enjoyed the Voronoi++ meetings that Franz Aurenhammer organized and
which fueled our fruitful joint work.

I am very grateful for all the friends that I got to know in Lugano.
Finally and for most, I want to thank my family, which has been supporting

me my entire life.

v

vi

Contents

Contents vii

List of Figures ix

1 Introduction 1
1.1 Computational geometry in high dimensions 1
1.2 Dissertation Overview . 2
1.3 List of publications . 3

2 Voronoi diagrams of generalized sites 5
2.1 Preliminaries . 14

2.1.1 Point-Hyperplane Duality . 14
2.1.2 Levels in an Arrangement of Hyperplanes 14
2.1.3 The Gaussian Map . 15

2.2 Properties of the Farthest and Order-k Voronoi Diagram 18
2.2.1 Combinatorial Properties . 18
2.2.2 Structural Properties . 18

2.3 Line Segments as Sites . 20
2.4 Lines as Sites . 25
2.5 Combination of Lines and Segments 32
2.6 Polyhedra or Clusters of Points as Sites 38
2.7 Conclusion . 41

3 On the Trisector of Lines in Three Space 43
3.1 Review: Farthest Voronoi diagram of lines and line segments in R2 47
3.2 Towards constructing the FVD of lines and line segments in R3 . . 51

4 Farthest Polyhedral Voronoi diagram 53
4.1 Convex polyhedral distance . 56
4.2 Farthest-site Voronoi diagram . 57

vii

viii Contents

4.3 More properties of FVD . 59
4.4 Variants . 63
4.5 Conclusion . 64

5 Fermat point and n-ellipses 65
5.1 Introduction . 65
5.2 Preliminaries . 69
5.3 Approximate Fermat points . 73

5.3.1 Using the Subdivision Paradigm 74
5.3.2 Enhancing the Subdivision Paradigm 75
5.3.3 Certifying the Weiszfeld method 78

5.4 Approximating n-ellipses . 81
5.5 Experiments . 85
5.6 Details on box approximations . 91

5.6.1 Box approximation of the gradient ∇ϕ 91
5.6.2 Box approximation of ϕ . 92
5.6.3 Box approximation of the Hessian ∇2ϕ 93

5.7 Conclusion . 94

6 Bichromatic discrepancy 97
6.1 Discrepancy lower bound . 99
6.2 Point sets with constant discrepancy 104
6.3 Application to digitalizing line segments 109
6.4 Conclusion . 112

Bibliography 115

Figures

2.1 Euclidean nearest Voronoi diagram 6
2.2 Euclidean farthest Voronoi diagram 8
2.3 (left) The Euclidean farthest Voronoi diagram (in grey) of 2 line

segments (red and blue). The intensity of the colors encode the
proximity of a point to its closest site. Darker colors correspond to
smaller distances. (right) The distance functions of both segments
in R3. The upper envelope of these distance functions correspond
to the diagram on the left. 9

2.4 (left) The Euclidean farthest Voronoi diagram of segments in R2

and the intersection with a large circle, which approximates its
Gaussian map. Each segment has a different color and matches the
one of its farthest region. (right) Gaussian map of the Euclidean
farthest Voronoi diagram of a different set of segments in R3. . . 10

2.5 The order-2 Voronoi diagram (in red) of three segments s1, s2, s3 in
the plane. 11

2.6 Point-hyperplane duality applied to segments: (left) Segments in
primal space; and (right) their corresponding wedges in dual space 15

2.7 A cell complex in which none of the cells is unbounded in a specific
direction. 16

2.8 An order-2 Voronoi diagram VD2({s1, s2, ..., s5}) (left) and its Gaus-
sian map (right). 17

2.9 The farthest regions contain rays (left) and no farthest region can
split the d−1 skeleton of the farthest Voronoi diagram into 2 parts
(right). 19

2.10 A supporting hyperplane P (in dashed black) of sites H (in red) in
direction v. 20

2.11 A bounded region in the order-4 Voronoi diagram (in red) of seg-
ments (in black). 22

2.12 Construction of the path ξ̂. 22

ix

x Figures

2.13 A tunnel in the order-4 Voronoi diagram (in red) of segments (in
black). 23

2.14 An instance of 5 segments (left), which has one region reg({s1, s2, s3}),
shown in blue, on the Gaussian map of the order-3 Voronoi diagram
(right) with high complexity. 24

2.15 (a) The angular distance ∠(v,`) between line ` and direction v.
(b) GM(FVD) of four lines in R3. The farthest regions of the lines
are colored in different colors. Vertices of anomaly are shown with
squared boxes; proper vertices with disks. 26

2.16 (a) Lines L and their (b) transformed segments τ(L) have identical
(c) Gaussian maps GM(VD2(L)) = GM(VD2(τ(L))). 28

2.17 Construction of the path (ξ̂1, ξ̂, ξ̂2) for lines as sites. 29

2.18 Example for d = 2 and n = 3: Three 0-dimensional unit spheres
(blue, green, red) split the unit circle into 6 arcs. 31

2.19 Illustration of Lemma 2.5.4. (a) The sites E (1 vertical red line
and 3 line segments) in 3-space; (b) GM(FVD(E)) in R3; (c) The
sites E projected to the x-y-plane Q (d) GM(FVD(ProjQ(E))) in R2,
which corresponds to the equator of GM(FVD(E)). 35

3.1 The bisector (red) of two line segments (black) in the plane. The
red points indicate the ends of the bisector’s pieces, i.e. rays,
parabolic arcs, and line segments. The minimum distance of the
points on the bisector to one of the sites is realized at the green
square. 44

3.2 The trisector of three lines (red, green, yellow) consists of up to
four branches. The colors along the trisector encode the distance to
the lines. In this example, the distance function along one branch
admits a local maximum, as the color coding changes from orange
to yellow and back to orange. 45

3.3 Different events during the collapse algorithm for constructing the
farthest Voronoi of line segments in R2. 48

3.4 There cannot be a vertex v in the farthest Voronoi diagram of lines
segments with two incident edges with increasing distance towards
v. 50

xi Figures

4.1 Two approximations (a) and (b) of a Euclidean farthest-site Voronoi
diagram (c). The sites are three overlapping triangles. Their
boundaries are visualized in individual colors, and their farthest
regions are painted accordingly. The distance polygons used—a
square in (a) and a regular 8-gon in (b)—are shown in the bottom-
left corner. 55

4.2 Polyhedral distance induced by P : dP (x , q) = 2 and dP (x , q′) = 0.7 57

4.3 Illustrations of the proofs of Lemma 4.3.2 (left) and Lemma 4.3.3
(right). 61

4.4 (a) The (d−1)-skeleton can be disconnected for non-disjoint sites.
(b) A weighted farthest Voronoi diagram of three sites: The blue
quadrangle has an additive weight of −1, and the red pentagon
has a multiplicative weight of 1

2 . 63

5.1 The Fermat point of the 28 EU-capitals (pre-Brexit), highlighted
with (x), along with three 28-ellipses of different radii. (a) The
foci (capitals) are unweighted. (b) Each focus has the weight of
the country’s population. The source of the map is https://www.
consilium.europa.eu. 66

5.2 The resulting box subdivision of Fig. 5.1(a) for (a) the n-ellipses
and (b) the Fermat point. 68

5.3 (a) Example that a good approximation of the Fermat point in
sense (B) does not imply a good approximation in sense (A). (b)
Analogous example for sense (C). 71

5.4 Different steps during the the execution of Algorithm 3. The dark
red boxes cannot contain the Fermat point, whereas the light green
boxes may contain it. 74

5.5 An example with 500 foci, showing that Weiszfeld’s scheme does
not solve the ε-approximation problem. The scheme stopped when

p i−1 − p i

 ≤ 1/10, after 207 steps (blue points). The distance

x ∗ − p207

 can be arbitrarily big (‖x ∗ − p207‖> 15 in this case). 79

5.6 The case analysis of Algorithm 5. (a) N(B) ⊆ B, (b) N(B
10)∩

B
10 =

;, and (c) N(B
10)∩

B
10 6= ;. 80

5.7 (a) A 3-ellipse passing through two foci. Components of gray boxes
(temporarily) surround the foci. (b) If a gray component satisfies
(B1) - (B3) the two ingoing edges are connected with an edge
(shown dashed). 82

https://www.consilium.europa.eu
https://www.consilium.europa.eu

xii Figures

5.8 Two different 3-elliptic contour plots with 10 contour lines, having
the same set of foci. (a) Using radii of equidistant points. (b) Using
equidistant radii. 85

5.9 A box subdivision for n= 200 foci: (a) UNIF-1, (b) UNIF-2 and (c)
UNIF-2 after PCA. 86

5.10 A comparison of Algorithm 3 (• SUB), Algorithm 4 with the Krawz-
cyk Newton operator (D Krawzcyk), and Algorithm 4 with the
Nickel and Moore Newton operator (� Nickel & Moore). (a),(b)
Time as a function of n, with ε = 10−4. (c),(d) Time as a function
of ε with n= 100. (a),(c) UNIF-1 datasets. (b),(d) UNIF-2 datasets. 87

5.11 Foci sets of TSPLib used in our experiments. burma14: 14 cities
in Burma, bayg29: 29 cities in Bavaria, berlin52: 52 locations
in Berlin, bier127: 127 beer gardens in the Augsburg area (Ger-
many), tsp225: writing of TSP with 225 points, linhp318: 318
cities, ali535: 535 airports around the globe, nrw1379: Nordrhein-
Westfalen (Germany), fnl4461: the five Federal States of Germany
(ex-GDR territory), usa13509: cities in the continental US with at
least 500 population . 88

5.12 An overall comparison of Algorithm 3 (• SUB), Algorithm 4 with
the PCA (D ESUB), and Algorithm 5 (� CW). (a),(b) Time as a
function of n, with ε = 10−4. (c),(d) Time as a function of ε with
n= 100. (a),(c) UNIF-1 datasets. (b),(d) UNIF-2 datasets. 89

5.13 (a) 100 points in convex position (b) points of a regular 100-gon
(c) 100 points split among 10 clusters 90

5.14 (a) A comparison of TSP data sets (filled shapes) with UNIF-1
(empty shapes, dashed curve) for both Algorithm 4 (• ESUB) and
Algorithm 5 (� CW). Fermat point with time as a function of n.
(b),(c) n-ellipse on UNIF-2 with time as a function of (b) n and (c)
the length of the n-ellipse. Two ε approximations with ε = 0.1 (•)
and ε = 0.01 (�) have been computed. 91

6.1 Red and blue points sets of cardinality 4 with high discrepancy.
The indicated rectangle contains only red points, even though the
expected difference between red and blue points in such a rectangle
would 0. 97

6.2 The discrepancy of the red rectangle is roughly |8× 0.752 − 4| = 0.5. 98

6.3 Illustration of f j for m= 3 and j = 1. 100

6.4 A Staircase . 105

xiii Figures

6.5 Staircase approximation for m = 7. The curves Ci are drawn in
black. The brightness of the green color encodes the value of
the discrepancy DR,B(x , y) at each point (x , y). The discrepancy
values range between -1 and 1 as shown on the right hand side.
The staircases can be seen at the discontinuity of the discrepancy
function. At each staircase the discrepancy function changes its
value by 1. 106

6.6 An example of a CDR in one quadrant. 110
6.7 (left) A drawing of a CDR in G+N ⊂ Z

3 for N = 4. Notice that the
CDR is a tree whose leaves are at the plane x+ y+z = N . (middle)
A cross section on the x y-plane of the same CDR. Observe that
vertices A and B do not extend within the x y-plane. Thus, the
subspace is a weak CDR (rather than a proper CDR). (right) A map
of the weak CDR into a two-colored point set. Regions with many
blue points and few red correspond to portions of the CDR with
high error. 111

xiv Figures

Chapter 1

Introduction

1.1 Computational geometry in high dimensions

Geometric problems in higher dimensions induce multiple difficulties in contrast
to their planar counterparts. The problem settings are harder to visualize and
therefore finding useful properties can be challenging. Moreover, the algebraic
complexity of the underlying formulas typically increases. Compare for example
the algebraic description of edges in a Voronoi diagram of lines in two and three
dimensions. In the plane, the bisector of three lines is just another line. In
contrast, in 3-space the trisector of three lines is the solution of a polynomial of
already degree four. The dimension of the space of interest does not need to be
high and explicit exact representations of the basic objects are not possible to
derive. Many concepts of data structures or algorithmic techniques work well in
smaller dimensional spaces, but become inefficient once the dimension increases.
An example is the quadtree/octree data structure. Generalizations of it to higher
dimensions immediately induce an exponential dependency on the dimension.
Finally the combinatorial complexity of the solution of the geometric problem
often increases with the dimension and an algorithm to solve it needs to take care
of that.

In the beginning of the research area of computational geometry, there was
a big focus on the computation of convex hulls of points. Early algorithms for
this problem in the plane were “Jarvis march" Jarvis [1973], and “Graham scan"
Graham [1972]. There is a close relation between convex hulls and Voronoi
diagrams of points, if one can compute the convex hull of points in Rd+1 then one
can also derive the Euclidean Voronoi diagram of points in Rd , see Edelsbrunner
et al. [1989]. This is one of many examples, why the basic convex hull algorithms
are so important. It took 20 years until an optimal deterministic time algorithm

1

2 1.2 Dissertation Overview

for finding the convex hull of points in arbitrary dimensions was found Chazelle
[1993]. In this thesis we discuss 3 topics in higher dimensions, described in the
next section.

1.2 Dissertation Overview

In Chapter 2, we study the behavior at infinity of the farthest and the higher-order
Voronoi diagram of n line segments or lines in a d-dimensional Euclidean space.
The unbounded parts of these diagrams can be encoded by a Gaussian map on
the sphere of directions Sd−1. We show that the combinatorial complexity of
the Gaussian map for the order-k Voronoi diagram of n line segments and lines
is O(min{k, n−k}nd−1), which is tight for n−k = O(1). All the d-dimensional cells
of the farthest Voronoi diagram are unbounded, its (d−1)-skeleton is connected,
and it does not have tunnels. A d-cell of the Voronoi diagram is called a tunnel if
the set of its unbounded directions, represented as points on its Gaussian map,
is not connected. In a three-dimensional space, the farthest Voronoi diagram of
lines has exactly n2−n three-dimensional cells, when n≥ 2. The Gaussian map
of the farthest Voronoi diagram of line segments and lines can be constructed
in O(nd−1α(n)) time, while if d = 3, the time drops to worst-case optimal O(n2).

In Chapter 3, we review an O(n log n) time algorithm in the plane and describe
obstacles for generalizing it for three dimensional space. In particular, we show
that the distance function along a trisector of lines may have a local maximum.

In Chapter 4, we give asymptotically tight upper and lower worst-case bounds
on the combinatorial size of the farthest Voronoi diagram for convex polyhe-
dral distance functions with convex polyhedral sites in general dimensions, and
propose an optimal time construction algorithm.

In Chapter 5, we present algorithms to compute an ε-approximation of the
Fermat point x ∗. Our algorithms are based on the subdivision paradigm, which
we enhance with Newton methods, used for certification, in the sense of interval
methods, and for speed-ups. Moreover, we consider the problem of constructing
n-ellipses, which are the r-level sets ϕ−1(r). Using the subdivision paradigm, we
design an ε-isotopic approximation algorithm to compute n-ellipses in R2. We
have implemented our algorithms and we provide an experimental analysis using
different point configurations and heuristics for speed-ups. The obtained results
suggest the practicality of our approaches especially in low dimensions and for
small epsilon.

In Chapter 6, we discuss the question of how uniform can one distribute red
and blue points in the unit square, such that the difference between the number

3 1.3 List of publications

of points in a sample area is close to the expected difference. We introduce
the bichromatic discrepancy for point sets of two different colors within the unit
square. We derive a lower bound for this bichromatic discrepancy and show its
implications for consistent digital rays, a concept of digitalizing segments such
that they still exhibit most Euclidean axioms. We also describe point sets which
induce a low bichromatic discrepancy.

1.3 List of publications

Chapter 2 is based on the following paper:

• Gill Barequet, Evanthia Papadopoulou, and Martin Suderland. [2019]
Unbounded regions of high-order Voronoi diagrams of lines and segments
in higher dimensions.
30th International Symposium on Algorithms and Computation (ISAAC 2019),
Vol. 149 of LIPIcs, Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
pp. 62:1–62:15.

Chapter 4 is based on the following paper:

• Franz Aurenhammer, Evanthia Papadopoulou, and Martin Suderland. [2021]
Piecewise-linear farthest-site Voronoi diagrams.
32nd International Symposium on Algorithms and Computation (ISAAC 2021),
Schloss Dagstuhl - Leibniz-Zentrum für Informatik.

Chapter 5 is based on the following paper:

• Kolja Junginger, Ioannis Mantas, Evanthia Papadopoulou, Martin Suderland,
and Chee Yap. [2021]
Certified approximation algorithms for the Fermat point and n-ellipses.
29th Annual European Symposium on Algorithms, ESA 2021, Vol. 204 of
LIPIcs, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, pp. 54:1–54:19.

Chapter 6 is based on parts of the following paper:

• Man-Kwun Chiu, Matias Korman, Martin Suderland, and Takeshi Tokuyama.
[2022]
Distance bounds for high dimensional consistent digital rays and 2-d partially-
consistent digital rays.
Discrete & Computational Geometry pp. 1–43.

4 1.3 List of publications

Chapter 2

Voronoi diagrams of generalized sites

This chapter is based on the following paper:

• Gill Barequet, Evanthia Papadopoulou, and Martin Suderland. [2019]
Unbounded regions of high-order Voronoi diagrams of lines and segments
in higher dimensions.
30th International Symposium on Algorithms and Computation (ISAAC 2019),
Vol. 149 of LIPIcs, Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
pp. 62:1–62:15.

The nearest Voronoi diagram of a set of geometric objects, called sites, is
a well-known geometric partitioning structure. It partitions the relevant space
into regions such that all points within a region have the same nearest site. Let
S = {s1, s2, ..., sn} be a set of sites in d-dimensional space. We will only consider
points, lines, line segments and convex polyhedra as sites. We denote with d(x , s)
the distance of a point x ∈ Rd to the site s. The distance can be the Euclidean
distance or a distance induced by any convex polyhedron P which contains the
origin. Note that the L∞ distance can also be represented as a polyhedral distance.

The Voronoi region of site si of the nearest Voronoi diagram is defined as

reg(si) =
�

p ∈ Rd
�

� ∀ j 6= i : d(p, si)≤ d(p, s j)
	

. (2.1)

A maximally connected i-dimensional set of points, which is on the boundary of
the same set of regions, is called an i-dimensional cell of the diagram, in short
i-cell. In the special cases i = 0,1,2, d we call an i-cell a vertex, edge, face or
cell. The complexity of a Voronoi diagram is the total number of its i-cells for all
0≤ i ≤ d respectively. Given that each site is a connected object, the regions of
the nearest diagram are connected and non-empty. A Euclidean nearest Voronoi
diagram of points and segments is shown in Figure 2.1.

5

6

(a) sites: points (b) sites: segments

Figure 2.1. Euclidean nearest Voronoi diagram

The Voronoi diagram finds applications in diverse areas, when proximity
information is important. Given n points in the plane, the Voronoi diagram
can be used to find the Euclidean minimum spanning tree, the smallest circle
enclosing the points, k nearest and farthest neighbours, the two closest points,
the well-known Delaunay triangulation Shamos and Hoey [1975], clustering
point sites and motion planning Aurenhammer [1991]. It is applied in economics,
metallurgy, archaeology, ecology, geography, geology, astronomy and many more
areas, see the book of Okabe et al. [1992].

The most extensively studied type of Voronoi diagram is the Euclidean Voronoi
diagram of points. Edelsbrunner and Seidel [1986] noticed that in order to
compute the Euclidean Voronoi diagram of points in Rd it suffices to construct the
convex hull of a set of points in Rd+1. Chazelle [1991] finalized this algorithm
by providing an optimal convex hull algorithm, which runs in O(n log n+ nb

d
2 c)

time given n points in Rd . Combining these two results gives an O(n log n+ nd
d
2 e)

time algorithm to construct the Euclidean Voronoi diagram of points in Rd . A
matching worst-case lower bound on the complexity of the Euclidean Voronoi
diagram of n points in Rd of Ω(nd

d
2 e) was given in Klee [1980]. The necessity of

the term O(n log n) follows from a simple reduction from sorting. Concerning
the Voronoi diagram of points under certain polyhedral norms, the complexity is
Θ(nd

d
2 e) for the L∞ and L1 distance and also for polyhedral distances induced by

a d-simplex Boissonnat et al. [1998].
If we consider sites that are not points, things become more complicated.

7

Analysing lines and line segments seem to be a natural generalization of point
sites. Moreover the Voronoi diagram of polygons can be constructed once we can
deal with the Voronoi diagram of line segments. Many algorithmic paradigms,
such as plane sweep, incremental construction or divide and conquer have been
applied to construct the Voronoi diagram of line segments in the plane in optimal
O(n log n) time Aurenhammer et al. [2013].

Already in three dimensional space the algebraic description of the features
of the Voronoi diagram, especially the 1-cells, become quite complicated. The 37
pages paper Everett et al. [2009] describes only the Euclidean Voronoi diagram of
just 3 lines. In special cases these diagrams have a simpler structure. For instance,
the Voronoi diagram of segments with at most c distinct orientations has O(c4n2+ε)
complexity where ε is any positive number, see Koltun and Sharir [2002]. Another
special case is a set of parallel halflines as sites which was studied very recently
by Aurenhammer et al. Aurenhammer et al. [2017]. Then the Voronoi diagram
can be computed in O(k log(n)) time where the number of faces k is bounded by
O(n2+ε).

The complexity of nearest Voronoi diagrams of n lines inR3 under a polyhedral
distance functions, induced by a convex polyhedra of constant complexity, can
be bounded by O(n2α(n) log(n)) and Ω(n2α(n)), see Chew et al. [1998]. Here
α(n) is the extremely slowly growing inverse Ackermann function. If we consider
disjoint polyhedra as sites with n vertices in total, then the complexity is O(n2+ε)
shown in Koltun and Sharir [2004], for any ε > 0. If the sites are line segments
then they sharpen the bound to O(n2α(n) log(n)).

Farthest-site Voronoi diagrams are useful for performing farthest neighbor
queries among the sites, for computing the smallest ball that contacts all sites,
and for finding the largest gap to be bridged between any two sites—to name a
few or their applications. In contrast to the nearest diagram, not much research
has been conducted on the farthest Voronoi diagram. It is a partition of the space
into regions such that the points of one region have the same farthest site. We
only have to slightly change Equation (2.1) in order to define the farthest regions
of the diagram.

freg(si) =
�

p ∈ Rd
�

� ∀ j 6= i : d(p, si)≥ d(p, s j)
	

. (2.2)

A Euclidean farthest Voronoi diagram of points and segments is shown in Figure
2.2. The farthest Voronoi diagram has different structural properties than the
nearest one. Seidel Seidel [1987] derived exact bounds on the maximal complexity
of the Euclidean farthest Voronoi diagram of points in Rd . Asymptotically the
worst-case complexity grows with Θ(nd

d
2 e).

We are mostly interested in the farthest Voronoi diagram of lines, line segments

8

(a) sites: points (b) sites: segments

Figure 2.2. Euclidean farthest Voronoi diagram

or convex polyhedra under different distance measures in Rd . We want to analyse
its complexity and also look for efficient algorithms to construct the exact diagram
or an approximation.

In two dimensions the Euclidean farthest Voronoi diagram of n segments
has already been studied in Aurenhammer et al. [2006]. Aurenhammer et al.
have shown that one farthest region can have up to Θ(n) many faces but the
total complexity of the whole diagram still remains O(n). They also gave an
algorithm to compute the diagram in optimal O(n log n) time. Papadopoulou and
Dey [2013] gave an output-sensitive O(n log h) time algorithm to construct the
farthest line segment Voronoi diagram in the plane under any Lp metric with
1≤ p ≤∞, where h is the number of unbounded faces. If segments intersect, then
the number of intersections affects the complexity only if k < n

2 Papadopoulou
and Zavershynskyi [2016]. These diagrams illustrate fundamental structural
differences from their counterparts of points, such as disconnected Voronoi regions
and no relation to convex hulls. Naturally, these differences carry over to higher
dimensions.

Cheong et al. [2011] analysed the farthest Euclidean polygonal Voronoi dia-
gram in R2 and proved that the complexity is O(n) and that it can be computed in
O(n log3 n) time, assuming that the polygons are disjoint and have a complexity
of n in total.

Already in three dimensional space with the Euclidean metric, there are no
tight asymptomatic bounds on the complexity of the farthest Voronoi diagram
known, similarly to the nearest. The only known bounds are the Ω(n2) lower
bound and a O(n3+ε) upper bound where ε can be any positive number Barequet

9

and Papadopoulou [2013]. The upper bound holds for a very general class of
Voronoi diagrams in three dimensional space. It follows from the fact that the
upper envelope1 of n simple surfaces inRd has O(nd−1+ε) complexity Sharir [1994].
Computing a Voronoi diagram of n sites in d-dimensional space by computing
an envelope in d + 1 dimensions of n so called distance functions is a common
concept. The distance function of a site s is defined for each x ∈ Rd and maps
x to its distance d(x , s), see Fig. 2.3. The nearest neighbour Voronoi diagram
corresponds to the lower envelope of the distance functions while the farthest
Voronoi diagram corresponds to the upper envelope. Computing an envelope of
non-linear surfaces is a challenging task which explains the difficulty in computing
Voronoi diagrams of sites with non-linear distance functions.

Figure 2.3. (left) The Euclidean farthest Voronoi diagram (in grey) of 2 line
segments (red and blue). The intensity of the colors encode the proximity of a
point to its closest site. Darker colors correspond to smaller distances. (right)
The distance functions of both segments in R3. The upper envelope of these
distance functions correspond to the diagram on the left.

The Euclidean farthest Voronoi diagrams of lines and line segments has the
property that all cells are unbounded see Barequet and Papadopoulou [2013].
This property motivates to first study the unbounded parts of the farthest Voronoi
diagram. Barequet and Papadopoulou [2013] introduce a structure on a sphere of
directions, called the Gaussian Map (in short GMap), describing those unbounded
parts. Each direction on the sphere is associated with the site whose region is un-
bounded in that direction. This results in a subdivision of the sphere of directions

1The upper (resp. lower) envelope of a set of surfaces is the pointwise maximum (resp.
minimum) of all surfaces.

10

into regions as well, see Figures 2.4 and 2.4. They showed that the complexity of
the GMap in R3 can be as high as Θ(n2), see Barequet and Papadopoulou [2014].

−1

1

0

−1

1

0

−1

1

0

z

x
y

Figure 2.4. (left) The Euclidean farthest Voronoi diagram of segments in R2

and the intersection with a large circle, which approximates its Gaussian map.
Each segment has a different color and matches the one of its farthest region.
(right) Gaussian map of the Euclidean farthest Voronoi diagram of a different
set of segments in R3.

A generalization of the nearest and farthest Voronoi diagram are the higher-
order Voronoi diagrams. For a subset of sites H ⊂ S of cardinality k, the order-k
region of H is the set of points in Rd whose distance to any site in H is smaller
than to any site not in H.

reg(H) =
�

p ∈ Rd
�

� ∀h ∈ H ∀s ∈ S \H : d(p, h)≤ d(p, s)
	

When k = 1 (resp. k = n − 1), this diagram is the nearest-neighbor Voronoi
diagram. For k = n− 1, it is the farthest site Voronoi diagram, denoted by FVD(S).

The order-k Voronoi diagram corresponds to the k-th level of the arrangement
of distance functions of the sites Edelsbrunner and Seidel [1986]. For points in the
plane as sites with the Euclidean distance measure, the complexity of the diagram
is bounded by O(k(n − k)) Lee [1982] and there are various algorithms with
running times depending differently on n and k such as O(k2n log n) or O(k(n−
k) log n+ n log3 n) Lee [1982]; Chazelle and Edelsbrunner [1985]; Aurenhammer
[1990]; Clarkson [1987]; Agarwal et al. [1998].

The diagram has also been studied for non-point sites. Papadopoulou and
Zavershynskyi [2016] proved a similar complexity result for line segments. If

11

s1

s2
s3

reg2({s1, s2})

reg2({s1, s3})

reg2({s2, s3})

reg2({s1, s3})

Figure 2.5. The order-2 Voronoi diagram (in red) of three segments s1, s2, s3 in
the plane.

k < n/2, then the complexity is bounded by O(k(n−k)+ I), where I is the number
of line segment intersections. Surprisingly the number of intersections does not
matter if k ≥ n/2 and the complexity is simply bounded by O(k(n− k)), which is
the same bound for points as sites. The diagram can be constructed by an iterative
approach in O(k2n log n) time by first computing the nearest Voronoi diagram
and then using the an order-i diagram to compute an order-(i + 1) diagram. In
the context of abstract Voronoi diagrams the number of faces Fk of the order-k
version was bounded by n−k+1≤ Fk ≤ 2k(n−k)+k+1−n Bohler et al. [2015].
Abstract Voronoi diagrams are a unifying concept that include many concrete
Voronoi diagrams Klein [2016]. Their definition relies on sets of bisecting curves
instead of actual sites. These bisectors need to satisfy some conditions to fall
under the umbrella of abstract Voronoi diagrams, such as that the curves are
Jordan curves, each resulting Voronoi region is connected and the set of all regions
covers the plane.

The closed order-k regions of S form a subdivision of Rd . The induced cell
complex is called the order-k Voronoi diagram of S, denoted by VDk(S). A max-
imally connected i-dimensional set of points, which is on the boundary of the
same set of order-k regions, is called an i-dimensional cell of the cell complex.
We call the i-dimensional cells of the order-k Voronoi diagram “i-cells.”

When k = 1, this diagram is the well-known nearest-neighbor Voronoi diagram,
denoted by VD(S). For k = n− 1, it is the farthest site Voronoi diagram, denoted
by FVD(S). Its farthest regions can also be defined directly as freg(h) = {p ∈
Rd | s ∈ S \ {h} : d(p, h)> d(p, s)}.

Another generalization is the addition of weights to the sites. The weights
describe the influence of a site to its nearby points. For example, the regions of

12

the weighted nearest Voronoi diagram are defined as

reg(si) =

¨

p ∈ Rd

�

�

�

�

�

∀ j 6= i :
d(p, si)

wsi

−Wsi
≤

d(p, s j)

ws j

−Ws j

«

(2.3)

where we assign to each site s a multiplicative weight ws and an additive weight
Ws. Weights can also be added to all other mentioned versions Voronoi diagrams
in a similar fashion. In the nearest (resp. farthest) Voronoi diagram a site’s region
is expanding (resp. shrinking) with increasing weight. Euclidean (additively and
multiplicatively) weighted Voronoi diagrams in Rd can be modeled as a so called
"power diagrams" in Rd+1 Aurenhammer [1987]. Power diagrams in Rd+1 can be
constructed through a convex hull algorithm in Rd+2 in O(n log n+ nb

d
2 c+1) time.

Summarizing there are several variations of the standard Euclidean Voronoi
diagram of points, i.e. using different sites, weights, distances or working with
higher-order diagrams in higher dimensions.

In the plane, many algorithmic paradigms, such as plane sweep, incremental
construction, and divide-and-conquer have been applied to construct the Voronoi
diagram of line segments Aurenhammer et al. [2013]. In higher-dimensional
spaces, however, results are quite sparse. As a result, the combinatorial com-
plexity of this diagram has been a major open problem in computational geom-
etry Mitchell and O’Rourke [2001]. There is a gap of an order of magnitude
between the Ω(n2) lower bound Aronov [2002] and the only known upper bound
of O(n3+ε) Sharir [1994], where n is the number of sites. The gap carries over
(and expands) to the Voronoi diagram of lines in d-space, d ≥ 3, where the known
bounds are Ω(nb

d
2 c) Aronov [2019] and O(nd+ε) Sharir [1994]. The lower bound

is derived from n parallel lines whose Voronoi diagram has the same complexity
as the Voronoi diagram of n points in d−1 dimensional space. For points in Rd ,
the bound is Θ(nd

d
2 e) Aurenhammer et al. [2013], and for (d−2)-dimensional

hyperplanes, the lower bound is Ω(nd−1) Aronov [2002]. To the best of our knowl-
edge, no other lower bound, other than Ω(nd

d
2 e), is available for line segments

in Rd , d > 3. Better combinatorial bounds are known only for some restricted
cases Aurenhammer et al. [2017]; Chew et al. [1998]; Koltun and Sharir [2002,
2004]. A numerically robust algorithm for computing the Voronoi diagram of
lines in 3D has been given by Hemmer et al. [2010].

In three dimensions, the Euclidean farthest-site Voronoi diagram of lines or line
segments has the property that all its three-dimensional cells are unbounded Bare-
quet and Papadopoulou [2013]. Barequet and Papadopoulou [2013] used a
structure on the sphere of directions, called the Gaussian map, which reflects the
directions under which the cells of this diagram are unbounded. The Gaussian

13

map essentially replaces the role of the convex hull in characterizing the un-
bounded regions in the higher-order Voronoi diagram of VDk(E), for k > 1. In this
chapter, we study the Gaussian map of order-k and farthest Voronoi diagrams of n
line segments and lines as sites in Rd , and characterize the unbounded directions
of the cells in these diagrams. The dimension d is assumed to be constant. We
derive the bound O(min{k, n− k}nd−1) on the complexity of the Gaussian map of
order-k Voronoi diagrams for these sites. This implies the same upper bound on
the complexity of the unbounded features of the corresponding order-k Voronoi
diagrams. For the farthest-site diagram (k = n− 1), this is O(nd−1). For segments
as sites, we prove that the complexity of the Gaussian map is Ω(kd−1), which
is tight when n− k = O(1). In fact, the complexity bound is derived from the
number of vertices on the Gaussian map. This leads to a lower bound of Ω(kd−1)
on the complexity of the entire order-k Voronoi diagram for line segments. For
the farthest-site Voronoi diagram, this bound becomes Ω(nd−1), which also holds
for lines as sites. As a byproduct, we derive a bound on the complexity of the
arrangement of n great hyperspheres on Sd−1.

Further, we describe a transformation that maps a set of lines to a set of
segments, such that the two respective Gaussian maps of order-k Voronoi diagrams
are identical. This transformation can be used to carry lower bounds from lines to
segments and upper bounds from segments to lines. Table 2.1 summarizes most
of the complexity results derived here. All the d-dimensional cells of the farthest
Voronoi diagram of both lines and segments are unbounded, its (d−1)-skeleton is
connected, and it does not have tunnels. In three dimensions, the farthest Voronoi
diagram of lines in general position has exactly n(n−1)many 3-dimensional cells,
when n ≥ 2. We show that we can compute the Gaussian map of this diagram
in O(nd−1α(n)) time by using the algorithm of Edelsbunner et al. Edelsbrunner
et al. [1989], which extends to higher dimensions Agarwal and Sharir [2000];
Halperin and Sharir [2017], for computing the envelope of piecewise-linear
functions in Rd . In fact, we conjecture that this bound can be improved to O(nd−1).
In three dimensions, we can compute the Gaussian map of the farthest Voronoi
diagram of lines or segments in O(n2) time, following Edelsbrunner et al. [1989],
which is optimal in the worst-case.

The chapter is organized as follows. In Section 2.1 we give an introduction
on the basic concepts used. In Section 2.2 we describe some basic properties of
farthest and order-k Voronoi diagrams. Section 2.3 studies the Gaussian map of
the order-k Voronoi diagram for a set of line segments as sites, including bounds
on its complexity and also a worst-case optimal time algorithm. In Section 2.4
the close relation to lines as sites is discussed. Section 2.5 looks at combining
segments and lines and finally Section 2.6 concludes with generalizations to

14 2.1 Preliminaries

Structure Lower bound Upper bound
GM(VDk(E)) Ω(kd−1)* O(min{k, n−k}nd−1)
GM(FVD(E)) Ω(nd−1) O(nd−1)

VDk(E) Ω(kd−1)* O(min{k, n−k}nd+ε)
FVD(E) Ω(nd−1) O(nd+ε)

∗Only for segments.

Table 2.1. Worst-case complexities of structures induced by a set E of n lines
or segments in Rd .

polyhedra or clusters of points as sites.

2.1 Preliminaries

2.1.1 Point-Hyperplane Duality

Under the well-known point-hyperplane duality T in Rd , a point p ∈ Rd is trans-
formed to a non-vertical hyperplane T(p), and vice versa. The transformation
maps a point with coordinates (p1, p2, ..., pd) to the hyperplane T (p) satisfying the
equation xd = −pd+

∑d−1
i=1 pi x i. The transformation is an involution, i.e., T = T−1.

For a segment s = uv, the hyperplanes T (u) and T (v) partition the dual space
into four wedges, among which the lower wedge (resp., the upper wedge) is the
one that lies below (resp., above) both T (u) and T (v). The ridge of the wedge is
the intersection of T (u) and T (v).

Let E be a set of n segments, which in dual space corresponds to an arrange-
ment of lower wedges. Let Lk be the kth level of that arrangement. Let p be a
point on Lk, which touches the dual wedge of segment s = ab, and let H be the
set of segments whose wedges are below p, see Figure 2.6. Then, the point p
corresponds to a hyperplane T−1(p) which touches the segment s. The closed
halfspace above T−1(p) has a non-empty intersection with the segments in H.
The open halfspace above T−1(p) does not intersect any segment in E \ H. We
will use this property when we study the Gaussian map, which is defined in the
next section.

2.1.2 Levels in an Arrangement of Hyperplanes

In this section, we review the definition of levels of an arrangement of surfaces,
where those surfaces satisfy some mildness conditions (A1)-(A3) as given in

15 2.1 Preliminaries

T−1(p)a

b

T (b)

T (a)

T (b)

T (a)p

Figure 2.6. Point-hyperplane duality applied to segments: (left) Segments in
primal space; and (right) their corresponding wedges in dual space

Agarwal and Sharir [2000]. We will use Theorem 2.1.1 by Clarkson and Shor
several times. The level of a point p ∈ Rd in an arrangement A (Γ) of a set Γ
of surface patches is the number of surfaces of Γ lying vertically below p. For
0 ≤ k < n, the k-level (resp., ≤k-level), denoted by Ak(Γ) (resp., A≤k(Γ)), is
the closure of all points on the surface of Γ whose level is k (resp., at most k).
A face of Ak(Γ) or A≤k(Γ) is a maximal connected portion of a face of A (Γ)
consisting of points having a fixed subset of surfaces lying below them. Let ψk(Γ)
(resp., ψ≤k(Γ)) be the total number of faces inAk(Γ) (resp.,A≤k(Γ)). Agarwal
and Sharir [2000]

Theorem 2.1.1 (Clarkson and Shor Clarkson and Shor [1989]). Let G be an
infinite family of surfaces satisfying some mildness assumptions (A1)-(A3) described
in Agarwal and Sharir [2000]. Then, for any 0≤ k < n− d,

ψ≤k(n, d,G) = O
�

(k+ 1)d C
� n

k+ 1
, d,G

��

,

where C (n, d,G) is the maximum complexity of the lower envelope of n surfaces in
G .

It obviously holds that ψk(Γ)≤ψ≤k(Γ).

2.1.3 The Gaussian Map

Let M be a cell complex in Rd . The complexity of M is the total number of the
cells of M of all dimensions. The Gaussian map of M encodes information about
the unbounded cells of M . This structure is of particular interest when all d-cells
of M are unbounded. For example, all the d-dimensional cells of the farthest
Voronoi diagram of segments or lines are unbounded.

16 2.1 Preliminaries

c1 c2

Figure 2.7. A cell complex in which none of the cells is unbounded in a specific
direction.

Definition 2.1.2. A d-cell of M is unbounded in direction −→v if it contains a ray
with direction −→v .

The idea of a cell containing a ray works well for defining a cell’s unbounded
directions if the cell is d-dimensional. However, it is not adequate for non-linear
cells of dimension < d. For example, the trisector of three lines is in general
a non-linear curve Everett et al. [2009], containing no ray. Imagine a point p
moving along a branch of the trisector to infinity. The tangent of the trisector
at p does actually converge and we want to call this direction an unbounded
direction of the trisector. The next definition refines Definition 2.1.2 for cells of
dimension < d.

Definition 2.1.3. A cell c of M is unbounded in direction −→v if in the limit λ→ 0,
the intersection of the scaled cell λ · c and the unit sphere Sd−1 is non-empty in
direction −→v .

The scaling of cell c can be done with an arbitrary center. Here, the limit
limλ→0

�

λc ∩ Sd−1
�

should be understood with the concept of the Kuratowski con-
vergence Kuratowski [1966], which we briefly review. For any point x ∈ Rd and
subset S ⊂ Rd , let d(x ,S) = inf{d(x ,σ)|σ ∈ S } be the distance between x and
S . LetSλ ⊂ Rd be a compact set for any λ > 0. We say thatSλ converges toS for
λ→ 0 if S = {x ∈ Rd | lim supλ→0 d(x ,Sλ) = 0}= {x ∈ Rd | lim infλ→0 d(x ,Sλ) =
0}.

Note that the Kuratowski limit does not always exist Kuratowski [1966].
Consider a cell complex consisting of 2 cells circling around each other, see Fig. 2.7.
The unbounded directions of the cells of this cell complex are not be defined in this

17 2.1 Preliminaries

s1 s2

s3
s4

s5

reg2({s1, s2})

reg2({s1, s3})

reg2({s3, s4})

reg2({s2, s3})

reg2({s4, s5})

reg2({s1, s2})

reg2({s1, s3})

reg2({s3, s4}) reg2({s3, s4})

reg2({s4, s5})

reg2({s2, s3})

Figure 2.8. An order-2 Voronoi diagram VD2({s1, s2, ..., s5}) (left) and its Gaus-
sian map (right).

case, because for any cell c ∈ {c1, c2} the sets {x ∈ Rd | lim supλ→0 d(x ,λc ∩ S1) =
0} = ; and {x ∈ Rd | lim infλ→0 d(x ,λc ∩ S1) = 0} = S1 are not the same. We
only consider cell complexes in which the unbounded directions of cells are well
defined.

Definition 2.1.4. The Gaussian map of M, denoted by GM(M), maps each cell
in M to its unbounded directions, which are encoded on the unit sphere Sd−1, see
Figure 2.8. Let c be a cell of M; the set of directions, in which c is unbounded, is
called the region of c on GM(M). The part of GM(M) where the dth coordinate
is ≥ 0 (resp., ≤ 0) is called the upper (resp., lower) Gaussian map.

The Kuratowski limit is a closed set, if it exists, and therefore, cells of the
Gaussian map are closed.

We focus on cell complexes, such as the farthest Voronoi diagram and the
order-k Voronoi diagram of lines and segments, where cells have unbounded
directions and the Gaussian map is the respective partition of Sd−1. This partition
induces a cell complex on Sd−1. The collection of cells on the Gaussian map of
a Voronoi diagram VDk(E), which correspond to the same set of sites H ⊂ E, is
called the region of H on GM(VDk(E)).

A Gaussian map region of a set of sites may consist of several (d−1)-cells for
two reasons: A region of a set of sites of VDk may split into many d-cells, which
all have unbounded directions on the Gaussian map. Moreover, the Gaussian map
region of just one d-cell of VDk can consist of several (d−1)-cells, e.g., reg({s3, s4})
in Fig. 2.8.

18 2.2 Properties of the Farthest and Order-k Voronoi Diagram

Definition 2.1.5. A d-cell of the order-k Voronoi diagram is called a tunnel if its set
of unbounded directions, represented as points on its Gaussian map, is not connected.

In Figure 2.8, the cell reg({s3, s4}) forms a tunnel in VD2(E).
The Gaussian map essentially replaces the role of the convex hull in charac-

terizing the unbounded regions in the higher-order Voronoi diagram of VDk(E)),
for k > 1.

2.2 Properties of the Farthest and Order-k Voronoi Di-
agram

2.2.1 Combinatorial Properties

It has already been stated Barequet and Papadopoulou [2013] that the complexity
of the farthest Voronoi diagram is O(n3+ε) by following the general bound of
Sharir Sharir [1994]. This bound generalizes for the order-k Voronoi diagram
in Rd .

Theorem 2.2.1. The order-k Voronoi diagram of segments and lines in Rd has
complexity O(min{k, n− k}nd+ε).

Proof. Each site induces a distance function, which maps every point in Rd to
its distance to that site. The general framework of Sharir [1994] shows that
the complexity of the 0-level (resp., (n−1)-level) of those distance functions
is O(nd+ε). Applying Theorem 2.1.1 by Clarkson and Shor [1989], the complexity
of the ≤k-level is O(knd+ε) and O((n− k)nd+ε).

In Section 2.3 we will prove the following lower bounds. These bounds are
meaningful when k is comparable to n.

Theorem 2.2.2. The complexity of the order-k Voronoi diagram of segments in Rd

is Ω(kd−1) in the worst case. For the farthest Voronoi diagram (k = n−1), this lower
bound is Ω(nd−1).

2.2.2 Structural Properties

Lemma 2.2.3. Let E be a set of lines and segments, and let p ∈ freg(e) be a point
in the farthest region of site e. Let t be the point on e, which realizes the distance
between e and p. Then, the entire ray −→r , that emanates from p with direction −→t p,
is contained in freg(e).

19 2.2 Properties of the Farthest and Order-k Voronoi Diagram

t
s

q p

freg(s)
Bp

t

e

q p

freg(e)

Figure 2.9. The farthest regions contain rays (left) and no farthest region can
split the d−1 skeleton of the farthest Voronoi diagram into 2 parts (right).

Proof. The ball Bp, centered at p and of radius |pt|, touches e. Its interior intersects
all other sites in E. In addition, any hyperball centered at any point q 6= p along −→r
and of radius |qt|must be properly enclosing Bp while touching e at t, see Fig. 2.9.
Thus, it must also intersect all sites in E except e. Therefore, freg(e) must contain
the entire ray −→r .

Corollary 2.2.4. Let E be a set of lines and segments. All d-cells of FVD(E) are
unbounded.

The VDk of segments can have bounded regions if d ≤ k ≤ n− 2. We defer
the proof of Section 2.2.2 to Section 2.3.

Definition 2.2.5. The i-skeleton of a cell complex M is the union of all j-cells in M
with dimension j ≤ i.

Theorem 2.2.6. Let E be a set of lines and segments in Rd . The (d−1)-skeleton
of FVD(E) is connected.

Proof. Assume, for the sake of contradiction, that the diagram is not connected.
Then, there exists a d-cell c that splits the (d−1)-skeleton into at least two parts.
Let e be the farthest site corresponding to c. The site e does not touch freg(e).
Let q be a point, which is separated from e by c. Let t be a point on e, which
realizes the distance between q and e. Let p be a point on the segment qt
in freg(e), see Fig. 2.9. Then, by Lemma 2.2.3, the entire ray −→r , emanating
from p in direction −→pq, is contained in freg(e). In particular, q ∈ freg(e), which is
a contradiction.

The (d−1)-skeleton of VDk(E) need not be connected for k ≤ n − 2 and E
being a set of sites in the plane, see Fig. 2.8.

20 2.3 Line Segments as Sites

P

−→v

HS \H

P+P−

Figure 2.10. A supporting hyperplane P (in dashed black) of sites H (in red) in
direction v.

2.3 Line Segments as Sites

Let E be a set of line segments in Rd . We assume that the segments are in general
position, i.e., no (d+1) segment endpoints lie on the same hyperplane. First, we
characterize the segments that induce unbounded regions in the order-k Voronoi
diagram in a given direction −→v .

Definition 2.3.1. Let E be a set of sites, and let H be a subset of E. A hyperplane P
is called a supporting hyperplane of H in direction −→v if

1. P is orthogonal to −→v ;

2. The closed halfspace P+, bounded by P and unbounded in direction −→v , inter-
sects each of the sites in H; and

3. The sites in E \ H do not intersect the interior of P+, and at least one site
in E \H touches P.

Figure 2.10 illustrates a hyperplane supporting three segments.
The following theorem is a generalization of results for the plane Aurenham-

mer et al. [2006]; Papadopoulou and Zavershynskyi [2016].

Theorem 2.3.2. A set of segments H, with |H|= k, induces an unbounded region
in direction −→v in the order-k Voronoi diagram of segments S, if and only if there
exists a supporting hyperplane of H in direction −→v .

Proof. Let H be a set of k segments, which has an unbounded d-cell c in direc-
tion −→v in the order-k Voronoi diagram of a set of segments S. Each point in the
cell corresponds to the center of a closed ball which has non-empty intersection
with the segments in H, and does not intersect any of the other segments. By
definition, there exists a curve unbounded in direction −→v , which is contained
in c. Any point p on that curve is the center of a closed ball, which has a non-
empty intersection with the segments in H and does not intersect any of the

21 2.3 Line Segments as Sites

other segments in its interior. When p moves along the curve to infinity, the ball
around p becomes a halfspace which is orthogonal to −→v . By moving the bounding
hyperplane in direction −−→v until it hits a segment in S \ H, we can make it a
supporting hyperplane.

Let P be a supporting hyperplane of segments H in direction −→v . Let H ′ ⊆ H
be the subset of segments in H that touch P. Let x be a point on P, which is closer
to all endpoints of segments in H ′ than those which belong to other segments.
Consider the ray r which emanates from x and is unbounded in direction −→v . On
that ray, we find a point y , which is the center of a closed ball, which touches x
and intersects only the segments in H. Every point z on r beyond the point y has
the same properties because the ball keeps growing on the side P+ and shrinks
on the other side. This means that all those points on r beyond y belong to the
order-k region of the set H.

Corollary 2.3.3. A supporting hyperplane of H in direction −→v , which touches i
segments (at least one of which is in H), corresponds to a (d−i+1)-cell in VDk(S),
which is unbounded in direction −→v , and to a (d−i)-cell in GM(VDk(S)).

Proof. The hyperplane is supporting several sets of sites of cardinality k at the
same time. The farthest regions of all those sets are unbounded in direction −→v .
Moreover, these regions are adjacent to the locus of points that are equidistant
from those i sites touching the hyperplane. This locus of points is (d−i+1)-
dimensional and is unbounded in direction v, because all its adjacent regions are
unbounded in v.

In order to work out the dimension of the Gaussian map cell in direction −→v ,
we need to analyze the directions in which we can rotate the hyperplane P, such
that it will still support the exact same set of sites. In particular, the sites which
touch the hyperplane originally need to keep touching it during the rotation. If
the hyperplane were touching only one endpoint of a segment, then the rotation
would have d−1 degrees of freedom. With each additional endpoint, which
touches the hyperplane, the number of degrees of freedom reduces by 1.

Note that Corollary 2.3.3 and its proof generalize to convex polyehdra and
clusters of points as sites, see Section 2.6. We can now provide a proof deferred
from Section 2.2.2.

Proof of Section 2.2.2. Indeed, we can provide a construction for points, which
can easily be extended to segments if we replace the points by small-enough
segments. Put k points close to each other, such that there exists a point m in the
interior of their convex hull. Add two more far-apart points, such that m is their

22 2.3 Line Segments as Sites

m

two segments far-apart

Figure 2.11. A bounded region in the order-4 Voronoi diagram (in red) of
segments (in black).

s

p1

p2

ξ

x

q

GM(FVD(S))

ξ̂

x̂

Figure 2.12. Construction of the path ξ̂.

midpoint, see Fig. 2.11. Then, the k points have a d-cell in the order-k Voronoi
diagram. On the other hand, those k points do not admit a supporting hyperplane
and, therefore, cannot have an unbounded d-cell by Theorem 2.3.2. It is possible
to add additional points to this configuration, as long as their distance to the
first k points is big enough.

Theorem 2.3.4. Let S be a set of segments. Then, FVD(S) does not have tunnels.

Proof. Let p1, p2 ∈ GM(FVD(S)) be two points representing unbounded directions
of a farthest cell of segment s. These two points represent directions −→r1 ,−→r2 along
which there exist points x1, x2 ∈ freg(s), for which −→ri =

−−→qi x i with (i = 1,2),
where qi is the point on s realizing the distance between x i and s. Since x1

and x2 are contained in the same cell of freg(s), there exists a continuous path ξ
connecting the points and being fully contained in freg(s). We can map every
point x ∈ ξ to the direction −→r = −→qx , with q realizing the distance between x

23 2.3 Line Segments as Sites

Figure 2.13. A tunnel in the order-4 Voronoi diagram (in red) of segments (in
black).

and s. We represent direction −→r as a point p ∈ GM(FVD(S)). Note that p is
contained in a farthest cell of the Gaussian map corresponding to segment s. By
continuity, mapping the whole path ξ to GM(FVD(S)) draws a continuous path ξ̂
between p1 and p2 consisting solely of points that belong to s. Therefore, the
points p1 and p2 belong to the same cell of the Gaussian map.

The order-k Voronoi diagram of segments S can have tunnels, for k ≤ n− d.

Proof. Take k long segments very close to each other and almost parallel, and
put at least d small segments close to and around their midpoints, see Fig. 2.13.
Then, the order-k region of the k long segments creates a tunnel.

The next theorem provides a lower bound on the complexity of the Gaussian
map of order-k Voronoi diagrams. This bound is meaningful if k is comparable
to n.

Theorem 2.3.5. Let S be a set of n line segments in Rd . A single region of the
Gaussian map of the order-k Voronoi diagram of S can have Ω(kd−1) many vertices.

Proof. The bound is shown by a generalization of examples provided for R2 Au-
renhammer et al. [2006]; Papadopoulou and Zavershynskyi [2016]. Place k
long segments connecting almost antipodal points on a (d−1)-dimensional hy-
persphere and n−k additional short segments near the center of the hypersphere,
see Figure 2.14. Any (d−1)-tuple of long segments, together with one specific
short segment, define a supporting hyperplane corresponding to an unbounded
edge of the order-k Voronoi diagram of S. The supporting hyperplane is spanned
by an endpoint of each of the d segments. An unbounded edge of the diagram

24 2.3 Line Segments as Sites

s1
s2

s3

reg3({s1, s2, s3})

Figure 2.14. An instance of 5 segments (left), which has one re-
gion reg({s1, s2, s3}), shown in blue, on the Gaussian map of the order-3 Voronoi
diagram (right) with high complexity.

manifests itself as a vertex in GM(VDk(S)). All these vertices are on the boundary
of the Gaussian map region of the long segments.

We can now prove Theorem 2.2.2.

Proof of Thm. 2.2.2. Let S be a set of n line segments in Rd . In Theorem 2.3.5, it
was stated that there can be Ω(kd−1) vertices in GM(VDk(S)) in the worst-case.
Each vertex of the Gaussian map corresponds to an edge in VDk(S). On the other
hand, an edge of the diagram corresponds to at most two vertices in the Gaussian
map. Therefore, the diagram contains Ω(kd−1) edges.

Theorem 2.3.6. The complexity of the Gaussian map of the order-k Voronoi diagram
of n segments in Rd is O(min{k, n−k}nd−1).

Proof. We use the point-hyperplane duality transformation T , which establishes
a 1-1 correspondence between the upper Gaussian map of the order-k Voronoi
diagram and the kth level of the arrangement of d-dimensional wedges. (The
lower Gaussian map is constructed in the same manner.) Each segment is mapped
to a lower wedge in the dual space, which is bounded by two half-hyperplanes.
Let p be a point in dual space. Each wedge below p corresponds to a segment
in primal space, which has a non-empty intersection with the open halfspace
above T−1(p). Each wedge touching p corresponds to a segment in primal space,
which is touching the closed halfspace above T−1(p). Each wedge above p corre-
sponds to a segment in primal space, whose intersection with the closed halfspace
above T (p) is empty. Therefore, every point on the kth level of the arrangement of
the lower wedges corresponds to a hyperplane in primal space, which supports k
segments. The upper or lower envelope of those n wedges, each composed of

25 2.4 Lines as Sites

two half-hyperplanes, has complexity O(nd−1) Edelsbrunner et al. [1989], recall-
ing that we assumed the dimensions d to be constant. Using the bound on the
lower envelope, we can now also bound the complexity of the ≤k-level of the
arrangement of lower wedges. We apply Theorem 2.1.1 by Clarkson and Shor
[1989] to derive a complexity of O((k+ 1)d(n

k+1)
d−1) = O(knd−1). We can derive

a similar upper bound of O((n− k)nd−1) by using the complexity of the upper
envelope of lower wedges as a basis. The upper Gaussian map of the order-k
Voronoi diagram corresponds to the k-level of the lower wedges. Combining the
two bounds completes the proof.

The bounds in Theorems 2.3.5 and 2.3.6 are tight for n− k = O(1). In this
case, the complexity of the Gaussian map of VDk of n segments is Θ(nd−1) in the
worst case.

Theorem 2.3.7. Let S be a set of n line segments in R3. Then, GM(FVD(S)) can be
constructed in worst-case optimal O(n2) time.

Proof. We dualize the segments into lower wedges. The upper Gaussian map
of the segments corresponds to the upper envelope of the lower wedges in dual
space (recall the proof of Thm. 2.3.6). The upper envelope of those wedges,
each composed of two halfplanes, is constructed in O(n2) time Edelsbrunner et al.
[1989]. The lower Gaussian map is constructed in the same way.

The algorithm of Edelsbrunner et al. [1989] for piecewise-linear functions
can be extended to higher dimensions, running in O(α(n)nd−1) time Agarwal
and Sharir [2000]; Halperin and Sharir [2017]. However, the complexity of the
upper envelope of half-hyperplanes is only O(nd−1) Edelsbrunner et al. [1989].
We suspect that the same algorithm runs in O(nd−1) time when it computes the
upper envelope of half-hyperplanes, as in R3, since the complexity of the envelope
does not contain the α(n) factor. If so, the Gaussian map of the farthest Voronoi
diagram can be constructed in O(nd−1) time.

2.4 Lines as Sites

Let S be a set of lines in Rd . We assume that the lines are in general position,
i.e., the lines are non-intersecting and the directions of any d lines are linearly
independent. In this section we derive similar conditions for the order-k Voronoi
diagram of lines to have unbounded cells in some direction.

Definition 2.4.1. For a line ` and a direction −→v , the angular distance ∠(−→v ,`) is
the smallest angle between −→v and the direction of `, see Fig. 2.15a.

26 2.4 Lines as Sites

s

−→v
6 (−→v , s)

(a) (b)

Figure 2.15. (a) The angular distance ∠(v,`) between line ` and direction v.
(b) GM(FVD) of four lines in R3. The farthest regions of the lines are colored
in different colors. Vertices of anomaly are shown with squared boxes; proper
vertices with disks.

Definition 2.4.2. Let L be a set of lines, and let H be a subset of L. An angle β is a
supporting angle of H in direction −→v if

1. The angular distance between −→v and any of the lines in H is at most β; and

2. The angular distance between −→v and any of the lines in L \ H is at least β ,
and at least one site in L \H realizes the angular distance β .

Theorem 2.4.3. A set of lines H, with |H| = k, induces an unbounded region
in direction −→v in VDk(L) if and only if there exists a supporting angle of H in
direction −→v .

Proof. Let ` be a line, and r be a ray emanating from an arbitrary point p in
direction −→v . With some calculations, one can derive that

lim
λ→∞

d(`, p+λ · −→v)
λ

= sin(∠(−→v ,`)).

The distance between the line and a point on the ray r increases with rate sin(∠(−→v ,`))
as the point moves along the ray to infinity. Therefore, the set of k lines, which
minimizes the angular distance to −→v , has an unbounded cell in direction −→v .

Corollary 2.4.4. A supporting angle of H, which is realized by i lines (at least one
of which is in H), corresponds to an unbounded (d−i+1)-cell in the order-k Voronoi
diagram of L.

27 2.4 Lines as Sites

All d-cells, which are unbounded in the same direction −→v , touch at a common
lower-dimensional cell. This cell is determined by the lines, which have the
same angular distance to −→v . A cell, which is equidistant to i lines, is (d−i+1)-
dimensional.

Theorem 2.4.5. A supporting angle β of H in direction −→v , which is realized by i
lines (of which, at least one belongs to H), corresponds to a (d−i)-cell (resp., (d−i−1)-
cell) in GM(VDk(L)), if β < π/2 (resp., β = π/2).

Proof. Assume first that β < π/2. The sites are split into three types: lines which
have smaller, equal, or larger angular distance to −→v than the supporting angle.
How can we rotate the direction −→v while still keeping the same partitioning of
sites? In particular, having the same set of sites with the same angular distance
to −→v as the supporting angle? If only one line had the same angular distance
to −→v , then the direction −→v could be rotated freely. Each additional line with the
same angular distance introduces one constraint on the rotation.

Now assume that β = π/2. Again, we consider the partition of the lines
with smaller or equal angular distance to −→v than π/2. If a line has angular
distance π/2 to the direction −→v , then this angular distance can be measured in
both unbounded directions of the line. How can we rotate the direction −→v while
still keeping the same partitioning of sites? In particular, having the same set of
sites with angular distance π/2? If just one line had the same angular distance,
then the direction −→v could be rotated in d−2 dimensions. Each additional line
with the same angular distance introduces one more constraint on the rotation.

Typically, i-cells of the Gaussian map correspond to (i+1)-cells of the corre-
sponding Voronoi diagram. The only exceptions are cells whose supporting angle
is π/2, which correspond to (i+2)-cells of VDk.

Definition 2.4.6. The i-cells of the Gaussian map, i < d − 1, which correspond to
a supporting angle of π/2, are called cells of anomaly. All other cells are called
proper.

In R3, the only cells of anomaly are vertices, see Fig. 2.15b. Such a vertex
corresponds to a direction in which the bisector of two lines seems to be self-
intersecting. The bisector of two lines `,`′ is a hyperbolic paraboloid. Seen
”from infinity“ this hyperbolic paraboloid looks like two intersecting planes. The
intersection of those planes is a line l, which is unbounded in two antipodal
directions −−→v ,−→v , which are the vertices of anomaly on the Gaussian map. One
of the lines `,`′ is actually strictly closer to direction −→v than the other. Only “at
infinity,” both lines seem to have equal distance in direction −→v .

28 2.4 Lines as Sites

s1
s2

s3

s4

(a)

s1
s2

s3

s4
O

r = 0.5

(b) (c)

Figure 2.16. (a) Lines L and their (b) transformed segments τ(L) have identical
(c) Gaussian maps GM(VD2(L)) = GM(VD2(τ(L))).

In general space Rd , the i-cells of anomaly on the Gaussian map correspond
to (i+2)-cells in the order-k Voronoi diagram. Looking at the Gaussian map,
these (i+2)-cells seem as if they intersect, however, they do not intersect in the
actual diagram. Let −→v be the direction of a cell of anomaly. The lines, which are
orthogonal to −→v , can actually be ordered along direction −→v . Let j be the number
of lines that are not orthogonal to −→v . The region of those j lines, together with
the closest k− j orthogonal lines, is unbounded in direction −→v and, moreover, is
not split by an (i+1)-cell in direction −→v .

We define a transformation τ that maps lines to segments. Each line ` is
mapped to a unit segment τ(`) that has the same direction as the line and the
origin O as midpoint, see Fig. 2.16. When applied to a set of lines, the result of
the transformation is a set of segments in non-general position, but this does not
affect the upper bound on the complexity of the Gaussian map.

Theorem 2.4.7. Let L be a set of lines. Then, GM(VDk(L)) = GM(VDk(τ(L))).

Proof. A set of segments has an unbounded cell in direction −→v if and only if there
exists a supporting hyperplane for those segments in direction −→v . The supporting
hyperplane P separates k segments H ⊂ τ(L), which have non-empty intersections
with the closure of halfspace P+, from the other segments. The properties that the
segments have unit length and the origin as midpoint guarantee that all segments
in H have a smaller angular distance to −→v than any of the other segments in
τ(L) \H.

As a consequence, lower bounds on the worst-case complexity of the Gaussian
map, derived for lines as sites, carry over to segments as sites. In the same manner,
all upper bounds on the worst-case complexity on the Gaussian map for segments
also apply to lines. In addition, the algorithm of Theorem 2.3.7 to construct the
Gaussian map of the farthest Voronoi diagram extends to lines as sites. (Note that
the algorithm does not require the segments to be in general position.)

29 2.4 Lines as Sites

p1,s

p2,s

l

P1

p1

P2

p2

ξ̂2

ξ̂1

ξ̂

Figure 2.17. Construction of the path (ξ̂1, ξ̂, ξ̂2) for lines as sites.

Corollary 2.4.8. The Gaussian map of the order-k Voronoi diagram of n lines
in Rd has O(min{k, n−k}nd−1) complexity. The Gaussian map can be constructed
in O(nd−1α(n)) time, while if d = 3, the time drops to O(n2).

Theorem 2.4.9. Let L be a set of lines. Then, FVD(L) does not have tunnels.

For this theorem to make sense, we need to clarify our interpretation of tunnels
in the presence of cells of anomaly. Recall that cells of anomaly do not correspond
to any cell in the Voronoi diagram. For defining the Gaussian map, we compute
the intersection of the unit sphere with the Voronoi diagram scaled by a factor λ.
The Gaussian map is then derived when λ reaches 0 in the limit. We say that a
cell c of the Voronoi diagram forms a tunnel, if the intersection of the unit sphere
with the scaled cell c is disconnected, for every arbitrarily small (but positive)
scaling factor λ. Effectively, cells of anomaly can connect some (d−1)-cells of the
Gaussian map, while they disconnect others.

Proof. Let p1 and p2 be two points on GM(FVD(L)) in a farthest cell of line `. The
line ` is unbounded in two directions corresponding to two points in GM(FVD(L)),
which we call p1,` and p2,`, see Fig. 2.17. We define the path ξ̂1 ⊂ GM(FVD(L))
by starting from p1 and moving along the geodesic away from the closer point
of p1,` and p2,`, until both points p1,` and p2,` have equal distance to our current
point on ξ̂1. We call the last point of this path P1. Similarly, we define the path ξ̂2

30 2.4 Lines as Sites

and point P2 in the cell φ2. Note that by construction, the entire paths ξ̂1 and ξ̂2

contain only points corresponding to ` as the farthest line.
Now we perform the same procedure as in the proof of Theorem 2.3.4. The

two points P1 and P2 represent directions −→v1 and −→v2 , along which there exist
points x1, x2 ∈ freg(`) for which −→vi =

−−→qi x i (with i = 1,2), where qi is the point
on ` realizing the distance between x i and `. Since x1 and x2 are contained
in the same cell of freg(`), there exists a continuous path ξ connecting both
points and being fully contained in this cell. We can map every point x ∈ ξ to
the direction −→v = −→qx , with q realizing the distance between x and `, which we
afterwards map to its corresponding point p ∈ GM(FVD(L)). Note that the point p
is contained in a farthest cell corresponding to line `. By continuity, mapping
the whole path ξ to GM(FVD(L)) yields a continuous path ξ̂ between P1 and P2.
The path (ξ̂1, ξ̂, ξ̂2) consisting solely of directions in which line ` is the farthest
site.

A similar construction, as in Section 2.3, can be used for showing that VDk(L)
can have tunnels for a set of lines L and k ≤ n− d.

The following result stands by its own and will be used to analyze the number
of d-cells in the farthest Voronoi diagram of lines and its Gaussian map. We look
at an arrangement of great spheres with the same center and radius on a (d−1)-
sphere. For example, consider the 2-dimensional unit sphere S2 in R3 and n great
circles on it. We answer the following question: “Into how many 2-dimensional
faces is the unit sphere split by the great circles?” We assume that no d great
spheres have a point in common.

Theorem 2.4.10. Let S be a set of n many (d−2)-dimensional unit hyperspheres
in Rd , centered at the origin. Then, the arrangement of S on the (d−1)-dimensional
unit hypersphere Sd−1 contains

�n−1
d−1

�

+
∑d−1

k=0

�n
k

�

many (d−1)-cells.

Proof. Each hypersphere s ∈ S is the intersection of Sd−1 with a hyperplane
through the origin. Therefore, the arrangement S on Sd−1 can be seen as an
arrangement of hyperplanes in Rd , each containing the origin O, intersected
with Sd−1. In order to compute the combinatorial structure of this intersection, we
employ a bijection—a gnomonic projection of the lower and upper hemispheres
of Sd−1 (except its equator) to the two hyperplanes tangent to the poles of Sd−1

(xd = −1 and xd = 1), respectively. We map every point p on the lower hemisphere
to the intersection of the lineOp with the plane xd = −1 and, similarly, every point
on the upper hemisphere to the intersection of the line Op with the plane xd = 1.
This mapping maps the (d−2)-dimensional spheres in S to (d−2)-dimensional
hyperplanes on the hyperplanes xd = −1 and xd = 1. See Figure 2.18 for an

31 2.4 Lines as Sites

O

x2 = 1

x2 = −1

Figure 2.18. Example for d = 2 and n= 3: Three 0-dimensional unit spheres
(blue, green, red) split the unit circle into 6 arcs.

example with d = 2 and n = 3. Such hyperplane arrangements have
∑d−1

k=0

�n
k

�

many (d−1)-dimensional parts, among which
�n−1

d−1

�

are bounded Stanley [2004].
The number of features on the hypersphere Sd−1 is, hence, the sum of features
on both hyperplane arrangements minus the number of unbounded features
of one hyperplane arrangement. The unbounded features on the hyperplane
arrangements are glued together on the hypersphere and, therefore, only have to
be counted once. Counting the (d−1)-dimensional parts, we obtain the claimed
count.

Theorem 2.4.11. Let L be a set of n lines. The Gaussian map of FVD(L) hasΘ(nd−1)
many (d−1)-cells.

Proof. We consider, for each line, the orthogonal directions. We get n many
(d−2)-dimensional hyperspheres in total. Each of those hyperspheres is par-
titioned into

�n−2
d−2

�

+
∑d−2

k=0

�n−1
k

�

parts by the other (n−1)-hyperspheres due to
Theorem 2.4.10. A direction in one of those parts is orthogonal to exactly one
line in L and, hence, is also part of the farthest Voronoi region of that line. In
total, all n hyperspheres are split into n

�

�n−2
d−2

�

+
∑d−2

k=0

�n−1
k

�

�

= Θ(nd−1) parts.

Now, consider a direction −→v not on any hypersphere but in the farthest region
of `. The shortest path on the Gaussian map from −→v to the hypersphere corre-
sponding to line ` contains only directions of freg(`). Therefore, there are no
additional (d−1)-cells not containing a part of a hypersphere.

It is easy to prove that all cells of GM(FVD(L)) are convex, in the sense that
the shortest path between any two points of a cell is contained in that cell.

For a set of lines L in R3, we count the number of 2-cells of GM(FVD(L)) and
subtract the number of vertices of anomaly to derive the exact number of 3-cells
in FVD(L).

Theorem 2.4.12. Let L be any set of n ≥ 2 lines in R3. Then, FVD(L) has ex-
actly n2−n many 3-cells.

32 2.5 Combination of Lines and Segments

An unbounded i-cell of a cell complex M may correspond to many (i−1)-cells
in the Gaussian map of M . Therefore, we need to study carefully the Gaussian
map in order to derive a lower bound on the complexity of M .

Proof. We know from the proof of Theorem 2.4.11 that GM(FVD(L)) in R3 has

n

�

�

n− 2
1

�

+
1
∑

k=0

�

n− 1
k

�

�

= 2n2 − 2n

2-cells. Theorem 2.4.9 states that each of those 2-cells of the Gaussian map
corresponds to a 3-cell of the farthest Voronoi diagram, unless the 2-cells are
connected through vertices of anomaly. Each vertex of anomaly is the meeting
point of exactly four 2-cells of the Gaussian map. In the actual FVD(L), two of
these four 2-cells correspond to the same 3-cell. Therefore, we need to subtract
the number of vertices of anomaly from the number of 2-cells on the Gaussian map
to derive the number of 3-cells of the farthest Voronoi diagram. There are two
vertices of anomaly for every pair of lines. Hence, the farthest Voronoi diagram
has 2n2 − 2n− 2 ·

�n
2

�

= n2 − n many 3-cells.

Theorem 2.4.13. The worst-case complexity of FVD of n lines is Ω(nd−1).

Proof. We bound the number of proper vertices (not those of anomaly) of GM(FVD(L))
from below. Those vertices correspond to unbounded edges of the farthest Voronoi
diagram. The set of orthogonal directions to a line is a hypersphere of dimen-
sion d−2 in GM(FVD(L)). By Theorem 2.4.11, the hyperspheres of all lines
partition GM(FVD(L)) into Θ(nd−1) many (d−1)-dimensional parts. If n ≥ d
(which is the case in the asymptotic analysis), each of those parts contains at least
one proper vertex. Then, FVD(L) has an unbounded edge in that direction. Each
edge is unbounded in at most two directions. Hence, the number of edges can
be bounded from below by half of the number of proper vertices of the Gaussian
map. Thus, the number of edges in FVD(L) is Ω(nd−1).

2.5 Combination of Lines and Segments

Let E = L ∪ S be a combination of |L| = m many lines and |S| = n − m many
line segments in Rd . We again assume that the lines are in general position,
i.e., the lines are non-intersecting and the directions of any d lines are linearly
independent. Moreover, we assume that there is no hyperplane that contains
more than d endpoints of sites, where lines contained in such a hyperplane are
counted twice (as if the line were a segment) and otherwise not at all. In this

33 2.5 Combination of Lines and Segments

section, we describe the structure of the Gaussian map of the order-k Voronoi
diagram of E, and also show how it can be computed. Using the same proof
technique as Theorem 2.4.9, the “no-tunnel” property holds for a combination
of lines and line segments as sites, i.e., a path from p to q within a cell c of the
Voronoi diagram can be mapped to the Gaussian map.

Observation 2.5.1. Let E be a set of lines and segments. Then, FVD(E) does not
have tunnels.

As already mentioned before in the proof of Theorem 2.4.3, the distance of
a line to a point, which moves along a ray to infinity, increases at a rate less
than 1, if the line and ray are not orthogonal. On the other hand, the distance
of a segment to such a moving point always increases at a rate of 1 in the limit.
Intuitively speaking, looking at the sites from arbitrarily far along a fixed direction
all the segments are further away than the lines, which are not orthogonal to that
direction. Only lines that are orthogonal to the direction of consideration play
the same role as segments.

Theorem 2.5.2. Let E be a set of lines and segments, and let H ⊆ E be of cardinality
k. The set of sites H induces an unbounded cell in direction −→v in VDk(E) if and only
if either one of the following condition holds.

1. There are less than k lines non-orthogonal to −→v and there exists a supporting
hyperplane in direction −→v of sites H; or

2. There are at least k lines non-orthogonal to −→v , the set H consists of lines, and
there exists a supporting angle in direction −→v of sites H.

The proof of Theorem 2.5.2 proceeds analogously to the proof of Theorem 2.3.2
and is the reason for the general position assumption on the sites described in
the beginning of this section.

Definition 2.5.3. For a line ` ∈ L, we define the great sphere G` to be the set of
directions, which are orthogonal to `. Moreover, for L′ ⊂ L define D=L′ :=

⋂

`′∈L′ G`′ \
⋃

`∈L\L′ G` to be the set of directions, which are orthogonal to exactly all lines in
L′ but no other. Similarly let D+L′ :=

⋂

`′∈L′ G`′ be the set of directions, which are
orthogonal to at least all lines in L′. If L′ = ;, then we let D=L′ and D+L′ be the set of
all possible directions Sd−1.

Observe that due to our general position assumption for the lines, the set
D=L′ is empty for |L′| ≥ d. Moreover, the sets D=L′ for L′ ⊂ L and |L′| < d form a
partition of the sphere of directions Sd−1.

34 2.5 Combination of Lines and Segments

We will now describe the structure of GM(VDk(E)within each such domain D=L′ .
For any direction −→v ∈ D=L′ , there are exactly m− |L′| many lines non-orthogonal
to it. Therefore, we derive the following relation according to Theorem 2.5.2.

GM(VDk(E))|D=
L′
=

(

GM(VDk−m+|L′|(S ∪ L′))|D=
L′

if k > m− |L′|
GM(VDk(L))|D=

L′
if k ≤ m− |L′|

(2.4)

Note that in the first case we slightly abuse notation in the following sense.
The regions of GM(VDk(E))|D=

L′
are defined by tupels of k many sites, whereas

the regions of GM(VDk−m+|L′|(S ∪ L′))|D=
L′

belong to sets of sites of size k−m. The
difference is caused by the lines L \ L′. With the equality symbol we want to
express that the cell complexes of the Gaussian maps are the same.

We will now characterize the right-hand side of Eq. (2.4). More precisely we
want to bound its complexity and also give an algorithm to construct it even in a
slightly bigger domain, namely D+L′ . The domain D+L′ is a great sphere of dimension
d − |L′| −1 and we will show that the Gaussian map in d dimensions restricted to
D+L′ actually corresponds to a Gaussian map of sites in d − |L′| dimensions. Let us
formalize this intuition in the next lemmas.

Lemma 2.5.4. Let E be a set of lines and line segments, and let H be a subset of E.
For a linear subspace Q, we denote by ProjQ the orthogonal projection to Q. Let P be
a hyperplane orthogonal to Q. Then, P is a supporting hyperplane of sites H if and
only if ProjQ(P) is a supporting hyperplane of sites ProjQ(H).

Proof. The four properties for being a supporting hyperplane in direction −→v are
invariant under orthogonal projection to a hyperplane which contains direction
−→v .

Let Q be a linear subspace and D its set of directions it contains. Essen-
tially Lemma 2.5.4 implies, that for an arbitrary set of sites E it holds that
GM(VDk(E))|D = GM(VDk(ProjQ(E)). Most importantly, the projection ProjQ
of all sites can be constructed in O(n) time, and the Gaussian map in lower
dimensional space can be constructed faster.

Lemma 2.5.5. Let L′ ⊂ L, then GM(VDk−m+|L′|(S∪L′))|D+
L′

has O(min{k, n−k}nd−|L′|−1)
complexity. Further, if k = n− 1 and d − |L′| = 3, it can be constructed in O(n2)
time.

Proof. Let Q be the linear subspace, which contains exactly all directions of D+L′ .
We first project all sites S ∪ L′ orthogonally to Q. Note that all lines L′ are

35 2.5 Combination of Lines and Segments

(a)

0.6

-1.5

-0.6

-1

0.4
-0.4

-0.5

0.2
-0.2

0z

y

0 0

0.5

x

0.2

1

-0.2

1.5

0.4
-0.4

0.6

-0.60.8

(b)

(c)
-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

x
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

y

(d)

Figure 2.19. Illustration of Lemma 2.5.4. (a) The sites E (1 vertical red line and
3 line segments) in 3-space; (b) GM(FVD(E)) in R3; (c) The sites E projected
to the x-y-plane Q (d) GM(FVD(ProjQ(E))) in R2, which corresponds to the
equator of GM(FVD(E)).

orthogonal to Q and therefore they are projected to points. Hence ProjQ(S∪ L′) is
a set of segments, some of which degenerate to points. The space Q has dimension
d − |L′| and consequently GM(FVD(ProjQ(S ∪ L′))) has O(min{k, n−k}nd−|L′|−1)
complexity by Theorem 2.3.6. If k = n−1 and d−|L′| = 3, then GM(FVD(ProjQ(S∪
L′))) can be constructed in O(n2) time, see Theorem 2.3.7. Due to Lemma 2.5.4,
this Gaussian map is the same as GM(VDk−m+|L′|(S ∪ L′))|D+

L′
.

So far we have characterized the pieces of GM(VDk(E)) and it remains to put
them together. This merging idea is formulated in Algorithm 1. We also use this
construction to argue about the Gaussian map’s combinatorial complexity.

Theorem 2.5.6. The complexity of the Gaussian map of the order-k Voronoi diagram
of a combination of n lines and segments in Rd is O(min{k, n−k}nd−1).

Proof. Algorithm 1 gives the outline for our complexity analysis. Depending on
the relation between k and m, the initial map G in Rd is either a Gaussian map of

36 2.5 Combination of Lines and Segments

Algorithm 1: Building GM(VDk(S ∪ L))

1 if k > m then
2 G← GM(VDk−m(S));
3 else
4 G← GM(VDk(L));
5 for i = 1→ d − 1 do
6 if k > m− i then
7 for all L′ ⊂ L with |L′|= i do
8 G|D+

L′
← GM(VDk−m+|L′|(S ∪ L′))|D+

L′
;

9 return G;

an order-(k−m) diagram of (n−m) many sites or a Gaussian map of an order-k
Voronoi diagram of m sites. In both cases the complexity can be bounded by
O(min{k, n−k}nd−1) due to Theorem 2.3.6. After the initialization the map G is
the correct Gaussian map in all directions, which are not orthogonal to any lines.
It remains to update the map G along the great spheres and bound the additional
complexity in line 9 of Algorithm 1. Let us now consider the i-th update step
of the for loop in Line 6. We need to consider all tupels of lines of size i, of
which there are O(d i) many. For each such set of lines L′, we update G with a
Gaussian map GM(VDk−m+|L′|(S ∪ L′))|D+

L′
, which according to Lemma 2.5.5 has

O(min{k, n−k}nd−i−1) complexity. Updating for all such tupels of size i therefore
increases the total complexity by O(min{k, n−k}nd−1). Since i runs between
1 and d − 1 the total complexity of G hence does not increase asymptotically,
recalling that d is assumed to be constant. Finally we have to address one detail,
that was omitted so far. When we update G along a great sphere, then this
sphere may actually cut features of the map in two pieces, thus also increasing
the complexity of the map. Let us go back to the time when G was updated for
all tupels of lines of size i − 1. For a fixed set of lines L′ of size i, the great sphere
D+L′ splits some features of G. Consider a direction −→v very close to D+L′ . The lines
in L′ may belong to the closest k sites in direction −→v but might not do so on D+L′ .
Essentially, the number of features that are split by updating along D+L′ can be
bounded by the complexity of GM(VDk−m(S))|D+

L′
, whose complexity can also be

bounded from above by O(min{k, n−k}nd−i−1). Thus even the split features do
not asymptotically increase the overall complexity.

Let us now look into actually constructing the Gaussian map of the farthest
Voronoi diagram of lines and line segments combined in three dimensional space.

37 2.5 Combination of Lines and Segments

But first we need to introduce the concept of a zone of great circles on a sphere
similarly to the zone of a line in an arrangement of lines.

Definition 2.5.7. Let S be a set of n many (d−2)-dimensional unit hyperspheres
in Rd , centered at the origin. These n hyperspheres form an arrangement A on
the (d−1)-dimensional unit hypersphere Sd−1. The zone of one (d−2)-dimensional
hypersphere s inA is defined as the set of cells ofA , which bound the (d − 1) cells
intersected by s.

Theorem 2.5.8 (Zone theorem for great spheres). The complexity of the zone
within an arrangement of hyperspheres, as defined in Definition 2.5.7, is O(nd−2).

Proof. Similarly to Theorem 2.4.10, we employ the same gnomonic projection
of the lower and upper hemispheres of Sd−1 (except its equator) to the two
hyperplanes tangent to the poles of Sd−1 (xd = −1 and xd = 1), respectively. This
projection maps the arrangement of n many (d−2)-dimensional hyperspheres in
Rd to two arrangements of hyperplanes in Rd−1. According to Edelsbrunner et al.
[1993], the complexity of a zone in the arrangement of n hyperplanes in Rd is
O(nd−1). The zone within an arrangement of hyperspheres corresponds to the
union of the zones in the arrangement of hyperplanes. Therefore we can also
bound the complexity of the zone of hyperspheres by O(nd−2).

Theorem 2.5.9. Let E be a combination of n lines and segments in R3. Then
GM(FVD(E)) can be constructed in worst-case optimal O(n2) time.

Proof. We use Algorithm 1 to construct the Gaussian map. The initial map of Line
2 or 4 can be constructed in O(n2) time according to Theorem 2.3.7. Afterwards
the map G is updated along great circles and their intersections. We need to
explain the following two key steps:

• the Gaussian map along the great circles and their intersections can be
computed efficiently enough and

• merging the original map G with the updates along the great circles.

Regarding the first point, note that computing a Gaussian map of a farthest
Voronoi diagram of segments can be computed from scratch in O(n log n) time,
see Aurenhammer et al. [2006]. Unfortunately in our case, this would not be
efficient enough, because we would have to compute m such maps, one for each
line, resulting in an O(n2 log n) running time. In order to be more efficient, we
take advantage of the already initially computed map G. Let ` ∈ L be fixed. The
map G along the D=

`
corresponds to the Gaussian map of the sites E \ {`}. In

38 2.6 Polyhedra or Clusters of Points as Sites

the update step we need to update the map such that it includes the site `. As
described in Theorem 2.3.7, the Gaussian map corresponds to the upper envelope
of lower wedges in the plane. This upper envelope has O(n) complexity and
adding one wedge, corresponding to line `, can be easily done in linear time.
Hence computing the GM(FVD(E)) along all great circles defined by L takes in
total O(n2) time. Finally we need to look at the O(n2) many directions, which
are orthogonal to pairs of lines. Let `,`′ ∈ L and −→v a direction orthogonal to
both of the lines. The farthest site in direction −→v can be simply determined in
constant time by comparing the farthest site of the initial map G in direction −→v
with the two lines ` and `′. It remains to merge all the the pieces of the Gaussian
map. Similarly to adding a line to an arrangement of lines in the plane, we can
add great circles to an arrangement of great circles on a sphere. Due to the Zone
theorem 2.5.8 adding one such great circle takes O(n) time, hence taking O(n2)
time in total for updating the Gaussian map along all great circles. The complexity
of the Gaussian map along each great circle is O(n) and therefore traversing the
great circle and updating the directions which are orthogonal to two lines can
also be done in linear time for each great circle, thus not changing the asymptotic
running time.

2.6 Polyhedra or Clusters of Points as Sites

Let E be a set of bounded polyhedra. We assume that the sites are in general
position, i.e., no d+1 many vertices lie on the same hyperplane.

Theorem 2.3.2 directly generalizes for this setting.

Theorem 2.6.1. A set of convex polyhedra H, with |H| = k, induces an unbounded
region in direction −→v in the order-k Voronoi diagram of polyhedra E, if and only if
there exists a supporting hyperplane of H in direction −→v .

Note that only extreme points of the convex hull of the site determine the
site’s unbounded directions.

Theorem 2.6.2. The complexity of the Gaussian map of the order-k Voronoi diagram
of bounded polyhedra with n vertices in total in R3 is O(min(k2n, (n− k)n2α(n))).

Proof. The proof idea is the same as in Theorem 2.3.6. We use the point-
hyperplane duality transformation T , which establishes a 1-1 correspondence
between the upper Gaussian map of the order-k Voronoi diagram of the poly-
hedra and the k-th level of an arrangement of polyhedra. (The lower Gaussian
map is constructed in the same manner.) Each vertex of a site is mapped to a

39 2.6 Polyhedra or Clusters of Points as Sites

hyperplane in the dual space. The site corresponds to the lower envelope P of
these hyperplanes in the dual space. If a site consists of m points, then P is an
unbounded convex polyhedron with at most m facets, which can be decomposed
into O(m) many triangles.

The upper envelope of those polyhedra in dual space has complexity O(n2α(n))
Edelsbrunner et al. [1989]. The lower envelope of the polyhdera in dual space
has complexity O(n) McMullen [1970], as it is essentially the lower envelope of
O(n) hyperplanes.

Applying Theorem 2.1.1 by Clarkson and Shor [1989], we derive upper bounds
on the complexity of the ≤k-level of the arrangement of unbounded polyhedra:

O
�

(k+ 1)3
� n

k+ 1

��

= O(k2n),

which follows from the lower envelope, and

O
�

(n− k)3
� n

n− k

�2
α
� n

n− k

�

�

= O((n− k)n2α(n/(n− k))),

which follows from the upper envelope. The upper Gaussian map of the order-k
Voronoi diagram corresponds to the k-level of the unbounded polyhedra. Com-
bining the two bounds completes the proof.

Note that the same approach would also work to bound the complexity of
the Gaussian map of the order-k Voronoi diagram in d ≥ 3 dimensions, but
unfortunately the bounds would become much worse. The main reason is that the
decomposition of the lower envelopes P into simplices can have ω(m) simplices
in higher dimensions.

Theorem 2.6.3. Let E be a set of bounded polyhedra with n vertices in total in R3.
Then, GM(FVD(E)) can be constructed in O(n2α(n)) time.

Proof. Recall the proof of Theorem 2.6.2. The lower envelope P of each site
can be constructed in O(n2) total time Chazelle [1991]. Decomposing each dual
polyhedron P into triangles can be done in time linear in its number of faces.
Computing the upper envelope of these polyhedra, which is composed of O(n)
many triangles, takes O(n2α(n)) time Edelsbrunner et al. [1989]. This envelope
corresponds to the upper Gaussian map of the sites. The lower Gaussian map is
constructed in the same way.

Let a set of points in Rd be called a cluster, and let E be a family of m such
clusters of points in Rd , where the total number of points is n. We assume that

40 2.6 Polyhedra or Clusters of Points as Sites

the sites are in general position, i.e., no (d+1) points lie on the same hyperplane.
The distance from a point x ∈ Rd to a site e ∈ E can be measured in 2 different
ways, depending if the closest or farthest point in a cluster is considered.

• dmin(x , e) =min{d(x , y)|y ∈ E}

• dmax(x , e) =max{d(x , y)|y ∈ E}

We can define two different types of cluster Voronoi diagrams on E depending
on the distance function under consideration, dmin or dmax . The nearest Voronoi
diagram induced by dmax on E has been termed the Hausdorff Voronoi diagram
of E and has been essentially considered in the plane, see e.g., Edelsbrunner et al.
[1989]; Papadopoulou and Lee [2004] On the other hand, the farthest Voronoi
diagram of E using dmin was first considered by Huttenlocher et al. [1993], and it
has also been termed the farthest color Voronoi diagram, see e.g., Mantas et al.
[2021] and references therein.

The nearest (resp., farthest) Voronoi diagram induced by dmax (resp., dmin)
corresponds to the Hausdorff (resp., farthest cluster) Voronoi diagram Mantas
et al. [2021]; Papadopoulou [2004]. For H ⊂ E, denote by regk−max(H) (resp.,
regk−min(H)) the Voronoi regions of H induced by dmin (resp., dmax).

Theorem 2.6.4. The Gaussian map of the order-k Voronoi diagram of clusters as
sites induced by dmin is the same as the Gaussian map of the order-k Voronoi diagram
of bounded polyhedra, if the clusters consist of the vertices of the polyhedra.

Proof. The distance to a bounded polyhedron, seen from a point at “infinity,” is
realized by a vertex of the polyhedron.

It was pointed out Papadopoulou [2004]; Mantas et al. [2021] that there is a
strong relation between the unbounded directions of the farthest cluster Voronoi
diagram and the Hausdorff diagram.

Observation 2.6.5. Let E be a set of clusters and H a subset of cardinality k. Then,
regk−min(H) is unbounded in direction −→v if and only if regk−max(E \H) is unbounded
in direction −−→v .

In particular, the Gaussian map of the order-k Voronoi diagram induced by
dmin is a reflection at the origin of the Gaussian map of the order-(n− k) Voronoi
diagram induced by dmax.

41 2.7 Conclusion

2.7 Conclusion

We derive bounds on the complexity of the order-k Voronoi diagram and its
Gaussian map, listed in Table 2.1. The results are tight for the farthest Voronoi
diagram. Moreover, we provide an algorithm to compute the Gaussian map of
the farthest Voronoi diagram in three dimensions in a worst-case optimal time. It
remains an open problem to determine whether or not the lower bounds on the
complexity of VDk and GM(VDk) for segments, as listed in Table 2.1, extend also
to lines, when k < n− 1.

There is a gap between our lower and upper bounds on the complexity of the
Gaussian map of the order-k Voronoi diagram. What is the correct bound and how
can the diagram be constructed efficiently? This question is related to problem 3
in Mitchell and O’Rourke [2001]: “What is the combinatorial complexity of the
Voronoi diagram of a set of lines (or line segments) in three dimensions?”

We believe that knowing the structure of the Gaussian map, or equivalently, the
structure of d-dimensional cells of the order-k Voronoi diagram, is a fundamental
first step that can help in analyzing the whole diagram. It may also be useful in
constructing the full diagram. We leave this question for further research.

42 2.7 Conclusion

Chapter 3

On the Trisector of Lines in Three
Space

Understanding properties of the edges of the Voronoi diagram is an integral part
in describing the complete diagram. In R2 the edges are pieces of bisectors, i.e.
the set of points in the plane, which are equidistant to two sites.

Definition 3.0.1. For two sites s1, s2, let B(s1, s2) denote the bisector of the two sites,
i.e. B(s1, s2) =

�

x ∈ Rd
�

� d(x , s1) = d(x , s2)
	

.

For lines and line segments as sites in R2, the bisector of two sites is well
studied. It is one connected component, consisting of up to 7 pieces put together.
These pieces are rays, line segments and parabolic arcs, see Fig. 3.1. Additionally,
the bisector has two unbounded directions. If we consider the distance from a
point p on the bisector to one of the sites, then this distance has a global minimum
and is monotone increasing as the point p moves along the bisector to infinity.

Observation 3.0.2. The distance function along a bisector to its defining sites has
exactly one global minimum and is monotone increasing in both directions.

The bisectors properties, especially the monotonicity, are important ingredients
for designing construction algorithms for the Voronoi diagram of the involved
sites, as we will see in Section 3.1.

Features of the Voronoi diagram of generalized sites in three and higher
dimensions are not that well understood. This is partially due to the increased
algebraic difficulties involved.

Definition 3.0.3. For three sites s1, s2, s3, let T (s1, s2, s3) denote the trisector of the
three sites, i.e. T (s1, s2, s3) =

�

x ∈ Rd
�

� d(x , s1) = d(x , s2) = d(x , s3)
	

.

43

44

Figure 3.1. The bisector (red) of two line segments (black) in the plane. The
red points indicate the ends of the bisector’s pieces, i.e. rays, parabolic arcs,
and line segments. The minimum distance of the points on the bisector to one
of the sites is realized at the green square.

The paper Everett et al. [2009] describe the Voronoi diagram of just three
lines in R3, mostly focusing on the trisector of the lines. The trisector consists of
up to four unbounded branches, which are solutions of polynomials of degree up
to four. These can be a nonsingular quartic or a nonsingular cubic, if the lines are
in general position, i.e. they are pairwise skew and not all parallel to a common
plane. A trisector of three lines is illustrated in Fig. 3.2.

They also provide an algorithm, which outputs a set of two planes, which
isolate one branch of the trisector from the other. We will use this algorithm in
order to confirm that three points are on a common branch of the trisector.

One might expect that the branches of the trisector reveal a similar monotonic-
ity property as the bisector in the plane, namely that the distance from a moving
point along the trisector to the lines first decreases until it reaches a minimum
and then only increases afterwards.

Surprisingly, this is not true and in the following we will show that the distance
function along a branch of the trisector can actually have a local maximum.

Theorem 3.0.4. Consider the trisector of three lines in R3. The distance function
along one branch of the trisector can admit a local maximum.

Proof. The proof idea for this theorem is that we describe three points P(1), P(2), P(3)

on a trisector. We then show that they all lie on the same branch of the tri-
sector, and in the order P(1), P(2), P(3). Finally the distances from the three

45

Figure 3.2. The trisector of three lines (red, green, yellow) consists of up to four
branches. The colors along the trisector encode the distance to the lines. In
this example, the distance function along one branch admits a local maximum,
as the color coding changes from orange to yellow and back to orange.

46

points to the sites s1, s2, s3 satisfy the inequalities d(P(1), s1) < d(P(2), s1) and
d(P(2), s1)> d(P(3), s1). This implies that there must be a local maximum between
the points P(1) and P(3), since the distance function d(·, s1) is continuous. We
choose the three lines in the same fashion as they were chosen in Everett et al.
[2009]. With the points

L11 = (0, 0,4) and L12 = (4, 3,4)
L21 = (0, 0,−4) and L22 = (4,−3,−4)
L31 = (1, 1,0) and L32 = (4, 1,4)

we define the three lines as s1 := L11 L12, s2 := L21 L22, and s3 := L31 L32.
The points on the trisector, are all the ones which have equal distance to all

three lines, i.e. for p ∈ R3:

d(p, s1) = d(p, s2) = d(p, s3)

For the point p = (px , py , pz) this corresponds to the following two equations of
degree two in its coordinates.

25(pz − 4)2 + (3px − 4py)2

25
=

25(pz + 4)2 + (4py + 3p2
x)

25
(3.1)

25(pz − 4)2 + (3px − 4py)2

25
=

4(pz − px + 1)2 + (4py − 4− pz)2 + (4py − 3− px)2

33
(3.2)

We select the three points P(1), P(2), P(3) with the following coordinates:

P(1)x = −4 P(1)y =
55
p

14622−4425
524 P(1)z = 33

p
14622−2655

655

P(2)x = 4 P(2)y =
5
p

5996562+3575
1724 P(2)z = −3

p
5996562+2145

2155

P(3)x = 8 P(3)y =
10
p

807873−6825
596 P(3)z = −12

p
807873−8190

745 .

One can easily verify that the selected points P(1), P(2), P(3) indeed lie on the trisec-
tor, as their coordinates satisfy the conditions of Eqs. (3.1) and (3.2). Moreover
the distances from these points to the lines are

d(P(1), s1) =
96120142− 661980

p
14622

429025

d(P(2), s1) =
322318742+ 48620

p
5996562

4644025

d(P(3), s1) =
332445913− 333060

p
807873

555025

47 3.1 Review: Farthest Voronoi diagram of lines and line segments in R2

and indeed satisfy the desired inequalities, i.e. d(P(1), s1) < d(P(2), s1) and
d(P(2), s1) > d(P(3), s1). We can compute the four critical values with respect
to the y-axis in the projection of the trisector to the x − y-plane, which are
roughly c1 ≈ −4.36, c2 ≈ −1.25, c3 ≈ 10.0, c4 ≈ 17.8. Since the y-coordinates
of the three points P(1), P(2), P(3) are all between the middle two critical values,
the points must all lie on the common trisector branch called C0 in Everett et al.
[2009]. According to Proposition 18 of Everett et al. [2009] and by the choice of
the lines, all branches of this trisector are strictly monotone with respect to the
x-direction. Since P(1)x < P(2)x < P(3)x , the three points also appear in that order
along one branch of the trisector. We can conclude that the distance function
from a point on the trisector branch C0 to the sites must therefore admit a local
maximum between the points P(1) and P(3).

3.1 Review: Farthest Voronoi diagram of lines and line
segments in R2

We outline a simple O(n log n)-time algorithm to construct the Euclidean FVD(S)
for a set of line segments S in R2 discovered by Aurenhammer et al. [2006].
The algorithm is employing a so-called “collapse” strategy: it first computes
GM(FVD(S)), i.e. all unbounded faces, and then gradually constructs the diagram
adding edges and vertices in decreasing order in the distance of a feature to its
farthest site.

We give a high level description of the algorithm; refer to Fig. 3.3 for an
illustration. The algorithm starts at the vertices of GM(FVD(S)), which are all
directions of unbounded edges of FVD(S). For every pair of edges that are
consecutive in circular order, their next intersection point is computed, if one
exists. Out of these intersection points, the one with maximum distance to its
farthest site is the next vertex of the diagram. This “collapse” event is processed
by (i) constructing the vertex, (ii) constructing the edges leading to this vertex,
(iii) removing the edges from further consideration, and (iv) starting a new edge.
At the constructed vertex a face “collapses”, since it is fully constructed and will
not be considered again. The new edge is part of the bisector of the two faces
neighboring the collapsed face. This procedure, of computing and processing new
“collapse” events, is repeated until all the remaining edges intersect in a single
point.

The correctness of the collapse algorithm is based on the following three
properties:

48 3.1 Review: Farthest Voronoi diagram of lines and line segments in R2

(a) (b)

(c) (d)

(c) (d)

Figure 3.3. Different events during the collapse algorithm for constructing the
farthest Voronoi of line segments in R2.

49 3.1 Review: Farthest Voronoi diagram of lines and line segments in R2

Lemma 3.1.1. For any positive value c ∈ R, the set of points with distance c to their
farthest line segments in FVD(S) of a set of segments S forms a cycle.

Proof. Consider for a line segment s ∈ S its distance function, which maps any
point p ∈ R2 to the distance d(p, s). It is well known that this function, which is
living in R3, is convex. The farthest Voronoi diagram in turn corresponds to the
upper envelope of distance functions of all sites. The upper envelope of convex
functions is again convex. The intersection of such a convex function in R3 with a
horizontal plane z = c is one cycle. By construction, these are all the points of
distance c to their farthest site.

Lemma 3.1.2. Every vertex of FVD(S) of a set of segments S has at least two incident
edges with higher distance to the farthest site.

Proof. Assume there was a vertex v in FVD(S), for which the distance function to
the farthest site is smaller for at least two incident edges e1, e2. Moreover let r1

(resp. r2) be the rays, which extend the edges e1 (resp. e2) such that there is a
smooth transition from the edge to the respective ray. The situation is illustrated
in Fig. 3.4. Denote by c the face that is bounded by these two edges and let s be
the corresponding farthest site of that face. Let t be the point on s, which realizes
the distance between v and s. Due to Lemma 2.2.3, the ray r starting at v and
facing away from t is entirely contained in freg(s). This implies that point t must
lie within the wedge bounded by the rays r1 and r2. Therefore the distances from
points on e1 and e2 to s cannot be both smaller than the distance from v to s,
which is a contradiction to our assumption.

The next Lemma directly follows from Observation 3.0.2.

Lemma 3.1.3. In FVD(S) of a set of segments S, the distance function to the farthest
site along an edge has its maximum at a vertex.

An overview of the collapse algorithm is given in Algorithm 2.

Lemma 3.1.4. Algorithm 2 constructs FVD(S) of a set of n segments S in O(n log n)
time.

Proof. The time complexity of the algorithm is straightforward. The algorithm
take O(n log n) time to compute the GM(FVD(S)) of n line segments in R2, see
Aurenhammer et al. [2006]. Initially there are O(n) unbounded edges and also
O(n) many vertex candidates need to be computed. These candidates are sorted
according to their distance to the farthest site, which takes another O(n log n)

50 3.1 Review: Farthest Voronoi diagram of lines and line segments in R2

e1 e2

e3
r1

r2

c ∈ freg(s)

s

r

v

t

Figure 3.4. There cannot be a vertex v in the farthest Voronoi diagram of lines
segments with two incident edges with increasing distance towards v.

time. At each vertex we need to remove two edges of the current list of edges
and add a new edge e instead. Additionally the two vertex candidates related
to e need to be computed and their distance to their farthest site needs to be
compared with the other candidates. This takes O(log n) time. The FVD(S) has
O(n) many vertices, resulting in a total of O(n log n) time for processing all.

We now prove the correctness of the algorithm. The algorithm constructs
the features of the diagram (vertices and edges) in decreasing distance to their
farthest site. First note, that because of Lemma 3.1.1, the set of points with same
distance to their farthest site form a single cycle. So to keep track of the edges,
which are “under construction”, it suffices to use a circular list.

Next we argue that the algorithm correctly finds the next vertex, assuming that
all vertices with bigger distance have already been constructed. By Lemma 3.1.2,
every vertex has at least two edges with decreasing distance towards it, Thus, the
next vertex is the intersection of a pair of edges, which are under construction.
Further the two involved edges need to be consecutive, as otherwise, the cyclic
property of Lemma 3.1.1 would be violated. Since we are constructing the
diagram in decreasing distance, the algorithm picks the candidate vertex with
biggest distance.

At each vertex event, the algorithm starts constructing a new edge. The
algorithm does not miss any new edges because edges can only start at vertices.
This is due to the distance function on an edge being monotone and not exhibiting
local maximum; see Lemma 3.1.3.

51 3.2 Towards constructing the FVD of lines and line segments in R3

Algorithm 2: Collapse algorithm
Input : Set of n line segments S
Output : FVD(S)

1 Compute GM(FVD(S));
2 Save the unbounded edges of FVD(S) in a cyclic list L;
3 while |L|> 2 do
4 for every pair of consecutive edges e1, e2 in L do
5 Compute the intersection of e1 and e2;
6 v← intersection with biggest distance to the farthest site;
7 Add v and its incident edges to the diagram;
8 Update the edges in L;

3.2 Towards constructing the FVD of lines and line seg-
ments in R3

The collapse algorithm seems to be generalizing to three dimensional space, i.e.
first computing GM(FVD(S)) for a set of lines and line segments S, and then
gradually constructing the diagram adding faces, edges and vertices in decreasing
order in the distance of a feature to its farthest site. In the two dimensional version,
the construction takes O(log n) time per vertex of the diagram. But one key
property of the collapse idea in R2 is that new edges are quickly discovered, where
already constructed edges intersect. Unfortunately, this property is not satisfied
in R3. The edges of FVD(S) are pieces of trisectors and due to Theorem 3.0.4,
the edges of FVD(S) might need to be discovered at their interior of the edge. In
some sense, new edges might appear without any warning.

A possible solution for this issue would be to pre-compute all possible trisectors
and find all local maxima of the distance function in the sense of Theorem 3.0.4.
This would introduce an additional Θ(n3) time during the initialization. Moreover
the algorithm would need to figure out, which of these local maxima actually
appear in the diagram and how to localize these within the constructed pieces of
the diagram.

52 3.2 Towards constructing the FVD of lines and line segments in R3

Chapter 4

Farthest Polyhedral Voronoi diagram

This chapter is based on the following paper:

• Franz Aurenhammer, Evanthia Papadopoulou, and Martin Suderland. [2021]
Piecewise-linear farthest-site Voronoi diagrams.
32nd International Symposium on Algorithms and Computation (ISAAC 2021),
Schloss Dagstuhl - Leibniz-Zentrum für Informatik.

For most generalized Voronoi diagrams, the partition of space they define
is not piecewise linear any more, but is rather composed of curved geometric
objects of various dimensions and shapes. This complicates their structural
analysis as well as their computational construction, especially in dimensions
higher than two (where results are becoming comparatively sparse). For instance,
already in three-dimensional space R3, the algebraic description of the edges and
facets of the Euclidean Voronoi diagram of straight lines becomes exceedingly
complicated Everett et al. [2009]. What is more, the combinatorial complexity of
this diagram is a major open problem in computational geometry Mitchell and
O’Rourke [2001]. There is a gap of an order of magnitude between the Ω(n2)
lower bound Aronov [2002] and the only known upper bound of O(n3+ε), for any
ε > 0 Sharir [1994].

Certain types of Voronoi diagrams retain their piecewise linear structure,
however. For example, the so-called power diagram Aurenhammer [1987] has
this property. Another prominent class, and the one of interest in the present
note, is induced by (convex) polyhedral distance functions. Intuitively speaking,
the distance from a point x to a site s is now measured as the extent at which
a given convex polyhedron P , which being centered at x , has to expand till it
starts touching s.

53

54

Several authors succeeded in deriving strong bounds on the combinatorial
complexity of such Voronoi diagrams. If the n sites are points and the distance
polytope P is a simplex or a cube—the latter just giving the L∞ distance—then
this complexity in Rd is Θ(nd

d
2 e), see Boissonnat et al. [1998]. (The dimension d

is considered a constant throughout this paper.) In R3, the same bound still
applies when any constant-sized convex polytope is chosen for P Icking and
Ma [2001]. For the sites being n straight lines in R3, with P defined as before,
near-quadratic bounds of Ω(n2α(n)) and O(n2α(n) log(n)) can be obtained Chew
et al. [1998]. Here α(n) is the extremely slowly growing inverse Ackermann
function. If we consider as sites disjoint convex polyhedra with n faces in total,
then the complexity is O(n2+ε), as has been shown in Koltun and Sharir [2004];
this sharpens to O(n2α(n) log(n)) if all the sites are line segments.

Though Voronoi diagrams for convex polyhedral distance functions—in com-
parison to Euclidean Voronoi diagrams—thus proved easier to deal with con-
cerning their combinatorial aspects, this does not seem to carry over to their
algorithmic aspects. In fact, the papers cited above do not provide algorithms for
computing such diagrams, and we are not aware of any construction algorithm
particular to them.

As we shall show, the situation changes if the so-called farthest-site variant
of the diagram is considered (rather than the closest-site variant as above). We
will show that the complexity of this diagram in Rd is Θ(nd

d
2 e) in the worst-case,

and that it can be computed in optimal time O(nd
d
2 e + n log n), mainly by using

higher-dimensional convex hull algorithms. This result holds under rather general
conditions: Sites can be arbitrary convex polyhedra (which may be unbounded
or overlapping, having a total of n faces of various dimensions), the distance
polytope P may be unbounded (though constant-sized), and the resulting dis-
tance function can be additively and/or multiplicatively weighted for each site.
Moreover, each site may get allotted a particular distance polytope, in order to
generate an anisotropic scenario where sites can influence their surrounding in
an individual way.

Unfortunately, Euclidean farthest-site Voronoi diagrams have their peculiarities
(unless all sites are points, in which case their combinatorial and computational
behavior is much like their closest-point counterparts Seidel [1987]). Their
regions may disconnect into a large number of nonconvex parts, and the close
relationship between nonempty regions and the convex hull of the sites is lost;
see Aurenhammer et al. [2006] for line segment sites in R2, and Papadopoulou
and Dey [2013] for a generalization to arbitrary Lp-metrics. The only result for
non-point sites in higher dimensions we are aware of is Barequet et al. [2019],

55

(a) (b) (c)

Figure 4.1. Two approximations (a) and (b) of a Euclidean farthest-site Voronoi
diagram (c). The sites are three overlapping triangles. Their boundaries are
visualized in individual colors, and their farthest regions are painted accordingly.
The distance polygons used—a square in (a) and a regular 8-gon in (b)—are
shown in the bottom-left corner.

who derive structural and combinatorial properties for the farthest-site diagram
of lines and line segments in Rd . They characterize its unbounded cells, of which
there are up to Θ(nd−1) many in the worst-case, and describe an algorithm to
compute these in near-optimal time.

With our results, a large class of Euclidean farthest-site Voronoi diagrams for
convex sites in Rd , even in their weighted and/or anisotropic variants, can be
approximated in a piecewise-linear manner, and are computable by a simple and
uniform approach: In R3 for example, being probably the most interesting case,
the Euclidean ball can be β-approximated by a convex polytope P with O(1/β)
vertices Koltun and Sharir [2004], such that the convex distance induced by P
is at most 1+ β times the Euclidean distance. As a particularly useful result, a
simple method for computing a piecewise-linear approximation of size O(n2) of
the Euclidean farthest-site Voronoi diagram for lines and/or line segments in R3

becomes available. Even the planar instance is interesting: The fastest known
algorithm for the Euclidean farthest-site Voronoi diagram for polygonal sites in R2

runs in time O(n log3 n) Cheong et al. [2011], whereas our approximation can
be computed in time O(n log n) if the polygonal sites are convex. Figure 4.1
illustrates the similarity between these diagrams.

56 4.1 Convex polyhedral distance

4.1 Convex polyhedral distance

We define a polyhedron in Rd as the nonempty and finite (but possibly unbounded)
intersection of closed halfspaces of Rd . Note that a polyhedron does not need
to be full-dimensional: For example lines, line segments, and single points are
included as lower-dimensional instances.

Any d-dimensional polyhedron P which contains the origin in its interior can
be used to define a so-called convex polyhedral distance, from a point x ∈ Rd to a
point q ∈ Rd:

δP (x , q) = inf
t≥0
{ t | q ∈ x + t · P } .

In other words, δP (x , q) describes the amount t ≥ 0 by which P , when being
placed at x , has to be scaled so as to cover q; see Fig. 4.2. Note that δP is a
directed distance. We shall call P the distance polytope that induces the distance
function δP .

Let P R = { −p | p ∈ P } denote the reflection of the distance polytope about
the origin.

Observation 4.1.1. We have δP (x , q) = δP R(q, x).

Proof. Suppose that q ∈ x + t · P . Then there is a point p ∈ P with q = x + t · p,
that is, x = q−t ·p. Thus we have x ∈ q−t ·P , which by the identity−t ·P = t ·P R

means x ∈ q+ t · P R.

Consider a set S of point sites in Rd , and identify Rd with the hyperplane
xd+1 = 0 in (d+1)-dimensional space Rd+1. Observation 4.1.1 suggests to asso-
ciate the distance polytope P with a distance cone CP in Rd+1, such that CP
reflects with its height the polyhedral distance induced by P .

CP =
⋃

t≥0

�

t · P R

t

�

(4.1)

CP is a polyhedral cone obtained from scaling the reflected polytope P R. Its
apex is at the origin. Let CP (qi) be the translate of CP with its apex at some point
site qi ∈ S. Then for any point x ∈ Rd , the (d+1)st coordinate (called height) of
the vertical projection of x to CP (qi) equals the distance δP (x , qi).

Let now, more generally, the set S consist of polyhedral sites si in Rd . We
construct for each site si ∈ S a distance cone as follows. Take the Minkowski
sum si ⊕ CP . (The Minkowski sum of point sets A and B is defined as A⊕ B =

57 4.2 Farthest-site Voronoi diagram

O

P

x
q

q’

x+2P

x+0.7P

Figure 4.2. Polyhedral distance induced by P : dP (x , q) = 2 and dP (x , q′) = 0.7

{ a+ b | a ∈ A∧ b ∈ B }.) Because the Minkowski sum of two convex polyhedra
is again a convex polyhedron, the object si ⊕ CP is the intersection of halfspaces
of Rd+1. One of them is bounded from below by the hyperplane xd+1 = 0 (if
the site si is full-dimensional). We ignore this halfspace, and intersecting the
remaining ones we obtain an unbounded polyhedron in Rd+1, which we call the
distance cone of si, and denote with CP (si).

CP (si) exhibits the following useful properties.

• For the special case of si being a point site qi, the definition of CP (si) is
consistent with that of CP (qi) before.

• Let dP (x , si) be the height of the vertical projection of a point x ∈ Rd to
CP (si). If x does not lie in the interior of si, then dP (x , si) is non-negative
and equals the polyhedral distance of x to si, which is commonly defined as

δP (x , si) = inf
t≥0
{ t | x + (t · P)∩ si 6= ; } .

• If x lies in the interior of si then dP (x , si) is negative, and measures how
much x is inside the (full-dimensional) polyhedral site si by taking the
minimum polyhedral distance to its facets; see Fig. 4.1. This is because the
part of CP (si) that lies below the hyperplane xd+1 = 0 is determined solely
by halfspaces which stem from si (and not from CP in Formula (4.1)). That
is, dP is related to a generalized medial axis of si in this case.

4.2 Farthest-site Voronoi diagram

The so-called farthest-site Voronoi diagram of a set S of sites in Rd , for short
FVD(S), is a partition of Rd into regions such that all points within a fixed region

58 4.2 Farthest-site Voronoi diagram

have the same farthest site. As before, let the sites si in S be polyhedra. These
may be of any dimension k, for 0≤ k ≤ d, and are not required to be disjoint or
bounded.

We are interested in the diagram FVD(S) induced by the convex polyhedral
distance function dP in Section 4.1, for a given distance polytope P . Being
a farthest-site diagram, FVD(S) corresponds to the pointwise maximum of the
functions dP (x , si), for si ∈ S, on Rd . FVD(S) thus corresponds to the upper
envelope of the boundaries of the distance cones CP (si) that define these functions,
which, in turn, is given by the common intersection of these cones. Let us
formulate this result in the following way.

Theorem 4.2.1. Let I be the (unbounded) convex polyhedron in Rd+1 that results
from intersecting the distance cones CP (si), for all sites si ∈ S. Then FVD(S) is the
vertical projection of I onto the hyperplane xd+1 = 0 of Rd+1.

One of the consequences of Theorem 4.2.1 is that FVD(S) is a piecewise linear
diagram. Each region of FVD(S) is pre-partitioned into convex polyhedra (the
projected facets of I), and these regions define a partition of Rd . Let us point out
that, in earlier papers on Voronoi diagrams for polyhedral distance functions (e.g.
in Koltun and Sharir [2004]), the distance of a point x to a site was set to zero in
case x falls in the interior of that site. As a consequence, when the sites are not
chosen to be pairwise disjoint, the part of Rd covered by their union does not get
partitioned by the diagram. Our more general definition of polyhedral distance,
via distance cones, remedies this shortcoming.

The combinatorial complexity of FVD(S) is given by that of the projection
polyhedron I in Rd+1. I is the intersection of distance cones, and each distance
cone CP (si), in turn, is the intersection of halfspaces of Rd+1. It is clear from
Section 4.1 that the number of such halfspaces per cone is bounded by the number
of facets of the Minkowski sum si ⊕P R, for the reflected distance polytope P R.
A single face of si, combined with a single face of P R, can yield at most one facet
of si ⊕P R; see e.g. Das and Sarvottamananda [2018]. Therefore, if we assume
that P (and with it P R) is of constant size, and that si has a total of ni faces
of different dimensions, then CP (si) is defined by O(ni) halfspaces of Rd+1. In
conclusion, when putting n =

∑

si∈S ni, the polyhedron I is the intersection of

O(n) halfspaces of Rd+1, and its complexity is bounded from above by O(nd
d
2 e)

(provided d = O(1)), by the well-known upper bound theorem. We will show
in Section 4.3 that this complexity can be asymptotically attained in the worst
case. Observe that I has O(n) facets, and that FVD(S) thus has this very number
of full-dimensional cells.

59 4.3 More properties of FVD

Concerning computational aspects, the halfspaces defining a particular cone
CP (si) can be singled out by (basically) computing the Minkowski sum si ⊕P R.
This can be done Das and Sarvottamananda [2018], for instance, by pairwise
adding up the O(ni) vertices of si and the O(1) vertices of P R, and computing the
convex hull of the resulting O(ni) points inRd , spending a total of O(nb

d
2 c+n log n)

time for all sites si ∈ S, when the optimal convex hull algorithm in Chazelle
[1993] is applied. The construction of the projection polyhedron I is more time-
consuming and takes O(nd

d
2 e + n log n) time; we use the convex hull algorithm

in Chazelle [1993] again, but now for intersecting O(n) halfspaces in Rd+1.

We may summarize as follows:

Theorem 4.2.2. Let S be a set of arbitrary polyhedral sites in Rd , with a total
combinatorial complexity of n. The farthest-site Voronoi diagram FVD(S) of S
under the convex distance function induced by a polytope of constant size is of
complexity O(nd

d
2 e), and it can be computed in O(nd

d
2 e + n log n) time. The number

of d-dimensional cells of FVD(S) is bounded by O(n).

The dependence on d of the bounds stated above is the same as for convex
hulls of finite point sets.

4.3 More properties of FVD

The maximal size of farthest-site diagrams may be much smaller than that of their
closest-site counterparts; several examples can be found in Aurenhammer et al.
[2013]. The question arises whether the upper bound given in Theorem 4.2.2 is
asymptotically tight.

For special sets of polyhedral sites in Rd , the diagram FVD(S) is indeed small,
namely, when the sites in S have only a constant number of orientations. Then the
halfspaces defining the projection polyhedron I in Rd+1 will have only a constant
number of orientations as well, and all but O(1) of them will be redundant because
their bounding hyperplanes are parallel. Consequently, the polyhedron I and its
projection FVD(S) will be of constant size, and can be found in O(n) time.

Observe that the case of S being a set of n point sites in Rd is covered above,
because each point site can be described by the intersection of d+1 halfspaces
of Rd , having the same fixed orientations. Not included, however, is the case of n
line segment sites in Rd , because the d + 2 halfspaces describing a line segment
will be of different orientation for different sites, in general. In fact, sites of very
simple shape can induce large diagrams, as is shown below.

60 4.3 More properties of FVD

Lemma 4.3.1. There exists a set S of n sites in Rd of constant description such that
the diagram FVD(S) has a complexity of Ω(nd

d
2 e).

Proof. There exist two hyperplanes h1, h2 in Rd+1, and two point sets Y1 ⊂ h1 and
Y2 ⊂ h2 each of size n

2 , such that the lower convex hull of Y1 ∪ Y2 has Θ(nb
d+1

2 c) =
Θ(nd

d
2 e) complexity; this follows from Corollary 12 in Karavelas et al. [2013].

W.l.o.g., we may assume (by applying an affine transformation) that

h1 :
d
∑

i=1

x i = 1, h2 :
d−1
∑

i=1

x i − xd = 1, and

Y1 ⊂ R×
�

0,
1
d

�d

, Y2 ⊂ R×
�

0,
1
d

�d−1

×
�

−
1
d

, 0
�

,

(4.2)

which fixes the hyperplanes and guarantees that most coordinates in Y1 ∪ Y2 are
small. We now choose a distance polytope P and a set S = S1 ∪ S2 of sites such
that the projection polyhedron I for FVD(S) is dual to the lower convex hull of
Y1 ∪ Y2.

Let the hypercube [−1,1]d serve as P . The set S1 ∪ S2 will consist of n
halfspace sites in Rd . For S1, each of its halfspaces s is constructed from a
point y = (y1, . . . , yd+1) ∈ Y1. In particular, we describe s by the inequality
∑d

i=1 ai x i ≤ b, where

a1 = 1, ai =
yi

1−
∑d

j=2 y j

for i = 2, . . . d, and b =
yd+1

1−
∑d

j=2 y j

. (4.3)

Note that all ai and b are positive because of our assumption (4.2). Moreover,
we have P R =P . Therefore, the Minkowski sum s⊕P R is just a translate of s
by the vector (1, 1, . . . , 1)T in Rd , which implies that the distance cone CP (s) is a
single halfspace in Rd+1, bounded from below by the hyperplane

xd+1 =
1
A
·

�

d
∑

i=1

ai x i − b

�

, where A=
d
∑

j=1

a j. (4.4)

By a well-known duality transform, the hyperplane in (4.4) is dual to the point

q = (q1, . . . , qd+1) =
1
A
· (a1, . . . , ad , b)

in Rd+1. Substituting the values in (4.3) and simple calculations give

qi = yi for i = 2, . . . , d + 1, and q1 = 1−
d
∑

j=2

y j. (4.5)

61 4.3 More properties of FVD

P

sy

x

C

p

x’

x’
x

x
y

s’

s

Figure 4.3. Illustrations of the proofs of Lemma 4.3.2 (left) and Lemma 4.3.3
(right).

But this implies q = y , because both points lie in the hyperplane h1 in (4.2): We
have y ∈ h1 by assumption, and q ∈ h1 by (4.5).

In a similar manner, we can construct suitable halfspace sites s for S2 from the
points y in Y2. (We omit these details here.) In conclusion, the projection polyhe-
dron I , being the intersection of all the sites’ distance cones, is the intersection
of the upper halfspaces CP (s) for all s ∈ S1 ∪ S2, and thus I is dual to the lower
convex hull of Y1 ∪ Y2.

By Lemma 4.3.1, the runtime in Theorem 4.2.2 is asymptotically optimal in
the worst case for d ≥ 3. For d = 2, a reduction from sorting proves optimality.

Being the projection of I , the diagram FVD(S) is a polyhedral cell complex
in Rd which is face-to-face. Its cells (polyhedra of dimension d) are nonconvex
in general, as are its facets (polyhedra of dimension d−1). Since the distance
polytope P is (more or less) an approximation of the Euclidean ball, quite a few
properties of the Euclidean farthest-site diagram of S carry over to FVD(S); see
e.g. Aurenhammer et al. [2006]; Barequet et al. [2019]. For example, the region
of a site si ∈ S in FVD(S) (the set of all points in Rd being farthest from si) is
disconnected in general, and it may consist of various cells of FVD(S). Moreover,
the following properties of the cells are preserved.

Lemma 4.3.2. All cells of FVD(S) are unbounded, and cells cannot contain voids of
any dimension.

Proof. Let C be some cell of FVD(S), and assume that C is part of the region of
the site s ∈ S. The assertion of the lemma can be easily derived from the following
fact: Let x be an arbitrary point in C , and consider the point y on the boundary

62 4.3 More properties of FVD

of s that realizes the polyhedral distance dP (x , s). Then the infinite ray r that
starts at x and is directed away from y is totally contained in C .

To prove this fact, refer to Figure 4.3 (left). Assume first that x /∈ s. Then
t = dP (x , s)≥ 0, and the homothet H = x + t · P touches s at y. Since s is the
site in S farthest from x , H intersects all the other sites. Let now x ′ be any point
on r such that x lies between x ′ and y . Put t ′ = dP (x ′, s). Then H ′ = x ′ + t ′ · P
touches s at y too, and H is covered by H ′, which implies that H ′ intersects all
other sites as well. This implies that x ′ lies in the region of s.

If x ∈ s, on the other hand, then t = dP (x , s)< 0, and we have t ·P = u ·P R

with u = −t > 0, for the reflected polytope P R. The homothet H = x + u · P R

touches s at y , and since s is farthest from x , H is contained in all other sites now.
For any point x ′ on r between x and y, and u′ = −dP (x ′, s), H ′ = x ′ + u′ · P R

touches s at y again, but is contained in H now and therefore also in all other
sites. So x ′ has to lie in the region of s.

In summary, we conclude that the entire ray r lies in the cell C of the region
of s.

Let us define the (d−1)-skeleton of FVD(S) as the union of all the facets of
FVD(S). This skeleton can be disconnected, as a simple construction with only two
sites shows; see Figure 4.4(a): Let site s1 be some polyhedron which approximates
a line segment, and take as site s2 any polyhedron which contains the segment’s
midpoint but none of its endpoints. Then the region of s1 disconnects the (d−1)-
skeleton of FVD({s1, s2}). On the other hand, by the same argument as in Barequet
et al. [2019], the following holds:

Lemma 4.3.3. The (d−1)-skeleton of FVD(S) is connected, provided that the sites
in S are pairwise disjoint.

Proof. Assume that this skeleton is not connected; see Figure 4.3 (right). Then
there exists some cell C of FVD(S) that splits the skeleton into at least two parts.
Let s be the farthest site corresponding to C . The site s does not touch the
boundary of C , because of our assumption on the disjointness of the sites. Thus
there exists some point x /∈ C which is separated from s by C . Let y be the
point on s that realizes the polyhedral distance from x to s. By construction,
the line segment x y intersects C , and we choose a point p in this intersection.
Now, by the reasoning in the proof of Lemma 4.3.2, the infinite ray emanating
from p in direction x is entirely contained in C . But this implies x ∈ C , which is
a contradiction.

63 4.4 Variants

(a) (b)

Figure 4.4. (a) The (d−1)-skeleton can be disconnected for non-disjoint sites.
(b) A weighted farthest Voronoi diagram of three sites: The blue quadrangle
has an additive weight of −1, and the red pentagon has a multiplicative weight
of 1

2 .

4.4 Variants

In certain applications, a model of Voronoi diagram is required where the sites are
capable of influencing their surrounding in an individual way; see Aurenhammer
et al. [2013]; Okabe et al. [2009] for comprehensive treatments of this topic. One
way to achieve this goal is to assign so-called weights to the sites, which affect the
underlying distance function in an additive and/or multiplicative way.

Let each site si ∈ S have assigned two real numbers a(si) and m(si)> 0, and
consider the weighted polyhedral distance:

dP (x , si)
m(si)

− a(si)

In contrast to the nearest version, the sites’ regions in the farthest Voronoi
diagram shrink with increasing weights. Interestingly, and unlike the situation
for the Euclidean farthest-site diagram, the FVD(S) induced by this distance is
still a piecewise-linear cell complex. This becomes evident when the respective
distance cones are considered: Additive weighting results in a vertical shift of
these cones by an amount of a(si), and multiplicative weighting enlarges by a
factor of m(si) the value tanα j of the dihedral angles α j of aperture of a cone’s
facets. In particular, each distance cone still is the intersection of O(ni) halfspaces
of Rd+1 when site si is of complexity ni.

64 4.5 Conclusion

Multiplicative weighting leads to the occurrence of bounded regions in FVD(S),
as simple examples show (Figure 4.4 (b)). However, purely additive weighting
preserves the properties listed in Lemma 4.3.2. In particular, all cells are still
unbounded: All facets of the projection polyhedron I for the unweighted FVD(S)
are unbounded, and this fact cannot be altered by vertically shifting any of its
defining halfspaces.

We may push things even further, and create an anisotropic scenario by allotting
an individual distance polytope Pi to each site si. In this way, each site is able
to ‘interpret’ its surrounding space in its own way—a concept useful in many
situations Aurenhammer et al. [2013]. In fact, the multiplicative weighting
scheme is just the special case where Pi = m(si) · P .

In all the extensions above, the properties of the distance cones needed for
Theorem 4.2.2 to hold are preserved. We obtain the following general result:

Theorem 4.4.1. Theorem 4.2.2 remains valid for all the weighted and anisotropic
variants of FVD(S) described above.

Note finally that all these extensions can be combined, and lead to a very
general class of easy-to-compute piecewise-linear farthest-site Voronoi diagrams
in Rd , where the impact of each site can be tuned by its shape, its weights, and
its distance polytope including the choice of the polytope’s center.

4.5 Conclusion

Even though the Euclidean distance measure is more intuitive, the polyhedral
version has many advantages in the context of Voronoi diagrams of polyhedral
sites. Foremost, the features of the diagram are all piecewise linear, which reduces
problems regarding the algebraic complexity. Recall that already the trisector
of three lines is non-trivial. Moreover, the Euclidean distance can still be well
approximated by the distance induced by an appropriate polyhedron.

Finally, for the farthest polyhedral Voronoi diagram we were able to reduce the
diagram to the convex hull of points, hence discovering a worst-case optimal-time
algorithm for its construction. This result is extremely general as it allows a wide
variety of polyhedral sites and distance measure (possibly individual ones for
each site), arbitrary additive and multiplicative weights and also works in any
dimensions.

Chapter 5

Fermat point and n-ellipses

This chapter is based on the following paper:

• Kolja Junginger, Ioannis Mantas, Evanthia Papadopoulou, Martin Suderland,
and Chee Yap. [2021]
Certified approximation algorithms for the Fermat point and n-ellipses.
29th Annual European Symposium on Algorithms, ESA 2021, Vol. 204 of
LIPIcs, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, pp. 54:1–54:19.

5.1 Introduction

A classic problem in Facility Location, see e.g., Fekete et al. [2005]; Ostresh Jr
[1978], is the placement of a facility to serve a given set of demand points or
customers so that the total transportation costs are minimized. The total cost at
any point is interpreted as the sum of the distances to the demand points. The
point that minimizes this sum is called the Fermat Point; see Fig. 5.1. This is an
old geometric problem that has inspired scientists over the last three centuries.

A weighted foci set is a non-empty finite set of (demand) points A= {a1, . . . , an}
in Rd associated with a positive weight function w : A→ R>0. Each a ∈ A is called
a focus with weight w(a). Let W :=

∑

a∈A w(a). The Fermat distance function of A
is given by

ϕ(x) :=
∑

a∈A

w(a)‖x − a‖,

where ‖ · ‖ is the Euclidean norm in Rd . The global minimum value of ϕ is called
the Fermat radius of A, denoted by r∗ = r∗(A). Any point x ∈ Rd that achieves
this minimum, ϕ(x) = r∗, is called a Fermat point, denoted by x ∗ = x ∗(A). The

65

66 5.1 Introduction

(a) (b)

Figure 5.1. The Fermat point of the 28 EU-capitals (pre-Brexit), highlighted
with (x), along with three 28-ellipses of different radii. (a) The foci (capitals)
are unweighted. (b) Each focus has the weight of the country’s population. The
source of the map is https://www.consilium.europa.eu.

Fermat point is not unique if and only if A is collinear and n is even. We can check
if A is collinear in O(n) time, and in that case, the median, which is a Fermat
point, can be found in O(n log n) time. So henceforth, we assume that A is not
collinear. In that case ϕ is a strictly convex function Mello and dos Santos [2018];
Morrison [2010], and x ∗ is unique.

We also consider the closely related problem of computing n-ellipses of A.
For any r > r∗(A), the level set of the Fermat distance function is ϕ−1(r) :=
{ x ∈ Rd : ϕ(x) = r }. If n = 1, the level set is a sphere; and if n = 2 and d = 2,
it is the classic ellipse. When A has n points, we call ϕ−1(r) an n-ellipsoid, or an
n-ellipse if d = 2; hence the term foci set. From an application perspective, an
n-ellipse of radius r can be viewed as a curve that bounds the candidate area for
facility location Petrović et al. [2014], such that the total transportation cost to
the demand points is at most r, as in Fig. 5.1.

The question of approximating the Fermat point is of great interest as its
coordinates are roots of polynomials of degree exponential in n Bajaj [1988]. For
any ε > 0, an ε-approximation ex ∗ to the Fermat point x ∗ can be interpreted in 3
ways:

(A) Approximate Fermat Point: ‖ex ∗ − x ∗‖ ≤ ε;

(B) Absolute Approximate Fermat Radius: ϕ(ex ∗)≤ ϕ(x ∗) + ε;

(C) Relative Approximate Fermat Radius: ϕ(ex ∗)≤ (1+ ε)ϕ(x ∗).

Thus, we have three ε-approximation problems: (A), (B) and (C). Essentially
(B) and (C) are approximations of the Fermat radius, while (A) is a direct approx-
imation of the Fermat point. We consider approximations in the sense of (A); to

https://www.consilium.europa.eu

67 5.1 Introduction

the best of our knowledge, only approximations in the sense of (B) and (C), have
been considered before, see e.g., Bose et al. [2003]; Cohen et al. [2016]. Below,
we show that (B) and (C) are easily reduced to (A) while the converse reductions
are non-obvious (reductions in the sense of complexity theory).

In this work we introduce certified algorithms for approximating the Fermat
point and n-ellipses, combining a subdivision approach with interval methods
(cf. Lin and Yap [2011]; Ratschek and Rokne [1984]). The approach can be
formalized in the framework of soft predicates Wang et al. [2015]. Our certified
algorithms are fairly easy to implement, and are shown to have good performance
experimentally.

Related Work. The problem we study has a long history, with numerous
extensions and variations. Out of the 15 names found in the literature, see
Hamacher and Drezner [2002], we call it the Fermat point problem. Other common
names are the Fermat-Weber problem and the Geometric median problem. Apart
from the Facility Location application introduced by Weber [1909], the problem
is motivated by applications in diverse fields such as statistics and data mining
where it is known as the 1-Median problem, and is an instance of the k-median
clustering technique Har-Peled and Mazumdar [2004].

For d = 2, n= 3, the problem was first stated by P. Fermat (1607 - 1665) and
was solved by E. Torricelli (1608 - 1647) and Krarup and Vajda [1997] using a
geometric construction. For n= 4, solutions were given by Fagnano [1775] and
Cieslik [2013]. The first general method, for arbitrary n, is an iterative scheme
proposed by Weiszfeld [1937] in 1937. It was later corrected and improved by
Kuhn [1973] and Ostresh Jr [1978]; see Beck and Sabach [2015] for a review.
The method is essentially a gradient descent iterative algorithm. It behaves quite
well in practice and has only linear convergence, with guaranteed convergence
from any starting point.

A plethora of approximation algorithms for the Fermat point, in the senses
of (B) and (C), can be found in the literature using various methods. There are
algorithms based on semidefinite programming Parrilo and Sturmfels [2003],
interior point methods Cohen et al. [2016]; Xue and Ye [1997], sampling Badoiu
et al. [2002]; Cohen et al. [2016], geometric data structures Bose et al. [2003]
and coresets Har-Peled and Kushal [2007], among others Chin et al. [2013];
Feldman and Langberg [2011]. Moreover, special configurations of foci have
been considered Bhattacharya [2011]; Cockayne and Melzak [1969], a continu-
ous version of the problem Fekete et al. [2005], and also a generalized Fermat
point of planar convex objects Abu-Affash and Katz [2009]; Carmi et al. [2005];

68 5.1 Introduction

(a) (b)

Figure 5.2. The resulting box subdivision of Fig. 5.1(a) for (a) the n-ellipses
and (b) the Fermat point.

Dumitrescu et al. [2011].
The literature on n-ellipses is smaller but equally old: Nagy [1950] proved

that n-ellipses are convex curves, calling them egg curves, and dating them back
to [von Tschirnhaus, 1695, p. 183]. Further, he characterized the singular points
of the n-ellipses as being either foci or the Fermat point. Another early work is by
Sturm [1884]. Sekino [1999] showed that the Fermat distance function ϕ is C∞

on R2 \ A. So, the n-ellipse is a piecewise smooth curve, as it may pass through
several foci. Nie et al. [2008] showed that the polynomial equation defining the
n-ellipses has algebraic degree exponential in n.

Our Contributions. We design, implement and experimentally evaluate al-
gorithms for approximating the Fermat point of a given set of foci in Rd . We also
compute an ε-approximate n-ellipse; a problem not considered in computational
literature before. These are the first certified algorithms Moore [1966]; Tucker
[2011] for these problems. Our contributions are summarized as follows:

• We design two certified algorithm for the approximate Fermat point: one
based on subdivision, the other based on Weiszfeld iteration Weiszfeld
[1937].

• Our notion of ε-approximate Fermat point appears to be new; in contrast,
several recent works focus on ε-approximation of the Fermat radius. The
approximate Fermat radius can be reduced to approximate Fermat point;
the converse reduction is unclear.

• Based on the PV construction Plantinga and Vegter [2004]; Lin and Yap
[2011], we design an algorithm to compute a regular isotopic ε-approximation
of an n-ellipse. We also augment the algorithm to compute simultaneous

69 5.2 Preliminaries

contour plots of the distance function ϕ, resulting in a useful visualization
tool (see Fig. 5.1).

• We implement and experimentally evaluate the performance of all our
algorithms on different datasets in the plane, as a function of n and ε.

5.2 Preliminaries

Vector variables are written in bold font: thus 0 is the origin of Rd and x =
(x1, . . . , xd). For a differentiable function f : Rd → R, let ∂i f denote partial
differentiation with respect to x i. The gradient ∇ f : Rd → Rd of f is given by the
vector ∇ f (x) = (f1(x), . . . , fd(x))T where fi = ∂i f . In general, the operator ∇ is
partial, i.e., ∇ f (x 0) might not be defined at a point x 0. A point x 0 is a critical
point of f if ∇ f (x) = 0 or ∇ f (x) is undefined.

We consider analytic properties of a scalar function f : Rd → R, mainly from
the viewpoint of convex analysis Mello and dos Santos [2018]; Nam [2013].
In our case, f is the Fermat distance function for some weighted set A. From
an abstract perspective, the Fermat point problem (resp., n-ellipsoid problem)
amounts to computing the critical points of the gradient of f (resp., computing
the level sets of f). The Fermat point is the only critical point of ∇ f in Rd \ A,
assuming A is non-collinear.

Most of the basic properties regarding the Fermat point are well-known and
may be found in our references such as Kuhn [1973]; Mello and dos Santos
[2018]; Nam [2013]; Ostresh Jr [1978]; Weiszfeld [1937]. To emphasize the foci
set A, we explicitly write ϕA instead of ϕ. A focus a ∈ A is the Fermat point of A if
and only if

∇ϕA\a(a)

≤ w(a). Testing if the Fermat point x ∗ is in A can be done
in O(n2d) time. If x ∗ is not one of the foci, then ∇ f (x ∗) = 0, and the problem
can be reduced to general finding real zeros of a square system of polynomial
equations (e.g., Xu and Yap [2019]). However, the thrust of this paper is to
develop direct methods that exploit the special properties of the Fermat problem.

We formally define the two main problems which we consider:

• APPROXIMATE FERMAT POINT: Given a weighted point set A in Rd and ε > 0,
compute a point ex ∗ within ε distance to the Fermat point x ∗ of A.

• APPROXIMATE ISOTOPIC n-ELLIPSES: Given ε > 0, a weighted point set
A in R2 of size n and a radius r > r∗(A), compute a closed polygonal

70 5.2 Preliminaries

curve E that is ε-isotopic to ϕ−1(r), i.e., there exists an ambient isotopy1

γ : R2 × [0,1]→ R2 with γ(E, 1) = ϕ−1(r) and for any point a ∈ ϕ−1(r),
the parametric curve γ(a, ·) has at most length ε. This implies a bound of ε
on the Hausdorff distance between E and ϕ−1(r).

Approximation notions. We compare the three different notions of ε-approximation
for the Fermat point. We reduce the approximation problem of notion (C) to (B),
and (B) to (A). An ε-approximation ex ∗ of x ∗ in the sense

ex ∗ − x ∗

 ≤ ε is also
a (Wε)-approximation in the sense ϕ(ex ∗)≤ ϕ(x ∗) +Wε, which follows directly
from the triangle inequality

ϕ(ex ∗) =
∑

a∈A

w(a)‖ex ∗ − a‖ ≤
∑

a∈A

w(a)(‖ex ∗ − x ∗‖+ ‖x ∗ − a‖) =Wε +ϕ(x ∗).

An ε-approximation ex ∗ of x ∗ in the sense ϕ(ex ∗) ≤ ϕ(x ∗) + ε is also a 2ε
ϕ(g) -

approximation in the sense ϕ(ex ∗) ≤ (1 + 2ε
ϕ(g))ϕ(x

∗). The center of gravity
g is a 2-approximation of the Fermat radius r∗ (see Cohen et al. [2016]), i.e.
ϕ(x ∗)≥ 1

2ϕ(g). Hence

ϕ(ex ∗)≤ ϕ(x ∗) + ε =
�

1+
ε

ϕ(x ∗)

�

ϕ(x ∗)≤
�

1+
2ε
ϕ(g)

�

ϕ(x ∗)

On the other hand, it is not clear how to derive an ε-approximation of type (A)
if an approximation algorithm for type (B) and (C) is at hand, as the following 2
examples show.
Example 1: For any ε > 0 choose c ≤ ε

2
p

2−2
and consider the weighted foci

a1 = (1,0), a2 = (0,1), a3 = (−1,0), a4 = (0,−1) with w(a1) = w(a3) = 1 and
w(a2) = w(a4) = c for which the Fermat point is x ∗ = (0, 0) for symmetry reasons,
see Fig. 5.3(a). Point p = (1, 0) is an ε-approximation of x ∗ in the sense (B) and
(C), but it has a distance of 1 to x ∗.
Example 2: For any ε > 0 we choose h> 0 small enough such that: 2

p
4+ h2 +

2h ≤ 4
p

1+ h2 + ε. Consider the foci a1 = (0,−h), a2 = (0, h), a3 = (2,−h),
a4 = (2, h) with unit weights. The Fermat point is x ∗ = (1,0) for symmetry
reasons, see Fig. 5.3(b). Point p = (2, 0) is an ε-approximation of x ∗ in the sense
(B) and (C), but it has a distance of 1 to x ∗.

Pure Newton: Lack of global convergence The algorithms that we developed
put an emphasis on robustness. This is a real issue, which can go very wrong

1That is, a continuous map γ : R2 × [0, 1]→ R2 such that γ0 = γ(·, 0) is the identity map, and,
for all t ∈ [0, 1], γt = γ(·, t) is a homeomorphism on R2.

71 5.2 Preliminaries

(a)
x

y

a1 = p

a2

a3

a4

x∗ (b)
x

y

a1

a2

a3

a4

x∗ p
{
{

h

h

︸ ︷︷ ︸
2

Figure 5.3. (a) Example that a good approximation of the Fermat point in
sense (B) does not imply a good approximation in sense (A). (b) Analogous
example for sense (C).

for naive algorithms as the following example shows. The point Newton method
may fail to converge due to cycling between approximation points. Consider the
following 10 foci in R3, each with a weight of 1:

a1 = (0.38462,0.58299, 0.25181)
a2 = (0.29044,0.61709, 0.26528)
a3 = (0.82438,0.98266, 0.73025)
a4 = (0.34388,0.58407, 0.10777)
a5 = (0.90631,0.87965, 0.81776)
a6 = (0.26073,0.59436, 0.022513)
a7 = (0.42526,0.31272, 0.16148)
a8 = (0.17877,0.42289, 0.094229)
a9 = (0.59852,0.47092, 0.69595)
a10 = (0.69989, 0.63853,0.033604)

If we start with the center of mass p0 =
1
n

∑

a∈A a then for f = ∇ϕ the pure
Newton method pi+1 = pi − J−1

f (pi) · f (pi) does not terminate. In particular, for
big enough i the sequence keeps revisiting the following 4 points:

p4i = (0.40089, 0.58085,0.23502)
p4i+1 = (0.37393, 0.58077,0.25124)
p4i+2 = (0.43552, 0.58899,0.24779)
p4i+3 = (0.32493, 0.56753,0.22338)

Subdivision Paradigm. The subdivision algorithms presented here take as
input an initial box B0 ⊂ Rd and recursively split it. We organize the boxes in a
generalized quadtree data structure Samet [1990]. A box can be specified by d
intervals as B = I1 × I2 × · · · × Id . Let mB denote the center of B, rB the radius of
B (distance between mB and a corner), and ω(B) the width of B (the maximum
length of its defining intervals). The term c · B denotes the box with center mB

72 5.2 Preliminaries

and radius c · rB. The function SPLIT1 takes a box B and returns 2d congruent
subboxes (children), one for each orthant. We use SPLIT2 to indicate that we do
two successive levels of SPLIT1 operations (i.e., 1+2d SPLIT1 operations, resulting
in (2d)2 = 4d leaves).

Soft Predicates. Let Rd denote the set of closed d-dimensional boxes (i.e.,
Cartesian products of intervals) in Rd . Let P be a logical predicate on boxes, i.e.,
P : Rd → {true,false }. For example, the Fermat point predicate is given by
Pfp(B) = true if and only if x ∗ ∈ B. Logical predicates are hard to implement, and
thus, we may focus on tests, which are viewed as one-sided predicates. Formally,
a test T looks like a predicate: T : Rd → {success,failure } and it is always
associated to some predicate P: call T a test for predicate P if T(B) = success

implies P(B) = true. However, we conclude nothing if T (B) = failure. Denote
this relation by “T ⇒ P”.

Soft predicates Wang et al. [2015] are an intermediate concept between a
test and a predicate. Typically, they arise from a partial scalar function f : Rd →
R ∪ {↑} where f (x) =↑ means f (x) is not defined. We then define a partial
geometric predicate Pf on boxes B as follows:

Pf (B) =















↑ if ↑∈ f (B),
+1 if f (B)> 0,
−1 if f (B)< 0,
0 else.

We can now derive various logical predicates P from Pf , by identifying the
values in the set {−1, 0,+1,↑} with true or false. For instance, we call P an
exclusion predicate if we associate the 0- and ↑-value with false and the other
values with true. For the inclusion predicate, we associate the 0-value with
true, others with false. For example, a test for the Fermat point predicate
Pfp is an inclusion predicate based on the partial function f (x) =

∑

i(∂i f (x))2;
the function is partial because f (x) =↑ when x is a focus point. Although our
box predicates P(B) are defined for full-dimensional boxes B, we can extend
them to any point x as follows: P(x) has the logical value associated with the
si gn(f (x)) ∈ {↑,+1,−1,0 }.

Definition 5.2.1. Let T be a test for a predicate P. We call T a soft predicate (or
soft version of P) if it is convergent in this sense: if (Bi : i = 0, 1, . . .) is a monotone
sequence of boxes Bi+1 ⊆ Bi that converges to a point a, then P(a) ≡ T(Bi) for i
large enough.

73 5.3 Approximate Fermat points

Here, “P(a) ≡ T(Bi)” means P(a) = true if and only if T(Bi) = success.
A soft version of P(B) is usually denoted P(B). We note that soft versions of
exclusion predicates are generally easier to construct than inclusion predicates.
The former can be achieved by numerical approximation, while the latter requires
some deeper principle such as the Brouwer fixed point theorem Brouwer [1911].

Interval arithmetic. We construct soft predicates using functions of the form
F : Rd → (R∪ {−∞,∞}) that approximate the scalar function f : D → R
with D ⊂ Rd .

Definition 5.2.2. Call F a soft version of f if it is

i) conservative, i.e., for all B ∈ Rd , F(B) contains f (B) := { f (p) : p ∈ B∩D},
and

ii) convergent, i.e., if for monotone sequence (Bi : i ≥ 0) that converges to a
point a ∈ D, limi→∞ω(F(Bi)) = 0 holds.

We shall denote F by f when F is a soft version of f . There are many
ways to achieve f . For example, if f has an arithmetic expression E, we can
simply evaluate E using interval arithmetic. More sophisticated methods may be
needed for performance. The next lemma shows how f leads to soft exclusion
predicates based on f .

Lemma 5.2.3. If P is an exclusion predicate based on f , then the test P(B) : 0 /∈
f (B) is a soft version of P.

Below, we need a multivariate generalization, to the case where f : Rd → Rm,
and the exclusion predicate P(B) is 0 /∈ f (B). If f : Rd → Rm is a soft version
of f , then a soft version of P(B) is the given by the test T(B) : 0 /∈ f (B). If
f = (f1, . . . , fm), then this reduces to 0 /∈ fi(B) for some i = 1, . . . , m.

5.3 Approximate Fermat points

We now present three approximation algorithms for the Fermat point x ∗. For
simplicity, we assume in our algorithms that the Fermat point is not a focus, i.e.
x ∗ /∈ A. This assumption can be easily checked in O(n2d) preprocessing time,
or with a more elegant approach, in O(nd) time during the execution of our
subdivision algorithms.

The next theorem was already shown in Weiszfeld [1937], but we quickly
sketch a proof again.

74 5.3 Approximate Fermat points

Figure 5.4. Different steps during the the execution of Algorithm 3. The dark
red boxes cannot contain the Fermat point, whereas the light green boxes may
contain it.

Theorem 5.3.1. A focus a is the Fermat point if and only if

∇ϕA\{a}(a)

≤ w(a).

Proof. We need to show that a is the minimizer of the convex function ϕ if

∇ϕA\{a}(a)

 ≤ w(a). Let v ∈ R2 be any unit vector. The directional derivative
of ϕ in direction v at a is

lim
h→0

ϕ(a+ hv)−ϕ(a)
h

= lim
h→0

ϕA\{a}(a+ hv)−ϕA\{a}(a)

h
+ lim

h→0

ϕ{a}(a+ hv)−ϕ{a}(a)
h

= 〈v,∇ϕA\{a}(a)〉+w(a)
‖v‖=1
≥ −

∇ϕA\{a}(a)

+w(a)≥ 0

Recall that 〈·, ·〉 denotes the scalar product. This implies that starting from a
the function ϕ is non-decreasing in any direction. The minimum of the convex
function ϕ therefore has to be a.

5.3.1 Using the Subdivision Paradigm

The subdivision paradigm requires an initial box B0 to start subdividing. If B0

is not given, it is easy to find a box that contains x ∗, since x ∗ lies in the convex
hull of A Kuhn [1973]. We use a function INITIAL-BOX(A) which, in O(nd) time,
computes an axis-aligned bounding box with corners having the minimum and
maximum x , y coordinates.

We define an exclusion and inclusion predicate based on the gradient function
∇ϕ.

Definition 5.3.2. Given a box B, the gradient exclusion predicate C∇0 (B) is defined
by the condition 0 /∈ ∇ϕ(B). The gradient inclusion predicate C∇1 (B) is just the
complement of C∇0 (B), that is 0 ∈ ∇ϕ(B).

75 5.3 Approximate Fermat points

Under our assumptions that x ∗ /∈ A, we have that C∇1 (B) holds if and only if
x ∗ ∈ B. We obtain a soft version of the exclusion predicate C∇0 (B) by replacing
∇ϕ in its definition with any soft version ∇ϕ, see Lemma 5.2.3. But it is not
so easy to get a soft version of C∇1 (B); we shall return to this when we treat the
Newton operator below.

In Algorithm 3, using the exclusion predicate we discard boxes that are guar-
anteed not to contain x ∗ (red in Fig. 5.4) and we split boxes that might contain
x ∗ (green in Fig. 5.4). While subdividing, we test whether we can already ap-
proximate x ∗ well enough by putting a bounding box around all the boxes that
are not excluded yet, using the following predicate.

Definition 5.3.3. Given a set of boxes Q that contains the Fermat point, the stopping
predicate Cε(Q) returns true, if and only if the minimum axis-aligned bounding box
containing all boxes in Q has a radius at most ε.

If Cε returns true, then we can stop. Since the radius of the minimum bounding
box is at most ε, the center of the box is an ε-approximate Fermat point ex ∗.

Algorithm 3: Subdivision for the approximate Fermat point (SUB)
Input : Foci set A, constant ε > 0
Output : Point ex ∗

1 B0← INITIAL-BOX(A); Q← QUEUE(); Q.PUSH(B0);
2 while not Cε(Q) do
3 B←Q.POP();
4 if not C∇0 (B) then
5 Q.PUSH(SPLIT1(B));
6 return ex ∗← Center of the bounding box of Q;

Regarding the runtime of Algorithm 3, evaluating∇ϕ and its soft version takes
linear time in n. The subdivision approach induces an exponential dependency
on d, as splitting a box creates 2d many children. Further, a SPLIT1 operation
decreases the boxwidth by a factor of 2, therefore, Algorithm 3 cannot converge
faster than linear in ε.

5.3.2 Enhancing the Subdivision Paradigm

In this section, we augment Algorithm 3 with a speed up based on a Newton
operator, which will ensure eventual quadratic convergence.

76 5.3 Approximate Fermat points

The Newton operator. Newton-type algorithms have been considered in
the past, usually independently of other methods, and thus suffer from lack
of global convergence. Moreover, from a numerical viewpoint, such methods
face the precision-control problem. Our algorithm integrates subdivision with the
Newton operator (an old idea that goes back to Dekker [1967] in the 1960’s),
thus ensuring global convergence.

We want to find the Fermat point, i.e., the root of f = ∇ϕ. Newton-type
operators are well-studied in the interval literature, and they have the form
N = N f : Rd → Rd . There are three well-known versions of N f : the simplest
version, from Moore [1966] and Nickel [1969], is

N(B) = mB − J−1
f (B) · f (mB),

where J f is the Jacobian matrix of f . Since f =∇ϕ, this matrix is actually the
Hessian of ϕ. The second version by Krawczyk [1969]; Shary [2004] is:

N(B) = mB − K · f (mB) + (I − K · f (B)) · (B −mB),

where K is any non-singular d × d matrix, usually chosen to be an approximation
of J−1

f (mB). The third version, by Hansen [2006]; Hansen and Sengupta [1981],
can be viewed as a sophisticated implementation of the Moore-Nickel operator
using an iteration reminiscent of the Gauss-Seidel algorithm, combined with
preconditioning. Later we report on our implementation of the first two Newton
operators. In general, the Newton operator N(B) does not return a box even if
B is a box; so we define N(B) to be a box that contains N(B). For simplicity,
we assume that N(B) is the smallest box containing N(B) with the same aspect
ratio as B.

The following three properties of Newton box operators are consequences of
Brouwer’s Fixed Point Theorem Brouwer [1911]; Nickel [1971]; Shary [2004];
Xu and Yap [2019]:

1. (Inclusion Property) If N(B) ⊆ B then x ∗ ∈ N(B).

2. (Exclusion Property) If N(B)∩ B = ; then x ∗ /∈ B.

3. (Narrowing Operator) If x ∗ ∈ B then x ∗ ∈ N(B).

77 5.3 Approximate Fermat points

Based on these properties, we can define two tests and an operator:

Definition 5.3.4. Newton tests for gradient exclusion/inclusion predicates (below
we explain why we use 2B instead of B):

• Newton exclusion test:
T N

0 (B) = success iff N(2B)∩ B = ;. Thus T N
0 (B)⇒ C∇0 (B).

• Newton inclusion test:
T N

1 (B) = success iff N(2B) ⊆ 2B. Thus T N
1 (B)⇒ C∇1 (2B).

• Newton narrowing operator:
N∩(B) returns B ∩ N(2B).

Note that the Newton tests T N
0 (B) and T N

1 (B) are defined using the exact
Newton operator N(B). If we replace it by a soft version N(B) in these definitions,
they remain as inclusion/exclusion tests for C∇0 (B) and C∇1 (B); we denote them
by C∇0 (B) and C∇1 (B).

To compute N(B), we use standard interval arithmetic to evaluate the New-
ton operators. We already noted that if N(B) ⊆ B, then x ∗ ∈ N(B). But if x ∗ is
on the boundary of B, then N(B) ⊆ B might not hold, and this issue persists
even after splitting B. We circumvent this problem by using 2B instead of B in
the definition of T N

1 (B).
We enhance Algorithm 3 by the soft inclusion predicate T N

1 (B), as sketched
in Algorithm 4. If T N

1 (B) succeeds, we conclude that x ∗ is contained in N(2B).
In that case, we can discard all other boxes and initialize a new queue Q on

N(2B). In subsequent calls to T N
1 (B

′) for B′ ∈Q, we conclude that x ∗ ∈ 2B′.
But to ensure that w(2B′) < w(B) (to avoid an infinite loop), we initialize the
queue Q with the 4d boxes of SPLIT2(N(2B)).

Algorithm 4: Enhanced subdivision for the approximate Fermat point
(ESUB)

As in Algorithm 3 but replace line 5 with the following:
5.1 if T N

1 (B) then
5.2 Q← QUEUE(); // initialize a new queue

5.3 Q.PUSH(SPLIT2(N(2B)); // 2 split operations

5.4 else
5.5 Q.PUSH(SPLIT1(B));

With respect to the runtime of Algorithm 4, we observe that once the soft
Newton inclusion predicate succeeds, then it will also do so for an initial box of

78 5.3 Approximate Fermat points

the new queue. This, essentially, divides the algorithm into two phases. The first
phase can be basically seen as Algorithm 3. In the second phase, the Newton test
guarantees quadratic convergence in ε. Getting into the second phase depends on
the configuration of the foci set but not on ε, hence, our approach is of particular
interest for small values of ε.

The termination of both subdivision algorithms follows from the soft gradient
exclusion predicate being convergent. The algorithms terminate once the predi-
cate Cε(Q) succeeds, yielding an ε-approximate Fermat point, so we summarize
as follows.

Theorem 5.3.5. Both Algorithms 3 and 4 terminate and return an ε-approximate
Fermat point.

Proof. Assume Algorithm 3 does not terminate. Then the algorithm produces
an infinite monotone sequence of boxes (Bi : i = 0,1, . . .) with Bi+1 ⊆ Bi that
converges to a point p, which is different from the Fermat point x ∗. For large
enough i the soft gradient exclusion predicate will succeed, i.e. C∇0 (Bi) =
success, because it is a soft version of C∇0 . But this contradicts the assumption,
that the algorithm would split box Bi, thus Algorithm 3 terminates. For the same
reasoning also Algorithm 4 terminates, as the Newton inclusion predicate can
only succeed near the Fermat point.

Both Algorithms 3 and Algorithm 4 terminate when the stopping criterion Cε

succeeds, which guarantees that the output of the algorithm is an ε-approximation
of the Fermat point.

5.3.3 Certifying the Weiszfeld method

Weiszfeld’s iterative method Kuhn [1973]; Ostresh Jr [1978]; Weiszfeld [1937]
describes a sequence p i (i = 0, 1, . . .) of points that converges to the Fermat point
x ∗, starting from any initial p0. The recurrence relation is p i+1 = T(p i), where
T (x) is defined by

T (x) =

∑

a∈A,a 6=x w(a) a
‖x−a‖

∑

a∈A,a 6=x w(a) 1
‖x−a‖

.

Note that when x is a focus, then T (x) depends just on all other foci.
This simple iterative method is widely used, and although it converges, it does

not solve our ε-approximation problem as we do not know when to stop. To see
that this is a real issue, consider the example explained next and illustrated in
Fig. 5.5.

79 5.3 Approximate Fermat points

-20 0 20 40 60 80 100 120
-10

-5

0

5

10

x∗
p0p207

two clusters of 249 foci

two foci

Figure 5.5. An example with 500 foci, showing that Weiszfeld’s scheme does not
solve the ε-approximation problem. The scheme stopped when

p i−1 − p i

≤
1/10, after 207 steps (blue points). The distance

x ∗ − p207

 can be arbitrarily
big (‖x ∗ − p207‖> 15 in this case).

Since we seek an ε-approximation of the Fermat point, a simple heuristic for
stopping the Weiszfeld sequence p0, p1, p2, . . . is to stop at p i when ‖p i−1−p i‖< ε.
The example in Figure 5.5 shows 500 foci (black points), two of which have
coordinates (0,10) and (0,−10) and the others are two very dense clusters of
249 foci around (0,0) and (100,0), respectively. This configuration yields a
Fermat point x ∗ ' (0.019,0) (red ’x’) which is very far away from the start
point (red point) which is chosen as the center of mass ' (49.3,0). Setting
ε = 1/10 Weiszfeld’s scheme (blue points) was stopped after 207 steps because
our simple stopping heuristic is satisfied when the step length at iteration i = 207
is smaller than ε = 1/10, i.e.

p206 − p207

 ≤ 1/10. However, the distance

x ∗ − p207

> 15 is still very big. Thus, a more advanced technique is needed to
decide when to stop.

We augment the Weiszfeld iteration by adding Newton tests during the com-
putation, turning it into an ε-approximation algorithm. While at the i-th iteration,
we define a small box B with point p i as center, and map it to the box N(B)
using the Newton operator; see Fig. 5.6. If N(B) ⊆ B, then the Fermat point x ∗

lies in N(B). On the contrary, if N(B) 6⊆ B we move on to the next point p i+1

and adjust the box size as follows.

If B
10 ∩ N(B

10) = ;, then the box B
10 does not contain x ∗ and we therefore

expand B by a factor of 10. If B
10 ∩ N(B

10) 6= ;, then there might be a focus in box
B
10 , which hinders N(B) ⊆ B to succeed. In that case we shrink B by a factor of
10. If a focus is not in B

10 , shrinking B does not effect the algorithm negatively, as
B can expand again.

Using these tests we augment the point sequence scheme, sketched in Algo-
rithm 5, with the property that if the Newton test evaluates to true, then we are
guaranteed an ε-approximation of x ∗. As a starting point, we choose the center of
mass p0 of A, i.e., p0 =

1
W

∑

a∈A w(a)a.

With respect to the runtime, the point sequence T(x) converges linearly in

80 5.3 Approximate Fermat points

ε towards x ∗ Katz [1974] but in order for Algorithm 5 to terminate the test
N(B) ⊆ B must succeed. Similar to other Newton operators, N(B) ⊆ B

succeeds for boxes in a neighborhood surrounding x ∗. This neighborhood depends
only on the configuration of A but not on ε. Further, evaluating T (x) and N(B)
can be done in O(nd2) time. We conclude as follows.

Theorem 5.3.6. Algorithm 5 terminates and returns an ε-approximate Fermat
point.

Algorithm 5: Certified Weiszfeld for the approximate Fermat point (CW)
Input : Foci set A, constant ε > 0 Output: Point ex ∗

1 p ← p0; l ← ε;
2 while TRUE do
3 B← Box B(mB = p, ω(B) = l);
4 if N(B) ⊆ B then // Fig. 5.6(a)

5 return ex ∗← p;
6 else if N

�

B
10

�

∩ B
10 = ; then // Fig. 5.6(b)

7 l ←min{10 · l,ε};
8 else // Fig. 5.6(c)

9 l ← 1
10 · l;

10 p ← T (p);

For simplicity, we had assumed for Algorithms 3, 4 and 5 that the Fermat point
is not a focus. Note that this assumption can be checked in advance by evaluating

∇ϕA\{a}(a)

 ≤ w(a) for each focus a, see Theorem 5.3.1, which would take
(n2d) time. We will explain two reasons, why that quadratic testing time in n can
be avoided for both subdivision algorithms.

We added this assumption, because the Newton tests cannot succeed for a
box B if B contains the Fermat point. This is because ∇2ϕ(B) has the interval
[‖mB − a‖− r,‖mB − a‖+ r] in its denominator, which contains 0 if a ∈ B. Hence
the box N(B) covers the whole space if a focus is in B.

B B
10

pi
pi(a) (b) (c)

piN(B
10
)

N(B) N(B
10
)

B
10

Figure 5.6. The case analysis of Algorithm 5. (a) N(B) ⊆ B, (b) N(B
10)∩

B
10 =

;, and (c) N(B
10)∩

B
10 6= ;.

81 5.4 Approximating n-ellipses

Instead of checking the assumption, one can run Algorithm 3 and 4 anyway and
rely only on the soft gradient exclusion predicate. There is a more elegant solution
for this problem, described next. Instead of testing all foci in the beginning, if
one of them is the Fermat point, this can be done during the subdivision process.
We keep track of the number of foci, which are contained in non-discarded boxes.
If that number falls below a constant, then we test these few constantly many
remaining foci for being the Fermat point. That can now be done in O(nd) time.

5.4 Approximating n-ellipses

In this section, we describe an algorithm to construct approximate n-ellipses,
based on the subdivision paradigm. Throughout this work we maintain the
subdivision smooth, i.e., the width of any two adjacent boxes, which are leaves of
the quadtree, may differ at most by a factor of 2. Maintaining smoothness is easy
to implement and has amortized O(1) cost per operation Bennett and Yap [2017].
Without maintaining smoothness, the amortized cost can be Ω(log n) Bennett and
Yap [2017].

The Plantinga and Vegter (PV) construction Plantinga and Vegter [2004];
Lin and Yap [2011]; Lin et al. [2012] approximates the zero set of a function
F : Rd → R where d ∈ {2,3}. Assuming that S = F−1(0) is regular, i.e., the
gradient ∇F is non-zero at every point of S, this approximation is isotopic to
S. Our goal is to use this construction to approximate the n-ellipse defined by
F(p) := ϕ(p)− r with r > r∗. For simplicity, we assume all boxes are square; for
the construction to succeed, we only need an aspect ratio ≤

p
2 (see Lin and Yap

[2011]). We use the notation 〈·, ·〉 for the scalar product. The following are the
key predicates and tests in the PV construction of the n-ellipse F−1(0).

Definition 5.4.1. Fix F(p) = ϕ(p)− r. Let B be a square box.

1. The fundamental box predicate is the inclusion predicate C F
1 (B) : 0 ∈ F(B),

and its complement, the exclusion predicate C F
0 (B) : 0 /∈ F(B).

2. The (corner) inclusion test Tcor(B) = success iff F , when evaluated at the
corners of B, admits both negative and positive values. Clearly, Tcor(B) is a
test for C F

1 (B). (There is a standard PV trick whereby any 0-value can be
arbitrarily made positive.)

3. The normal variation predicate Cnv(B) is defined by the condition
〈∇F(B),∇F(B)〉> 0.

82 5.4 Approximating n-ellipses

We obtain the soft versions C F
0 (B) and Cnv(B) by the usual device of re-

placing F(B) in the definition of the predicates by a soft version F(B). But for
the inclusion predicate C F

1 (B) we have no soft version. Instead, the corner test
Tcor(B) is a test for C F

1 (B). To supplement the corner test, we need the normal
variation predicate Cnv(B). This predicate is equivalent to the condition that the
angle between the gradient of any two points in B is at most 90◦. It implies that
the n-ellipse is monotone in either x- or y-direction within the box. In Fig. 5.7,
boxes are: red if they pass the C F

0 (B) test, green if they pass both Cnv and Tcor,
orange if the pass only Cnv, and gray otherwise. Note that orange boxes may,
or may not, contain parts of the approximate n-ellipse.

An n-ellipse is not regular if it passes through some focus Sekino [1999]; in
that case a direct PV construction is not possible. We develop a variation, sketched
in Algorithm 6, where we simultaneously subdivide boxes and construct pieces of
the n-ellipse on the fly, instead of doing that in the end. Further, boxes in which
the n-ellipse may not be regular are treated differently. During the subdivision
part of the algorithm, we classify boxes in three categories:

(a) (b)

Figure 5.7. (a) A 3-ellipse passing through two foci. Components of gray boxes
(temporarily) surround the foci. (b) If a gray component satisfies (B1) - (B3)
the two ingoing edges are connected with an edge (shown dashed).

1. Boxes which satisfy C F
0 (B) (red): These do not contain any piece of the

n-ellipse, so they do not need to be further considered and are discarded.

2. Boxes which satisfy Cnv and have width smaller than ε/2 (green or or-
ange): We immediately draw edges in each of these boxes, in contrast to
the normal PV construction. Note that at a later stage of the algorithm it
might happen that we split one of B’s neighboring boxes. In that case we
need to take into account the sign of F at the new vertex on B’s boundary.
If necessary, the edges in box B then need to be updated.

3. The remaining boxes (gray): Such boxes occur near foci and need more
careful attention, as we cannot apply the standard PV construction. Instead,

83 5.4 Approximating n-ellipses

given a set of gray boxes we first distinguish them in connected components,
using a DFS algorithm. Then, for each connected component of gray boxes
Ki, we check if a set of conditions is satisfied:

(B1) Ki contains exactly one focus.

(B2) There are exactly two PV-edges leading to Ki.

(B3) The distance between any two corners of the boxes in Ki is at most
ε/2.

If Ki satisfies all (B1) - (B3), then we connect the 2 PV-edges leading to Ki

by a line segment and discard boxes of Ki, see Fig. 5.7(b). Otherwise, the
children of the boxes of Ki are put back in Q for further classification.

Algorithm 6: Approximating an n-ellipse
Input : Foci set A, radius r, constant ε, box B0 Output: Curve E

1 Q← QUEUE(); Q.PUSH(B0);
2 while Q 6= ; do
3 Qnew← QUEUE();
4 while Q 6= ; do
5 B←Q.POP();
6 if not C F

0 (B) then // exclude red

7 if Cnv(B) and ω(B)< ε/2 then // green or orange

8 E∩B ← ONLINE-PV(B);
9 else // gray

10 Qnew.PUSH(SPLIT4(B));
11 Q← CONNECTED-COMPONENTS-ANALYSIS(Qnew)
12 return E;

By controlling the size of the boxes containing parts of the output curve, and
by the modification the PV construction we prove the following.

Theorem 5.4.2. Algorithm 6 returns an isotopic ε-approximation of the
n-ellipse F−1(0).

Proof. The standard PV construction terminates for regular curves S = F−1(0).
This implies that boxes of type (A3) can only survive in the neighborhood of foci.
As time passes those neighborhoods become smaller and the neighborhoods of 2
different foci will become disjoint. That means that, eventually, properties (B1) -

84 5.4 Approximating n-ellipses

(B3) will be satisfied for each component and no box will be put back to queue Q
in line 11 of Algorithm 6.

The property that the output is a regular isotopic approximation of the n-
ellipse is inherited from the PV-construction of regular curves. In the following
we show that it is also an ε-approximation of the k-ellipse.

Let S = F−1(0) and S∗ its approximation derived by Algorithm 6. We prove
that the distance from any point on S∗ to S is at most ε. A green or orange
box B contains an edge of S∗ only if F admits different signs when evaluated
at corners on B’s boundary. In that case also the k-ellipse has to pass through
B. The box radius of B is smaller than ε/2 and therefore any point on S∗ in B
has at most ε distance to S. Let p be a point on S∗ in a gray box of component
K . The component K has two ingoing edges and in particular two points on its
boundary, which are on S, see Fig. 5.7(b). Therefore the distance from p to S can
be bounded by the diameter of K , which is smaller than ε. None of the red boxes
contains a part of S∗.

Finally we prove that the distance from any point on S to S∗ is at most ε. All
the boxes, which might contain parts of S satisfy the C1 predicate (green and
orange) or are part of a small component of gray boxes. If a box satisfies the C1

predicate but the function F has the same sign at all its corners, then the curve S
might possibly enter the box but also has to leave the box on the same side of B
Plantinga and Vegter [2004] and any neighboring box on that side has different
signs for F on its corners. Let p be a point on S in box B and let B1 and B2 be
the next boxes which are reached by walking from p along S in both directions.
Note that B1 and B2 might be the same box. If B is a gray box of component K ,
then the distance from p to S∗ can be bounded by the distance between p and
the edge of S∗ in K . This distance is bounded by the diameter of K which is less
than ε/2. If B is a green or orange box, then it satisfies the C1 predicate and box
B1 and B2 have different signs at their 4 corners. If B1 or B2 are green or orange
then the approximation S∗ passes through them and p is close enough to S∗. If
both B1 and B2 are gray, then the edge of S∗ through their components is close to
p. Finally, B cannot be a red box by definition.

Interpolating edges. The PV construction creates edges within a box B,
which start and end at midpoints of box edges. One can derive a nicer-looking
approximation by using linear interpolation on the box edges by taking into
account the value of F at B’s corners.

85 5.5 Experiments

(a) (b)

Figure 5.8. Two different 3-elliptic contour plots with 10 contour lines, having
the same set of foci. (a) Using radii of equidistant points. (b) Using equidistant
radii.

Contour Plotting. As an application, we can use the above technique in
order to produce a topologically correct, ε-approximate and visually nice n-elliptic
contour plot. To do so, we first adapt our algorithm in order to simultaneously
plot several n-ellipses inside a bounding box, corresponding to the same foci but
with different radii. Each n-ellipse is a contour line, and we describe how to plot
them visually nice, i.e., the contour lines are roughly equally distributed in space.
See Fig. 5.8 for two different approaches and their visualization effect.

5.5 Experiments

We implemented our algorithms for R2 and conducted a series of experiments.
Our current software is written in MATLAB (version R2018b), taking advantage of
its graphics ability. The numerical accuracy is therefore IEEE numerical precision.
The platform used was MacOS Big Sur v11.2.3, with 2.5 GHz Quad-Core Intel
Core i7 and 16 GB 1600MHz DDR3.

Following, we report on our experiments, discussing some notable points one
by one. We evaluated our algorithms on both synthetic and real-world datasets.
For all algorithms approximating the Fermat point we chose a time limit of 600
seconds. Moreover, for most experiments we executed 10 different instances for
completeness. In the illustrated charts, the curves pass through the mean of the
10 running times, and additionally we also marked the minimum and maximum
running times. All axes in the charts are of logarithmic scale.

Datasets. We mainly experimented with two different types of synthetic
datasets, namely UNIF-1 and UNIF-2. In UNIF-1 the n foci are sampled uniformly
from a disk of radius 1. In UNIF-2 again the n foci are sampled uniformly from

86 5.5 Experiments

a disk of radius 1 and then n/2 foci are translated by a vector (10,10), see
Fig. 5.9(a) and Fig. 5.9(b). Despite their similarity, the two datasets present
strong differences. As we later see, UNIF-2 is significantly more difficult to solve
in comparison to UNIF-1, and further UNIF-1 resembles nicely real-world datasets.
The foci of UNIF-2 lie almost all on a common line, which implies that there are
many points for which the gradient is close to 0. This makes it difficult to find
the actual Fermat point, for which the gradient is exactly 0. We experimented
with more types of synthetics datasets, such as points in convex position, vertices
of a regular n-gon, clusters of points, but we do not report on these results, as
they are similar to UNIF-1 or UNIF-2.

(a) (b) (c)

Figure 5.9. A box subdivision for n= 200 foci: (a) Unif-1, (b) Unif-2 and (c)
Unif-2 after PCA.

Newton operators. Adding a Newton operator to the subdivision process
drastically improves the running time. We compared Algorithm 3 with two
versions of Algorithm 4, where we once use the Newton operator based on Moore
and Nickel and also the operator by Krawzcyk. The results for various values
of n and ε on both UNIF-1 and UNIF-2 are summarized in Fig. 5.10. Note that
Algorithm 4 initially needs to perform simple splitting operations until at some
point the Newton test succeeds the first time. After that the algorithm converges
quadratically in ε, which explains why the running time of both versions almost
do not increase for decreasing ε. Even though the operator by Krawzcyk returns
a smaller box N(B), i.e. it is more precise, than Moore and Nickel, it performs
slower for UNIF-1 as evaluating the operator takes more time. We conclude that
using a Newton operator speeds up the computations, and we use the one of by
Moore and Nickel in Algorithm 4.

Principal component analysis. Foci sets like UNIF-2 are challenging as all
foci are close to a common line. In this case, the subdivision algorithms can be
slow because there are many boxes for which the gradient ∇ϕ is close to 0. Our

87 5.5 Experiments

(a) (b) (c) (d)

Figure 5.10. A comparison of Algorithm 3 (• SUB), Algorithm 4 with the
Krawzcyk Newton operator (D Krawzcyk), and Algorithm 4 with the Nickel
and Moore Newton operator (� Nickel & Moore). (a),(b) Time as a function of
n, with ε = 10−4. (c),(d) Time as a function of ε with n= 100. (a),(c) Unif-1
datasets. (b),(d) Unif-2 datasets.

approach to tackle this problem is to use subdivision with rectangular boxes. In
a preprocessing step we do a principal component analysis (PCA) of the foci as
heuristic. Then, we rotate the coordinate system such that the x-direction is
the first principal component. In the box subdivision we use rectangular boxes
with long x-width, see Fig. 5.9(c). Observe in the following table, that for well
distributed foci sets like UNIF-1, using the PCA adds only a small overhead to the
total running time.

ε = 10−3, n= 10 100 1000 10000
without PCA 0.12 0.31 2.33 23.4
with PCA 0.10 0.30 2.30 23.9

n= 100, ε = 10−1 10−3 10−5 10−7

without PCA 0.20 0.30 0.33 0.34
with PCA 0.18 0.30 0.33 0.35

On the contrary, for sets like UNIF-2, adding the PCA decreases drastically the
running time, as shown next. Hence, the PCA preprocessing is a useful addition
to Algorithm 4, which we will use also in the following experiments.

ε = 10−3, n= 10 100 1000 10000
without PCA 90.7 48.5 170 timeout
with PCA 0.15 0.40 3.21 32.7

n= 100, ε = 10−1 10−3 10−5 10−7

without PCA 37.1 49.2 49.2 49.5
with PCA 0.36 0.40 0.42 0.43

Real Datasets. Inspired by the applications in facility location we chose
to experiment with instances of the well-known Traveling Salesman Person Li-
brary Reinelt [1991] or TSPLIB. The foci correspond mostly to location of cities
in different areas around the world, see Fig. 5.11.

88 5.5 Experiments

burma14

15 20 25
92

93

94

95

96

97

98

99

bayg29

0 500 1000 1500 2000
500

1000

1500

2000

2500

berlin52

0 500 1000 1500 2000
0

200

400

600

800

1000

1200

bier127

0 0.5 1 1.5 2

104

0

0.5

1

1.5

2
104

tsp225

200 300 400 500 600
100

150

200

250

300

350

400

linhp318

0 1000 2000 3000
-1000

0

1000

2000

3000

4000

5000

ali535

-50 0 50
-200

-100

0

100

200

nrw1379

3000 3500 4000 4500 5000
5500

6000

6500

7000

7500

8000

8500

fnl4461

6000 7000 8000 9000 10000
5000

6000

7000

8000

9000

10000

11000

usa13509

2 3 4 5

105

6

7

8

9

10

11

12

13
105

Figure 5.11. Foci sets of TSPLib used in our experiments. burma14: 14 cities
in Burma, bayg29: 29 cities in Bavaria, berlin52: 52 locations in Berlin, bier127:
127 beer gardens in the Augsburg area (Germany), tsp225: writing of TSP with
225 points, linhp318: 318 cities, ali535: 535 airports around the globe, nrw1379:
Nordrhein-Westfalen (Germany), fnl4461: the five Federal States of Germany
(ex-GDR territory), usa13509: cities in the continental US with at least 500
population

It appears that real-world instances show a similar behavior to UNIF-1 datasets;
so we infer that UNIF-1 are realistic datasets for the evaluation of different al-
gorithms. In our experiments, to verify that for each TSPLIB dataset we created

89 5.5 Experiments

an additional foci set, where we uniformly sampled the same number of foci
in the axis-aligned bounding box. As ε we chose 10−6 times the width of the
corresponding bounding box. These experiments are illustrated in Fig. 5.14(a),
and the similarity of the running time for the two datasets is obvious.

(a) (b) (c) (d)

Figure 5.12. An overall comparison of Algorithm 3 (• SUB), Algorithm 4 with
the PCA (D ESUB), and Algorithm 5 (� CW). (a),(b) Time as a function of
n, with ε = 10−4. (c),(d) Time as a function of ε with n= 100. (a),(c) Unif-1
datasets. (b),(d) Unif-2 datasets.

Comparison with the Interval method We compared our Algorithm 3 with
a naive approach, called interval method. It is based on the fact that if given two
boxes B1 and B2, such that the intervals ϕ(B1) and ϕ(B2) are disjoint, then
the box with bigger function values cannot contain the Fermat point. The interval
method is a subdivision algorithm like Algorithm 3, where at any time we keep
track of the smallest upper bound b of intervals ϕ(B), for boxes B visited so far.
The interval method replaces the soft gradient exclusion predicate in line 4 of
Algorithm 3 by the other soft exclusion predicate b < ϕ(B). We compared these
two methods for different values of n and ε using the data sets UNIF-1. The results
are summarized in the next two tables. In all tests the soft gradient exclusion
predicate performed much better. Note, that for boxes B near the Fermat point
the value ϕ(B) is very similar. Hence, the interval method needs to do many
splitting operations for small ε and work with very high internal precision. This
explains, why that naive method did not terminate within 600 sec for n = 100
and ε = 10−7.
ε = 10−3, n= 10 100 1000 10000
Interval method 0.99 1.72 9.62 89.3
SUB 0.11 0.29 2.06 21.0

n= 100, ε = 10−1 10−3 10−5 10−7

Interval method 0.74 1.77 2.84 timeout
SUB 0.15 0.31 0.46 0.61

We remark that many more types of synthetic datasets were considered, as
points in convex position, points which are vertices of regular n-gons, points on

90 5.5 Experiments

a grid, etc, see Fig. 5.13. Most of the useful information about the behavior of
the algorithms can be extracted by experimenting on UNIF-1, UNIF-2 and TSPLIB,
so we chose to mainly experiment and analyze only these. As an example, the
running times for Algorithm 4 with PCA for fixed n = 100 and ε = 10−6 are given
in following table.

n= 100,ε = 10−6 clusters convex position n-gon UNIF-1 UNIF-2
running times 0.37 0.26 0.33 0.34 0.33

(a)

-10 -5 0 5 10
-10

-5

0

5

10

(b)

-50 0 50
-50

0

50

(c)

-40 -20 0 20 40
-30

-20

-10

0

10

20

30

Figure 5.13. (a) 100 points in convex position (b) points of a regular 100-gon
(c) 100 points split among 10 clusters

Summary on the Fermat point. We make an overall comparison of Algorithm
3, Algorithm 4 with the PCA, and Algorithm 5, illustrated in Fig. 5.12. The running
time of all methods shows a linear dependency on n, but there are big differences
regarding the dependency on ε. Overall, Algorithm 5 performs well in all cases,
but due to the linear convergence of Weiszfeld’s point sequence, it cannot converge
faster as ε decreases. In contrast, Algorithm 4 takes more time in the subdivision
phase, but once the Newton tests succeeds, the algorithm terminates very quickly.
So, it does not exhibit almost any changes in the running time for decreasing ε.
This makes it favorable when a high precision approximate solution is required. It
is also very fast in UNIF-2 instances and outperforms Algorithm 5. Summarizing,
we suggest to use Algorithm 4 in small dimensional spaces and for small ε due
to its eventual quadratic convergence in ε. On the other hand, the subdivision
methods take exponential time in d, therefore, we suggest to use Algorithm 5 for
higher dimensional spaces.

91 5.6 Details on box approximations

n-ellipses. Finally, we evaluated the runtime of n-ellipses algorithm. In
Fig. 5.14(b) we evaluate the dependency on n. In order to keep the length of
the curve almost constant we choose the radii r = (10

p
2+2)n
2 . The bounding box

used is [−2, 12]2. In Fig. 5.14(c) we analyze the dependency on the length of the
n-ellipse. The bounding box is fixed and we experimented with different radii
such that the lengths of the curve differ by a factor of 3/2. The runtime shows a
linear dependency on n, as expected, and it also shows a linear dependency on
the length of curve. This can be justified, as covering an n-ellipse of length l with
boxes of width ε takes O(l/ε) many boxes.

(a) (b) (c)

Figure 5.14. (a) A comparison of TSP data sets (filled shapes) with Unif-1
(empty shapes, dashed curve) for both Algorithm 4 (• ESUB) and Algorithm 5
(� CW). Fermat point with time as a function of n. (b),(c) n-ellipse on Unif-2
with time as a function of (b) n and (c) the length of the n-ellipse. Two ε
approximations with ε = 0.1 (•) and ε = 0.01 (�) have been computed.

5.6 Details on box approximations

For this section we need to introduce a bit more notation. Let ()T denote the
transpose operation. The Hessian ∇2 f : Rd → Rd×d of f is given by the matrix
∇2 f (x) = (fi j(x))di, j=1 where fi j = ∂i∂ j f .

The box approximations described in this section generalize for higher dimen-
sions. For simplicity we describe them in R2.

5.6.1 Box approximation of the gradient ∇ϕ

For any point p = (px , py)T , let sin(p) := px/‖p‖ and cos(p) := py/‖p‖. Clearly,

∇ϕ(p) =
�∑

a∈A w(a) sin(p− a)
∑

a∈A w(a) cos(p− a)

�

.

92 5.6 Details on box approximations

We want to develop formulas for sin(B − a) and cos(B − a). By symmetry, we

consider only sin(B − a). The four corners of B are given by mB +
ω(B)

2

�

±1
±1

�

. Let

Corners(B) denote this set of four points. Then

sin(B − a) =























[−1,1] if a ∈ B,
[min(sin(Corners(B)− a)), 1] if a is left of B,
[−1,max(sin(Corners(B)− a))] if a is right of B,
[min(sin(Corners(B)− a)),

max(sin(Corners(B)− a))] else.

In other words, sin(B− a) can be computed from the sinus of at most four angles.
Similarly for cos(B − a).

Now, we extend these formulas: for instance,

∇ϕ(B) =
�∑

a∈A w(a) sin(B − a)
∑

a∈A w(a) cos(B − a)

�

.

The following is immediate:

Lemma 5.6.1. ∇ϕ is a soft predicate, i.e. it is conservative and convergent.

Evaluating ∇ϕ as described above gives a very good soft version of ∇ϕ.
Evaluating a function for all corners of a box takes exponential time in d. If the
number of dimensions is higher, one can instead directly apply interval arithmetic
to compute such soft versions in O(nd) time.

5.6.2 Box approximation of ϕ

We use the concept of a Lipschitz constant in order to derive a box approximation
of ϕ. We call L(B) a Lipschitz constant for box B if ∀p, q ∈ B : |ϕ(p)−ϕ(q)| ≤
L(B) · ‖p− q‖. A trivial Lipschitz constant is W because it bounds the maximum
length of the gradient:

‖∇ϕ(p)‖ ≤
∑

a∈A

w(a)

�

sin(p− a)
cos(p− a)

�

=
∑

a∈A

w(a) =W

Definition 5.6.2. We use ϕ(B) as a box approximation of ϕ(B) where:

ϕ(B) = [ϕ(mB)− L(B) · rB,ϕ(mB) + L(B) · rB]

Lemma 5.6.3. ϕ(B) is a soft predicate, i.e. it is conservative and convergent.

93 5.6 Details on box approximations

Proof. The L(B) is a Lipschitz constant of ϕ on box B, i.e. ∀p ∈ B:

|ϕ(p)−ϕ(mB)| ≤ L(B) · rB

This impliesϕ(p) ∈ [ϕ(mB)−L·rB,ϕ(mB)+L·rB] and hence ϕ(B) is conservative.
Let Bi be a sequence of boxes, which converges to a point. This implies rBi

→ 0.
The Lipschitz constant L can be bounded from above by W . Thus, ω(ϕ(Bi))≤
2W · rBi

→ 0.

Using the Lipschitz constant W within all boxes B can result in very bad box
approximations. Consider boxes near the Fermat point, for which the gradient
of ϕ at every point is almost 0. In the rest of this section we compute a better
Lipschitz constant for each individual box.

We partition the set of foci A= A1∪̇A2 into foci which are "far" or "close" to
box B:

∀a ∈ A1 :

�

sin(B − a)
cos(B − a)

�

⊂ [−1,1] and ∀a ∈ A2 :

�

sin(B − a)
cos(B − a)

�

* [−1, 1]

The length of an interval vector I = (Ix , I y) is computed by ‖I‖ =
q

I2
x + I2

y , where
we define the square root of an interval J = [J1, J2] by:

p
J =











�

0,
p

max{|J1| , |J2|}
�

if 0 ∈ J

�p

min{|J1| , |J2|} ,
p

max{|J1| , |J2|}
�

if 0 /∈ J .

A box approximation of the length of the gradient of ϕ can then be achieved by:

‖∇ϕ(B)‖=

∑

a∈A1
w(a)

�

sin(B − a)
cos(B − a)

�

+
�

−
∑

a∈A2
w(a),

∑

a∈A2
w(a)

�

The maximal length of the gradient within box B is a Lipschitz constant of ϕ
within box B. Hence, L(B) =max ‖∇ϕ(B)‖ can be used as Lipschitz constant
for box B.

5.6.3 Box approximation of the Hessian ∇2ϕ

For any p ∈ R2 \ A it holds:

∇2ϕ(p) =

∑

a∈A w(a)
(py−a y)2

‖p−a‖3 −
∑

a∈A w(a)
(px−ax)(py−a y)

‖p−a‖3

−
∑

a∈A w(a)
(px−ax)(py−a y)

‖p−a‖3
∑

a∈A w(a) (px−ax)2

‖p−a‖3

!

.

94 5.7 Conclusion

Definition 5.6.4. We define the box approximation of ∇2ϕ(B), denoted ∇2ϕ(B)
as follows.

∇2ϕ(B) =

∑

a∈A w(a)
(By−a y)2

[‖mB−a‖−r,‖mB−a‖+r]3 −
∑

a∈A w(a)
(Bx−ax)(By−a y)

[‖mB−a‖−r,‖mB−a‖+r]3

−
∑

a∈A w(a)
(Bx−ax)(By−a y)

[‖mB−a‖−r,‖mB−a‖+r]3
∑

a∈A w(a) (Bx−ax)2

[‖mB−a‖−r,‖mB−a‖+r]3

!

.

The following lemma is again immediate.

Lemma 5.6.5. ∇2ϕ is conservative and convergent.

5.7 Conclusion

In this work, we mainly focused on finding ε-approximate Fermat points, in
a strong sense ‖ex ∗ − x ∗‖ ≤ ε, which had not been considered before. This
approximation can also be used to derive an ε-approximation of the Fermat
radius. This was done using a simple-to-implement subdivision approach. All
of our algorithms are certified in the sense of interval arithmetic. Moreover, we
certified the famous point-sequence algorithm of Weiszfeld [1937] to guarantee
that it does find an ε-approximate Fermat point. We also designed an algorithm to
construct ε-approximate n-ellipses. The simplicity and efficiency of our algorithms
were evaluated experimentally for d = 2.

There are many directions for further research. One is to derive algorithmic
complexity bounds. Our intuition regarding the time complexity of our algorithms
was affirmed by the experimental runtime evaluation. Such bounds are rare for
iterative numerical algorithms. There has been considerable success in the area
of root isolation Burr et al. [2009]; Burr [2016] where the idea of “continuous
amortization” should also apply here. Further, we expect the usage of the Hansen-
Sengupta Newton operator to result in a speedup.

Regarding the construction of n-ellipses, it would be interesting to design an
alternative algorithm based on curve-tracing. This could improve the runtime
once a starting point on the n-ellipse is found.

Another direction is related to Voronoi diagrams. From one perspective, it is
interesting to approximate the Voronoi diagram, where the sites are n-ellipses;
so far only 2-ellipses have been studied Emiris et al. [2006]. From a different
perspective, if the sites are sets of foci (each associated with a Fermat distance
function) it is interesting to compute their Voronoi diagram, defined as the mini-
mization diagram of the Fermat distance functions. This is a min-sum diagram
in the context of cluster Voronoi diagrams, see e.g., Huttenlocher et al. [1993];

95 5.7 Conclusion

Papadopoulou [2004]. We believe that subdivision methods augmented with root
boxes, similar to Bennett et al. [2016], would be applicable to these problems.

96 5.7 Conclusion

Chapter 6

Bichromatic discrepancy

Chapter 6 is based on parts of the following paper:

• Man-Kwun Chiu, Matias Korman, Martin Suderland, and Takeshi Tokuyama.
[2022]
Distance bounds for high dimensional consistent digital rays and 2-d partially-
consistent digital rays.
Discrete & Computational Geometry pp. 1–43.

How uniform can one distribute red and blue points in the unit square, such
that the difference between the number of points in a sample area is close to the
expected difference? See an example in Fig. 6.1.

0 1

1

0.5

0.5

Figure 6.1. Red and blue points sets of cardinality 4 with high discrepancy.
The indicated rectangle contains only red points, even though the expected
difference between red and blue points in such a rectangle would 0.

We formally define the bichromatic discrepancy as follows. Let R and B be
a set of red and blue points in the unit square, respectively. Let m := |B| − |R|

97

98

and assume m≥ 0. For any set P of points in the unit square and x , y ∈ [0, 1] let
P[x , y] be the number of points in P ∩ [0, x]× [0, y]. For any two real numbers
0≤ x , y ≤ 1 we define the discrepancy of R and B at (x , y) as

DR,B(x , y) = mx y − (B[x , y]− R[x , y]). (6.1)

The discrepancy of R and B is simply defined as

D∗R,B = max
(x ,y)∈[0,1]2

|DR,B(x , y)|

(i.e., the highest discrepancy we can achieve among all possible rectangles).
The discrepancy D∗R,B of a two-colored pointset is high if and only if there is an
axis-aligned rectangle with the origin as corner in which the difference of the
cardinalities is far from the expected difference.

This is a natural extension of the concept of discrepancy. Indeed, the classic
definition of (monochromatic) discrepancy is the particular case in which R= ;
(see Matoušek [1999] for a detailed survey of this concept and its many applica-
tions). To the best of our knowledge, the extension of discrepancy to chromatic
settings is largely unexplored. Beck [1981] considered coloring an uncolored
pointset so as to minimize the chromatic discrepancy (obtaining O(log4 n) upper
and Ω(log4 n) lower bounds for the difference between the number of red and
blue points within axis-aligned rectangles. If the rectangles are allowed to have
arbitrary orientations instead then they derive an O(n1/2+ε) upper and Ω(n1/4−ε)
lower bound for any ε > 0. Dobkin et al. [1996] introduce algorithms to find
the maximum discrepancy for a given pointset (under different definitions of
bichromatic discrepancy).

1

10.5

0.5

Figure 6.2. The discrepancy of the red rectangle is roughly |8×0.752−4| = 0.5.

99 6.1 Discrepancy lower bound

6.1 Discrepancy lower bound

In this section we show that the bichromatic discrepancy cannot be arbitrarily
small unless the sets of red and blue points are of same cardinality. In that case,
trivially choosing R= B results in a setting with 0 discrepancy.

Theorem 6.1.1 (Bichromatic discrepancy). There exists a constant c > 0 such that
for any set R and B of points with |B| ≥ |R|,

D∗R,B ≥ c
�

(|B| − |R|) · log(|B|+ |R|)
|B|+ |R|

�

.

Note that the aforementioned bound is tight for the trivial case |R|= |B| but
also for R = ;, in which we get the classic two dimensional discrepancy result.
For the latter case there are several proofs for the Ω(log |B|) lower bound and
its tightness, see Matoušek [1999] for a detailed survey. In order to extend the
bound for the case of R 6= ;, we make minor changes to Schmidt’s proof Schmidt
[1972]. We start by using an auxiliary function G (defined below) and combining
it with the trivial inequality

∫

(x ,y)∈[0,1]2
DR,B(x , y)G(x , y)d xd y

≤ max
(x ,y)∈[0,1]2

|DR,B(x , y)|
∫

(x ,y)∈[0,1]2
|G(x , y)|d xd y

to obtain

D∗R,B = max
(x ,y)∈[0,1]2

|DR,B(x , y)| ≥

∫

DR,BG
∫

|G|
.

Note that for simplicity in the notation we removed the integration limits as
we always integrate over all points (x , y) within the unit square. Our definition
of G is identical to the one used by Schmidt: Let m = dlog2(b + r)e + 1 and
observe that, by definition of m we have 2(b+ r)≤ 2m ≤ 4(b+ r). Only in this
section we use the variable name “m” in a different sense in order to keep the
notation similar to Matoušek [1999]. For any j ∈ {0, . . . , m} we define function
f j : [0,1]2 → {−1,0,1} as follows: subdivide the unit square with 2 j equally
spaced vertical lines and 2m− j horizontal lines.

For any value of j we subdivide the unit square into rectangles of area 2−m

(larger values of j will result in thinner but wider rectangles). Let A be a rectangle

100 6.1 Discrepancy lower bound

+

+

+

+

+

+

+

+

+

+−

−

−

−−

−

−

−

−

−
0

0

0

Figure 6.3. Illustration of f j for m= 3 and j = 1.

of subdivision associated to f j. We define f j within the rectangle to be 0 if A
contains any point of R∪ B. If A does not have neither red nor blue points, we
further subdivide it into four congruent quadrants. The function value of f j is
equal to 1 in the upper right and lower left quadrants, and −1 in upper left and
lower right quadrants, see Fig. 6.3.

Then, we define G as G = (1+ c f0)(1+ c f1) . . . (1+ c fm)− 1, where c ∈ (0, 1)
is a small constant (whose value will be chosen afterwards). Note that G can also
be expressed as G = G1 + . . . Gm, where

Gk = ck
∑

0≤ j1≤...≤ jm≤m

f j1 f j2 . . . f jk .

Schmidt showed that
∫

|G| ≤ 2 (regardless of the value of m). Thus, we now
focus in giving a lower bound for

∫

DR,BG.

Lemma 6.1.2. There exists a constant c1 such that
∫

DR,BG1 ≥ cc1
b−r
b+r log(b+ r).

Proof. By definition of G1 we have
∫

DR,BG1 = c
∑m

j=0

∫

DR,B f j. Thus, it suffices to

show that for any value of j it holds that
∫

DR,B f j ≥ c′ b−r
b+r (for some other constant

c′ > 0).
Recall that, when defining f j, we subdivided the unit square into at least

2(b+ r) rectangles. For the rectangles that contain at least one point of R∪ B, f j

101 6.1 Discrepancy lower bound

is set to zero, and thus they do not contribute to the integral. Since we have b+ r
many points, we know that there must exist at least b+ r rectangles that do not
contain any point of R or B. Let A be any such rectangle, and let ASW , ANW , ASE, AN E

be the four subquadrants of A (where the subindex refers to the cardinal position
of the quadrant). Recall that f j is equal to 1 for any point of ASW ∪ AN E and −1
for points of ASE ∪ ANW .

Let w and h be vectors defined by the horizontal and vertical sides of ASW ,
respectively. Observe that their lengths are 2− j−1 and 2 j−m−1, respectively. Then,
we have

∫

A

f j DR,B

=

∫

ASW

DR,B −
∫

ANW

DR,B +

∫

AN E

DR,B −
∫

ASE

DR,B

=

∫

ASW

[DR,B(x , y) + DR,B(x +w, y + h)− DR,B(x , y + h)

−DR,B(x +w, y)]d xd y.

If we apply the definition of DR,B (Equation (6.1)) to the four terms inside the
integral we get

∫

A

f j DR,B =

∫

ASW

((b− r)[x y + (x +w)(y + h)− x(y + h)− (x +w)y])d xd y

−
∫

ASW

(B[x , y] + B[x +w, y + h]− B[x , y + h]− B[x +w, y])d xd y

+

∫

ASW

(R[x , y] + R[x +w, y + h]− R[x , y + h]− R[x +w, y])d xd y.

Observe that we are integrating twice positively and twice negatively over almost
identical functions. In fact, the terms of the first integral all cancel out except
along the rectangle [x , x +w)× [y, y + h). Similarly, when we look at the second
and third terms, the contribution of any point in R∪ B is cancelled out unless it is
in the rectangle [x , x +w)× [y, y + h). However, by definition of A there are no
such points. Thus, we obtain

∫

A

f j DR,B =

∫

ASW

(b− r)w · h d xd y =

∫

ASW

(b− r)2−m−2d xd y = (b− r)2−2m−4

102 6.1 Discrepancy lower bound

That is, when we integrate f j DR,B over a rectangle A containing no point
of R ∪ B, the result is (b − r)2−2m−4. We know that there are at least b + r
rectangles not containing points of R ∪ B, thus their contribution is at least
(b+r)(b−r)

22m+4 = (b+r)
2m

(b−r)
16·2m ≥ 1

4
(b−r)

16·4(b+r) = Ω(
b−r
b+r).

Lemma 6.1.3. There exists a constant c2 such that

m
∑

k=2

∫

DR,BGk ≤ c2c2
b− r
b+ r

log(b+ r)

.

Proof. Recall that Gk = ck
∑

0≤ j1< j2<...< jk≤m f j1 . . . f jk . Fix any valid set of indices

and consider the value of
∫

f j1 . . . f jk DR,B.
As shown in Matoušek [1999], function f j1 . . . f jk is largely defined by f j1 and

f jk . Indeed, if we overlay the rectangular partition defined by functions f j1 , . . . , f jk
we obtain a grid of rectangles whose width is 2− jk and height 2−(m− j1). In each of
these rectangles, the function is zero (if any of the rectangles associated to the f ji
functions contains a point of R∪ B), or is further subdivided into four equal sized
quadrants and in each one it is +1 or −1 alternatively.

Let A be one of the rectangles of the refined grid. As shown in Lemma 6.1.2,
we have that

∫

A

f j1 . . . f jk DR,B = τ(b− r)2−2(m+ jk− j1)−4,

where τ ∈ {−1, 1}. This extra term appears because the product of the different
functions involved can change the sign of each of the four quadrants. In any case,
we have

∫

A
f j1 . . . f jk DR,B ≤ (b− r)2−2(m+g)−4 where g = jk − j1.

By the way the grid is constructed, there are 2m− j1×2 jk = 2m+g many rectangles,
and thus we conclude that

∫

f j1 . . . f jk DR,B ≤ (b− r)2−m−g−4. In order to obtain a
bound

∫

DR,BGk we sum over all possible indices.

∫

DR,BGk = ck
∑

0≤ j1< j2≤...< jk≤m

∫

f j1 . . . f jk DR,B

≤
ck(b− r)

2m+4

∑

0≤ j1< j2<...< jk≤m

2−(jk− j1).

Note that in the sum, the indices j2, . . . jk−1 do not matter. Thus, we group the
terms by the gap between the indices j1 and jk (say, if j1 = 3 and jk = 7 the gap is
4). Note that the minimum gap is at least k− 1 (since otherwise we do not have

103 6.1 Discrepancy lower bound

enough space to choose the k− 2 indices in between) and at most m. Once we
have a gap of g there are m− g options for index j1.

∫

DR,BGk ≤
ck(b− r)

2m+4

m
∑

g=k−1

m−g
∑

j1=0

∑

j1< j2<...< jk−1< j1+g

2−g

=
ck(b− r)

2m+4

m
∑

g=k−1

m−g
∑

j1=0

�

g − 1
k− 2

�

2−g

≤
ck(b− r)m

2m+4

m
∑

g=k−1

�

g − 1
k− 2

�

2−g .

In order to bound the sum over all Gk from above, we first reorder the summation
order.

m
∑

k=2

∫

DR,BGk ≤
m
∑

k=2

ck(b− r)m
2m+4

m
∑

g=k−1

�

g − 1
k− 2

�

2−g

=
(b− r)m

2m+4

m
∑

g=1

2−g
g+1
∑

k=2

ck
�

g − 1
k− 2

�

=
(b− r)m

2m+4

m
∑

g=1

2−g c2
g−1
∑

i=0

�

g − 1
i

�

c i

=
(b− r)m

2m+4

m
∑

g=1

2−g c2(1+ c)g−1

=
(b− r)mc2

2m+5

m
∑

g=1

�

1+ c
2

�g−1

.

The sum contains the first terms of the geometric sum
∑∞

g=1

�

1+c
2

�g−1
≤ 2

1−c
(for any c < 1). In particular, if we set c ≤ 1/2 we can bound the partial sum by 4
from above. Recall that m= Θ(log(b+ r)) and 2m = Θ(b+ r). Thus, the lemma
is proven.

Corollary 6.1.4. There exists a constant κ > 0 such that
∫

DR,BG ≥ κ
�

(b− r) · log(b+ r)
b+ r

�

.

104 6.2 Point sets with constant discrepancy

Proof. Apply the inequality
∫

(A+ B)≥
∫

A−
∫

|B| and Lemmas 6.1.2 and 6.1.3
to obtain:

∫

DR,BG =

∫

DR,BG1 +
m
∑

k=2

∫

DR,BGk ≥ c(c1 − cc2)
�

(b− r) · log(b+ r)
b+ r

�

Note that Lemmas 6.1.2 and 6.1.3 holds for any value of c such that c ∈
(0,1/2]. By choosing a sufficiently small value of c (say, c = min{1

2 , c1
2c2
}) we

obtain

∫

DR,BG ≥
cc1

2

�

(b− r) · log(b+ r)
b+ r

�

6.2 Point sets with constant discrepancy

In this section we construct red R and blue B point sets such that the absolute
value of their discrepancy is 1. Let m> 0 be the difference between the number of
blue and red points as defined in Section 6.1. Our construction has Θ(m2) many
points. Afterwards we also prove that a discrepancy of 1 cannot be achieved with
o(m2) many points.

We first describe a specific configuration of points, called staircase.

Definition 6.2.1. A staircase is a sequence of alternating blue and red points
(p1, p2, ..., pn) in the unit square. It starts and ends with a blue point. More-
over for every red point pi, the blue point pi−1 has smaller x-coordinate and the
same y-coordinate. The blue point pi+1 has the same x-coordinate and smaller
y-coordinate.

Given a staircase, we can define a curve by connecting consecutive points
on the staircase. Additionally we add a vertical segment at the beginning and
a horizontal segment at the end, in order to connect the curve to the boundary
of the unit square, see Figure 6.4. We will also use the term “staircase" for this
curve.

Assume that a set of blue and red points forms one staircase. Then the curve
induced by the staircase splits the unit square into two parts. The set of points
(x , y) to the bottom-left of the staircase satisfies B[x , y]− R[x , y] = 0 whereas
the set of points to the top-right of the staircase satisfies B[x , y]− R[x , y] = 1,

105 6.2 Point sets with constant discrepancy

0.25 0.5 0.75 1
0

0.25

0.5

0.75

1

B[x,y]-R[x,y] = 1

B[x,y]-R[x,y] = 0

Figure 6.4. A Staircase

see Figure 6.4. When the set of blue and red points can be decomposed into many
staircases, then we can easily compute the value B[x , y]− R[x , y] by counting
how many staircases are to the bottom-left of point (x , y).

Recall the definition of discrepancy of R and B at point (x , y):

DR,B(x , y) = mx y − (B[x , y]− R[x , y]).

The first term mx y represents the expected difference between the numbers of
blue and red points in the axis-aligned rectangle with corner points (0,0) and
(x , y). Every point (x , y) along the curves Ci := {(x , y) ∈ [0,1]2|x · y = i

m},
where i ∈ {0, 1, ..., m}, describes a rectangle [0, x]× [0, y] in which we expect i
many blue points more than red points. Figure 6.5 illustrates the curves Ci in
black for m= 7.

The idea of our construction is to approximate the level curves Ci−0.5 by
staircases, where i ∈ {1, ..., m}. We will construct m staircases such that the
staircase approximating Ci−0.5 is between Ci−1 and Ci. This guarantees that the
discrepancy D∗R,B is at most 1.

We describe how we construct the staircase which approximates Ci−0.5. We
start with a blue point at the intersection of the two curves Ci−1 and x = y . This is
the blue point (

p
i−1p
m ,

p
i−1p
m). Starting from there we move horizontally to the right

until we hit the curve Ci at the point (ip
i−1
p

m
,
p

i−1p
m). We add a red point here. Then

we move vertically down until we hit Ci−1 and put a blue point. We continue in this
fashion, i.e. from a blue point on Ci−1 we move horizontally to the right and put
a red point on Ci. From a red point on Ci we move vertically down and put a blue
point on Ci−1. The blue points will have the coordinates (ik

(i−1)k−0.5·
p

m , (i−1)k+0.5

ik·
p

m) and

106 6.2 Point sets with constant discrepancy

Figure 6.5. Staircase approximation for m= 7.
The curves Ci are drawn in black. The brightness of the green color encodes
the value of the discrepancy DR,B(x , y) at each point (x , y). The discrepancy
values range between -1 and 1 as shown on the right hand side. The staircases
can be seen at the discontinuity of the discrepancy function. At each staircase
the discrepancy function changes its value by 1.

the red points have the coordinates (ik+1

(i−1)k+0.5·
p

m , (i−1)k+0.5

ik·
p

m), where k ∈ {0, 1,2, ...}.
We stop this construction when we leave the unit square, i.e., we look for the
largest k such that the blue point (ik

(i−1)k−0.5·
p

m , (i−1)k+0.5

ik·
p

m) is still contained in [0, 1]2.
The maximum value for k is

k =









log
� p

mp
i−1

�

log
�

i
i−1

�









for i ≥ 2 and k = 0 for i = 1. So far we described how we construct the staircases
on the side y ≤ x . We add red and blue points on the side y > x to make the
construction symmetric to the line y = x . Figure 6.5 illustrates our construction,
which we call the symmetric greedy staircase construction.

Observation 6.2.2. The points of the symmetric greedy staircase construction with

107 6.2 Point sets with constant discrepancy

m stairs are

B =

��

ik

(i − 1)k−0.5 ·
p

m
,
(i − 1)k+0.5

ik ·
p

m

�

�

�

�i ∈ [1, m] and − k∗(i)≤ k ≤ k∗(i)

�

R=

��

ik+1

(i − 1)k+0.5 ·
p

m
,
(i − 1)k+0.5

ik ·
p

m

�

�

�

�i ∈ [1, m] and − k∗(i)≤ k ≤ k∗(i)− 1

�

where [1, m] = {1, 2, . . . , m} and

k∗(i) =







0 if i = 1
�

log
� p

mp
i−1

�

log(i
i−1)

�

if i 6= 1.

There are 2k∗(i)+1 (resp. 2k∗(i)) many blue (resp. red) points in the i-th staircase.

Theorem 6.2.3. The symmetric greedy staircase construction has discrepancy 1.

Proof. Consider any point (x , y) between the i-th and (i+1)-th staircase. It holds
that B[x , y]− R[x , y] = i. Moreover both staircases are bounded from below by
the level curve Ci−1 and from above by Ci+1, which means that i−1

m ≤ x · y ≤ i+1
m .

Summarizing, we can bound the discrepancy

−1≤ mx y − (B[x , y]− R[x , y])
︸ ︷︷ ︸

=DR,B(x ,y)

≤ 1.

Theorem 6.2.4. The symmetric greedy staircase construction with m staircases has
O(m2) many points.

Proof. The number of blue points, which are used in our construction, is

|B|=
m
∑

i=1

1+ 2 · k∗(i) = m+
m
∑

i=2

2 ·









log
� p

mp
i−1

�

log
�

i
i−1

�







≤ O(m) +
m−1
∑

i=2

log
�

m
i

�

log
�

i+1
i

� .

We now bound the denominator from below by

log
�

i + 1
i

�

= log
�

1+
1
i

�

≥
1
i
−

1
i2
=

i − 1
i2

.

Putting the inequalities together, we get:

|B| ≤ O(m) +
m−1
∑

i=2

i2

i − 1
log

�m
i

�

≤ O(m) + 2
m−1
∑

i=2

i log
�m

i

�

108 6.2 Point sets with constant discrepancy

The continuous function f (i) = i log
�

m
i

�

has exactly one maximum in the interval
[2, m] with a value bounded by m log m and is monotone on both sides of it.
Therefore we can replace the sum by an integral.

|B| ≤ O(m log m) + 2

∫ m−1

2

i log
�m

i

�

di

= O(m log m) + 2
�

i2

4
·
�

1+ 2 log
�m

i

��

�i=m−1

i=2

= O(m2).

We now show that our construction is tight.

Theorem 6.2.5. Let B and R be point sets, which can be decomposed into m non-
intersecting staircases, and have a discrepancy bounded by a constant ξ. Then
|B|= Ω

�

m2
�

.

Proof. The i-th staircase is bounded from below by the level curve Ci−ξ and from
above by Ci+ξ−1 because of the discrepancy constraint. We count how many points
are necessary to create the i-th stair. The minimum number can be realized by
constructing a stair in a greedy manner between Ci−ξ and Ci+ξ−1 because both
curves are convex.

B =

��

(i + ξ− 1)k

m(i − ξ)k−1
,
(i − ξ)k

(i + ξ− 1)k

�

�

�

�i ∈ {1,2, ..., m} and 1≤ k ≤ k∗(i)

�

R=

��

(i + ξ− 1)k+1

m(i − ξ)k
,
(i − ξ)k

(i + ξ− 1)k

�

�

�

�i ∈ {1, 2, ..., m} and 1≤ k ≤ k∗(i)− 1

�

where

k∗(i) =







0 if i ≤ ξ
�

log(m
i−ξ)

log(i+ξ−1
i−ξ)

�

if i > ξ.

The number of blue points can therefore be bounded by

|B| ≥
m
∑

i=1

k∗(i)≥ ξ+
m
∑

i=ξ+1









log
�

m
i−ξ

�

log
� i+ξ−1

i−1

�







≥ −O(m) +
m−ξ
∑

i=1

log(m
i)

log(i+2ξ−1
i)

109 6.3 Application to digitalizing line segments

Using the inequality log
� i+2ξ−1

i

�

= log(1+ 2ξ−1
i)≤

2ξ−1
i and comparing the sum

with an integral, as done in the proof of Theorem 6.2.4

1
2ξ− 1

m−ξ
∑

i=1

i log
�m

i

�

≥
1

2ξ− 1

�

−O(m log m) +

∫ m−ξ

1

i log
�m

i

�

di

�

we can conclude |B| ≥ Ω
�

m2
�

.

Theorem 6.2.6. Let B and R be two sets of points whose discrepancy satisfies
D∗R,B < 1. Then |B|= Ω(m2), where m= |B| − |R|.

Proof. Consider the sets Si := {(x , y) ∈ [0,1]2
�

�

�B[x , y] − R[x , y] = i} for i ∈
{0,1, ..., m}. Because the discrepancy of the point set B and R is less than 1 we
can conclude that

1. the curves Ci are contained in Si and

2. the points between Ci and Ci+1 are either contained in Si or Si+1.

Therefore there exists a curve between Ci and Ci+1 which is only neighboring Si

to its bottom-left and Si+1 to its top-right for each i ∈ {0, 1, ..., m− 1}. This curve
is a staircase. Hence there exists a staircase between Ci and Ci+1 for each i ∈
{0, 1, ..., m−1}. Those staircases are non-intersecting because D∗R,B < 1. Therefore
they consist of at least Ω(m2) many points, as shown in Theorem 6.2.5.

Theorem 6.2.6 is open if the upper bound D∗R,B < 1 is replaced by O(1).

6.3 Application to digitalizing line segments

The lower bound for the bichromatic discrepancy can be applied to the topic
of digitalizing line segments. The aim is to construct a digital path dig(p, q)
for any two points p, q ∈ Zd . Ideally, dig is defined for any pair of points in
Zd and resembles properties of Euclidean segments, but here we only consider
digital paths starting from the origin, i.e. p =O. For brevity we write dig(p) :=
dig(O, p).

Definition 6.3.1. For any S ⊆ Zd , let DS(S) be a set of digital rays such that
dig(p) ∈ DS(S) for all p ∈ S. We say that DS(S) forms a set of consistent digital
rays on S (CDR for short) if for every p ∈ S it satisfies the following axioms:

110 6.3 Application to digitalizing line segments

(S1) Grid path property: dig(p) is a path between O and p under the 2d-neighbor
topology1.

(S2) Subsegment property: for any q ∈ dig(p), di g(q) ∈ DS(S) and dig(q) ⊆
dig(p).

(S3) Prolongation property: ∃ q ∈ Zd such that dig(q) ∈ DS(S) and dig(p) ⊂
dig(q).

(S4) Monotonicity property: for all i ≤ d and every point q ∈ dig(p), it holds
0≤ qi ≤ pi or pi ≤ qi ≤ 0.

These axioms give nice properties of digital segments analogous to Euclidean
line segments. For example, (S1) and (S2) imply that the intersection of two
digital segments is another segment. (S4) implies that the intersection of a
segment with an axis-aligned halfspace is a segment (and connected by (S1)),
and so on. Note that the five axioms would imply that a CDR is a tree connecting
a fixed point o to any other point of Zd (see Figure 6.6).

o

Figure 6.6. An example of a CDR in one quadrant.

Another property that we want from a CDR is that they visually resemble
the Euclidean segments. The resemblance between the digital segment dig(p)
and the Euclidean counterpart Op is measured using the Hausdorff distance.
The Hausdorff distance H(A, B) of two objects A and B is defined by H(A, B) =
max{h(A, B), h(B, A)}, where h(A, B) =maxa∈A minb∈B δ(a, b), and δ(a, b) is the
|| · ||∞ L-infinity norm.

1The 2d-neighbor topology is the natural one that connects to your predecessor and successor
in each dimension. Formally speaking, two points are connected if and only if their || · ||1 distance
is exactly one.

111 6.3 Application to digitalizing line segments

A B

0 0.25 0.5 0.75 1

0

0.25

0.5

0.75

1

Figure 6.7. (left) A drawing of a CDR in G+N ⊂ Z
3 for N = 4. Notice that the

CDR is a tree whose leaves are at the plane x + y + z = N . (middle) A cross
section on the x y-plane of the same CDR. Observe that vertices A and B do
not extend within the x y-plane. Thus, the subspace is a weak CDR (rather
than a proper CDR). (right) A map of the weak CDR into a two-colored point
set. Regions with many blue points and few red correspond to portions of the
CDR with high error.

The resemblance of a CDR on S is defined as max
(p)∈S

H(dig(p),Op) (that is, the

largest error created between a digital segment and its Euclidean counterpart).
This value is simply referred to as the error of the CDR construction. We are
interested to see how the error grows as we enlarge our focus of interest. Thus,
we limit the domain to the case in which p lies in the L1 ball of radius N centered
at the origin (i.e., GN = Zd∩B1(o, N)). Rather than looking for the exact function,
we are interested in the asymptotic behavior of the error as a function of N . For
simplicity, we will actually restrict ourselves to the positive orthant G+N = GN ∩i Hi,
where Hi = {p ∈ Zd : pi ≥ 0} and pi is the i-th coordinate of p. A construction of
a CDR in one orthant can be easily extended to the other orthants.

Note, a CDR in Zd , with d ≥ 3 restricted to the x − y-plane does not need
to be a CDR in 2 dimensions.The main reason why a subspace is not a CDR is
because of the prolongation property (S3): we require that every segment be
extendable, but have no constraints on the dimension in which it does so. In
particular, a subspace of a high dimensional CDR need not be a CDR (see an
example in Figure 6.7). Subspaces of CDRs are what we call weak CDR: it is a
construction that almost always behaves like a CDR but some vertices may not
satisfy the prolongation property (S3). Each vertex that does not extend is called
an inner leaf. We will see that the number of inner leafs of a weak CDRs in two
dimensions has implications on the Hausdorff error of a (proper) CDRs in higher
dimensions.

There has been considerable interest into CDRs and weaker or stronger ver-

112 6.4 Conclusion

sions of it in the recent years, see Luby [1987]; Chun et al. [2009]; Christ et al.
[2012]; Chowdhury and Gibson [2015, 2016]; Chiu and Korman [2018]; Chiu
et al. [2022]; Gibson-Lopez and Zamarripa [2022].

Combining a transformation from a weak CDR to a two-colored point set,
see Fig. 6.7, with the lower bound on the bichromatic discrepancy, Chiu et al.
[2022] prove that a small number of inner leaves in a weak CDR induces a high
Hausdorff error:

Theorem 6.3.2. For any N ∈ N, any weak CDR defined on G+N ⊂ Z
2 with κ2 inner

leaves between lines x1 + x2 = dN/2e and x1 + x2 = N has Ω(N log N
N+κ2

) error.

On the other hand, they also show that a high number of inner leaves of a
CDR in the x − y-plane causes a big Hausdorff error within the other dimensions.

Lemma 6.3.3. Any CDR defined on G+N ⊂ Z
d with κ2 inner leaves in x1 x2-plane

between lines x1 + x2 = dN/2e and x1 + x2 = N has Ω((κ2/N)
1

d−2) error.

Balancing these two error sources leads to a lower bound of Ω(log1/(d−1) N)
on the Hausdorff error for any CDR construction in d dimensions:

Theorem 6.3.4. Any CDR in Zd has Ω(log1/(d−1) N) error.

6.4 Conclusion

In Section 6.2 we have constructed red and blue point sets R, B with their discrep-
ancy bounded from above by a constant. If |B| − |R|= m, then the construction
used points sets of cardinality Θ(m2). On the other hand the discrepancy lower
bound Theorem 6.1.1

D∗R,B ≥ c
�

(|B| − |R|) · log(|B|+ |R|)
|B|+ |R|

�

ensures that at least Ω(m log m)many points are needed. It remains for the future
to figure out which (if any) of the two bounds is tight.

We derived the results on the bichromatic discrepancy with the direct applica-
tion to CDRs in mind. We still believe that the bichromatic discrepancy results
are as well of independent interest. For instance, low discrepancy sequences (in
the monochromatic case) are often used in the quasi-Monte-Carlo method for
numerical integration in a unit cube as described next, see Matoušek [1999]. Let
f : [0,1]d → R for which the integral

∫

[0,1]d f (x)dx needs to be approximated.

This can be done by choosing a set of n points P ⊂ [0, 1]d and returning the sum

113 6.4 Conclusion

1
n

∑

p∈P f (p). If the function f is continuously differentiable then Koksma–Hlawka
inequality bounds the difference between the two terms by

�

�

�

�

�

∫

[0,1]d
f (x)dx −

1
n

∑

p∈P

f (p)

�

�

�

�

�

≤
1
n

D∗;,P · V (f),

where V (f) is a generalization for higher dimensions of the variation of one
dimensional functions V (f) =

∫ 1

0
| f ′(x)|dx . This inequality guarantees faster

convergence if the point set P is chosen according to some low discrepancy
sequence. It remains to be seen if the new concept of bichromatic discrepancy
can be also useful for example for quasi-Monte-Carlo methods.

114 6.4 Conclusion

Bibliography

Abu-Affash, A. K. and Katz, M. J. [2009]. Improved bounds on the average
distance to the Fermat-Weber center of a convex object, Information Processing
Letters 109(6): 329–333.

Agarwal, P. K., de Berg, M., Matousek, J. and Schwarzkopf, O. [1998]. Constructing
levels in arrangements and higher order Voronoi diagrams, SIAM J. Comput.
27(3): 654–667.

Agarwal, P. K. and Sharir, M. [2000]. Arrangements and their applications,
Handbook of computational geometry, Elsevier, pp. 49–119.

Aronov, B. [2002]. A lower bound on Voronoi diagram complexity, Inf. Process.
Lett. 83(4): 183–185.

Aronov, B. [2019]. Personal communication.

Aurenhammer, F. [1987]. Power diagrams: Properties, algorithms and applica-
tions, SIAM Journal on Computing 16(1): 78–96.

Aurenhammer, F. [1990]. A new duality result concerning voronoi diagrams,
Discret. Comput. Geom. 5: 243–254.

Aurenhammer, F. [1991]. Voronoi diagrams - A survey of a fundamental geometric
data structure, ACM Comput. Surv. 23(3): 345–405.

Aurenhammer, F., Drysdale, R. L. S. and Krasser, H. [2006]. Farthest line segment
Voronoi diagrams, Information Processing Letters 100(6): 220–225.

Aurenhammer, F., Jüttler, B. and Paulini, G. [2017]. Voronoi diagrams for parallel
halflines and line segments in space, in Y. Okamoto and T. Tokuyama (eds),
28th International Symposium on Algorithms and Computation, ISAAC 2017,
December 9-12, 2017, Phuket, Thailand, Vol. 92 of LIPIcs, Schloss Dagstuhl -
Leibniz-Zentrum fuer Informatik, pp. 7:1–7:10.

115

116 Bibliography

Aurenhammer, F., Klein, R. and Lee, D.-T. [2013]. Voronoi diagrams and Delaunay
triangulations, World Scientific Publishing Company.

Badoiu, M., Har-Peled, S. and Indyk, P. [2002]. Approximate clustering via
core-sets, Proc. Symposium on Theory of Computing, ACM, pp. 250–257.

Bajaj, C. [1988]. The algebraic degree of geometric optimization problems,
Discrete & Computational Geometry 3(2): 177–191.

Barequet, G. and Papadopoulou, E. [2013]. On the farthest-neighbor Voronoi
diagram of segments in three dimensions, 10th International Symposium on
Voronoi Diagrams in Science and Engineering (ISVD), IEEE, pp. 31–36.

Barequet, G. and Papadopoulou, E. [2014]. On farthest-site Voronoi diagrams
of line segments and lines in three and higher dimensions, 30th European
Workshop on Computational Geometry .

Barequet, G., Papadopoulou, E. and Suderland, M. [2019]. Unbounded regions of
high-order Voronoi diagrams of lines and segments in higher dimensions, 30th
International Symposium on Algorithms and Computation, Vol. 149 of LIPIcs,
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, pp. 62:1–62:15.

Beck, A. and Sabach, S. [2015]. Weiszfeld’s method: Old and new results, Journal
of Optimization Theory and Applications 164(1): 1–40.

Beck, J. [1981]. Balanced two-colorings of finite sets in the square I, Combinatorica
1(4): 327–335.

Bennett, H., Papadopoulou, E. and Yap, C. [2016]. Planar minimization diagrams
via subdivision with applications to anisotropic Voronoi diagrams, Computer
Graphics Forum 35(5): 229–247.

Bennett, H. and Yap, C. [2017]. Amortized analysis of smooth quadtrees in all
dimensions, Computational Geometry 63: 20–39.

Bhattacharya, B. B. [2011]. On the Fermat-Weber point of a polygonal chain and
its generalizations, Fundamenta Informaticae 107(4): 331–343.

Bohler, C., Cheilaris, P., Klein, R., Liu, C., Papadopoulou, E. and Zavershynskyi, M.
[2015]. On the complexity of higher order abstract voronoi diagrams, Comput.
Geom. 48(8): 539–551.

117 Bibliography

Boissonnat, J., Sharir, M., Tagansky, B. and Yvinec, M. [1998]. Voronoi diagrams
in higher dimensions under certain polyhedral distance functions, Discrete &
Computational Geometry 19(4): 485–519.

Bose, P., Maheshwari, A. and Morin, P. [2003]. Fast approximations for sums of
distances, clustering and the Fermat-Weber problem, Computational Geometry
24(3): 135–146.

Brouwer, L. E. J. [1911]. Über Abbildung von Mannigfaltigkeiten, Mathematische
Annalen 71(1): 97–115.

Burr, M. A. [2016]. Continuous amortization and extensions: With applications
to bisection-based root isolation, Journal of Symbolic Computation 77: 78–126.

Burr, M., Krahmer, F. and Yap, C. [2009]. Continuous amortization: A non-
probabilistic adaptive analysis technique, Electronic Colloquium on Computa-
tional Complexity TR09(136).

Carmi, P., Har-Peled, S. and Katz, M. J. [2005]. On the Fermat-Weber center of a
convex object, Computational Geometry 32(3): 188–195.

Chazelle, B. [1991]. An optimal convex hull algorithm and new results on cuttings
(extended abstract), 32nd Annual Symposium on Foundations of Computer
Science, San Juan, Puerto Rico, IEEE Computer Society, pp. 29–38.

Chazelle, B. [1993]. An optimal convex hull algorithm in any fixed dimension,
Discrete & Computational Geometry 10: 377–409.

Chazelle, B. and Edelsbrunner, H. [1985]. An improved algorithm for constructing
kth-order voronoi diagrams, in J. O’Rourke (ed.), Proceedings of the First Annual
Symposium on Computational Geometry, Baltimore, Maryland, USA, June 5-7,
1985, ACM, pp. 228–234.

Cheong, O., Everett, H., Glisse, M., Gudmundsson, J., Hornus, S., Lazard, S.,
Lee, M. and Na, H. [2011]. Farthest-polygon Voronoi diagrams, Computational
Geometry: Theory and Applications 44(4): 234–247.

Chew, L. P., Kedem, K., Sharir, M., Tagansky, B. and Welzl, E. [1998]. Voronoi
diagrams of lines in 3-space under polyhedral convex distance functions, J.
Algorithms 29(2): 238–255.

118 Bibliography

Chin, H. H., Madry, A., Miller, G. L. and Peng, R. [2013]. Runtime guarantees for
regression problems, Proc. Innovations in Theoretical Computer Science, ACM,
pp. 269–282.

Chiu, M.-K., Korman, M., Suderland, M. and Tokuyama, T. [2022]. Distance
bounds for high dimensional consistent digital rays and 2-d partially-consistent
digital rays, Discrete & Computational Geometry pp. 1–43.

Chiu, M. and Korman, M. [2018]. High dimensional consistent digital segments,
SIAM Journal on Discrete Mathematics 32(4): 2566–2590.

Chowdhury, I. and Gibson, M. [2015]. A characterization of consistent digital
line segments in Z2, in N. Bansal and I. Finocchi (eds), Proceedings of the
23rd Annual European Symposium on Algorithms, Vol. 9294, Springer Berlin
Heidelberg, Berlin, Heidelberg, pp. 337–348.

Chowdhury, I. and Gibson, M. [2016]. Constructing consistent digital line seg-
ments, in E. Kranakis, G. Navarro and E. Chávez (eds), Proceedings of the 12th
Latin American Theoretical Informatics Symposium, Vol. 9644, Springer Berlin
Heidelberg, Berlin, Heidelberg, pp. 263–274.

Christ, T., Pálvölgyi, D. and Stojaković, M. [2012]. Consistent digital line segments,
Discrete & Computational Geometry 47(4): 691–710.

Chun, J., Korman, M., Nöllenburg, M. and Tokuyama, T. [2009]. Consistent digital
rays, Discrete and Computational Geometry 42(3): 359–378.

Cieslik, D. [2013]. Steiner minimal trees, Vol. 23, Springer Science & Business
Media.

Clarkson, K. L. [1987]. New applications of random sampling in computational
geometry, Discret. Comput. Geom. 2: 195–222.

Clarkson, K. L. and Shor, P. W. [1989]. Applications of random sampling in
computational geometry, II, Discrete & Computational Geometry 4(5): 387–421.

Cockayne, E. J. and Melzak, Z. A. [1969]. Euclidean constructibility in graph-
minimization problems, Mathematics Magazine 42(4): 206–208.

Cohen, M. B., Lee, Y. T., Miller, G. L., Pachocki, J. and Sidford, A. [2016]. Geometric
median in nearly linear time, Proc. Symposium on Theory of Computing, ACM,
pp. 9–21.

119 Bibliography

Das, S. and Sarvottamananda, S. [2018]. Computing the Minkowski sum of
convex polytopes in Rd, CoRR abs/1811.05812.

Dekker, T. J. [1967]. Finding a zero by means of successive linear interpolation,
Constructive Aspects of the Fundamental Theorem of Algebra, Wiley Interscience,
pp. 37–48.

Dobkin, D. P., Gunopulos, D. and Maass, W. [1996]. Computing the maximum
bichromatic discrepancy, with applications to computer graphics and machine
learning, Journal of Computer and System Sciences 52(3): 453–470.

Dumitrescu, A., Jiang, M. and Tóth, C. D. [2011]. New bounds on the aver-
age distance from the Fermat-Weber center of a planar convex body, Discrete
Optimization 8(3): 417–427.

Edelsbrunner, H., Guibas, L. J. and Sharir, M. [1989]. The upper envelope of piece-
wise linear functions: Algorithms and applications, Discrete & Computational
Geometry 4: 311–336.

Edelsbrunner, H. and Seidel, R. [1986]. Voronoi diagrams and arrangements,
Discrete & Computational Geometry 1: 25–44.

Edelsbrunner, H., Seidel, R. and Sharir, M. [1993]. On the zone theorem for
hyperplane arrangements, SIAM Journal on Computing 22(2): 418–429.

Emiris, I. Z., Tsigaridas, E. P. and Tzoumas, G. M. [2006]. The predicates for
the Voronoi diagram of ellipses, Proc. Symposium on Computational Geometry,
ACM, pp. 227–236.

Everett, H., Lazard, D., Lazard, S. and Din, M. S. E. [2009]. The Voronoi diagram
of three lines, Discrete & Computational Geometry 42(1): 94–130.

Fagnano, G. F. [1775]. Problemata quaedam ad methodum maximorum et mini-
morum spectantia, Nova Acta Eruditorum pp. 281–303.

Fekete, S. P., Mitchell, J. S. and Beurer, K. [2005]. On the continuous Fermat-
Weber problem, Operations Research 53(1): 61–76.

Feldman, D. and Langberg, M. [2011]. A unified framework for approximating and
clustering data, Proc. Symposium on Theory of Computing, ACM, pp. 569–578.

Gibson-Lopez, M. and Zamarripa, S. [2022]. Optimal bounds for weak consistent
digital rays in 2d, arXiv preprint arXiv:2205.03450 .

120 Bibliography

Graham, R. L. [1972]. An efficient algorithm for determining the convex hull of a
finite planar set, Inf. Process. Lett. 1(4): 132–133.

Halperin, D. and Sharir, M. [2017]. Arrangements, Handbook of Discrete and
Computational geometry, third edition pp. 723–762.

Hamacher, H. and Drezner, Z. [2002]. Facility location: applications and theory,
Science & Business Media: Springer .

Hansen, E. R. [2006]. A multidimensional interval newton method, Reliable
Computing 12(4): 253–272.

Hansen, E. R. and Sengupta, S. [1981]. Bounding solutions of systems of equations
using interval analysis, BIT 21: 203–211.

Har-Peled, S. and Kushal, A. [2007]. Smaller coresets for k-median and k-means
clustering, Discrete & Computational Geometry 37(1): 3–19.

Har-Peled, S. and Mazumdar, S. [2004]. On coresets for k-means and k-median
clustering, Proc. 36th Annual ACM Symposium on Theory of computing, ACM,
pp. 291–300.

Hemmer, M., Setter, O. and Halperin, D. [2010]. Constructing the exact Voronoi
diagram of arbitrary lines in three-dimensional space - with fast point-location,
in M. de Berg and U. Meyer (eds), Algorithms - ESA 2010, 18th Annual European
Symposium, Liverpool, UK, September 6-8, 2010. Proceedings, Part I, Vol. 6346
of Lecture Notes in Computer Science, Springer, pp. 398–409.

Huttenlocher, D. P., Kedem, K. and Sharir, M. [1993]. The upper envelope
of Voronoi surfaces and its applications, Discrete & Computational Geometry
9(3): 267–291.

Icking, C. and Ma, L. [2001]. A tight bound for the complexity of Voroni diagrams
under polyhedral convex distance functions in 3D, Proceedings on 33rd Annual
ACM Symposium on Theory of Computing, pp. 316–321.

Jarvis, R. A. [1973]. On the identification of the convex hull of a finite set of
points in the plane, Inf. Process. Lett. 2(1): 18–21.

Karavelas, M. I., Seidel, R. and Tzanaki, E. [2013]. Convex hulls of spheres and
convex hulls of disjoint convex polytopes, Computational Geometry: Theory and
Applications 46(6): 615–630.

121 Bibliography

Katz, I. N. [1974]. Local convergence in Fermat’s problem, Mathematical Pro-
gramming 6(1): 89–104.

Klee, V. [1980]. On the complexity of d-dimensional Voronoi diagrams, Archiv
der Mathematik 34(1): 75–80.

Klein, R. [2016]. Abstract Voronoi Diagrams, Springer New York, pp. 5–8.

Koltun, V. and Sharir, M. [2002]. Three dimensional Euclidean Voronoi diagrams
of lines with a fixed number of orientations, in F. Hurtado, V. Sacristán, C. Bajaj
and S. Suri (eds), Proceedings of the 18th Annual Symposium on Computational
Geometry, Barcelona, Spain, June 5-7, 2002, ACM, pp. 217–226.

Koltun, V. and Sharir, M. [2004]. Polyhedral Voronoi diagrams of polyhedra in
three dimensions, Discrete & Computational Geometry 31(1): 83–124.

Krarup, J. and Vajda, S. [1997]. On Torricelli’s geometrical solution to a problem
of Fermat, Journal of Management Mathematics 8(3): 215–224.

Krawczyk, R. [1969]. Newton-Algorithmen zur Bestimmung von Nullstellen mit
Fehlerschranken, Computing 4(3): 187–201.

Kuhn, H. W. [1973]. A note on Fermat’s problem, Mathematical programming
4(1): 98–107.

Kuratowski, K. [1966]. Topology, Academic Press.

Lee, D. [1982]. On k-nearest neighbor voronoi diagrams in the plane, IEEE Trans.
Computers 31(6): 478–487.

Lin, L. and Yap, C. [2011]. Adaptive isotopic approximation of nonsingular curves:
the parameterizability and nonlocal isotopy approach, Discrete & Computational
Geometry 45(4): 760–795.

Lin, L., Yap, C. and Yu, J. [2012]. Non-local isotopic approximation of nonsingular
surfaces, Computer-Aided Design 45(2): 451–462.

Luby, M. G. [1987]. Grid geometries which preserve properties of Euclidean
geometry: A study of graphics line drawing algorithms., NATO Conference on
Graphics/CAD, pp. 397–432.

Mantas, I., Papadopoulou, E., Sacristán, V. and Silveira, R. I. [2021]. Farthest
color voronoi diagrams: Complexity and algorithms, Latin American Symposium
on Theoretical Informatics, Springer, pp. 283–295.

122 Bibliography

Matoušek, J. [1999]. Geometric Discrepancy: An Illustrated Guide, Algorithms and
Combinatorics, Springer Berlin Heidelberg.
URL: https://books.google.co.jp/books?id=BKvXj1GisP0C

McMullen, P. [1970]. The maximum numbers of faces of a convex polytope,
Mathematika 17(2): 179–184.

Mello, L. F. and dos Santos, L. R. [2018]. On the location of the minimum point
in the Euclidean distance sum problem, São Paulo Journal of Mathematical
Sciences 12: 108–120.

Mitchell, J. S. B. and O’Rourke, J. [2001]. Computational geometry column 42,
International Journal of Computational Geometry & Applications 11(5): 573–
582.

Moore, R. E. [1966]. Interval Analysis, Vol. 4, Prentice-Hall Englewood Cliffs, NJ.

Morrison, K. E. [2010]. The fedex problem, The College Mathematics Journal
41(3): 222–232.

Nagy, G. S. [1950]. Tschirnhaus’sche Eiflächen und Eikurven, Acta Mathematica
Academiae Scientiarum Hungarica 1(1): 36–45.

Nam, N. M. [2013]. The Fermat-Torricelli problem in the light of convex analysis,
ArXiv e-prints .

Nickel, K. [1969]. Triplex-algol and applications, Interner Bericht des Instituts für
Informatik der Universität Karlsruhe .

Nickel, K. [1971]. On the Newton method in interval analysis, Technical report,
Wisconsin University-Madison Mathematics Research Center.

Nie, J., Parrilo, P. A. and Sturmfels, B. [2008]. Semidefinite representation of the
k-ellipse, Algorithms in algebraic geometry, Springer, pp. 117–132.

Okabe, A., Boots, B., Sugihara, K. and Chiu, S. N. [1992]. Spatial tessellations:
concepts and applications of Voronoi diagrams. 1992, Chichester, UK .

Okabe, A., Boots, B., Sugihara, K. and Chiu, S. N. [2009]. Spatial Tessellations:
Concepts and Applications of Voronoi Diagrams (2nd Edition), Vol. 501, John
Wiley & Sons.

Ostresh Jr, L. M. [1978]. Convergence and descent in the Fermat location problem,
Transportation Science 12(2): 153–164.

123 Bibliography

Papadopoulou, E. [2004]. The Hausdorff Voronoi diagram of point clusters in
the plane, Algorithmica 40(2): 63–82.

Papadopoulou, E. and Dey, S. K. [2013]. On the farthest line-segment Voronoi
diagram, Int. J. Comput. Geometry Appl. 23(6): 443–460.

Papadopoulou, E. and Lee, D.-T. [2004]. The Hausdorff Voronoi diagram of
polygonal objects: A divide and conquer approach, International Journal of
Computational Geometry & Applications 14(06): 421–452.

Papadopoulou, E. and Zavershynskyi, M. [2016]. The higher-order Voronoi
diagram of line segments, Algorithmica 74(1): 415–439.

Parrilo, P. A. and Sturmfels, B. [2003]. Minimizing polynomial functions, Al-
gorithmic and quantitative real algebraic geometry, DIMACS Series in Discrete
Mathematics and Theoretical Computer Science 60: 83–99.

Petrović, M., Banjac, B. and Malešević, B. [2014]. The geometry of trifocal
curves with applications in architecture, urban and spatial planning, Spatium
pp. 28–33.

Plantinga, S. and Vegter, G. [2004]. Isotopic approximation of implicit curves and
surfaces, Proc. of the Eurographics/ACM SIGGRAPH Symposium on Geometry
Processing, ACM, pp. 245–254.

Ratschek, H. and Rokne, J. [1984]. Computer methods for the range of functions,
Horwood.

Reinelt, G. [1991]. TSPLIB - A traveling salesman problem library, ORSA Journal
on Computing 3(4): 376–384.

Samet, H. [1990]. The Design and Analysis of Spatial Data Structures, Addison-
Wesley.

Schmidt, W. [1972]. Irregularities of distribution, vii, Acta Arithmetica 21(1): 45–
50.

Seidel, R. [1987]. On the number of faces in higher-dimensional Voronoi diagrams,
in D. Soule (ed.), Proceedings of the Third Annual Symposium on Computational
Geometry, Waterloo, Ontario, Canada, 1987, ACM, pp. 181–185.

Sekino, J. [1999]. n-ellipses and the minimum distance sum problem, The Ameri-
can mathematical monthly 106(3): 193–202.

124 Bibliography

Shamos, M. I. and Hoey, D. [1975]. Closest-point problems, 16th Annual Sym-
posium on Foundations of Computer Science, Berkeley, California, USA, October
13-15, 1975, IEEE Computer Society, pp. 151–162.

Sharir, M. [1994]. Almost tight upper bounds for lower envelopes in higher
dimensions, Discrete & Computational Geometry 12: 327–345.

Shary, S. P. [2004]. Krawczyk operator revised, Novosibirsk, Institute of Computa-
tional Technologies, Rússia .

Stanley, R. P. [2004]. An introduction to hyperplane arrangements, Geometric
combinatorics 13: 389–496.

Sturm, R. [1884]. Über den Punkt kleinster Entfernungssumme von gegebenen
Punkten., Journal für die reine und angewandte Mathematik 97: 49–61.

Tucker, W. [2011]. Validated Numerics: A short intro to rigorous computations,
Princeton Press.

von Tschirnhaus, E. W. [1695]. Medicina Mentis Et Corporis, Fritsch, Lipsiae.

Wang, C., Chiang, Y.-J. and Yap, C. [2015]. On soft predicates in subdivision
motion planning, Computational Geometry: Theory and Applications. 48(8): 589–
605.

Weber, A. [1909]. Über den Standort der Industrien, English translation by CJ
Friedrich (1929) Theory of the Location of Industries .

Weiszfeld, E. [1937]. Sur le point pour lequel la somme des distances de n points
donnés est minimum, Tohoku Mathematical Journal, First Series 43: 355–386.

Xu, J. and Yap, C. [2019]. Effective subdivision algorithm for isolating zeros of real
systems of equations, with complexity analysis, Proc. International Symposium
on Symbolic and Algebraic Computation, ACM, pp. 399–406.

Xue, G. and Ye, Y. [1997]. An efficient algorithm for minimizing a sum of Euclidean
norms with applications, SIAM Journal on Optimization 7(4): 1017–1036.

	Contents
	List of Figures
	Introduction
	Computational geometry in high dimensions
	Dissertation Overview
	List of publications

	Voronoi diagrams of generalized sites
	Preliminaries
	Point-Hyperplane Duality
	Levels in an Arrangement of Hyperplanes
	The Gaussian Map

	Properties of the Farthest and Order-k Voronoi Diagram
	Combinatorial Properties
	Structural Properties

	Line Segments as Sites
	Lines as Sites
	Combination of Lines and Segments
	Polyhedra or Clusters of Points as Sites
	Conclusion

	On the Trisector of Lines in Three Space
	Review: Farthest Voronoi diagram of lines and line segments in R2
	Towards constructing the FVD of lines and line segments in R3

	Farthest Polyhedral Voronoi diagram
	Convex polyhedral distance
	Farthest-site Voronoi diagram
	More properties of FVD
	Variants
	Conclusion

	Fermat point and n-ellipses
	Introduction
	Preliminaries
	Approximate Fermat points
	Using the Subdivision Paradigm
	Enhancing the Subdivision Paradigm
	Certifying the Weiszfeld method

	Approximating n-ellipses
	Experiments
	Details on box approximations
	Box approximation of the gradient
	Box approximation of
	Box approximation of the Hessian 2

	Conclusion

	Bichromatic discrepancy
	Discrepancy lower bound
	Point sets with constant discrepancy
	Application to digitalizing line segments
	Conclusion

	Bibliography

