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Abstract

Over the past few decades, network analysis has gained popularity in various
fields, and understanding the dynamics of networks has become crucial. This
thesis explores the dynamics of networks through a statistical approach, focusing
on latent drivers that underlie network evolution. The thesis builds upon various
key projects, each of which explores different aspects of network dynamics.

The first project proposes a statistical testing procedure to determine whether
the degree distribution of a given network follows a preferential attachment pro-
cess, i.e., a power-law marginal distribution. The second project focuses on dy-
namic networks where the relational events constitute time-stamped edges and
proposes a dynamic latent space relational event model, leveraging a Kalman
filter EM algorithm. The third project extends it and addresses the challenge of
dealing with huge relational event networks using machine learning optimiza-
tion tools.

The three projects investigate the complex phenomenon of network growth
and transformation, shedding light on the role of latent drivers that shape the
structure of observed networks. By studying the underlying drivers, analysts can
better understand how networks impact various domains.
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Chapter 1

Introduction

Over the past few decades, network analysis has become an increasingly popular
field of study across a range of disciplines, from physics to sociology to computer
science. Networks are used to represent complex systems, such as social net-
works, transportation systems, and the Internet. These networks are not static,
but rather they evolve and change over time. As such, understanding the dy-
namics of networks has become a crucial research topic. In this thesis, we ex-
plore the dynamics of networks through a statistical approach, with a focus on
latent drivers that underlie the evolution of networks. We build upon three key
projects, each of which explores a different aspect of network dynamics. In the
first project, we test the power-law marginal distributions of growing networks
and propose a statistical testing procedure that considers the complex issues in
testing degree distributions in networks. The second and third projects both ex-
plore latent dynamics in networks, with the second article developing a dynamic
latent space relational event model and the third article proposing an extension
for dealing with huge networks. Through these articles, we demonstrate the
power of statistical techniques for exploring the latent drivers that underlie the
evolution of networks and contribute to the growing body of literature on net-
work analysis.

In this chapter, we introduce the necessary scientific and methodological
background to each of the three projects. For each project, we present a sep-
arate section with the essential techniques used in that chapter.

1.1 Power-law marginal distributions of networks

This is the companion section to the first project, studying the power-law nature
of real-life networks. It first introduces random graph models, which describe

1



2 1.1 Power-law marginal distributions of networks

network objects from a probabilistic point of view. The power-law distribution
is a special type of random graph model. As we want to test whether real-life
networks conform to the power-law distribution, we then discuss the theory of
distributional testing. In particular, we focus on Kolmogorov-Smirnov testing.

1.1.1 Random graph models
Random graphs are a type of mathematical model used to describe the properties
of networks. They are defined as a probability measure on a graph space. In
particular, let G (V ) be the set of all undirected graphs on a finite vertex set V . A
random graph model P is a probability measure on G (V ), such that

P(G)� 0, and
X

G2G (V )
P(G) = 1.

Random graphs are mathematical structures that model the behavior of com-
plex networks in a probabilistic way. These networks can represent anything from
social networks to transportation systems to biological systems. Random graphs
are constructed by a random process according to some probability distribution.

Random graphs can exhibit a wide variety of properties, depending on the
specific model used to generate them. For example, some random graphs may
be highly connected, meaning that there are many edges between vertices. Other
random graphs may be relatively sparse, meaning that there are relatively few
edges between vertices.

The most basic model for generating random graphs is the Erdős-Rényi model.
In this model, a graph is generated by starting with a certain number of nodes
and connecting each pair of nodes with a fixed probability ⇡. Thus nodes create
random patterns of connectivity resulting from a Bernoulli independent process,
i.e.,

P(G) =
Y

i> j

⇡Gi j(1�⇡)1�Gi j .

Another model, the Watts-Strogatz, is a model of small-world networks, which
are networks characterized by a high degree of clustering, where nodes tend to
be connected forming groups, and a short average path length, where the dis-
tance between two nodes is relatively small. The Watts-Strogatz model has been
used to study a wide range of phenomena, including social networks, the spread
of information, and diseases.

Another commonly used model is the Barabási-Albert model. In this model,
a graph is generated via a preferential attachment process where newly added
nodes are more likely to connect to existing nodes with a high degree, where
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the degree of a node is its number of connections. The preferential attachment
process, which follows the “rich get richer” rule, is commonly present in social
attraction between individuals. It also has ethical implications, such as the mer-
itocracy of research publications. The preferential attachment process produces
a scale-free network.

1.1.2 Scale-free networks

Scale-free networks are a type of network that is characterized by a power-law
distribution of node degrees, meaning that there are a few nodes with many
connections, known as "hubs", while most nodes have only a few connections.

In a power-law distribution of node degrees, the probability that a node has
k connections is proportional to k�↵, where ↵ is a parameter that determines the
degree discrepancy between the hubs and the least connected nodes. Scale-free
networks relate their name to Mandelbrot fractals theory. Mandelbrot fractals
are a type of fractal that exhibits self-similarity at different scales, which means
that the same patterns are repeated at different scales. Scale-free networks, on
the other hand, exhibit self-similarity in their degree distribution, which means
that the same power-law pattern is observed across different scales. Hence the
network macro structure has the same probability law as the micro.

Scale-free networks are very common in many fields and have been used to
study the spread of infectious diseases, the behavior of social networks, and the
structure of the Internet.

In this project, we aim to test whether a degree distribution is power-law.
However, many observed networks present a power-law behavior only in the tail
of the degree distribution. Thus instead of testing for a Barabási-Albert model,
we instead test for a de Solla Price model, a power-law generalization that allows
fitting a different shape in the lower degrees. The focus is indeed testing tails,
and we cannot risk rejecting the test because of a bad fit in the lower degrees.

1.1.3 Kolmogorov-Smirnov test

The Kolmogorov-Smirnov test is used for testing the deviation of a degree distri-
bution from a power-law. The test works by comparing the empirical cumulative
distribution function (ECDF) of the observed network degrees to the theoretical
cumulative distribution function (CDF) of a de Solla Price degree distribution.
The ECDF is a step function that assigns a probability of 1/n to each data point,
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Figure 1.1. Illustration of the Kolmogorov–Smirnov statistic. The red line is a
model CDF, the blue line is an ECDF, and the black arrow is the KS statistic.
Image borrowed from Wikipedia [Bscan, 2013].

where n is the sample size, and steps up by 1/n at each data point

Fn(x) =
number of (nodes whom degree is < x)

n
=

1
n

nX

i=1

I[�1,x](Xi).

The indicator function I[�1,x](Xi) is equal to 1 in case the i th node degree Xi < x .
The CDF, on the other hand, gives the probability that a random variable takes
on a value less than or equal to a given value

F(x) =
Z x

�1
f (x)d x .

In the case of a discrete distribution, the integral translates into a sum. An ex-
ample of both these functions is shown in Figure 1.1. The test statistic for the
Kolmogorov-Smirnov test is the maximum distance between the ECDF and the
CDF

Dn = sup
x
| Fn(x)� F(x) | .

If the data is constituted by i.i.d. samples (independent and identically dis-
tributed), then the test follows an asymptotic distribution, and the sample can
be refused if the Kolmogorov-Smirnov statistic Dn is larger than a significance
threshold.

Unfortunately, the node degrees of a network are dependent as a result of
coming from a preferential attachment process. This produces a smaller vari-
ance of the empirical Fn(x) and smaller Dn as a consequence. Thus asymptotic
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distribution for the i.i.d. case is no longer valid. Moreover, the ECDF variance is
not constant over the degrees, and the largest deviations occur more frequently
for lower degrees, see Figure 2.1. In order to achieve the same sensitivity along
the tail, we rescale the distances with the variance. Both the variance and the test
significance threshold are calculated over parametric Bootstrap samples, which
consists of generating Monte Carlo samples from the de Solla Price model that
we are testing for. Thus the tail variance is the empirical variance of the sim-
ulated samples while the significance threshold is the empirical quantile 95%,
corresponding to a 5% type I error.

1.1.4 Test power
Test power is the probability of correctly rejecting a false null hypothesis. It is the
probability that a statistical test will correctly detect an effect when one exists.
A high test power means that the test is able to detect even small effects, while a
low test power indicates that the test may fail to detect effects that are present.
In our case, the deviation from power-law.

In contrast to the test power, a Type I error occurs when a statistical test
rejects a null hypothesis that is actually true, see Figure 1.2. It is commonly set
at 5%, like in our case.

Test power and type I error are two related concepts in hypothesis testing.
Test power measures the ability of a test to detect an effect when one exists, while
type I error measures the probability of erroneously rejecting the null hypothesis
when it is true. A good statistical test should have high test power and a low
type I error rate.

Test power depends on several factors, including the sample size, the level
of significance chosen for the test, the effect size, and the variability of the data.
These factors are clearly related to how long the empirical tail is, thus, if the
network is sufficiently grown. This is because a short tail does have not enough
power and, therefore cannot be safely tested. This project differentiates from the
previous literature by claiming that the majority of networks cannot be tested
because otherwise, you would get misleading results.

Test power is a less commonly used concept in hypothesis testing because it
is difficult to determine. In practice, it is often more feasible to specify the Type I
error rate instead. This is because it can be challenging to construct an alternative
distribution that represents all possible deviations from the null hypothesis, as
there are infinitely many potential distributions that could be used.

However, for power-law testing, this problem can be feasibly handled because
it is necessary to just specify as an alternative distribution a power-law tail that
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Figure 1.2. Relationship between test power and type I Error. Test power
depends on several factors, including the sample size, the level of significance
chosen for the test, the effect size, and the variability of the data. Image
borrowed from Wheeler et al. [2014].

drops at the end, as presented in Figure 2.3. This, the partial tail scenario, is the
most common and dangerous scenario that we want our test to be able to detect.

1.2 Latent Space dynamic Relational Event Model

This is the companion section to the second project. We focus on Relational Event
Modeling, which aims to study the factors that influence the links exchange be-
tween the network nodes. We assume a node’s specific latent factors, like the po-
sitioning of a node into a latent space where the frequency of links between two
nodes depends on their distance. The latent space is also known as the "Social
space". Nodes are allowed to move as time passes and change their connectivity
patterns. A Kalman filter methodology is developed to assess node dynamics.
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1.2.1 Relational Event Modeling
Relational Event Modeling (REM) is a statistical modeling technique that is used
to analyze social networks and the interactions between individuals. It is com-
monly used to study social interactions between individuals or groups, such as
the spread of information, the formation of alliances, or the occurrence of con-
flicts. The basic idea behind REM is that social interactions can be thought of as
events that occur between actors in a network, and these events can be analyzed
to gain insight into the relationships between the actors and the structure of the
network.

REM is a type of regression analysis that models the occurrence of events
across dyads over time. The framework is based on the assumption that the oc-
currence of links between actors in a network is influenced by the network struc-
ture and the characteristics of the actors involved. For example, the occurrence
of an event between two actors may depend on the strength of their relationship.

REM has been applied in a variety of fields, including sociology, political sci-
ence, and epidemiology, to study complex social phenomena such as social in-
fluence, network formation, and disease transmission. It is a powerful tool for
understanding the dynamics of social interactions and can help researchers iden-
tify key drivers of social processes.

The REM mathematical background lies in a point process. A point process is
a stochastic process whose realizations are points in the timeline, t1 < t2 < ...<
tn. In case of REM the events ek are links between nodes E = {ek = (ik, jk, tk)|tk 2
[0, T], k = 1, . . . , n}, where i and j are sender and receiver respectively. Each pair
of nodes share a point process that describes their interaction history, as shown
in Figure 1.3.

In REM literature a point process is assumed to follow Exponential waiting
times: the time between links is distributed Exponential(�i j(t)) and the fre-
quency of connection between two actors �i j(t) varies in time according to the
actors’ actions. The probability density, i.e. the likelihood, of the process is

L(E;�) =
nY

k=1

f (ek|ek�1)

=
Y

i, j

Y

t2E(i, j)

f (t, i, j|⌧< t)

=
Y

i, j

 Y

t2E(i, j)

e�i, j(t)

!
e�

R T
0 �i, j(t)d t

where E(i, j) is the restricted set of interactions between i and j. In the REM
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time

● ● ●

● ●

● ●

●

●

● ●● ●●

0 2 4 6 8 10

Abbey−>Brenda

Brenda−>Daniel

Daniel−>Abbey

Brenda−>Abbey

Daniel−>Brenda

Abbey−>Daniel

Figure 1.3. Point processes associated with actor pairs.

literature is more common to find an approximation of it, assuming that rates
�i j(t) are step functions that are allowed to change only when a link happens.
This assumption simplifies the likelihood to the one presented in Butts [2008]

L(E;⇤) =
nY

k=1

f (ek|ek�1)

=
nY

k=1

f (tk \ ik! jk|ek�1)

=
nY

k=1

f (tk|ek�1) f (ik! jk|ek�1)

=
nY

k=1

ÇX

ab

�ab(tk)

å
e�

P
ab �ab(tk)(tk�tk�1)

�ik jk(tk)P
ab �ab(tk)

where the last factor

P L =
nY

k=1

�ik jk(tk)P
ab �ab(tk)

is a Multinomial distribution and is called Partial Likelihood (PL). In REM liter-
ature, and more popularly in medicine, maximizing the PL is the main objective
for parameter estimation. The remaining part of the density can be excluded
since is not very informative to the parameters. This procedure is known as Cox
regression modeling [Cox, 1972].
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�i j(t) can be parametrized in multiple ways. It can be affected by both fixed
and random effects, as well as time-varying covariates, to account for the effects
of different factors on the occurrence of links. Two common effects are recipro-
cation (if an actor receives a link then increase the chance of a reply) and triadic
closure (if A contact B and B contact C, then increase the chances that A and C
make a contact). In this project, we focus on making

�i j(xt) = e�kxi(t)�x j(t)k2

dependant on the latent mapping of actors, where actors take a position in a
latent space and they interact more frequently with closer actors. This mapping
is, in social science, referred to as the “social space”, a space that reflects actors’
social vicinity. As time passes, the latent space reflects the dynamics behind the
interactions and if actors change their interaction preferences they then move to
different locations.

1.2.2 Kalman filter and Smoother
We assume that the actors’ latent locations follow a Gaussian process, mean-
ing that actors make a sequence of Gaussian jumps that move them in the latent
space. Making inferences on these processes involves the calculation of their con-
ditional distribution, in Bayesian theory known as the posterior. In the Bayesian
framework, the state of the system is represented by a probability distribution.
The prior distribution represents the prior knowledge about the state of the sys-
tem, while the posterior distribution represents the updated knowledge about the
state of the system after new observations are taken into account. The Kalman
Filter and Smoother use Bayesian inference to update the prior distribution to
the posterior distribution. They were developed by Rudolf Kalman in the 1960s,
and are widely used in control systems, signal processing, and robotics. The
Kalman filter leverages the basic concepts of Bayesian inference. Given a prior
distribution of actor locations at a fixed time point, the links observed at that
time update the prior to a posterior. This posterior becomes the prior for the
next time point. The update process is repeated until the time sequence reaches
the end. The Smoother does a similar procedure but backward.

Since the entire calculation of the posterior is too complex, the Kalman fil-
ter and Smoother estimate only the mean and the variance of the actors’ loca-
tions, conditioned to the observed links. This simplification allows estimating a
posterior distribution by means of a linear regression only, which translates the
problem into the prediction of the latent mean, which depends linearly on the
observed links.
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From a practical perspective, the Kalman filter and Smoother as well are often
interpreted as error correction models. It uses a two-step process to estimate the
state of the system. In the prediction step, the prior distribution of the locations
is predicted based on the system dynamics function

xt = E[forward(xt�1) +⌘t].

In the case of our Gaussian process, forward(·) is the identity function because we
do not put any constraint on the nodes’ direction. ⌘t ⇠ N(0,Q) is the Gaussian
jump that moves locations in the current time step. The predicted locations are
used to calculate the expected number of links in the observed state

ŷt = E[�(xt) + ✏t].

✏t is the noise associated with the observed data. In the update step, the links are
observed and the prediction error is propagated to the locations state in order to
make a correction on their position

xt  xt + Kt(yt � ŷt).

Practitioners commonly assume that the observed state is continuous and Gaus-
sian, obtaining a filtering matrix Kt that minimizes the Gaussian prediction error

Kt = E[(yt � ŷt)2].

In our case, the links come from a Poisson distribution, and the Kalman filtering
matrix is obtained by maximizing the likelihood of the process. The filtering
sequence is presented in Algorithm 1 and 2.

In conclusion, the Kalman Filter and Smoother are Bayesian tools for esti-
mating the state of a dynamic system based on noisy observations. They are
particularly useful in situations where there is uncertainty in the measurement
or modeling of the system and where the accuracy of the estimate is critical to
the performance of the system. They have been recently successful in Computer
Vision tasks and self-driving car systems.

1.3 Fast inference for large REM networks

This is the companion section to the third project. We aim to scale the latent space
Relational Event Model to very large networks, in the order of millions of nodes.
We make inferences to the model by leveraging machine learning optimization
techniques, such as the mini-batch stochastic gradient descent. Moreover, the
model is equipped with a clustering penalty that facilitates the interpretation of
a large number of results by grouping together nodes with similar trajectories.
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1.3.1 Mini-batch stochastic gradient descent
Mini-batch stochastic gradient descent (SGD) is a popular optimization algorithm
used to train machine learning models, particularly deep neural networks. It is a
variant of gradient descent and works by randomly selecting a subset B or "mini-
batch" of the data, in our case, a subset of links. In this subset, the likelihood
and its gradient are computed, updating parameters with a gradient step as

↵ ↵+ r f (↵)B.

The gradient step is repeated, taking different subsets of the data, making the
estimated gradient a stochastic quantity. It is an unbiased estimator of the full
data gradient. Moreover, we use Adam [Kingma and Ba, 2014], an extension of
the mini-batch SGD, which takes an average of the past history of gradients in
order to retrieve a direction with higher precision.

The advantage of mini-batch SGD is faster convergence because the memory
and computational cost are contained by the mini-batch size. The introduction
of randomness into the optimization process can help the algorithm escape local
minima and find better solutions. Mini-batch SGD can also lead to better gener-
alization performance because of the randomness introduction into the training
process.

We take the Latent Space REM framework and we use mini-batch SGD to
make inferences of the latent locations. However, the algorithm is designed and
optimally works for training deep neural networks. We thus focus this project on
the adaptation of this algorithm to network data. In particular, we deal with a
sparse gradient update problem where the mini-batch, created via network sub-
sampling, might not contain enough information for a reliable gradient estimate.
The gradient is sparse when a network subsample presents high sparsity in the
links or sparsity in the nodes. We hence propose oversampling links techniques
and network-specific mini-batch sizes in order to assure sufficiently dense gradi-
ents.
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Chapter 2

How rare are power-law networks really?

I declare that the content of this chapter comes from the original paper [Artico
et al., 2020] which is published in the Proceedings of the Royal Society A in
collaboration with I. Smolyarenko, V. Vinciotti, E.C. Wit.

2.1 Summary

The putative scale-free nature of real-world networks has generated a lot of inter-
est in the past 20 years: if networks from many different fields share a common
structure, then perhaps this suggests some underlying “network law”. Testing the
degree distribution of networks for power-law tails has been a topic of consider-
able discussion. Ad hoc statistical methodology has been used both to discredit
power-laws as well as to support them.

This paper proposes a statistical testing procedure that considers the com-
plex issues in testing degree distributions in networks that result from observing
a finite network, having dependent degree sequences, and suffering from in-
sufficient power. We focus on testing whether the tail of the empirical degrees
behaves like the tail of a de Solla Price model, a two-parameter power-law dis-
tribution. We modify the well-known Kolmogorov-Smirnov test to achieve even
sensitivity along the tail, considering the dependence between the empirical de-
grees under the null distribution, while guaranteeing sufficient power of the test.
We apply the method to many empirical degree distributions. Our results show
that power-law network degree distributions are not rare, classifying almost 65%
of the tested networks as having a power-law tail with at least 80% power.
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2.2 Introduction

Networks play an important role in many fields, from epidemiology and ecology
to engineering and sociology. They are a powerful way to represent and study
the interaction structure of complex systems. An important measure of the net-
work topology is the distribution of the number of connections per node: the
connectivity distribution [Barabási and Oltvai, 2004], also known as the degree
distribution. Many empirical networks have been reported to exhibit scale-free
behavior based on the distribution of the connectivities of the network nodes
[Newman, 2003; Mitzenmacher, 2004]. Describing networks can be justified in
two distinct ways: either phenomenologically based on network data or from
first principles.

Power-law networks have been proposed as a “universal” model, as they pos-
sess a number of important properties, such as the presence of hubs and large
numbers of nodes with few connections [Jeong et al., 2001] as well as a typical
small-world behavior [Amaral et al., 2000]. The latter allows fast communication
between nodes even for huge networks, given the small diameter characteristic
of small-world networks. The definition of a power-law network varies across
the literature, but one often cited definition is its degree distribution P satisfies
P(d)/ d��, where �> 1 [Clauset et al., 2009]. Some versions make additional
requirements, e.g., requiring that node degrees evolve via a preferential attach-
ment mechanism [Albert and Barabási, 2002], and specify, mathematically more
correctly, that the power-law only should hold asymptotically in the upper tail of
the degree distribution [Mitzenmacher, 2004; Voitalov et al., 2019].

However, from a phenomenological point of view, observed networks are (al-
most) always finite, hence a power-law network is indistinguishable from a net-
work with a sufficiently distant exponential cut-off of a power-law degree distri-
bution. If our sole purpose is fitting an observed degree sequence, then a large
class of models will do an equally good job for the types of networks we tend
to encounter in practice. Nevertheless, ever since De Solla Price started to ex-
periment with potential generative network models in the 1960s, it has become
clear that a small number of substantively plausible and generative principles
are capable of generating network structures that correspond to empirical net-
works. Particularly, various forms of preferential attachment rules have been
shown to result in network structures whereby the degree sequences are gener-
ally described by ratios of gamma functions [Krapivsky and Redner, 2001], i.e.,
power-laws. This putative universality of the power-law degree distributions sets
it up as a natural paradigm for falsification [Popper, 1962], i.e., as a natural null
hypothesis. It is from this epistemological point of view that we approach the
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question of power-law networks in this paper. On top of this, others have also
argued that it is practically important to know whether networks are power-law,
as such networks are, for example, more susceptible to epidemics and other viral
events [Newman, 2002].

A long-standing issue in network science is how prevalent the power-law
property is in empirical networks. A spate of early analyses, often using a fairly
crude methodology, resulting in a widespread acceptance of the belief that power-
law degree distributions, viewed as a proxy for a network being scale-free, are
quite ubiquitous [Redner, 1998; Laherrere and Sornette, 1998; Faloutsos et al.,
1999; Albert et al., 1999]. This coincided with intensive theoretical efforts to ex-
plain the putative universality of power-law degree distributions. More recently,
more sophisticated statistical techniques have cast doubt on the extent of the
scale-free universality. Starting with the work of Khanin and Wit [2006], biolog-
ical networks were shown to fit better with a truncated power-law model, i.e., a
power-law regime followed by a sharp drop-off, P(d)/ d��e�d/kc . The authors
found that the number of connections in biological networks significantly differs
from the power-law distribution and that these networks are not scale-free. An-
other critique was levied in a recent paper by Broido and Clauset [2019], who
use a likelihood ratio test within a nested testing procedure, suggesting that the
evidence for power-law distribution is often weak. A drawback of these critiques
is the emphasis on identifying “pure” power-law tails as this leads to two conflict-
ing requirements: a cut-off far into the distribution tail to ensure, in some sense,
sufficient closeness to the asymptotic power-law, and the availability of a suffi-
ciently large number of data points for meaningful statistical testing. The same
issue has recently been highlighted by Voitalov et al. [2019], who devise consis-
tent estimation procedures for the exponent � taking into account the asymptotic
nature of power-laws, but who reject the possibility of a formal testing procedure.

Even though a number of studies have considered testing for power-law de-
gree distributions in empirical networks, the final verdict is still open. This
current paper takes a complementary view to Voitalov et al. [2019]: we make
stronger parametric assumptions about the asymptotic form of the tail of the
degree distribution, avoiding the impossibility arguments [Voitalov et al., 2019,
Section V], in order to get a lower bound on the fraction of empirical networks
that exhibit power-law behavior. This parametric assumption consists of assum-
ing that the tail of the degrees comes from a de Solla Price network process,
a two-parameter preferential attachment model. This does not mean that a de
Solla Price is a sensible model for real-world networks, but being a subset of the
power-law distributions, not being able to reject with sufficient power a de Solla
Price model would mean that we have positive evidence for a power-law tail.
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In Section 2.3 we present the landscape of the main methodological issues
encountered in testing degree distributions in empirical networks. In Section 2.4
we present the proposed testing framework. We present (i) a specific paramet-
ric asymptotic power-law model that will be used to test the goodness-of-fit of
the empirical degree distribution, (ii) a modification of the classic Kolmogorov-
Smirnov statistic to deal with dependent degree samples as well as heteroge-
neous variances and (iii) a way to calculate the power of the test-statistic. In
Section 2.5 we apply the testing framework to 4,482 empirical networks. Our
aim is to decide whether in a large body of networks the power-law property
holds or should be seen as too simplistic. In Section 2.6 we present our conclu-
sions.

2.3 Issues in testing empirical degree distributions

In this section, we present an overview of the main issues encountered in testing
whether empirical degree distributions are power-law. In particular, (i) we will
introduce the exact asymptotic definition of a power-law degree distribution and
relate this to the problem of observing only finite networks; (ii) we explain how
the dependency of a single empirical degree sample affects the distribution of a
Kolmogorov-Smirnov test statistic and (iii) we show how asymptotic tests must
balance the delicate equilibrium between the power of the test and the asymp-
totic power-law property. The issues introduced in this section will be resolved
in Section 2.4.

2.3.1 What is a degree distribution?

A simple random graph on the vertex set V = {1, . . . , N} is defined by its graph
distribution H : E ! [0, 1], which associates with any graph G a probability
H(G). For directed graphs with possible self-loops E = {0, 1}N⇥N , whereas for
directed graphs without self-loops or undirected graphs, E is a strict subset of
{0,1}N⇥N . For any vertex i in the graph G, we define its degree dG(i) as the
number of edges in G that involve vertex i. In the case of directed networks, one
could focus on the in-degree or out-degree instead, but this will not change the
exposition below. Given a particular degree definition, we define the marginal
degree distribution P(·|i) : {0, . . . , N}! [0,1] for vertex i as the probability over
all graphs G for which vertex i has a particular degree,

P(d|i) =
X

dG(i)=d
H(G).
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Two important points to notice are that the measures P(·|i) and P(·| j) for i 6= j
are generally dependent and not identical. Only if the measure H is exchangeable,
then the marginal degrees are identically distributed. Only in very special cases,
such as for certain types of Erdős-Rènyi graphs, these marginal degrees are both
independent and identically distributed.

The average degree distribution P : {0, . . . , N}! [0, 1] is defined as the marginal
degree distribution of a randomly selected vertex,

P(d) =
1
N

NX

i=1

P(d|i).

We will refer to this distribution simply as the degree distribution. In fact, it is this
distribution that one commonly considers in practice, for example, by plotting
the histogram of degrees of all the vertices in a particular graph.

For graphs with infinitely countable vertex sets, the same definition for the
marginal degree distribution can be given, whereas the (average) degree distri-
bution is defined as a limit,

Pinf(d) = lim
N!1

1
N

NX

i=1

P(d|i).

For the Barabási-Albert preferential attachment model it can be shown that

Pinf(d) =
4

(d + 1)(d + 2)(d + 3)
for the in-degree d 2 N0 [Albert and Barabási,

2002].
We define power-law degree distributions as those degree distributions for in-

finite graphs that possess a particular asymptotic property in their tail. In par-
ticular, an infinite graph degree distribution Pinf is considered power-law if there
exists a �> 1 such that

limd!1 d�Pinf(d) = c, (2.1)

where c > 0 is an arbitrary positive constant, e.g., for the Barabási-Albert pref-
erential attachment model limd!1 d3Pinf(d) = 4. This definition of a power-law
is more restrictive than the regular variation definition in Voitalov et al. [2019],
but this is sufficient for our purposes.

2.3.2 Finitely observed network
As any empirically sampled network is finite, in what sense can this finite net-
work be related to the power-law? Since a vertex in a simple graph without self-
loops cannot have more connections than the total number of vertices excluding
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itself, the degree distribution has a support that is bounded above by N � 1.
This means that it is impossible to detect scale-free networks, whose power-law
regime “starts” above N � 1. Every finite network degree distribution could poten-
tially behave like a power-law on the unseen degrees. That is why, strictly speaking,
talking about power-law degree distributions for finite networks is meaningless.

However, if the finite network is, in a certain sense, a “random sample” from
an infinite network, then under certain conditions it might be possible to re-
late the finite sample degree distribution to the infinite population distribution.
Sampling subnetworks is more complicated than sampling ordinary populations,
as specific choices have to be made: whether to sample primarily vertices or
edges and how to sequence the sampling. Most state-of-the-art network sampling
schemes, i.e., link tracing, star, snowball, induced, and incident sampling, have
drawbacks that lead to certain biases in the estimation of the degree frequen-
cies [Kolaczyk and Csárdi, 2014, Ch 5.6]. We will show how certain generative
sampling assumptions will allow us to sample finite networks that asymptotically
form a subclass of the power-law degree distribution networks.

2.3.3 Dependent vs. independent degree samples

Essentially all existing work on empirical degree distributions [Newman, 2005;
Mislove et al., 2007; Lima-Mendez and van Helden, 2009; Broido and Clauset,
2019; Barabási, 2018; Voitalov et al., 2019, e.g.] treats the observed degree
sequence of an empirical network as an independent random sample. However,
depending on the underlying random graph distribution, observing a degree for
a particular node may well be positively or negatively correlated to the degree
of another node. A sample of degrees coming from a single realization of a
network should, therefore, be considered as a dependent sample. The impact of
this dependence on test statistics that involve the empirical degree distribution
has not been studied in any detail until now.

Smolyarenko [2019] shows that tests based on the empirical degree distribu-
tion can have markedly different behavior from what would be expected under
independence. In particular, the scaled empirical cumulative distribution func-
tion for degree distributions in standard synthetic networks does not converge
to a Brownian bridge [Mansuy and Yor, 2008]— see Appendix A for details. We
will show that under certain network distributions, the variance of the empiri-
cal degree distribution is lower than expected under independence, invalidating
traditional Kolmogorov-Smirnov tests.
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2.3.4 Power of goodness-of-fit test

As we want to test the null hypothesis that an empirical degree distribution
comes from a power-law network, it is important to be able to control the
power of the goodness-of-fit test. Regardless of the test choice, not rejecting
“H0 : network is power-law” is not necessarily proof of the validity of H0 without
additional control of the power of the test. The power of a test controls the prob-
ability of rejecting H0 when it is false. Although one clearly desires a high level
of power in order to correctly detect power-law networks, this does not come for
free: it involves determining the level and type of departure of power-law that is
practically insignificant. We will make recommendations on how to set sensible
values for this allowable deviation.

Furthermore, since a power-law is a tail property, the test statistic will focus
on the tail of the degree distribution. This leads to two, possibly conflicting
requirements, since the further along in the tail of the degree distribution we
check, (i) the more likely our parametric power-law distribution is able to fit a
power-law tail if it is present, but (ii) the less power the goodness-of-fit has to
detect it. We have to find a balance between, on the one hand, testing the tail
and, on the other hand, having sufficient tail observations to guarantee a certain
power of the test.

2.4 Testing framework

In this section, we present an integrated testing framework that addresses the
issues that were described in Section 2.3. Our aim is to describe a comprehensive
procedure that is based on a non i.i.d. degree sequence from a finite network is
able to test the null hypothesis

H0 : The degree distribution Pinf is power-law,

where the finite network is assumed to be a particular type of sample of Pinf as
described in Section 2.4.1. Then in Section 2.4.2 we operationalize the con-
cept of a power-law degree distribution by means of a flexible, generative family
of degree distributions. In Section 2.4.3 we introduce a modified Kolmogorov-
Smirnov test statistic that deals with all the difficulties we identified above and
in Section 2.4.4 we show how we can control the power of this test.
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2.4.1 Sampling finite networks

Empirical finite networks can occur in many different ways [Crane, 2018]. It
could be that the vertex set is fixed and the edges are drawn from some distri-
bution. These networks are not of interest to us in this manuscript. Clearly, such
non-growing networks have no relationship with any underlying, infinite net-
work distribution that might or might not exhibit power-law behavior. Instead,
in this manuscript we assume that Pinf is the resulting degree distribution from a
generative and additive network sampling scheme that at each moment can be
stopped to obtain a finite network.

For example, the Barabási-Albert preferential attachment model is a genera-
tive network sampling scheme that at each step adds a vertex to the network that
it connects to one of the other vertices already in the network with a probability
proportional to their degrees. This procedure can be stopped for any finite size
N network, leading to a degree distribution PN (d). Whereas the finite Barabási-
Albert preferential attachment model converges to a network with a power-law
degree distribution, other iterative sampling schemes might not.

2.4.2 A finite de Solla Price power-law

As the power-law property is a mere asymptotic characteristic of a network, the
class of power-law networks is vast. On purpose, we will restrict ourselves in
this manuscript to a subfamily of power-law networks. As our main assumption
in Section 2.4.1 is that the finite network is in a generative way associated with
the infinite network measure, we will focus on a generative class of power-law
distributions, namely preferential attachment models. These models iteratively
extend the network, both in terms of vertices and edges, in such a way that
networks of any particular size can be achieved.

Krapivsky and Redner [2001] describe a rich class network models con-
structed by means of a general generative preferential attachment procedure
with arbitrary connection kernels. They show that these kinds of models result in
degree distributions that can be described by ratios of gamma functions. Ratios
of gamma functions are the discrete analogs of power-laws. Using finite gamma
ratios as a model for power-law degree distributions has the crucial advantage
of treating some of the "midsection” of the degree distribution as signal rather
than noise. Broido and Clauset [2019], Khanin and Wit [2006] and others have
been unnecessarily restrictive in trying to find pure power-laws rather than ac-
cept that some aspects of curving in log-log plots are informative, starving typical
power-law tests of data.
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We focus on a particular two-parameter gamma ratio model, known as the
de Solla Price model introduced in 1965 for modeling growing citation networks
[De Solla Price, 1965]. In the context of a growing network, m is the number of
new edges added to the network at each iteration of the growing algorithm and
d + w is proportional to the preferential attachment probability for the vertices
with d incoming links. Van der Hofstad [2016] and Newman and Girvan [2004]
shows that the infinite degree distribution is given by

Psp
inf(d; w, m) = cm,w

� (d + w)
� (d + 2+ w+ w/m)

where 0< w<1, m 2 N and the normalizing constant cm,w = (1+
w
m)
� (1+w+w/m)

� (w) .
The model is a generalization of the Barabási-Albert model, which is the special
case when m = w = 1 and d 2 N0 is the in-degree. Combinations of the param-
eters (w, m) allow for more flexibility and the model is, therefore, better able to
capture empirical distributions at lower degrees. As d !1 the model shows a
power-law behavior proportional to d��, i.e,

Psp
inf(d; w, m) = cm,wd��(1+O(1/d))

where �= 2+ w/m [Van der Hofstad, 2016].
The finite de Solla Price degree distribution of size N is indicated as

Psp
N (·; w, m). We will use Fsp

N (d; w, m) =
Pd

i=0 Psp
N (i; w, m) as notation for the cu-

mulative distribution function of the finite de Solla Price model. Although the
de Solla Price model is flexible and can fit a wide range of empirical power-law
degree distributions, the model is still not flexible enough for our purposes. In
order to address this issue, we define a model that behaves as de Solla Price on
the degrees above a specified cutoff c and is free to take any other shape for the
degrees below, in particular,

Psp
c,N (d; w, m) =

⇢
pk d = 0, . . . , c � 1

Psp
N (d; w, m) d = c, . . . , N � 1

with its associated cumulative degree distribution function Fsp
c,N (·; w, m). Barabási

[2018] suggested that power-law networks often have such low degree devia-
tions, which should be ignored. We refer to this network model as the extended
de Solla Price network model, which is generated by arbitrarily rewiring edges
between low-degree vertices.
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2.4.3 A weighted Kolmogorov-Smirnov testing procedure

Given the de Solla Price subclass of power-law networks, our aim is to test the
more stringent null hypothesis

H0 : The network is drawn from an extended de Solla Price network model,

based on a single finite empirical network sample. The idea is that the number
of non-rejected tests, each with sufficient power, will give us an idea of the lower
bound on the ubiquity of empirical power-law networks.

Traditional Kolmogorov-Smirnov test statistic

Traditionally the Kolmogorov-Smirnov (KS) test statistic is one of the common
statistics used to test for the goodness-of-fit of a particular presumed distribution
of the data. It is defined as the largest distance between the empirical cdf and
the hypothesized one,

DKS =
p

N sup
d�0

��F̂N (d)� Fsp
c,N (d; w, m)

�� , (2.2)

where d stands for the degree, Fsp
c,N and F̂N are respectively the true (under H0)

and the empirically observed degree distributions, N is the overall number of ob-
servations, i.e., the number of vertices in the empirical network. The empirical
degree distribution is defined as F̂N (d) =

1
N

P
v2V 1{dvd} where dv is the observed

degree of vertex v. Under the independent sampling assumption, the DKS statis-
tic converges in distribution to the Kolmogorov limit distribution [Kolmogorov,
1933]. The convergence of DKS to the Kolmogorov limit distribution is based on
the assumption of continuous data and independent observations, both of which
are violated in the case of an empirical degree distribution from a single network.
As shown by Smolyarenko [2019], the KS test statistic for empirical degree dis-
tributions in evolving networks does not converge to the usual Kolmogorov limit
distribution.

Variance of the empirical degree distribution

As pointed out by Anderson and Darling [1954], the KS statistic does not achieve
uniform sensitivity over all quantiles. Under the independent sampling assump-
tion, for a fixed degree d we have that

N F̂N (d)⇠ Bin(N , Fsp
c,N (d; w, m)) (2.3)
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Figure 2.1. An example of a de Solla Price cumulative degree distribution;
dashed lines indicate the standard deviation of the empirical degree distribution
considering a network of size 30.

with variance N Fsp
c,N (d; w, m)(1 � Fsp

c,N (d; w, m)). Although independence is a
rather unrealistic assumption, it can give an insight into the variance behavior
in empirical cumulative degree distributions. In particular, F̂N (d) achieves its
highest variance at d = Fsp�1

c (0.5) and decreases to zero in the tails — i.e., in the
right tail in case of degree distribution. The distances

��F̂N (d)� Fsp
c,N (d; w, m)

�� are
not identically distributed over d and, more importantly, the decrease of the vari-
ance leads to a decrease of the sensitivity in the tail of the degree distribution. In
typical network scenarios, this means that the KS statistic is mainly influenced by
low degrees, whereas one mainly wants to detect deviations for high degrees. For
example, Figure 2.1 shows an empirical degree distribution, whose first degree
d = 1 takes 66% of the overall probability and therefore is the main contributor
to the KS statistic.

Our aim is to modify the Kolmogorov-Smirnov statistic in such a way that it
achieves even sensitivity across the empirical degrees. Beyond the uneven vari-
ance addressed by the Darling-Anderson modification [Anderson and Darling,
1954] described above, there are three additional considerations that affect the
behavior of the empirical degree distribution. In particular, we show how (i) the
estimation of the parameters (w, m) and (ii) the dependence among the empirical
degrees lead to a reduction of variance, whereas (iii) the randomness of the ob-
served degrees inflates the variance as compared to the independently sampled
binomial case in (2.3) that we consider as our baseline.



24 2.4 Testing framework

(i) Variance reduction due to parameters estimation. In order to be able
to calculate the KS statistic, one needs to estimate the parameters of the de
Solla Price model. We use maximum likelihood to estimate its parameters.
In particular, given a fixed value for c, we estimate the lower degree proba-
bilities by their empirical counterparts. As the empirical distribution function
and the MLE of the flexible de Solla Price coincide for low degrees, we have��F̂N (d)� Fsp

c,N (d; w, m)
�� = 0 for d < c. In general, estimation of the parameters

reduces the variance of the KS statistic [Feigelson and Babu, 2013].

(ii) Variance reduction due to dependent observed degrees. As described in
Section 2.3, the empirical degree distribution is a dependent sample of degrees.
We will show that this affects the distribution of KS statistic DKS. Chicheportiche
and Bouchaud [2012] show that the behavior of the KS statistic can be studied by
analyzing the random function Y (u) =

p
N
�
F̂(F sp�1

c,N (u))� u
�
, u 2 [0, 1] is the uth

theoretical quantile, since DKS = supu y(u). If F̂ was estimated by independent
observations, then (2.3) would imply that V (Y (u)) = u(1� u). This is shown as
the red line in Figure 2.2.

Although the correlations between the empirical degrees are only of order
1/N , the fact that there are

�N
2

�
of them, has a dramatic impact on the overall

variance of Y (u) and therefore on the KS statistic DKS [Smolyarenko, 2019]. We
simulated from the de Solla Price preferential attachment model, using differ-
ent values of w, the preferential attachment probability of the nodes with no
incoming links, and m, the number of new links that each new node makes with
the remaining nodes at each iteration of the growing process. Figure 2.2 shows
that in all the scenarios the observed variance of Y (u) and therefore DKS, was
lower than expected under independence. The negative correlations between
the empirical degrees results in a significantly lower variance. This clearly casts
doubt on a large scale of methodologies and past results which were based on
the independence assumption [Broido and Clauset, 2019; Clauset et al., 2009,
e.g.].

(iii) Variance inflation due to randomly observed degrees. The baseline case,
as described in (2.3), holds only for fixed degrees d under the independent sam-
pling assumption. However, the supremum taken in (2.2) will occur at an ob-
served, i.e., random degree. As Goldman and Kaplan [2016] showed for con-
tinuous distributions, the empirical degree F̂N (d(i)) has beta distribution, i.e.,
F̂N (d(i)) ⇠ �(i, N + 1 � i), which holds approximately for high degrees due to
the near continuous behavior of F̂N in the degree tail for large networks. This



25 2.4 Testing framework

0.0 0.2 0.4 0.6 0.8 1.0

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

Quantiles

Va
ria
nc
e

A
B
C
D

Figure 2.2. Brownian Bridge’s empirical variance with A:(w=1, m=1),
B:(w=134, m=23), C:(w=267, m=44), D:(w=400, m=51). The red line is
the variance under independent degree sampling (see Appendix A). Line A is
complete, but starts from the first rescaled degree F sp(0;1, 1) = 0.66.

results in a higher variance of the KS statistic than the binomial one. Clearly
this is true under the independent sampling assumption. For empirical degree
distributions, it is challenging to quantify the overall variance inflation due to
the degree of randomness since we also have to consider the possible variance
deflation due to the previous points.

A modified Kolmogorov-Smirnov test statistic

Here we will describe a test statistic that resolves the uneven variance, the re-
duced variance, and the inflated variance that the KS statistic experiences for
empirical degree distributions. As it is impossible to calculate analytically the
effect of the various complicating factors, we resort to bootstrapping in order to
define a uniformly sensitive, KS-like test statistic for testing the null hypothesis
of a de Solla Price power-law degree distribution. This is possible because the
de Solla Price is a generative network model, which can be sampled efficiently.

In particular, we consider an empirical network, for which we want to test
whether it might have appeared from a finite de Solla Price network, Fc,N (·; w, m).
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We will assume that the cut-off c is given — its value involves power considera-
tions, described in Section 2.4.4.

First, we estimate the parameters of the model (w, m) from the data. A num-
ber of methods are proposed in the literature for power-law estimation, such
as the Hill estimator for the tail coefficient of Wang and Resnick [2020] and the
maximum likelihood approach on the network evolution data of Gao and van der
Vaart [2017], whereas a comparison between different estimators is provided in
Clauset et al. [2009]. In our framework, we estimate the unknown parameters
(w, m) by numerically maximizing the pseudolikelihood

L(d; w, m) =
NY

i=1

Psp
c,N (di; w, m)

via an iterative algorithm [Gay, 1990]. Crowder [1976] showed that these esti-
mates are consistent. For fixed discrete values of m, we maximize the likelihood
according to w. We repeat the maximization procedure for a reasonable range of
m values. Finally, we select the (m, w) values with the highest likelihood. This
procedure is known as profile pseudolikelihood maximization. Further general-
izations might be possible by specifying a random m parameter [Deijfen et al.,
2009] that can be sampled among the most likely values.

Then we define the test statistic T as

T =
p

N max
v:dv�c

ñ��F̂N (dv)� Fsp
c,N (dv; ŵ, m̂)

��
p

ẑ(dv, ŵ, m̂)
, lim

a!d�v

��F̂N (a)� Fsp
c,N (a; ŵ, m̂)

��
p

ẑ(a, ŵ, m̂)

ô
(2.4)

where {dv} are the observed degrees on the vertex set V of size N and ẑ are
the Monte Carlo estimated variances of the empirical degree distribution at the
observed degrees for simulated de Solla Price networks with parameters (ŵ, m̂).
The distribution of the test statistic T under the null hypothesis is obtained via
a parametric bootstrap [Efron, 1992]. The parametric bootstrap consists of sam-
pling degree distributions from the null hypothesis, i.e., a de Solla Price network
generating process. The unknown parameters (w, m) are substituted with the
maximum likelihood estimates, meaning sampling from the most likely de Solla
Price distribution according to the observed data. We calculate the test statistics
T on each of them, and obtain T1, . . . , TB bootstrap realizations of the test statis-
tics distribution under H0. We reject the hypothesis that the data come from a de
Solla Price network if the test statistic T obs calculated on the observed network
is greater than the 95% empirical percentile of the bootstrap distribution.
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Figure 2.3. Under H0 degree distribution is the red conditional de Solla Price
power-law, whereas under H1 the degree distribution is taken to be the blue
step function with hc = 0.1 and c = 100.

2.4.4 Cutoff choice via power analysis

This section selects the cutoff point c, by considering how many observations
are left in the tail of the empirical degree distribution in order to guarantee the
required power level. Although power is loosely defined as P(reject H0 | H1

is true), for continuous alternatives one needs to select a required minimum
detectable effect size [Bloom, 1995], which we define as the maximal distance h
between the true distribution and the null distribution Fsp

c,N (·; ŵ, m̂).
Power-law are universally known for decreasing to zero slower than any other

function. Thus we choose an alternative distribution that decreases faster in the
tail. Among all the possible degree distributions with at least h maximum dis-
tance, the one that minimizes the power is the degree distribution that is exactly
the same as the null Fsp

c,N (·; ŵ, m̂), but with a step of size h placed at the end of
the tail, as shown in Figure 2.3. For values of h that are sufficiently small, the
distribution can be even closer to the power-law than the log-normal degree dis-
tribution. This assures that, once we fix the power for this type of function, all the
other degree distributions that are h removed from the de Solla Price power-law
will have greater power, i.e., will be detected more easily.

In the practical analyses in Section 2.5 we take a very stringent choice for
the cutoff. In particular, we decided to calibrate h = hc(1 � Fsp

N (c; w, m)) with
hc 2 [0.01, 0.1]. This means that we aim to be able to detect degree distributions
that have tail behavior that decays faster on roughly the last 0.001 of the degree
distribution. We choose a power of 80%, which means that if the true distribution
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differs from a power-law by only h or more in the tail, then 80% of the time our
method will detect it and reject the null hypothesis.

The power calculations are done straightforwardly by simulating B = 200 de-
gree samples from the de Solla Price model, with maximum likelihood estimated
parameters. Then each sample is censored in correspondence with the degree to
which the step occurs, obtaining samples from H1. The statistical test is applied
to each of them and the power is finally computed as the rate of rejected tests.

2.4.5 Overview of testing procedure

This section provides an overview of all the elements that go into testing whether
a single empirical network comes from some de Solla Price power-law model. In
five steps, the proposed testing procedure takes into account the power, degree
dependency cut off, and even sensitivity over the tail of the test statistic.

1. Step 1: calculate the maximum likelihood estimate on the original sample.

(a) Fix the cutoff c (for different values of c).

(b) Given an observed degree sequence of size N , estimate F̂N (·) and
Fsp

c,N (·; ŵ, m̂), where ŵ and m̂ are the maximum likelihood estimates
of the de Solla Price model.

2. Step 2: test distribution and variance computation.

(a) Select number of bootstrap samples B = 200.

(b) Generate d1, . . . , dB ⇠ Psp
N (·; ŵ, m̂) degree sequences with the de Solla

Price preferential attachment algorithm up to a network with N
nodes.

(c) Estimate the empirical degree distribution F̂ b
N (d) and the best fitting

de Solla Price model Fsp
c,N (d; ŵb, m̂b) for each of the bootstrap samples

b = 1, . . . , B.

(d) Estimate the bootstrap variance ẑ(·; ŵ, m̂) of the difference |F̂N (d)�
Fsp

c,N (d; ŵ, m̂)|.
(e) For each bootstrap replication, calculate the test statistic, T 1, . . . , T B

using Equation (2.4).

3. Step 3: test distribution under the alternative hypothesis with tail jump hc

as shown in Figure 2.3:
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(a) Fix the step size hc 2 [0.01, 0.1].

(b) Truncate d1, . . . , dB according to hc, obtaining dH1
1 , . . . , dH1

B .

(c) Estimate F̂ b
N (·) and Fsp

c,N (·; ŵb
H1

, m̂b
H1
) on the basis of dH1

b , with b =
1, . . . , B.

(d) Calculate the test statistics, T 1
H1

, . . . , T B
H1

.

4. Step 4: calculate p-value and power

(a) Calculate the test statistic on the original data T obs.

(b) Calculate the p-value as the rate of bootstrap statistics that exceed

the original statistic p-value=
PB

b=1 1(T b>T)
B , where 1(·) is the indicator

function.

(c) Obtain T0.95 as the 95% quantile of the bootstrap distribution.

(d) Calculate the power as the rate of H1 statistics that are rejected by the

test power=
PB

b=1 1
Ä
T b

H1
>T0.95

ä

B .

(e) Select the largest c for which the power is at least 80%.

2.5 Testing 4482 network for power-law degree distribu-

tions

We applied our testing framework to the datasets reported in Broido and Clauset
[2019], which consists of a large corpus of nearly 1000 network data sets drawn
from social, biological, technological, and informational sources. From these
networks, the authors derived 4482 observed degree sequences. The corpus of
real-world networks includes both simple graphs and networks with various com-
binations of directed, weighted, bipartite, multigraph, temporal, and multiplex
networks.

Similar to the authors in the original paper we are interested in testing
whether the networks exhibit power-law degree distributions. For each degree
distribution, we applied our testing framework for several values for the tail sen-
sitivity hc = [0.01,0.015, 0.02,0.03, 0.05,0.1], fixing a cutoff c at degree 10. For
lower values of cutoff, the test tends to reject most of the networks as de Solla
Price, because of the other regimes present in the lower degrees that are irrele-
vant for power-law tail behavior.

By fixing c and hc, it may occur that various networks do not achieve the
required power of 80%. Those networks are excluded. Figure 2.4 shows the
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Figure 2.4. The green line shows the overall number of 4482-degree distribu-
tions that are possible to test. The black line shows the number of admissible
tests that have a power greater than 80% with respect to tail sensitivity hc.
The red line illustrates the number of tests for which the de Solla Price power-
law seems to be a sensible model.

absolute number of degree distributions that are admissible to being tested, i.e.,
with power higher than 80%, as well as the absolute number of accepted tests,
i.e., tests for which the power-law null distribution could not be rejected.

Figure 2.5 shows the H0 acceptance rate over different hc values, as the rate of
the non-rejected power-laws over the total number of tested networks. The lower
hc, the lower the number of admissible networks to be tested. Nevertheless,
the rate of networks for which the de Solla Price power-law cannot be rejected
is almost constant for hc > 0.01. Using the common elbow rule [Thorndike,
1953], a common practice among engineers, we select a very strong tail sensitiv-
ity hc = 0.015 for which 64% of the tested networks exhibit power-law behavior.
For each of the non-rejected networks, we calculate the power-law exponent,
�̂ = 2+ ŵ/m̂, with estimated parameters shown in Figure 2.6. We find that for
the more restrictive tests (hc = 0.015), all the exponents are between 2 and 3,



31 2.5 Testing 4482 network for power-law degree distributions

0.02 0.04 0.06 0.08 0.10

0.
0

0.
2

0.
4

0.
6

hc

Fr
ac

tio
n 

of
 te

st
s

●

●

●

●

●

●

Figure 2.5. Fraction of accepted tests, i.e., rate of detected power-law networks,
for hc = [0.01,0.015, 0.02,0.03, 0.05,0.1]. Note that the rate is stable for
hc > 0.01. This suggests that roughly 2/3 of all considered real-world networks
seem to exhibit power-law tail behavior.

whereas for the most liberal tests (hc = 0.1), 99.1% of all exponents are associ-
ated with what is normally called scale-free power-laws. As this acceptance rate
stays constant for increasing values of hc and of the number of admissible net-
works and as the power-law exponent is between 2 and 3 for almost all accepted
degree distributions, we speculate that approximately 2/3 of all empirical, large-
scale networks, which can reasonably be considered to have been drawn from
some underlying infinite network, are scale-free power-law networks.

Although we have obtained positive evidence that power-law networks are
not rare among larger recorded networks that have sufficient observations in the
tail, for the most stringent testing scenario with hc = 0.015 we tested only 500
out of the 4482 networks, whereas for the most liberal value hc = 0.1 we could
test slightly less than half of all networks. If the tail is not big enough, parameter
estimation and testing could be misleading, generating inconclusive results about
the nature of the underlying degree distribution.
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Figure 2.6. Estimates of (w, m) for accepted tests at hc = 0.015

2.6 Conclusions

Are power-law degree distributions rare or everywhere [Holme, 2019]? It is per-
haps surprising that after 20 years of network science, this issue still has not
been resolved and has suddenly flared up again in the scientific debate. As the
question has important philosophical and conceptual consequences, however,
it is perhaps more surprising that it has taken 20 years before careful technical
reviews, such as by Voitalov et al. [2019], have considered this question method-
ologically. With this current paper, we hope to have contributed to this recent
methodological progress.

In this paper we have developed a tail testing procedure, taking into account
a host of issues related to testing degree distributions of a single empirical net-
work. We have presented the behavior of the Kolmogorov-Smirnov statistic for
the discrete degree distributions, making corrections in order to achieve an even
sensitivity on the observed degrees. We have presented an alternative power-
law degree distribution that can be tuned to specify the size of the deviation
from the power-law, and then use it to calculate the power for the test. The
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degree of dependency and other issues have been solved by bootstrapping the
test distribution via de Solla Price growing network process. The aim of this
work is to propose a rigorous approach to test with sufficient power whether se-
quences of dependent node degrees can be distinguished from a specific power
law distribution in the tail. What we mean with rigorous is that given the defi-
nition of the modified KS test statistic, our testing procedure is exact, i.e., with
exact coverage and power, up to the precision of the bootstrap sampling. Al-
though a power-law is a property that has sometimes been explicitly associated
with the in-degree distributions [Mitzenmacher, 2004], our testing framework
can be applied to any arbitrary degree sequence, whether in-degree, out-degree,
or full-degree distribution, both for directed and undirected simple networks.

Our aim was to re-evaluate the conclusion from Broido and Clauset [2019]
by applying our testing framework to 4482 empirical degree distributions. How-
ever, in contrast to their claim that power-law distributions are rare, we classi-
fied approximately 64% of the networks, for which we have sufficient power, as
power-law — and most of those as scale-free. Our conclusion is that power-law
networks are not rare at all. Furthermore, we note that in this framework we
just tested for power-law networks using the de Solla Price model, which is a
small subclass of power-law degree networks. This suggests that an even larger
number of real-world networks could be classified as power-law had we used a
larger power-law class as the null. Clearly, power-law networks seem empirically
ubiquitous.

2.7 Supplementary Material

2.7.1 Brownian Bridge

For completeness, we reproduce here the standard derivation of the Brownian
bridge variance for independent samples [Chicheportiche and Bouchaud, 2011].
Let X be a random vector of n independent and identically distributed variables
with marginal cdf F , with realization x1, . . . , xn. For a given number x in the
support of F , we define Y (x) the random vector in which Yi(x) = 1{Xi<x} is a
Bernoulli variable. Then

E [Yi(x)] = F(x)

E
⇥
Yi(x)Yj(x 0)

⇤
=

®
F(min(x , x 0)) , i = j
F(x)F(x 0) i 6= j
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The centered sample mean of Y (x) is:

Ȳ (x) =
1
n

nX

i=1

Yi(x)� F(x)

Denoting u= F(x) and v = F(x 0), the covariance function of Ȳ is:

Cov(Ȳ (u), Ȳ (v)) =
1
n
(min(u, v)� uv)

and the sample mean can be rewritten as

Ȳ (u) =
1
n

nX

i=1

Yi(F�1(u))� u

We define the process y(u) as the limit of
p

nȲ (u) when n!1. According to
the Central Limit Theorem, it is Gaussian, and its covariance function is given
by:

I(u, v) =min(u, v)� uv

and thus variance
I(u, u) = u� u2 = u(1� u).

2.7.2 Simulation study: testing the test
A common practice when dealing with novel statistical methodologies is to run a
simulation study. The aim is to check the validity of the procedure in a controlled
environment. In the case of a testing procedure, this means checking the Type I
Error [Sahoo, 2013] or equivalently the uniformity of p-values. If the procedure
is correct, we expect that the p-values have Uniform distribution under the null
hypothesis. The simulation study is articulated as follows: for an arbitrarily fixed
(w, m) we simulate B = 200 realizations of de Solla Price degree distributions,
on each of them we apply the testing procedure retrieving a p-value. We ver-
ify through qqplot their uniformity. Finally, we repeat the simulation study for
different values of (w, m). Figure 2.7 reports some of these cases, showing that
the p-values fit quite well with the Uniform distribution, leading to trust in our
results on the real datasets.
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(a) w= 1, m= 1
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(b) w= 0.50, m= 5
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(c) w= 0.45, m= 4
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(d) w= 0.48, m= 6

Figure 2.7. We present some qqplots of pvalues versus the quantiles of a Uni-
form distribution, simulations performed using different parameter settings.
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Chapter 3

Dynamic latent space relational event

model

I declare that the content of this chapter comes from the original paper [Artico
and Wit, 2023b] which is published in the Journal of the Royal Statistical Society
Series A: Statistics in Society in collaboration with E.C. Wit.

3.1 Summary

Dynamic relational processes, such as e-mail exchanges, bank loans, and scien-
tific citations, are important examples of dynamic networks, in which the re-
lational events consist of time-stamped edges. There are contexts where the
network might be considered a reflection of underlying dynamics in some latent
space, whereby nodes are associated with dynamic locations and their relative
distances drive their interaction tendencies. As time passes nodes can change
their locations assuming new configurations, with different interaction patterns.

The aim of this paper is to define a dynamic latent space relational event
model. We then develop a computationally efficient method for inferring the
locations of the nodes. We make use of the Expectation Maximization algorithm
which embeds an extension of the universal Kalman filter. Kalman filters are
known for being effective tools in the context of tracking objects in space,
with successful applications in fields such as geolocalization. We extend its
application to dynamic networks by filtering the signal from a sequence of
adjacency matrices and recovering the hidden movements. Besides the latent
space, our formulation includes also more traditional fixed and random effects,
achieving a general model that can suit a large variety of applications.

37
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3.2 Introduction

Networks appear in many contexts. Examples include gene regulatory networks
[Signorelli et al., 2016], financial networks [Cook and Soramaki, 2014], psy-
chopathological symptom networks [De Vos et al., 2017], political collaboration
networks [Signorelli and Wit, 2018], and contagion networks [Užupytė and Wit,
2020]. Studying networks is important for understanding complex relationships
and interactions between the components of the system. The analysis can be dif-
ficult due to the many endogenous and exogenous factors that may play a role
in the constitution of a network. The aim of statistical modeling in this context
is to describe the underlying generative process in order to assist in identifying
the drivers of these complex interactions. These models can assist in learning
certain features of the process, filtering noise from the data, thereby making in-
terpretation possible.

In this manuscript, we are considering temporal random networks, whereby
nodes make instantaneous time-stamped directed or undirected connections. Ex-
amples are email exchanges, bank loans, phone calls, and article citations. A
common approach to these networks has been flattening the time variable and
studying the resulting static network. Although this method simplifies the com-
plexity of the calculations, clearly there is a loss of information about the tem-
poral structure of the process. Most networks are inherently dynamic. Subjects
repeatedly create ties through time. Since the adjustment of ties is influenced by
the existence and non-existence of other ties, the network is both the dependent
and the explanatory variable in this process [Brandes et al., 2009]. Thus rather
than viewing this as a static network, we consider the generative process as a net-
work structure in which the actors interact with each other through time. Edges
are defined as instantaneous events. This quantitative framework is known as
relational event modeling.

The basic form of a relational event model as an event history model can be
found in Butts [2008] with an application to communications during the World
Trade Center disaster. The model has been extended by Brandes et al. [2009] to
weighted networks: nodes involved in these events are actors, such as countries,
international organizations, or ethnic groups. An event is assigned a positive
or negative weight depending on a cooperative or hostile type of interaction,
respectively. Other examples of relational event modeling include the work by
Vu et al. [2017] on interhospital patient transfers within a regional community
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of health care organizations or the analysis of social interaction between animals
[Tranmer et al., 2015].

In a relational event model, the connectivity may depend on the past evo-
lution of the network. Keeping track of the past is challenging for dynamic net-
works because of the high number of possible configurations (k-stars, k-triangles,
etc.) that could be taken into account, as well as their closure time and the time
they keep affecting future configurations. We thus propose to take some kind
of summary of the past configurations. A solution that can both summarize the
process and approximate effectively the past information is the idea of a dynamic
latent space. To describe the latent structure of a network one can think of plac-
ing the vertices in a space where the distance between two points describes the
tendency or lack of tendency to connect. Among social scientists, this is typically
called a social space where actors with more interactions are close together and
vice versa [Bourdieu, 1989]. The locations are allowed to change in time. At
each time point, new connections are formed and the subjects develop attrac-
tion/repulsion that forces them to change their social space configuration. The
new configuration is the one that best reflects the new connectivity behavior. As
a result, one location at a certain time reflects past information, within the limits
of the latent space formulation. This evolution describes the social history of the
subjects, their preferences, and the groups they might join or leave.

There are other temporal network models. The stochastic actor-oriented
model [Snijders and Pickup, 2017] defines relationships between social actors
that can be created and destroyed. This model is very useful to model interac-
tions that extend in time but are less suitable to model instantaneous interactions,
such as communication, patent citations, or financial transactions. The temporal
exponential random graph models [Hanneke et al., 2010] models sequences of
networks. This approach is agnostic about the underlying generative process,
but typically would also focus on persistent network relations. Here we focus on
instantaneous interactions, which makes the use of relational event models the
method of choice.

3.2.1 Related work and novelty of the proposed method
The problem of tracking latent locations has been studied by many authors,
specifically for the static case, i.e., tracking locations under the assumption that
they are fixed over time. For static binary random graphs Hoff et al. [2002] pro-
vide a framework for inference. Some extensions of that model have been de-
veloped to overcome the limitations of the latent space formulation [Hoff, 2005,
2008, 2009]. The well-known stochastic block model describes the similarity
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between the actors by grouping them together, which is similar to latent space
formulation. An extension of stochastic block modeling to relational event data
is provided by DuBois et al. [2013].

An approach for modeling latent space dynamic binary networks was pro-
posed by Sarkar and Moore [2005]. The method is based on an initial prepro-
cessing phase where rough location guesses are found through generalized mul-
tidimensional scaling, followed by an estimation phase in which the dynamic
locations are treated as fixed parameters and optimized via a conjugate gradient
method. The distances between nodes are approximated by thresholding larger
ones and including an additional penalty for forcing distant nodes to be closer.
In this work, we avoid making ad hoc inference assumptions.

Sewell and Chen [2015] propose a Bayesian latent space model for temporal
binary networks where its radius interpretation of the linear predictor reduces
to a Hoff et al. [2002] model with the addition of node-specific random effects.
The method employs a Metropolis-within-Gibbs approach, whose computational
burden of MCMC integration increases exponentially with the latent dimension
d, the number of nodes p and the number of time points n. Although case-control
sampling [Raftery et al., 2012] reduces the likelihood computation from O(np2)
to O(np), its accuracy depends on extensive stratification. By considering one
control stratum, Sewell and Chen [2015] weigh heterogeneous distances in the
same way, producing a bias. This leads to the paradoxical overlapping of un-
connected nodes. Durante and Dunson [2016] developed a Bayesian approach
using Polya-Gamma data augmentation for binary links and Gaussian processes
for parameter dynamics combined with a non-Euclidean dissimilarity measure.
In contrast to the previous two Bayesian approaches, we tackle the problem
from a frequentist perspective, which does not require data augmentation. Our
Expectation-Maximization algorithm combined with a Kalman filter is determin-
istic and does not suffer from Bayesian convergence issues. It scales linearly with
the number of time periods and achieves a good latent representation after a few
iterations. It can scale to several hundred nodes without case-control subsam-
pling. Moreover, whereas Durante and Dunson [2016] assume a discrete time
sequence of binary adjacency matrices, we embed our discrete-time observation
process into an often more realistic continuous time relational event process.
Furthermore, we explicitly consider the availability of covariates, which allow
for further disentanglement of known drivers of the interaction dynamics from
the unknown factors. Although non-Euclidean alternatives can easily be added,
our implementation focuses on an easily interpretable Euclidean latent space.
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3.2.2 The methodology presented

A dynamic latent space model is particularly useful in an exploratory stage of
the analysis. It allows for an interactive investigation of the data to generate hy-
potheses about the drivers of the generative process by seeing which nodes are
close and which nodes are far apart, as well as the way they develop through
time. The most obvious example of this approach is simply by visualizing the de-
velopment of the latent node locations in two dimensions. However, simple mul-
tivariate analysis tools, such as PCA, can also explore latent spaces with higher
dimensions. If the aim of the analysis is entirely predictive, then the latent space
model itself may be of interest as it can be used to generate predictions without
knowing the underlying drivers of the process.

The aim of this manuscript is to develop an efficient inference scheme for
a relational event process embedded in a latent Gaussian process. The frame-
work is very general and can be extended to networks with weighted edges of
any exponential family distribution. There are two dual representations of the
process, either as a continuous time exponential or as discrete Poisson counts.
Depending on the sparsity of the observed process, one or the other can be se-
lected in the inference procedure. Furthermore, the theoretical burden of the
Expectation Maximization framework in the model has been reduced to two an-
alytical steps: for the E-step a Kalman filter and smoother is used, whereas for
the M-step a generalized linear model framework is derived. Both are provided
by modern packages. Our latent space relational event framework provides an
accurate, simple, and computationally efficient way of inferring a wide general
class of dynamic social network models.

Section 3.3 describes a motivating patent citation network example. In sec-
tion 3.4 several formulations of the latent space relational event model are pre-
sented. In section 3.5 we propose an efficient inference method that is based
on combing the state-space formulation of the model with the EM algorithm.
In section 3.6 we check the performance and limitations of our method via a
simulation study. In section 3.7 we analyze the latent structure of technological
innovations, by studying over 23 million patent citations from 1967 until 2006.

3.3 Patent citation networks

Patents are legal documents of intellectual property that testify of some techno-
logical innovation. Innovation itself is a complicated process and involves both
true novelties as well as the adaptation of existing ideas in a new context. Within
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the patenting process, this borrowing of existing ideas is referred to as patent ci-
tations: each inventor that submits a patent to a patent office is required by law
to include the current state-of-the-art on which the current patent is based by
citing those patents in which those ideas have been deposited.

By tracing which patents cite which other patents, it is possible to establish
a dynamic network in which patents accumulate over time citations from other
patents. Alternatively, it is possible to group patents together into clusters and
track how these clusters cite and are cited by other clusters. Either way, the
process of citation shows how certain patents at certain times are particularly
important in the technological innovation process. As innovation is important
for economic progress and prosperity, it is little surprise that the analysis of the
patent citation network has become an important field of study. It is of particular
interest to find out what drives technological innovation [Lafond and Kim, 2019].
Furthermore, economists are eager to find out whether or not the innovation
process is changing over time.

The International Patent Classification (IPC) scheme is a hierarchical cluster-
ing scheme for patents. It assigns each patent to eight main classes, to wit,

A : Human necessities: agriculture, foods, tobacco, personal or domestic
articles, health, life-saving, amusement.

B : Performing operations and Transporting: separating, mixing, shaping,
printing, transporting, nanotechnology.

C : Chemistry and Metallurgy

D : Textiles; Papers.

E : Fixed constructions: building, earth drilling.

F : Mechanical Engineering; Lightning; Heating; Weapons; Blasting.

G : Physics: instruments, nuclear.

H : Electricity.

Within each main class, there are a large number of subclasses, resulting in over-
all roughly 500 subclasses. Each subclass has again a number of groups and
subgroups, which for the purposes of the analysis here we will ignore. Also,
other grouping schemes are possible [Younge and Kuhn, 2016].

The National Bureau of Economic Research in the U.S. released in 2010
patent citation data, consisting of 3.1 million patents, 23.6 million citations over

https://ipcpub.wipo.int/?notion=scheme&version=20190101&symbol=none&menulang=en&lang=en&viewmode=f&fipcpc=no&showdeleted=yes&indexes=no&headings=yes&notes=yes&direction=o2n&initial=A&cwid=none&tree=no&searchmode=smart
https://sites.google.com/site/patentdataproject/Home
https://sites.google.com/site/patentdataproject/Home
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the period 1967-2006, with collection intervals of 1-year length. By studying
how citing behavior and cited tendency of the classes and the subclasses change
over time, we aim to answer some of the questions we posed above. The latent
representation allows for a straightforward similarity assessment, showing which
fields are becoming more heterogeneous in their citation patterns. The aim is to
develop a methodological framework for inferring dynamic latent space track-
ing of the technology classes and to show how this changes the nature of patent
citations.

3.4 Latent space relational event models

In this section, we introduce a general version of a latent space relational event
model. We consider a set of actors, defined as a finite vertex set V = {1, . . . , p},
that can exchange links or edges in time. In principle, we will consider the ex-
change of relational events, such as discrete interaction, e.g., sending an email
or citing a patent, but we will also consider extensions to the quantitative ex-
changes, such as import and export. As drivers of the exchange process, we
consider both endogenous, such as reciprocity, and exogenous variables, such
as vertex characteristics. One particular exogenous variable is the relative loca-
tion of the vertices in some Euclidean latent space, which itself is defined as a
dynamic process.

We consider a non-homogeneous multivariate Poisson counting process N =
{Ni j(t) | i, j 2 V, t 2 [0, T]} and a state-space process X = {Xi(t) 2 Rd | t 2
[0, T], i = 1, . . . , p} relative to some standard filtration F . In particular, we
consider F -measurable rate functions �i j(t) that drive the components of the
counting process. In particular, we assume that the rates �i j(t) are functions
of the underlying positions Xi(t) and X j(t), besides possible other exogenous
characteristics Bi j(t) and endogenous features N(t),

�i j(t) = g(d(Xi(t), X j(t)), Bi j(t), N(t)),

for some measurable function g. Two common choices for the way that the rate
depends on the locations are either as a function of the squared distance,

d(Xi(t), X j(t)) = ||Xi(t)� X j(t)||2

or the relative activity dissimilarity d(Xi(t), X j(t)) =
<Xi(t),X j(t)>
||Xi(t)|| between i and j

[Hoff et al., 2002]. The former induces a symmetric interpretation, whereas the
latter allows for a more complex asymmetric interpretation of the state-space. In
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this manuscript, we mainly focus on the Euclidian distance, as we prioritize visual
interpretation of the results. However, it is important to mention that switching
to another dissimilarity measure requires very little effort. The interaction dy-
namics �i j(t) can be highly structured and parametrized, i.e., g = g✓ , whereas
the state-space dynamics is assumed to be a random walk at equally spaced time
points t x

k in [0, T],
Xt x

k
= Xt x

k
+ vk, k = 1, . . . , nx (3.1)

with vk ⇠ N(0,⌃) and t x
0 = 0. In this manuscript, we use sometimes the more

compact notation xk = X (t x
k ) or X (k) when we find it more convenient. The co-

variance matrix ⌃ regulates the evolution of the latent process: a large variance
allows longer jumps. Given the joint formulation (X , N) of the state-space and
interaction process, we will assume that only the interaction process N is ob-
served and the main aim of this paper is to infer the structure of the state-space
X and the rate functions �, or more specifically, the parameter � associated with
functional form � = g� .

Next, we will consider two particular special cases of the latent space formula-
tion of the interacting point process defined above. First, we consider the general
case, in which the relational events are observed in continuous time. This is the
traditional setting for relational events. We will also define a relational event
model where the interactions can only happen at specific times. For example,
bibliometric citations or patent citations only happen at prespecified publication
dates. Furthermore, this model allows a generalization to non-binary relational
events, such as export between countries, that can be dealt with in the same
inferential framework.

3.4.1 Continuous time relational event process N

We consider a sequence of ne relational events, {(i1, j1, t e
1), . . . , (ine

, jne
, t e

ne
) | t e

i 2
[0, T], i, j 2 V} observed according to the above defined relational counting
process N . In a latent space relational event model, the rate is defined as

log�i j(t, x ,�) = �d(xi(t), x j(t)) + � t
GBi j(t) + � t

Ds({N(⌧)|⌧< t}). (3.2)

where the latent space effect d(Xi(t), X j(t)) that captures the “vicinity” of the
actors. The drivers of the network dynamics can be of various types: exogenous
effects, � t

GBi j(t), such as global covariates, node covariates, edge covariates, as
well as endogenous effects, � t

Ds({N(⌧)|⌧ < t}), where network statistics s() cap-
ture endogenous quantities such as popularity, reciprocity, and triadic closure.
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The parameter vector � determines the relative importance of the various ef-
fects.

Conditional on the process X , the distribution of the interarrival time for
interaction i ! j are generalized exponentials, with instantaneous rates as de-
scribed in (3.2) and interval rates

µk,i j(xk,�) =
Z t x

k+1

t x
k

�i j(t, x ,�) d t = e�d(xi(t x
k ),x j(t x

k ))ci j(k,�), (3.3)

where ci j() is the remaining integral and latent distance d() between the nodes is
constant over the interval. The full log-likelihood of the complete process {X , N},
can be factorized in two components,

`(� ,⌃) = log p�(n|x) + log p⌃(x), (3.4)

where log p⌃(x) = � nx
2 log |⌃| � 1

2

Pnx
k=1 (xk � xk�1)0⌃�1(xk � xk�1) and

log p�(n|x) = �
P

i 6= j

Pnx
k=1µk,i j(xk,�) +

Pne
k=1 log�ik jk(t

e
k, xte

k
,�), where the

generalized exponential formulation is the one adopted by Rastelli and Corneli
[2021]. Although it is common in the REM literature to simplify inference by
using the partial likelihood, we keep the generalized exponential component, as
it can be estimated more easily in the M-step of the EM algorithm, described in
section 3.5.

3.4.2 Discrete time relational event process Y

Often relational events are “published” only on prespecified discrete event times
T = {t e

1, . . . , t e
n}. For simplicity of notation, we will assume that the relational

event collection process and the jumps of the latent space are equal, i.e., n= nx =
ne and {t1 = t x

1 = t e
1, . . . , tn = t x

n = t e
n}. We make an additional assumption that

the rate � is constant with respect to the endogenous and exogenous variables
inside the collection intervals (tk, tk+1]. In fact, with respect to the endogenous
variable N it makes sense that no further information between the publication
dates affects the rates. In other words, assuming a log link for the hazard, for
t 2 (tk, tk+1]

log�i j(t, x ,�) = �d(xi(tk), x j(tk)) + � t
GBi j(tk) + � t

Ds({N(⌧)|⌧ tk}). (3.5)

As the interactions i ! j are collected at tk+1 from the observation intervals
(tk, tk+1], the resulting interval counts

yk,i j = Ni j(tk+1)� Ni j(tk)
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Figure 3.1. The observed counts yk are a result of the dynamics in nodes
locations xk. Hence, y is independent conditionally to the latent locations x .

of the number of interactions between i and j are Poisson distributed with inter-
val rate,

µk,i j(xk,�) =
Z tk+1

tk

�i j(t, x ,�) d t = (tk+1 � tk)�i j(tk, x ,�). (3.6)

An advantage of using discrete time is the reduction of the model complexity.
It is not uncommon to observe thousands, even millions of links. Such numbers
are not surprising when we consider p(p�1) processes having an expected num-
ber of links E[

P
p(p�1) Ni j(t)] that grows rapidly. The model can be written as a

discrete-time state-space process,
⇢

xk ⇠ N(xk�1,⌃), k = 1, . . . , n
yk,i j ⇠ Poi(µk,i j(xk,�)), 1 i 6= j  p.

(3.7)

Given the complete observations (x , y), the complete log-likelihood for the state
space model in (3.7) can again be factorized in two components,

`(� ,⌃) = log p�(y |x) + log p⌃(x), (3.8)

where log p�(y|x) = �
P

ki j µk,i j(xk,�)+
P

ki j yi j(k) logµk,i j(xk,�) and log p⌃(x)
as above, where the factorization is according to the directed graph in Figure 3.1,
where yk ? y�k, x�k|xk and xk+1 ? xk�1|xk. Similar to Butts [2008] and Perry
and Wolfe [2013], who focused on non-homogeneous exponential waiting times,
this approach focuses on non-homogeneous Poisson counts.

One advantage of the latent space formulation is the dimensionality reduction
in the latent representation. As the number of nodes p increases the number
of observed counts p(p � 1)n grows quadratically while the latent space grows
linearly as pdn.
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Dynamic exponential family network model. Given the state space formu-
lation in (3.7), it is possible to generalize the model considering connections
drawn from any exponential family distribution without changing the infer-
ence procedure. In fact, ignoring the connection with any underlying count-
ing process, we could define a temporal network process on discrete time inter-
vals k (k 2 {1, . . . , n}) between nodes i and j as f (yi j(k)) = exp((yi j(k)✓i j �
b(✓i j))/a(') + c(yi j(k),'), where ✓i j is the edge-specific canonical parameter.
Using the canonical link function, we can specify the canonical parameter in a
similar fashion to (3.5),

✓i j(xk) = �d(xki, xk j)

where the values for x are the latent states as before. It is also possible to add
additional covariates, but we do not consider this case here. In Supplementary
Materials 3.9.4 we show how to obtain the Kalman update equation for any ex-
ponential family. The inferential method presented in this manuscript remains
mostly the same with a minimal change, effectively replacing the mean µ(xk)
and variance Rk of the process by

µ(xk) = b0(✓ )|xk
and Rk = b00(✓ )a(')|xk

.

This generalized temporal network model can be used to model import and ex-
port or other dynamic networks with weighted edges.

Marginalization One of the main advantages of our latent space network model
is that, unlike many other network models, it is coherent under sampling a sub-
set of nodes. Given that any subset V 0 of V maintains the same distances among
nodes, the distribution of the restricted node set PV 0 is the same as the marginal-
ized distribution of the full model PV |V 0 . This invariance means that it is unim-
portant to which node set the observed nodes actually belong. Therefore, for
the true latent dimension d, as well as for any dimension higher than that, the
model is invariant under marginalization. The only effect of subsampling is on
inference, in that the conditional variance of the latent locations given the re-
stricted nodes is larger than when given the full node set V , as they have fewer
triangulation opportunities.

3.5 Inference

In this section, we develop all the necessary steps for making inferences on the
latent states xk and the parameters ⌃ an � . Since the latent process, xk is un-
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observed, we aim to maximize
R

x L(� ,⌃; y, x)d x . We use the Expectation Max-
imization (EM) algorithm [Dempster et al., 1977]. EM algorithm is widely used
in problems where certain variables are missing or latent. The EM algorithm
consists of an iterative maximization of the conditional expectation of the latent
process X |N ,� ,⌃ with respect to the data.

Due to the stepwise dynamic of the latent locations (3.1) the expectation step
is equivalent for both models presented in Section 3.4.1 and Section 3.4.2. As the
locations are constant within intervals T , the continuous time non-homogeneous
exponential relational event model N reduces to a discrete-time Poisson model
during the E-Step.

Q(� ,⌃|�⇤,⌃⇤) = EX [`(� ,⌃)|y].
where �⇤,⌃⇤ denote the parameters estimated at the previous EM iteration. In
the maximization step Q(� ,⌃|�⇤,⌃⇤) is maximized with respect to the parame-
ters � ,⌃. The two steps above are iterated until convergence is reached. The
expectation step is typically challenging due to the high dimensional nature of
the integral.

The expectation of the log-likelihood can approximately be written as a func-
tion of the first two conditioned moments E[xk|y1:n] and V[xk|y1:n]. Exploiting
the state space formulation of the model (3.7) we can estimate these two quan-
tities with a Kalman filter and smoother [Kalman, 1960]. The filter derives the
mean and variance of the latent process xk conditioned to the information on y
up to time k,

x̂k|k = E[xk|y1:k] Vk|k = V[xk|y1:k].

The smoother refines these quantities accounting for the complete information
on y up to time n,

x̂k|n = E[xk|y1:n] Vk|n = V[xk|y1:n].

The expected log-likelihood can be then calculated using these quantities ob-
tained from the smoother.

3.5.1 E-Step: Extended Kalman Filter
The Kalman filter is one of the most popular algorithms for making inferences on
state space models and it provides a solution that is both computationally cheap
and accurate. Kalman filter is an iterative method that calculates the conditional
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Figure 3.2. The filtering model takes as input a sequence of adjacency matrices
and updates the node locations in the latent space.

distribution of the latent xk. Given the causal DAG at Figure 3.1 xk depends on
xk�1 and the observed yk. Assuming prior knowledge on the distribution of xk�1

the conditional distribution of xk is calculated easily. The procedure is applied
sequentially from time 1 to n, where the conditional distribution achieved at time
k becomes the prior knowledge for the next time point. An arbitrary distribution
is specified for the initial x0. Calculating the conditional distribution entirely
could be difficult so the first moments are calculated only. The calculation of the
conditional probability involves two steps that are universal in the filtering lit-
erature: predict and update. In order to be consistent with the aforementioned
literature we denote x̂k|k = E[xk|y1:k] and Vk|k = V[xk|y1:k] as the expectation
and variance conditioned of having observed yk. Note that xk and yk are vectors
of length px = pd and py = p(p� 1) or p(p� 1)/2 in case of an undirected net-
work, respectively. These correspond to the vectorized coordinate and adjacency
matrices at time k, respectively. ⌃ is a pd ⇥ pd matrix and is constant over time.
Rk the observed data variance is a diagonal py ⇥ py matrix. The latent process
conditional variance Vk is a px ⇥ px matrix, whereas the Jacobian matrix Hk is of
size px ⇥ py .

Predict

Assume that at time k�1 the approximated conditional distribution of the latent
locations is xk�1|k�1 ⇠ N( x̂k�1|k�1, Vk�1|k�1). For the initial case k = 1 we set
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Figure 3.3. The filtering procedure can be summarized as a sequence of pre-
dictions and updates. At each time step a prediction on the observed links
count is made. The prediction error is then propagated back to the nodes for
updating their positions.

arbitrarily x0|0 = v0 and V0|0 = ⌃0. The predict step calculates the first moments
of xk conditioned to yk�1. In fields such as physics, chemistry, or engineering it
is common to employ a forward function xk = f (xk�1) + vk which is related to
the physical properties of the system. In our case, the random walk formulation
makes no constraints on the latent process evolution. The forward function is
the identity with moments

x̂k|k�1 = E[xk�1 + vk|y1:k�1] = x̂k�1|k�1

Vk|k�1 = V[xk�1 + vk|y1:k�1] = Vk�1|k�1 +⌃

These are called the apriori mean and variance of the latent locations before
observing yk. The prior distribution is xk|k�1 ⇠ N( x̂k|k�1, Vk|k�1).

Update

The update step finalizes the calculation of the conditional distribution. We con-
sider the mean vector of all the pairwise relationships µ(xk,�) : Rpx ! Rpy

described at (3.3) and (3.6) and covariance matrix V[yk] = Rk where counts
are independent with variance equal to the mean Rk = µ(xk,�) Ipy

. In case a
general dynamic network model using exponential family weighted edges, as
described in Section 3.4.2, is considered then the mean µ(xk) and variance Rk

vary accordingly.
Kalman filters assume that the observed process yk is Gaussian and the trans-

formations involved are linear. The Extended Kalman Filter [Anderson and
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Moore, 2012] overcomes the Kalman filter limitations. By means of a first-order
Taylor expansion

µ(xk,�) = µ( x̂k|k�1,�) + Hk(xk � x̂k|k�1), Hk =
@ µ(x ,�)
@ x

��
x̂k|k�1

(3.9)

we calculate the expectation E[yk|yk�1] = µ( x̂k|k�1,�), variance V[yk|yk�1] =
HkVk|k�1H 0k + Rk and covariance Cov[xk, yk|yk�1] = Vk|k�1H 0k of the conditional
predictive distribution of yk.

The joint multivariate distribution of the observed and latent process is


xk

yk

� ��y1:k�1 ⇠L
✓

x̂k|k�1

µ( x̂k|k�1,�)

�
,


Vk|k�1 HkVk|k�1

Vk|k�1H 0k HkVk|k�1H 0k + Rk

�◆

where L is some probability law parametrized by the first two moments. Using
the multivariate regression formulation we have the conditional moments of xk

x̂k|k = E[xk|y1:k] = x̂k|k�1 + Kk(yk �µ( x̂k|k�1,�))
Vk|k = E[(xk � x̂k|k)(xk � x̂k|k)0|y1:k] = (I� KkHk)Vk|k�1,

Kk = Vk|k�1H 0k(Rk + HkVk|k�1H 0k)
�1,

(3.10)

see at Supplementary Materials 3.9.1 for more details. We hence obtain posterior
distribution xk|k ⇠ N( x̂k|k, Vk|k), which is approximated to be Gaussian. This will
be the starting distribution for the inference at time k+1. The filtering procedure
is shown in Algorithm 1. In Figure 3.2 we show a visual representation of the
algorithm: at each time point the model takes as input an adjacency matrix and
returns the locations in the latent space.

In the update step, the latent locations are updated according to the mag-
nitude of the prediction error: a larger error in the prediction corresponds to
a wider change in the locations. The filtering matrix Kk, capturing the linear
relationship between the latent and observed processes, weights this prediction
error. Kk is the ratio between the noise Rk and the latent variance ⌃. Thus Kk

filters the prediction error according to the signal/noise ratio. Fahrmeir [1992]
simply considers it as a single Fisher scoring step, see Supplementary Materials
3.9.4.

The Kalman filter can be interpreted both in a frequentist and Bayesian way.
From a Bayesian perspective, the filtering procedure consists of a sequence of up-
dates of the posterior mean and variance [Gamerman, 1991, 1992; West et al.,
1985], whereas from a frequentist side, the estimation based on the posterior
mode is equivalent to the maximization of a penalized likelihood [Fahrmeir and
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Algorithm 1 Extended Kalman Filter
Initialize x̂0|0 = v0 and V0,0 = ⌃0

for k = 1, . . . , n do

1. Filter prediction step

x̂k|k�1 = x̂k�1|k�1

Vk|k�1 = Vk�1|k�1 +⌃

2. Filter update step

x̂k|k = x̂k|k�1 + Kk(yk �µ( x̂k|k�1,�))
Vk|k = (I � KkHk)Vk|k�1

where

Kk = Vk|k�1H
0
k(HkVk|k�1H

0
k + Rk)�1

Hk =
@ µ(x ,�)
@ x

��
x̂k|k�1

Rk = µ( x̂k|k�1,�) Ipy

Kaufmann, 1991; Fahrmeir, 1992], see Supplementary Materials 3.9.4. Approxi-
mating the posterior distribution with the same family of the prior, i.e., Gaussian,
the posterior mean is equivalent to the posterior mode and hence the equivalence
of the two approaches. This double interpretation makes Kalman filters appeal-
ing for both types of applications.

Smoother
The smoother moves backward from the last prediction to the first. It calculates
the first moments of the latent process conditioned to the information of all time
points. Similarly, as the EKF, the backward matrix B can be calculated consider-
ing the multivariate distribution of the latent locations at two consecutive time
points, 

xk�1

xk

� ��y1:k�1 ⇠ N
✓

x̂k�1|k�1

x̂k|k�1

�
,


Vk�1|k�1 Vk�1|k�1

Vk�1|k�1 Vk|k�1

�◆
.

Using the multivariate regression formula we have the conditioned mean of xk�1

over xk

E [xk�1|xk, y1:k�1] = x̂k�1|k�1 + Bk(xk � x̂k|k�1) with Bk = Vk�1|k�1V�1
k|k�1

According to the conditional independence in Figure (3.1) we have (xk�1 ?
yk:n)|xk since xk closes the dependency path. Using the iterated expectation rule
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Algorithm 2 Smoother
for k = n, . . . , 1 do

Backward step

x̂k�1|n = x̂k�1|k�1 + Bk( x̂k|n � x̂k|k�1)
Vk�1|n = Vk�1|k�1 + Bk(Vk|n � Vk|k�1)B

0
k

where

Bk = Vk�1|k�1V�1
k|k�1

we have

x̂k�1|n = E [xk�1|y1:n] = E [E [xk�1|xk, y1:n] |y1:n] = E [E [xk�1|xk, y1:k�1] |y1:n]

= E
⇥
x̂k�1|k�1 + Bk(xk � x̂k|k�1)|y1:n

⇤

= x̂k�1|k�1 + Bk( x̂k|n � x̂k|k�1)

where x̂k�1|k�1 and x̂k|k�1 are constants. In the same way, using the iterated
variance rule

V [xk�1|y1:n] = E [V [xk�1|xk, y1:n] |y1:n] +V [E [xk�1|xk, y1:n] |y1:n]
= Vk�1|k�1 � BkVk|k�1B0k + BkVk|nB0k
= Vk�1|k�1 + Bk(Vk|n � Vk|k�1)B0k,

see at Supplementary Materials 3.9.2 for more details. The smoothing procedure
is presented in Algorithm 2 and it is known as the Rauch-Tung-Striebel smoother.
The final iteration of the smoother updates the starting values x̂0|0 and V0|0. These
values will be used as starting points for the successive EM iteration.

3.5.2 M-Step: generalized linear model
In the maximization step, we maximize the log-likelihood with respect to the
parameters � ,⌃ and we make the first distinction between the continuous (3.4)
and discrete (3.8) time models. For the continuous time process N the expected
log-likelihood is

QN (� ,⌃|�⇤,⌃⇤) = EX [log p�(N |X )|y1:n] +EX [log p⌃(X )|y1:n] =QE(�) +QG(⌃).

For the discrete-time process Y the expected log-likelihood is

QY (� ,⌃|�⇤,⌃⇤) = EX [log p�(Y |X )|y1:n] +EX [log p⌃(X )|y1:n] =QP(�) +QG(⌃).
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Notice that the Poisson component QP(�) and exponential component QE(�)
do not depend on ⌃, whereas the Gaussian component QG(⌃) does not depend
on the remaining parameters � . These quantities can therefore be optimized
separately.

Gaussian component

We can maximize the Gaussian component

QG(⌃) = �1
2

nX

k=1

E[(xk � xk�1)0⌃�1(xk � xk�1)|y1:n]� n log |⌃|� n
2

log(2⇡).

finding the zero of the first derivative with respect to⌃. Rearranging the elements
and taking the expectation as shown in Supplementary Materials 3.9.3 we obtain

⌃̂ = E
ñ

1
n

nX

k=1

(xk � xk�1)(xk � xk�1)0
��y1:n

ô

=
1
n

nX

k=1

Vk|n + Vk�1|n + BkVk|n + Vk|nB0k + ( x̂k|n � x̂k�1|n)( x̂k|n � x̂k�1|n)0

This result corresponds to the one presented in Fahrmeir [1994]. Substituting
Vk|nB0k = Cov(xk|n, xk�1|n

��y1:n) we have the equivalence with the result of Watson
and Engle [1983].

The estimate of ⌃ plays a major role in the bias/variance trade-off. It can
find interpretation in the univariate scenario. If the latent process has a small
variance then a little portion of the prediction error is used to update the locations
and therefore the latent process moves slowly and is delayed. When the variance
is high the estimated latent process is heavily influenced by the last observation
and has a tendency to overfit the observed process. In some practical fields, the
variance is tuned manually by searching for overfitting or delayed behaviors in
the errors. Our EM provides a precise solution and avoids manual tuning.

Poisson component

For arbitrary exponential family distributed edges, as described in Section 3.4.2,
the observed process component can be maximized numerically with a gen-
eral optimization algorithm. However, for Poisson distribution a more elegant
solution is available. Consider the conditional expected rate in the interval
t 2 (tk, tk+1]

log(E[�i j(t, xk,�))|y1:n] = log(E[e�d(xki ,xk j)|y1:n])+� t
GBi j(tk)+� t

Ds({N(⌧)|⌧ tk}),
(3.11)
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with its associated expected cumulative hazard across the entire interval
µ⇤k,i j(y1:n,�) = (tk+1 � tk)E[�i j(t, xk,�))|y1:n]. The expectation of the Poisson
component for the discrete-time process Y can then be rearranged as follows

QP(�) =
X

ki j

E[�µk,i j(xk,�) + yk,i j log(µk,i j(xk,�))� log(yk,i j!)|y1:n]

=
X

ki j

�µ⇤k,i j(y1:n,�) + yk,i j log(µ⇤k,i j(y1:n,�))� log(yk,i j!) + C

which, up to an additive constant, is a Poisson log-likelihood parametrized by
µ⇤k,i j(y1:n,�). The optimization can be performed by fitting a generalized lin-
ear model [McCullagh, 2018] with the above linear predictor and the offset
log(E[e�d(xki ,xk j)|y1:n]). See Supplementary Materials 3.9.3 for the full deriva-
tion. The expected value in the offset cannot be further simplified. We use a
second-order Taylor approximation, which can be expressed as a function of the
first two moments of the latent locations, x̂k|n = E[xk|y1:n] and Vk|n = V[xk|y1:n].
Consider gi j(x) = e�d(xki ,xk j), then the expectation within the off-set is approxi-
mately

E[gi j(x)|y1:n]⇡ gi j( x̂k|n) +
1
2

trace

✓
@ 2 gi j(x)
@ 2 x

��
x̂k|n

Vk|n

◆
,

since the expectation of the first derivative is zero. Simulation studies show that
if the latent space changes smoothly, i.e., a low value on the diagonal of ⌃, the
approximation is almost perfect.

Above we have described the linear fixed effect case. In the case non-linear or
random effects are required then generalized additive modeling [Wood, 2006]
can be inserted in this part of the M-step. This formulation is very general and
employs spline bases for estimating non-linear or time-varying effects.

Exponential component

The expectation of the exponential component for the continuous time process
N is

QE(�) = E

2
4�

X

i 6= j

nxX

k=1

µk,i j(xk,�) +
neX

k=1

log�ik jk(tk, xtk
,�)

3
5

Note that, up to a multiplicative constant yk,i j, the exponential log-likelihood
factorizes similarly to that of the Poisson. Also in this case the expected log-
likelihood can be rewritten as an exponential log-likelihood with the same offset
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Algorithm 3 Expectation Maximization
Initialize x̂0|0 = v0, V0|0 = ⌃, ⌃ = ⌃0 and � = �0

while not converged do

1. Expectation:

- Extended Kalman Filter
- Smoother

2. Maximization and update of starting values:

� = GLM
⌃ = ⌃̂
x̂0|0 = x̂0|n
V0|0 = V0|n

3. Check for convergence

as in equation (3.11). Inference involves survival regression with exponential
waiting times. In case the hazard in equation (3.2) would also contain an un-
known time-varying baseline hazard �0(t) common to all nodes V , then the M-
step could proceed using the partial likelihood as in Cox proportional hazard
regression [Cox, 1972].

3.5.3 Computational aspects

The p2 ⇥ p2 matrix inversion in (3.10) represents a computational bottleneck in
many Kalman filter applications. However, there are cases where the dimension
of the latent process is much smaller than the observed process dimension. The
Sherman-Morrison-Woodbury identity can be employed

�
Rk + HkVk|k�1H 0k

��1
= R�1

k � R�1
k Hk(V�1

k|k�1 + H 0kVk|k�1Hk)�1H 0kR�1
k

and requires p ⇥ p matrices inversion only. As the latent space employed by
our model has a cheap p-dimensional representation our scenario is particularly
appealing for the application of the Sherman-Morrison-Woodbury identity. The
identity is closely related to the Information Filter (see the Supplementary Ma-
terials 3.9.4). The overall computational cost of the algorithm is therefore dom-
inated by the inversion of a p⇥ p matrix [Mandel, 2006].
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Figure 3.4. An example of the model fit of the latent space on simulated data
with 10 nodes. The two plots represent the d = 2 latent space dimensions,
x1 and x2, across time k for 5 nodes, by plotting x̂k|n and their variability
bands x̂k|n±1.96

p
Vk|n. Such quantities are produced by the Kalman smoother,

allowing for a straightforward assessment of the model fit. The black line
represents the true locations of the simulated data. Procrustes rotation is used
to find the best match between the fit and the truth.

3.5.4 Goodness-of-fit and model selection
The conditional distribution of the latent space x conditioned to the observed
process y can be used for assessing the uncertainty about the latent process.
Variability bands can be drawn by using the quantiles of the distribution xk|n ⇠
N( x̂k|n, Vk|n) and the user can visually check whether the dynamic locations are
far from being a constant line, as shown in Figure 3.4.

Akaike Information Criterion. The dimension d of the latent space can be se-
lected by using some Information Criterion such as the cAIC

cAIC= �2 log f (y |�̂ , x̂) + 2�

where � is the effective degrees of freedom of the fixed and random latent part of
the model. Saefken et al. [2014] present a unifying approach for calculating the
conditional Akaike information in generalized linear models that can be used in
this context. This allows us to select the latent space dimension d that minimizes
the conditional Akaike criterion. The cAIC can also be used for choosing between
different variance structures, e.g., a diagonal matrix ⌃ with either the same or
different diagonal elements, or for choosing between a static or a dynamic la-
tent model. The static model, where all the locations are fixed in time, can be



58 3.5 Inference

obtained by modifying our algorithm, as the static model can be viewed as a dy-
namic model with one single time interval, grouping together all time intervals.
The filtering procedure is reduced to updating the locations with ⌃̂ = 0.

3.5.5 Identifiability and divergence
The latent space formulation is identifiable with respect to the relative distances
but unidentifiable in the locations [Hoff et al., 2002]: infinite combinations of
rotations and translations have the same distances and therefore the same likeli-
hood. This implies the non-identifiability of ⌃, as the coordinate system rotates.
Each update of the filter and smoother may involve a certain shift and rotation in
the next location configuration. As a result when we update the starting points
x0|0 for the next EM iteration they may be shifted and rotated, with related rota-
tion for ⌃. These movements become stable as the starting points x0|0 converge.
It is however possible to make ⌃ fully identifiable, by fixing d + 1 constraints on
the node locations. Alternatively, one can specify ⌃ spherical or spherical within
each node, to obtain an identifiable ⌃. In principle, it is possible to extend the
latent model to steps with time-varying ⌃t , but it would require additional as-
sumptions. For example, assuming that the d ⇥ d diagonal submatrices of the
dp ⇥ dp matrix ⌃t are identical makes it identifiable. However, this is undesir-
able from a practical point of view as it would make each node equally variable,
which is clearly not the case in many scenarios. Instead, we prefer to interpret the
time-homogeneity of ⌃ as a Bayesian prior on X: rather than being an assump-
tion on the underlying generating process of X, it guarantees the “continuity”
of X as well as identifiability of a particular axis of rotation of the latent space.
Clearly, this assumption affects the posterior distribution of X , but not strongly
its posterior mean, which is our main quantity of interest.

A practical aspect Kalman Filter users may encounter when working on real
data is divergency issues of the algorithm, defined as generating unbounded state
value residuals within the procedure [Fitzgerald, 1971]. Many factors can influ-
ence the divergence tendency such as a wrong variance specification in Rk, poor
approximation of non-linearity, inappropriate initial choice � , abrupt changes in
link rates, too large variances on the diagonal of V0|0 and ⌃ or poor initial latent
state values x0. In case of bad starting points x0 the update of locations might
have abrupt changes because in a non-convex likelihood optimization locations
jump to find a more stable configuration.

Fine-tuning parameters and starting points can resolve the above problems.
Artificially inflating Rk solves the overdispersion problems, although inferring the
correct variance function of the data might take some extra effort. Sufficiently
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good x0|0 points can be calculated via Multidimensional Scaling or reversing the
time dimension and running the Kalman Filter backward. Furthermore, starting
the EM close to the static model, by setting the diagonal values of V0|0 and ⌃
low, always leads to a stable Kalman update. In fact, the latent space variances
can be seen as tuning parameters that can be expanded slowly to allow for more
movement in the latent space. Where possible, one eventually expands them to-
ward the maximum likelihood values. Otherwise, a profile maximum likelihood
estimate will be the best alternative.

3.6 Simulation study

In order to assess the method performance we carry out a simulation study. We
specify logistic functions for the latent location trajectories xk, rescaling and
shifting these functions in different ways. The link counts are generated from
a Poisson distribution with log(µk,i j(xk)) = ↵ � kxki � xk jk2

2 for p nodes across
n intervals with d latent dimensions. The simulation study involves varying the
number of nodes, intervals, and dimensions. We also propose some challenges to
the model such as the misspecification of the distribution family, high clustering,
or sparsity behavior. Optimal starting points are calculated via the static model
as described in Section 3.5.5. We use the out-of-fold Kullback Leibler divergence
as a performance measure

K L( x̂ , xtrue) = Ey [log p(y |xtrue)� log p(y| x̂)]

⇡
P

log p(ynew|xtrue)� log p(ynew| x̂)
np(p� 1)/2

where ynew denotes an additional sample that is generated from xtrue. The
Kulback-Leibler is a performance measure based on the distance matrix, which
is invariant to rotations and translations of the locations.

Varying the number of nodes p. Figure 3.5a shows the results of varying the
number of nodes p = 5,10, 25,50. The EKF performance improves as p increases
dramatically. This is a consequence of, on the one hand, a quadratic increase in
the number of possible interactions and, on the other, a quadratic increase in the
number of triangulation opportunities in the latent space.

Varying the number of intervals n. Figure 3.5b shows the results of varying
the number of observed time sub-intervals n= 10,50, 100,1000. Again, the EKF
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Figure 3.5. Kullback-Leibler measure shows that the EKF and UKF both
improve performance with (a) an additional number of nodes p and (b) interval
n, while slightly deteriorates when (c) increasing the latent dimension d. (d)
Shows the effects of model misspecification, (e) the reliability of endogenous
effects estimation in our latent space formulation. (f) Computational time
grows markedly in the number of nodes p.

performance improves with the increase of n. The reason for the improvement is
that when the same time interval is divided into a larger number of sub-intervals,
it reduces the effective latent space variance and it increases the number of ob-
servations.

Varying the latent dimension d. Figure 3.5c shows a slight decrease in the
performance when increasing the true latent dimension d. Clearly, when the
latent dimension increases, the number of observations remains constant, but the
dynamics become more complex, resulting in an increase in the KL divergence.

Effect of model misspecification: overdispersion. In Figure 3.5d we investi-
gate the inference behavior under one type of model misspecification, namely,
overdispersion. We simulate data from a negative binomial with mean µk,i j(xk)
and a quadratic variance function µk,i j(xk) + µk,i j(xk)2 and compare the perfor-
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mance of the EKF to data simulated from a Poisson distribution with the same
increasing mean µk,i j(xk). For low rates, the negative binomial variance is almost
the same as that of the Poisson, and here we observe the same EKF performances
over the two distributions. For high rates, the fit on negative binomial counts
deteriorates and starts to become comparable to that of the static model. For
the highest rate in the simulation study, the signal-to-noise ratio in the data is
so low that the inference procedure diverges in all the simulations. However, it
is interesting to note that for highly sparse counts of relational events, the infer-
ence procedure always converges (for more details, see Supplementary Materials
3.9.6).

Alternative methods. In the various simulations we compare the EKF imple-
mentation with two possible competitors. The Unscented Kalman filter uses a
so-called unscented transformation as an alternative to the EKF linear approxi-
mation of non-linear equations. For details, we remand the reader to the Sup-
plementary Materials 3.9.5. The static model refers to the latent space imple-
mentation with non-dynamic states, described in Section 3.5.4. Figure 3.5 (a-d)
shows that the EKF and UKF have very similar performances in terms of KL diver-
gence, whereas the computational costs are very similar (Supplementary Mate-
rials 3.9.6). In general, it can be seen that ignoring state dynamics can be highly
detrimental, as the KL divergence of the static model is typically much higher
than that of the EKF. However, there is one exception: if the model is highly mis-
specified and the dispersion is much higher than that of a Poisson, then the static
model becomes more robust and starts to become competitive.

Modeling endogenous effects. On the one hand, endogenous effects, such as
reciprocity or triadic effect, are drivers of relational events that depend on the
past structure of the network. Other the other hand, the latent space itself also
encapsulates part of the network structure. Therefore, it is important to check
whether endogenous effects are identifiable in the presence of latent dynamics.
Figure 3.5e shows the mean squared error (MSE) of the estimated reciprocity
for four different reciprocity strengths in a simulation study across an increasing
number of nodes p. The results show that the MSE decreases roughly as 1/p,
which is consistent with the fact that the information grows quadratic with the
number of nodes.

Modeling larger networks The simulations so far were performed on relatively
small networks with p  50, a dimension that is achievable for a custom imple-
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mentation in the R language. For larger networks, we created an implementa-
tion in TensorFlow and performed the simulations on Google Colab using its free
GPU resources. Figure 3.5f shows the computational time for larger networks.
The 100 nodes model converges in roughly 22 seconds, whereas for networks
with 500 nodes, roughly 20 minutes are needed. Computational time seems to
increase roughly quadratically in the number of nodes. Another common compu-
tational bottleneck in large networks is that the number of observations carried
by the adjacency matrix and the related machine operations grows quadratically
with the number of nodes. In that case, stratified subsampling [Raftery et al.,
2012] on the adjacency matrix elements could reduce the computational bur-
den. Using this idea, a pilot Kalman filter can be run to calculate the stratum
contribution via the increment in the expected log-likelihood. Other ideas, such
as parallel Kalman Filters [Särkkä and García-Fernández, 2020] where multiple
time points can be computed in parallel, can only be implemented if the memory
consumption of each individual Kalman filter iteration is small, which is not our
case.

3.7 Dynamics of patent citation patterns

The patent citation process introduced in Section 3.3 presents some peculiar
characteristics with respect to the underlying relational event: patents are added
in tranches to the system, and citations happen only at the moment of patent cre-
ation. Furthermore, patents can cite only those patents that have previously been
created and not the ones that are added to the network in the future. There-
fore, rather than focusing on the individual patents, we focus on the citations
between groups of patents, such as the patent classes and subclasses, described
above. Our aim is to describe the relative changing importance of each of these
(sub)classes over time in being cited as prior art in novel patents. We consider
the latent space model for the number of citations yk,i j from patents of field i to
patents of field j at time k

yk,i j ⇠ Poi(µk,i j(xk,�))
log(µk,i j(xk,�)) = log Ci(k) +↵0 � kxki � xk jk2

2 + senderi + receiver j
(3.12)

where ↵0 is an intercept and senderi and receiver j are respectively the sender
and receiver random effects. We include random effects in the linear predictor
as the usual conditional formulation of the regression model. The citation rate
is proportional to the number of patents Ci(k) added in a field within a year. If
in a certain year, there are no patents added in a field, the rate would clearly be
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Figure 3.6. Changes in latent space patent locations. (a) The two coordinates
for each of the 8 main classes are shown in the same figure. The first ten years
show a static behavior in citations. After that point the fields start moving
closer as the citations between fields intensify; (b) The overall change in latent
space locations of the 8 main classes over the entire period of 1967-2006.

zero. We, therefore, specify an additional offset log Ci(k) that accounts for the
number of patents added in field i at time k. The inclusion of the offset has the
advantage that the interpretation of the latent space locations and other effects
is with respect to a single patent in each (sub)class. As the aim is to explore
the major relative movement of each of the (sub)classes, we consider here a
bidimensional latent space. Optimal starting points are calculated via the static
model as described in Section 3.5.5.

Figure 3.6 shows a peculiar behavior of the latent locations of the 8 main
technology classes. They seem to be more or less static in the initial 10 years
from 1967 until 1976. Patents can only cite back in time and therefore the first
patents added to the system cannot cite patents submitted before the year 1967.
The apparent stationarity may therefore be an artifact. The figure suggests that
around 1976 the patent citation process start behaving more “normally”, i.e., it
starts to represent more representatively the bulk of the citation process. This
seems reasonable as patents cite an average of 10 years back in time, with a mode
that is significantly less than 10 years.

In general, we observe that the exchange of citations between different fields
increases over time, ending with a large cluster including the majority of the ICL
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Figure 3.7. Model inference on dynamic locations for the relational event model
with sender and receiver effects. (a) shows a summary of the movement of the
patent classes in the observed time interval.

categories. Only classes C (Chemistry and Metallurgy) and H (Electricity) remain
somewhat separate from the other main classes. The overall conclusion is that
except for classes C and H, the other main technology classes lose their specific
characteristics and patents tend to cite more across technology class borders.
This suggests that most technology classes are becoming less dissimilar: there
is an increasing heterogeneity within the fields, as they communicate with other
technology fields, and thus a higher homogeneity between the fields.

The sender and receiver effects can be interpreted as the asymmetry between
fields citations that the symmetric latent space representation fails to capture.
Figure 3.7(b) show how the Textile, Papers, and Fixed constructions classes are
very low receiver classes, meaning that they are cited below average. Figure
3.7(s) shows that Physics patents have a low tendency to cite others. The high
sending and receiving tendencies of the Chemistry, Metallurgy and Electricity
patents must be seen in the context of Figures 3.6: the fact that we observe
such huge effects jointly together with their distant location to the other patent
classes might suggest some violation of the model assumptions. The two loca-
tions should be closer to the main cluster but there does not exist a 2D latent
configuration that makes a good fit. An analysis without sender and receiver ef-
fects (Supplementary Materials 3.9.7) indeed shows that those two classes would
be apparently closer, joining the other technology classes.
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(a) Initial configuration in 1967. (b) Changes in years 1967-1980.

(c) Changes in years 1980-1993 (d) Changes in years 1993-2006

Figure 3.8. Dynamic latent locations for the 487 technology subclasses. The
colors correspond to the original 8 main technology classes.

3.7.1 Extending the analysis to subclass dynamics

The 8 main technology classes give a rough overview of the patent dynamics.
However, given that we analyze more than 23 million citations, a finer analysis
should reveal more detailed results. We, therefore, extend the analysis to the
subclass level of the patent classification system. The 8 main technology classes
consist of a total of 487 more specific subclasses.

Figure 3.8 shows the latent dynamics for all the 487 subclasses, where the
color refers to the original 8 main technology classes. What is immediately clear
is that the dynamics within a single technology class are quite diverse. Figure 3.8
(a) shows that the subclasses are evenly spread in the latent plane. Moreover, by
inspecting single subclass trajectories, it emerges that a subclass tends to move
with few subclasses from within the same main technology class, but also with
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some subclasses from another class. This is consistent with the raw data, as
approximately half of a patent’s connectivity is within the same class, while the
rest is towards other classes.

Figure 3.8 also shows that subclasses are heterogeneous in their citation be-
havior from the beginning and that not all the subclasses converge to a single
cluster. Technology subclasses end up forming three heterogeneous clusters, as
evidenced by 3.8 (d). As time passes the bottom left nodes separate from the
center and converge into a dense cluster, revealing an increasing heterogeneity
in their citation. On the top left something similar happens although this cluster
is less dense as its nodes do not seem to shorten their distances. Nodes belonging
to clusters with such flatten shapes typically present high connectivity with the
immediate neighbor but this connectivity does not extend to distant nodes, cre-
ating a chain where the two poles share little similarity. At the center, by looking
at the inward arrows, it is possible to spot a third, low-density cluster that is sep-
arating from the other two. We conclude that the increment of heterogeneity in
patent citations is not uniform across all subclasses. There is some coordinated
movement from the three clusters of subclasses. Patents within these clusters
tend to get more similar citing behavior, whereas patents between these clusters
tend to cite each other less. It is interesting to note that the apparent converg-
ing behavior of the main technology classes in Figure 3.6 is simply the result of
aggregating the subclasses where the diverging movements are averaged out.

3.8 Conclusion

In the last decade, REMs have been used for describing the drivers of dynamic
network interactions. Traditional approaches focus on endogenous and exoge-
nous drivers, which may not always be able to capture all heterogeneity in the
data. Our aim has been to extend relational event modeling by letting their in-
teractions depend on dynamic locations in a latent space.

The model defines the latent locations as missing states, where the observa-
tions are the time-stamped relational events or aggregates of those events within
a certain interval. We use an EM algorithm, whereby a Kalman filter calculates
their conditional expectation, and a generalized linear model formulation per-
forms the maximization step. Kalman Filters are effective methods for estimating
latent dynamic processes. Their simplicity and computational efficiency make
them suitable for many problems common in engineering contexts. The filter re-
lies on a sequence of linear operations and easily calculates the Expectation step,
typically untractable for non-trivial cases. The Kalman filter dual interpretation
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in the Bayesian and frequentist literature would also make an effective Gibbs
possible. Current Bayesian approaches, such as Sewell and Chen [2015], rely on
a simplified stratified case-control sampling of non-events. As there are many
more non-events with distant nodes, mid-distances are either never sampled or
sampled and overweighted by an inappropriate case-control weight. Although
this reduces computational complexity, this produces a bias in the inference pro-
cedure.

It is easy to extend the linearity of the exogenous and endogenous effects
in the model formulation (3.2) to smooth effects. The generalized linear model
approach for the M-step can easily be replaced by a generalized additive set-
up for incorporating smooth and time-varying effects as well as random effects
[Wood, 2006]. The simulation results show that the modeling and inference set-
up is accurate, computationally feasible, and insightful under different scenarios.

We applied the model to 23 million patent citations from the US patent office
in order to investigate the innovation dynamics in the period 1967-2006. Focus-
ing on the 8 main technology classes suggests that there is an overall convergence
in the latent space, meaning that the patents classes are becoming either more
similar or more internally dissimilar. A subsequent analysis of the 487 subclasses
revealed that the second hypothesis explains most of the apparent convergence:
it seems that the subclasses within each main technology class have coordinated,
but diverging dynamics, which suggest that the main technology classes have
become more dissimilar over time. This may be because the original class de-
nominations refer to distinctions that have become less relevant over time. For
this reason, it would probably be good to avoid using the main technology classes
as important descriptors of patents and instead focus on their subclass denomi-
nations.

3.9 Supplementary material

3.9.1 EKF implementation details

In (3.7) xk and yk are vectors of length px = pd and py = p(p�1) or p(p�1)/2
in case of an undirected network respectively. These are the p⇥d location matrix
and p⇥ p adjacency matrix that have been vectorized. At time k we have

µ(xk,�) =

2
4
µ12(xk,�)

...
µp�1,p(xk,�)

3
5 , xk =

2
4

xk1
...

xkp

3
5 , xki =

2
4

xki1
...

xkid

3
5 ,
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where xki is the d-dimensional location of node i. The choice of using the Eu-
clidean distance is arbitrary and other distance measures can be selected. The
dimension of the latent space is commonly chosen as d = 2 or 3 for the sake of
visual inspection, but more formal criteria can be used to select a proper dimen-
sion.

The matrix Hk of the first derivatives is structured as follows

Hk =
@

@ x
µ(x ,�) | x̂k|k�1

=

2
666664

@
@ xµk,12(x ,�) | x̂k|k�1

...
@
@ xµk,i j(x ,�) | x̂k|k�1

...
@
@ xµk,p�1,p(x ,�) | x̂k|k�1

3
777775

Hk is a py ⇥ px block matrix, where the row indexed by the interaction (i, j) is
composed of d-dimensional vectors @

@ xk
µk,i j(x ,�) for k = 1, . . . , p as follows

@

@ x
µk,i j(x ,�) =

8
><
>:

@
@ xi
µk,i j(x ,�) = 2(x j � xi)e

�kxi�x jk22+ f F
i j (� ,k)+ f R

i j (� ,k),
@
@ x j
µk,i j(x ,�) = �2(x j � xi)e

�kxi�x jk22+ f F
i j (� ,k)+ f R

i j (� ,k),
@
@ xk
µk,i j(x ,�) = 0,

The posterior variance is calculated keeping the Taylor local approximation
µ(xk,�)⇡ Hk xk

Vk|k = E[(xk � x̂k|k)(xk � x̂k|k)0]
= E[(xk � x̂k|k�1 � Kk(yk � Hk x̂k|k�1))(xk � x̂k|k�1 � Kk(yk � Hk x̂k|k�1))0]
= E[(xk � x̂k|k�1 � Kk(Hk xk + ✏k � Hk x̂k|k�1))(xk � x̂k|k�1 � Kk(Hk xk + ✏k � Hk x̂k|k�1))0]
= E[(xk � x̂k|k�1)(xk � x̂k|k�1)0] +E[Kk(Hk xk � Hk x̂k|k�1)(Hk xk � Hk x̂k|k�1)0K 0k] +E[Kk✏k✏

0
kK 0k]

�E[KkHk(xk � x̂k|k�1))(xk � x̂k|k�1))0]�E[(xk � x̂k|k�1))(xk � x̂k|k�1))0H 0kK 0k]
= Vk|k�1 + KkHkVk|k�1H 0kK 0k + KkRkK 0k � KkHkVk|k�1 � Vk|k�1H 0kK 0k

where

KkHkVk|k�1H 0kK 0k + KkRkK 0k = Kk(HkVk|k�1H 0k + Rk)K 0k = Vk|k�1H 0kK 0k

thus

Vk|k = Vk|k�1 � KkHkVk|k�1 = (I� KkHk)Vk|k�1.
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3.9.2 Smoother

E [V [xk�1|xk, y] |y] = E [V [xk�1|xk, y1:k�1] |y]
= E

⇥
V [xk�1|y1:k�1]�Cov(xk�1, xk|y1:k�1)V(xk|y1:k�1)�1Cov(xk�1, xk|y1:k�1)0|y

⇤

= E
⇥
Vk�1|k�1 � BkVk|k�1B0k|y

⇤
= Vk�1|k�1 � BkVk|k�1B0k

V [E [xk�1|xk, y] |y] = V
⇥
x̂k�1|k�1 + Bk(xk � x̂k|k�1)|y

⇤
= BkVk|nB0k

3.9.3 Maximization

Poisson component

Q(� ,⌃) =
X

t i j

E[�µk,i j(xk,�)] +E[yi j(k) log(µk,i j(xk,�))]� log(yi j(k)!) + C2 =

X

t i j

�E[e�d(xki ,xk j)]e f F
i j (� ,k)+ f R

i j (� ,k)+

+ yi j(k)(E[�d(xki, xk j)] + f F
i j (� , k) + f R

i j (� , k))� log(yi j(k)!) + C2

(3.13)

Notice that adding and subtracting yi j(k) log(E[e�d(xki ,xk j)])

yi j(k)(E[�d(xki, xk j)] + f F
i j (� , k) + f R

i j (� , k))

= yi j(k)(log(E[e�d(xki ,xk j)]) + f F
i j (� , k) + f R

i j (� , k))+

+ yi j(k)E[�d(xki, xk j)]� yi j(k) log(E[e�d(xki ,xk j)])

(3.14)

thus

Q(� ,⌃) =
X

t i j

�E[e�d(xki ,xk j)]e f F
i j (� ,k)+ f R

i j (� ,k)+

+ yi j(k)(log(E[e�d(xki ,xk j)]) + f F
i j (� , k) + f R

i j (� , k))� log(yi j(k)!) + C3

=
X

t i j

�µ⇤k,i j(xk,�) + yi j(k)(log(µ⇤k,i j(xk,�))� log(yi j(k)!) + C3

(3.15)
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Gaussian component

⌃̂ = E
ñ

1
n

nX

1

(xk � xk�1)(xk � xk�1)0
��y1:n

ô
=

1
n

nX

1

E
⇥
(xk � xk�1)(xk � xk�1)0

��y1:n

⇤

=
1
n

nX

1

E
⇥
xk x 0k

��y1:n

⇤
+E

⇥
xk�1 x 0k�1

��y1:n

⇤
�E

⇥
xk�1 x 0k

��y1:n

⇤
�E

⇥
xk x 0k�1

��y1:n

⇤

=
1
n

nX

1

Vk|n + Vk�1|n + BkVk|n + Vk|nB0k + ( x̂k|n � x̂k�1|n)( x̂k|n � x̂k�1|n)0

(3.16)

E
⇥
xk x 0k

��y1:n

⇤
= E

⇥
((xk � x̂k|n) + x̂k|n)((xk � x̂k|n) + x̂k|n)0

��y1:n

⇤

= E
⇥
(xk � x̂k|n)(xk � x̂k|n)0

��y1:n

⇤
+ x̂k|n x̂ 0k|n = Vk|n + x̂k|n x̂ 0k|n

E
⇥
xk x 0k�1

��y1:n

⇤
= E

⇥
xkE

⇥
x 0k�1

��xk, y1:k�1

⇤ ��y1:n

⇤
= E

⇥
xk( x̂k|k + Bk(xk � x̂k|k�1))0

��y1:n

⇤

= E
⇥
((xk � x̂k|n) + x̂k|n)( x̂k�1,k�1 + Bk((xk � x̂k|n) + x̂k|n � x̂k|k�1))0

��y1:n

⇤

= E
⇥
(xk � x̂k|n)(xk � x̂k|n)0

��y1:n

⇤
B0k + x̂k|n( x̂k�1,k�1 + Bk( x̂k|n � x̂k|k�1))0

= Vk|nB0k + x̂k|n x̂ 0k�1|n

3.9.4 Alternative derivation of EKF

The Poisson distribution can be written in the natural exponential family formu-
lation [McCullagh, 2018]:

p(xk|xk�1) =
1p
2⇡
|⌃|�1e�

1
2 (xk�xk�1)0⌃�1(xk�xk�1)

p(yk|xk) = c(yk)e✓
0 yk�b(✓ )

b(✓ ) = 10e✓

✓ (xk) = logµ(xk,�)

µ(xk,�) = E[yk|xk] =
@

@ ✓
b(✓ )

Rk = V[yk|xk] =
@ 2

@ ✓ 2
b(✓ ).

b(✓ ) : Rpy ! R

✓ (µ) =
ï
@

@ ✓
b(✓ )

ò�1

: Rpy ! Rpy .

The advantage of writing the Poisson distribution in the natural exponential fam-
ily form is that further developments will be valid for any distribution of the
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natural exponential family. Other exponential family distributions are possible
specifying differently the functions ✓ (·) and b(·). The likelihood can be then
written as

L(� ,⌃; y, x) =
nY

k=1

1p
2⇡
|⌃|�1e�

1
2 (xk�xk�1)0⌃�1(xk�xk�1)c(yk)e✓

0 yk�b(✓ ) (3.17)

We obtain the correction step via maximum likelihood. The likelihood that
we are treating here is different than the one presented in (3.17). We are taking
the single likelihood contribution at time k conditioned to the inference at the
previous time point. Thus the marginal distribution of the latent process is sub-
stituted with its conditional distribution, i.e., the distribution that we calculated
in the prediction step. The likelihood is presented as

lk(xk) = �
1
2
(xk � x̂k|k�1)0V�1

k|k�1(xk � x̂k|k�1) + ✓ 0 yk � b(✓ ) (3.18)

were Vk|k�1 represent the variance of the latent process conditioned to yk�1. From
a frequentist point of view (3.18) is a penalized likelihood, composed by the Pois-
son probability of the observations and a penalty term for the latent process. In a
Bayesian setting, it can be considered a posterior distribution, where the penalty
represents the prior distribution. The penalty/prior regulates the smoothness
of the process via the covariance matrix ⌃. The maximization of the posterior
density is equivalent to the maximization of the penalized likelihood [Fahrmeir,
1992]. We maximize this likelihood according to xk, to obtain x̂k|k. This clearly
is not equivalent to the conditional mean, except in case the posterior mode co-
incides with the posterior mean. This is true for the Gaussian density, which is
not our case. The posterior is therefore approximated with the same family dis-
tribution of the prior, i.e., Gaussian, see Gamerman [1991] and Fahrmeir [1992].
Thus we are approximating the posterior mean with the posterior mode.

Using the chain rule, we take the derivative of the likelihood with respect to
xk and transpose it we have

@

@ xk
lk(xk) = �V�1

k|k�1(xk � x̂k|k�1) +
@ µ(xk,�)
@ xk

0@ ✓ (µ)
@ µ

(yk �
@

@ ✓
b(✓ )).

A first order Taylor expansion is applied on the mean of yk

@

@ ✓
b(✓ ) = µ(xk,�) = µ( x̂k|k�1) +

@ µ(xk,�)
@ xk

(xk � x̂k|k�1) (3.19)

obtaining

@

@ xk
lk(xk) = �V�1

k|k�1(xk� x̂k|k�1)+
@ µ(xk,�)
@ xk

0@ ✓ (µ)
@ µ

Å
yk �µ( x̂k|k�1)�

@ µ(xk,�)
@ xk

(xk � x̂k|k�1)
ã
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Setting @
@ xk

lk(xk) = 0 and rearranging the members of the equation we have

xk = x̂k|k�1+


V�1
k|k�1 +

@ µ(xk,�)
@ xk

0@ ✓ (µ)
@ µ

@ µ(xk,�)
@ xk

��1 
@ µ(xk,�)
@ xk

0@ ✓ (µ)
@ µ

��
yk �µ( x̂k|k�1)

�
.

We evaluate the derivatives at x̂k|k�1 and use the property that the second deriva-
tive of b(✓ ) is equal to the variance of yk|xk. Since xk is unknown, we approxi-
mate it with x̂k|k�1.

@ ✓ (µ)
@ µ

��
x̂k|k�1

=
Å
@ 2 b(✓ )
@ ✓ 2

ã�1 ��
x̂k|k�1

= V(yk|xk)�1
��

x̂k|k�1
= R�1

k . (3.20)

Setting
@ µ(xk,�)
@ xk

��
x̂k|k�1

= Hk

and considering that

µ( x̂k|k�1) = Hk x̂k|k�1

we obtain the update

x̂k|k = x̂k|k�1 + [V�1
k|k�1 + H 0kR�1

k Hk]�1[H 0kR�1
k ](yk � Hk x̂k|k�1)

= x̂k|k�1 + Kk(yk � Hk x̂k|k�1).

The last equation comes under the name of Information Filter. V�1
k|k�1 is the infor-

mation matrix on xk given y1:k�1, H 0kR�1
k Hk is the information on xk contributed

by the last observation yk and the sum of the two is the information on xk given
y1:k. Considering that the numerator [H 0kR�1

k ](yk � Hk x̂k|k�1) is the first deriva-
tive, the correction step has the form of a single Fisher scoring step [Fahrmeir,
1992]. The formula of the filter can be rearranged in the following way

Kk = (V�1
k|k�1 + H 0kR�1Hk)�1H 0kR�1

k

= (V�1
k|k�1 + H 0kR�1Hk)�1H 0kR�1

k (Rk + HkVk|k�1H 0k)(Rk + HkVk|k�1H 0k)
�1

= (V�1
k|k�1 + H 0kR�1

k Hk)�1(V�1
k|k�1 +

0 R�1
k )Vk|k�1H 0k(Rk + HkVk|k�1H 0k)

�1

= Vk|k�1H 0k(Rk + HkVk|k�1H 0k)
�1

obtaining the filtering matrix for the EKF.
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3.9.5 Higher order approximation: Unscented Kalman filter

In this section, we want to present a possible competitor to the EKF. The EKF
is based on a first-order Taylor expansion in (3.9). We can approximate the µ
function with an order higher. A popular solution is the Unscented Transforma-
tion, the key solution of the Unscented Kalman Filter (UKF) [Julier and Uhlmann,
1996, 1997]. The algorithm has a similar shape as the EKF with the difference
that the filtering matrix Kk is calculated empirically. We begin with a fixed num-
ber of points to approximate a Gaussian by creating a discrete distribution having
the same first and second (and possibly higher) moments. Each point in the dis-
crete approximation can be directly transformed. The mean and the covariance
of the transformed ensemble can then be computed as the estimate of the non-
linear transformation of the original distribution.

Given a pd-dimensional Gaussian having covariance Vk|k�1 we can construct
a set of points having the same sample covariance from the columns (or rows) of
the matrices

∆
(+ pd)Vk|k�1. The square root of the matrix is typically done via

a Cholesky decomposition. Adding and subtracting these points to x̂k|k�1 yields
a symmetric set of 2pd + 1 points (central point included) having the desired
sample mean and covariance. This is the minimal number of points capable of
encoding this information [Julier and Uhlmann, 1996]. We then calculate the
sample mean and covariance of the transformed points. Finally, the filtering
matrix Kk can be calculated as the rate between the sample covariance and the
sample variance.

Kk =‘Cov(xk, yk|y1:k�1)bV(yk|yk�1)�1.

The Unscented Kalman Filter is presented in Algorithm 4. The prediction and
the update step are the same as those of the EKF. The  parameter regulates both
the weight of the central point and the spreading of the other points: a large 
leads to a wider spreading of the points. Julier and Uhlmann [1997] suggests
a useful heuristic to select pd +  = 3. The use of the Unscented Kalman filter
makes the computation of (3.5.2) straightforward by simply taking the sample
mean of the transformed ensemble.

In section 3.6 we show that the EKF performs approximately equivalent to
this competitor. This further extension to the Kalman filter is therefore useful
for showing that the linear approximation in the EKF is sufficiently good for our
purpose.



74 3.9 Supplementary material

Algorithm 4 Unscented Kalman Filter
Initialize = 0

w0 = /(px + )
wj = 1/2(px + ), j = 1, . . . , 2px

for k = 1, . . . , n do

1. Filter prediction step

2. Filtering matrix calculation

A= V
1
2

k,k�1

s0 = x̂k,k�1

s j = x̂k,k�1 +
p

pd + Aj, j = 1, . . . , px

sj+px
= x̂k,k�1 �

p
pd + Aj, j = 1, . . . , px

µ̂k =
P2px

j=0 wjµ(s j,�)
Rk = µ̂k Ipy

Sk =
P2px

j=0 wj(µ(s j,�)� µ̂k)(µ(s j,�)� µ̂k)
0
+ Rk

Ck =
P2px

j=0 wj(s j � x̂k|k�1)(µ(s j,�)� µ̂k)
0

Kk = CkS�1
k

3. Filter update step

3.9.6 Simulation study
Figure 3.9 shows a set of estimated locations overlaid with the black, underlying
true locations. The observed Y process was simulated 200 times from these true
trajectories with p = 10 nodes, n = 100 intervals, and d = 2 dimensions. The
colored lines are the 200 trajectories estimated by the EM-EKF.

Here the complete results of the simulation study are given both in terms of
KL divergence and computational time for varying the number of nodes (Fig-
ure 3.10), the number of time intervals (Figure 3.11), the latent dimension (Fig-
ure 3.12), the overdispersion level (Figure 3.13).

3.9.7 Patent analysis
For comparison, we also fit the model without a random sender and receiver
effects: Figure 3.14(b) shows that the distances of the Chemistry, Metallurgy
and Electricity patent classes were inflated and that the random sender and re-
ceiver effects were indeed capturing the misrepresentation. The Physics class
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Figure 3.9. Model fit on 200 simulated datasets. The figure shows that the
estimated latent locations are centered at their true values with relatively high
precision. Black lines represent the true locations in time. Colored lines repre-
sent node trajectories estimated by the model for each simulation. For the sake
of visual inspection, a Procusteus transformation has been used for rotating
and shifting the estimates over the true line.
We consider p = 10, n = 100, d = 2 and x1, x2 are respectively the first and the
second dimension.

comes now very close to Electricity, whereas the Chemistry and Metallurgy class
overlaps with Human necessities. By looking back at the discrepancy between
sender and receiver effects in Figure 3.7 we see that Chemistry and Metallurgy
patents have the tendency to receive more from Human necessities, whereas the
Physics patents receive more citations from Electricity. In Figure 3.14(b) Textile,
Papers and Fixed constructions classes are pushed far away as the latent space
now attempts to account for their negative receiver effects.
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Figure 3.10. a. The kullback-Leibler measure shows that whereas the static
model shows a stable misfit to the dynamic latent model, the EKF and UKF
both improve performance with an additional number of nodes p; b. Compu-
tational time grows markedly in the number of nodes p.
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Figure 3.11. a. With the increasing number of time points n the Kullback-
Leibler fit improves similarly for UKF and EKF, whereas the static model fit
stays unchanged; b. the computational time grows linearly in n for the UKF
and EKF.
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Figure 3.12. Two scenarios where the performance does not change substan-
tially. KL measures by varying the number of clusters in the simulated data
and increasing the latent dimension. The model fit approximately does not de-
teriorate with a higher dimension d and does not change when we have clusters
formed in the latent space.
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Figure 3.13. Overdispersion vs correct family specification performances vary-
ing the rate of links in the network. The divergence frequency suggests the
level of overdispersion for which the model cannot retrieve the signal in the
data.
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Figure 3.14. Model inference on dynamic locations for the relational event
model without sender and receiver effects.



Chapter 4

Fast inference of latent space dynamics

in huge relational event networks

I declare that the content of this chapter comes from the original pre-print [Artico
and Wit, 2023a] on Arxiv in collaboration with E.C. Wit.

4.1 Summary

Relational events are a type of social interaction, that sometimes are referred to
as dynamic networks. Its dynamics typically depend on emerging patterns, so-
called endogenous variables, or external forces, referred to as exogenous vari-
ables. Comprehensive information on the actors in the network, especially for
huge networks, is rare, however. A latent space approach in network analysis
has been a popular way to account for unmeasured covariates that are driving
network configurations. Bayesian and EM-type algorithms have been proposed
for inferring the latent space, but both the sheer size of many social network ap-
plications as well as the dynamic nature of the process, and therefore the latent
space, make computations prohibitively expensive. In this work, we propose a
likelihood-based algorithm that can deal with huge relational event networks.
We propose a hierarchical strategy for inferring network community dynamics
embedded into an interpretable latent space. Node dynamics are described by
smooth spline processes. To make the framework feasible for large networks
we borrow from machine learning optimization methodology. Model-based clus-
tering is carried out via a convex clustering penalization, encouraging shared
trajectories for ease of interpretation. We propose a model-based approach for
separating macro-microstructures and performing a hierarchical analysis within
successive hierarchies. The method can fit millions of nodes on a public Colab

79
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GPU in a few minutes.

4.2 Introduction

Networks are ubiquitous in various fields, such as gene regulation [Signorelli
et al., 2016], finance [Cook and Soramaki, 2014], psychopathology symptoms
[De Vos et al., 2017], political collaboration [Signorelli and Wit, 2018], and con-
tagion [Užupytė and Wit, 2020]. The analysis of networks is crucial for under-
standing intricate relationships and interactions among the system components.
However, the analysis can be challenging due to various endogenous and exoge-
nous factors that may affect the network’s formation. Therefore, statistical mod-
eling aims to capture the underlying generative process to identify the drivers
of these complex interactions. Such models can help filter out noise from the
data and assist in learning certain features of the process, making interpretation
possible.

The focus of our manuscript is on temporal random networks, where nodes
create instantaneous directed or undirected connections with time stamps. Ex-
amples of such networks include email exchanges, bank loans, phone calls, and
article citations. Traditionally, researchers have flattened the time variable and
analyzed the resulting static network. However, this approach oversimplifies the
temporal structure of the process and results in a loss of information. Most real-
world networks are dynamic, where actors repeatedly form and break ties over
time, and the adjustment of ties is influenced by the existence or non-existence
of other ties [Brandes et al., 2009]. As such, the network is both the dependent
and explanatory variable in this process.

To capture the temporal aspect of the network, we view the generative process
as a network structure in which actors interact with each other over time through
instantaneous events. This framework is known as relational event modeling and
allows for quantitative analysis of the dynamic nature of the network.

A foundational form of the relational event model, which utilizes event his-
tory modeling, was introduced by Butts [2008] with an application to commu-
nication patterns during the World Trade Center disaster. The model was subse-
quently extended by Brandes et al. [2009] to accommodate weighted networks,
where actors such as countries, international organizations, or ethnic groups en-
gage in events that are assigned positive or negative weights based on coopera-
tive or hostile interactions, respectively.

Relational event modeling has been applied to various domains, such as
healthcare organizations in a regional community of patient transfers by Vu et al.
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[2017] or social interactions between animals by Tranmer et al. [2015].
Relational event models allow for network connectivity to depend on the past

evolution of the network. However, tracking the past configurations of a dynamic
network can be challenging due to the vast number of possible configurations
(e.g., k-stars, k-triangles) and their closure time, which can continue to affect
future configurations. To address this challenge, we propose utilizing a dynamic
latent space to summarize past configurations.

The idea behind a dynamic latent space is to describe the underlying struc-
ture of a network by placing vertices in a space where the distance between two
points reflects their tendency or lack of tendency to connect. Social scientists
often refer to this as a "social space," where actors who have more interactions
are situated closer to one another and vice versa [Bourdieu, 1989]. The loca-
tions of the vertices are allowed to change over time, such that new connections
are formed and subjects develop attraction/repulsion that forces them to adjust
their social space configuration. The resulting configuration best reflects the new
connectivity behavior, thereby providing a snapshot of the social history of the
subjects, their preferences, and the groups they might join or leave. While this
approach approximates the past information, it provides an effective summary
of the network’s evolution within the limits of the latent space formulation.

Many authors have studied the problem of tracking latent locations, espe-
cially in the static case where locations are assumed to be fixed over time. For
instance, Hoff et al. [2002] provide a framework for inference for static binary
random graphs. However, the limitations of the latent space formulation have led
to the development of some extensions of that model, such as the bilinear mixed-
effects model [Hoff, 2005], the multiplicative random graph model [Hoff, 2008,
2009], and the stochastic block model, which groups actors together based on
their similarity. DuBois et al. [2013] have extended the stochastic block model
to relational event data.

Sarkar and Moore [Sarkar and Moore, 2005] introduced a method for mod-
eling dynamic binary networks using latent space. Their approach involves two
phases: the first is a preprocessing step that uses generalized multidimensional
scaling to obtain initial estimates of node locations, and the second is an estima-
tion step where the dynamic locations are optimized using a conjugate gradient
method. In this model, distances between nodes are approximated by threshold-
ing larger ones, and a penalty is added to force distant nodes to be closer.

Several approaches have been proposed to model dynamic latent spaces with
node-specific parameters, including the method by Sewell and Chen [2015],
which uses the Metropolis-Hastings algorithm and case-control sampling for scal-
able inference, and the Bayesian approach by Durante and Dunson [2016], which
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utilizes Polya-Gamma data augmentation for binary connections and sequential
learning of Gaussian processes for node dynamics. In a frequentist perspective,
Artico and Wit [2022] presented a Relational Event Model that estimates Gaus-
sian processes via a Kalman filter within an EM algorithm, providing a more ro-
bust convergence without requiring data augmentation. However, these methods
have limited scalability to large networks.

The methodology presented

The aim of this manuscript is to develop an efficient inference scheme for latent
dynamic processes underlying an extremely high-dimensional relational event
process. The framework is very general and can be extended to networks with
weighted edges of any exponential family distribution. There are two dual rep-
resentations of the process, either as a continuous time exponential or as discrete
Poisson counts. Depending on the sparsity of the observed process, one or the
other can be selected in the inference procedure. Interpretation of the huge dy-
namic latent space is made possible thanks to a clustering component that groups
nodes with shared trajectories. The inference is performed under the stochas-
tic variational inference framework, where the marginal lower-bound is directly
maximized via parallel computing.

In Section 2 we propose the structure of the latent space and the relational
event modeling background with the dual representation of the process. In Sec-
tion 3 we present the penalized likelihood approach and stress the convex clus-
tering penalization. Section 4 is dedicated to the optimization methodology. We
consider a mini-batch stochastic gradient descent, a popular neural network op-
timization framework, and adapt it for graph data. The algorithm works on sub-
sampling the data, hence particular care is given to sparse information handling.
In Section 5 we leverage a variational approach to fit jointly both the model pa-
rameters and hyperparameters, such as smoothness and clustering. In Section 6
we show that the model can be run repeatedly within the detected clusters to fit
a nested latent space. In Section 7 we present a simulation study. Section 8 is an
application of our model to the complete Wikipedia history of edited pages.

4.3 Latent space relational event models

In this section, we introduce a general version of a latent space relational event
model (REM). We consider a set of actors, defined as a finite vertex set V =
{1, . . . , p}, that can exchange links or edges in time. In principle, we will consider
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the exchange of relational events, such as discrete interaction, e.g., sending an
email or citing a patent, but one can also consider extensions to the quantitative
exchanges, such as import and export. As drivers of the exchange process, we
consider both endogenous, such as reciprocity, and exogenous variables, such as
vertex characteristics. One particular exogenous variable is the relative location
of the vertices in some similarity latent space, which itself is defined as a dynamic
process.

We consider a non-homogeneous multivariate Poisson counting process N =
{Ni j(t) | i, j 2 V, t 2 [0, T]} and a smooth process Z = {Zi(t) 2 Rd | t 2 [0, T], i =
1, . . . , p} relative to some standard filtration F . In particular, we consider F -
measurable rate functions �i j(t) that drive the components of the counting pro-
cess. In particular, we assume that the rates �i j(t) are functions of the underlying
positions Zi(t) and Zj(t), besides possible other features. The features can be of
various types: exogenous xi j(t), such as global covariates, node covariates, edge
covariates, as well as endogenous Ft-measurable si j(t), where network statistics
capture endogenous quantities such as popularity, reciprocity, and triadic closure.
The parameter vector �(t) = (�0(t),�1(t)) determines the relative importance of
the various effects. The rate function between nodes i and j at time t is assumed
to be

log�i j(t) = m(zi(t), zj(t)) + �0(t)t xi j(t) + �1(t)t si j(t) (4.1)

where m(zi(t), zj(t)) is a similarity measure between node specific latent vari-
ables. The dynamics are assumed to follow a spline process

zi(t) = b(t)t↵z
i i = 1, . . . , p (4.2)

�(t) = b(t)t↵� , (4.3)

for some m dimensional vector of basis functions b(t). ↵z
i is the m⇥ d param-

eter matrix for a d-dimensional spline. The basic type is taken to be P-splines
as a cheap representation of a Gaussian process. Node-specific splines corre-
spond to zi(t) while �(t) are splines shared by all nodes. The similarity measure
m(zi(t), zj(t)) can be zi(t)t⇤zj(t) or �kzi(t)� zj(t)k2. The measure zi(t)t⇤zj(t)
comes from Hoff’s eigen model [Hoff, 2008]. This measure can model multiple
similarity forms:

• ⇤ is a k⇥k matrix and kzi(t)k2 = 1: hyper-cube latent space, i.e., a stochas-
tic block model.

• ⇤ scalar and kzi(t)k2
2 = 1: hyper-sphere latent space where the distance

measure is the angle between two nodes. This measure can be approxi-
mated locally by the Euclidian distance.
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• ⇤ scalar: latent space where the inner product defines the degree of simi-
larity between two nodes. This model also expresses block modeling effects
embedded into a similarity space. This measure finds interpretation in the
angle between two points as a distance, whereas the norm of the single
node describes the subjective tendency to make connections.

The first two measures, as well as the Euclidian distance, identify a non-
convex optimization problem while the last one is convex. Although using a con-
vex measure is appealing for the theoretical convergence guaranteed, it suffers
from high dimensional saddle points which turn, from a practical perspective, to
be similar to a non-convex optimization problem.

We assume a nested latent space, i.e., nodes form communities with common
trajectories. These communities can be decomposed into sub-communities that
have shared movements within the mother community. This can be repeated for
many levels with a progression from the macro scale to the micro-scale. We do
not make any specific assumption about the shape of these clusters. For most
of this manuscript, we focus on detecting only the macro cluster level, while in
Section 6 we describe the extension of the nested levels.

Given the joint formulation (Z , N) of the state-space and interaction process,
we will assume that only the interaction process N is observed and the main aim
of this paper is to infer the structure of the smooth process Z and the rate func-
tions �, or more specifically, the parameters ↵ associated with their functional
form. We will consider two cases of the interacting point process defined above.
First, we consider the general case, in which the relational events are observed in
continuous time. This is the traditional setting for relational events. We will also
define a relational event model where the interactions can only happen at spe-
cific times. For example, bibliometric citations or patent citations only happen at
prespecified publication dates. Furthermore, this model allows a generalization
to non-binary relational events, such as export between countries, that can be
dealt with in the same inferential framework.

4.3.1 Continuous time relational event process N

We consider a sequence of n relational events, Econt = {(ik, jk, tk) | tk 2
[0, T], ik, jk 2 V, k = 1, . . . n} observed according to the above defined relational
counting process N . Conditional on the smooth process Z , the distribution of the
interarrival time for interaction i ! j is a generalized exponential, with instan-
taneous rates as described in (4.1). The conditional log-likelihood of the process
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Z | N

`(↵) =
X

i, j

2
4

X

t2Econt(i, j)

log�i, j(t)

3
5�

Z T

0

�i, j(t)d t (4.4)

where the generalized exponential formulation is the one adopted by Rastelli
and Corneli [2021]. This likelihood is commonly simplified in the REM literature
with the partial likelihood [Perry and Wolfe, 2013] relative to the equivalent Cox
process [Cox, 1972].

4.3.2 Discrete time relational event process Y

Often relational events are “published” only on prespecified discrete event times
T = {t1, . . . , tn}. We consider a sequence of n relational events, Edisc =
{yk,i j | tk 2 [0, T], ik, jk 2 V, k = 1, . . . n} where the interactions i ! j are
collected at tk+1 from the observation intervals (tk, tk+1], with resulting interval
counts

yk,i j = Ni j(tk+1)� Ni j(tk).

We assume that the rate � is constant with respect to the endogenous and
exogenous variables inside the collection intervals (tk, tk+1]. In fact, with respect
to the endogenous variable N it makes sense that no further information between
the publication dates affects the rates. In other words, we assume that the log
link at equation (4.1) for the hazard is conditioned to the past information up to
time tk.

The interval counts yk,i j of the number of interactions between i and j are
Poisson distributed with interval rate,

Z tk+1

tk

�i j(t) d t = �i j(tk)�tk, (4.5)

where�tk = tk+1� tk. An advantage of using discrete time is the reduction of the
model complexity. In certain real-world processes, it is not uncommon to observe
thousands, even millions of links. A discrete-time representation reduces the
computational complexity from the number of links to the number of collection
intervals.

Given the complete observations (Z , Y ), the complete log-likelihood for the
discrete-time latent space model is

`(↵) =
X

k,i 6= j

��i, j(tk)�tk + yk,i j log�i, j(tk)�tk (4.6)
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Similar to Perry and Wolfe [2013], who focuses on non-homogeneous exponen-
tial waiting times, this approach focuses on non-homogeneous Poisson counts.

This approach can be further generalized to any exponential family [Artico
and Wit, 2023b] or the zero-inflated exponential family [Sewell and Chen, 2016].

4.4 A penalized likelihood approach

For inferring the above model we aim to maximize the following penalized log-
likelihood

`P(↵) = `(↵) + Psmooth(↵) + Pclust(↵) (4.7)

where `(�) is either (4.4) or (4.6) depending on the case. Psmooth is a smooth-
ness penalty on the spline process, and Pclust is a convex clustering penalty for
forcing nodes to be closer. Although in the classic formulation of generalized ad-
ditive models [Wood, 2006] the process smoothness is regulated by penalizing
the second derivative

R T

0 ↵
2 b(t)00d t, for dynamic systems it is more important to

consider the first derivative as it regulates the difference between a static or a dy-
namic model. Moreover, the latent space is not identifiable due to rotations: the
resulting dynamics are hence the original nodes’ trajectories plus infinite infra-
time rotations. A first derivative penalty reduces rotations that are misinterpreted
as node dynamics. For P-splines the penalty has a convenient form

Psmooth(↵) = ��smooth

pX

i=1

mX

k=2

��↵i,k �↵i,k�1

��2

with the first order differences on the basis heights. P-splines are a low-rank,
smooth representation of a Gaussian process. The basis captures the local tempo-
ral structure of the process and a finer granularity can be achieved by increasing
the number of basis m. For m = n we obtain a Gaussian process. Taking m < n
has both computational benefit and a potential overfitting reduction.

4.4.1 Convex clustering penalty for community detection
A common problem that arises when using large dimensional models is that re-
sults are dense. It is hard to interpret a large number of parameters. Therefore
we simplify our model fit by grouping together nodes into communities that share
common movements. It is often more sensible to spot common movements across
different nodes in order to separate them from nodes with independent trajec-
tories. We cluster node trajectories with the popular convex clustering penalty
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[Pelckmans et al., 2005; Hocking et al., 2011; Chen et al., 2015; Weylandt et al.,
2020]

Pclust(↵) = ��clust

X

i

Z T

0

(zi(t)� ci(t))2d t � �dist

X

i< j

wi j

Z T

0

(ci(t)� cj(t))2d t.

Similarly to the smoothness penalty, this penalty finds a discrete simplification

Pclust(↵) = ��clust

X

i

k↵z
i � cik2 � �dist

X

i< j

wi jkci � cjk2 (4.8)

where wi j = I[0,�radius](k↵+i �↵+j k) (4.9)

thanks to the P-spline low-rank process representation. This penalty yields a
unique solution to a combinatorial problem, which is typically non-convex. This
formulation [Hocking et al., 2011; Sun et al., 2021] shrinks the closest nodes
in a hierarchical sequence. It consists of a vector of features ↵z

i and a vector
of auxiliary variables ci that corresponds to node i centroid. ↵+ are considered
a reliable estimate of the true parameters. The first component

P
i k↵z

i � cik2

ensures that the centroids are sufficiently close to the respective nodes while the
second component

P
i< j wi jkci � cjk2 enforces closer centroids to shorten their

distance. The parameters �dist and �clust regulate the amount of shrinkage for
the centroid-centroid and the centroid-↵ distance respectively. We can group
together centroids that are closer than a certain threshold ✏. Faster convergence
and different cluster shapes can be achieved by altering the kernel wi j. The kernel
aims to increment the penalty locally, its radius is regulated by �radius. Common
choices for the kernel are Gaussian or discrete, as in (4.8), whose performances
are approximately equivalent.

In the original convex clustering formulation ↵ corresponds to observed fea-
tures and the kernel is calculated using them as input. A popular attempt at
clustering unobserved features comes from Lindsten et al. [2011] who clustered
the latent states of a Kalman Filter model. Similarly, we estimate these ↵+ by a
pilot optimization phase where we fit the vanilla model including the smoothness
penalty only. These estimates ↵+i will be considered as fixed in the further infer-
ence. In case we have convexity in both the likelihood similarity measure and
in the penalty, we obtain a double-convex optimization problem. The clustering
path can be computed by increasing the kernel radius �radius or by the shrinkage
�dist in different strategies. As the radius increases, more nodes are included in
the kernel and are shrunken, leading to a hierarchical procedure that ends in a
single cluster.
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4.4.2 A fast convex clustering penalty

The inclusion of a clustering and distance penalty in the original convex clus-
tering formulation produces, however, a near unidentifiability between �clust and
�dist. Given a fixed radius, multiple combinations of �clust and �dist have nearly
identical predictive performance without any preference on whether aggregat-
ing nodes or not. From a geometrical perspective the amount of shrinkage on ↵
can be held constant for any value of c that follows the path from c = ↵, hence
�dist = 0, to the point of centroid aggregation at �dist! +1. We can bypass the
problem by “dropping" entirely the distance component. The aim is to cluster all
the nodes that enter into the kernel. For �dist ! +1 groups of centroids have
perfect matching and the minimization of the convex clustering penalty (4.8)
finds analytic solution as

Pclust(↵) = ��clust

pX

i=1

k↵i � cik2 (4.10)

where ci =
pX

j=1

↵ jI{i � j}/
pX

j=1

I{i � j} (4.11)

which has computational complexity linear in p rather than quadratic as before.
The value ci is the average coordinate among all nodes belonging to the same
cluster as i, which needs to be calculated once for each cluster. I{i � j} simply
indicates the cluster assignment or, more precisely, if there exists a path of kernels
that connects i to j. Thus I{i � j} indicates that i and j belong to the same
connected component in the graph constructed by kernel wi j. This can be done
by updating the kernel adjacency list as the sequence of samples B is filtered by
the kernel wi j. This implies that not all the pairwise relationships wi j need to be
observed, just the ones that relate a node to at least one other node of the same
cluster.

Convex clustering can be considered as a hard clustering method where nodes
with unique dynamics are modeled independently, instead of being considered
as outliers or abusively allocated to the closest cluster. An alternative approach is
proposed by Handcock et al. [2007] with a finite Gaussian mixture model, which
may suffer from local minima or high dimensionality. Furthermore, the latter can
only detect circular clusters, while in our method we do not specify the cluster
distribution.

Alternatively to kernel aggregation, a useful heuristic exists. The fast convex
clustering penalty (4.10) can be seen as the analytic equivalent to the hdbscan
heuristic [Schubert et al., 2017] where nodes belonging to the same discrete
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kernel are sequentially aggregated as the kernel enlarges. This heuristic can
suggest good candidate radii to test and offer a more robust allocation. Moreover
the �dist ! 1 convex clustering version can be interpreted in a more general
perspective where any clustering or aggregation algorithm can be used and the
resulting cluster allocation can be plugged in the model. Thus our approach
opens the door to a supervised clustering selection method for a wide range of
existing algorithms.

4.5 Optimization

The computational complexity for optimizing the model described in section
(4.4) is prohibitive when the data dimension is very large. In these cases, it
is necessary to restrict the inference over subsamples of the data. A method that
we borrow from machine learning is the so-called mini-batch gradient descent.
It consists of taking a random subsample from the data named mini-batch B,
where B ⇢ E and E = Econt or E = Edisc, according to the case. The mini-batch
has typically a small size nb =| B |. The fast computation, mostly matrix oper-
ations, is restricted to the mini-batch. Over this subset the likelihood `(↵)B is
calculated and a gradient step is taken, such as ↵ ↵+ r`(↵)B. The proce-
dure is repeated, sampling new mini-batches B, until convergence. As a result
of the subsampling, the gradient is an unbiased estimator of the full gradient.
The mini-batch gradient trades variance for computational and memory costs.
For a certain mini-batch size, stochastic gradient descent reaches the minimum
faster than a deterministic gradient. The gradient update step is a Newton step
where the costly second derivative matrix is substituted by a cheap but unknown
 parameter. As a result, the missing Hessian leads to the gradient elements
having the wrong individual scale, hence the wrong global direction in the gra-
dient vector. The past literature, e.g. [Ruder, 2016; Duchi et al., 2011], has
focused on two main issues: decreasing the gradient variance and rescaling the
gradient estimate. Both problems are solved by the popular Adam [Kingma and
Ba, 2014]. In Adam the gradient update is formulated as a state-space model,
where the gradient moments are thought of as latent states. Leveraging a simple,
univariate form of the Kalman Filter, known as Exponentially Weighted Moving
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Average (EWMA), the update has the form

g  r`(↵)B
mk  ⇠1mk�1 + (1� ⇠1)g
vk  ⇠2vk�1 + (1� ⇠2)g2

↵k  ↵k�1 + 
mk

vk

at iteration k, mk and vk are the gradient first and second moments, respectively.
Hence the moments are a weighted average with the past moments, where the
weights decrease exponentially in time. The ⇠ parameters regulate how much
of the past information is used to update the current moments. Thus Adam pro-
vides an estimator for the first two gradient moments. The benefit from the
averaging is the variance reduction of these moments, although some bias might
be introduced if the process relies too much on the past. Moreover, leveraging
the Bartlett identity E[ @

2

@ 2↵`(↵)] = E[( @@ ↵`(↵))
2] we have that vk is an estimator

of the diagonal elements of the Hessian matrix. Imposing locally, i.e. at itera-
tion k, the assumption of a spherical covariance matrix between the parameters,
the inverse of the diagonal Hessian applies an effective rescaling to the gradi-
ent elements. The algorithm can also tackle high parameter correlation or ridge
problems by learning the correct direction from the past steps. The lack of the off-
diagonal Hessian elements is hence replaced by the gradient averaging over the
past noisy directions. The optimization is performed until the algorithm reaches
the maximum or, more precisely, a stationary distribution at the maximum. This
stationary distribution has been extensively studied and in some cases it can be
considered as a posterior distribution [Mandt et al., 2017]. The optimization is
stopped if the algorithm does not find a new maximum after a reasonably high
number of iterations.

Although Adam has shown to be effective in many scenarios, it has some side
effects. The algorithm can suffer from pathological cases of severe parameter
scale imbalance or large gradients variance (see Section 4.5.1 about sparsity).
The problem of scale is commonly tackled in machine learning via parameter
normalization. In our case, it can be mitigated by using basis splines that share
a similar scale in the weights, such as P-splines.

4.5.1 A sparse gradient update problem

When working with high-dimensional problems, the amount of information con-
tained in the mini-batch determines the success of the optimization. In our
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model, the shortage of information corresponds to the problem of sparsity. In
this section, we tackle two types of sparsity: sparsity in the sampled connectiv-
ity and sparsity in the sampled parameters. Adam, by increasing the long term
memory parameters ⇠, is designed for solving sparse update problems. However,
in extremely sparse scenarios the gradient variance can become too high and the
EWMA cannot recover a decent signal from the noise.

Sparsity in the parameters

The mini-batch size determines how many nodes and time points, hence param-
eters ↵i, are included in the current iteration. The gradient over the missing pa-
rameters is zero, therefore the EWMA performs a smooth averaging over a sparse
vector. A way for reducing the gradient variability is to include as many param-
eters as possible in the mini-batch. A mini-batch of size nb on average contains
0.632⇥2nb nodes, where 0.632 is the resampling bootstrap ratio. Given the local
structure of the P-spline basis, every time point corresponds to 4 non-zero basis.
We hence update an average of 0.632⇥2nb⇥4⇥d parameters over a total of pmd
parameters. Fixing m = 10 allows us to fit a 10 degrees of freedom function, a
value that is sufficiently high in most applications. The gradient is sufficiently
dense as long as the ratio 0.632 ⇥ 8nb/pm is close to 1. The size of the mini-
batch should hence grow linearly with the nodes p. Possible choices are between
nb = p and nb = 2p for a ratio of approximately 0.5 and 1 respectively. These
values correspond to a sparsity level that Adam can handle easily, see Figure 4.2.
Moreover, the calculations are made under the worst-case scenario where all the
degrees of freedom are necessary. In case the effective degrees of freedom are
less than m the smoothness penalty defines a dependency chain over the basis
parameters, i.e., parameters are more correlated and move together. The level
of smoothness regulates how local is this kind of dependency: the higher the
smoothness, the lower the effective number of parameters.

A similar reasoning applies to centroids ci. The simplification in (4.10) solves
another important sparsity problem. If we were using the original penalty (4.8)
the quadratic cost of the distance component would require some sort of sub-
sampling, i.e., a mini-batch penalty

P
i, j2B wi jkci � cjk2. Since the chances of

randomly sampling two close nodes are almost zero for large networks, the vast
majority of elements would be excluded by the kernel. As a consequence, the
level of sparsity of the gradient with respect to c would be even higher than for
the splines. This results in an ineffective shrinking of centroids. Instead (4.10)
solves the problem by removing this component. The gradient is calculated over
all the centroids and they are aggregated by the kernel only. In Appendix 4.11.1
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we propose an alternative mini-batch convex clustering penalty.
Rastelli and Corneli [2021] constructed the mini-batch by sampling a set of

nodes, rather than edges like our case, including all the dependencies with the
remaining nodes. This produces a node-wise update where the information tends
to focus too much on a single node and very little on the others. The algorithm
needs to cycle over all the nodes before focusing on the same nodes again. The
optimization is carried by a memory-less Stochastic Gradient Descent that cannot
compensate for the imbalance. These two factors might result in slow or false
convergence.

Sparsity in the links

Sparsity not only occurs in sampling nodes but also in the observed data and in
the information of the gradient. We refer to this as gradient sparsity in a more
general sense. The problem with independent sampling in a sparse large network
is that distant nodes are sampled more often, which do not interact. The large
number of zeros that overcrowd the mini-batch is redundant, hence very little
information. As a result, the gradient taken over the mini-batch rarely contains
information about the connectivity between two nodes. The redundancy lies in
the fact that the macro-level structure of a large network can be summarized by
a few “compound” zeros that connect macro components.

Some authors have tried to solve the problem by partitioning the latent space
into blocks. Hence the overall number of interactions can grow only linearly
with the number of nodes [Rastelli et al., 2018]. Case-control sampling over-
comes the redundancy in the data by including in the sample as many links as
possible (cases), with minimal inclusion of zeros (controls). The idea consists of
dropping the majority of zeros and making a few of them representatives of the
entire non-interacting population. The only consequence of case-control sam-
pling is the increase of variance in the estimates, but this is commonly compen-
sated by a large amount of data. Raftery et al. [2012] give a detailed procedure
on how to perform stratified case-control sampling for static binary networks.
The shortest path distances are used as a proxy of the latent distance, allowing
for the stratification of controls at different lengths. Controls are sampled in each
stratum for each node. Particular care must be paid to sampling the same con-
trol for the two nodes in order to avoid unnecessary biases in the case-control
weights, as the two pushing forces might differ substantially if the two nodes
have substantially different centralities. The procedure approximates the like-
lihood and successfully captures both macro and micro-structure in the latent
space. However, the preprocessing phase where controls are sampled is both



93 4.5 Optimization

computationally and memory expensive.
A cheaper solution is proposed in the Supplementary Material of Sewell and

Chen [2016], applied to temporal networks. The stratification is dropped and
the controls are sampled at random, capturing mainly the macro-structure. An
additional control set contains all the non-interactions of nodes with at least
one interaction during the time span. Although this set accounts for a minimal
micro-structure, its memory requirements can explode easily. The set size indeed
increases as time goes to infinity since it is more likely to observe at least one
interaction between two nodes.

In our approach, we drop the micro-community structure since we have a
clustering formulation. We therefore can make further simplifications in the
case-control sampling. Sampling controls at random capture mainly the macro-
structure as you sample more frequently distant nodes. We propose two different
model formulations. Depending on the level of the sparsity of the process, a con-
tinuous time or a discrete-time formulation.

A discrete-time model for dense data

The model in (4.6) can be used when the network presents many interactions.
Clearly storing the adjacency matrix elements (the square of the nodes ⇥ the
number of time intervals) is unfeasible for large networks, hence we restrict this
usage only to cases where the interactions can be calculated on line. For such
cases, there is no need of storing all the pairwise interactions as they can be
calculated during the sampling phase.

A continuous time model for sparse data

We propose the case-control version for the inference of a continuous time re-
lational event model (4.4). A popular approach in the REM literature [Butts,
2008; Brandes et al., 2009; Vu et al., 2017] is to maximize the so-called partial
likelihood

P L(↵) =
Y

t i j2E

�i j(t)P
kl �kl(t)

of the Cox process N at (4.4). As the risk set in the denominator is computa-
tionally challenging, Vu et al. [2015] following Borgan et al. [1995] show that
a random subset of the risk set yields a consistent estimator for the model pa-
rameters. Lerner and Lomi [2020] pushed this concept to the limit by showing
that sampling one single control is a sufficient statistic for the risk set, fitting
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successfully a REM over millions of nodes. The partial likelihood in that case is

`(↵) =
X

t i j2E

log
�i j(t)

�i j(t) +�i⇤ j⇤(t)
(4.12)

where i⇤, j⇤ is a sampled control at time t. This case-control sampling hence
allows storing in memory only the history of links. The mini-batch B is composed
of sampling half links and half controls, where new controls are sampled at each
likelihood evaluation. The only drawback of subsampling one single element is
the increase of variance in the estimates, as it is inversely proportional to the
number of controls subsampled. This is compensated by the vast amount of data
that comes from a large network. Similarly to Adam, the case-control likelihood
trades variance for computational efficiency.

In case the links are dense within communities a case-control discrete-time
model is considered in Appendix 4.11.2.

4.5.2 Mini-batch model
The calculation of mini-batch loss should be computed efficiently. We require
that the matrix operations grow linearly with the number of nodes p. At each
iteration, we sample a mini-batch B ⇢ E, where E is either E = Econt or E = Edisc,
consisting of randomly sampled pairs i, j and time t from the data set. We set
the mini-batch size | B |= 2p to ensure that the gradient is calculated over the
majority of parameters. Lower sizes might update only a little portion of nodes,
destabilizing the optimization algorithm as discussed in Section 4.5.1. All the
matrix operations and gradients are computed over the mini-batch penalized
likelihood

`(↵)pB =
| E |
| B |`(↵)B + Psmooth(↵) + Pclust(↵), (4.13)

where `(y,�)B is the likelihood evaluated over B, given in (4.12) or (4.6) for
sparse or dense network scenarios. Similarly to case-control weights, |E||B| rescales
the likelihood component accounting for the downsampling. Psmooth and Pclust do
not require any subsampling since they have a computational complexity that is
linear in p. Additionally, they yield a faster optimization as the full parameters
dependencies are included.

4.6 Stochastic Variational Inference

In this section, we discuss how to estimate both the model parameters ↵ and
the hyper-parameters � = (�smooth,�clust,�radius). Given the full parameter vector
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✓ = (↵,�) a naive choice for maximizing the marginal likelihood p(y) =
R

p(y |
✓ )p(✓ )d✓ can be k-fold cross-validation. Validation sets are iteratively removed
from the model inference and hyper-parameters are selected as the best perform-
ing in these sets. Although cross-validation is a good way for assessing hyper-
parameter tuning in dense networks, it can be unreliable for sparse scenarios. In
order to avoid removing relevant information about single-node dynamics, the
validation set should be as small as possible. This leads to a high number of
validation sets, hence a high computational burden. Moreover, the number of
hyper-parameters is recommended to be either low or weakly dependent, which
is not our case.

Our proposed approach for maximizing p(y) is via stochastic variational in-
ference [Kingma and Welling, 2013; Hoffman et al., 2013; Blei et al., 2017;
Kucukelbir et al., 2017]. Variational inference aims to maximize the following
lower-bound of the marginal likelihood

log p(y) = log

Z
p(y | ✓ )p(✓ )d✓ = log

Z
p(y | ✓ )qµ,�(✓ )

p(✓ )
qµ,�(✓ )

d✓

= logEqµ,�
[p(y | ✓ ) p(✓ )

qµ,�(✓ )
]

� Eqµ,�
[log p(y | ✓ )] +Eqµ,�

[log p(✓ )� log qµ,�(✓ )] (4.14)

= Eqµ,�
[log p(y | ✓ )]� DKL[qµ,�kp] =L (µ,�) (4.15)

where the unknown true density p(✓ ) is in practice replaced by an arbitrary prior
distribution and the posterior distribution is approximated by the variational den-
sity qµ,�(✓ ). A common choice is independent Gaussian qµ,�(✓ ) =

Qp+3
i=1 qµi ,�i

(✓i)
where all posterior dependencies are ignored and inference reduces to the first
two posterior momentsµ,�2. Differently from the mean-field approach that aims
to find a recursive closed form of qµ,�(✓ ), stochastic variational inference aims to
directly maximize (4.14) where the untractable components of the lower-bound
are approximated via Monte Carlo integration [Kingma and Welling, 2013; Ku-
cukelbir et al., 2017]. All parameters can hence be updated simultaneously using
Adam stochastic gradient optimization. The only element that requires Monte
Carlo evaluation is the mini-batch likelihood. As shown by Kingma and Welling
[2013] in the expectation Eqµ,�

[`B(↵)] =
1
H

PH
h=1 `B(↵h) the number H of Monte

Carlo replicates drawn from qµ,�(↵) can be reduced to 1 when the mini-batch
size is sufficiently large and the optimization is performed via moving average
gradient scheme. At each iteration we draw one Monte Carlo sample ↵⇤ from
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the variational density qµ,�(↵) obtaining the mini-batch lower-bound

LB(µ,�) =
| E |
| B |`B(↵⇤) +Eqµ,�

[Psmooth] +Eqµ,�
[Pclust]� DKL[qµ,�kp]

where ↵⇤ = µ+�✏ ✏⇠ N(0,1),

which is the quantity we maximize. The reparametrization ↵⇤ = µ + �✏ en-
sures that the gradient is not affected by noise in updating the parameters µ,�.
Moreover, we recommend initializing � small, as the single-sample Monte Carlo
integration is prone to diverge for large variance. In a variational context, the
two penalties naturally translate into Bayesian priors. The three remaining ex-
pectations DKL[qµ,�(✓ )kp(✓ )], Eqµ,�

[Psmoooth], Eqµ,�
[Pclust] have simple close form

solutions thanks to the Gaussianity and independence, see Appendix 4.11.3 for
details.

Variational inference works particularly well in settings where qµ,�(✓ ) pro-
vides a sufficiently good approximation of the posterior, i.e., the lower bound
reaches a sufficiently close value to the marginal. The independence assumption
on qµ,�(✓ ) is appropriate for a posterior that is approximately independent or,
like in our case, locally dependent. The conditional dependency induced by ob-
serving the data, i.e., the posterior covariance, is locally present for close nodes
and adjacent time points. Hence latent network representations combined with
a Gaussian process are particularly suited for variational inference, as it ignores a
relatively small amount of information when approximating with an independent
posterior. Once again we fit the macro scale by sacrificing the micro-scale depen-
dencies. Finally, our model can be seen as variational autoencoder [Kingma and
Welling, 2013] with the addition of penalties. Despite its most common usage
as an image generator, a variational autoencoder is a more general framework
for representing any Bayesian inference problem as an encoder-decoder. For our
model, the decoding side is fully structured by the link function while the encoder
reduces to a selector operator that associates an edge to the respective posterior
node positions in the latent space.

4.7 Marginalization: A hierarchical community model

For static networks, repeated community detection can be used to detect hierar-
chies of nodal communities. Our methodology can be seen as a dynamic model-
based partitioning of the nodes. By repeated application of our method, we can
obtain nested communities in dynamic networks. The concept of nested commu-
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nities is appealing to practitioners, where interpretation is simplified via nested
structures.

This divide-and-conquer approach suits well the model’s purpose. Given the
set of clusters, the latent space model is estimated recursively inside each cluster.
This nested procedure can be iterated multiple times as long as the variance of
the locations allows for meaningful community discovery. This procedure is per-
formed over clusters of reasonable size: unassigned nodes or small communities
are left untouched. This fitting procedure can be seen as adding a random effect
to the model for explaining within-cluster variance.

Under the latent space assumption, any marginalization or sub-sampling of
the original network is a coherent estimator of the locations and therefore the
inference in the micro-structure can be done regardless of the macro-structure.
Given that any subset V 0 of V maintains the same distances among nodes, the
distribution of the restricted node set PV 0 is the same as the marginalized dis-
tribution of the full model PV |V 0 . This invariance means that it is unimportant
to which node set the observed nodes actually belong. The model is therefore
invariant under marginalization.

The micro-communities formulation offers various advantages. In case the
community is sufficiently small we can account for all the dependencies with
a full covariance matrix for the variational parameters as proposed in Blei et al.
[2017] or a low-rank approximation of it backed by importance sampling [Zhang
et al., 2021]. Moreover, time dynamics can have a finer granularity, thus they
can be captured with a higher number of spline basis or a Gaussian process.
The Extended Kalman filter model proposed in Artico and Wit [2023b] performs
sequential learning of Gaussian processes embedded in dynamic networks. The
model can be thought of as a special case of variational Expectation Maximization
where the posterior is approximated by a multivariate Gaussian matching the first
two moments.

4.8 Simulation study

We dedicate this section to investigating the features of the estimation procedure.
We are particularly interested in exploring: the goodness of fit and computational
time as the number of nodes varies, the convergence behavior for different mini-
batch sizes, the comparison of different models for different sparsity scenarios,
and the accuracy of classification in different clustering settings. As the locations
are not identifiable up to an arbitrary rotation, translation, and mirroring, MSE
is calculated by pre-processing results via a Procrustes transformation, search-
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Figure 4.1. Model average performance and computational time. The goodness
of fit (MSE) improves as the nodes increase. Computational time (in seconds)
in the log-log plot express a sub-linear increase, showing that the model scales
at most linearly with the number of nodes. A network with 105 nodes takes
approximately 5 minutes of training while a network with 106 nodes takes
approximately 20 minutes.

ing for the best rotation and translation that match the truth. Simulations are
repeated 10 times and nodes starting points are set at 0.

Vary number of nodes The first scenario is presented in Figure 4.1 where the
average MSE between the fitted and true trajectories is calculated. The goodness
of fit improves with the nodes. This supports the consistency of the latent location
estimator as it converges to the true locations for a large number of nodes [Shalizi
and Asta, 2017].

Average computational time, in a log-log plot, follows a sub-linear increase
showing that the model scales at most linearly with the number of nodes. The
increasing angle indicates the limitations of the GPU used in these analyses. One
million nodes indeed require a significant use of memory, which slows down
computations. All our analysis have been conducted with a standard and free
Colab GPU, which struggle beyond 4 million nodes. We suggest switching to
more powerful GPUs for larger settings.

Vary mini-batch size The second set of experiments consists of varying the
mini-batch size. We use as a standard setting a network with 105 nodes. Figure



99 4.8 Simulation study

Figure 4.2. Vary the mini-batch size. MSE (blue line) improves as the mini-
batch increases. The high standard deviation (blue bars and shades) highlights
false convergence behavior below the safe threshold(vertical red line) where the
sparse parameter update is not sufficiently informative. For the lowest mini-
batch size, the algorithm does not make any meaningful movement from the
starting points.

4.2 shows how a low mini-batch size can cause false convergence as the level
of sparsity in the parameter update does not carry enough information for a
proper gradient direction recovery, as mentioned in Section (4.5.1). For the low-
est mini-batch size considered (103) the fit has both poor MSE and low standard
deviation. This means that the algorithm does not move. By increasing the size
we have a gradual improvement of the MSE, however the high standard devia-
tion points to a serious instability, which might or not converge to a good value.
The behavior stabilizes above a mini-batch size of 105, giving both low MSE and
stability. Hence a mini-batch size nb = h ⇥ p, with h > 1, can be considered a
safe ratio for ensuring the fitting.

Vary sparsity in the links We compare the behavior of the algorithm under
different sparsity levels for some models presented in 4.5.1. We compare the
Poisson model for dense network activity with the Cox model for the sparse case,
showing that they have comparable performance. The Poisson model performs
optimally in dense scenarios, however, it deteriorates as sparsity increases, in a
behavior very similar to Figure 4.2. In Figure 4.3 we show that the Poisson model
in the sparse scenario performs inevitably worse than in the dense scenario. The
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Figure 4.3. High sparsity scenario. The red line is the Poisson model per-
formance for the dense scenario, we keep it as a benchmark. The Poisson fit
deteriorates showing inadequacy for catching sparse behaviors. The Cox model
shows to meet the benchmark with comparably fit.

dense Poisson fit is represented by the dotted red line. The sparse Cox model
presents an MSE very similar to the dense Poisson, showing that the case-control
sampling in the risk set does not deteriorate the fit significantly and hence the
partial likelihood correctly channels the information necessary for inference.

This case study underlines the relationship between the two types of sparsity
mentioned in Section (4.5.1). Sparsity, whereas in the parameters or in the data,
results in a partial recovery of the true dynamics. By increasing the sparsity we
have a worsening as more spline basis parameters never leave the starting point
at 0.

Vary clusters vicinity We conclude by showing the clustering accuracy as the
scale of the synthetic latent space reduces toward 0, letting nodes become closer.
In Figure 4.4 we show that the proposed method correctly allocates nodes as long
as the space is sufficiently separable. The first point indeed shows perfect classi-
fication. The more the nodes are closer, the more the individual node variance
becomes influential, and the harder the model discriminates between different
clusters.
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Figure 4.4. Clustering performance. Perfect allocation for separable clusters.
As shrinkage increases, clusters are put closer, letting higher chances for node
trajectories to overlap. Clustering accuracy deteriorates as a consequence.

4.9 Data analysis: Wikipedia editing network

Wikipedia’s editing history consists of the history of all the editing events of ar-
ticles by the editors since the foundation of Wikipedia in 2001. This massive
bimodal event history data set includes approximately 361 million links, 6.7 mil-
lion editors, 5.5 million articles, and hence 40 trillion of possible dyadic inter-
actions. The focus is modeling the latent drivers that might explain user editing
behavior. Lerner and Lomi [2020] successfully fitted a Cox proportional hazard
model, where endogenous effects such as repetition, two-step reciprocity, indi-
vidual strength, and assortativity are taken under consideration. Their model
includes a total of 5 parameters. In this manuscript, we propose a more com-
plex form of endogenous effect, the dynamic latent space, where we fit several
millions of parameters. The model we propose is the following

log�i j(t) = �kzi(t)� zjk2
2 + propensityi + propensity j (4.16)

that describes a Euclidean latent space where user i and article j have a sub-
jective propensity of editing and being edited respectively. We chose to keep
articles static in time. This improves interpretation as the space becomes a latent
topic space where editors move when they approach new articles. The interpre-
tation of such space is powerful as certain regions correspond to topics that have
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a certain degree of relationship, i.e., the similarity induced by the heterogeneity
of editors’ backgrounds.

The use of the propensity random effect, the Euclidian distance, and the static
article is justified by a substantial improvement in the model fit. Without these
assumptions the model places the editors and articles into two separate clouds,
with minimal dynamics. We filtered the data as most of the editors modify a
few articles only at the beginning of their subscription. We retain editors that
have at least 15 interactions. To characterize the topic space is sufficient to keep
the most popular articles, edited at least 100 times. The overall network contains
209.737.058 links, 706.820 articles, and 572.586 editors for a total of 1.279.406
nodes.

In the analysis three patterns can be identified among the editor trajectories:
(1) independent editors with trajectories that explore a wide range of articles, see
Figure 4.6, (2) active editors who edited several articles with a possibly curved
trajectory, see Figure 4.5, and (3) temporary editors that entered, interacted, and
exited using a straight trajectory.

Independent editors These editors are likely highly experienced or specialized
in various areas, as they edit a wide range of articles. They are difficult for others
to replicate their latent patterns. These editors do not commonly belong to any
cluster. They may be considered experts within their domain, and their contri-
butions to Wikipedia may be highly valuable due to their depth of knowledge
and expertise. They are shown mainly in Figure 4.6 although a few examples
are successfully clustered in Figure 4.5.

Active editors These editors enter or leave the cloud of articles with a possibly
curved trajectory, see Figure 4.5. They may be more casual or novice contributors
who are focused on a specific set of articles. They may have a lower level of
expertise than the editors with independent trajectories and may not engage
with as many articles, but they can contribute valuable edits and improvements
to the articles they interact with.

Temporary editors These editors enter, interact, and exit using straight trajec-
tories. Some examples are shown in Figure 4.5 and more in detail in Figure 4.7.
These editors are considered snapshot editors. They make interactions only in
a very short period of time. The arrow’s distance, which is approximately two
years, highlights how fast these nodes move in space. The proposed framework
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naturally models these trajectories as straight lines as no data supports a possible
curvature outside the interaction interval.

Figure 4.5 and Figure 4.6 present clusters and outliers respectively. These are
obtained from the optimal radius selected by our method. The optimal radius
hence captures a mixture of three behaviors. Alternatively, the use of a sub-
optimal radius can focus on one single behavior. Figure 4.7 shows the clustering
for a larger radius, capable of capturing the snapshot editors only. The usage
of different radii, although sub-optimal from the model formulation perspective,
can hence be informative. The fact that we need to use multiple radii to identify
different behaviors in the trajectories may be due to the complexity and diversity
of the data, as the editors’ trajectories exhibit a wide range of behaviors and
patterns.

4.10 Conclusions

The main contribution of this manuscript is the development of an efficient infer-
ence scheme for latent dynamic processes underlying a relational event process.
The framework is general and can be extended to networks with weighted edges
of any exponential family distribution, making it a useful tool for analyzing a
wide range of data.

One key aspect of the model is the use of smooth spline functions to capture
the latent trajectories of nodes in dynamic networks. This allows for a more ac-
curate representation of the underlying dynamics than traditional static models.
The model also employs a smoothness penalty for regulating the smoothness of
the spline and a clustering penalty for detecting shared trajectories among the
nodes. This makes the model more interpretable and allows for the identifica-
tion of patterns and behaviors within the network. The model can be run within
the detected clusters and fit a nested latent space, which allows for revealing
different levels of granularity of the relationships.

Another important aspect of the model is its scalability. The optimization is
performed by the popular Adam algorithm, which is not memory intensive and
is very fast in computation. It can optimize nearly any function and learn the
Hessian via the past gradients’ history. This allows the model to handle large
networks with millions of nodes/parameters, which is going to be a common
problem for future network analysis. Additionally, particular care has been given
to handling sparse data and sparse parameter updates, which makes the model
more robust.

The inference is conducted via Variational Bayes, finding an effective approxi-
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mation of the posterior distribution for the complete set of parameters, including
smoothness magnitude and clustering shrinkage. Under the Variational formula-
tion, the inference problem translates into a classic optimization problem, finding
Adam as a good ally.

This manuscript includes a simulation study that confirms the claims made
in the manuscript, showing that the model behaves correctly in scenarios such as
sparsity in the data, sparsity in the parameter update, clustering accuracy, and
consistency of the location estimator.

We applied the model to the Wikipedia complete edited page history. Differ-
ently to Lerner and Lomi [2020], which analyzed this data with a 5-parameter
model, our latent space model successfully fitted several millions of parameters.
The application of the model to the Wikipedia data revealed various shared be-
haviors that are coherent with natural expectations. For example, some editors
consistently modify Wikipedia pages over time, while others are more tempo-
rary editors. This differentiation between experts and non-experts shows that
the model correctly identifies important behaviors in the Wikipedia editing pat-
terns, which could help to understand the dynamics of the Wikipedia community
and improve the quality of the articles.

Overall, the proposed model provides a powerful and interpretable tool for
analyzing the dynamics of networks and can help reveal the underlying patterns
and behaviors of the nodes. The interpretability of the results makes it a valuable
tool for understanding the underlying dynamics and making predictions about
future behavior. This can be useful for a wide range of applications such as social
network analysis, recommender systems, and biological networks. Given the
popularity of a latent space representation in various emerging fields, possible
extensions for our model include financial time series analysis, moving object
detection, language generation, and translation.

4.11 Supplementary material

4.11.1 A mini-batch cluster penalty for finite �dist

When we construct the mini-batch B, the chance of randomly sampling two close
is almost zero for large networks. As a result, when wi j has a relatively small ra-
dius only a few elements are included in the kernel or, in the case of a continuous
kernel, have a sufficiently high weight. Therefore the vast majority of elements
in the mini-batch are excluded. As a consequence, the level of sparsity for the
gradient with respect to c is even higher than for the splines. In order to make the



105 4.11 Supplementary material

gradient dense we propose to save the history of pairs that entered in the kernel
at the previous iterations, then randomly sample B⇤ in this set, where | B⇤ |= p.
The resulting mini-batch penalty is

PB
clust = �aux

pX

i=1

k↵i � cik2 + �dist

X

i, j2B⇤
wi jkci � cjk2. (4.17)

which has complexity linear in p. The mini-batch B⇤ is sampled over the history
of pairs for which wi j is positive. Notice that, similarly to the smoothness penalty,
the full-time sequence of the sampled nodes is included.

4.11.2 A discrete-time model for sparse data
We use this model formulation for the specific case when there exists dense con-
nectivity within and sparse connectivity between communities. Hence one bene-
fits from aggregating the data. We employ a non-stratified case-control formula-
tion of the Poisson likelihood 4.6. In order to obtain an unbiased estimate of the
intercept, the likelihood term for the non-events needs to be overweighted by N0

n0

`(↵) =
X

yt,i j>0

⇥
��i, j(t)�t + yi, j(t) log�i, j(t)�t

⇤
+

N0

n0

X

yt,i j=0

��i, j(t)�t. (4.18)

Alternatively, the intercept absorbs the bias leading to the correct latent node
positions.

4.11.3 Variational inference details
In the Monte Carlo Variational approach, some expectations can be solved analyt-
ically, leaving the Monte Carlo integration for those who are intractable. Besides
the non-tractable log-likelihood component, the remaining expectations can be
solved as

E[Psmooth] =
pd(k� 1)

2
E[log�smooth]�E[�smooth]

pX

i=1

mX

k=2

E[
��↵i,k �↵i,k�1

��2
]

E[Pclust] =
pdk

2
E[log�clust]�E[�clust]

pX

i=1

E[k↵i � cik2]

where (log�smooth, log�clust) are Gaussian densities with log-normal expectations
E[�smooth] = eµsmooth+0.5�2

smooth and E[�clust] = eµclust+0.5�2
clust . The expectations of the
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normalizing constants are E[log�smooth] = µsmooth and E[log�clust] = µclust. The
other expectations are simply functions of the first two moments E[↵i] = µi and
E[↵2

i ] = �
2
i + µ

2
i . The centroids ci can be safely held to be constant for various

reasons. The first is that ci is an averaging between several trajectories and hence
its variance must be negligible compared to ↵i. The second is that E[k↵i � cik2]
is minimized by taking ci as degenerate, or nearly degenerate since the prior
would prevent the estimation of degenerate random variables. The last remain-
ing parameter �radius cannot be updated by gradient, however, is particularly easy
to find a grid of candidate points from visual inspection of the latent space. We
then select �radius that maximizes the lower-bound.

The final component, DKL[q(✓ )kp(✓ )] can also find close form as done in the
appendix of Kingma and Welling [2013]

DKL[q(✓ )kp(✓ )] = �
1
2

p+2X

i=1

1+ log
�2

i

�2
0

�
�2

i

�2
0

� (µi �µ0)2

�2
0

where µ0,�2
0 are respectively the mean and variance of a Gaussian prior.

When running the Variational inference, we might have the �clust estimate
being misleading for the case when both the number of clusters and the num-
ber of links are low. This is because the penalty might become such big that it
is the major contributor to the lower-bound. The model hence prioritizes the
minimization of E[k↵i � cik2] collapsing all trajectories and making �clust unrea-
sonably big. The lower-bound still makes a correct clustering selection although
some estimates of �clust might not be coherent with the expectations, i.e. ex-
pecting �clust low for a low number of clusters. This behavior is paired with a
substantial worsening in the likelihood, which reflects the introduction of the
bias.
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Figure 4.5. Clustering trajectories of editors. The trajectory size is propor-
tional to the cluster population size. The largest trajectories contain approxi-
mately 3000 editors. The color progression from blue to red corresponds to the
observed time. This figure presents both active editors and temporary editors.
Active editors edit articles for a sustained period, highlighted by the color pro-
gression, which typically presents a curved trajectory. They are characterized
by a mid-size background and an important contribution to the articles. Alter-
natively, temporary editors make fewer interactions, have a little background,
and move faster with typically a straight line.
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Figure 4.6. Independent trajectories: these editors do not have a cluster be-
longing. Their trajectory represents an independent behavior backed by strong
expertise in their competence area. This figure presents only a subset of inde-
pendent editors. We selected those with high centrality by filtering trajectories
within [-0.5, 0.5]. The color progression from blue to red corresponds to the
observed time.
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Figure 4.7. Snapshot editors. In-and-out editors are active for a short period
of time. Their competence area is little as they focus on a few articles or
topics. They typically have a straight trajectory. This figure presents the
largest distance between the arrowheads, which is approximately two years.
This implies these editors are the fastest movers observed.
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Chapter 5

Conclusions

This thesis is focused on exploring the dynamics of evolving networks through
a statistical approach. Networks are used to represent complex systems that
change and evolve over time, such as social networks, transportation systems,
and the Internet. Understanding the dynamics of networks has become an im-
portant research topic in fields ranging from physics to sociology to computer
science.

The thesis is built upon three key projects, each focusing on a different aspect
of network dynamics. The first project involves testing the power-law marginal
distributions of growing networks and delves into the complexities of degree
distribution testing in networks. The second project explores latent dynamics
in networks by developing a dynamic latent space relational event model. The
third project proposes an extension for analyzing huge networks.

Through these projects, the thesis shows the power of statistical techniques
in uncovering the latent drivers of the evolution of networks.

Power-law marginal distributions of networks: This project proposes a statis-
tical testing procedure to determine whether the degree distribution of a given
network follows a power-law distribution, a result of a preferential attachment
process. We modify the Kolmogorov-Smirnov test to account for dependent de-
gree sequences and ensure sufficient power. They apply this method to many
empirical degree distributions and find that almost 65% of the tested networks
have a power-law tail with at least 80% power. This work contributes to the ongo-
ing discussion around the putative scale-free nature of real-world networks and
the existence of an underlying "network law." Its preferential attachment process
has ethical implications, such as the meritocracy of research publications.
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Latent dynamics in networks: This project focuses on dynamic networks where
the relational events constitute time-stamped edges. The authors propose a dy-
namic latent space relational event model, where nodes are associated with dy-
namic locations and their relative distances drive their interaction tendencies.
The goal is to infer the locations of the nodes, which can change over time, us-
ing the Expectation Maximization algorithm and an extension of the universal
Kalman filter. We also include fixed and random effects in their model to suit
a large variety of applications. This work is significant because it offers an effi-
cient method for modeling dynamic networks that reflect underlying dynamics
in some latent space.

Latent dynamics for large networks: This project addresses the challenge of
dealing with huge relational event networks. We propose a likelihood-based
algorithm that infers network community dynamics embedded into an inter-
pretable latent space. The node dynamics are described by smooth spline pro-
cesses, and the framework is made feasible for large networks through machine
learning optimization methodology. We use a convex clustering penalization for
model-based clustering to encourage shared trajectories for ease of interpreta-
tion. This additionally aims to separate macro-microstructures and perform a hi-
erarchical analysis within successive hierarchies. This work is significant because
it offers a practical and efficient method for dealing with large-scale dynamic net-
works, which are increasingly prevalent in many social network applications.

The three projects under discussion delve into the complex phenomenon of
network growth and transformation, shedding light on the role of latent drivers
that shape the structure of observed networks. While the first project focuses on
specific types of drivers for growing networks, the second and third projects delve
into the latent drivers that produce any kind of transformation in the observed
network.

The observed network and its marginal distribution are the visible outcomes
of underlying latent drivers, which are not always directly observable. In the case
of the power-law, which characterizes many real-world networks, the preferential
attachment process is the latent popularity of nodes that grows over time.

Often, since the latent drivers are unknown, we can only observe the net-
work’s final configuration, which is the outcome of an evolutionary process
driven by latent drivers. The first project makes a hypothesis on the latent drivers,
specifically the preferential attachment process, and tests for it in the network
marginal distribution. Other times networks are observed as time-stamp data
and the observed sequence might be informative on the hidden drivers. Focus-
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ing on this data type, the second and third projects do not impose any specific
constraint on the latent driver’s structure and allow the model to estimate these
drivers.

Thus, the latent approach allows for a deeper investigation of the hidden
drivers that produce a particular observed network. By studying the underlying
drivers, analysts can better understand how networks grow and transform, and,
ultimately, how they impact various domains, from social networks to biological
systems.
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