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ABSTRACT. Given a Hilbert modular form for a totally real field F, and a prime p split completely in F, the f -
eigenspace in p-adic de Rham cohomology has a family of partial filtrations and partial Frobenius maps, indexed
by the primes of F above p. The general plectic conjectures of Nekovář and Scholl suggest a “plectic comparison
isomorphism” comparing these structures to étale cohomology. We prove this conjecture in the case [F : Q] = 2
under some mild assumptions; and for general F we prove a weaker statement which is strong evidence for the
conjecture, showing that the plectic Hodge filtration has a canonical splitting given by intersecting with simulta-
neous eigenspaces for the partial Frobenii.

1. SETUP

Let F be a totally real field of degree d, and Y the Hilbert modular variety for F of level U1(N) = {g ∈
GL2(ÔF) : g = ( ⋆ ⋆

0 1 ) mod N}. Fix a numbering of the embeddings F ↪→ R as σ1, . . . , σd. Let f be a newform
of level N and some weight (k + 2, t), where k = (k1, . . . , kd) ∈ Zd

⩾0, and t ∈ Zd such that w = ki + 2ti is
independent of i.

We choose a prime p which splits completely in F and such that (p,N) = 1, and an isomorphism Qp
∼= C,

so we can denote the primes above p by p1, . . . , pd with pi corresponding to σi. Finally, we also fix a finite
extension L of Qp containing the images of the Hecke eigenvalues of f .

1.1. The spaces Dp( f ) and Vp( f ). We are interested in the 2d-dimensional de Rham cohomology eigenspace

Dp( f ) := Hd
dR

(
YL,Lµ,dR

)
{ f },

where Lµ,dR is the vector bundle with connection determined by the weight µ = (k, t), and { f } denotes the
f -generalised eigenspace for the Hecke operators away from pN. This is an L-vector space of dimension
2d, equipped with a Hodge filtration Fil•, and (via comparison with crystalline cohomology) an L-linear
Frobenius φ.

We also have a representation of the Galois group ΓQ = Gal(Q/Q) given by

Vp( f ) := Hd
ét

(
YQ,Lµ,ét

)
{ f },

where Lµ,ét is the étale local system of L-vector spaces corresponding to µ. (We shall sometimes write
just Dp or Vp for Dp( f ) or Vp( f ).) The Faltings–Tsuji comparison theorem of p-adic Hodge theory gives a
canonical isomorphism of filtered φ-modules

(1) Dp( f ) ∼= DdR

(
Vp( f )|ΓQp

)
.

1.2. Plectic structures. The “plectic conjectures” of [NS17] predict that Shimura varieties for groups arising
by restriction of scalars from a totally real field F, such as our Y, should carry canonical extra structures
reflecting the arithmetic of F. Our goal here is to investigate how the isomorphism (1) interacts with certain
of these additional structures, as we now describe.

D.L. gratefully acknowledges the support of the European Research Council through the Horizon 2020 Excellent Science pro-
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Partial filtrations. The space Dp( f ) is endowed with a family of d distinct (decreasing, Z-indexed) filtrations
Fil•i Dp, for i = 1, . . . , d, which we shall call partial filtrations. Each filtration Fil•i has two graded pieces in de-
grees (ti, ti + ki + 1); and the associated total filtration Filn defined by Filn Dp( f ) = ∑(n1,...,nd)∈Zd

n1+···+nd=n
Filni

i Dp( f )

is the usual Hodge filtration.
Roughly, the nontrivial subspace in Fil•i corresponds to the part of the cohomology generated by differ-

ential forms which are holomorphic at the i-th infinite place. The construction is explained in [NS16] for
k = (0, . . . , 0); the extension to general coefficients is routine, but we review it in section 3 below to fix
notations.

Partial Frobenii. We also have d commuting linear maps φ1, . . . , φd on Dp( f ), the partial Frobenii, whose
composite is the usual Frobenius φ. These arise from endomorphisms of the special fibre Y0, sending a
Hilbert–Blumenthal abelian variety A to the quotient of A by the pi-torsion in the kernel of Frobenius on A.
We refer to [TX16b, §4.6] for a detailed account of this construction.

1.3. Tensor induction. Attached to f , we also have a 2-dimensional standard Galois representation Vstd
p ( f )

of ΓF := Gal(F/F). Via results of [BL84] and [Nek18], we may choose an isomorphism of ΓQ-representations

(2) ψ : Vp( f ) ∼= (
⊗

−Ind)(Vstd
p ( f )).

This will often, but not always, be unique up to scalars.
From ψ we obtain an isomorphism of filtered φ-modules

ψp : Dp( f ) ∼=
d⊗

i=1

Dpi ( f )

where Dpi ( f ) = DdR

(
Vstd

p |ΓFpi

)
denotes the filtered φ-module of the standard representation at the prime

pi above p.
The nontrivial graded pieces of Dpi ( f ) are in degrees ti and ti + ki + 1; and the “partial Eichler–Shimura”

congruence relation proved in [Nek18, Appendix A] shows that we have (φi − αi)(φi − βi) = 0 on Dp( f ),
for each i, where αi, βi are the roots of the Hecke polynomial at pi. The roots of this polynomial are also the
eigenvalues of φ on Dpi ( f ). These facts strongly suggest the following conjecture:

Conjecture 1.1 (Plectic comparison conjecture). For some choice of global isomorphism ψ as above, and
each i = 1, . . . , d, the isomorphism ψp intertwines the partial Frobenius φi on Dp( f ) with the operator
1 ⊗ · · · ⊗ 1 ⊗ φ ⊗ 1 ⊗ · · · ⊗ 1 (with φ in the i-th component) on

⊗
i Dpi ; and similarly intertwines the i-th

partial filtration Fil•i on Dp with the filtration Dp1 ⊗ · · · ⊗ Dpi−1 ⊗ (Fil• Dpi )⊗ Dpi+1 ⊗ · · · ⊗ Dpd .

1.4. Relation to the plectic conjectures. It is conjectured in [NS16] that Vp( f ) has an intrinsically defined

action of the plectic Galois group Γplec
Q ⊇ ΓQ, isomorphic to Sd ⋉ Γd

F, and that ψp can be chosen to intertwine

this with the obvious action of Γplec
Q on the tensor induction.

If we assume the existence of this canonical Γplec
Q -action on Vp, then we can state our conjecture more

intrinsically as follows (removing the isomorphism ψ from the picture). By restriction we obtain an action
of Γplec

Qp
∼= (ΓQp)

d on Vp, and we can define

Dplec
dR

(
Vp( f )|

Γplec
Qp

)
:=
[
Vp( f )⊗ (BdR ⊗ · · · ⊗ BdR)

]Γplec
Qp .

This gives a vector space equipped with d partial Frobenii and partial filtrations, whose underlying (usual)
filtered φ-module is DdR

(
Vp( f )|ΓQp

)
. Then the “correct” conjecture is that (1) is in fact an isomorphism

Dplec
dR

(
Vp( f )|

Γplec
Qp

)
∼= Dp( f )

commuting with the partial Frobenii and filtrations. This explains the name we have given to our conjec-
ture: we are seeking a plectic refinement of the comparison isomorphism of p-adic Hodge theory. (In the
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formulation of conjecture 1.1 above, lacking a canonically defined Γplec
Qp

-action on Vp, we have substituted

the Γplec
Qp

-action transported from the tensor induction via ψ.)

Remark 1.2. It would be interesting to extend the conjecture to the case when p is not totally split in F. In
this case we do not know how to define the functor Dplec

dR (or even what the target category of this functor
should be). We understand that this problem will be treated in forthcoming work of Lukas Kofler.

2. RESULTS FOR GENERAL d: STATEMENTS

We shall prove the following theorems in this paper. We note that all of these would be immediate
consequences of conjecture 1.1, but our proofs are unconditional, and our purpose is to derive evidence for
the conjecture. For brevity, we shall write Fil+i = Fil(ti+1)

i for the unique nontrivial step in the i-th filtration;
and for S ⊆ {1, . . . , d} we put FilS Dp( f ) =

⋂
i∈S Fil+i . We shall recall the construction of these subspaces

in the next section; in particular we will show that dim
(

FilS Dp

)
= 2d−|S| for every S, and the collection of

subspaces (FilS Dp)S⊆{1,...,d} forms a (decreasing) I-filtration on Dp( f ) in the sense of [NS17], where I is the
lattice of subsets of {1, . . . , d}.

Definition 2.1. For i ∈ {1, . . . , d} and αi a root of the Hecke polynomial at pi, we say αi has strictly small
slope if vp(αi) < ki + ti.

This is a special case of the notion of “strictly small slope” defined in [BP20] for general reductive groups.
Note that vp(αi) is always in the interval [ti, ti + ki + 1], and the slopes of the two roots are symmetric about
the midpoint of the interval; so there is always at least one strictly-small-slope root if ki > 1.

Theorem 2.2. Let S ⊆ {1, . . . , d}. For each i ∈ S, assume that the Hecke polynomial at pi has distinct roots, and
that one of these roots αi has strictly small slope.

Then the simultaneous eigenspace
⋂

i∈S Dp( f )φi=αi has dimension 2d−|S|, and has zero intersection with the sum
∑i∈S Fil+i , so the projection map ⋂

i∈S
Dp( f )φi=αi

∼=−→
Dp( f )

∑i∈S Fil+i
is an isomorphism. Moreover, this isomorphism is strictly compatible with the partial filtrations, in the following
sense: for each T ⊆ {1, . . . , d}, this map restricts to a bijection(

FilT Dp( f )
)
∩
(⋂

i∈S
Dp( f )φi=αi

)
∼=−→

FilT Dp( f )

FilT Dp( f ) ∩
(
∑i∈S Fil+i Dp( f )

) ,

with both sides being zero unless S ∩ T = ∅.

Remark 2.3. The condition that the Hecke polynomial have distinct roots at each i ∈ S is not actually needed
for the theorem, but handling the case of a multiple root complicates the proof; and it is known that this
case can never occur if the Tate conjecture holds (by the same arguments as in [CE98], using the assumption
that p splits completely in F), so we shall not pursue it here.

The proof of theorem 2.2 will be given in section 4. Using this theorem, we can prove conjecture 1.1
under some mild assumptions when [F : Q] = 2, see §7. In general we have the following corollaries:

Corollary 2.4. Let j ∈ {1, . . . , d} be given, and suppose that for all i ̸= j, the Hecke polynomial of f at pi has two
distinct roots which both have strictly small slope. Then the subspace Fil+j Dp is stable under the operators φi for
i ̸= j.

Proof. We apply the theorem with S = {1, . . . , d} − {j} and each of the 2d−1 choices of roots of the Hecke
polynomials, which all satisfy the conditions. This gives 2d−1 linearly independent lines in Fil+j , all of which

are stable under φi for i ̸= j; and the sum of these subspaces must be all of Fil+j . □
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Corollary 2.5. Suppose that for all i ∈ {1, . . . , d}, the Hecke polynomial has distinct roots, and that one of these
roots αi has strictly small slope. For each S ⊆ {1, . . . , d}, define

X(S) := (FilS Dp( f )) ∩
(⋂

i/∈S

Dp( f )(φi=αi)

)
.

Then X(S) is one-dimensional for all S, and we have

Dp( f ) =
⊕

S⊆{1,...,d}
X(S).

Moreover, the subspaces X(S) split both the Hodge filtration, and the filtration by φi-eigenspaces, in the sense that
for every i ∈ {1, . . . , d} we have

Fil+i Dp( f ) =
⊕

S⊆{1,...,d}
i∈S

X(S), and Dp( f )(φi=αi) =
⊕

S⊆{1,...,d}
i/∈S

X(S).

These last two formulae should be seen as p-adic counterparts of the plectic Hodge decomposition on
the cohomology over C described in [NS16].

Proof. We shall prove the following claim: for all S we have FilS Dp =
⊕

T⊇S X(T). By downward induction
on |S|, we may suppose that the assertion is true for every strict superset of S (which is vacuously satisfied
if S = {1, . . . , d}).

We firstly claim that

∑
T⊋S

FilT Dp =
⊕
T⊋S

X(T).

The induction hypothesis shows that ∑T⊋S FilT Dp = ∑T⊋S X(T), so what we must prove is that the sum is
direct; but this follows by dimension-counting, since we know that ∑T⊋S FilT Dp has dimension 2d−|S| − 1,
and each X(T) has dimension one.

Having proved the claim, it remains to show that X(S) maps isomorphically onto GrS Dp. Since X(S)
and GrS Dp are both one-dimensional, this amounts to the assertion that X(S) is not contained in ∑T⊋S FilT .

But ∑T⊋S FilT ⊆ ∑i/∈S Fil+i , and the theorem shows that this space has zero intersection with
⋂

i∈S D(φi=αi)
p .

Having proved the claim, setting S = ∅ we conclude that Dp is the direct sum of the X(T)’s, and the
remaining assertions of the theorem are obvious. □

3. THE PLECTIC FILTRATION

Since we do not know a good reference for the existence of partial filtrations on Dp( f ) when k ̸=
(0, . . . , 0), we give an account of the construction below. In [NS17] this is proved for k = (0, . . . , 0) us-
ing Dolbeault cohomology over C, as a consequence of the stronger statement that the complex-analytic
cohomology has a plectic Hodge structure. We shall outline a slightly different proof for general coeffi-
cients, as this foreshadows the p-adic computations we shall use to prove theorem 2.2 later in the paper. In
this section all algebraic varieties are over L, and we write simply Y instead of YL for brevity.

3.1. Preliminaries on I-filtrations. We begin with some generalities on the theory of filtrations indexed by
lattices, as developed in [NS17]. Throughout this paper, I will denote the set of subsets of {1, . . . , d} (for
some integer d ⩾ 1), with the lattice operations of union and intersection; this is a distributive lattice.

Lemma 3.1. Let A be an abelian category, and M an object of A. If we are given arbitrary subobjects Fil+i M ⊆ M
for i = 1, . . . , d, then the family of subsets (FilS M)S∈I defined by FilS M =

⋂
i∈S Fil+i M is a (decreasing) weak

I-filtration in the sense of [NS17, (1.1.2)], and every decreasing weak I-filtration has this form. □

In general these weak I-filtrations will not be I-filtrations (in the sense of Definition 1.2.1 of op.cit.); the
prototypical example is to take d = 3, M = K2 for a field K, and the subspaces Fil+i M to be any three
distinct lines in M.
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Proposition 3.2. A weak I-filtration (FilS M)S∈I is an I-filtration if and only if the the distributivity condition(
FilS M

)
∩
(

FilT M + FilU M
)
=
(

FilS∩T M
)
+
(

FilS∩U M
)

holds for all S, T, U ⊆ {1, . . . , d}.

Proof. See Proposition 1.2.7 of [PP05]. □

3.2. BGG complexes. We choose a smooth projective toroidal compactification ı : Y ↪→ X. Recall that µ
denotes the character (k, t) of the diagonal maximal torus of G = ResF/Q GL2.

Definition 3.3.
(i) For T ⊆ {1, . . . , d}, let κT denote the (possibly non-dominant) weight of the diagonal torus of G whose

i-th entry is (ki + 2, ti) if i ∈ T, and (−ki, ti + ki + 1) otherwise. We let ωT denote the line bundle on X
corresponding to κT , so that f itself is a global section of ω{1,...,d}.

(ii) The (dual) BGG complex of weight µ is the complex of sheaves

B•
µ =

ω∅ →
⊕
|T|=1

ωT →
⊕
|T|=2

ωT → · · · → ω{1,...,d}

 ,

with differentials as in [TX16b, §2.15].

By a result of Faltings (see theorem 2.16 of [TX16b]), the BGG complex is known to be quasi-isomorphic
to the pushforward to X of the Rham complex on Y with coefficients in the vector bundle Lµ,dR, i.e.

ı∗
(
Lµ,dR ⊗ Ω•

Y

)
. Thus Hd(X,B•

µ)
∼= Hd

dR(Y,Lµ,dR), and in particular we have Dp = Hd(X,B•
µ){ f }. The

general theory of derived functors gives a hypercohomology spectral sequence starting at the E1 page, Eij
1 =

H j(X,Bi
µ) ⇒ Hd(X,B•

µ). All terms in this spectral sequence (from the E1 page onwards) are finite-dimensional
vector spaces with an action of the Hecke operators (compatible with the action on the abutment).

Remark 3.4. Note that (for F ̸= Q) the Hecke operators do not act as correspondences on any one specific
choice of toroidal compactification; but the cohomology of automorphic vector bundles is independent of
the choice of toroidal boundary data, and the direct limit over all such compactifications does carry a Hecke
action. So the action of the Hecke algebra on the spectral sequence is well-defined.

Since passing to a generalised eigenspace is an exact functor, we obtain a spectral sequence Eij
1 =⊕

|T|=i H j(X, ωT){ f } converging to Dp( f ). This spectral sequence simplifies greatly, because of the fol-
lowing standard result on the cohomology of the sheaves ωT (which follows from the computation of ∂-
cohomology of discrete-series representations of SL2(R); see [Har90, §8]):

Proposition 3.5. The f -generalised eigenspace Hi(X, ωT){ f } is zero if i ̸= d − |T|, and is one-dimensional other-
wise. □

Hence the spectral sequence degenerates at E1, and Dp( f ) has a filtration with graded pieces Gri =⊕
|T|=i Hd−i(X, ωT){ f } for 0 ⩽ i ⩽ d. Our aim is to “upgrade” this to an I-filtration. We shall do this by

first defining an I-filtration on the complex B•
µ. We will need the following auxiliary definition:

Definition 3.6. For S ⊆ {1, . . . , d}, the direct sum of the ωT with T ⊇ S is a subcomplex, and we denote
this by FilS B•

µ.

Proposition 3.7. The collection of subcomplexes
(

FilS B•
µ

)
S∈I

forms a decreasing I-filtration of B•
µ (in the abelian

category of complexes of abelian sheaves on X).

Proof. By proposition 3.2, it suffices to verify the distributivity condition. Since the sum and intersection of
subcomplexes is defined termwise, we may verify this for each degree of the complex individually (ignoring
the differentials). As the filtration on each degree is given by a grading, the distributivity condition is
obvious. □
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Proposition 3.8. For each S ∈ I, the f -generalised eigenspace in the hypercohomology of FilS B•
µ vanishes outside

degree d, and the natural map

Hd(X, FilS B•
µ){ f } → Hd(X,B•

µ){ f } = Dp( f )

is an injection.

Proof. The vanishing outside degree d follows by applying the hypercohomology spectral sequence to
FilS B•

µ and using proposition 3.5, exactly as for the full complex B•
µ. The same argument applied to the

quotient complex B•
µ/ FilS shows that this also has vanishing hypercohomology outside degree d. Since we

have a long exact sequence of hypercohomology

· · · → Hd−1(X,B•
µ/ FilS) → Hd(X, FilS B•

µ) → Hd(X,B•
µ) → . . . ,

this implies that Hd(X, FilS B•
µ) → Hd(X,B•

µ) is injective on the f -generalised eigenspace. □

Definition 3.9. For S ∈ I, we define FilS Dp( f ) to be the image of the injection Hd(X, FilS B•
µ){ f } ↪→ Dp( f ).

Proposition 3.10. The collection of subspaces FilS Dp for S ⊆ {1, . . . , d} forms a decreasing I-filtration of Dp.
Moreover, for each S ⊆ {1, . . . , d}, the graded piece

GrS Dp := FilS Dp/
(

∑
T⊋S

FilT Dp

)
is canonically isomorphic to Hd−|S|(X, ωS){ f }, and in particular is 1-dimensional.

Proof. Let Λ be the lattice of subcomplexes of B•
µ generated by the FilS B•

µ under the operations of sum and
intersection. From proposition 3.2, we know that Λ is a distributive lattice. We claim that the map from Λ
to the lattice of subspaces of Dp( f ), given by mapping C to the image of Hd(X, C){ f } in Dp( f ), respects the
lattice operations of sum and intersection.

Any object C of Λ has the property that, for each i, the i-th term C i is a direct sum of some collection of
ωU’s with |U| = i. Hence, by the same argument as above, Hi(X, C){ f } vanishes outside degree d, and its
degree d part injects into Dp( f ).

So, if we consider two objects C, D of Λ, and form the long exact hypercohomology sequence associated
to the exact sequence of complexes

0 → C ∩D → C ⊕D → C +D → 0,

we obtain a short exact sequence of { f }-parts in degree d

0 → Hd(X, C ∩ D){ f } → Hi(X, C){ f } ⊕ Hd(X,D){ f } → Hd(X, C +D){ f } → 0.

The exactness at the middle and left terms gives compatibility with intersections, and the exactness at the
right gives compatibility with sums, proving the claim.

It follows that the lattice of subspaces of Dp( f ) generated by FilS Dp( f ) is exactly the image of Λ under
a morphism of lattices; thus it is distributive, since Λ is. By the converse direction of proposition 3.2,(

FilS Dp( f )
)

S∈I
is an I-filtration.

This also shows that the S-th graded piece of Dp( f ) is given by applying Hd(X,−){ f } to GrS B•
µ. Since

GrS B•
µ is the single term ωS in degree |S|, this is just Hd−|S|(X, ωS){ f }. □

Since all graded pieces of this I-filtration have dimension 1, we in particular deduce that for every S we
have dim FilS Dp( f ) = #{T ∈ I : T ⊇ S} = 2d−|S|. This completes the description of the I-filtration invoked
in the previous section.

Remark 3.11. We have worked over the p-adic field L since this is the setting of conjecture 1.1; but the argu-
ments of this section are also valid if we replace L with a number field E containing the Galois closure FGal

of F and the Hecke eigenvalues of f , giving an I-filtration of DE( f ) = Hd
dR(YE,Lµ,dR){ f } in the category of

E-vector spaces. (Note that the assumption that E contain FGal is necessary here, since the action of FGal/F
6



does not preserve the individual summands in the BGG complex, but rather permutes them according to
the action of the Galois group on {1, . . . , d}; so if the coefficients of f lie in Q, then DQ( f ) makes sense as
Z-filtered vector space over Q, but it only acquires an I-filtration after base-extension to FGal.)

4. PROOF OF THEOREM 2.2, I: GEOMETRIC JACQUET-LANGLANDS

4.1. The S-ordinary locus. We now embark on the proof of the theorem. Since p is coprime to N and
unramified in F, the varieties X and Y have canonical smooth models over OL (compatible with the em-
bedding Y ↪→ X); we write X0 and Y0 for their special fibres.

Definition 4.1. Let XS−ord
0 denote non-vanishing locus of the partial Hasse invariants [TX16b, §3.2] for the

primes pi with i ∈ S.

This is the locus where the p∞
i -torsion of the universal semiabelian variety over X0 is ordinary for all

i ∈ S. We write X S−ord for the tube of XS−ord
0 in the dagger analytification X = Xan,†, which is a dagger

space over L.

4.2. The spectral sequence of Goren–Oort strata. The complement of XS−ord
0 in X0 is a normal-crossing

divisor
⋃

i∈S Zi, where Zi is the vanishing locus of the Hasse invariant at pi. If we define ZT , for each T ⊆ S,
to be the intersection

⋂
i∈T Zi (understood as X0 if T = ∅), then each ZT is a smooth closed subvariety of

codimension |T| in X0. These are (closures of) Goren–Oort strata in X0; see [TX16a, §1.3]. We write ZT for
the tube of ZT in X .

Proposition 4.2. There is a spectral sequence

Eij
1 =

⊕
T⊆S,|T|=i

Hj(ZT ,B•
µ) ⇒ Hi+j

c (X S−ord,B•
µ).

Proof. As in [LS07, §5.2], we have a left exact functor ΓX S−ord(−), “sections with support in X S−ord”, on the
category of abelian sheaves on X , and the derived functor RΓX S−ord(−) fits into an exact triangle

RΓX S−ord(E) → E → E|(X−X S−ord) → [+1]

for any abelian sheaf (or complex of sheaves) E .
We are interested in the object RΓX S−ord

(
B•

µ

)
of the derived category, whose hypercohomology is by

definition H∗
c

(
X S−ord,B•

µ

)
. We claim this object is isomorphic to the total complex of the double complex

(which we denote by CS)
B•

µ →
⊕
T⊆S
|T|=1

B•
µ|ZT →

⊕
T⊆S
|T|=2

B•
µ|ZT → . . . ,

where the morphisms are alternating sums of restriction maps. There is nothing to prove if S = ∅, so let
us proceed by induction on |S|, and write S = {a} ⊔ S′ for some a. Then we have X S−ord = X {a}−ord ∩
X S′−ord, so RΓX S−ord = RΓX {a}−ord ◦ RΓX S′−ord . The exact for the functor RΓX {a}−ord applied to the object

RΓX S′−ord

(
B•

µ

)
reads

RΓX S−ord

(
B•

µ

)
→ RΓX S′−ord

(
B•

µ

)
→
(

RΓX S′−ord

(
B•

µ

))
|Z{a} → [+1].

Applying the induction hypothesis for S′, we obtain an identification of RΓX S−ord

(
B•

µ

)
with the mapping

fibre of CS′ → CS′ |Z{a} , which is easily seen to be isomorphic to CS, proving the claim. Applying the
hypercohomology functor now gives the claimed spectral sequence. □

Proposition 4.3. The natural pushforward map

Hd
c

(
X S−ord,B•

µ

)
{ f } → Hd

(
X ,B•

µ

)
{ f } = Dp

is a bijection.
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Proof. For T ̸= ∅, the variety ZT is a smooth closed subvariety of X0 contained in Y0; so the restriction of B•
µ

to ZT is the de Rham complex of Lµ,dR, and hence Hi
(
ZT ,B•

µ

)
is the rigid cohomology of ZT with coefficients

in the F-isocrystal Lµ,rig corresponding to Lµ,dR, cf. [TX16b, §4.5]. (This can be extended to T = ∅ if we
interpret Lµ,rig as a ‘log F-isocrystal’, to account for the logarithmic singularity of the connection along
the boundary X − Y; but this is not essential for our arguments, since for T = ∅ we already have an
interpretation of Hi

(
ZT ,B•

µ

)
as the de Rham cohomology of the algebraic variety YL.)

By general properties of rigid cohomology, each term Eij
1 is finite-dimensional, and the entire spectral se-

quence has a natural action of the prime-to-pN Hecke algebra; so we may pass to f -generalised eigenspaces
to obtain a spectral sequence

(⋆)
⊕

T⊆S,|T|=i

H j
rig
(
ZT ,Lµ,rig

)
{ f } ⇒ Hi+j

c

(
X S−ord,B•

µ

)
{ f }.

The main result of [TX16a] (Theorem 5.2 of op.cit.; see also [TX16b, §5.21]) is that the ZT are themselves
Shimura varieties: after base-extending to Fp, we can identify ZT with the special fibre of the Shimura
variety associated to the quaternion algebra BT over F ramified at the finite places pi and the infinite places
σi, for i ∈ T. Moreover, this identification is compatible with Hecke correspondences away from p. Using
part (2) of [TX16a, Theorem 5.8], one can also check that the restriction of Lµ,rig to ZT is the F-isocrystal
associated to the weight µ algebraic representation of B×

T .
The rigid cohomology of each ZT can therefore be computed (as a module for the prime-to-p Hecke

algebra) in terms of automorphic representations of B×
T of level N and weight µ. These are precisely the

Jacquet–Langlands transfers to B×
T of Hilbert modular forms for GL2 /F which are new of level N · ∏i∈T pi.

Since f is new of level N, it follows that for T ̸= ∅, the f -generalised eigenspaces in these cohomology
groups are zero. Thus the Eij

1 terms in the spectral sequence (⋆) are zero for i ̸= 0, and hence the edge maps
in the i = 0 column are isomorphisms (for all j, and in particular for j = d). □

Remark 4.4. This is essentially the same argument as the main theorem of [TX16b]. More precisely our
setting is the “Poincaré dual” of theirs: in op.cit., they compute the rigid cohomology of X S−ord (for S the
whole set {1, . . . , d}) with compact support towards the toroidal boundary divisor X − Y but non-compact
support towards the Zi, while we compute the cohomology with compact support towards the Zi and
non-compact support towards the toroidal boundary.

4.3. A new filtration. From the decomposition of the BGG complex we obtain a new filtration on Dp:

Notation 4.5. For T ⊆ {1, . . . , d}, define F T Dp to be the f -generalised eigenspace in the space

image
(

Hd
c

(
X S−ord, FilT B•

µ

)
→ Hd

c

(
X S−ord,B•

µ

) )
.

Note that a priori the subspaces F T only define an “I-prefiltration” in the sense of [NS17]; it is not clear
if it is a Zd-filtration (or even a weak Zd-filtration). Moreover, it is clear that there are inclusions

F T Dp ⊆ FilT Dp,

since the composite map Hi
c(X S−ord, FilT B•

µ) → Hi
c(X S−ord,B•

µ) → Hi(X ,B•
µ) factors through Hi(X , FilT B•

µ);
but it is far from obvious a priori if equality holds. On the other hand, we have a new piece of information:
the partial Frobenii φi for i ∈ S admit liftings to X S−ord, and the coefficient sheaves are compatible with
these liftings. Hence, for each T ∈ {1, . . . , d}, the subspace F T Dp( f ) is invariant under the φi for i ∈ S
(while we have no reason to expect the FilT Dp( f ) to be invariant under these operators).

5. PROOF OF THEOREM 2.2, II: HIGHER COLEMAN THEORY

5.1. Higher Coleman theory: statements. In order to better understand the prefiltration (F T Dp)T∈I , we
now use methods from the higher Coleman theory introduced in [BP20] to study the groups H∗

c (X S−ord, ωT).
We begin by stating the two key results we need, whose proofs we shall explain in the remainder of this
section.
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Proposition 5.1. For each T ⊆ {1, . . . , d} and each n, the operator φS = ∏i∈S φi on Hn
c

(
X S−ord, ωT

)
is poten-

tially compact (i.e. there is some k ⩾ 1 such that φk
S is compact).

It follows that the subspace Hn
c

(
X S−ord, ωT

)
{(αi)i∈S}, defined as the maximal subspace on which the

operators φi − αi for i ∈ S are all nilpotent, is finite-dimensional. So we may in particular decompose it as
a direct sum of generalised eigenspaces for the prime-to-pN Hecke operators; we write Hn

c (. . . ){(αi)i∈S, f }
for the summand corresponding to f .

Proposition 5.2. Let T ⊆ {1, . . . , d}. Then:

• If S ∩ T ̸= ∅, then Hn
c

(
X S−ord, ωT

)
{(αi)i∈S, f } = 0 for all n.

• If S ∩ T = ∅, then Hn
c

(
X S−ord, ωT

)
{(αi)i∈S, f } = 0 for n ̸= d − |T|.

• If S ∩ T = ∅ and n = d − |T|, then Hn
c

(
X S−ord, ωT

)
{(αi)i∈S, f } is 1-dimensional, and the natural

“forget supports” map is an isomorphism

Hd−|T|
c

(
X S−ord, ωT

)
{(αi)i∈S, f }

∼=−→ Hd−|T| (X , ωT) { f }.

Note that the target of the map in the last bullet point does not have a natural action of the partial
Frobenii.

5.2. Reformulation at parahoric level.

Definition 5.3. We let YS → Y be the Shimura variety of level {g ∈ U1(N) : g = ( ⋆ ⋆
0 ⋆ ) mod pi ∀i ∈ S}.

This is a Shimura variety of parahoric level at p, so it has a canonical regular Zp-model; this is the moduli
space classifying choices of cyclic p-subgroup Ci ⊆ A[pi] for each i ∈ S, where A/Y is the universal Hilbert–
Blumenthal abelian variety. By a suitable choice of the toroidal boundary data, we can (and do) assume that
the natural map YS → Y extends to a map of toroidal compactifications XS → X, where XS is projective,
and smooth in a neighbourhood of the cusps; and the Ci extend to finite flat group schemes over XS, via
Mumford’s construction.

Definition 5.4. For T ⊆ S, we let XT−mul
S,0 denote the open subvariety of the special fibre XS,0 where the

level subgroups Ci are of multiplicative type for i ∈ T, and étale for i ∈ S − T. We write X T−mul
S for the

tube of XT−mul
S,0 in the dagger space XS.

These subspaces are disjoint, and their union is the S-ordinary locus. The fully multiplicative subspace
X S−mul

S maps isomorphically to X S−ord, the S-ordinary locus at prime-to-p level, since over X S−ord, the
pi-torsion of A has a unique multiplicative p-subgroup (the canonical subgroup).

Definition 5.5. Let U′
pi

, for each i ∈ S, be the Hecke correspondence given by the double coset of
( 1

ϖi

)
∈

GL2(Fpi ), where ϖi is a uniformizer.

Remark 5.6. Note that U′
pi

is not quite the same as the more familiar operator Upi defined by the double
coset of

( ϖi
1

)
∈ GL2(Fpi ); it is Upi , not U′

pi
, which has a straightforward formula in terms of q-expansions

at ∞. As operators on the coherent cohomology of the algebraic variety X/L, we can describe U′
pi

as the
transpose of Upi with respect to Serre duality; however, we cannot use this as a definition of U′

pi
, since we

shall shortly need to consider the action of this operator on the cohomology of the dagger spaces X S−mul
S ,

and we do not know if Serre duality holds for the cohomology of non-affinoid dagger spaces.

Lemma 5.7. The restriction of U′
pi

to X S−mul
S coincides, under the isomorphism X S−mul

S
∼= X S−ord, with our

partial Frobenius lifting φi.

Proof. In moduli-theoretic terms, the action of U′
pi

is given by quotienting the abelian variety A by the level
subgroup Ci, and summing over possible choices of cyclic p-subgroups C′

i ⊆ (A/Ci)[pi]. If A is ordinary
at pi, and Ci = Â[pi] (the pi-torsion of the formal group of A) is the unique multiplicative subgroup, then
exactly one of these subgroups C′

i is multiplicative (the image of Â[p2
i ]), and the remaining p subgroups are
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étale. Thus the restriction of U′
pi

to the S-multiplicative locus is actually a morphism (not just a correspon-
dence). Moreover, since Â[pi] is the pi-part of the kernel of Frobenius, we conclude that the restriction of
U′

pi
coincides, under our identification X S−mul

S
∼= X S−ord, with the partial Frobenius φi. □

By the functoriality of pushforward maps, for any T ⊆ {1, . . . , d}, we have a commutative diagram
(compatible with the action of Hecke operators away from p)

H∗
c (X S−mul

S , ωT) H∗(XS, ωT)

H∗
c (X S−ord, ωT) H∗(X , ωT).

Moreover, the cohomology of XS is isomorphic (by the GAGA theorem) to the algebraic de Rham coho-
mology of the variety XS, which can be computed using automorphic representations, as in proposition 3.5
above. So the generalised eigenspace Hn(XS, ωT){(αi)i∈S, f } on which the prime-to-p Hecke operators act
via the Hecke eigenvalues of f , and U′

pi
acts as αi for each i ∈ S, is concentrated in degree n = d − |T|;

and in this degree it is a 1-dimensional space and maps isomorphically to Hd−|T|(X , ωT){ f }. So to prove
propositions 5.1 and 5.2, it suffices to prove the following:

Proposition 5.8. Let T ⊆ {1, . . . , d}.

(1) The operator U′
S = ∏i∈S U′

pi
is potentially compact on Hn

c

(
X S−mul

S , ωT

)
;

(2) if S ∩ T ̸= ∅, then H∗
c

(
X S−mul

S , ωT

)
{(αi)i∈S} vanishes in all degrees;

(3) if S ∩ T = ∅, then the map

H∗
c

(
X S−mul

S , ωT

)
{(αi)i∈S} → H∗

c (XS, ωT) {(αi)i∈S}

is an isomorphism in all degrees.

5.3. The extremal case. In the case S = {1, . . . , d}, the statements of proposition 5.8 are instances of the
theorems of [BP20], applied to the reductive group G = ResF/Q GL2.

• Part (i) follows from [BP20, Theorem 5.13 (2)]. In the notation of op.cit., we take the Kostant repre-
sentative w to be the identity, and the open subset U of the Shimura variety to be the entire space;
hence the cohomology with support RΓZ∩U (U ,−) appearing loc.cit. is the compactly-supported co-
homology of Z , which is an arbitrarily small rigid-analytic neighbourhood of the S-multiplicative
locus X S−mul

S . Since the compactly-suppored cohomology of the dagger space X S−mul
S is the direct

limit of the cohomology of its rigid-analytic neighbourhoods, this gives the claim.
• Part (ii) is an instance of [BP20, Corollary 5.65]. Since κT has no component equal to 1, the set C(κ)−

for κ = κT is a singleton; explicitly, it is the element of the Weyl group WG = ∏d
i=1 C2 whose i-th

component is nontrivial iff i ∈ T. In particular, id ∈ C(κT)
− iff T = ∅. However, we have seen

in the previous paragraph that the finite-slope part of RΓ(X S−mul
S , κT) coincides with Boxer and

Pilloni’s RΓw(Kp, κ, χ)−,fs for κ = κT , w = id, and suitable choices of Kp and χ. So the strictly
small slope part of RΓ(X S−mul

S , κT) vanishes for T ̸= ∅; and this translates to the bounds for the
valuations of (αi)i=1,...,d which we have imposed here.

• Part (iii) follows in exactly the same way from [BP20, Theorem 5.66].

5.4. Modifications for general S. For a general subset S ⊆ {1, . . . , d}, we need to modify the theory devel-
oped in [BP20] slightly. The starting point for the constructions of op.cit. is Scholze’s Hodge–Tate period
map (see Theorem 4.68 of op.cit.), which is a continuous map from the perfectoid Shimura variety of infinite
level at p to a flag variety FLG,µ. In our case, this flag variety is a product of copies of P1, indexed by
{1, . . . , d}.

If we compose this period map with the projection onto only those factors in the product given by S,
we obtain a “partial period map”, which only detects the level structure and Hodge filtration at a subset
of the primes above p. In particular, the preimage of the Qp-points of (P1)S is the S-ordinary locus (rather
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than the fully ordinary locus); and the subsets X T−mul
S , for T ⊆ S, are the preimages of the special points in

the partial flag variety whose i-th component is ∞ for i ∈ T and 0 otherwise (the image of the partial Weyl
group WG,S = ∏i∈S C2).

We can now run the entire machine of op.cit. in this setting, using the partial period map to define loci
in the Shimura variety XS which are the support conditions for cohomology groups, and to analyse the
action of Hecke operators on these loci. This gives a spectral sequence (which for S = {1, . . . , d} is the
Bruhat-stratification sequence of [BP20, Theorem 5.15]):

Eij
1 =

⊕
U⊆S

|S\U|=i

Hi+j
(U)

(XU−mul
S , ωT)

−,fs =⇒ Hi+j(XS, ωT)
−,fs,

where “−, fs” denotes the finite-slope part for U′
S (which acts compactly on all the terms), and (U) denotes

an appropriate partial compact support condition depending on U (fully compact support when U = S,
and non-compact support when U = ∅). In particular, the i = 0 terms are the compactly-supported
cohomology of X S−mul

S . Exactly as in the case S = {1, . . . , d} treated in op.cit., one obtains lower bounds
on the slopes of the U′

pi
-operators, and these imply that for a strictly-small-slope eigenvalue system (αi)i∈S,

the corresponding generalised eigenspace in Hi+j
(U)

(XU−mul
S , ωT)

−,fs can only be non-zero when U = S ∩ Tc,
giving the proof of proposition 5.8.

6. PROOF OF THEOREM 2.2, III: CONCLUSION

Notation 6.1. For S ⊆ {1, . . . , d}, write

Fil−S Dp =
Dp

∑i∈S Fil+i Dp
,

whose dimension is 2d−|S|. For T ⊆ {1, . . . , d}, we define FilT Fil−S Dp as the image of FilT Dp in Fil−S ; note
that this is zero unless S ∩ T = ∅. One checks that this defines an I-filtration on Fil−S Dp, where I is the
poset of subsets of {1, . . . , d} as usual; and the T-th graded piece GrT Fil−S Dp is isomorphic to GrT Dp if
S ∩ T = ∅, and is zero otherwise. (This is a slight variation on Proposition 1.3.7 of [NS17].)

Since Hn
c

(
X S−ord, ωT

)
{(αi)i∈S, f } vanishes outside degree d − |T|, we can argue exactly as in proposi-

tion 3.10 to see that the subspaces F T Dp( f ){(αi)i∈S} satisfy the distributive property, and the T-th graded
piece is 0 if S ∩ T ̸= ∅ and maps isomorphically to the corresponding graded piece of Fil• Dp otherwise.
This shows that (F T)T∈I defines an I-filtration on the subspace DS

p :=
⋂

i∈S Dφi=αi
p , and that the map of

I-filtered vector spaces (
DS

p , F •
)
→
(
Fil−S Dp, Fil•

)
induces an isomorphism on every graded piece, and is hence an isomorphism of I-filtered vector spaces.

It remains to check that for each T we have

DS
p ∩F T Dp = DS

p ∩ FilT Dp.

The inclusion “⊆” is clear, since F T Dp ⊆ FilT Dp. However, we know that the map

DS
p/
(

DS
p ∩F T

)
→

Fil−S Dp

FilT Fil−S Dp

is a bijection; as this map clearly factors through DS
p/
(

DS
p ∩ FilT

)
, we conclude that DS

p ∩ FilT cannot be

strictly larger than DS
p ∩ F T , as this would contradict the injectivity of this map. This completes the proof

of theorem 2.2.
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7. QUADRATIC CASE

Throughout this section we suppose [F : Q] = 2. Then we can prove a stronger result by making use of
the self-duality of Dp.

Theorem 7.1. Suppose the following conditions hold:
(a) The character of f is trivial.
(b) There exists an i ∈ {1, 2} such that at least one of the two roots αi, βi of the Hecke polynomial of f has strictly

small slope.
(c) The set of pairwise products {α1α2, α1β2, β1α2, β1β2} has four distinct elements.

Then conjecture 1.1 is true.

We also have a complementary result for base-change forms (which never satisfy condition (c)).

Theorem 7.2. Suppose the following conditions hold:
(a’) f is the base-change of an elliptic modular form f0 with trivial character (so in particular k1 = k2).
(b’) The roots α0, β0 of the Hecke polynomial of f at p are distinct, and at least one has strictly small slope.
(c’) We have α0/β0 /∈ {±1}.

Then conjecture 1.1 is true.

Remark 7.3. The proof of these statements relies on the “accident” that the image of the tensor-product map
GL2 ×GL2 → GL4 has a nice description: it is the orthogonal similitude group GSO4. We do not know of a
nice description of the image of the analogous map GL2 × · · · × GL2 → GL2d for d ⩾ 3, so the methods of
this section seem unlikely to generalise beyond the quadratic case.

7.1. Proof of theorem 7.1. For any F we have an isomorphism of étale sheaves L∨
µ,ét

∼= Lµ,ét(dw) so we
obtain a perfect Poincaré duality pairing

Hd
ét,!(YQ,Lµ,ét)× Hd

ét,!(YQ,Lµ,ét) → H2d
ét,c(YQ, Qp(−dw)) = Qp(−d(w + 1)),

where ! denotes interior cohomology. The transpose of the Hecke operator Tq for an unramified prime q is
⟨q⟩−1Tq, where ⟨q⟩−1 is the diamond operator; so if f has trivial character, we obtain a perfect pairing on
the f -generalised eigenspace. Moreover, since this pairing is given by a cup-product in degree d (and the
cup-product is graded-commutative), it is a symmetric bilinear form if d is even and antisymmetric if d is
odd. Thus, in the d = 2 case we obtain a canonical symmetric bilinear form on Vp( f ), which we denote by
λ. A similar construction using Poincaré duality for de Rham cohomology gives a symmetric bilinear form
on Dp( f ), which we also denote by λ; and these two bilinear forms are compatible via the functor DdR.

We also have a canonical-up-to-scalars symmetric bilinear form on the tensor induction (
⊗−Ind)(Vstd

p ( f )),
arising from the symplectic self-duality of Vstd

p ( f ): the underlying space of (
⊗−Ind)(Vstd

p ( f )) can be iden-
tified with Vstd

p ( f )⊗Vstd
p ( f ), and the symmetric bilinear form is given by ⟨v1 ⊗ v2, v′1 ⊗ v′2⟩ = ⟨v1, v′1⟩⟨v2, v′2⟩,

for any choice of Galois-equivariant symplectic form on Vstd
p ( f ).

We can, and do, choose the isomorphism ψ of (2) to be compatible with the bilinear forms (up to scalars).

Proposition 7.4. For i = 1, 2, we have:
(1) The partial Frobenius φi on Dp( f ) satisfies λ(φix, φiy) = p(w+1)λ(x, y).
(2) The space Fil+i Dp is a maximal isotropic subspace of Dp.

(3) The eigenspaces D(φi=αi)
p and D(φi=βi)

p are maximal isotropic.

Proof. For part (1), we note that the isomorphism φ∗
i (Lµ,dR) ∼= Lµ,dR, giving the action of φi on the co-

homology, multiplies the duality pairing on the fibres of Lµ,dR by pw (since the pairing comes from the
w-th tensor power of the Poincaré duality pairing on the top-degree cohomology of a Hilbert–Blumenthal
abelian variety A, and the canonical isogeny A → A/(A[p] ∩ ker φA) has degree p, and thus acts as p
on the top-degree cohomology). Since φi also has degree p as a morphism from Y0 to itself, it acts on the
top-degree rigid cohomology as multiplication by pw+1.

For (2), it follows easily from the shape of the cup-product on the BGG complex that Fil+i Dp is an
isotropic subspace of Dp, and since it is 2-dimensional it is maximal isotropic. For part (3), we note that
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assumption (c) implies αi ̸= βi; so we see from part (1) that λ must vanish on the αi and βi eigenspaces and
identify each with the dual of the other. So they must each be 2-dimensional and maximal isotropic. □

Corollary 7.5. If k1 ̸= k2, the isomorphism ψp respects the partial filtrations. If k1 = k2, then ψp either respects the
partial filtrations, or interchanges them (so the image of Fil+1 Dp is Dp1 ⊗ (Fil+ Dp2) and vice versa).

Proof. Since ψp must respect the Hodge filtration, we know that Fil+1 Dp + Fil+2 Dp and Fil+1 Dp ∩ Fil+2 Dp
map to their analogues in the tensor product. So ψp descends to a bijection

Fil+1 Dp + Fil+2 Dp

Fil+1 ∩ Fil+2
→ (Fil+ Dp1 ⊗ Dp2) + (Dp1 ⊗ Fil+ Dp2)

Fil+ ⊗ Fil+
.

The orthogonal form λ descends to a nondegenerate orthogonal form on Fil+1 Dp+Fil+2 Dp

Fil+1 ∩ Fil+2
. Since a nonde-

generate orthogonal form cannot have more than two isotropic lines, it follows that Fil+1 and Fil+2 are the
only two isotropic subspaces intermediate between Fil+1 + Fil+2 and Fil+1 ∩ Fil+2 . Since ψ is compatible with
the orthogonal forms, it follows that ψp must map these spaces to (Fil+ Dp1 ⊗ Dp2) and (Dp1 ⊗ Fil+ Dp2) in
some order. If k1 ̸= k2, then only one of these lines is contained in the middle Hodge filtration step, so we
conclude that ψp sends Fil+1 Dp to Fil+ Dp1 ⊗ Dp2 , and similarly for Fil+2 Dp. □

We now consider the Frobenius action, using hypothesis (c). Then the (φ1 = α1, φ2 = α2) simultaneous
eigenspace of Dp coincides with the φ = α1α2 eigenspace. (Containment is clear, and hypothesis (c) implies
that Dφ=α1α2

p has zero intersection with any of the other (φ1, φ2)-simultaneous eigenspaces; since the direct
sum of these simultaneous eigenspaces is all of Dp, we must have equality.) Similarly, the (φ ⊗ 1 = α1, 1 ⊗
φ = α2) simultaneous eigenspace of Dp1 ⊗ Dp2 coincides with the φ1 ⊗ φ2 = α1α2 eigenspace. Since ψp
commutes with φ, it must therefore send the (φ1 = α1, φ2 = α2) simultaneous eigenspace to the (φ ⊗ 1 =
α1, 1 ⊗ φ = α2) simultaneous eigenspace. Repeating the argument for the other three pairs of roots, we
conclude that ψp commutes with the partial Frobenii. In particular, if k1 ̸= k2 the proof of theorem 7.1 is
complete.

In the more delicate k1 = k2 case, we use theorem 2.2. Without loss of generality we suppose α1 has
strictly small slope. Then the theorem tells us that Fil+2 Dp ∩ D(φ1=α1)

p is one-dimensional. However, since
α1 has strictly small slope, its valuation is a fortiori smaller than k1 + t1 + 1; so the weak admissibility of Dp1

implies that Fil+ Dp1 ∩ Dφ=α1
p1

must be zero. Thus (Fil+ Dp1)⊗ Dp2 has zero intersection with the φ⊗ 1 = α1

eigenspace. As ψp is compatible with the partial Frobenii, it cannot send Fil+2 Dp to (Fil+ Dp1)⊗ Dp2 , since
the former has nontrivial intersection with the φ1 = α1 eigenspace, while the latter does not. So it must
send Fil+2 Dp to Dp1 ⊗ (Fil+ Dp2), and This completes the proof of theorem 7.1.

7.2. Repeated eigenvalues. We now consider, briefly, the contrary situation where (a), (b) of theorem 7.1
hold, but rather than (c), we suppose that the set of pairwise products has size exactly 3; so without loss
of generality we may suppose that α1β2 = β1α2 but there are no other repetitions. Then the same proof as
above shows that the (α1, α2) and (β1, β2) eigenspaces are sent to their analogues in Dp1 ⊗ Dp2 . Meanwhile,
the 2-dimensional (φ = α1β2 = β1α2)-eigenspace is the sum of the (α1, β2) and (β1, α2) simultaneous
eigenspaces, which are isotropic lines. So these must be sent to the (α1, β2) and (β1, α2) eigenspaces in the
tensor product in some order. That is, we have two cases:

• Case A: ψp commutes with the partial Frobenii.
• Case B: ψp intertwines φ1 and φ2 with ξ · (1 ⊗ φ) and ξ−1 · (φ ⊗ 1), where ξ = α1

α2
.

(Note that in case B we must have ξ = ±1, since ψp is compatible with the bilinear forms, and φ1 scales
the bilinear form on Dp by pw+1 while ξ · (1 ⊗ φ) scales the bilinear form on Dp1 ⊗ Dp2 by ξ2 · pw+1.)

In case A, we can argue exactly as before to show that ψp commutes with the plectic structures. In
case B, the same argument shows that we must have k1 = k2, and the isomorphism ψp is an “anti-plectic
isomorphism” (up to a twist), interchanging the roles of the two embeddings.

Remark 7.6. As noted above, the cases when α1 = β1 or α2 = β2 are conjectured never to occur. The only
other case we have not considered is when α1/β1 = α2/β2 = −1; this definitely can arise, e.g. if f has
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complex multiplication by a totally-imaginary quadratic extension of F in which both pi are inert, but it
does not seem to be possible to treat it using the above methods.

The above discussion applies, in particular, in the setting of theorem 7.2: the assumptions (a’) and (b’)
imply (a), (b) of theorem 7.1, while (c’) implies that the set

{α1α2, . . . , β1β2} = {α2
0, α0β0, β2

0}
has three distinct elements. So ψp must be either a plectic isomorphism, or a plectic anti-isomorphism.
However, in this case ψ is not itself uniquely determined (even up to scalars): since f σ = f , the Galois
representation Vp( f ) has an additional order 2 involution compatible with the orthogonal forms, which
corresponds to swapping the factors of the tensor product. Replacing ψ with its composite with this invo-
lution if necessary, we conclude that there is some isomorphism ψ fulfilling the conditions of conjecture 1.1,
thus proving theorem 7.2.

Remark 7.7. If f has k1 = k2 and α1β2 = β1α2, but f is not globally a twist of a base-change form (and is non-
CM), then we are stuck. In this case, an isomorphism between Dp and Dp1 ⊗ Dp2 which is compatible with
the φ-module structure and the orthogonal forms must be either plectic, or anti-plectic (and both cases can
occur). However, since Vp( f ) is irreducible in this case, only one of the two possibilities will be compatible
with the global Galois action, and we cannot rule out the bizarre possibility that the global isomorphisms
are the locally anti-plectic ones!
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Norm. Sup. (4) 17 (1984), no. 3, 361–412. MR 777375.
[CE98] R. COLEMAN and B. EDIXHOVEN, On the semi-simplicity of the Up-operator on modular forms, Math. Ann. 310 (1998), no. 1,

119–127. MR 1600034.
[Har90] M. HARRIS, Automorphic forms of ∂-cohomology type as coherent cohomology classes, J. Differential Geom. 32 (1990), no. 1, 1–63.

MR 1064864.
[LS07] B. LE STUM, Rigid cohomology, Cambridge Tracts in Mathematics, vol. 172, Cambridge Univ. Press, 2007. MR 2358812.
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