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Abstract

Several empirical studies have provided evidence that low code quality is generally as-
sociated with higher fault-proneness, lower productivity, more rework, and more effort for
developers. In response to the need for improving code quality, code review has been widely
adopted in open source and industrial projects. While empirical studies showed the un-
doubted advantages of code review (e.g., less buggy code) its cost is non-negligible. Indeed,
code review requires several developers to be allocated, with different roles, on the same
coding activity. In particular, a contributor submits a code change to be reviewed and one or
more reviewers inspect the change, comment on it (e.g., by providing recommendations for
improvement), and judge whether it is of sufficient quality to be merged.

The goal of our research is to (partially) automate this time-consuming process. The
final goal is not to replace developers during code reviews but work with them in tandem by
automatically solving (or identifying) code quality issues that developers would manually
catch and fix. In particular, we propose techniques exploiting deep learning models to auto-
mate three code review tasks related to (i) commenting in natural language a code change
submitted for review with the goal of recommending how to improve its quality as a human
reviewer would do; and (ii) automatically implementing code changes usually required in
the code review process.

We empirically evaluated the proposed solutions both quantitatively and qualitatively,
disclosing their strengths and weaknesses. Despite the identified limitations, we show the
promise of automating code review tasks using deep learning, pointing to directions for
future work in the area.
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1
Introduction

Code Review is the process of analyzing source code written by a teammate to judge
whether it is of sufficient quality to be integrated into the main code trunk. Recent studies
provided evidence that reviewed code has lower chances of being buggy [MKAH14, MMK15,
BR15] and exhibits higher internal quality [BR15], likely being easier to comprehend and
maintain. Given these benefits, code reviews are widely adopted both in industrial and
open source projects with the goal of finding defects, improving code quality, and identifying
alternative solutions.

The benefits brought by code reviews do not come for free. Indeed, code reviews add
additional expenses to the standard development costs due to the allocation of one or more
reviewers having the responsibility of verifying the correctness, quality, and soundness of
newly developed code. Bosu and Carver report that developers spend, on average, more
than six hours per week reviewing code [BC13]. This is not surprising considering the high
number of code changes reviewed in some projects: Rigby and Bird [RB13] show that in-
dustrial projects, such as Microsoft Bing, can undergo thousands of code reviews per month
(∼3k in the case of Bing). Also, as highlighted by Czerwonka et al. [CGT15], the effort spent
in code review does not only represent a cost in terms of time, but also pushes developers to
switch context from their tasks.

1



2 Introduction

The high cost of code review makes it an ideal candidate for solutions targeting its (par-
tial) automation via recommender systems. In the context of software engineering (SE),
recommender systems have been defined by Robillard et al. as “software tools that can assist
developers with a wide range of activities, from reusing code to writing effective bug reports”
[RWZ09].

When the research documented in this thesis started, most of the code review automation
techniques focused on tasks which can be tackled with a machine learning (ML) classifier. For
example, several researchers proposed techniques recommending the best suited reviewer
for a change at hand [Bal13, TTK+15, XLWY15, OKI16, YCLW16, YWYW16, ZKB16, XSJ+17,
JYH+17, FPS18, AKB+19, LWW+19, STD19, JLZ+19, MR20, ATD+20, SGBU20, COM+21,
TTDE21, PT22], while others focused on predicting whether a code change submitted for
review will be merged [WLZ22, WZ22, LLG+22, SLL+19, FXLL18, IAS+22], or on classifying
the sentiment in reviewers’ comments [ABIR17, EMHK+20]. However, the recent rise of
generative deep learning (DL) models in SE made it possible automating more challenging
tasks, requiring the generation of textual content, including source code.

The successful application of DL models to SE is in part due to the unprecedented amount
of software-related data that can be found in open source projects hosted on platforms such
as GitHub. At the time of writing GitHub counts over 100 million users1 who submitted 413
million open source contributions only in 20222. Looking at the whole history of contribu-
tions, it is safe to estimate billions of code contributions available on such a platform. Taking
advantage of this data, DL-based models have been trained to support several SE tasks, such
as bug-fixing [DMP+17, LNNN15, LHL+17], code smell detection [LXH+18], source code
generation [CSM+18, GZZK16, HD17, KS19, Whi15, WVVP15], software testing [CPML18,
GPS17, SDR+18] and program repair [BKS18, HOL+18, LKB+18, TWB+19, WSS17]. For
example, a DL model has been trained to fix real bugs in Java code as developers would
do [TWB+19]. To this aim, the authors collected millions of bug-fixing commits (i.e., code
changes aimed at fixing a bug) from GitHub, and trained the model to learn the code transfor-
mations needed to convert a buggy piece of code (i.e., the one before the bug-fixing commit)
into a fixed (correct) code (i.e., the one after the bug-fixing commit).

Among the DL models used in the literature, pre-trained transformers [VSP+17] have
shown impressive capabilities in adapting to any sort of task which can be formulated in
a text-to-text fashion (i.e., both the input and the output of the model is represented as a
stream of textual tokens) [RSR+20]. These models are pre-trained in an unsupervised way
on a dataset featuring instances written in a language of interest (e.g., English), with the
goal of acquiring knowledge about the statistical distribution of tokens in the language. An
example of pre-training task, is the masked language modeling, in which 15% of tokens in
an instance (e.g., an English sentence) are masked with the model in charge of predicting
them. Once pre-trained, the model is then fine-tuned (usually in a supervised way) for the
task of interest (e.g., translating between English and other languages).

1https://github.blog/2023-01-25-100-million-developers-and-counting/
2https://octoverse.github.com



1.1 Thesis Statement 3

Given the availability of powerful generative DL models, the vast amount of open source
data present in forges such as GitHub, and the abundant evidence about successful applica-
tions of DL to SE tasks, the automation of code review is strongly under-exploited.

1.1 Thesis Statement

Given the aforementioned premises, we formulate our thesis as follow:

Generative DL models can be trained to imitate human developers involved in the
code review process, thus enabling a whole new level of automation for code review
tasks.

To validate our thesis, we investigate the possibility to exploit DL-based solutions in the
automation of three code-review tasks. The first, named code-to-code, provides as input to
the DL model the code submitted for review and tries to predict (and generate) the code
output of the review process (i.e., a revised version of the submitted code implementing
changes likely to be required during code review). This task can be used by the contributor
to get a first automated feedback about the implemented change, even before starting the
code review process.

The second, named code & comment-to-code, provides the model with the code submitted
for review and a natural language comment written by the reviewer to ask for specific code
changes. In this case, the DL model is expected to automatically revise the code in such a way
to address the reviewer’s comment. This task can be useful to the reviewer, to provide the
contributor with an example of how to implement a requested change, and to the contributor,
to get a recommendation on how to address the reviewer’s comment.

The third task we tackled is code-to-comment, in which the model takes as input the code
submitted for review and it is expected to generate natural language comments asking for
improvements as a human reviewer would do.

We assess the proposed solutions both quantitatively and qualitatively, pointing to their
strengths and limitations and concluding the thesis with a research roadmap on code review
automation.

1.2 Research Contributions

The contributions of this thesis can be grouped in three high-level categories: (i) the pro-
posal of techniques to support developers in the code review process (Chapters 3 and 4); (ii)
the study of the impact of the pre-training phase on the performance of models to automate
code review and, more in general, code-related tasks (Chapter 5); and (iii) an empirical in-
vestigation about the strengths and weaknesses of state-of-the-art techniques for code review
automation (Chapter 6).

The research presented in this thesis is conducted in the context of the DEVINTA ERC
project [Dev].



4 Introduction

1.2.1 Deep Learning for Code Review Automation

We defined three tasks that can be automated to support developers during the code review
process: code-to-code, code & comment-to-code and code-to-comment. Then, we:

1. Built two code review datasets featuring data about code review activities mined from
open source projects. The two datasets feature triplets reporting: (i) the code submit-
ted for review, (ii) reviewers’ comments in natural language suggesting code changes
aimed at improving the quality of the submitted code; and (iii) the revised version of
the submitted code implementing the reviewers’ recommendations.

2. Proposed different solutions to automate the defined tasks. First, we experiment with
classic encoder-decoder models. A “vanilla” transformer has been used to automate the
code-to-code task, with the model taking as input the code under review and generating
its revised version. A modified version of the transformer featuring an extra encoder
(for a total of two encoders) has then been used to automate the code & comment-to-
code task, with the model able to take as input also a reviewer’s comment to address
besides the code submitted for review. Finally, a large pre-trained model has been used
to automate all three targeted tasks, achieving better performance as compared to the
previous models.

3. Empirically evaluated and compared the proposed techniques.

This part of the thesis resulted in the following publications [TPT+21, TMM+22]:

Towards Automating Code Review Activities

Rosalia Tufano, Luca Pascarella, Michele Tufano, Denys Poshyvanyk, Gabriele Bavota. In Proceedings
of the 43rd International Conference on Software Engineering (ICSE 2021), pp. 163-174.

Using Pre-Trained Models to Boost Code Review Automation

Rosalia Tufano, Simone Masiero, Antonio Mastropaolo, Luca Pascarella, Denys Poshyvanyk, Gabriele
Bavota. In Proceedings of the 44th International Conference on Software Engineering (ICSE 2022), pp.
2291-2302

1.2.2 Studying the Impact of the Pre-training on the Automation of Code-related
Tasks

We studied the extent to which different pre-training strategies may contribute in improving
the automation of code-related tasks, including the code review ones targeted in this thesis.
In particular, we:

• Ran a systematic literature review to identify the most used pre-training objectives to
automate code-related tasks in SE.

• Experimented how the performance of pre-trained models change when adopting the
three most popular pre-training objectives used in the SE literature as well as pre-
training objectives tailored for the specific downstream task at hand.
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The experiment has been conducted on five tasks: code & comment-to-code, code-to-
comment, bug-fixing, code summarization, and code completion.

• Provided clear guidelines on the best pre-training strategy to adopt when dealing with
code-related tasks.

This study resulted in the following publication [TPB23]:

Automating Code-Related Tasks Through Transformers: The Impact of Pre-training

Rosalia Tufano, Luca Pascarella, Gabriele Bavota. In Proceedings of the 45th International Conference
on Software Engineering (ICSE 2023), pp. 2425-2437

1.2.3 Investigating Strengths and Weaknesses of the State-of-the-art

Several techniques have been built on top of our proposal to automate code review tasks
[TPT22a, HHH+22, LLG+22, LYJ+22, HTTA22]. These approaches, including ours, have
been mostly evaluated using quantitative metrics (e.g., the percentage of correct predictions).
We run a more qualitative investigation of what the strengths and the weaknesses of these
techniques are. In particular, we:

• Manually inspected a statistically significant sample of correct and wrong predictions
generated by three state-of-the-art techniques [TMM+22, HTTA22, LLG+22] for the
automation of the code & comment-to-code and the code-to-comment tasks. The goal
of the manual inspection was to characterize the scenarios in which these techniques
tend to succeed and fail.

• Built two taxonomies (one for the code & comment-to-code task, the other one for code-
to-comment task) showing which types of code changes are well supported by the con-
sidered approaches and which not (e.g., which they can automatically implement in
the context of the code & comment-to-code task).

• Identified problematic instances in the inspected datasets, calling for higher-quality
datasets to be used in the future.

• Compared the performance of state-of-the-art approaches for the automation of code
review with a that of a large language model, namely ChatGPT.

Our investigation resulted in the following article currently under review:

Code Review Automation: Strengths and Weaknesses of the State of the Art

Rosalia Tufano, Ozren Dabić, Antonio Mastropaolo, Matteo Ciniselli, Gabriele Bavota. Under review
at IEEE Transactions on Software Engineering (TSE) after Major Revisions required



6 Introduction

1.3 Outline

This thesis is structured in the following chapters:

Chapter 2 presents an overview of the state-of-the-art regarding code review automation.
It includes the methodology used to conduct a SLR to identify the relevant studies,
their discussion, and a classification of the tasks automated in the literature.

Chapter 3 describes our fist attempt to automate the code-to-code and code & comment-to-
code tasks. It includes the description of the tasks, the process adopted to build the used
dataset, the customization we made to the Transformer models and their evaluation.

Chapter 4 reports our effort to overcome the limitations of our first approach. It includes
the description of the new approach based on pre-trained models, the introduction of
a new task (code-to-comment), the building of a new larger dataset and the evaluation
of the trained models.

Chapter 5 investigates the impact of the pre-training in the context of code-related tasks,
including the code review ones subject of this thesis. It includes a SLR to identify
common pre-training objectives used in SE and experiments to evaluate which of them
is better suited for the automated tasks.

Chapter 6 presents an overview of strengths and weaknesses of the state-of-the-art ap-
proaches proposed to automate two of the code review tasks object of this thesis.

Chapter 7 concludes this thesis by summarizing our work, highlighting its limitation and
indicating future research directions based on the results we achieved.

On top of what featured in the above-described chapters, Appendix A and Appendix B
present additional research done during the PhD that does not fit the topic of the thesis. In
particular, Appendix A presents the research done in the context of game testing and pub-
lished in the following work:

Using Reinforcement Learning for Load Testing of Video Games

Rosalia Tufano, Simone Scalabrino, Luca Pascarella, Emad Aghajani, Rocco Oliveto, Gabriele Bavota.
In Proceedings of the 44th International Conference on Software Engineering (ICSE 2022), pp.
2303–2314.

Appendix B, instead, presents an approach to automatically replace custom implemen-
tations with open source APIs, as described in:

Don’t Reinvent the Wheel: Towards Automatic Replacement of Custom Implementations with
APIs

Rosalia Tufano, Emad Aghajani, Gabriele Bavota. In Proceedings of the 38th International Conference
on Software Maintenance and Evolution (ICSME 2022), pp. 394-398.



2
State-of-the-art

Given the focus of this thesis on the automation of code review
activities, in this chapter we present a systematic review of the
literature proposing techniques and tools for the automation of
code review tasks. We present the methodology we adopted to
identify relevant studies and the list of selected works. Finally
we discuss them, highlighting the papers that have been built on
the basis of our work.

2.1 Relevant Study Identification

We describe our research method to identify the relevant studies
following the guidelines by Kitchenham and Charters [KC07] for
systematic literature reviews (SLR).

2.1.1 Search Strategy

We queried six digital libraries to search for primary studies: ACM Digital Library [ACM],
Elsevier ScienceDirect [Els], IEEE Xplore Digital Library [IEE], Scopus [Sco], Springer Link
Online Library [Spr], and Wiley Online Library [Wil]. We did not query Google Scholar
due to the limitations documented by Halevi et al. [HMBI17a] (e.g., lack of quality control,
missing support for data download).

We start by performing a trial-and-error procedure to define the query needed to identify
works related to the automation of code review tasks. It became soon clear that searching
in the paper titles for keywords such as “automating”, “recommending”, etc. was not an op-
tion, even considering all their possible variations (e.g., automating, automated, automate).
Indeed, this would led to the lost of several relevant studies (e.g., “Code Review Knowledge
Perception: Fusing Multi-Features for Salient-Class Location” [HJC+20], “CoRA: Decomposing
and Describing Tangled Code Changes for Reviewer” [WLZX19]). For this reason, we opted for
a more conservative query which targets the identification of all code review-related studies,
even those do not presenting automated solutions:

7
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Title CONTAINS
“review” OR (“code” AND “edit”) AND

Publication venue CONTAINS
(“software” OR “program” OR “code”)

The query searches for the terms “review” or “code edit” in the article title. While only
searching in the title might be restrictive, we want to identify automated solutions which
have been explicitly proposed for code review (e.g., we are not interested in articles pre-
senting generic static analysis tools that might be applied in code review to spot quality
issues). Also, we only searched for articles published in venues containing at least one of
three keywords: “software”, “program”, and “code”. Such a filter is based on our knowledge
of software engineering publication venues. We acknowledge that there might be relevant
articles published in related fields (e.g., artificial intelligence) that our query would exclude.
However, as explained later, we adopt a snowballing process to partially address this issue.

Among the queried search engines Elsevier, Scopus, Springer, and Wiley allow to specify
a discipline of interest, which is useful to minimize the retrieved false positive instances. For
these libraries, we selected “Computer Science” as discipline. Springer also allows to specify
sub-disciplines, for which we selected “Software Engineering/Programming”. The query has
been run on 23 September 2022 on all digital libraries.

Table 2.1. Articles returned by the queried digital libraries

Source Returned Articles

ACM Digital Library 885
Elsevier ScienceDirect 2,604
IEEE Xplore Digital Library 1,000
Scopus 2,041
Springer Link Online Library 1441
Wiley Online Library 64

Total (including duplicates) 8,035

Total (excluding duplicates) 7,729

Table 2.1 reports the articles returned by each digital library. Once removed duplicates
(i.e., the same article has been returned by multiple libraries), we collected 7,729 candidate
primary studies which have been manually inspected as described in the following.

2.1.2 Study Selection

Given the high number of articles returned by the formulated query, we started with an au-
tomated check aimed at excluding clear false positives. First, despite the filter on venues we
set in the digital libraries, we noticed that some of the returned results concerned invalid
publication venues (i.e., venues not featuring in their name any of the three keywords “soft-
ware”, “program”, and “code”). Thus, we implemented a simple script excluding those cases
(-3,784).



2.1 Relevant Study Identification 9

Other two filters were implemented. First, given our query, and in particular the retrieval
of articles containing “review” in their title, we retrieved several SLRs. Among those we
were only interested in the ones focusing on code review, since they represent an important
source of references for the snowballing phase. Thus, we automatically remove all articles
containing in the title, besides “review”, the term “systematic” and do not containing the term
“code” (-3,483). Second, we excluded articles published as book chapters or in magazines,
since those are usually not full research articles (-153).

At the end of this process, 309 candidate primary study were left. On top of those,
we added one more relevant paper we were aware of: “AUGER: Automatically Generating
Review Comments with Pre-training Models” [LYJ+22]. This work was not found by the search
because the title does not contain the combined words “code review” or “code change” but
does contain “review comment”. We also re-inspected all sources to make sure that searching
for works with “review” and “comment” in the title did not produce any other relevant results
we missed.

Table 2.2. Inclusion and exclusion criteria

Inclusion Criteria

IC1 The article must be peer-reviewed, published at conferences, workshops, or journals. In the snowballing
phase later described, we ignore all referenced preprints (e.g., those published on arXiv.org).

IC2 The PDF of the article must be available online. We searched for it on the online libraries featuring and, if
needed, on Google.

IC3 The article must present technique(s) to automate a code review task. It is not enough to present a generic
technique that, accordingly to the reader, might be useful in the context of code review: The authors must
explicitly state that the technique has been thought to support code review.

Exclusion Criteria

EC1 The article is not written in English.
EC2 The article has been published in a conference/workshop and later on extended to a journal. We only keep

the journal article to avoid redundancy.
EC3 The article is not a full research publication (e.g., doctoral symposium articles, posters, ERA track). We

exclude all articles having less than six pages with the goal of removing articles that may not have been
subject to the same peer-review process typical of full research articles.

EC4 The article replicates a previously published technique for code review automation which has been already
included in the SLR.

EC5 The article is a secondary study. In this case, we keep it only as a source of references for the snowballing
phase.

EC6 The article has not been published in an international venue, but in a national one (e.g., Brazilian Sympo-
sium on Programming Languages).

EC7 The article is one of our works about code review automation ([TPT+21, TMM+22])

The set of 310 candidate primary studies has then been manually inspected. Inclusion
and exclusion criteria are listed in Table 2.2. This part of the manual analysis was mainly
focused on the inspection of the title and abstract of the article. We agreed to be conservative
and include the article in case of doubts, given the planned subsequent reading of the whole
article as described in the following.
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Conflicts (i.e., cases in which one researcher considered the article as relevant and one
not) arisen in 17 cases (5%) and have been solved through an open discussion. This filter-
ing process left 107 candidate studies which have been equally split among two researchers.
Both researchers downloaded the corresponding article and re-inspected it keeping the in-
clusion and exclusion criteria in mind (Table 2.2) and then either confirming the article as
relevant for the SLR or discarding it. All those discarded have been double-checked by the
other researcher to ensure no relevant studies were mistakenly excluded.

This further check confirmed 59 articles as relevant primary studies. Those, together
with ten articles tagged as “relevant secondary study”, have been subject of a backward
snowballing process.

Backward Snowballing. The 69 articles were equally split among the two involved re-
searchers, with each of them in charge of reading the reference list and identify possible
relevant papers. At this step, we retrieved also relevant papers published in venues not con-
taining any of the three keywords “software”, “program”, and “code” (e.g., papers published
in the Conference on Artificial Intelligence — AAAI). Also in this phase, in case of doubts,
the researchers agreed to included a referenced article for a further check by the other re-
searcher. The snowballing resulted in 30 additional primary studies, that summed up to the
59 previously collected leads to the final set of 89 primary studies. The 89 primary studies
have then been inspected one last time with the goal of summarizing their contribution to
the state-of-the-art on code review automation.

2.2 Relevant Studies

Table 2.3 presents the 33 types of code review tasks which have been automated in the
literature. It groups the tasks into macro categories (e.g., “Code Change Analysis”) and
provides a short description of each task with related references (i.e., the works addressing
its automation). We discuss in the following each macro category, with a major focus on
techniques targeting the tasks automated in this thesis (i.e., code-to-code, code & comment-
to-code, code-to-comment).

Code Change Analysis

This category groups techniques aimed at analyzing the code change submitted for review in
order to extract information useful to support the reviewer in its inspection. Several authors
[TK15, BBaBL15, WLZX19] targeted the splitting of tangled commits [HZ13] into smaller
and cohesive changes which are supposed to be easier to review. Indeed, having smaller
changes can help in achieving quick review turnarounds [BB13, SSC+18] while cohesive
changes simplify the identification of proper reviewers, which are more likely to have a
comprehensive expertise to review the change (given its cohesiveness and focus).

Huang et al. [HJC+20] propose the automated identification of the “salient-class” in a
commit to review. The salient-class is the one supposed to be the main focus of the changes
and which likely triggered changes to other code locations. Such a class can be used as entry
point for the review process, assuming that this will simplify the code change understanding.
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Table 2.3. Code review tasks for which automated solutions have been proposed
Task Description Reference

Code Change Analysis

Decomposing Tangled Commit
Split a composite code change into smaller and cohe-
sive changes

[TK15, BBaBL15, WLZX19]

Predicting Salient-Class
Identification of the “salient-class” in a commit to re-
view, namely the class causing the other changes in the
commit

[HJC+20]

Linking Similar Contributions
Link similar changes to review that share textual con-
tent and modify similar code locations

[WKIM21, ACO+20]

Code Change Classification

Predicting Code Changes Ap-
proval/Merge

Predict the likelihood of a change of being accepted
(merged)

[WLZ22, WZ22, LLG+22,
SLL+19, FXLL18, IAS+22]

Identifying Impactful Code
Changes

Identify impactful code changes (e.g., impacting the
system design)

[WGRM18, UBC+21]

Identifying Large-review-effort
Code Changes

Identify code changes that will require a large review-
ing effort

[WBN21]

Identifying Quickly Review-
able Changes

Rank changes to be reviewed based on their likelihood
of being quickly merged or rejected -

[ZdCZ19]

Code Change Quality Check

Predicting Code Defectiveness
Predict the defectiveness of a patch before or after be-
ing reviewed

[SEB16, SS19]

Identifying Clone Refactoring
Opportunities

Detect unrefactored or partially refactored code clones [CMKS17]

Checking Design Patterns Con-
sistency

Check whether the implemented change violates exist-
ing design patterns

[HWZ13]

Predicting Problematic Code
Lines

Predict lines in a given piece of code reviewers should
pay particular attention to (i.e., lines likely needing
changes)

[HTT22, SS23]

Reviewing via Static Analysis
Use multiple static analysis tools to generate a code re-
view

[Bal13]

Generating Review Comments
Generate review comments for a given piece of code [LYJ+22, LLG+22,

HTTA22]
Reviewing Code Formatting Vi-
olations

Suggest how to fix code formatting violations in a given
piece of code

[MLM+19]

Assessing Review Quality

Classifying the Usefulness of
Review Comments

Classify a given code review comment as useful or not-
useful for the contributor

[PTPI14, RRK17, HII+21]

Identifying Review Comments
Needing Further Explanations

Identifies review comments which need further expla-
nations to be properly understood by the contributor

[RKN22]

Assessing Review Quality
through Biometrics

Evaluate the quality of code review using biometrics
data, warning the reviewer if specific areas of code de-
serve a further check

[HDC+22, HCC+21]

Code Review Sentiment Analysis

Identifying “Pushback” Feel-
ings in Reviews

Identify feelings of “pushback", with the reviewer
blocking a change request for interpersonal conflicts

[EMHK+20]

Classifying the Sentiment of
Review Comments

Classify the sentiment of review comments as neutral,
negative, or positive

[ABIR17]

Identifying Toxic Code Review
Comments

Identify toxic comments in code reviews [STDB23]

Retrieval of Similar CR/CC

Retrieving Similar Reviews

Can be used to provide either (i) the contributor with
examples of reviews similar to those they are receiving
(for better understanding); or (ii) the reviewer with
examples of reviews which have been written for code
similar to the one they are inspecting

[GS18, GYH+20, SGF+20,
RKN22]

Mining Code Improvement
Patterns

Extract source code improvement patterns from exist-
ing code review history to recommend how to improve
the submitted code

[UIIM19]
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Revised Code Generation

Predicting the Code Output of
the Review Process

Given a code snippet submitted for review, revise it to
implement changes which are likely to be required by
reviewers

[TPT22a, PTTC23]

Implementing the Code
Change Requested by a Re-
viewer

Generate a revised version of a given piece of code by
implementing a specific change requested by the re-
viewer in a natural language comment

[HHH+22, LLG+22]

Time Management

Predicting Pull Request/Code
Review Completion Time

Predict the time needed to complete a pull requests/-
code review

[MBN19, SSH+22,
COOM23, CRN22]

Identifying Overdue Pull Re-
quests

Identify overdue pull requests (i.e., pull requests taking
longer than the expected resolution time)

[SSH+22]

Identifying Blocking Actors in
Pull Requests

Identify who among contributor(s) and reviewer(s) is
to blame for overdue pull requests

[SSH+22]

Prioritizing Review Requests Prioritize code review requests based on factors such as
age of the change, test verdicts, etc.

[SB21]

Other

Classifying the Goal of a Re-
view Comment

Classify a review comment as Style, Functionality, Test,
Approval, Disagreeing, Questioning, Roadmap, Diver-
sion, Convention, Response or Encouragement

[LYY+17]

Generating Review Checklist Generate a checklist to guide the reviewer’s inspection [BC96]

Recommending Reviewers

Recommend reviewers that are best suited for the given
piece of code

[Bal13, TTK+15, XLWY15,
OKI16, YCLW16, YWYW16,
ZKB16, XSJ+17, JYH+17,
FPS18, AKB+19, LWW+19,
STD19, JLZ+19, MR20,
ATD+20, SGBU20,
COM+21, TTDE21, PT22,
LLA23, AWEA23, ZMB+23,
RRC16, CLBZ20, RAM+20,
Ye19]

Visualizing Code Changes
Provide visualizations of the change to review to ease
code comprehension

[MYG17, FS21, BV21,
FFSB23]

Configuring Static Code Analy-
sis Tools

Leverage code review comments for recommending
static code analysis tools and warning categories to be
used in future

[ZMA+22]

Finally, Wang et al. [WKIM21] suggest the automated linking of similar contributions
which may help in identifying duplicated patches and, more in general, in increasing the
reviewers’ awareness about changes impacting similar locations, thus promoting a better
code review.

Code Change Classification

Works in this area classify the whole code change to review again with the goal of augment-
ing the information available to reviewers before starting the code inspection. Predicting
whether the code change will be approved (merged) is the most popular code change clas-
sification task tackled in the literature [WLZ22, WZ22, LLG+22, SLL+19, FXLL18, IAS+22].
Works on this topic provide a representation of the code change as input to the approach
(e.g., to a deep learning model) expecting it to suggest whether the implemented change is
acceptable. A variation is to also provide the technique with information about the specific
change the developer was asked to implement (e.g., a reviewer comment that the contributor
had to address).
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The outputted boolean prediction can help, for example, to prioritize the diff hunks part
of a pull request, focusing on those likely to require a reviewer’s comment (i.e., likely to be
rejected [LLG+22]).

Another line of research aims at identifying code contributions which, due to their nature,
will require a large review effort. Uchôa et al. [UBC+21] automatically flag code changes
which are likely to impact the software design, thus requiring extra care in their assessment.
Wen et al. [WGRM18] propose BLIMP Tracer, a tool to support code review through impact
analysis information, thus helping in identifying changes impacting mission-critical deliv-
erables. Wang et al. [WBN21] generalize the problem to the automated identification of
large-review-effort changes while, at the other side of the spectrum, Zhao et al. [ZdCZ19]
target the identification of quickly reviewable changes, namely contributions that are easy
to merge or reject. Similarly to the work classifying the contributions as likely to be accept-
ed/reject, all these works provide code reviewers with information useful for prioritizing the
changes to inspect.

Code Change Quality Check

Researchers proposed solutions to (partially) automate the quality check usually in place
when reviewing a code change. Approaches addressing this task substantially vary in their
goal and complexity. Some of them focus on specific code quality aspects, such as predict-
ing whether a submitted patch is likely to introduce a bug [SEB16, SS19], identifying the
presence of missed clone refactoring opportunities [CMKS17], or checking whether the im-
plemented change violates existing design patterns [HWZ13]. Other techniques address the
same problem with, however, a more general view on code quality. Balachandran et al.
[Bal13]merge the output of several static analysis tools providing the contributor with a list
of potential flaws identified in the submitted patch.

With a similar goal, Hong et al. [HTT22] try to predict which parts of the code under
review (i.e., which lines). The specific issue possibly affecting the flagged lines is not re-
ported, making the approach useful in the context of within-patch review prioritization (i.e.,
deciding where to allocate more reviewing effort within a patch).

Markovtsev et al. [MLM+19] propose instead an approach that learns the code formatting
style of a given software project, identifies violations to such a style, and suggests possibly
fixes as automatically generated reviewer’s comments.

Several recent works built on top of the research we presented at ICSE’21 [TPT+21]
(Chapter 3) and at ICSE’22 [TMM+22] (Chapter 4), proposing techniques further pushing
the automation capabilities in the code-to-comment task we targeted (i.e., the automated
generation of reviewer comments). Li et al. [LYJ+22] and Li et al. [LLG+22] still use pre-
trained DL models to generate, given a piece of code, comments as a reviewer would do
(similarly to what we do in [TMM+22]). The former exploits a solution quite similar to the
one we proposed [TMM+22], with minor differences in the dataset pre-training. Instead,
Li et al. [LLG+22] adopt a different input representation for the model as compared to
our work: while our technique takes as input a single Java method to be reviewed, their
approach handles diff hunks which may span several methods and provide a more compre-
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hensive contextual information to the model. Also, before commenting on a given diff hunk,
they verify the quality of the code under review with a boolean classifier deciding whether
the code needs to be reviewed or not (e.g., a diff just adding an import statement may be
approved without the need for review).

Hong et al. [HTTA22] adopted a different strategy for commenting the code submitted
for review as a human would do. They exploit information retrieval to recommend reviewers’
comments posted in the past for code snippets similar to the one under review. This type
of approach could be particularly valid for types of changes that are frequent and for which
there is a good representation in the dataset.

Assessing Review Quality

While the previously discussed works focused on supporting the review process by either
providing additional information to the reviewer or by taking out work from them, works in
this area aim at automatically assessing the quality of the review. Such information is again
meant to be fed to the reviewer who can take proper actions to improve the review quality
if needed.

Works in this area can classify review comments as useful or not-useful for the contrib-
utor [PTPI14, RRK17, HII+21]. Rahman et al. [RKN22] addressed a similar problem but by
focusing specifically on comments requiring additional explanations to be properly under-
stood by the contributor (thus being a subcategory of not-useful comments).

Hijazi et al. [HDC+22, HCC+21] looked at the code review quality measurement from an
orthogonal perspective using biometrics data. By monitoring the reviewer’s activities (using
e.g., an eye-tracking device) they can provide feedback to the reviewer about areas of the
reviewed code they did not pay enough attention, thus suggesting a further check.

Code Review Sentiment Analysis

The code review process may result in critiques moved by a developer (reviewer) to one of
their peers (contributor). The way in which these critiques are formalized in the reviewer’s
comment can play an important role in the successful outcome of the whole process. For this
reason, researchers applied sentiment analysis techniques to automatically classify the senti-
ment of reviewers’ comments [ABIR17]: Flagging comments expressing a negative sentiment
can provide useful information to the reviewer, who can revise those potentially problematic
comments.

With a similar goal, Egelman et al. [EMHK+20] focus on the identification of a specific
type of reviewers’ comments expressing negative feelings, namely those suggesting the will
of the reviewer to block a change request for interpersonal conflicts rather than for the quality
of the submitted contribution.
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Retrieval of Similar Code Reviews/Code Changes

Retrieval techniques have been used to create recommender systems supporting code re-
view from different perspectives. Given a code fragment to review, some techniques [GS18,
GYH+20, SGF+20] retrieve from a dataset of past reviews those involving similar code frag-
ments and recommend to the reviewer comments they can reuse (since used in the past to
suggest improvements to similar code). Rahman et al. [RKN22] also proposed a similar ap-
proach, but motivated it as a mechanism to provide the contributor with additional examples
of reviews similar to those they are receiving. This could help in better understanding what
the reviewer meant.

Ueda et al. [UIIM19] focused instead on mining recurring improvement patterns from
code review (i.e., changes frequently suggested by reviewers). Those patterns can them be
potentially applied to improve the quality of the code to review (even before the review
process starts).

Relevant to this task category is also the previously discussed work by Hong et al. [HTTA22].

Revised Code Generation

This line of research aims at supporting code review by automatically generating the code
output of the code review process. In our works [TPT+21] (Chapter 3) and [TMM+22]
(Chapter 4) we proposed two variations of this task with respective automated solutions.
The fist provides as input to the automated technique a code snippet submitted for review
and expects the technique to revise such a code to implement changes which will likely be
requested during the code review process (code-to-code). These techniques are meant to
be used by the contributor before even starting the code review process to quickly verify
whether improvements can be made to the code they write. This task has been later on
tackled by Thongtanunam et al. [TPT22a] by overcoming one of the limitations of our first
proposal [TPT+21] related to the usage of code abstraction (details in Chapter 3). This work
has been published in parallel (same venue) with our second contribution [TMM+22], which
targeted instead several of the limitations of our first approach including, but not limited to,
the one related to code abstraction.

The second variation of this task is a code refinement task in which the approach is pro-
vided as input not only a code snippet submitted for review but also a specific reviewer’s
comment to address. In this case the goal of the approach is to automatically revise the
submitted code generating a version of it addressing the comment provided as input (code
& comment-to-code). These approaches are meant to be used during the code review pro-
cess either (i) by the reviewer, to attach to their comments an example of how they envision
the revised code, or (ii) by the contributor, to automatically address some of the reviewer’s
requests.

Huq et al. [HHH+22] and Li et al. [LLG+22] built on top of our work to present more
specialized [HHH+22] and performant [LLG+22] automated solutions. In particular, Huq
et al. [HHH+22] focused on automatically fixing functional bugs identified in the code re-
view process, thus specializing the model on this specific subset of code changes that can be
learned in the context of the code & comment-to-code task.
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Li et al. [LLG+22], instead, provided a broader support to developers by training their
model on code written in nine programming languages (in our works we only focus on Java).
Also, they consider entire code files as input to the model, as compared to the the method-
level granularity adopted in our work, thus providing more contextual information to the
model.

Time Management

Evidence from the literature suggests that both open source and industrial projects can un-
dergo hundreds of reviews per month (e.g., ∼500 reviews per month in Linux [RGCS14],
∼3k in Microsoft Bing [RB13]). In such a context time management becomes essential and
researchers proposed solutions to help the proper allocation of reviewers’ time. Differently
from previously discussed techniques which automated specific code review tasks, these ap-
proaches aim at augmenting the information available to reviewers and/or managers, thus
possibly improving decisions taken during code review.

Some of the proposed solutions can be combined in a sort of pipeline to support the code
review: Approaches to predict the time needed to complete a pull request [MBN19, SSH+22]
unlocked the possibility to identify overdue pull requests [SSH+22], namely those taking
longer than expected. The identified (problematic) pull requests can, in turn, be provided as
input to techniques identifying blocking actor(s) [SSH+22], namely the person(s) respon-
sible for the delay. This could help in triggering the blocking actor or, if possible, replace
them.

Still with the goal of optimizing the review time, Saini et al. [SB21] presented a technique
to prioritize code review requests considering factors such as the age of the change, whether
the change passed or not the tests, the number of revisions that have been already done for
that change, etc.

Other

The last category groups together tasks which did not fit in the previously presented cate-
gories and features heterogeneous tasks. This includes the code review task which has been
mostly subject to automation attempts in the literature: the recommendation of review-
ers that are best suited for a change [Bal13, TTK+15, XLWY15, OKI16, YCLW16, YWYW16,
ZKB16, XSJ+17, JYH+17, FPS18, AKB+19, LWW+19, STD19, JLZ+19, MR20, ATD+20, SGBU20,
COM+21, TTDE21, PT22]. These techniques, while sharing the same goal, differ for the un-
derlying technical solution adopted and for the features used to rank the reviewers given
the change. In most of cases the features include information extracted from the history of
code changes to favor the recommendation of reviewers who e.g., already worked in the past
on the code files subject of the change or already reviewed similar patches. The recency of
these activities is usually considered as well.

Another popular task in the “Other” category features approaches providing visualiza-
tions for the code change to review in order to simplify the reviewer’s inspection [MYG17,
FS21, BV21, FFSB23]. Note that we only included in our SLR visualization techniques specif-
ically aimed at supporting code review.
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Different works focus the visualization on different types of information. Brito and Va-
lente [BV21] propose RAID, a tool for refactoring-aware code review which visualizes the
refactoring operations implemented in the change to review. Fadhel and Sekerinski [FS21]
target instead visualizations aimed at improving the reviewer’s awareness of the possible
impact that the implemented changes can have on the system’s architecture. Fregnan et al.
[FFSB23] provide a more general-purpose graph-based visualization to support code review:
Each node represents a class or a method and the links between them represents dependen-
cies such as method calls. The goal here is to improve the navigation of the change and
its comprehension. Finally, still related to visualization is the behavioral diff tool generated
by the approach proposed in [MYG17]. The idea is to show the behavioral differences (in
terms of test case execution) which can be observed in the system before and after the im-
plementation of the code change to review. This can support the assessment of code change
correctness made by the reviewer.

Moving to the next task, Li et al. [LYY+17] present an approach to automatically classify
reviewers’ comments into the categories reported in Table 2.3 (e.g., style, functionality, etc.).
Their approach is meant to provide a better understanding and monitoring of the ongoing
review process. On top of that, with the proposal of data-driven techniques to automate
tasks such as generating review comments this approach can be used to cleanup the training
set of these techniques, removing for example the comments classified as “Encouragement”,
since irrelevant for training techniques suggesting how to improve code snippets.

Finally, Zampetti et al. [ZMA+22] suggest the automated analysis of review comments
posted in the past to understand which static analysis tools should be used in the continuous
integration pipeline of a given project and how they should be configured. In other words,
they aim at understanding what are the relevant “issues” reviewers look for when inspecting
a patch and which of those issues can be automatically identified by static analysis tools.
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3
Using Neural Machine Translation to Automate
Code Review

We present the first step we made towards automating code
review by using Deep Learning (DL) models. We focus on two
specific tasks. First, from the perspective of the contributor
(i.e., the developer submitting the code for review), we train
a transformer model [VSP+17] to “translate” the code submit-
ted for review into a version implementing code changes that
a reviewer is likely to suggest. In other words, we learn code
changes recommended by reviewers during review activities
and we try to automatically implement them on the code sub-
mitted for review. This could give a fast and preliminary feed-
back to the contributor as soon as they submits the code. This
model has been trained on 17,194 code pairs of Cs→ Cr where
Cs is the code submitted for review and Cr is the code imple-
menting a specific comment provided by the reviewer. Once trained, the model can take as
input a previously unseen code and recommend code changes as a reviewer would do. The
used architecture is a classic encoder-decoder model with one encoder taking the submitted
code as input and one decoder generating the revised source code. We name this first task
code-to-code.

Second, from the perspective of the reviewer, given the code under review (Cs) we want
to provide the ability to automatically generate the code Cr implementing on Cs a specific
recommendation expressed in natural language (Rnl) by the reviewer. This would allow (i)
the reviewer to automatically attach to their natural language comment a preview of how
the code would look like by implementing their recommendation, and (ii) the contributor
to have a better understanding of what the reviewer is recommending. For such a task, we
adapt the previous architecture to use two encoders and one decoder. The two encoders take
as input Cs and Rnl , respectively, while the decoder is still in charge of generating Cr . The
model has been trained with 17,194 triplets 〈Cs, Rnl〉 → Cr . We name this second task code
& comment-to-code.

19
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Note that the two tackled problems are two sides of the same coin: In the first scenario
(i.e., code-to-code), Cr is generated without any input provided by the reviewer, thus allowing
the usage of the model even before submitting the code for review. In the second scenario
(i.e., code & comment-to-code), Cr is generated with the specific goal of implementing a com-
ment provided by the reviewer, thus when the code review process has already started.

We quantitatively and qualitatively evaluate the predictions provided by the two ap-
proaches. For the quantitative analysis, we assessed the ability of the models in modifying
the code submitted for review exactly as done by developers during real code review activ-
ities. This means that we compare, for the same code submitted for review, the output of
the manual code review process and of the models (both in the scenario where a natural
language comment is provided or not as input). The qualitative analysis focuses instead on
characterizing successful and unsuccessful predictions made by the two models, to better
understand their limitations. The achieved results indicate that, for the code-to-code task
(1-encoder model), the model can correctly recommend a change as a reviewer would do in
3% to 16% of cases, depending on the number of candidate recommendations it is allowed
to generate. When also having available a reviewer comment in natural language (code &
comment-to-code, 2-encoder model), the performances of the approach are boosted, with the
generated code that correctly implements the reviewer’s comment in 12% to 31% of cases.

The content of this chapter has been presented in the following paper:

Towards Automating Code Review Activities

Rosalia Tufano, Luca Pascarella, Michele Tufano, Denys Poshyvanyk, Gabriele
Bavota. In Proceedings of the 43rd International Conference on Software Engineer-
ing (ICSE 2021), pp. 163-174.

3.1 Approach

Fig. 3.1 shows the basic steps of our approach. In a nutshell, we start by mining code reviews
from Java projects hosted on GitHub [git] and/or using Gerrit [ger] as code review platform
(Step 1 in Fig. 3.1). Given a code submitted by a contributor for review, we parse it to
extract the list of methods it contains. Indeed, in this first work on automating code reviews,
we decided to focus on small and well-defined code units represented by methods. We
identify all submitted methods ms. Then, we collect reviewer’s comments made on each ms
by exploiting information available in both GitHub and Gerrit linking a reviewer comment
to a specific source code line. We refer to each of those comments as rnl (i.e., a natural
language recommendation made by a reviewer). In such a phase, a set of filters is applied to
automatically discard comments unlikely to recommend and results in code changes (e.g.,
“thank you”, “well done”, etc.) (2). If the contributor decides to address (some of) the
received rnl , this will result in a revised version of ms addressing the received comments.
We refer to such a version as mr . Both ms and mr are abstracted to reduce the vocabulary
size and make them more suitable for DL [TPW+19, TWB+19, WTM+20] (3).
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Figure 3.1. Approach overview.

To increase the likelihood that mr actually implements in ms a specific reviewer’s com-
ment, we only consider ms that received a single comment in a review round. Thus, if a
revised version of ms is submitted, we can conjecture that it implements a single comment
received by a reviewer (4).

Such a process results in a dataset of Reviewed Commented Code Triplets (RCCTs) in the
form 〈ms, rnl〉 → mr . Such a dataset is used to train a transformer architecture using two
encoders (one processing ms and one rnl) and one decoder (generating mr). Such a model is
able, given a Java method (ms) and a reviewer comment about it (rnl) to generate a revision
of ms implementing rnl (i.e., mr) (5), thus to solve the code & comment-to-code task.

Starting from this dataset, we also generate a dataset of code pairs ms → mr obtained by
removing rnl from each of the previous dataset triplets. This dataset has been used to train
a second transformers-based model having one encoder (processing ms) and one decoder
(generating mr). Once trained, this model can take as input a previously unseen Java method
(ms) and recommend a revised version of it (mr) that would likely result from a review
round. Since no input is required from the reviewer in this model, it can be used by the
contributor to double check their implementation before submitting it for review (code-to-
code task).

In the next sections, we describe the different steps behind our approach.

3.1.1 Mining Code Review Data

We built two crawlers for mining from Gerrit and GitHub code review data. Before moving
to the technical details, it is important to clarify what the goal of this mining process is. Once
a code contribution (i.e., changes impacting a set of existing code files or resulting in new
files) is submitted for review, it can be a subject to several review rounds. Let us assume
that Cs is the set of code files submitted for review, since subject to code changes. A set of
reviewer comments {rnl} can be made on Cs and, if some/all of them are addressed, this
will result in a revised version of the code Cr1. This is what we call a “review round”, and
can be represented by the triplet 〈Cs , {rnl}〉 → Cr1. The completion of a review round does
not imply the end of the review process. Indeed, it is possible that additional comments are
made by the reviewers on Cr1 and that those comments are addressed.
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This could result, for example, in a second triplet 〈Cr1 , {rnl}〉 → Cr2. The goal of our
mining is to collect all triplets output of the code review rounds performed in Gerrit and in
GitHub.

To this aim, we developed two miner tools tailored for systematically querying Gerrit and
GitHub public APIs. The double implementation is required, because despite the fact that
both platforms provide a similar support for code review, the public APIs used to retrieve
data differ. Gerrit does not offer an API to retrieve all the review requests for a given project,
but it is possible to retrieve them for an entire Gerrit installation (i.e., an installation can
host several projects, such as all Android-related projects). Starting from this information,
we collect all “review rounds”, and finally, we reorganized the retrieved data by associating
the own set of reviews to each project. Overall, we mined six Gerrit installations, for a total
of 6,388 projects.

GitHub instead offers an API to collect a list of ids of all review requests per project. In
this case, we mined a set of 2,566 GitHub Java repositories having at least 50 PRs obtained
by querying the GitHub APIs.

The output of this process is represented, for each review round, by (i) the set of code
files submitted for review, (ii) the comments received on this code files with information
about the specific impacted lines (character-level information is available for Gerrit), and
(iii) the revised code files submitted in response to the received comments.

3.1.2 Data Preprocessing

After having collected the data from Gerrit and GitHub, we start its preprocessing, with the
goal of building the two previously mentioned datasets of triplets (〈ms, rnl〉 → mr) for the
code & comment-to-code task and pairs (ms → mr) for the code-to-code task.

Methods Extraction and Abstraction

We start by parsing the Java files involved in the review process (both the ones submitted for
review and the ones implementing the code review comments) using the Lizard [liz] Python
library. The goal of the parsing is to extract the methods from all the files. Indeed, as said, we
experiment with the DL models at method-level granularity, as also done in previous work
[TPW+19, TWB+19, WTM+20]. After this step, for each mined review round, we have the
list of Java methods submitted for review, the reviewers’ comments, and the revised list of
methods resubmitted by the author to address (some of) the received comments.

Then, we adopt the abstraction process described in the work by Tufano et al. [TPW+19]
to obtain a vocabulary-limited yet expressive representation of the source code. Recent
work on generating assert statements using DL [WTM+20] showed that the performance
of sequence-to-sequence models on code is substantially better when the code is abstracted
with the procedure presented in [TPW+19] and implemented in the src2abs tool [srcb].
Triplets for which a parsing error occur during the abstraction process on the ms or on the
mr methods are removed from the dataset. Fig. 3.2 shows an example of abstraction proce-
dure we perform. The top part represents the raw source code.
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public PageProperties getProperties() {
    if (hasProperties()) {
        return properties;
     } else {
        return null;
     }
}

public TYPE_1 METHOD_1 ( ) { if ( METHOD_2 ( ) ) 
{ return properties ; } else { return null ; } } 

raw source code

abstracted code

Figure 3.2. Example of abstraction.

src2abs uses a Java lexer and a parser to represent each method as a stream of tokens,
in which Java keywords and punctuation symbols are preserved and the role of each iden-
tifier (e.g., whether it represents a variable, method, etc.) as well as the type of a literal is
discerned.

IDs are assigned to identifiers and literals by considering their position in the method
to abstract: The first variable name found will be assigned the ID of VAR_1, likewise the
second variable name will receive the ID of VAR_2. This process continues for all identifiers
as well as for the literals (e.g., STRING_X, INT_X, FLOAT_X). Since some identifiers and
literals appear very often in the code (e.g., variables i, j, literals 0, 1, method names such as
size), those are treated as “idioms” and are not abstracted. We construct our list of idioms
by looking for the 300 most frequent identifiers and literals in the extracted methods (list
available in the replication package [repc]). The bottom part of Fig. 3.2 shows the abstracted
version of the source code. Note that during the abstraction code comments are removed.
src2abs is particularly well suited for the abstraction in our context, since it implements a
“pair abstraction mode”, in which a pair of methods can be provided (in our case, ms and
mr) and the same literals/identifiers in the two methods will be abstracted using the same
IDs. As output of the abstract process, src2abs does also provide an abstraction map M
linking the abstracted token to the raw token (e.g., mapping VAR_1 to sum). This allows to
go back to the raw source code from the abstracted one [TPW+19].

Linking and Abstracting Reviewer Comments

Each collected reviewer comment is associated with the specific set of code lines it refers to.
This holds both for Gerrit and GitHub. Using this information, we can link each comment
to the specific method (if any) it refers to: Given ls and le the start and the end line a given
comment refers to, we link it to a method mi if both ls and le fall within mi ’s body, signature,
or annotations (e.g., @Override). If a comment cannot be linked to any method (e.g., it
refers to an import statement) it is discarded from our dataset, since useless for our scope.

After having linked comments to methods for each review round, we are in the situation
in which we have, for each review round, a set of triplets 〈ms, mr , and {rnl}〉, where ms and
mr represent the same abstracted method before and after the review round, and {rnl} is
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a set of comments ms received in this round. At this point, we also abstract all code com-
ponents mentioned in any comment in {rnl} using the abstraction map obtained during the
abstraction of ms and mr . Thus, assuming that the comment mentions “change the type of
sum to double” and that the variable sum has been abstracted to VAR_1, the comment is trans-
formed into “change the type of VAR_1 to double”. On top of this, any camel case identifier
that is not matched in the abstraction map but that it is present in the comment, is replaced
by the special token _CODE_. Such a process ensures consistency in (i) the representation
of the code and the comment that will be provided as input to the 2-encoder model, and (ii)
the representation of similar comments talking about different _CODE_ elements.

Filtering Out Noisy Comments

Through a manual inspection of the code review data we collected, we noticed that a non-
negligible percentage of code comments we were collecting, while linked to source code
lines, were unlikely to result in code changes and, thus, irrelevant for our study. For example,
if two reviewers commented on the same method, one saying “looks good to me” and the other
one asking for a change “please make this method static”, it is clear that any revised version
of the method submitted afterwards by the contributor would be the result of implementing
the second comment rather than the first one. With the goal of minimizing the amount of
noisy comments (i.e., comments unlikely to result in code changes) provided to our model,
we devised an approach to automatically classify a comment as likely to lead to code changes
(from now on simply relevant) or unlikely to lead to code changes (irrelevant).

We started by creating a dataset of comments manually labeled as relevant or irrelevant.
To this aim, we randomly selected from our dataset a set of 1,875 comments and related
methods ms. These comments come from 500 reviews performed on Gerrit and 500 per-
formed on GitHub. On our dataset (that we will detail later), such a sample guarantees a
significance interval (margin of error) of ±3% with a confidence level of 99% [Ros11a]. The
comments have then been loaded in a web-app we developed to support the manual analysis
process, that was performed by three researchers. The web-app assigned each comment to
two evaluators and, in case of conflict (i.e., one evaluator said that the comment was relevant
and one that was irrelevant) the comment was assigned to a third evaluator, that solved the
conflict through majority voting.

Conflicts arose for 21% of the analyzed comments. Examples of comments labeled as
irrelevant include simple and obvious cases such as “Thanks!” and “Nice”, but also more
tricky instances difficult to automatically identify (e.g., “At least here it is clear that the equals
method of the implementors of TreeNode is important”).

The final labeled dataset consists of 1,875 comments, of which 1,676 have been labeled
as relevant and 199 as irrelevant. We tried to use a simple Machine Learning (ML)-based
approach to automatically classify a given comment as relevant or not. We experimented
with many different variants of ML-based techniques for this task. As predictor variables (i.e.,
features) of each comment, we considered n-grams extracted from them, with n ∈ {1,2, 3}.
Thus, we consider single words as well as short sequences of words (2-grams and 3-grams)
in the comment.
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Before extracting the n-grams, the comment text is preprocessed to remove punctuation
symbols and put all text to lower case. In addition to this, only when extracting 1-grams,
English stopwords [eng] are removed and the Porter stemmer [Por80] is applied to reduce
all words to their root. These two steps are not performed in the case of 2- and 3-grams,
since they could break the “meaning” of the extracted n-gram (e.g., from a comment “if
condition should be inverted” we extract the 2-gram “if condition”; by removing stopwords,
the if would be removed, breaking the 2-gram). Finally, in all comments we abstract the
mentioned source code components as previously explained.

After having extracted the features, we trained the Weka [wek] implementation of three
different models, i.e., the Random Forest, J48, and Bayesian network [Bre01] to classify
our comments. We performed a 10-fold cross validation to assess the performance of the
models. Since our dataset is substantially unbalanced (89% of the comments are relevant),
we re-balanced our training sets in each of the 10-fold iterations using SMOTE [CBHK02],
an oversampling method which creates synthetic samples from the minor class. We experi-
mented each algorithm both with and without SMOTE. Also, considering the high number
of features we extracted, we perform an information gain feature selection process [Mit97]
aimed at removing all features that do not contribute to the information available for the
prediction of the comment type. This procedure consists of computing the information gain
of each predictor variable. This value ranges between 0 (i.e., the predictor variable does not
carry any useful information for the prediction) to 1 (maximum information). We remove
all features having an information gain lower than 0.01.

We analyze the results with a specific focus on the precision of the approaches when
classifying a comment as relevant. Indeed, what we really care about is that when the model
classifies a comment as relevant, it is actually relevant and will not represent noise for the
DL model. The achieved results reported the Random Forest classifier using the SMOTE
filter as the best model, with a precision of 91.6% (meaning, that ∼92 out of 100 comments
classified as relevant are actually relevant). While such a result may look good, it is worth
noting that 89% of the comments in our dataset are relevant.

This means that a constant classifier always answering “relevant” would achieve a 89%
precision. Thus, we experimented with a different and simpler approach. We split the dataset
of 1,875 comments into two parts, representing 70% and 30% of the dataset. Then, one of
the researchers tried to define simple keyword-based heuristics with the goal of maximizing
the precision in classifying relevant comments on the 70% subset. Through a trial-and-error
process they defined a set of heuristics that we provide in the replication package [repc].
In short, these heuristics aim at removing: (i) useless 1-word comments (e.g., “nice”), (ii)
requests to change formatting with no impact on code (e.g., “please fix indentation”), (iii)
thank you/approval messages (e.g., “looks good to me”), (iv) requests to add test code, that
will not result in changes to the code under review (e.g., “please add tests for this method”),
(v) requests for clarification (e.g., “please explain”), (vi) references to a previous comment
that cannot be identified (e.g., “same as before”), and (vii) requests to add comments, that we
ignore in our study (e.g., “add to Javadoc”). Once there was no more room for improvement
on the 70% subset, the set of defined heuristics has been tested on the 30% dataset, achieving
precision of 93.4% in classifying relevant comments.
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On the same 30% test set, the running of a Random Forest trained on the 70% dataset
achieved precision of 92.1%. Given these results, we decided to use the set of defined heuris-
tics as one of the filtering steps in our approach when preparing the dataset for training our
models.

Basically, these heuristics remove from the triplets 〈ms, mr , {rnl}〉 comments in {rnl} that
are unlikely to have triggered the code changes that transformed ms in mr .

3.1.3 Automating Code Review

Dataset Preparation

Starting from the collected triplets, our goal is to build two datasets for the training/test of
1- and 2-encoder model, with the aim of solving the code-to-code and code & comment-to-code
tasks respectively. First, we removed from all triplets the comments classified as noisy. Then,
we built the dataset for the 2-decoder model since the other one can be easily obtained from
it. We apply a set of filtering steps to obtain triplets 〈ms, mr , {rnl}〉 in which:

{rnl} does not contain any comment posted by the contributor. We are interested only in
reviewers’ comments. Thus, author’s comments are removed, leaving 231,439 valid triplets.
{rnl} does not contain any comment linked to lines in the related method representing code

comments. Such rnl are removed from each {rnl} before the abstraction process since, as
previously explained, the abstraction removes comments.

ms and mr , after the abstraction, must be different. If ms and mr are not different, we can
remove the triplet, since this means that no code change has been implemented as result of
the reviewer’s comments. Thus, there is nothing to learn for our models. Such a scenario
can happen in the case in which the change is applied to code indentation, code comments,
etc.

ms and mr have a reasonable length that can be handled through NMT models. The vari-
ability in sentences length can affect training and performance of NMT models even when
techniques such as bucketing and padding are employed. Thus, we exclude all triplets having
ms or mr longer than 100 tokens after abstraction. Such a filtering step has been performed
in previous work [TPW+19, TWB+19, WTM+20], and it is responsible for the removal of
148,539 triplets from our dataset.

mr does not introduce identifiers or literals that were not present in ms. If mr introduces,
for example, a new variable VAR_3 that was not present in ms, in a real usage scenario it
would not be possible for the model to generate the concrete raw source code for mr , since
it could not guess what the actual value for VAR_3 should be. Thus, the model would be
useless to developers. Such a limitation is due to the abstraction process that, however, has
the advantage of limiting the vocabulary size and of helping the model learning [WTM+20].
However, the presence of idioms allows to retain in our dataset triplets that otherwise would
be discarded because of the inability to synthesize new identifiers/literals in mr .
{rnl} is a singleton, meaning that a single comment has been provided by a reviewer on ms.

All triplets containing more than one comment in {rnl} have been removed, since in those
cases we cannot know what was the comment that triggered the transformation of ms in mr .
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The remaining triplets are thus in the form 〈ms, mr , rnl〉. We preprocess the rnl com-
ment to remove from it stopwords [eng], and links identified through regular expressions
(e.g., links pointing to online examples). Then, we clean the comment from superfluous
punctuation like an ending question mark. At the end, we transform all comment words
that are not code IDs in lower case, e.g., the comment “Could we use String instead of Text?”
is transformed into “String instead T Y PE_1”. Finally, we remove duplicates from the dataset.

After this process, the remaining 17,194 triplets represent what we call the Dt dataset,
used for training/evaluating the 2-encoder model (code & comment-to-code task). By remov-
ing from each triplet the rnl comment, we obtain the Dp dataset, that is instead used to train
and evaluate the 1-encoder model (code-to-code task). Besides this difference in the two
datasets, the code ms in Dt includes two special tokens <START> and <END> which mark
the part of the code interested by the reviewer’s comment rnl . These tokens are removed in
the Dp dataset, since the 1-encoder model should be used in a scenario in which no com-
ments have been provided by the reviewer yet. Both datasets have been split into training
(80%), evaluation (10%) and test (10%) sets.

code-to-code: Recommending Changes

The 1-encoder model is meant to help the developer anticipating the changes a reviewer
might suggest on the submitted code. Therefore, we want to learn how to automatically
generate mr given ms (i.e., code-to-code). For this task we use a classic transformer model
[VSP+17]. The transformer model consists of an encoder and decoder, which takes as input
a sequence of tokens and generates another sequence as output, but it only relies on the
attention-mechanism, without implying any recurrent networks. Both encoder and decoder
consist of multiple layers each of which is composed of Multi-Head Attention and Feed For-
ward layers. In this first scenario we train a transformer model with one encoder that will
take as input the sequence ms and one decoder that will generate one or multiple suggestions
for mr .

code & comment-to-code: Implementing Changes Recommended by the Reviewer

The idea for the second scenario is to automatically implement a reviewer recommendation
expressed in natural language in order to produce a practical example of what the reviewer
wants. Therefore, given ms and rnl we want to automatically generate the sequence mr
(i.e., code & comment-to-code). Also for this task we train a transformer model, but using
two encoders and one decoder. The two encoders take as input the sequences ms and rnl ,
respectively, while the decoder generates one or multiple suggestions for mr . To implement
both models we used the Python library OpenNmt-tf [KKD+18, opea].

Hyperparameter Search

For both models, in order to find the best configurations, we performed hyper-parameter
search by adopting a Bayesian Optimization strategy [SLA12, HHL11].
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Table 3.1. Hyperparameters and the best configuration

Hyperparameter Possible values 1-encoder 2-encoder

Embedding size [128,256, 512,1024, 2048] 256 512
Encoder layers [1,2, 3,4] 1 2
Decoder layers [1,2, 3,4] 2 4
Number of units [128,256, 512,1024, 2048] 256 512
Ffn dimension [128,256, 512,1024, 2048] 256 512
Number of heads [2,4, 8] 8 4
Learning rate (0.0, 1.0) 0.5132 0.3370
Dropout (0.0,0.4) 0.2798 0.1168
Attention dropout (0.0,0.4) 0.1873 0.1794
Ffn dropout (0.0,0.4) 0.2134 0.2809

We created the space of possible configurations selecting the 10 hyper-parameters re-
ported in Table 3.1 and choosing for each one an interval of possible values by looking at the
DL literature. Given the large size of the domain space, to explore it, we chose the Tree Parzen
Estimator (TPE) [BBBK11, BYC13a] as optimization algorithm with the maximum number
of trials equals to 40. This means that 40 different configuration of hyper-parameters have
been tested for each model. Each configuration has been trained for a maximum of 50k steps
using the number of perfect predictions on the evaluation set as optimization metric. This
means that the best configuration output of this process is the one for which the model is
able to generate the highest number of mr strings that are identical to the ones written by
developers. To support this process, we used the Hyperopt Python library [BYC+13b, hyp].

Generating Multiple Solutions via Beam Search

Once the best configuration of each model has been selected, we evaluate it on the unseen
samples of the test set. With the idea that the outputs generated by the models must be
suggestions for developers/reviewers, we adopt a Beam Search decoding strategy [BCB15,
BBV13, Gra12, RVY14] to generate multiple hypotheses for a given input. An output se-
quence is generated by adding the most likely token given the previous ones step by step.
Beam search, instead of considering only the sequence of tokens with the best probability,
considers the top-k more probable hypotheses, where k is known as the beam size. Thus,
beam search builds k sequences simultaneously. At each timestep, it explores the space of
possible hypotheses, consisting of the sequences obtainable by adding a single token to the
previous k partial sequences. The process ends when the k sequences are completed. We
experiment with beam sizes k = 1, 3,5, 10.
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3.2 Study Design

The goal of this study is to empirically assess whether NMT can be used to partially automate
code review activities, in particular the two defined code-to-code and code & comment-to-code
tasks. The context consists of the Dp and Dt datasets (Section 3.1).

The study aims at tackling the following research questions:

• RQ1: To what extent is NMT a viable approach to automatically recommend to developers
code changes as reviewers would do? This RQ focuses on the “contributor perspective”
(i.e., code-to-code task). We evaluate the ability of an NMT model to automatically
suggest code changes for a submitted code contribution as reviewers would do. We do
not focus on generating the natural language comment explaining the code changes
that a reviewer would require, but on providing to the developer submitting the code
Cs a revised version of it (Cr) that implements changes that will be likely required in
the review process. We employ the Dp dataset in the context of RQ1.

• RQ2: To what extent is NMT a viable approach to automatically implement changes rec-
ommended by reviewers? The second RQ focuses on the previously described “reviewer
perspective” (i.e., code & comment-to-code task) and assesses the ability of the NMT
model to automatically implement in a submitted code Cs a recommendation provided
by a reviewer and expressed in natural language (Rnl), obtaining the revised code Cr .
We employ the Dt dataset in the context of RQ2.

3.2.1 Data Collection and Analysis

To answer RQ1 we run the best configuration of the 1-encoder model obtained after hy-
perparameter tuning (Section 3.1.3) on the test set of the Dp dataset, and we perform an
inference of the model using beam search [RVY14]. Given the code predicted by the NMT
model, we consider a prediction as correct if it is identical to the code manually written by
a developer after a review round (we refer to these cases as “perfect predictions”). Since we
experiment with different beam sizes, we check whether a perfect prediction exists within
the k generated solutions. We report the raw counts and percentages associated with perfect
predictions for each beam size.

Besides reporting the perfect predictions, we also compute the BLEU-4 score [PRWZ02]
of all predictions. The BLEU score is a metric used for assessing the quality of text auto-
matically generated in the context of a NMT task [PRWZ02]. It takes values between 0%
and 100%, where 100% indicates a perfect prediction, meaning that the predicted text is
identical to the reference one. We use the BLEU-4 variant, computed by considering the 4-
grams in the generated text and previously used in other software engineering papers (e.g.,
[WTM+20, TWB+19]).

Also, to assess the effort needed by developers to convert a prediction generated by the
model into the reference (correct) code, we compute the Levenshtein distance [Lev66] at
token-level. This is the minimum number of token edits (insertions, deletions or substitu-
tions) needed to convert the predicted code into the reference one.



30 Using Neural Machine Translation to Automate Code Review

Since such a measure is not normalized, it is difficult to interpret. For this reason, we
normalize such a value by dividing it by the number of tokens in the longest sequence among
the predicted and the reference code.

Finally, we complement our quantitative data with a qualitative analysis aimed at report-
ing (i) examples of perfect predictions, categorized based on the type of code change that the
model automatically implemented; and (ii) non-perfect predictions, to understand whether
they still can be valuable for developers. Concerning the first point, two researchers manu-
ally analyzed all 271 perfect predictions independently, and categorized them by assigning
to each prediction a label describing the change automatically injected by the model. Con-
flicts, that arose in 11% of cases, have been solved through an open discussion. We present
the obtained taxonomy as an output of this analysis. As for the second point, we use the
BLEU score ranges 0-24, 25-49, 50-74 and 75-99 to split the imperfect predictions. Then,
we randomly selected 25 instances from each set and two researchers manually evaluated
them to determine if the recommended code change is still meaningful while being different
to the reference one. Also in this case, conflicts (i.e., cases in which the two researchers
consistently disagreed) that arose in 9% of cases were solved through open discussion.

To answer RQ2 we run the exact same analysis described for RQ1, but by using the Dt
dataset. The main differences are related to the performed qualitative analysis. When eval-
uating the perfect predictions, we decided to focus on the perfect predictions obtained by
the 2-encoder model but not by the 1-encoder model. Indeed, those are most likely the cases
in which the comment provided as input played a role in the prediction. For those 300 in-
stances, the two researchers labeled the reviewers’ comments to assign a label expressing
the type of code change required by the reviewer. In other words, while in RQ1 the goal
was on categorizing the type of code change implemented by the model, here the focus is
on the type of change requested by the reviewer in the comment. The goal is to identify cat-
egories of code comments that help the model in correctly implementing the required code
change. In this case, conflicts arose for 8% of cases. The second difference, still related to
the qualitative analysis, is represented by analyzed failure cases: Here the goal was to check
whether the change implemented by the model, while different from the one manually im-
plemented by the developer, was still a meaningful implementation of the change requested
by the reviewer (conflicts in 2% of the analyzed instances).

3.3 Results Discussion

Table 3.2 reports the results we achieved with 1-encoder model for the code-to-code task (top
part of Table 3.2) and with the 2-encoder model for the code & comment-to-code task (bottom
part). It is important to remember that the two models have been experimented exactly on
the same code review instances but that the 1-encoder model has been trained/tested on the
Dp dataset, featuring pairs ms → mr , while the 2-encoder model deals with the Dt dataset,
composed by triplets 〈ms, rnl〉 → cr . In other words, when generating mr , the 2-encoder
model can take advantage of the comment provided by the reviewer (rnl) and asking the
specific change transforming ms into mr , while this is not the case for the 1-encoder model.
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Table 3.2. Quantitative results: Perfect predictions, BLEU-4, and Levenshtein distance achieved by
the models

Beam Perfect Predictions BLEU-4 Levenshtein distance
Size # % mean median st. dev. mean median st. dev.

1-encoder (code-to-code)

1 50 2.91% 0.7706 0.8315 0.1929 0.2383 0.2000 0.1670
3 156 9.07% 0.8468 0.8860 0.1419 0.1726 0.1454 0.1427
5 200 11.63% 0.8644 0.8980 0.1317 0.1554 0.1271 0.1348
10 271 15.76% 0.8855 0.9145 0.1166 0.1355 0.1092 0.1247

2-encoder (code & comment-to-code)

1 209 12.16% 0.8164 0.8725 0.1863 0.1849 0.1422 0.1734
3 357 20.77% 0.8762 0.9244 0.1484 0.1321 0.0838 0.1468
5 422 24.55% 0.8921 0.9376 0.1351 0.1173 0.0696 0.1366
10 528 30.72% 0.9142 0.9543 0.1169 0.0953 0.0519 0.1204

The first thing that catches the eye from the analysis of Table 3.2 are the better perfor-
mance ensured by the 2-encoder model. The gap, at any level of beam size, is substantial.
When only one prediction is generated (i.e., k = 1) the 1-encoder model can generate the
correct code in 50 cases (2.91% of the test set) against the 209 (12.16%) ensured by the 2-
encoder model. This is a 4× improvement. The trend is confirmed for all k values, with the
difference, however, becoming less strong with the increase of k. Indeed, when 10 candidate
predictions are performed, 271 perfect predictions (15.76%) are generated by the 1-encoder
model against the 528 (30.72%) of the 2-encoder model. While the gap in performance is
still notable (+94.83% perfect predictions for the 2-enconder model), it is less marked as
compared to the lowest beam size.

The BLEU-4 scores and the normalized Levenshtein distance confirm the observed trend,
with the code generated by the 2-encoder model being closer to the reference code (i.e.,
the one manually written by the developers). One observation that can be made for the
2-encoder model is that, when generating three possible previews for the code change rec-
ommended by the reviewer (k = 3), there is one of them requiring, on average, to only
change ∼13% of the code tokens to obtain the reference code (median = 9%).

As a next step, we qualitatively analyze (i) all 271 perfect predictions obtained by the
1-encoder model with k = 10, and (ii) all 300 perfect predictions obtained by the 2-encoder
model with k = 10 and for which the 1-encoder model failed to generate the correct predic-
tion.

Table 3.3 reports a classification of the code changes performed in the 1-encoder model
perfect predictions. One perfect prediction can contribute to multiple categories, since sev-
eral categories of changes may be performed in a single prediction. We classified each change
into two macro categories, namely Refactoring and Behavioral changes. The former groups
code transformations that we judged as unlikely of resulting in behavioral changes, while
the latter should impact the code behavior.
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Table 3.3. Changes in the 1-encoder’s perfect predictions

Refactoring (93)

Method Visibility 48
Modifies modifier 20
Adds modifier 17
Removes modifier 11

Readability 42
Adds/Removes curly brackets 8
Adds/Removes “this” keyword 6
Removes unneeded variable declaration 5
Merges two code statements 4
Removes logging information 4
Simplifies return statement 4
Removes parenthesis from return statement 3
Removes unneeded ; 2
Removes unneeded variable cast 2
Replaces else-if with if 1
Replaces if-else with inline if 1
Removes unneeded object instance 1
Removes unneeded return statement 1

Type 3
Modifies variable type 3

Behavioral changes (197)

Code Removal 124
If statement 32
Method Invocation 31
Return Statement 24
Variable 21
Deletes Method Body 15
For Loop 1

Method Invocation 31
Modifies parameters in method call 20
Modifies method invocation 10
Replaces method call 1

Exception Handling 26
Removes thrown exception 13
Removes try- catch 8
Removes try- finally 4
Moves variable assignment to finally block 1

Inheritance 8
Removes invocation to parent’s constructor 3
Removes Override annotation 3
Adds call to parent’s constructor 1
Adds modifier (final) 1

Concurrency 6
Removes synchronized 6

Bug-fixing 2
Modifies if condition 2
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Within each macro category, a further categorization is performed to help understanding
the types of code transformations learned by the model.

In the refactoring category, changes have been applied to the method visibility (e.g.,
with the addition/removal/modification of public, private, etc. modifiers), to the type
of variables (e.g., change a variable declaration from HashMap <String, String> VAR_1

= new HashMap<>(); to Map <String, String> VAR_1 = new HashMap<>();), and to
improve the code readability. This sub-category features several interesting types of changes
that the model recommended to simplify the code. For example, a developer submitted a
method having as body TYPE_4 <TYPE_2> reader = view.VAR_1(); return reader;.
The model recommended to remove the unneeded variable declaration, transforming the
method body into return view.VAR_1();.

In the behavioral changes category, two of the implemented changes aimed at fixing bugs
by modifying an if condition. For example, in one case the model added the negation
(i.e.,! operator) to the if condition. Such a change was also recommended by the reviewer:
“Negation missing?”. Note that the reviewer’s comment was not available to the 1-encoder
model. Also other cases in the behavioral changes category may be related to bug-fixes but
we did not have the confidence to classify them as such. For example, in the modifies param-
eters in method call category, a method invocation message.substring(0, VAR_1+1) was
changed into message.substring(0, VAR_1). The reviewer’s comment mentioned: “This
line will return a substring of length maxLength + 1. If the substring needs to be no longer than
maxLength, then replace “maxLength + 1” with just maxLength” (VAR_1 maps to maxLength
in the abstraction map). Thus, this is likely a bug fix, assuming that the expected behavior
was the one described by the reviewer.

One message that can be derived from Table 3.3 is that the 1-encoder model is able to
learn a variety of code transformations, most of them being relatively simple in terms of code
changes, but sometimes solving functional/non-functional quality issues difficult to spot.

Concerning the analysis of the 2-encoder perfect predictions, here we focus on the cases
in which the 1-encoder model was not able to identify the change to perform. The complete
categorization of code changes we performed is available in the replication package [repc].
We present here (Table 3.4) the 20 novel categories of changes we found that were not
learned by the 1-encoder model. While we anlayzed 300 instances of perfect predictions
performed by the 2-encoder but not by the 1-encoder, only 32 of them (11 refactorings +
21 behavioral changes) fall into categories of changes that were completely missed by the
1-encoder. This suggests that the additional comments provided as input to the 2-encoder
model, while able to substantially boost its performance (528 vs 271 perfect predictions
when k = 10), do not allow it to learn many types of code changes missed by the 1-encoder.
The manual analysis also gave us the opportunity to check the effectiveness of the heuristic
we use to filter out irrelevant code comments.

We found that 22 out of the 300 inspected comments were irrelevant for the performed
code changes (i.e., were false positives that should have been discarded), leading to a ∼93%
precision for our heuristic.
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Table 3.4. Types of changes in the 2-encoder’s perfect predictions not learned by the 1-encoder

Refactoring (9)

Readability 5
Simplify if condition 3
Simplify if-else statement 1
Remove unneeded null check 1

Type 3
Remove type info from collection 3

Variable 1
Add modifier 1

Behavioral changes (23)

Return 6
Modify return type 4
Modify return value 2

Code Removal 4
Code block 3
Switch case 1

Exception Handling 4
Modify thrown exceptions 2
Modify try-catch 1
Use try-with-resource pattern 1

Concurrency 3
Remove concurrency lock 1
Remove unnecessary sync guard 1
Use shared variable instead of its copy 1

Inheritance 3
Modify parent’s constructor call 3

Bug-fixing 2
Change value of boolean 2

Code Addition 1
Add missing return 1
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Looking at Table 3.4, we can see that several of the new types of changes are still simple
code changes that, however, the model was only able to learn once the reviewer’s com-
ment recommending them was provided (e.g., the reviewer recommended to “use final” as
modifier for a variable, and the model successfully implemented the change). Others are
instead more interesting, such as cases in which the model recommended to delete entire
code blocks. Looking at them, in some cases the reviewers’ were recommending an extract
method, that was also suggested by the model. Clearly, the model limits the recommenda-
tion to the “source” part of the refactoring (i.e., suggests which statements to extract, but
not where to put them). Also, the 2-encoder model was able to learn more complex code
changes that can be useful to a reviewer to quickly get a preview of how the code would look
like with her comment implemented. For example, in one case the reviewer commented “We
use Java7, so you should use the try-with-resources feature”; the 2-encoder model was able to
provide as output the code implementing such a change.

As a final analysis, we looked at 100 non-perfect predictions for each model selected in
the BLEU score ranges 0-24, 25-49, 50-74, and 75-99 (25 each) to determine if the recom-
mended code change is still meaningful while being different from the reference code. For
the 1-encoder, we found five (5%) of the non-perfect predictions to be still meaningful and
semantically equivalent to the code written by developers (1 in the BLEU range 50-74 and
4 in 75-99). Six (6%) instances were instead found for the 2-encoder model (1 in 25-49, 3
in 50-74, and 1 in 75-99) as being successful cases of reviewer’s comment implementation
(despite being different from the change implemented by the developer). For instance, in
one of these cases the reviewer asked to use for a public method the protected or default
visibility. The developer replaced the public keyword with protected, while the 2-encoder
model just removed the public keyword, thus using the default visibility. Overall, we can
estimate an additional ∼5% of performance for the experimented models on top of what
reported by the perfect predictions.

3.4 Conclusions

We experimented with DL techniques, defining two different transformer-based architec-
tures, in the context of automating two code review activities: (i) recommending to the
contributor code changes to implement as reviewers would do before submitting the code
for review (code-to-code); and (ii) providing the reviewer with the code implementing a
comment they have on a submitted code (code & comment-to-code).

While the achieved results are promising, this preliminary work has substantial limita-
tions. First, the data used for the training and evaluation of the models. As described in
Section 3.1.2, we applied several filters to foster the learning of the model and simplify the
dataset, thus impacting its representativeness of real code review activities. For example, we
discarded all Cs/Cr composed by more than 100 tokens, to speedup the model training and
control the complexity of the learning. Second, we did not work on raw source code, but
on an abstracted version which allowed us to limit the vocabulary size and avoid the model
suffering from the out-of-vocabulary problem (i.e., the model is not able to represent tokens
that never show up in the training data).
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While being beneficial for the learning phase, the abstraction does not allow the model
to handle cases in which the transformation from Cs→ Cr results in the introduction of new
identifiers and literals that were not present in Cs. This means that the model cannot fix
code quality issues requiring the introduction of new identifiers/literals.

These observations led us to our second work on the problem of automating code review
activities described in the next Chapter of this thesis.

3.5 Replication Package

We release all code and data used in our study in a comprehensive replication package [repc].
It contains:

• the two datasets used for experimenting with the two Transformer models, as well as
the raw starting data;

• all scripts used to train and test the models;

• all the obtained predictions from the trained models, as well as boxplots of the BLEU
score of the predictions;

• all the utilities (e.g., the list of idioms used, the list of filters we applied to the data,
the logic used to remove not relevant comments);

• instructions to replicate our research.
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Using Pre-trained Models to Boost Code Review
Automation

In this Chapter we describe how we experimented with DL
models for code review automation in more realistic and
challenging scenarios as compared to our first work on the
topic detailed in Chapter 3. The goal was to overcome the
limitations of our previous work discussed in Section 3.4.

We start by training a Text-To-Text-Transfer Trans-
former (T5) model [RSR+20] on datasets similar to the
ones described in Chapter 3. However, we adopt a tok-
enizer (i.e., SentencePiece [KR18]) that allows us to work
with raw source code, without the need for code abstrac-
tion. Also, we increase the maximum length of the con-
sidered code components from 100 “abstracted” tokens to
512 “SentencePiece” tokens (i.e., s390 “abstracted” to-
kens). The absence of an abstraction mechanism and the increased upper bound for in-
put/output length allowed us to build a substantially larger dataset as compared to the one
used in Chapter 3 (168k instances vs. 17k) and, more importantly, to feature in such a dataset
a wider variety of code transformations implemented in the code review process, including
quite challenging instances such as those requiring the introduction of new identifiers and
literals (accounting for 63% of the new dataset we built).

Also, we experimented with the automation of a third task related to the code review
process (code-to-comment): Given the code submitted for review (Cs), generating a natural
language comment Rnl requesting to the contributor code changes as a reviewer would do
(i.e., simulating a reviewer commenting on the submitted code).

We also compare the T5 models with the encoder-decoder models used in Chapter 3. Our
results show the superior performance of T5, which represents a significant step forward in
automating code review tasks. (e.g., +5% and +20% of correct predictions in the code-to-
code and code & comment-to-code tasks respectively, for top-1 predictions).

37
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The content of this chapter has been presented in the following paper:

Using Pre-Trained Models to Boost Code Review Automation

Rosalia Tufano, Simone Masiero, Antonio Mastropaolo, Luca Pascarella, Denys
Poshyvanyk, Gabriele Bavota. In Proceedings of the 44th International Conference
on Software Engineering (ICSE 2022), pp. 2291-2302

4.1 T5 to Automate Code Review

In this section we describe the DL model we adopt, the construction process of the datasets
needed for its training, and the procedure used for hyperparameter search, model training,
and generation of predictions.

4.1.1 Text-to-Text Transfer Transformer (T5)

The Text-to-Text Transfer Transformer, or simply T5, is not merely a model. Raffel et al.
[RSR+20] compare “pre-training objectives, architectures, unlabeled data sets, transfer ap-
proaches, and other factors on dozens of language understanding tasks”.

The result of this exploration is the best combination of architectures and training tech-
niques, namely T5. T5 is based on the Transformer [VSP+17] architecture. The proposed
implementation differs only in some details (regarding the normalization layer and the em-
bedding scheme) from its original form. Raffel et al. proposed several versions of T5, dif-
fering from each other in their size (e.g., number of layers) and, as a consequence, training
complexity. In this work we adopt the small version of T5 consisting of: 8-headed attention,
6 layers in both the encoder and the decoder, each having a dimensionality of 512 and the
output dimensionality of 2,048 (∼ 60M parameters).

The model is subjected to a first training (pre-training) whose purpose is to provide it
with a general knowledge useful to solve a set of related tasks. Suppose, for example, that
we want to train a model able to (i) translate English to German, and (ii) summarize English
text. Instead of starting by training the model for these two tasks, T5 can be pre-trained in an
unsupervised manner by using the denoising objective (or masked language modeling): The
model is fed with sentences having 15% of their tokens (e.g., words in English sentences
or code tokens in Java statements) randomly masked and it is asked to predict them. By
learning how to predict the masked tokens, the model can acquire general knowledge about
the language of interest. In our example, we could pre-train the model on English and
German sentences.

Once pre-trained, T5 is fine-tuned on the downstream tasks in a supervised fashion. Each
task is formulated in a “text-to-text” format (i.e., both the input and the output of the model
are represented as text). For example, for the translation task a dataset composed of pairs of
English and German sentences allows to fine-tune the model. Similarly, the summarization
task requires the input English text and a corresponding summary. In the next sections we
explain how we pre-train and fine-tune T5 to support code review tasks.
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4.1.2 Training Data

We describe the process used to build the datasets needed for the pre-training (Section 4.1.2)
and fine-tuning (Section 4.1.2) of T5. Part of the fine-tuning dataset has been used for
hyperparameter search (Section 4.1.3) and for testing the performance of T5 (Section 4.2).

Pre-training Dataset

Given the goal of the pre-training phase (i.e., providing the model with general knowledge
about the languages of the downstream tasks) we built a dataset allowing to train T5 on
Java and technical English.

Indeed, besides source code, technical English is instrumental in a code review process
in which reviewers post natural language comments about code.

We start from two datasets featuring instances including both source code and tech-
nical English: the official Stack Overflow dump (SOD) [sod] and CodeSearchNet (CSN)
[HWG+19]. Stack Overflow is a Q&A website for programmers. The data dump we used
collects all the questions and relative answers between 2006 and 2020 for a total of roughly
51M posts (where a post is a single question or answer). A post includes English text (as
per the SO guidelines) and/or code snippets. Posts are usually accompanied by tags charac-
terizing their topic (e.g., Java, Android) and can be rated with up-/down-votes and, for what
concerns the answers, they can be marked as the “accepted answer” from the question’s
author.

We extracted from the SOD all the answers (i) having a Java tag; (ii) containing at least
one <pre><code> HTML tag to ensure the presence of at least one code snippet in the an-
swer; and (iii) having at least 5 up-votes and/or being the accepted answer. These filters are
justified by the goal of our pre-training. Indeed, we want the model to acquire knowledge
about technical English and Java: focusing on answers containing at least one code snip-
pet increases the chances that their natural language text refers to an implementation task,
similarly to what happens in code review. Also, the up-votes/accepted answer filter aims at
discarding low-quality instances containing, for example, wrong code solutions. This is also
the reason why we focused on high-quality answers likely to contain working solutions rather
than on questions that, even if up-voted (e.g., because they are relevant for many users) may
contain wrong implementations. From this step we obtained 1,018,163 candidate instances
from the SOD.

On each selected answer a, we performed the following cleaning steps: We remove emo-
jis, non-latin characters, control characters, trailing spaces and multiple white spaces. Some
special symbols are replaced using latin characters having the same meaning, e.g., "≥" is re-
placed with ">=". Moreover, we replace any embedded link with a special tag "<LINK_i>",
with i being an integer ranging from 0 to n−1, where n is the number of links in a. Finally,
we removed all the instances having less than ten tokens or more than 512 (40,491). This
left us with 977,379 valid instances.

The CSN [HWG+19] Java dataset features 1.5M unique Java methods, some of which
containing their Javadoc. We filtered out all those in which a Javadoc was not available or
it did not contain any letter, removing 1,034,755 of them.
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Unlike the SOD, CSN can contain instances in which the “textual part” (i.e., the method
comment) is not in English. To partially address this issue, we exclude pairs in which no
Latin characters were found. While this does not exclude all non-English comments, at least
identifies and removes those written in specific languages (e.g., Russian, Chinese) (15,229).
We decided to accept some level of noise in the pre-training dataset (e.g., comments written
in French) since (i) given the size of this dataset, this little amount of noise should not
substantially affect the model’s performance, and (ii) the pre-training dataset is not used
as test set to assess the performance of the approach. As we will explain later, a more
fine-grained cleaning has been performed for the fine-tuning dataset that, instead, is used
for performance evaluation. On the 519,905 remaining instances, we performed the same
cleaning steps described for the SOD (e.g., remove emojis). Finally, from each pair we obtain
a single string concatenating the Javadoc comment and the code, retaining the ones having
more than ten and less than 512 tokens (507,947 instances left).

By putting together the instances collected from the SOD and CSN we obtained the pre-
training dataset consisting of 1,485,326 instances. To perform the pre-training, we randomly
mask in each instance 15% of its tokens. The masked tokens are replaced with sentinel tokens
<extra_id_i>, where i is an increasing number ranging from 0 up to n− 1, where n is the
number of tokens masked in a given instance. If several contiguous tokens are masked
they are replaced by a single sentinel token. These “masked instances” represent the input
of the model during the pre-training. The target (i.e., the string the model is expected to
generate) is built concatenating the sentinel tokens and the token(s) they are masking. An
extra sentinel token is added to indicate the end of the string.

Fine-tuning Datasets

To create the fine-tuning dataset, this time, we mined Java open source projects from GitHub
using the web application by Dabic et al. [DAB21]. Using the querying interface [ghs], we
selected all Java projects having at least 50 pull requests (PRs), ten contributors, ten stars,
and not being forks. The filters aim at (i) ensuring that enough “code review” material is
contained in the projects (i.e., at least 50 PRs); (ii) discarding personal/toy projects (at least
ten contributors and stars); and (iii) reducing the chance of mining duplicated code. This
resulted in a list of 4,901 projects. We also included the six Gerrit [ger] installations used in
the previous study (see Section 3.1.1) containing code review data about 6,388 projects.

As done in Chapter 3, from both the GitHub and the Gerrit datasets we extract triplets
< ms, rnl , mr >, where ms is a method submitted for the review; rnl is a single reviewer’s
comment suggesting code changes for ms; and mr is the revised version of ms implementing
the reviewer’s recommendation rnl . Note that (i) we only looked for PRs that are accepted
at the end of the code review, since we want to learn how to recommend changes that, at
the end, can lead to code considered good from a reviewer’s perspective; and (ii) a single
PR in GitHub and Gerrit can result in several triplets for our dataset. Indeed, we mine the
different review rounds in each PR. For example, a method ms can be submitted for review,
receiving a comment rnl asking for changes (first round). The revised version of ms address-
ing rnl is then resubmitted (mr), resulting in the second review round (possibly leading to
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additional comments and revisions of the method). We stop when the code is formally ac-
cepted. Overall, we mined 382,955 valid triplets from GitHub and Gerrit using the same
pipeline described in Section 3.1.2 that we summarize in the following. We target triplets in
which a comment rnl has been posted by a reviewer on a method ms. We can identify these
cases since both GitHub and Gerrit (i) provide information about the developers submitting
the code and posting comments in the review process; and (ii) allow to retrieve the specific
code line(s) rnl refers to (i.e., the code in ms that has been highlighted by the reviewer when
posting the comment).

We exclude all the comments posted by the authors of the code (e.g., to reply to review-
ers), since they do not represent a review of the code. Thus, the triplets in our dataset have
rnl being a single comment posted by a reviewer. Also, we exclude rnl linked to inline com-
ments (rather than code lines) in ms, since we target the fixing of code-related issues. To
consider a triplet as valid, rnl must be the only comment posted by a reviewer on ms in that
specific review round.

In this way, we can be confident that the revised version submitted later on by the author
(mr) actually aimed at implementing rnl . Also, mr must differ from ms (i.e., a change must
have been implemented in the code to address rnl). From the technical point of view, the
parsing of the methods from the patches submitted for review has been done using the lizard
library [liz]. Note that, the removal of triplets in which rnl include more than one comment
has been done later in the processing pipeline (we will get back to this point). Indeed, before
we had to clean comments possibly just representing noise.

As done for the pre-training dataset, we performed some cleaning steps. We replaced
any link with the numbered token <LINK_i>, with i being an integer ranging from 0 to n−1,
where n is the total number of links in rnl , ms and mr . If the same link appears in different
parts (e.g., in rnl and mr), it is replaced with the same token. We also removed any emoji and
non-ascii characters from the comments, extra spaces and control characters from both the
comments and the methods, and inline comments from the methods (we are not interested
in addressing issues related to internal comments).

After the cleaning process we obtained some triplets in which rnl became an empty string
or where ms and mr became equal (e.g., they only differed for some spaces before the clean-
ing). We removed these instances (-33,005) as well as those having rnl + ms or mr longer
than 512 tokens (-61,233). We considered the sum of rnl and ms in terms of length because,
for one of the tasks (i.e., the automated implementation of a comment posted by a reviewer),
they will be concatenated to form the input for the model.

Then, we removed from our triplets non-relevant comments (-28,581), i.e., comments
not recommending code change suggestions (e.g., “looks good to me”). In [TPT+21] we
manually crafted a set of natural language patterns to spot non-relevant comments (e.g.,
single-word comments containing words such as “thanks”, “nice”, etc.). We have extended
this set since we noticed that in our richer dataset several non-relevant comments were left
by these patterns. Such analysis has been done by manually inspecting all the triplets having
rnl consisting of less than six words. The updated heuristics are available in our replication
package [repd]. We also excluded triplets including non-English rnl comments (-4,815)
through a pipeline composed by three language detector tools.
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A preliminary classification has been performed using the Python libraries langdetect
[lana] and pycld3 [pyc]. If both of these tools classify the comment as non-English, we re-
lied on the Google language detection API for a final decision. Such a process was needed
since we noticed that the Google API was the most accurate in detecting the language, es-
pecially when the comments also featured code constructs in them. In this scenario, the
Python libraries often generated false negatives (i.e., classifying an English sentence as non-
English). However, we had a limited number of requests available for the Google API. Thus,
we performed a pre-filtering using the Python libraries and, when they both reported the
comment as being not in English, we double checked using the Google API.

After this cleaning process, we excluded all triplets featuring more than one comment
in rnl (-86,604). Finally, we removed all the duplicates from the fine-tuning dataset (-918).
To be conservative, we identify as duplicates two triplets having the same ms (thus, even
triplets having the same ms but different rnl/mr have been removed).

The resulting dataset features 167,799 triplets that have been used to build the three
fine-tuning datasets needed for the three tasks we aim at automating. In the first task (code-
to-code) the model takes as input ms with the goal of automatically generating its revised
version mr , implementing code changes that may be required in the code review process.
Thus, the fine-tuning dataset is represented by pairs ms→ mr .

In the second task (code&comment-to-code) the model takes as input both ms and a com-
ment rnl posted by the reviewer and targets the generation of mr , the revised version of ms
implementing the code changes recommended in rnl .

The ms code contains two special tags <START>, <END>marking the portion of the code rnl
refers to. The fine-tuning dataset of this second task is represented by pairs< ms, rnl >→ mr .

Finally, in the third task (code-to-comment) the model takes as input ms and aims at
generating a natural language comment (rnl) suggesting code changes as a reviewer would
do. The fine-tuning dataset is represented by pairs ms→ rnl .

Table 4.1. Pre-training and fine-tuning datasets (# instances)

Dataset train evaluation test

Pre-training
Stack Overflow 977,379 - -
CodeSearchNet 507,947 - -

Fine-tuning 134,239 16,780 16,780

All three fine-tuning datasets have been split into 80% training, 10% evaluation, and
10% test. Table Table 4.1 summarizes the number of instances in the datasets: The pre-
training is only used for training, while the fine-tuning datasets are exploited also for the
hyperparameter tuning (evaluation) and for assessing the performance of the model (test).
In Table 4.1 we only report information for a single fine-tuning dataset (rather than for the
three previously described), since all three fine-tuning datasets contain the same number of
instances. Indeed, they are all derived from the same set of triplets.
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4.1.3 Training and Hyperparameter Search

Raffel et al. [RSR+20] showed the major role pre-training plays on the performance of T5
models. The importance of pre-training has also been confirmed (for other Transformer-
based models) in the context of code-related tasks such as test case generation [TDS+20].
To further study this aspect, we decided to experiment with both a pre-trained and a non
pre-trained model, both of which have been subject to a hyperparameter tuning process.

Since we adopted the small version of T5 presented by Raffel et al. [RSR+20], we did not
experiment with variations related to its architecture (e.g., changing the number of layers
or the number of hidden units). Though, as also done by Mastropaolo et al. [MSC+21],
we experimented with different learning rate configurations: (i) Costant Learning Rate (C-
LR), in which the learning rate value is fixed during the training; (ii) Inverse Square Root
Learning Rate (ISR-LR), in which the learning rate value decays as the inverse square root of
the training step; (iii) Slanted Triangular Learning Rate (ST-LR) in which first the learning rate
linearly increases and then it linearly decays returning to the starting value; (iv) Polynomial
Decay Learning Rate (PD-LR), in which the learning rate polynomially decays to a fixed value
in a given number of steps.

The hyperparameter tuning has been done for the fine-tuning phase only. Indeed, even
though we just focus on one hyperparameter, such a process still remains quite expensive,
requiring the training of eight different T5 models (i.e., pre-trained and non pre-trained each
with four different learning rates).

For pre-training we use the same configuration proposed by Raffel et al. in [RSR+20]. We
pre-trainied the model on the pre-training dataset (Table 4.1) for 200k steps (∼34 epochs).
Starting from the pre-trained model, we fine-tuned for 75k steps four different models, each
using one of the experimented learning rates.

Since the goal of this procedure is to find the best learning rate for the three code review
tasks, we fine-tuned each of these models using a mixture of the three tasks: A single model
is trained to support all three tasks using the union of their training sets. This is one of the
characteristics of T5, the possibility to train a single model for multiple tasks. The same
approach has been used for the non pre-trained model: In this case four T5 models (one per
learning rate) have been directly fine-tuned.

We assessed the performance of the eight models on the evaluation set of each task in
terms of “perfect predictions”, namely cases in which the generated output was identical
to the target (expected) string. Table 4.2 reports the achieved results. As it can be seen,
no learning rate achieves the best results in all the tasks. Nevertheless, ST-LR shows better
overall performance and, for this reason, is the one we adopt in our experiments.

Given the best configuration for both the pre-trained and the non pre-trained models,
we fine-tuned them for a maximum of 300k steps using an early stop strategy. This means
that we saved a checkpoint of the model every 10k steps computing its performance in terms
of “perfect predictions” on the evaluation set and stopped the training if the performance of
the model did not increase for three consecutive checkpoints (to avoid overfitting).
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Table 4.2. Hyperparameter tuning results

Task Learining Rate Strategy
C-LR ISR-LR ST-LR PD-LR

Pre-Trained
code-to-code 2.68% 3.68% 4.64% 2.53%
code&comment-to-code 10.39% 9.23% 8.46% 9.89%
code-to-comment 0.15% 0.32% 0.60% 0.15%

Non Pre-Trained
code-to-code 1.23% 3.71% 4.16% 1.22%
code&comment-to-code 5.05% 6.41% 6.24% 5.18%
code-to-comment 0.09% 0.44% 0.49% 0.03%

4.1.4 Generating Predictions

Once the models are trained, they can be used to generate predictions. As done in previous
work, we adopt a beam search strategy [RVY14] to generate multiple predictions given a sin-
gle input. For example, in the case of the code-to-code task, for a single ms method provided
as input multiple mr candidates can be generated. When we ask the model to generate k
predictions, it generates the k most probable sequences of tokens given the input sequence;
k is known as the beam size and we experiment with k = 1,3, 5,10.

For each prediction generated by T5, we also exploited its score function to assess the
model’s confidence on the provided input.

The value returned by this function ranges from minus infinity to 0 and it is the log-
likelihood (ln) of the prediction. Thus, if it is 0, it means that the likelihood of the prediction
is 1 (i.e., the maximum confidence, since ln(1) = 0), while when it goes towards minus
infinity, the confidence tends to be 0. In our empirical study (Section 4.2) we assess the
reliability of the confidence level as a proxy for the quality of the predictions.

4.2 Study Design

The goal of our evaluation is to empirically assess the performance of the T5 model in code re-
view automation tasks. The context consists of (i) the datasets we presented in Section 4.1.2;
and (ii) the dataset from [TPT+21] described in Chapter 3. From now on we refer to our pre-
viously presented approach as the baseline. The study aims at tackling five research questions
(RQs).

RQ1: To what extent is T5 able to automatically recommend code changes to devel-
opers as reviewers would do? We provide as input to T5 a Java method ms submitted for
review and assess the extent to which the model is able to provide as output a revised version
of ms (mr) implementing code changes that will be likely requested during the code review
process. The idea here is that such a model could be used before the code is submitted for
review as an automated check for the contributor.
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RQ2: To what extent is T5 able to automatically implement code changes recom-
mended by reviewers? Given a Java method submitted for review (ms) and a natural lan-
guage comment (rnl) in which a reviewer asks to implement specific code changes in ms, we
assess the ability of T5 to automatically revise ms to address rnl (thus obtaining a revised
method mr).

The third RQ focuses on the novel code review-related task we introduce in this paper:
RQ3: To what extent is T5 able to automatically recommend changes in natural lan-

guage as reviewers would do? In this RQ T5 is provided as input with a Java method
submitted for review (ms) and it is required to generate a natural language comment (rnl)
requesting code changes as reviewers would do.

For RQ1-RQ3, we experiment with different variants of the T5 model. In particular, we
assess the quality of T5 predictions for all three tasks when (i) the model is pre-trained or
not; and (ii) the predictions have different confidence levels. Thanks to these analyses, we
can answer our fourth RQ:

RQ4: What is the role played by the model pre-training on the performance of T5?
How does the confidence of the predictions affects their quality? As explained in Sec-
tion 4.1.3, we perform an ablation study in which T5 is fine-tuned without any pre-training
(i.e., by starting from random weights in the neural network). This allows to assess the con-
tribution of the pre-training to the performance of the model. As for the confidence of the
predictions, we assess whether it can be used as a reliable proxy for the quality of the pre-
dictions (i.e., the higher the confidence, the higher the likelihood the prediction is correct).
If this is the case, such a finding would have implications for the usage of the T5 model
in practice: A developer using the model could decide to receive recommendations having
confidence higher than t, reducing the chances of receiving meaningless predictions.

Finally, the last RQ compares the performance of the T5 model with that of the approach
we presented in Chapter 3:

RQ5: What is the performance of T5 as compared to the state-of-the-art technique?
We use the implementation and datasets from our previous work to compare the performance
of the T5 model with the baseline [TPT+21].

4.2.1 Data Collection and Analysis

To answer the first four research questions, we experiment with the best configuration of
both the pre-trained and non pre-trained T5 model on the test set of the fine-tuning dataset
reported in Table 4.1. Remember that for each of the three tasks we support (i.e., the
ones that map to RQ1, RQ2, and RQ3) the 16,779 test set instances are the same triplets
< ms, rnl , mr >. The only difference is that: in RQ1 the model has been trained (and is
tested) to take as input ms and produce mr ; in RQ2 it takes as input ms and rnl and produces
mr ; in RQ3 it takes as input ms and produces rnl . By running the models on the test sets, we
report for each of the three tasks the percentage of “perfect predictions”, namely the cases
in which the output of the model is the expected one. For example, in the case of RQ3, this
means that the model was able, given ms as input, to generate a comment rnl identical to
the one manually written by the reviewer who inspected ms.
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Besides computing the perfect predictions, in RQ3 (i.e., the task in which the model is re-
quired to generate natural language text), we also compute the BLEU (Bilingual Evaluation
Understudy) score of the predictions [PRWZ02]. BLEU assesses the quality of the automati-
cally generated text. The BLEU score ranges between 0 and 1, with 1 indicating, in our case,
that the natural language comment generated by the model is identical to the one manually
written by the reviewer. We use the BLEU-4 variant, that computes the overlap in terms of
4-grams between the generated and the reference text.

In RQ1 and RQ2 (i.e., in the tasks in which the model is required to generate code), we
adopt instead the CodeBLEU [RGL+20], a recently proposed similarity metric inspired by the
BLEU score but tailored to assess the quality of automatically generated code.

Differently from BLEU, CodeBLEU computes not only an “n-gram based similarity” but it
also considers how similar the abstract syntax tree and the data-flow of the generated and
the reference code are. Ren et al. [RGL+20], who proposed the CodeBLEU, showed that
their metric better correlates with developers’ perception of code similarity as compared to
the BLEU metric.

Concerning RQ4, we compare the results (i.e., perfect predictions, BLEU, CodeBLEU)
achieved by the T5 model with and without pre-training. We also statistically compare the
two models (i.e., with/without pre-training) using the McNemar’s test [McN47] and Odds
Ratios (ORs) on the perfect predictions they can generate. As for the confidence of the
predictions, we take the best performing model (i.e., the one with pre-training) and split its
predictions into ten buckets based on their confidence c going from 0.0 to 1.0 at steps of 0.1
(i.e., the first interval includes all predictions having a confidence c with 0 < c ≤ 0.1, the
last interval has 0.9 < c ≤ 1). Then, we report for each interval the percentage of perfect
predictions.

Finally, in RQ5, we compare T5 with the baseline [TPT+21] on the two tasks automated
in our previous work (i.e., the ones related to our RQ1 and RQ2).

As metrics for the comparisons, we used the percentage of perfect predictions and the
CodeBLEU of the predictions. We compared the two techniques in several scenarios. First,
we used the dataset from [TPT+21] featuring 17,194 triplets < ms, rnl , mr >. By performing
some checks on this dataset, we noticed that a few instances (97) had comments (rnl) not
written in English or containing invalid unicode characters that did not allow our tokenizer
to work. Thus, we excluded those instances from the training and the test sets. The training
set has then been used to (i) train the baseline [TPT+21]; and (ii) fine-tune the T5 model
without any pre-training. In this way, we can compare the performance of the two models on
the test set when trained on exactly the same data. Important to notice is that the baseline
has been trained and tested on abstracted code (as done in [TPT+21]), while T5 worked
directly with the raw source code.

On top of this, we also report the performance of the pre-trained T5 model when run on
the test set from [TPT+21]. This pre-trained model has been fine-tuned using the training
dataset in [TPT+21]. Clearly, this analysis favors T5 since it has been trained on more data
(i.e., the pre-training dataset). However, it provides additional hints into the role played by
the pre-training and on the effectiveness of the T5 model in general.
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Figure 4.1. Results T5 dataset large

Besides reporting descriptive statistics, we statistically compare the two models using
the McNemar’s test [McN47] and Odds Ratios (ORs) on the perfect predictions they can
generate. Since multiple comparisons are involved (e.g., comparing the pre-trained and the
non pre-trained model to the baseline), we adjust the p-values using the Holm’s correction
[Hol79b].

4.3 Results Discussion

We start by answering RQ1-RQ3 (Section 4.3.1), presenting the performance of T5 in the
three tasks we aim at automating. Then, we discuss the impact on the performance of the pre-
training and the reliability of the confidence level as a proxy for the quality of the predictions
(Section 4.3.2). Finally, we compare T5 with the baseline [TPT+21] (Section 4.3.3).

4.3.1 RQ1-RQ3: Performance of T5

Fig. 4.1 reports two graphs for each task. The line chart on top shows the percentage of
perfect predictions (y-axis) achieved by T5 for different beam sizes (x-axis); the continuous
line represents the pre-trained version of the model, while the dashed line the non pre-
trained one. The boxplots at the bottom report the CodeBLEU for the two code-generation
tasks (i.e., code-to-code and code & comment-to-code) and the BLEU score for the code-to-
comment task in which text is generated. Lighter blue represents the pre-trained model.

We start by commenting on the perfect predictions (line charts). At a first sight, the
performance of the model might seem quite low. For example, in the case of code-to-code
at k = 1 (i.e., a single prediction is proposed by T5), both the pre-trained and the non
pre-trained models achieve ∼5% of perfect predictions (751 and 863 instances correctly
predicted with and without pre-training, respectively). However, such a result should be
considered in the context of what was reported by the state-of-the-art technique [TPT+21]
that, on a much simpler test dataset, achieved for the same task and same beam size 2.91%
of perfect predictions.
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Perfect predictions

code-to-code

public ConfigBuilder readFrom(View<?> view) { if (view instanceof Dataset && view instanceof FileSystemDataset) 
{ FileSystemDataset dataset = (FileSystemDataset) view; [...] }

public ConfigBuilder readFrom(View<?> view) { if (view instanceof FileSystemDataset)
{ FileSystemDataset dataset = (FileSystemDataset) view; [...] }

public Response getCustomizedStateAggregationConfig(@PathParam("clusterId") String clusterId) { 
HelixZkClient zkClient = getHelixZkClient(); if (!ZKUtil.isClusterSetup(clusterId, zkClient)) { return notFound();} [...] }

public Response getCustomizedStateAggregationConfig(@PathParam("clusterId") String clusterId) { 
if (!doesClusterExist(clusterId)) { return notFound(String.format("Cluster %s does not exist", clusterId));} [...] }

code&comment-to-code

private String getBillingFrequencyDescription(Award award) { if (ObjectUtils.isNull(award) || ObjectUtils.isNull(award.getBillingFrequency())) { [...] }

“I suggest ObjectUtils check for nulls”

private String getBillingFrequencyDescription(Award award) { if (award == null || award.getBillingFrequency() == null) { [...] }

public <T extends IRemoteConnection.Service> T getService([...]) { if ([...]) { return [...]; } return null; }

public <T extends IRemoteConnection.Service> T getService([...]) { if ([...]) { return [...]; } else { return null; } }
“else is redundant”

code-to-comment

static <E,T> Validation<E,T> valid(Supplier<? extends T> supplier) { return new Valid<>(supplier.get()); }
“Please add a check Objects.requireNonNull(supplier, "supplier is null");”

public List<[...]> getExecuteBefore() { Rules ann = this.getClass().getAnnotation(Rules.class); if(ann != null) [...] }
“Rename ‘ann’ to ‘rules’, ‘rulesAnnotation’ or something more descriptive.”

Alternative and valid predictions

code&comment-to-code

public UserDTO addUser(UserDTO userResource) { [...] return UserDTO.createInstanceWithPrivateData(user); }

“Inline this variable”

public UserDTO addUser(UserDTO userResource) { [...] UserDTO savedUser = UserDTO.createInstanceWithPrivateData(user);  return savedUser; }

code-to-comment

“Extract the building of the ResponseMessage to it's own variable (in eclipse, select the text, right-click > refactor > extract local variable / select code + shift+alt+L). This will make the code a 

bit more readable, especially when you'll be passing in other things besides the ResponseMessage.”

“Please make this one a variable as well”

public void handleSetDeviceLifecycleStatusByChannelResponse([...]) { [...] ResponseMessage.newResponseMessageBuilder().[...])}

Figure 4.2. Examples of perfect and alternative predictions

Similar observations can be made for the code & comment-to-code task, where at k = 1
T5 can generate 14.08% (2,363 instances) and 12.06% (2,024) perfect predictions when
pre-trained and not, respectively. For this task, in our previous work [TPT+21], we achieved
on a simpler dataset 12.16% perfect predictions. We directly compare the two approaches
in RQ5. Interestingly, increasing the beam size from 1 to 10 does only result in marginal
improvements for all tasks. The largest improvement is obtained for the code & comment-to-
code, where we move from 14.08% (k = 1) to 18.88% (k = 10) of perfect predictions for the
pre-trained model. Given the goal of our approach, we believe that the most relevant perfor-
mance are those achieved at k = 1. Indeed, providing several recommendations to inspect to
a developer might be counterproductive, especially considering that the recommendations
are entire methods in the case of the two code-generation tasks.

Moving to the code-to-comment task, T5 struggles in formulating natural language com-
ments identical to the ones written by reviewers. The pre-trained model, at k = 1, generates
356 correct comments (2.12%) against the 324 (1.93%) of the non pre-trained model. These
numbers only slightly increase at k = 10, with a maximum of 2.44% perfect predictions
achieved with pre-training.

The top part of Fig. 4.2 shows two examples of perfect predictions generated by the
model for each task. A dashed line separates the two examples within each task. For the
code-to-code task, the first code in each example represents the input of the model, while
the second its output. We highlighted in bold the parts of code changed by the model and
replaced irrelevant parts of the methods with [...] to save space.
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In the first code-to-code example, T5 removes an unneeded instanceof check, since
FileSystemDataset is a subclass of Dataset. Instead, the second example simplifies the
checking for the existence of a cluster, providing a meaningful error message. This second
case cannot be supported by the baseline [TPT+21], since it requires the introduction of new
code tokens that were not present in the input code. Remember that, these being perfect
predictions, the implemented changes are identical to those performed by developers during
code review.

For the code & comment-to-code task, the input provided by the model includes the com-
ment written by the reviewer and requiring a specific change to the part of code highlighted
in orange. In the first example, the reviewer suggests to use a specific object to perform the
null check and T5 correctly implements the change. The second one is interesting because,
despite the reviewer highlighting return null as the relevant code for their comment (“else
is redundant”), the model correctly understands that the action to take is the removal of the
unneeded else statement.

Finally, for the code-to-comment task, we report the code provided as input to the model
(first line) with the comment it generated as output (second line). In the first example, T5
suggests (as done by the real reviewer) to add a null check, also showing the code needed
for its implementation. This code is not just a template, but it is suitable for the provided
input code (it refers to the supplier object). In the second example, T5 suggests to rename
an identifier, providing valid recommendations for the renaming.

Looking at the bottom of Fig. 4.1, the results in terms of CodeBLEU show a median
higher than 0.80 for all beam sizes and for both code-generation tasks. However, while
we report these values for completeness and for being consistent with what done in similar
works [TWB+19, WTM+20, TPT+21], they say little about the quality of the predictions and
they are mostly useful for future work that wants to compare with our approach (complete
distributions are available in our replication package [repd]). Indeed, it is difficult to prop-
erly interpret these values for two reasons. First, there is no accepted threshold above which
good performance can be claimed. Second, as also done in previous works proposing mod-
els taking as input a code snippet and providing as output the same code “revised” in some
way (e.g., with a fixed bug [TWB+19], with a single statement added [WTM+20], or with
review-related changes implemented [TPT+21]), we computed the CodeBLEU between the
predicted and the target code (two methods in our case). However, the input provided to the
model is already quite similar to the target output, which means that a model taking as input
a method and not implementing any change on it, is likely to obtain high values of Code-
BLEU. For this reason, we mostly focus our discussion on perfect predictions. Concerning
the BLEU score achieved in the code-to-comment task, the median ranges around 0.10 (see
Fig. 4.1). Such a result is expected given the low percentage of perfect predictions achieved
for this task.

Going back to the perfect predictions, the results reported in the line charts in Fig. 4.1
represent a lower bound for the performance of our approach. Indeed, we consider a pre-
diction as “perfect” only if it is identical to the reference one. For example, in the case of the
code-to-comment task, the natural language comment generated by T5 is classified as correct
only if it is equal to the reference one, including punctuation.
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However, it is possible that a natural language comment generated by T5 is different
but semantically equivalent to the one written by the developer (e.g., “variable v should
be private” vs “change v visibility to private”). Similar observations hold for the two code-
generation tasks (e.g., a reviewer’s comment could be addressed in different but semantically
equivalent ways).

To have an idea on the number of valuable predictions present among those classified as
“wrong” (i.e., the non-perfect predictions), three researchers manually analyzed a sample of
100 “wrong” predictions for each task (300 in total). The analysis was done in two meetings
in which each instance was discussed by all three researchers. The goal was to classify
each instance into one of three categories: (i) “semantically equivalent” (i.e., the generated
code/comment is different but semantically equivalent to the reference one); (ii) “alternative
solution” (i.e., the generated code/comment is not semantically equivalent, but valuable); or
(iii) “wrong” (i.e., the generated code/comment is not meaningful for the provided input).
Since we also computed the confidence for each of the predictions generated by T5, rather
than randomly selecting the 300 instances to inspect, we decided to target for each task the
top-100 wrong predictions generated by the model in terms of confidence. Indeed, those
cases are particularly interesting, since they represent wrong predictions for which, however,
the model is quite confident.

Table 4.3. Manual analysis of 100 "wrong" predictions per task

Task Semantically Equivalent Alternative Solution Wrong

code-to-code 1 10 89
code & comment-to-code 6 56 38
code-to-comment 36 10 54

Table 4.3 shows the results of our manual analysis. For the code-to-code we observed
that, in most cases (89%) the model actually generates wrong predictions that are not inline
with the changes implemented by the developer. There are few exceptions to these cases,
mostly related to small changes in which the model made a decision different from that one
of the developer but still valid (e.g., extracting a string into a variable and using a different
name for the extracted variable). More interesting are the results for the other two tasks.

In the case of code & comment-to-code, we found that 62 out of the 100 “wrong” predic-
tions we inspected were actually valid implementations of the change recommended by the
reviewer. One example is presented at the bottom of Fig. 4.2 (black background), where
we show the input provided to the model (i.e., the code in the first line and the reviewer’s
comment “Inline this variable”) and the output of the model right below. T5 successfully
addressed the reviewer’s comment.

However, the prediction is different from the target implementation, since the latter also
includes another change that was not explicitly required in the code review. This case is
representative of all 56 instances we classified as “alternative solutions” for this task and,
given the goal of the code & comment-to-code, we believe they represent good predictions.
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Finally, also for the code-to-comment task, we found a large number of “wrong” predic-
tions that are actually valuable, with 36 of them even being semantically equivalent (i.e.,
T5 formulated a comment asking the same changes required by the reviewer, but using a
different wording). One example is reported at the very bottom of Fig. 4.2. While the model
only received the code as input we also show the original reviewer’s comment (i.e., “Please
make this one a variable as well”) to make it easier to assess the relevance of the comment
generated by T5 (i.e., “Extract the building ...”).

Overall, our analysis showed that the perfect predictions really represent a lower bound
for the performance of T5, especially for the two tasks in which natural language comments
are involved.
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Figure 4.3. Perfect predictions by confidence of the model

4.3.2 RQ4: Pre-training and confidence

In Fig. 4.1 we observed better performance for the pre-trained model in the code & comment-
to-code and in the code-to-comment task, while the non pre-trained model performed bet-
ter in the code-to-code task. The results of the McNemar’s test on the predictions at k=1,
confirm such findings: besides the significant difference confirmed for all tasks (p-value <
0.01), the ORs indicate 85% and 59% higher odds of obtaining a perfect prediction using
the pre-trained model in the code & comment-to-code (OR=1.85) and in the code-to-comment
(OR=1.59) task, while odds are 34% lower in the code-to-code task (OR=0.66).

Two observations are worth to be made. First, overall, the pre-trained model seems to
represent a more valuable solution. Second, the lack of improvement in the code-to-code task
can be explained by the pre-training and fine-tuning we performed. Indeed, the code-to-code
task only focuses on source code, with no natural language in the input nor in the output. The
fine-tuning stage, focused on source code, was probably sufficient to the model to learn about
the code syntax and the possible transformations to perform. The additional pre-training,
also including technical English, did not benefit the model for the code-to-code task. The
other two tasks, instead, either include natural language as input (code & comment-to-code)
or require its generation as output (code-to-comment), obtaining a boost of performance from
the pre-training.

Fig. 4.3 depicts the percentage of perfect predictions (y-axis) within each confidence
interval (from 0.0-0.1 up to 0.9-1.0, x-axis) when using the pre-trained model and k=1. To
better interpret the reported results, the gray line represents the overall performance of the
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model when considering all predictions (e.g., 4.48% of perfect predictions for the code-to-
code task).

In all three tasks, we observe a clear trend, with the predictions in the highest confi-
dence bucket (0.9-1.0) ensuring substantially better performance than the overall trend.
When only considering the predictions in this bucket, the percentage of perfect predictions
increases to: 14.24% for code-to-code (from an overall 4.48%), 28.23% for code & comment-
to-code (overall=14.08%), and 22.23% for code-to-comment (overall=2.12%). Considering
the complexity of the addressed tasks, the jump in performance is substantial and indicates
the usability of the confidence level as a proxy for the prediction quality. Also, while the per-
centage of perfect predictions is quite limited, with seven out of ten predictions being wrong
in the best-case scenario (28.23% for code & comment-to-code), it is worth considering what
previously observed in our manual analysis, with “valuable” predictions which are classified
as “wrong” in our quantitative analysis.

4.3.3 RQ5: Comparison with the baseline [TPT+21]

Fig. 4.4 compares the performance achieved by the T5 model with those obtained by the
baseline [TPT+21]. In the line charts the continuous lines represent the pre-trained T5, the
dashed lines non pre-trained T5, and the dotted lines the baseline.
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Figure 4.4. T5 vs. baseline [TPT+21]
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Table 4.4. RQ5: McNemar’s test (adj. p-value and OR)

Task Test p-value OR

code-to-code
T5 pre-trained vs [TPT+21] <0.01 2.90
T5 non pre-trained vs [TPT+21] <0.01 1.69
T5 pre-trained vs T5 non pre-trained <0.01 2.50

code & comment-to-code
T5 pre-trained vs [TPT+21] <0.01 11.48
T5 non pre-trained vs [TPT+21] <0.01 2.38
T5 pre-trained vs T5 non pre-trained <0.01 5.69

Two important points are worth remembering: First, the results in Fig. 4.4 have been
computed on the test set used in [TPT+21]. Indeed, the performance in terms of perfect
predictions are substantially higher as compared to those in Fig. 4.1 (see values on the y-
axis), due to the simpler instances featured in this dataset. Second, the baseline has been
trained and tested on abstracted code (as in the original paper), while T5 worked on raw
source code.

When k=1, T5 achieves substantially better performance. The results of the statistical
test in Table 4.4 always show a significant difference in favor of T5 (adjusted p-value <
0.01), with ORs ranging from 1.69 (non pre-trained T5 vs [TPT+21] in the code-to-code task)
to 11.48 (pre-trained T5 vs [TPT+21] in the code & comment-to-code task). The pre-trained
T5 in this case performs better than the non pre-trained one for both tasks. This is likely
due to the limited size of the fine-tuning dataset used in this comparison. Indeed, to have a
fair comparison with [TPT+21], we fine-tuned T5 on the training set we used in [TPT+21]
and composed by ∼13.5k instances (vs the ∼134k we had in our fine-tuning dataset when
answering RQ1-RQ4). This is probably not sufficient to effectively train a large model such
as T5, and makes the instances used in the pre-training fundamental to further learn about
the language. Still, even without pre-training, T5 outperforms the baseline when k=1. For
example, in the code & comment-to-code task, the baseline achieves 9.48% perfect predictions,
against the 15.46% of the non pre-trained T5, and the 29.74% of the pre-trained T5. The
baseline observes a stronger improvement with the increasing of k (i.e., the beam size) as
compared to T5 (see Fig. 4.4). We believe this is due to usage of the abstraction. Indeed,
when working with abstracted code the “search space” (i.e., the number of possible solutions
that can be generated with the given vocabulary) is much more limited since the model does
not deal with identifiers and literals. Attempting ten predictions in a smaller search space is
more likely to result in correct predictions. The results of the CodeBLEU confirm the trend
observed with the perfect predictions, with the pre-trained T5 being the best model.

We also looked at the union of perfect predictions generated by the two approaches on the
test set to verify the complementarity of the techniques. On the code-to-code (code&comment-
to-code) task we observed that 15% (24%) of perfect predictions are shared by both ap-
proaches (i.e., both succeed), 65% (70%) are perfect predictions only for T5, and 20% (6%)
only for the baseline.
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4.4 Conclusion

The work in this chapter is motivated by the limitations of the approach we presented in
Chapter 3. We highlighted that the usage of code abstraction does not allow to support
non-trivial code review scenarios requiring code changes resulting in the introduction of
new identifiers/literals. Hence, we proposed the usage of a pre-trained T5 model [RSR+20]
relying on a SentencePiece [KR18] tokenizer to overcome such a limitation and work directly
on raw source code. Our empirical evaluation, performed on a much larger and realistic code
review dataset, shows the improvements brought by the T5 model that represents a step
forward as compared to the baseline [TPT+21] both in terms of applicability (i.e., scenarios
in which it can be applied) and performance.

The obtained improvement is in part due to the pre-training phase that provides the
model with general knowledge about the language used in the downstream task. While we
relied on the mask language modeling (MLM) as pre-training objective (i.e., masking 15% of
tokens in the input sentence and asking the model to predict them), it is possible that further
benefits may be obtained by adopting different and more specialized pre-training objectives.
In the next chapter, we investigate this research question, assessing the impact of different
pre-training objectives on the performance of DL models automating several code-related
tasks, including the code review ones focus of this thesis.

4.5 Replication Package

We release all code and data used in our study in a comprehensive replication package [repd].
It contains:

• the processed and split datasets we used (both for pre-training and fine-tuning);

• the scripts used to preprocess and clean the data;

• the Google Colab notebooks we used to pre-train and fine-tune the models;

• the checkpoints of the best models obtained for each task and dataset, as well as the
trained tokenizer model and vocabulary;

• the best models’ generated predictions, as well as their scores in terms of BLEU/-
code_BLEU, model confidence;

• the results of the manual analysis we performed;

• instructions to replicate our research.
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Studying the Role of Pre-training on the
Automation of Code-related Tasks

The transformer [VSP+17] model we exploit in Chapter 4
to automate code review tasks features a pre-training step
using a self-supervised training objective with the goal of
providing the model with general knowledge about a lan-
guage relevant for the final task to automate. The same
training procedure has been adopted in the software en-
gineering (SE) literature for the automation of several
other code-related tasks (see e.g., [DWSS21, BHRV21,
MSC+21, MH21, YKY+21, PLW+21, TLG+21, TMM+22,
TPT22a, LLG+22, SDFS20, CCP+21a]).

Most of these works, including ours, adopt as pre-
training objective the Masked Language Model (MLM), in
which a percentage of tokens from the input sentence is masked, with the model in charge
of predicting them. Evidence in the literature reports a boost of performance1 provided by
pre-training in the automation of code-related tasks [LLG+22, CCP+21a, MCP+22]. How-
ever, little is known about (i) the circumstances in which pre-training actually helps, and
(ii) the impact of the specific pre-training objective(s) adopted on the performance of trans-
formers when automating code-related tasks.

Concerning the first point, it is known that pre-training is helpful when the fine-tuning
dataset is small [RJ19]. To make a concrete example, per-training can be useful when fine-
tuning a model for the code-to-comment task. For this task, the fine-tuning dataset is mined
from real review activities run in open source projects, thus limiting the amount of training
data that can be collected (usually in the order of tens of thousands instances, as in the case
of our approach). Pre-training datasets, instead, can be automatically built with virtually
“no limitations” in terms of size since the pre-training objective is self-supervised. There are
however SE tasks which can leverage very large fine-tuning datasets, for which the boost

1With “performance” we refer to the quality of the predictions generated by the model (e.g., accuracy) rather
than to attributes such as execution time.
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in performance provided by pre-training is not obvious. For example, in the case of code
completion, fine-tuning instances are usually represented by pairs of 〈incomplete_code, com-
plete_code〉, with the model learning how to “finalize an implementation task”. These pairs
can be built automatically from any piece of code by removing parts of it.

As for the second point (i.e., the impact of pre-training objectives), the widely used MLM

is just one of the possibilities here: Any self-supervised task can be used as pre-training
objective. Also, in a recent work from NLP, Zhang et al. hypothesized that “using a pre-
training objective that more closely resembles the downstream task leads to better fine-tuning
performance” [ZZSL20]. We present a large-scale study aimed at (i) investigating whether
pre-training is actually useful in code-related tasks for which the fine-tuning dataset can be
built without any obvious impediment in collecting large amount of data (e.g., code com-
pletion); and (ii) experimenting the impact on transformers’ performance of both generic
and task-specific pre-training objectives when automating three “generic” code-related tasks,
namely bug-fixing, code summarization, code completion and two code review-related tasks,
namely code & comment-to-code, code-to-comment. While the focus of this thesis is on code
review, investigating the impact of pre-training on more code-related tasks allows a more
generalizable answer to our research question.

We start by performing a systematic literature review to identify the pre-training objec-
tives used in the SE literature. Based on this analysis, we selected three generic pre-training
objectives to experiment based on their popularity and potential impact in SE: MLM, next
sentence prediction, and replaced tokens detection. Moreover, we defined four pre-training
objectives tailored for the specific downstream tasks we aim at supporting. We then trained
56 T5 models [RSR+20], accounting for a total of 1’390 training hours, using different pre-
training objectives and fine-tuning datasets. In particular, we study the impact of the fine-
tuning dataset size on the “boost in performance” (if any) provided by pre-training. Also,
we assess the impact on the achieved performance of different combinations of pre-training
objectives.

Our findings suggest that:

1. Pre-training is extremely useful when the pre-training dataset is substantially larger
than the fine-tuning one, while it does not help when the fine-tuning dataset is of
comparable size.

2. The MLM pre-training objective represents a safe choice for all tasks we investigated,
being almost always the best-in-class; (iii) specialized pre-training objectives only help
if they strictly resemble the fine-tuning task and can provide the model with knowledge
that cannot be captured by generic objectives.

The content of this chapter has been presented in the following paper:

Automating Code-Related Tasks Through Transformers: The Impact of Pre-
training

Rosalia Tufano, Luca Pascarella, Gabriele Bavota. In Proceedings of the 45th Inter-
national Conference on Software Engineering (ICSE 2023), pp. 2425-2437
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5.1 A SLR on Pre-training Objectives Used to Automate Code-Related
Tasks

Section 5.1.1 describes the design of our SLR following the guidelines by Kitchenham and
Charters [KC07]. The achieved results are discussed in Section 5.1.2.

5.1.1 Study Design

Our SLR aims at answering the following research question: What are the pre-training objec-
tives used in the SE literature exploiting transformers to automate code-related tasks?

With “code-related tasks” we refer to any task involving source code as input and/or
output of the model. For example, code summarization is considered a code-related task,
since it takes as input a code component to summarize in natural language. Differently, using
transformers to automate “sentiment analysis” on software-related artifacts (e.g., discussions
in issue trackers) is not considered relevant for our SLR. Answering this research question
will inform the study presented in Section 5.2, in which we experiment with representative
pre-training objectives from the state-of-the-art.

Relevant Study Identification

We used the following digital libraries to search for primary studies: ACM Digital Library
[ACM], IEEE Xplore Digital Library [IEE], Springer Link Online Library [Spr], Wiley On-
line Library [Wil], Elsevier ScienceDirect [Els], and Scopus [Sco]. Google Scholar was not
considered as an option due to the lack of quality control, clear indexing guidelines, and
missing support for data download [HMBI17b]. The following search query has been run on
the search engines integrated in each of these online databases:

full text CONTAINS
(“pretrain” OR “pretrained” OR “pretraining” OR
“pre-train” OR “pre-trained” OR “pre-training” OR
“transfer learning”) AND

publication date IS FROM 01.01.2007 TO 02.02.2022 AND publication venue CONTAINS
(“software” OR “program” OR “code”)

The composition of the query is the result of a trial-and-error procedure performed by
three researchers. The query searches for the listed terms (e.g., pretrain, pretrained) in
the full text of the articles (i.e., title, keywords, abstract, main text, references). The date
interval has been defined by conservatively collecting papers starting from 2007, year in
which we found a first mention to the notion of “transfer learning” in a SE-related article
[AZFL22], and using the date in which the search has been performed as the end of the inter-
val (02.02.2022). Finally, based on our knowledge of the existing SE publication venues, we
only searched for articles published in venues containing at least one of three keywords: soft-
ware, program, and code. We acknowledge that there might be relevant articles published
in related fields (e.g., artificial intelligence) that our query would exclude.
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However, our focus was indeed on the SE research community and these keywords should
capture most of the relevant venues.

Some of the search engines (i.e., Springer, Wiley, Elsevier, and Scopus) allow to specify a
discipline of interest. Such a feature is useful to limit the retrieved false positive instances. In
all online libraries we selected “Computer Science” as discipline. In addition, Springer also
allows to specify sub-disciplines, for which we selected “Software Engineering/Program-
ming” and “Operating Systems”. While the latter might not be fully relevant, we decided to
include it to be more conservative. Links with the exact queries we have run are publicly
available [repe].

Table 5.1. Articles returned by the queried digital libraries

Source Returned Articles

ACM Digital Library 623
IEEE Xplore Digital Library 850
Springer Link Online Library 1,167
Wiley Online Library 57
Elsevier ScienceDirect 288
Scopus 1,139

Total (including duplicates) 4,124

Total (excluding duplicates) 2,343

Table 5.1 reports the number of articles returned from each digital library (complete list
in [repe]). Overall, 4,124 articles were returned, which were reduced to 2,343 by excluding
duplicates. Given the very high number of articles, we decided to perform a further cleaning
step before starting looking into the papers. We extracted the set of 302 venues in which
the articles have been published and two researchers independently validated them deciding
whether to include or exclude them. We excluded venues unrelated to SE or not being in-
ternational conferences/journals. An open discussion was performed to reach an agreement
on the 53 cases of conflict (17%). As output of this process we kept 163 publication venues
as valid, excluding 1,407 papers published in the excluded venues. Examples of excluded
publication venues are “Computer Methods and Programs in Biomedicine” and the “Brazil-
ian Symposium on Programming Languages”. As output we obtained 936 candidate primary
studies.

Study Filtering. The 936 papers were equally distributed among the three involved
researchers. Each of them was in charge of inspecting the paper and decide whether to
include or exclude it. Inclusion and exclusion criteria are listed in Table 5.2. As a guideline,
we agreed on including the paper in case of doubt, since a double-check was foreseen in the
study filtering process. Indeed, despite the availability of the selection criteria as reference,
such a process still remains highly subjective. A total of 77 papers survived this first analysis.
Then, to at least partially address the subjectivity issue, we applied the following procedure.
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Table 5.2. Inclusion and exclusion criteria

Inclusion Criteria

IC1 The paper must be peer-reviewed, published at SE conferences, workshops, or journals.
Such a criterion is particularly important in the snowballing phase described later, in which
we ignore all referenced preprints (e.g., those published on arXiv.org).

IC2 The PDF of the paper must be available online. If the PDF was not available in the online
library of interest, we tried to search it on Google.

IC3 The paper must present and/or evaluate technique(s) to automate a code-related task.
IC4 The proposed/experimented technique(s) must be built on top of a pre-trained transform-

ers model. The pre-training of the model can either have been done directly in the paper
or the authors may have used an already existing pre-trained model.

Exclusion Criteria

EC1 The paper is not written in English.
EC2 The paper has been published in a conference/workshop and later on extended to a journal.

We only keep the journal paper to avoid redundancy.
EC3 The paper is not a full research publication (e.g., doctoral symposium articles, posters, ERA

track). We exclude all papers having less than six pages. The rationale for such a filter is
to remove papers that may not have been subject to the same peer-review process typical
of full research papers.

EC4 It is unclear from the paper what the adopted pre-training objective is. Such information
is instrumental for the goal of our SLR.

First, we randomly selected 30 papers excluded by each researcher, asking one of the other
two researchers to double check whether the papers were actually to be excluded. For all 90
randomly selected papers (30 × 3 researchers), no conflicts arisen, showing consistency in
the exclusion criteria applied. The papers included by each researcher were also all double-
checked by one of the other two researchers. Out of the 77 papers included in the first round,
30 made it into the final list of papers, including a SLR that we kept as secondary study for
the subsequent snowballing step.

Cases of disagreement have been discussed among all researchers to reach consensus.
Note that the decrease brought by the double-check we performed (77→ 30) was expected,
considering that in the first pass on the papers we decided to be inclusive in case of doubts.

Backward Snowballing. The included papers were split among the three researchers,
with each of them in charge of reading the reference list and identify possible relevant papers.
At this stage we relaxed one of our inclusion criteria (IC1): We agreed to include papers
published in venues outside of SE as long as they were presenting pre-trained models that
have then been exploited to automate code-related tasks in publications appeared in SE
venues. Eight papers were added through snowballing. Also in this case, a double-check
was performed on each of them and, through open discussion among all researchers, we
finally agreed to include four of them as relevant. This led to the final list of 33 primary
studies included (30 - 1 secondary study + 4 output of the snowballing).
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Table 5.3. Data extraction questionnaire

No. Question

1 Which code-related task has been automated?
2 Which specific transformer-based model has been used?
3 Has the model been pre-training in the paper?
4 If “no” to question 3: Which already pre-trained model has been exploited by the

authors?
5 Which pre-training objectives have been used?

Data Extraction and Analysis

The data extraction was performed following the questionnaire in Table 5.3. While most
of the questions are self-explanatory, it is worthwhile to clarify 3 and 4. Our focus is only
on papers using pre-trained transformers to automate code-related tasks. However, the pre-
training could have been done by the authors of the papers or being the result of a pre-trained
model made available in previous work (question 3). If the authors reused an already pre-
trained model, then by answering question 4 we expect to know from which reference the
pre-trained model has been taken. Question 5 is the ultimate goal of our SLR, which will
inform our subsequent experiments.

5.1.2 Results Discussion

Table 5.4 lists the pre-training objectives we identified. Each pre-training objective is iden-
tified by an acronym we will use to refer to it in the text. If the acronym has a / icon close
to it, this indicates that the pre-training task is specific for code, otherwise the pre-training
objective is “generic” and can be applied to any sort of data that can be fed to the model as
a stream of tokens. For each pre-training objective Table 5.4 also reports a short description
and references to primary studies in the SLR having a pre-trained model using it.

Without surprise, the most used pre-training objectives are those that the SE community
inherited from the NLP community, such as the classic MLM, randomly masking X% of tokens
in an instance that, in the case of SE research, could be for example a code function. MLM is
used in 21 of the papers included in our SLR. Variations of this pre-training objective are TI,
ULM, TD, and RTD (see Table 5.4 for their description) that are, however, less popular in SE.
Among them, the Replaced Token Detection (RTD) objective has been proposed in the paper
introducing the pre-trained CodeBERT model [FGT+20]. CodeBERT is gaining substantial
popularity in the SE literature especially when it comes to papers published in 2022 that,
due to the time in which we run the search query, are not included in our SLR.

While the above-described objectives work at token-level granularity, Next Sentence Pre-
diction (NSP) and Sentence Ordering (SO) aim at providing the model with knowledge related
to sentence-level relationships. In SE, both can be used for example to “teach” the model
the correct order of code statements in a given function. NSP is the second most-popular
pre-training objective in our set of papers, with 9 articles exploiting it. The popularity of NSP

is mostly due to the adoption of the BERT pre-trained model [HS97] in SE.
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Table 5.4. Pre-training objectives identified in the SLR

Name Description References

Masked Language Model
(MLM)

Masks X% of tokens (usually 15%) in the instance (e.g., a function)
and asks the model to guess the masked tokens based on their bidi-
rectional context. The model knows how many tokens have been
masked, since each of them is replaced with a special token (e.g.,
<MASK>).

[ADS22, SDFS20,
ZMW19, CR21,
ZPW+21, HMS20,
QCY21, GXL+21,
LPM+21, MMPT21,
GJMM21, CCP+21b,
MSC+21, LLZ+21,
MAPB21, SXP+21,
ZLL+21, ZHL21,
GRL+21, ACRC21]

Next Sentence Predic-
tion (NSP)

Given two sentences (or two statements) asks the model to guess
whether they follow each other.

[ZMW19, HST+21,
GXL+21, LPM+21,
MMPT21, LLZ+21,
SXP+21, ZLL+21]

Unidirectional Language
Model (ULM)

A left-to-right language modeling task, asking the model to guess
one masked token in an instance by only considering the leftward
tokens (i.e., the tokens preceding the masked one).

[LLZJ20, HHJC21,
JLT21]

Token Infilling (TI) Masks a random number of contiguous tokens and asks the model
to predict them. Differently from MLM, TI does not suggest to the
model how many tokens have been masked, since the sequence
of masked tokens is replaced with a single special token (e.g.,
<MASK>).

[CR21]

Token Deletion (TD) Deletes random tokens from the instance expecting the model to
reintroduce them where needed. TD is similar to MLM, but without
suggesting the model where tokens have been masked.

[CR21]

Replaced Tokens Detec-
tion (RTD)

Replaces random tokens in the instance with other tokens. The
model must guess which are the non-original tokens (i.e., those that
have been replaced).

[ZPW+21]

Sentence Ordering (SO) Given two sentences (or two statements) asks the model to guess
whether they order.

[ATLJ20]

Identifiers Masking (IM

/)
Masks the identifiers in the code instance and asks the model to
guess the masked identifiers.

[LLZJ20]

Programming Language
Classification (PLC /)

Given a sequence of code tokens asks the model to identify its pro-
gramming language.

[SDFS20]

Generative State Model-
ing (GSM /)

Given assembly code and a small subset of its execution states (e.g.,
register values), asks the model to reconstruct the complete set of
its execution states.

[PGB+21]

Edge Prediction (EP /) Masks edges in data-flow graph belonging to 20% of nodes ran-
domly selected and asks the model to predict them.

[GRL+21]

Node Alignment (NA /) Similar to data flow EP. Instead of predicting edges between nodes,
the model is asked to predict edges between code tokens and nodes.
Such a task is performed to align the source code-data flow repre-
sentations.

[GRL+21]

Code Summarization
(CS /)

Provides as input to the model a function and asks to summarize it
in natural language.

[WLX+19]
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The bottom of Table 5.4 lists the objectives specifically designed for code. Despite being
pre-training objectives, some of them are targeting a specific task, like for example Code
Summarization (CS). The latter has been instantiated in [YKY+21] as a task in which the
model was asked, given a Java method, to generate its textual summary (i.e., first Javadoc
sentence).

The final code-related task that the authors wanted to automate after the fine-tuning
phase was a natural language description of smart contract. Thus, the CS objective started
providing the model with knowledge about the code-to-NL translation task. This is a con-
crete example of pre-training objective already tailored for the specific downstream task of
interest. Overall, as it can be seen from Table 5.4, code-specific pre-training objectives have
been usually adopted only in the paper proposing them.

Section 5.2 describes how we use the findings of our SLR to select the pre-training ob-
jectives for our experiments.

5.2 Studying the Impact of Pre-training

We aim at answering the following research questions:
RQ1: To what extent is the effectiveness of pre-training influenced by the size of the fine-

tuning dataset? RQ1 investigates if pre-training is still useful when abundant fine-tuning
instances are available (e.g., can be automatically generated). We assess the impact of pre-
training when the model is fine-tuned on a dataset (i) being substantially smaller and (ii)
having a size comparable to the pre-training dataset.

RQ2: To what extent does the choice of the pre-training objective impact the performance
of transformer models? Our second research question focuses on the impact on the model’s
performance of the used pre-training objectives, with a particular focus on comparing general
vs task-specific objectives, also investigating combinations of multiple objectives.

The context of our experiments are (i) three code-related tasks for which DL-based solu-
tions have been proposed in the past, and (ii) two code review-related tasks, namely code &
comment-to-code and code-to-comment. For reasons we will explain later, RQ1 focuses on code
summarization and code completion only, while RQ2 includes all tasks. All our experiments
are run on Java datasets defined at method-level granularity (e.g., fixing a bug in a method).

5.2.1 Transformer Model

As representative of transformers [VSP+17], we adopt the T5 proposed by Raffel et al.
[RSR+20], that has been widely used in SE to automate code-related tasks. Raffel et al.
proposed several variants of T5, differing in number of trainable parameters.

We use the small variant, featuring a total of∼60M parameters resulting from 6 layers in
both the encoder and the decoder each having a dimensionality of 512, 8-headed attention,
and an output dimensionality of 2,048 (same used in our work summarized in Chapter 4).
While larger T5 versions are likely to achieve better performance, the training cost increases
with the number of parameters. Considering the number of models that we need to train in
our study (i.e., 56 different models), we opted for the smaller T5 version.
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Indeed, our goal is not to achieve state-of-the-art performance in the automated tasks,
but rather to study the impact of pre-training on the model’s performance in different cir-
cumstances.

5.2.2 Pre-training Objectives

We describe the pre-training objectives used in our RQs.
Concerning RQ1, we only use the Masked Language Model (MLM) objective, the one

mostly used in the literature. Indeed, the focus of RQ1 is not on the impact of different
pre-training objectives (RQ2), but rather on the boost provided by pre-training when the
fine-tuning dataset is substantially smaller than the pre-training one or, instead, has a com-
parable size.

For RQ2, based on the findings of our SLR, we selected three generic pre-training objec-
tives to experiment with.

First, we picked the two currently being the most popular in SE, namely the MLM (with
15% of masked tokens) and the Next Sentence Prediction (NSP). As third “generic” objective,
we selected the Replaced Tokens Detection (RTD) that, as previously explained, is gaining
popularity since used in CodeBERT [FGT+20], adopted in several recent studies (see e.g.,
[MH21, ZYK+22, PLX21]). While MLM and NSP are straightforward to understand, a clar-
ification is needed on RTD. The latter starts by randomly selecting 15% of tokens to be
replaced. However, the replacements for these tokens are not randomly selected from a vo-
cabulary, but picked based on the recommendation of an n-gram model (n = 3) trained on
the pre-training dataset. An n-gram model can predict a single token likely to follow the n−1
tokens preceding it. As suggested in [FGT+20], we used it to identify suitable alternatives
for the tokens to be replaced, thus making the pre-training task (i.e., identify which tokens
in an instance have been replaced) more challenging. Given a token to replace Ti , we run
the n-gram model by providing it as input with the two tokens preceding it (Ti−2, Ti−1) and
collect the ranked list of candidate tokens that, accordingly to the n-gram model, is likely
to follow Ti−2 and Ti−1. The ranked list features on top the most likely token Tc: If Tc is
different from the token to replace Ti , we use Tc for the replacement. Otherwise, we take
the token in second position.

On top of the three generic objectives, we also experiment with four pre-training objec-
tives tailored for the downstream tasks at hand.

For bug-fixing, we pre-train the model through the Injected-Mutants Fixing (IMF) objec-
tive. The idea is to mutate each method M in the pre-training dataset by injecting artificial
bugs in it, creating a mutant Mm. During pre-training the IMF objective provides T5 with
Mm as input and asks it to generate M (i.e., to fix the bug). One challenge we faced was
the selection of the mutation testing framework to use. We considered tools such as µJava
[muj], PIT [pit], javaLanche [javb], and Jester [Jes]. PIT was the only one supporting recent
versions of Java. However, since it works at Byte code level, PIT requires the input code to
mutate to be compilable. This is problematic in our context since the 1M methods in our
pre-training dataset come from thousands of software projects, several of which are likely to
be unbuildable [TPB+17].
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For this reason, we built a source code-level mutation tool using Javaparser [java]. Our
tool implements the 11 mutation operators belonging to the “default group” in PIT [opeb]
(i.e., invert negatives, empty returns, etc.). Given a Java method M , our tool builds its AST
and, using it, identifies the set of mutation operators that can be applied on M . For example,
the empty returns operator replaces return values with “empty” values (e.g., "" if M returns
a String, Collections.emnptyList() if M returns a Collection, etc.), and can only be
applied to methods returning a value. Finally, assuming that n operators can be applied to
M , n mutants (i.e., n versions of M) are generated, each implementing one of the applicable
operators.

Concerning the code summarization task, we consider the Method Name Generation
(MNG) as a tailored pre-training objective. During pre-training, T5 takes as input a Java
method and it is required to synthesize an appropriate name for it, based on the idea that
the method name represents an extreme summary of the method [APS16].

Regarding code completion, we focus on the challenging task of predicting entire code
blocks, as recently attempted by Ciniselli et al. [CCP+21a]. A code block is defined as the
code enclosed between two curly brackets (e.g., the code executed when an if/else/else
if condition is satisfied). To prepare the model for such a downstream task, we devised Code
Block Selection (CBS) as a tailored pre-training objective. Given a Java method in the pre-
training dataset, we randomly mask a code block in it, and ask the model to decide which
of two candidate code blocks is the correct one to complete the method. This pre-training
is expected to prepare the model for the more challenging downstream task of generating
masked code blocks from scratch.

Finally, for the two code review-related tasks (i.e., code & comment-to-code, code-to-
comment) we defined as pre-training objective the Revised Code Lines Prediction (RCLP),
namely providing the model with the code submitted for review and asking it to guess which
lines will be impacted by changes introduced in the review process. Indeed, both down-
stream code-review tasks we aim at automating require the model to understand which
parts of the code must be revised. For the code & comment-to-code task the model outputs
the revised code having as context the code to be revised and the reviewer comment. Thus,
to succeed in the task, the model has to correctly identify the code lines to be modified (and
then revise them). Regarding the code-to-comment task, the model is required to generate a
code change request in natural language as a reviewer would do. Also in this case, to suc-
ceed, the model needs to identify which type of code change is necessary for the given code,
thus, which lines of code are required to be changed. For these reasons, predicting the code
lines to change as a pre-training objective may help the model in the code review-related
downstream tasks. Formally, given a Java method as input, we ask the model to highlight
(using special tokens) the code lines that would be revised. As described in the next section,
due to its different nature, for this pre-training objective we will use a different pre-training
dataset as compared to the other three code-related tasks.
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5.2.3 Pre-training Datasets

We built two different pre-training datasets: one for code-related tasks and one for code
review-related tasks. The reason behind this decision is given by the specific nature of the
instances needed for the RCLP pre-training objective, which are output of a code review
process, differently from the other three tasks. Also, the fine-tuning dataset for the code
review tasks also exploits instances output of the code review process, thus requiring to split
the available instances between pre-training and fine-tuning. As a consequence, the pre-
training dataset available for the code review tasks will be quite limited in terms of size as
compared to the other tasks.

Code-related Pre-training Dataset

To build the pre-training dataset for the code-related tasks, we used the GitHub search tool
by Dabić et al. [DAB21, ghs] to identify GitHub Java projects having at least 5 contributors,
50 commits, 10 stars and not being forks of other projects. These selection criteria aimed at
removing personal projects from our selection. We ended up with 14,645 valid repositories,
that we parsed to extract 64,546,432 Java methods.

Since among the downstream tasks we experiment with there is code summarization, we
wanted to make sure that each pre-training instance was composed by both source code (in-
strumental for all three tasks) and natural language (useful for code summarization). Also,
recent studies [TDS+20] showed that pre-training models on both natural language and code
(as opposed to code only) is beneficial when dealing with code-related tasks. For these rea-
sons, methods without Javadoc have been excluded, leading to 17,758,579 〈method, javadoc〉
pairs.

We then started processing our dataset to clean it and remove problematic instances. We
excluded all pairs meeting one of the following conditions: (i) the Javadoc, while present,
is an empty string; (ii) the method has an empty body; (iii) the method is annotated with
@Test; (iv) the method does not end with a } (this may happen in case of parsing errors when
we extract the methods). We excluded test methods since none of our tasks is test-related,
and we preferred to create a more cohesive pre-training dataset featuring only methods from
production code. We only consider in our dataset the first part of the Javadoc comment (i.e.,
the one summarizing the method in natural language) excluding the Javadoc tags (e.g.,
@param, @author). Once done with this basic filtering, we manually inspected hundreds of
instances in the dataset to identify other sources of noise.

Four main issues were identified: (i) non-English Javadoc comments; (ii) instances con-
taining non-ASCII characters; (iii) comments containing special symbols/tags which may
not help with learning textual patterns in Javadoc; and (iv) comments not representing
code summaries, but rather notes written by developers (e.g., TODOs). We removed all
non-English Javadocs using two Python libraries: langid [lanb] and cld3 [pyc]. We keep
an instance in the dataset only if both libraries classified the Javadoc as English text. We
replaced all non-ASCII math characters with their corresponding ASCII representation (e.g.,
we replaced “±”, with “+-”) and removed all instances featuring non-Latin characters.

Additional cleaning aimed at removing from the Javadoc sequences of characters used
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for formatting (e.g., “---”) or special markdown tags (e.g., we replace {@class ClassName}

with ClassName). We also replace any embedded link in the Java method and/or in the
Javadoc with a special tag “<LINK_i>", with i being an integer ranging from 0 to n−1, where
n is the number of links in the instance. If the same link is found both in the method and in
its Javadoc, they are replaced with the same special tag with the same index. Finally, since
the collected methods came from different projects possibly using different coding styles,
we formatted all instances using the Javaparser [java] library. We also performed additional
(minor) cleaning steps that we do not document here. However, we publicly release our
cleaning script as part of our replication package [repe].

After this process, we removed all instances longer than 512 tokens (i.e., the number
of tokens used to represent both the method and its Javadoc was higher than 512), as also
done by previous work using DL to automate code-related tasks (see e.g., [LM19, TDS+20,
CKT+21]): 4,821,922 instances were left.

As a last step, we excluded instances that are not suitable for one or more of our pre-
training objectives defined for the three code-related tasks. The two objectives which are
not applicable to all possible instances are the Injected Mutants Fixing (IMF) and the Code
Block Selection (CBS): We removed (i) 219,863 instances for which none of the 11 mutation
operators we support can be applied; and (ii) 2,994,723 which did not have any code block
to mask. From the set of remaining instances, we randomly pick 1M of them to create
our pre-training dataset for the code-related tasks. While, in theory, all ∼1.6M remaining
instances were valid, we capped the size of the pre-training dataset to limit the time needed
to perform several training epochs.

Code Review-related Pre-training Dataset

To build the pre-training dataset for the code review-related tasks, we use Megadiff [MMY+21],
a collection of 600k Java code changes organized by diff size, ranging from 1 to 40 lines
of code changes. The goal of the model when solving the RCLP pre-training objective is
to correctly guess which lines of code will be revised, highlighting them using special to-
kens(<rev>, </rev>); considering 40 lines of code changes means that the model must
correctly identify all of them to succeed and this could lead to an overly demanding pre-
training task. For this reason, we select only data points featuring between 1 and 15 lines of
code changes.

Each instance in this dataset consists of an entire file diff obtained after a commit opera-
tion. Since our granularity focus is method level, we parsed the file extracting the impacted
methods (i.e., those featuring at least one changed line). Then, from the 256,211 collected
methods we filtered out: (i) methods with an empty body; (ii) constructor methods; (iii)
methods annotated with @Test; and (iv) methods that do not end with a } (likely the result
of a parsing error). Finally, we removed all instances longer than 512 tokens. This process
left us with 115,346 valid instances. Since the considered code review-related tasks need the
model to understand natural language (to implement the requested code change in code &
comment-to-code and to correctly generate the comment in code-to-comment) in this dataset
we do not remove inline comments.
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This is done because, differently from the pre-training dataset used for the three code-
related tasks, in this dataset there are very few methods having a Javadoc. We removed
non-English comments and cleaned the valid ones by removing punctuation symbols (e.g.,’*’,
’//’, ’/*’). Finally, since the instances will be flattened to be suitable for the model (i.e.,
no code indentation will be available), we use special tokens (<technical_language>,
</technical_language>) to mark the beginning and end of comments inside the code.

As a last step, we excluded instances that are not suitable for the pre-training objective
defined for the three code review-related tasks, i.e., Revised Code Lines Prediction (RCLP). We
removed 11’543 instances consisting of methods where the changed lines of code are just
added lines. We do this because in those cases it is not possible to highlight the lines of code
that will be modified. The obtained dataset counts 103,803 instances.

5.2.4 Fine-tuning Datasets

A different fine-tuning dataset has been built for each of the five subject downstream tasks.
Due to their limited size, the bug-fixing dataset and the code-review datasets have only be
used in the context of RQ2, since it was not possible to create a version of them large enough
to answer RQ1 as well.

Bug-fixing

We exploit the dataset used by Chen et al. [CKT+21]when presenting SequenceR, a sequence-
to-sequence model trained on 35,578 one-line Java bug fixes (i.e., commits fixing a bug by
only changing a single line of code). The training set consists of pairs featuring the buggy
code and the corresponding fixed code, and it is accompanied by a validation and a testing
set featuring additional 4,711 one-line bug fixes each. The buggy code includes a “buggy
line” explicitly marked with two special tokens (i.e., 〈START_BUG〉 and 〈END_BUG〉) and
being part of a “buggy method”. In addition to that, the buggy code also includes contex-
tual information extracted from the “buggy class” (e.g., its constructor). The fixed code the
model is expected to generate includes, instead, only the “fixed line” (i.e., revised version of
the “buggy line”).

Before using this dataset, we pre-processed it to make it more “aligned” to our pre-
training dataset, and in particular to the tailored pre-training objective we devised for the
bug-fixing task (i.e., Injected-Mutants Fixing). First, our pre-training dataset only features
Java methods with its related Javadoc, excluding any class-related information. Similarly,
the IMF objective provides as input to the model a mutated Java method without any addi-
tional contextual information nor special tag signaling the injected bug. Thus, we processed
the buggy code of the dataset by Chen et al. [CKT+21] to only include the buggy method
without the special tokens marking the buggy line. Second, as done for the pre-training
instances, we formatted the code using Javaparser [java], to have a coherent code repre-
sentation. Finally, we removed any duplicated method already present in our pre-training
dataset. This process left us with 25,901 instances that we split into training (80%), valida-
tion (10%) and test (10%) set.
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Code summarization

We use the FunCom dataset [LM19, fun], featuring 2,149,120 instances, with each of them
being composed by a Java method and its associated Javadoc comment. FunCom has been
curated to only include English comments and exclude auto-generated files. We start from
the “Filtered dataset" version [fun] consisting of not processed instances. We perform on
them the same cleaning process used for the pre-training dataset (e.g., removing instances
containing non-Latin characters) and remove any duplicate with between FunCom and our
pre-training dataset. From the 1,898,437 instances left, we create two fine-tuning datasets
needed to answer RQ1. For the first (large-ft), we randomly select 1M instances, splitting
them into training (80%), validation (10%), and test (10%). This fine-tuning dataset will
be used in RQ1 as representative of a fine-tuning dataset having a size of the same order
of magnitude of the pre-training dataset. For the second (small-ft), we randomly select
25,901 instances, the same number of instances in our bug-fixing fine-tuning dataset. The
idea is indeed to create a second fine-tuning dataset being substantially smaller than the
pre-training one, as it usually happens when working on tasks characterized by a scarcity
of training data. Also small-ft followed the usual training (80%), validation (10%), and test
(10%) split. Both datasets are used to answer RQ1, while only small-ft is used in RQ2. Indeed,
as our RQ1’s findings will show, pre-training is mostly useful when a small fine-tuning dataset
is available. Thus, we experiment the impact on performance of the pre-training objectives
(i.e., RQ2) when using the small-ft dataset.

Block-level code completion

Following Ciniselli et al. [CCP+21a], we aim at building a fine-tuning dataset in which Java
methods having a masked block of up to three statements are provided as input to T5, which
is in charge of generating the masked block. We start from the 1,569,889 Java methods in
the CodeSearchNet dataset [HWG+19]. We applied a cleaning process similar to the one
described for the pre-training dataset (e.g., checking that the method body is not empty, that
the method is not a test method, etc.), removed methods not containing at least one code
block composed by at most three code statements (2,847).

Then, we followed the training procedure by Ciniselli et al. [CCP+21a]: Given k the
number of blocks identified in a method M , we create k versions of M , each one having
a specific code block masked. As previously said, only blocks composed by at most three
statements are masked. We then remove instances longer than 512 tokens (333,955). Such
a process resulted in a dataset composed by 1,823,977 instances. Finally, similarly to what
explained for code summarization, we create two versions of the code completion fine-tuning
dataset: large-ft featuring a total of 1M randomly selected instances, and small-ft featuring
25,901 instances.
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Code Review dataset

Regarding the two code review related-tasks we use the datasets used in [TMM+22] (Section
4.1.2). They are two datasets consisting of: (i) triplets< ms, rnl , mr >, where ms is a method
submitted for the review, rnl is a single reviewer’s comment suggesting code changes for ms,
and mr is the revised version of ms implementing the reviewer’s recommendation rnl (code
& comment-to-code); (ii) pairs < ms, rnl > where ms is a method submitted for the review
and rnl is a single reviewer’s comment suggesting code changes for ms (code-to-comment).
Note that there is no overlap between the instances in these fine-tuning datasets and those
in the pre-training dataset we built for the code review tasks.

Table 5.5 summarizes the pre-training/fine-tuning datasets, also indicating which dataset
has been used in each RQ.

Table 5.5. Pre-training and fine-tuning datasets used in our study

Dataset Training Evaluation Test RQ1 RQ2

Pre-training
code-related tasks 1,000,000 - - 3 3
code review-related tasks 103,803 - - 7 3

Fine-tuning
Bug-fixing 22,321 2,790 2,790 7 3
Code summarization

large-ft 800,000 100,000 100,000 3 7
small-ft 22,321 2,790 2,790 3 3

Code completion
large-ft 800,000 100,000 100,000 3 7
small-ft 22,321 2,790 2,790 3 3

Code&comment-to-code 134,239 16,780 16,780 7 3
Code-to-comment 134,239 16,780 16,780 7 3

5.2.5 Experimental Procedure

The training of the models has been performed using a 2x2 TPU topology (8 cores) from
Google Colab with a batch size of 128 and the Inverse Square Root learning rate.

Answering RQ1

We start by fine-tuning (without pre-training) four models, two for the code summarization
and two for the code completion task.

The models trained within each task differ for the fine-tuning dataset used, being either
the large-ft (800k training instances) or the small-ft (∼22.3k). The fine-tuning has been
performed using an early-stopping training strategy by exploiting the evaluation set. In
particular, we saved a checkpoint of the model every epoch computing its performance in
terms of correct predictions on the evaluation set and stopped the training if the performance
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of the model did not increase for three consecutive checkpoints (to avoid overfitting). With
“correct predictions” we refer to cases in which the generated prediction is identical to the
target. For code summarization, a correct prediction implies that the summary generated
by the model is equal to the one written by developers. In the case code completion, the
predicted code block matches the one we masked.

Then, we pre-train a T5 model for 40 epochs on the 1M instances featured in the pre-
training dataset using the MLM objective. We fine-tune four versions of it, again two for each
task (i.e., code summarization and code completion) differing for the used fine-tuning dataset
(large-ft or small-ft). We used the same early-stopping procedure described above.

This process resulted in an overall of eight models, four being pre-trained and four not
being pre-trained. These eight models have been run on the corresponding test sets collecting
their predictions. This allows to compare the pre-trained and the not pre-trained models
both when using a fine-tuning dataset having a size comparable to that of the pre-training
(large-ft) or being substantially smaller than it (small-ft).

Answering RQ2

We experiment with four possible pre-training objectives (and their combinations) for each
of the tasks subject of our study: three “generic” pre-training objectives (i.e., MLM, NSP,
and RTD) that can be applied to any task and the pre-training objective specifically tailored
for the given task (e.g., Method Name Generation for code summarization). Thus, for each
task, we start by pre-training and fine-tuning four T5 models, each one using a specific pre-
training objective. All the pre-trainings are run for 40 training epochs, while concerning
the fine-tuning, we adopt the same early-stopping training strategy described for RQ1. The
above-described process results in 20 different models being pre-trained and fine-tuned (4
× 5 tasks).

For each task, we evaluate the four fine-tuned models on the corresponding test set
(see Table 5.5) in terms of correct predictions, identifying the best performing pre-training
objective pto. The latter has then been combined in pairs with the remaining three objectives.
For example, assuming that Method Name Generation (MNG) results the best pre-training
objective among the four experimented for the code summarization task, we create three
pairs of pre-training objectives including <MNG, MLM>, <MNG, NSP>, and <MNG, RTD>.
This provides us with additional three models pre-trained and fine-tuned for each task (15
models overall — 3 × 5 tasks). Again, each of these models has then be evaluated on the
corresponding test set, identifying the best performing “pair” of pre-training objectives for
each task. The latter has been used to generate two triplets of pre-training objectives by
combining it with the remaining two objectives. For example, assuming <MNG, NSP> to
be the best pair for code summarization, we create <MNG, NSP, MLM>, and <MNG, NSP,
RTD>. This results in the training and testing of two additional models for each task (10
overall). Finally, we test for each task the full combination of the four corresponding pre-
training objectives, thus training one additional model for each task (5 overall). In total, we
pre-trained and fine-tuned 20+15+10+5=50 T5 models in RQ2.
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The output of such a process is, for each task, the set of predictions generated by the 10
models trained for it (4 using a single pre-training objective, 3 using pairs of objectives, 2
using triplets, and 1 using all four objectives).

5.2.6 Data Analysis

Using the generated predictions, in both our RQs we assess the performance of the models by
computing the percentage of correct predictions generated (i.e., predicted output identical
to the expected one). We statistically compare the results achieved by the different mod-
els for each task using the McNemar’s test [McN47], which is a proportion test suitable to
pairwise compare dichotomous results of two different treatments. To account for running
multiple test instances (e.g., in RQ2 comparing the results of the model pre-trained with MLM

with those pre-trained using RTD, NSP, etc.), we adjust p-values using the Holm’s correction
[Hol79a]. We complement the McNemar’s test with the Odds Ratio (OR) effect size.

Table 5.6. RQ1: Impact of pre-training when the fine-tuning dataset size (|FT|) is << or ∼ to the
pre-training dataset size (|PT|)

|FT| vs |PT| Task Non Pre-trained Pre-trained (MLM)

<<
Code Summarization 1.94% 4.73%
Code Completion 2.37% 5.05%

∼ Code Summarization 16.60% 15.98%
Code Completion 30.41% 29.11%

5.3 Results Discussion

We discuss the achieved results by research question. We highlight the main take-aways of
our study using the  icon.

5.3.1 RQ1: Effectiveness of pre-training when dealing with fine-tuning datasets of
different sizes

Table 5.6 reports the percentage of correct predictions achieved by the non pre-trained T5
and the T5 pre-trained using the MLM objective. Results are reported for the two tasks in-
volved in RQ1 (i.e., code summarization and code completion) in the scenario in which the
fine-tuning dataset is (i) substantially smaller (22.3k << 1M) than the pre-training dataset
(i.e., the small-ft dataset has been used — top part of Table 5.6), and (ii) of a size similar
(800k ∼ 1M) to the pre-training dataset (i.e., the large-ft dataset has been used — bottom
part of Table 5.6).

 When the fine-tuning dataset is small, the pre-training, as expected, helps the learning
of the model. For code summarization, the boost in terms of perfect predictions goes from
1.94% up to 4.73%, resulting in a statistically significant difference (p-value < 0.001) with
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an OR=10.3, indicating ten times higher odds of obtaining a correct prediction from the
pre-trained model as compared to the non pre-trained one. Similar findings hold for the
code completion task, with correct predictions growing from 2.37% to 5.05% thanks to the
pre-training (p-value < 0.001, OR=11.7).

Moving to the bottom part of Table 5.6, two observations can be made. First, with the
fine-tuning dataset being 36 times larger (22.3k vs 800k) the performance of the model
improves dramatically both for the pre-trained and for the non pre-trained model. This is
kind of expected considering the larger amount of data from which the model can learn
useful patterns.

Second,  when the fine-tuning dataset size is similar to that of the pre-training dataset,
we do not observe any boost provided by pre-training, with performance slightly in favor of
the non pre-trained model in both tasks (p-value < 0.001, OR=1.2 for code summarization,
and p-value < 0.001, OR=1.3 for code completion). While such a result may look surprising,
it might be partially explained by the well-known “catastrophic forgetting” phenomenon
affecting neural networks [Rob95]: DL models tend to forget previously learned information
once new information is provided. Having a large fine-tuning dataset may lead to “override”
what the model learned during pre-training, making the latter basically useless.
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Figure 5.1. RQ2: Results with different combinations of pre-training objectives for code-related tasks
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Figure 5.2. RQ2: Results with different combinations of pre-training objectives for code review-
related tasks

5.3.2 RQ2: Impact of pre-training objectives on performance

Figures 5.1 (generic code-related tasks) and 5.2 (code review tasks) summarize the results in
terms of correct predictions achieved by the 50 models pre-trained using different objectives
(10 for each task).

From the left to the right of the two figures we move from pre-trainings performed with
a single objective (e.g., MLM) to those involving all objectives relevant for a given task (e.g.,
IMF + MLM + NSP + RTD). Within each task and each pre-training group (i.e., those involving
only one objective, those involving two objectives, etc.), the objectives are sorted from the
top to the bottom based on the performance they ensured.

For example, for bug-fixing, when experimenting with a single pre-training objective,
the task-specific objective we devised (i.e., Injected-Mutants Fixing — IMF) is the best one,
followed by MLM, RTD, and NSP. The overall best performing combination of objectives for
each task is highlighted with yellow text (e.g., IMF + MLM for bug-fixing). Given the high
number of statistical tests performed (i.e., each combination of pre-training objectives has
been contrasted against all others, resulting in 45 tests per task), we provide full tables with
the adjusted p-values and ORs in our replication package [repe].

Three main lessons can be learned from our results. First,  the choice of the pre-training
objective can make a substantial difference in the performance of transformers. Within each
task, contrasting the best-performing combination with the worst-performing one results
in statistically significant differences (p-value < 0.001) with ORs of 2.9 (bug-fixing), 38
(code summarization), 29 (code completion), 2.9 (code & comment-to-code), and 19.5 (code-
to-comment). For example, in the case of code summarization, we move from the 4.73% of
correct predictions ensured by MLM, down to the 1.94% achieved with the NSP objective.
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Second, the  high effectiveness of the MLM pre-training objective: MLM is involved, alone
or in combination with other objectives, in all best configurations we found. Moreover, even
in the bug-fixing and code-to-comment tasks in which the MLM objective in isolation is not the
best-in-class, the difference in performance with respect to the best configuration (i.e., IMF

+ MLM and NSP + MLM respectively) is not statistically significant.
Third, concerning the task-specific objectives we devised, we only observed a (not sta-

tistically significant) improvement over MLM for the bug-fixing task with the IMF objective.
The latter provides the model with information substantially different from those that can be
captured by MLM and it closely resembles the fine-tuning task. This might not be the case for
the other task-specific objectives we devised. For example, the Method Name Generation MNG

objective devised for code summarization is a sort of more specific version of MLM: rather
than randomly masking 15% of tokens in the training instance, the method name is the only
masked token the model has to predict. We conclude that  task-specific pre-training ob-
jectives might boost performance if they (i) capture orthogonal information as compared to
non-specific objectives such as MLM; and (ii) strictly simulate the downstream task. How-
ever, even in this case, the gain over the classic MLM objective may be limited and should be
assessed empirically.

5.4 Conclusions

We investigated the impact on the performance of transformers [VSP+17] of the pre-training
phase, nowadays adopted in most of the applications of these models to SE tasks. Two
aspects have been investigated: (i) the extent to which pre-training helps the learning even
when the task at hand allows to build very large datasets for fine-tuning; and (ii) the impact
on the model’s performance the choice of the pre-training objective(s) can have.

We found that when the size of the fine-tuning dataset is large enough, approaching that
of the pre-training dataset, the pre-training phase is unlikely to help. Instead, it provides a
substantial boost of performance for tasks in which the scarcity of training data leads to small
fine-tuning datasets. We also observed the major role played by the choice of the pre-training
objectives, with different combinations of objectives providing substantially different perfor-
mance. Pre-training objectives specifically tailored for the downstream tasks can help but,
at least in our study, did not result in a significant improvement of performance as compared
to the classic Masked Language Model task.

These results also hold in the context of code review-related tasks, confirming our choice
of the Masked Language Model as pre-training objective in Chapter 4 as a good one.

This chapter concludes our contributions on the usage of DL-based solutions for code
review automation. Several subsequent works built on top of our techniques, proposing
better solutions for automating the targeted tasks. Still, both our work as well as those
proposed successively mostly focus on a quantitative evaluation of the proposed solutions.
In the next chapter we look at the support these techniques are able to provide in terms of
code review automation from a more qualitative point of view.
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5.5 Replication Package

We release all code and data used in our study in a comprehensive replication package [repe,
repf]. It contains:

• the material from the sistematic literature review (e.g., used queries and collected
papers);

• the processed and split datasets we used (both for pre-training and fine-tuning);

• the scripts used to preprocess and clean the data, as well as the necessary to generate
mutants of given Java methods;

• the Google Colab notebooks we used to pre-train and fine-tune the models;

• the checkpoints of the best models obtained for each task, dataset and pre-training
objective, as well as the trained tokenizer model and vocabulary;

• the statistical analysis, BLEU score and Levenstein distance of the models predictions;

• instructions to replicate our research.
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6
Code Review Automation: Strengths and
Weaknesses of the State-of-the-art

The code review automation techniques presented in this thesis ([TPT+21, TMM+22])
are only the first of several focusing on automating one or both of the code & comment-to-
code and the code-to-comment tasks [TPT22b, LYJ+22, HTTA22, LLG+22]. These techniques
have been evaluated on test sets containing hundreds of instances representative of the auto-
mated tasks. For example, for the code & comment-to-code task, the test sets feature 〈Cs, Rnl〉
pairs which are fed to the approach to assess whether it can address the reviewer’s comment
Rnl and generate the expected Cr . The outcome of these evaluations is a mostly quantita-
tive report showing, e.g., the percentage of instances in the test set for which the approach
successfully generated a prediction.

However, such quantitative measures only tell part of the story. Indeed, it could happen
that the approach is targeting the low-hanging fruits, being successful in only simple code
review scenarios which are unlikely to save developers’ time. For the code & comment-to-code
task this might mean successfully addressing mostly comments requiring minor changes to
Cs (e.g., addition/removal of whitespaces to improve the formatting). Similarly, for the code-
to-comment task the approach could overfit and mostly be successful in posting comments
related to e.g., replacing the == operator in Java with an equals invocation when needed.

77
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In other words, little is known about the code review scenarios in which these techniques
succeed or fail.

To fill this gap, we manually analyzed 2,296 predictions generated by three state-of-
the-art techniques [TMM+22, HTTA22, LLG+22] (including the one presented in Chapter 4)
automating the code review tasks previously described. The predictions have been generated
on the original test sets used in the papers presenting the subject techniques.

The result of such an analysis are two taxonomies (one per task) featuring a total of 120
types of code changes requested during code review (e.g., extract method refactoring, add
thrown exception) with indication about the extent to which state-of-the-art techniques are
successful in (i) requesting their implementation when needed by properly commenting the
submitted code as a human reviewer would do (code-to-comment task); (ii) automatically
implementing them to address a reviewer’s comment (code & comment-to-code task).

We found that the proposed techniques can provide support in a wide variety of code
changes. However, there are areas of our taxonomies in which the approaches consistently
fail, pointing to the need for more research. As a concrete example, the experimented tech-
niques struggle when they need to recommend (code-to-comment task) or implement (code
& comment-to-code task) complex code changes spanning across several code components.
This is due to the “view” they have of the code base, usually limited to a single function or diff
hunk submitted for review. This indicates the need for enriching the contextual information
provided to these techniques.

During our manual analysis we also found that ∼25% of the instances in the inspected
datasets are the result of data extraction errors possibly undermining the techniques’ perfor-
mance. We discuss the reasons for such problematic instances.

Finally, given the recent proposal of general purpose Large Language Models (LLMs)
such as ChatGPT [cha], it is unclear what the actual need is for code review automation via
specialized techniques. We compared the three subject approaches with ChatGPT, showing
that, while the latter represents a competitive solution for the code & comment-to-code task,
it suffers in the code-to-comment task.

The content of this chapter has been presented in the following paper:

Code Review Automation: Strengths and Weaknesses of the State of the Art

Rosalia Tufano, Ozren Dabić, Antonio Mastropaolo, Matteo Ciniselli, Gabriele
Bavota. Submitted to IEEE Transactions on Software Engineering (TSE) after Major
Revisions
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6.1 Study Design

The goal of this study is to assess the capabilities of state-of-the-art techniques for code review
automation. The context consists of: (i) three techniques, i.e., Tufano R. et al. [TMM+22]
(T5CR), Li Z. et al. [LLG+22] (CODEREVIEWER), and Hong et al. [HTTA22] (COMMENTFINDER);
(ii) two code review tasks for which the subject techniques provide automation, i.e., code-
to-comment and code & comment-to-code; and (iii) instances featured in the test datasets on
which the techniques have been evaluated in the papers presenting them. We do not aim
at comparing the performance of the three techniques to understand which one is the best.
Rather, we look at them as a whole to understand the status of code review automation.

We address the following research questions (RQs):

RQ1: What are the characteristics of correct and wrong recommendations generated
by techniques for code review automation? We cluster the predictions generated by the
experimented techniques into two sets representing instances for which the approaches gen-
erated a correct or a wrong prediction. Then, we quantitatively compare these two sets. For
the code-to-comment task we compare the “complexity” of the comments to automatically
generate (i.e., those present in the ground truth). Similarly, for the code & comment-to-code
task, we compare the “complexity” of the code changes to implement. Such an analysis will
shed some light on the extent to which the state-of-the-art techniques overfit towards the
low-hanging fruits of the datasets.

On top of this, we qualitatively analyze 2,296 predictions generated by the three ap-
proaches (equally distributed between correct and wrong predictions) to characterize the
type of code change they were able to request (code-to-comment task) or to automatically
implement (code & comment-to-code task). The objective is to understand the scenarios in
which these techniques are successful vs those in which they tend to fail. For example, if the
outcome reveals that for the code & comment-to-code task the techniques are mostly success-
ful in implementing formatting changes, but tend to fail when dealing with more challenging
code changes (e.g., fixing a bug), this would question their usefulness.

RQ2: To what extent are the datasets used to train and test techniques for code review
automation suitable for such a scope? Through qualitative analysis we unveil the presence
of problematic instances in the datasets used in the subject studies, calling for better dataset-
cleaning pipelines.

RQ3: How do techniques for code review automation proposed in the literature com-
pare to state-of-the-art large language models? We compare the three subject techniques
with ChatGPT [cha] as representative of LLMs. Such a comparison informs the need to fur-
ther invest in automating code review through specialized models rather than relying on
general-purpose LLMs.

6.1.1 Study Context

We present the study context in terms of experimented techniques and datasets/predictions
we analyzed.
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Techniques for Code Review Automation

Our work focuses on techniques aimed at imitating human reviewers, thus automating the
code-to-comment and/or code & comment-to-code task. Based on our analysis of the litera-
ture, five approaches target these tasks: Tufano R. et al. [TPT+21], T5CR [TMM+22], COM-
MENTFINDER [HTTA22], CODEREVIEWER [LLG+22], and Li L. et al. [LYJ+22]. Tufano R. et al.
[TPT+21] has been excluded since in their followup work [TMM+22] the authors showed
the superiority of the newly presented technique (T5CR) as compared to their first attempt
[TPT+21] in automating code review. Li L. et al. [LYJ+22], instead, has been excluded after
inspecting the replication package shared by the authors: We rely on the authors’ replication
packages to download (and then inspect) the predictions generated by their model on the
test set. The replication package for Li L. et al. [LYJ+22] featured 987 predictions for the
1,055 instances in the test set, casting doubts on the mapping between test instances and
predictions. Also, 7 of these predictions had one or more “partial duplicate” in the training
set, meaning that the training set featured the same code instance (i.e., the same code for
which the technique had to automatically generate “reviewer’s comments”) of an entry in the
test set with a different target message. While this is not a problem in principle, this plays
a role in our qualitative evaluation, where we analyze whether the comments generated by
these techniques are semantically equivalent to the expected one (despite they might use a
different wording). Having the same code instance in the training set allows the approach by
Li L. et al. [LYJ+22] to “reuse” the reviewer’s comment from the training set, thus generating
something that, for sure, will be meaningful. For these reasons we discarded this technique
from our study. This left us with the three techniques.

For the code-to-comment task, we consider predictions generated by all three approaches
with: T5CR [TMM+22] being representative of DL-based techniques working at method-
level granularity and not considering the code diff as an input; COMMENTFINDER [HTTA22]
being representative of IR-based techniques also working at method-level granularity; and
CODEREVIEWER [LLG+22] being representative of DL-based techniques working at “diff hunk”
granularity and considering the code diff as an input. For the code & comment-to-code task we
only consider T5CR and CODEREVIEWER, since COMMENTFINDER does not provide support
for such a task.

Datasets and Predictions

From the replication packages of the three techniques [TMM+22, HTTA22, LLG+22] we col-
lected the test sets used for their evaluation and the corresponding predictions. The size of
the test datasets is reported in Table 6.1. There are two main differences among the datasets.
The first is in the representation of the code submitted for review that is provided as input
to the technique (Cs). While for T5CR [TMM+22] and COMMENTFINDER [HTTA22] Cs is a
Java method, for CODEREVIEWER [LLG+22] is a diff hunk. The second concerns the fact that
T5CR and COMMENTFINDER only work with Java code, while CODEREVIEWER supports nine
languages, including Java. In our study we only considered Java instances for consistency
and to simplify the following described manual analysis.
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Table 6.1. Summary of related work. For Li Z. et al. [LLG+22] the size of the test set refers to Java
instances only.

Reference Task Underlying
technique

# Training
instances

# Test
instances

Tufano M. et al. [TPW+19] code-to-code NMT 8.6k 1k

Tufano R. et al. [TPT+21] code-to-code
NMT 13.7k 1.7k

code & comment-to-code

Tufano R. et al. [TMM+22]
code-to-code

T5 (pre-trained) 134.2k 16.7kcode & comment-to-code
code-to-comment

Thongtanunam et al. [TPT22b] code-to-code NMT 118k 14.7k

Li L. et al. [LYJ+22] code & comment-to-code
T5 (pre-trained) 87k 1k

code-to-comment

Hong et al. [HTTA22] code-to-comment IR 13.7k 1.7k

Li Z. et al. [LLG+22]
code & comment-to-code

T5 (pre-trained)
117.7k 2.2k

code-to-comment 150.4k 1.6k
code quality estimation 265.8k 66.4k

6.1.2 Data Collection and Analysis

RQ1: Correct vs wrong recommendations

To answer RQ1 the first step is to classify the predictions by the three approaches as cor-
rect or wrong. We considered a prediction as correct if it represents an exact match (EM)
with the target (i.e., the expected output). This means that for the code-to-comment task
the model generated a comment identical to the one written by human reviewers, while
for the code & comment-to-code task the model implemented a code change required by the
reviewer exactly as the human contributor did. For each pair of technique and automated
task, such a process resulted in the identification of the buckets of correct and wrong pre-
dictions reported in Table 6.2 (columns “# correct (%)” and “# wrong (%)”). While the EM
metric has been used in the evaluation of the three techniques, we acknowledge that it has
strong limitations, since it provides quite a strict definition of correctness. For example, an
automatically generated natural language comment requesting the same code changes of the
target comment with different wording is considered wrong. While this undermines a purely
quantitative assessment of performance, in our study we use EM only as a mean to identify
candidate correct and wrong predictions. The predictions will undergo a manual analysis
which, for example, considers correct generated messages being semantically equivalent to
those posted by the human reviewers.

Qualitative Analysis. The goal of the manual analysis was to characterize the type
of code change the experimented techniques were (or were not) able to request (code-to-
comment task) or to automatically implement (code & comment-to-code task). For each of
the above-described buckets of correct and wrong predictions (as identified via the EM anal-
ysis), we targeted the manual inspection of 167 valid instances, corresponding to a statis-
tically significant sample with at least a confidence level of 99% and confidence interval of
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Table 6.2. Inspected instances

Reference Task # correct # wrong
Inspected Inspected Valid Valid

correct wrong correct wrong

T5CR

[TMM+22]
code&comment-to-code 2,363 14,417 178 272 199 167

code-to-comment 354 16,426 200 227 169 189

COMMENTFINDER
code-to-comment 479 16’301 234 254 169 176[HTTA22]

CODEREVIEWER

[LLG+22]
code&comment-to-code 599 1,607 198 321 197 176

code-to-comment 0 1,611 - 412 50 179

±10% for each bucket. The target of 167 instances was defined by computing a sample size
(SS) calculation formula [Ros11b] on the bucket having the largest “population” (i.e., wrong
predictions generated by T5CR for the code-to-comment task, with 16’426 instances):

SS =
z2×p(1−p)

e2

1+ ( z2×p(1−p)
e2·N )

where p is the predicted probability of the observation event to occur, set to 0.5 when not
known a priori (as in our case), N is the population size, e is the estimated margin of error
(±10%), z is the z-score for a given confidence level (in our case, 2.58 for the 99% confi-
dence). As it can be seen from the formula, the larger N , the larger the sample size. Thus,
using the largest “population” to compute the number of instances to inspect is a conservative
choice, ensuring even better confidence when working on smaller buckets.

We use the term “valid” instances to account for the following scenarios. First, when
inspecting a prediction falling in one of the wrong buckets it is possible that we realize that
the prediction is actually correct (e.g., the comment generated/retrieved by the technique
uses different wording as compared to the target, but it is semantically equivalent). In this
case, while we inspected a wrong instance, it will actually fall into the corresponding correct
bucket. Second, we discarded several problematic instances we found in the test sets of
the experimented techniques. For example, we found instances in the code & comment-to-
code task for which, given the input code as context, it was impossible even for a human to
understand the associated reviewer’s comment (i.e., what the reviewer was asking to change
in the input code). Indeed, the reviewer’s comment referred to a wider context (e.g., parts of
the code base not provided as input to the model), making the prediction impossible for the
automated technique. These are problematic instances in the test set rather than failure cases
of the technique, and we document them in RQ2. In summary, an instance was considered
“valid” if, given the input information (i.e., Cs for the code-to-comment task, and 〈Cs, Rnl〉 for
the code & comment-to-code task), it was possible for a human to understand the rationale
for the related output: For the code-to-comment task, this means that the human evaluator
was able to understand what the Rnl comment to generate refers to (i.e., what the problem
in the submitted code Cs spotted by the reviewer is); for the code & comment-to-code task,
the evaluator considers an instance valid if the changes resulting in the revised code Cr to
generate actually address the reviewer comment Rnl posted for the submitted code Cs.
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The instances to inspect were randomly selected from each bucket until the target num-
ber of valid instances was reached. The columns “Inspected correct” and “Inspected wrong”
in Table 6.2 report, for each bucket, the number of instances we ended up manually inspect-
ing to reach our target of 167 valid instances per bucket.

Overall, we inspected 2,296 instances. Each instance has been independently inspected
by two of the researchers involved in this work (from now on, evaluators) who were tasked
with classifying the type of change to request (code-to-comment) or to implement (code &
comment-to-code). Five researchers were involved in the manual analysis. On average, they
have 13.4 years of programming experience (min=6) and 9.2 years of experience with Java
(min=5), the language used in the inspected datasets. One of them holds a PhD in software
engineering, and three more are currently pursuing a PhD in software engineering. One is
a software engineer.

The whole process was supported by a web app we developed that implemented the
required logic and provided a handy interface to visualize the instance to label. For each
instance, the evaluator was presented with: (i) the input provided to the approach; (ii)
the generated prediction; and (iii) the expected output. As a result of the inspection, the
evaluator could classify the instance or discard it as non-valid, providing an explanation as
to why it was discarded.

The classification required to assign the instance one or more labels describing the change
(e.g., refactoring → extract method). Each evaluator was free to define their own label(s)
(i.e., open coding procedure), as they felt it was needed to properly describe the change:
For this specific task, it was not possible to define upfront all possible labels, making card
sorting [Cox99] not suitable for our study. Indeed, while there are taxonomies of issues
identified during the code review process [ML09, BBZJ14, PSP+18] their abstraction level
is not suitable for our goal. For example, the taxonomy by Mäntylä et al. [ML09] includes
a category named evolvability defects→ structure which is too coarse grained to investigate
the automation capabilities of the subject techniques.

To provide a concrete example, the taxonomy depicting the types of changes that the
three techniques were (or were not) able to automatically request in the code-to-comment
task (Fig. 6.1) we have an entire tree dedicated to the recommendation of refactoring oper-
ations (which would fall under the evolvability defects→ structure taxonomy from [ML09]).
Our taxonomy includes concrete refactoring operations (e.g., Extract method, Change vari-
able/constant type), some of which are successfully recommended by the experimented tech-
niques, while others consistently represent failing scenarios. The fine-grained nature of our
taxonomy allows to observe these differences.

The agreement among the evaluators was to define each label in the form parent→ child,
where parent was a coarse-grained description of the change while child was a more specific,
fine-grained description. New labels defined by an evaluator were made available in the web
application to the other evaluators. While this goes against the notion of open coding, this
allows to reduce the chance of multiple evaluators defining similar labels to describe the
same type of change while not substantially biasing the process. The evaluator was also in
charge of flagging instances in the wrong buckets as “actually correct” in case they felt that
the prediction, while different from the target, was correct.
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The manual evaluation was performed in three rounds. A first round asked each evalua-
tor to inspect 30 instances. This round resulted in a set of labels that has been inspected by
the evaluators with the goal of merging similar labels and come up with a common strategy
to categorize the instances in the next rounds. Then, a second round was performed in which
the evaluators targeted the labeling of 30% of the overall instances assigned to them. Again,
such a round was followed by a further inspection of the defined labels, with grouping of
similar labels and further discussion on strategies to improve agreement.

The rationale for the number of instances to inspect in each of the three rounds was the
following. We wanted to label very few instances in the first round (30) since we expected
several inconsistencies in the way in which the evaluators were going to perform the labeling
and, thus, we targeted a short dry run to test the adopted web application, the clarity of the
overall process and, at least in part, the type of labels assigned by the evaluators (e.g., their
granularity). Then, we decided to follow with a larger second batch (30%) which allowed
to spot more corner cases worth to be discussed among the evaluators (e.g., instances for
which a researcher was unsure about the type of label to assign). Finally, since we felt that
the labeling process was well-defined and clarified among the evaluators, we decided to
move on labeling the whole dataset.

Once all 2,296 instances have been inspected by two evaluators, we solved conflicts that
arose in 1,225 cases1. Such a number may look high, since it represents 53% of the inspected
instances. However, the high rate of conflicts is explained by three design decisions. First,
we considered all conflicts, also the ones resulting in the first and second round in which
the set of possible labels was not stable at all. Second, the labels in our study emerged
from the data and were not pre-defined. To get an idea of the complexity of this task the
whole process resulted in a total of 120 different labels. Third, we were conservative in our
definition of conflict, which occurred if: (i) two evaluators assigned a different set of labels
to the instance, even if the two sets partially overlapped; (ii) two evaluators assigned the
exact same set of labels to a wrong instance with only one of the two reporting the instance
as “actually correct”; (iii) only one of the two evaluators labeled the instance, while the
other one discarded it. Each conflict has been inspected by two additional evaluators, who
discussed and solved it.

Finally, we used the assigned labels to build hierarchical taxonomies showing the types of
changes in which the three techniques tend to succeed and fail for the two automated tasks.
Such a process required additional inspections of the considered instances. Indeed, once
all categories in the taxonomies have been defined, two of the evaluators rechecked that all
instances were assigned to the most proper category. Indeed, it is possible that a category
C added during the very last labeling round would be more suitable for instances inspected
at the very beginning of the manual process, when C was not available (since no one came
up with that label while inspecting the instance). This resulted in the re-assignment of 16
instances (∼1%).

The final number of valid instances (i.e., non-discarded) within each bucket is reported
in the columns “Valid correct” and “Valid wrong” in Table 6.2.

1Given the open nature of the coding, it was not possible to compute a meaningful inter-rater agreement
(e.g., Cohen’s kappa).
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A few clarifications are needed for values which are different from 167, which was our
original target. First, we did not have correct (EM) predictions generated by CODEREVIEWER

[LLG+22] for the code-to-comment task. Thus, we applied the following procedure to collect
instances for the corresponding bucket. We selected among the wrong predictions generated
by CODEREVIEWER, the top-100 in terms of BLEU-4 (Bilingual Evaluation Understudy) score
[PRWZ02]. BLEU measures how similar the candidate (predicted) and reference (oracle)
comments are in terms of overlapping 4-grams. A value of 1.0 indicates that the candidate
and the predicted comment are identical. The selected top-100 predictions have a BLEU-4
ranging between 0.28 and 0.72.

Our assumption is that wrong predictions having a high BLEU score are likely to be cor-
rect, since they closely resemble the target comment. During the manual analysis, we dis-
carded the instances that despite the high BLEU score, were actually wrong, since they did
not belong to the “correct bucket”. This process led us to 50 valid instances in this bucket,
which is the only one being underrepresented (see Table 6.2). Second, as it can be seen from
Table 6.2, in several buckets we collected more than the targeted 167 valid instances. This
is due to the conflict resolution phase in which some instances discarded by one of the two
evaluators were considered valid and re-introduced.

The output of this analysis are two taxonomies reporting, for each of the two tasks, the
types of code changes on which the experimented techniques tend to succeed or to fail.

Quantitative Analysis. We contrast the complexity of the test set instances resulting in
correct and wrong predictions of the experimented techniques.

For the code & comment-to-code task, we measure the number of AST-level changes re-
quired to convert Cs (i.e., the code submitted for review) into Cr (i.e., the revised code
addressing the reviewer’s comment). We expect a higher number of changes to indicate a
higher complexity of the comment to implement. The AST-level changes have been extracted
using Gumtree Spoon AST Diff [FMB+14].

For the code-to-comment task, we used as proxy for complexity (i) the number of words
featured in the comment to generate, under the assumption that longer comments are likely
more complex, and (ii) the number of AST-level changes required to address the reviewer’s
comment (as done for the code & comment-to-code task). The latter was only computed for
the predictions generated by T5CR and by COMMENTFINDER, since for CODEREVIEWER we
did not manage to retrieve from the dataset the code implementing the required change, but
only the submitted code with the posted reviewer’s comment.

For both tasks, we report boxplots of the distribution of the complexity proxies for correct
and wrong predictions both overall and by approach. We also statistically compare the two
distributions assuming a significance level of 95% and using the Wilcoxon test [Wil45]. The
Cliff’s Delta (d) is used as effect size [GK05a], and it is considered: negligible for |d|< 0.10,
small for 0.10 ≤ |d| < 0.33, medium for 0.33 ≤ |d| < 0.474, and large for |d| ≥ 0.474
[GK05a]. We adjust p-values using Holm’s correction procedure [Hol79a]. We compare the
complexity proxies only on the predictions we manually validated. The reason is that, as
explained, relying on EM to identify correct predictions could lead to false negatives, thus
invalidating our quantitative analysis.
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RQ2: Datasets quality

The datasets used to train and test the experimented techniques have been automatically
mined from GitHub. The authors applied a number of heuristics to filter-out problematic
instances. For example, in the code-to-comment task efforts have been made to remove review
comments posted by bots. Similarly, in the code & comment-to-code task in which 〈Cs, Rnl〉 →
Cr triplets are involved, checks are performed to make sure that Cr (the code which should
implement the reviewer’s comment Rnl) is different from Cs. Indeed, Cs = Cr =⇒ Rnl not
addressed.

Despite the effort in cleaning the datasets, in our manual analysis we found ∼25% of the
inspected instances representing noise in the datasets. As previously explained, when dis-
carding an instance during the manual analysis the evaluators had to report the reason why
said instance was discarded. After such a process, the five evaluators looked at the provided
motivations and distilled them into four main categories representing errors introduced dur-
ing the automated mining of the data from GitHub. We answer RQ2 by presenting statistics
summarizing such an analysis.

RQ3: Comparison with LLMs

We assess the performance of ChatGPT [cha] on the two tasks focus of our study. We limited
the number of samples to 250 for ChatGPT, due to the high cost of running such an evalu-
ation. Indeed, there were two manual steps to perform. First, we needed to interact with
the ChatGPT GUI to manually prompt each instance on which we wanted to run ChatGPT.
Based on some tests we performed, we ended up selecting the following two prompts for
our tasks:

code-to-comment: Write a code review of the following code “{inputCode}”.

code & comment-to-code: Revise this code “{inputCode}” given this comment

“{inputComment}”.
In the prompts {inputCode} and {inputComment} represent the Cs and Rnl , respectively,

in the test datasets used for the two tasks. The replies provided by ChatGPT when using these
prompts made it clear that it properly interpreted the task to perform.

Second, once ChatGPT generates an answer, we cannot rely on EM to check if it is cor-
rect, since ChatGPT has not been trained to generate answers in the same format used in the
test sets. For this reason we had to manually inspect the generated answers to assess their
correctness. Each generated answer was independently inspected by two of the involved re-
searchers, who classified it as correct or wrong. For the code-to-comment task we considered
the code review generated by ChatGPT as correct if it contains the target comment. For code
& comment-to-code, we verified whether ChatGPT properly addressed the reviewer’s com-
ment, even with the coding solution being different to the target one. Conflicts (i.e., the two
researchers disagreed on the correctness of ChatGPT’s answer), which arose in 18% of cases,
were solved by a third researcher. For the code-to-comment task we randomly selected 50
instances from the test set of each of the experimented techniques (150 instances in total).
The 50 instances included 25 correct (i.e., the corresponding technique generated a correct
solution) and 25 wrong predictions.
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The same approach has been used for the code & comment-to-code task which, however,
is only automated by two of the three subject techniques, thus resulting in 100 randomly
selected instances.

We answer RQ3 by reporting the percentage of cases in which ChatGPT was successful in
both tasks. We also analyze the overlap between the state-of-the-art techniques and ChatGPT
by reporting the percentage of cases in which (i) both succeed; (ii) at least one of the two
succeeds; and (iii) none of the two succeeds.

6.2 Results Discussion

We discuss the achieved results by RQ. We use the  icon to mark lessons learned and direc-
tions for future work.

6.2.1 RQ1: Correct vs wrong recommendations

Fig. 6.1 and Fig. 6.2 report the taxonomies of “types of code changes” involved in the pre-
dictions generated by the subject techniques. Fig. 6.1 refers to the code-to-comment task,
depicting types of changes that the techniques were supposed to ask for in generated com-
ments, as a human reviewer would do. Fig. 6.2 refers to the code & comment-to-code task,
reporting types of changes that the techniques were required to automatically implement.

The taxonomies include several trees, each one representing a generic set of code changes
specified in the root category (e.g., refactoring, bug-fix). The number on the top-right corner
of each label reports the number of instances we manually assigned to that change type (e.g.,
503 refer to refactoring in Fig. 6.1).

Three clarifications are needed on this point. First, one instance we analyzed (i.e., a
prediction generated by an approach for a test entry) could have been assigned to multiple
categories since requiring multiple types of changes. Second, for readability reasons, we
decided to not report in the picture all categories of code changes that have been assigned to
less than ten instances. Indeed, it is difficult to draw any conclusion with so few data points.
The full data is available in our replication package [repa].

Third, being a hierarchical taxonomy, one may expect the number of elements in a parent
category to match the sum of the number of elements in its child categories. However, this
is not the case due to two reasons. First, sometimes the parent category has been used as
a label when we did not manage to clearly identify the required code change, but only its
overall goal (e.g., using bug fix→ fix wrong behavior instead of its child modify if condition).
Second, as previously explained, we do not depict in the taxonomies categories featuring
less than 10 instances. However, we still count their instances in the parent category (e.g.,
refactoring→ renaming has a rename class child which has not been depicted but contributes
with 6 instances).

In this scenario, the parent category has been used as a label when we did not manage
to clearly identify the required code change, but only its overall goal (i.e., fixing wrong
behavior). This is another reason why parent categories can have a higher counting than
the sum of their child categories.
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Figure 6.1. Taxonomy of types of changes for the code-to-comment task. The color assigned to each
label reflects the ability of the techniques to automate the code review task in the context of such

a change type ( white best, black worst). We report the percentage of successful predictions by
each approach for each change type as bars below the corresponding category: T5CR (blue bar),
CODEREVIEWER (green), and COMMENTFINDER (red).
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Figure 6.2. Taxonomy of types of changes for the code & comment-to-code task. The color assigned
to each label reflects the ability of the techniques to automate the code review task in the context of

such a change type ( white best, black worst). We report the percentage of successful predictions
by each approach for each change type as bars below the corresponding category: T5CR (blue bar),
CODEREVIEWER (green).
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The color assigned to each label reflects the ability of the techniques to automate the
code review task in the context of such a change type. Since we manually analyzed∼50% of
correct and ∼50% of wrong predictions generated by each approach, a success rate around
50% for a change type indicates that the techniques do not tend to perform particularly well
or bad for that change type.

Indeed, the goal of this analysis is to see if the correct (wrong) predictions are polarized
by specific categories. For these reasons, we defined the color schema as follows:

A gray label indicates a change type for which the automation level aligns with what
expected based on our sample of correct and wrong predictions. Looking at Table 6.2 it
can be seen that, for the code-to-comment task, we inspected a total of 388 correct and 544
wrong instances. Such an imbalance is due, as previously explained, to the CODEREVIEWER

technique which generated 0 EMs and for which we decided to manually inspect 100 wrong
predictions looking for actually correct ones (50 identified). This means that we should
expect an average performance per change type close to (388*100)/(544+388)=42%. For
this reason, Fig. 6.1 features a grey category if the techniques succeeded for such a change
type in 32% to 52% of cases (i.e., 42% ± 10%). With a similar computation, Fig. 6.2 features
a grey category if the techniques succeed in 43% to 63% of cases (since an average of 53%
correct predictions has been analyzed per approach). Note that the “± 10% choice” has been
done to simplify the results discussion and visualization. We acknowledge that other choices
are possible (e.g., ± 20%); raw data with exact percentages are available in our replication
package [repa].

A black label indicates a change type for which the automation tends to fail, thus in
which the techniques are struggling. This means a success rate lower than 32% for the
code-to-comment task, and lower than 43% for the code & comment-to-code task.

A white label indicates a change type for which the automation succeeds more than
expected, namely in at least 53% of cases for code-to-comment and 64% of cases for code &
comment-to-code.

While this 3-level color schema represents the capabilities of the experimented tech-
niques as a whole, Fig. 6.1 and Fig. 6.2 also report the percentage of successful predictions
generated by each approach for each change type as bars below the corresponding category.
In Fig. 6.1 the three bars are ordered from top to bottom as: T5CR (blue bar), CODEREVIEWER

(green), and COMMENTFINDER (red). In Fig. 6.2 the bars are only two, corresponding to
T5CR (blue) and CODEREVIEWER (green). An empty bar indicates that the approach always
failed for instances of that type. Instead, the filling of the bar with a zig-zag pattern indicates
that the manually inspected test set entries on which the corresponding technique has been
experimented did not contain any instance of that type.

On top of the two taxonomies, Fig. 6.3 depicts the boxplots showing the computed “com-
plexity” of the test instances on which the experimented techniques succeed (blue) or fail
(orange). We discuss our qualitative and quantitative results by automated task.
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Table 6.3. Non-EM classified as correct during manual analysis

Reference Task % correct non-EM

T5CR
code & comment-to-code 15.66%

code-to-comment 2.58%

COMMENTFINDER code-to-comment 2.22%

CODEREVIEWER
code & comment-to-code 17.37%

code-to-comment 21.83%

Code-to-comment

Before looking at characteristics of correct and wrong predictions, Table 6.3 reports, for each
approach and for each task, the percentage of non-EM predictions that we classified as actu-
ally correct. As it can be seen, 21.83% of non-EM predictions generated by CODEREVIEWER

are actually correct for the code-to-comment task. The percentage is smaller for the other two
techniques for which we did not focus the inspection on predictions having a high BLEU, but
still non-negligible (∼2.5%). For example, in the case of COMMENTFINDER the EM predic-
tions are 2.85% of the test set instances, while we found an additional 2.22% of non-EM
predictions which are actually correct, almost doubling the approach’s correctness. A man-
ual analysis of (a sample of) non-EM predictions is needed to better assess the capabilities
of an automated technique. An example of non-EM generated by CODEREVIEWER and being
actually correct belongs to the other→ reuse existing code category: The target comment was
“Use IOUtils instead”, while CODEREVIEWER generated the equivalent “Can we use Guava’s
IOUtils here?”. This is a first important outcome of our study:  Using EM to assess the
automation of the code-to-comment task might be unfair.

Not surprisingly the white categories (i.e., the techniques tend to succeed) are character-
ized by simple requests to include in the generated message, and in particular the removal/-
addition of a thrown exception, and the replacement of an operator. The excellent performance
achieved in these change categories are usually driven by the success of the COMMENTFINDER

IR-based technique. The latter has 100% accuracy in recommending the addition/removal
of exceptions, thanks to the retrieval from the training set of past reviewers’ comments re-
quiring such a change for similar methods.  Looking at the taxonomy, it is clear that for
code change types which are quite general, simple, and thus likely to be requested over
and over again in different code review instances (e.g., the addition/removal of exceptions,
asking to revert a code change), an IR-based approach can be a trump card.

Differently, comments requiring the description of more complex changes are challenging
to retrieve or synthesize. The refactoring tree provides interesting examples. Simple refac-
torings such as changing variable/constant type or renaming variable/constant are overall
well-supported (e.g., COMMENTFINDER: “qry − > query”). When it comes to refactorings
involving complex code changes, possibly impacting multiple code components, the tech-
niques tend to fail. This is the case for refactorings extracting or moving code elements. This
is likely due to the limited contextual information provided to these techniques.
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Figure 6.3. Task complexity for correct and wrong predictions

Among the experimented techniques, T5CR and COMMENTFINDER work at method-level
granularity, meaning that the method provided as input represents everything the model
knows about the system. Similarly, the “view” of CODEREVIEWER is limited to a diff hunk.
Such an issue does also affect the performance of the techniques for apparently simple
changes to require, such as those asking to change the method visibility. Indeed, without
additional knowledge of the system it is difficult to judge what the correct visibility of a
method should be.  Pushing the boundaries of code review automation for these types of
changes requires enriching the contextual information provided to the techniques, similarly
to what observed for other software engineering tasks [TT22].

A negative exception in the refactoring tree is the renaming of methods which one could
expect to be on a similar level of difficulty as compared to the renaming of variable/constants
which is, instead, quite successful. We inspected these instances and we noticed that, while
renaming variables/constants may just require a term expansion (as in the qry example
previously reported), methods’ names are more expressive and challenging and, while the
techniques are sometimes able to capture the need for a renaming, they fail in recommending
meaningful alternatives.

The techniques also have a hard time automating logging activities, especially when it
comes to suggest the introduction of a log statement or the need to change the log level (e.g.,
from error to warning). Interestingly, for both method renaming and recommendation of
log-related changes, specialized DL-based techniques have been proposed in the literature
(see e.g., Alon et al. [AZLY19] for renaming, and Mastropaolo et al. [MPB22] for logging).
Based on the reported empirical evaluations, those techniques proven to be quite effective
in these tasks. For example, Mastropaolo et al. [MPB22] presented LANCE, an approach
able to correctly recommend fixes to the level of log statements in 66% of cases.  While
the code review automation techniques proposed in the literature target the automation of
generic code changes, the adoption of specialized techniques might be more effective for
specific change types. However, this might not be straightforward to do in the context of the
code-to-comment task. Indeed, assuming the will to specialize a model for “commenting” on
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a specific type of issue, the first needed ingredient is a training dataset, which might not be
easy to collect. One may think to cluster reviewers’ comments via lexical analysis and train a
specialized model on each of those clusters. Nevertheless, a trade-off between cohesiveness
of the clusters and availability of training data soon becomes evident: very cohesive clusters
will result in highly specialized models which, however, are likely to benefit from very little
training data (e.g., only a few instances in which a reviewer’s comment is suggesting to in-
troduce a log statement). Larger clusters featuring more training data are instead unlikely to
specialize the model for specific types of recommendation, thus again pushing it towards a
generic recommender. A more promising approach might be to manually define “comment-
ing patterns” for a specific type of change (i.e., a standard sentence expressing the need for
improving a certain aspect of the code, such as introducing a log statement). In this case,
the training dataset could be built by parsing code changes performed during the change
history of a project (e.g., commits introducing a new log statement), independently from
the availability of code review information for these changes. This implies the possibility to
reliably identifying code changes in which the target issue has been fixed. For some of the
“black categories” in our taxonomy this can be easily achieved (e.g., lack of log statement,
need for changing the method visibility, etc.). Others would require more advanced solu-
tions, like the usage of tools to detect refactoring operations [TKD22]. Negative instances,
i.e., code components on which the target issue does not manifest (e.g., no need to add log
statements), might be needed as well. Once trained, specialized models can be triggered on
the code change submitted for review, reporting the improvement recommendations (if any)
to the developer.

Not surprisingly, the experimented techniques do not shine in recommending types of
code changes which are likely to be system-specific and, thus, difficult to learn/retrieve from
other sources. This is the case for the performance optimizations comments that the tech-
niques were required to emulate (e.g., TARGET: “We should use keyService here, intention
is to cache key temporary so under heavy load we don’t download keys all the time”).  A
possible strategy to overcome this limitation could be to fine-tune the techniques to a spe-
cific software project or, at least, to a set of projects falling in the same domain (e.g., DB
engines). For example, after a pre-training performed on generic code review data, a DL-
based approach could be fine-tuned to specifically support code review in a project. A major
obstacle is the possible lack of fine-tuning training data, since a single project is unlikely to
provide enough training instances. This may be partially overcome through data augmenta-
tion techniques [YWW22].

T5CR and COMMENTFINDER achieve good performance when it comes to asking for test-
ing-related changes, correctly generating comments aimed at both improving the test cover-
age/logic (e.g., T5CR: “add a check here to verify that the serialDataReceived method was
not called”) and cleaning/refining them, e.g., T5CR suggested to replace an empty String

passed as parameter in an assert statement with an EMPTY_VALUE constant already used in
other statements of the test. In general, the changes to recommend in the testing category
are very specific and tend to focus on a single code statement.  Still, this shows the potential
of these techniques as possible “refinement tools” for approaches supporting the automated
generation of test cases [PE07, FA11].
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From the quantitative perspective, the boxplots in Fig. 6.3 for the code-to-comment task
suggest, as expected, that the techniques tend to succeed in the generation of simple review-
ers’ comments, having a median of 6 words composing them. As a comparison, the failing
cases are more than twice longer (in terms of median), with 14 words. Such a trend holds,
with minor differences, for all approaches. Also, it is interesting to notice that, when consid-
ering all techniques together, the first quartile of the wrong predictions is very close to the
third quartile of the correct predictions, indicating a strong difference between the two sets
that is confirmed by the statistical analysis with a p-value<0.001 accompanied by a large
effect size (test results in [repa]). Similar observations can be drawn when using the AST
changes required to implement the reviewer’s comment as a complexity proxy.  Future
work should focus on boosting performance in these challenging scenarios, since the ap-
proaches seems to work pretty well in the generation of simple comments (<20% of wrong
predictions have less than 6 words).

Code & comment-to-code

Also for this task, we start by observing the substantial percentage of non-EM predictions
which are actually correct — 15.66% for T5CR and 17.37% for CODEREVIEWER.  This
reinforces the need for manual analysis when assessing the performance of techniques for
code review automation.

The taxonomy depicted in Fig. 6.2 is smaller as compared to the previous one, since
a higher number of categories (91) count less than 10 instances (for the full taxonomy see
[repa]). It is interesting to see some major differences as compared to the previous taxonomy.
Changes which were trivial to ask for in a comment to generate (e.g., “please revert this
change”) are challenging to automatically implement, as required in the code & comment-to-
code task. Indeed, the reverting may require several code changes which are not necessarily
easy to predict, especially if the full code diff is not part of the information available to the
model.

Interesting is the complementarity between the two techniques that support this task. T5CR

is very effective in changes related to object design principles, e.g., handling issues related to
encapsulation and scope of variables/methods, which usually require minor code changes.
Also, T5CR works well in implementing changes ensuring adherence to the code base in terms
of coding style, e.g., addressing comments like “String.isEmpty() is used in other places”
pointing to an inappropriate if condition checking coverageId.length() == 0. CODERE-
VIEWER, instead, is the only approach supporting documentation changes, and can achieve
excellent performance even for less-trivial code changes requiring e.g., to merge multiple code
statements (in order to improve readability) or to migrate towards more appropriate types
(refactoring→ typing). Considering that both techniques are built on top of a transformer-
based architecture, such a complementarity can be partially explained by the different code
representation they use, one looking at a single method at a time (T5CR) and one taking a
diff hunk into account (CODEREVIEWER), possibly with a partial view of specific code com-
ponents (e.g., only the changed lines of a method are visible in the diff hunk).  A hybrid
representation including both the full representation of the involved code entities and the
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changed lines might help in getting the best of both worlds.
As expected, both approaches are effective in the automation of very simple changes

related to improve the formatting of code (e.g., add/remove parentheses, add/remove white
spaces). The automation of these changes can be easily performed by a code formatter (e.g.,
[pre]), without the need for expensive DL models.  Such instances should be removed
from the test sets used in the evaluation of techniques automating the code & comment-to-
code task, to avoid inflating the percentage of EM predictions they generate.

The two techniques struggle to automatically implement complex bug-fixes requiring ma-
jor code changes (e.g., fix wrong behavior) and/or changes to the code logic (e.g., modify if
condition).  This result is inline with what observed for techniques specialized in auto-
mated bug-fixing [TWB+19], which also tend to be successful in a minority of cases (usually
<30%) confirming the need for more work in the area.

Finally, we want to comment on the performance of the two techniques on the 87 types
of code changes which are not represented in Figure 2, since counting less than 10 instances
each. Overall these 87 categories feature 132 of the predictions we inspected for the code &
comment-to-code task.

Out of those, 69 (52%) were correct predictions, which matches the expected success
rate and seems to suggest that the two state-of-the-art techniques do not really struggle
in automatically implementing code changes which are likely to be less represented in the
training set. However, by inspecting the predictions in these categories, we found out that
a “good” level of performance (i.e., ≥52% correct predictions) is only obtained for 48% of
these poorly represented categories (e.g., for 18 of them we observed 0% of correct pre-
dictions). It is thus possible that, in some cases, the models learn from similar and related
categories in a sort of transfer learning fashion. For example, training on instances of the
well-represented category “remove unneeded statement” might have played a role in achiev-
ing good performance on the five instances belonging to the code change type “remove final
modifier”. However, given the low number of instances in each of these categories (at most
9), we cannot draw any conclusion based on these findings.

The results of the quantitative analysis (right side of Fig. 6.3) show an interesting trend:
while the correct predictions by T5CR require substantially simpler changes as compared to
the wrong predictions (median of 2 AST changes vs 4, p-value < 0.001 with medium effect
size), this is not the case for CODEREVIEWER. Here the two sets are basically equivalent in
terms of code change complexity (negligible effect size). Looking at the boxplots it is clear
that T5CR tends to overfit to simpler changes, while CODEREVIEWER, possibly thank to the
diff hunk representation, is able to cope with more complex code changes as well, supporting
its status as state-of-the-art approach.
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6.2.2 RQ2: Datasets quality

Table 6.4 reports the number of instances that we discarded as being problematic together
with the reason why they have been discarded. For the sake of space, we shortened the code
& comment-to-code task as C&NL2C and the code-to-comment as C2NL. While Table 6.4 shows
also the results by test set of each technique, we focus the discussion on the overall trend
(#). The “Other” category contains 16 instances discarded for various but rare reasons, that
we do not discuss but document in [repa]. The remaining “discarding reasons” are sorted
based on their frequency from top to bottom.

Table 6.4. Categories of discarded instances

Reason #
T5CR COMMENTFINDER CODEREVIEWER

C&NL2C C2NL C2NL C&NL2C C2NL

Unclear comment 284 32 55 97 60 40
No change asked 182 24 13 44 30 71
Ignored comment 74 25 0 0 49 0
Wrong linking 18 1 0 1 6 10
Other 16 2 1 1 1 11

For 284 cases, we assigned the unclear comment label to discard the instance since it
was impossible even for a human to understand what to implement (code & comment-to-
code) or what the target comment to generate was actually asking to the developer (code-
to-comment). For the code & comment-to-code task, this was due to the limited contextual
information provided to the model (i.e., the input), meaning that the reviewer’s comment
referred to a larger code context not available to the model. For the code-to-comment task,
a recurring problem is again the lack of context but, this time, related to the conversation
that happened between the contributor and the reviewer(s), which is not visible to the tech-
niques. For example, a comment saying “ah, ok, that would be clearer” is meaningless with-
out knowing the previous exchanged messages.  As already observed in RQ1, increasing
the contextual information is a must to push the boundaries of code review automation.

In 182 instances we inspected the reviewer’s comment was not requesting any change.
For the code & comment-to-code task, this means that the approaches could not really address
the comment by modifying the code (e.g., “Awesome work so far, Eli!”). For the code-to-
comment task this means training and testing the technique for the generation of comments
which are uninteresting given the automation goal. Indeed, these techniques aim at gener-
ating comments asking for code changes targeting the improvement of source code. Thus,
comments like “I am not sure what GitHub wants to tell me with this icon here :)” should not
be considered relevant for these approaches. The cleaning pipelines employed in the works
presenting the experimented techniques fail in filtering out those meaningless instances.

In 74 cases (all related to the code & comment-to-code task), while the reviewer’s com-
ment was asking for a change, the contributor was changing the code but not to address
the comment. These instances penalize both the learning and the evaluation of the mod-
els. Indeed, even assuming that the model correctly implements the change required by the
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reviewer, during training the weights of the network will be revised to steer the prediction
towards a different (wrong) target and, during evaluation, any quantitative metric is likely
to point to a wrong prediction.

Finally, 18 instances result from errors while mining the dataset, since the code has been
linked to a wrong code, e.g., “there’s no need for final in interfaces” for an input code not
being an interface.

 Worth noticing is the overall number of discarded instances (574) out of the 2,296
manually analyzed (25%). Since the test set is just a random selection of 10% of data, we
can assume a similar distribution in the training sets of the subject techniques. Thus, all
discussed instances have the potential to hinder the training and bias the testing, since it is
unreasonable to expect them to result in a correct prediction given the target. Supervised
or unsupervised techniques aimed at removing these problematic instances are needed to
make a further step ahead on code review automation thanks to higher-quality datasets.

6.2.3 RQ3: State-of-the-art vs ChatGPT

Table 6.5 shows the results of the manual analysis assessing ChatGPT in automating code
review: For each task (rows) we report the percentage of cases in which ChatGPT succeeds
(3) or fail (7) for instances on which the state-of-the-art (SOTA) techniques were correct
or wrong. Results are aggregated for the three approaches, with raw data available in our
replication package [repa].

Table 6.5. Manual analysis of ChatGPT predictions

Task
3State-of-the-art 7State-of-the-art

3ChatGPT 7ChatGPT 3ChatGPT 7ChatGPT

code & comment-to-code 66% 34% 44% 56%
code-to-comment 19% 81% 7% 93%

ChatGPT performs slightly better than the SOTA in the code & comment-to-code task,
being able to address the reviewer’s comment in 83/150=55% of cases, as compared to the
50% of the three techniques (we selected half instances on which they work, and half on
which they fail — see Section 6.1.2). Interesting is the complementarity between ChatGPT
and the SOTA: ChatGPT succeeds in 44% of cases in which the SOTA techniques fail. These
are mostly instances in which the reviewer’s comment provides little information about the
change to implement. For example, ChatGPT addressed a reviewer’s comment pointing to a
“wrong formula” in the code (“wrong formula” is the full content of the reviewer’s comment)
by applying the following change: forward * strikesLike.get(i) + shiftOutput; →
forward * Math.exp(strikesLike.get(i)) + shiftOutput;. This is a failing instance
for the SOTA.

Concerning the code-to-comment task, ChatGPT succeeds in 26/100=26% of cases, being
less performant than the SOTA. Only 7 of those instances are failure cases for the SOTA. For
this task the output of ChatGPT is not a single comment (as for the SOTA techniques) but a
list of observations regarding the submitted code. In most of cases, we found these comments
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to be meaningful, but they often miss or are in contrast with the point raised by the human
reviewer.

This is the case for an instance in which the diff hunk reported a change from trace to
info for the level of a logging statement. While the reviewer complained about this change
(and the SOTA technique agreed with the human reviewer), ChatGPT was in favor of it,
commenting: “an info level logging statement would be more applicable”).

 ChatGPT is a competitive baseline for the code & comment-to-code task. This might be
due to the fact that it saw the code addressing the reviewer’s comment during training. Thus,
the extent to which such a comparison is fair is questionable. When it comes to generating
reviewers’ comments, SOTA techniques are superior, supporting the worth of further research
in this direction.

6.3 Conclusion

We assessed the capabilities of three state-of-the-art techniques for code review automation
[TMM+22, HTTA22, LLG+22]. Differently from the mostly quantitative evaluations available
in the literature our study has a strong qualitative focus. Our study disclosed the scenarios
in which state-of-the-art approaches tend to succeed and fail (RQ1) and identified issues in
the quality of the datasets used for their training and evaluation (RQ2). Finally, we showed
that ChatGPT [cha], as representative of Large Language Models, is a competitive technique
for code review automation, but still struggles in several scenarios, justifying the need for
more research on models specialized for such automation (RQ3). The main outcome of this
work is a research agenda for future work we will discuss in our concluding Chapter 7.

6.4 Replication Package

We release all data used in our study in a comprehensive replication package [repa]. It
contains:

• all the instances inspected during the manual analysis (both valid and discarded ones);

• the instances used to evaluate the performance of ChatGPT-3 for both tasks and its
predictions;

• the results of the statistical analysis on the instances complexity;

• all the necessary to compute the code generation complexity based on AST-changes
between the input code and the code to generate in order to implement the reviewer
comment;

• all the information, such as number of total istances, number of correct/wrong pre-
dictions, percentage of correct predictions, for each label used for both tasks.



7
Conclusions and Future Work

In this thesis we presented our research towards the au-
tomation of code review activities. We defined three
tasks, i.e., code-to-code, code & comment-to-code, code-to-
comment, and proposed to automate them by leveraging
DL models and the large amount of code review data avail-
able from online platforms hosting open source projects
(Chapters 3 and 4). Several research groups built on top
of these techniques presenting better code review automa-
tion tools aimed at overcoming some of the limitations of
our approaches [TPT22b, LYJ+22, HTTA22, LLG+22].

We also investigated the extent to which different pre-training objectives can help in
maximizing the performance of DL models when applied to code related tasks, including the
code review ones target of this thesis (Chapter 5).

Finally, we performed a deep qualitative assessment of the predictions generated by
state-of-the-art techniques for code review automation (Chapter 6), including the one we
presented in Chapters 4.

In the following we discuss the limitations that still affect code review automation tech-
niques and future research directions.

7.1 Limitations and Future Work

7.1.1 A Community Effort for Large-scale and High-quality Code Review Datasets

Despite the best efforts invested in removing from the training/test datasets problematic in-
stances (e.g., reviewers’ comments that do suggest any change to implement in the code)
through pre-processing pipelines, we show in Section 6.2.2 that ∼25% of instances in code
review datasets used in the literature (including ours) might be problematic. Higher qual-
ity datasets would certainly help in foster research on code review automation and would
allow to obtain more reliable assessment of their performance. However, identifying these
instances automatically is extremely challenging.
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On the other side, a manual screening of hundreds of thousands of instances (the order
of magnitude of these datasets) is an effort that cannot be embraced by a single research
group. For these reasons, we believe that a community effort is needed in this direction.
We are currently working on the creation of a platform to continuously mine code review
data from GitHub, also featuring the possibility to manually check the mined instances and
report the problematic ones with a simple click. The platform will be inspired by the recent
DL4SE tool [dl4] we released in our research group. We hope that the availability of such a
platform will help in creating a high-quality code review dataset which can be used by the
research community.

7.1.2 Enriching the Contextual Information Provided to the Model

Another important limitation of our approaches, is the limited context that is provided as
input to the model, based on which the prediction must be generated. As of now the view of
the models is limited to a single method. This means that if a change affects several methods
or even several files, the model is only aware of part of the change to review. Intuitively, more
contextual information provided to the model could improve its performance, as also sug-
gested by the recent work from the Microsoft group [LLG+22]which provides the model with
diff hunks, possibly spanning across different methods. However, increasing the provided
contextual information does also mean pushing up the input size with a consequent higher
training cost and, likely, larger model required. Thus, we plan to investigate techniques for
prioritizing and summarizing the contextual information surrounding a given code change,
with the goal of providing the model with a compact yet expressive representation of the
change to review.

7.1.3 Automated Solutions Targeting the Most Challenging Scenarios

In Chapter 6 we manually analyzed the correct and wrong predictions generated by state-
of-the-art techniques, classifying them based on the type of code changes they implement-
ed/required. This resulted in two taxonomies (Figures 6.1 and 6.2) pointing to specific code
change types which code review automation techniques fail to automate.

It is possible that these types of changes are not well represented in the training dataset
or that they are just more difficult to learn. In both cases, it may be worthwhile exploring the
possibility to train specialized models focused on a specific type of change. We would like
to investigate whether a family of specialized models used in combinations could provide
a better support for code review automation as compared to the “single general model”
approach currently adopted in the literature.

7.1.4 Project-specific and Developer-specific Recommendations

All the proposed models for code review automation are trained on data coming from thou-
sands of online repositories, mixing together different coding styles and conventions. This
could lead to a generic model which, however, has a limited usefulness in a real scenario,
in which it provides some “generic” code recommendations without adapting to the specific
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context in which it is used. Specializing the model to a single project or even to a single
developer by adopting their coding style when revising code may improve the usefulness
of the generated recommendations. For example, a code recommendation featuring an API
already used in the past by the developer may be easier for them to understand as compared
to one using an unknown API.

We plan to explore methodologies to embed such information (e.g., the developer “knowl-
edge” and coding style) in the model’s input, studying its impact on the generated recom-
mendations.

7.1.5 Identifying the Accuracy Breakeven Point for a Successful Technological
Transfer

For the empirical evaluation of the code review automation techniques proposed in the lit-
erature, it is clear that none of them is currently ready for an adoption by developers (and,
probably, also to run a large-scale evaluation with developers). However, it is unclear where
the breakeven point is or, in other words, at which level of performance the the automa-
tion approach can be considered as a valid support for developers rather than a tool mostly
bothering them with wrong recommendations.

While the answer to this question may appear simple to identify by, for example, running
a survey with developers (e.g., they could claim that above 50% of correct recommendations
they would use the approach), our research in Chapter 6 showed that the accuracy alone
only tells a small part of the story. Indeed, the techniques may be successful in automat-
ing/suggesting very simple code changes or very complex ones which, in turn, result in a
substantially different amount of time saved to the developer.

Thus, the question is not only about which percentage of instances in the test set can be
successfully automated, but also about which of those instances would mostly benefit devel-
opers. We plan to investigate this through user studies in which developers are supported
(or not) by automated techniques having a different accuracy and are successful on different
types of review tasks (i.e., having a different complexity).

7.1.6 A Novel Way to Evaluate the Correctness of the Prediction

A major lesson learned while working on this research is that the quantitative metrics we
use to assess the capabilities of the DL models usually underestimate the capabilities of the
trained models. Especially when it comes to evaluate comments generated in natural lan-
guage. Indeed, comparing the generated comment against the ground truth makes a pre-
diction correct only if it uses exactly the same wording as the ground truth. However, as we
discussed, it is possible to express the same concept using different wordings.

One very simple attempt to solve such a problem could be to use large language models
such as ChatGPT to assess whether a comment automatically generated by the model is
semantically equivalent to the one written by the human reviewer.

In general, we believe that better metrics are needed to quantitatively assess code review
automation techniques.
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7.1.7 Deepen the Evaluation of Large Language Models for Code Review Automa-
tion

In Section 6.2.3 we evaluated ChatGPT for the automation of the code review tasks targeted
in this thesis. However, such a comparison was limited to a small sample of instances and,
in a recent study we are conducting (not documented in this thesis), we found that open
source developers are actually using ChatGPT for automating code review. This calls for a
larger and deeper empirical evaluation aimed at better assessing large language models for
these tasks, for example by experimenting with different prompts or by providing it with
additional contextual information in a few-shot learning fashion.

7.2 Closing Words

In conclusion, with our research we have attempted the automation of code review tasks
using DL, with the idea of imitating human developers. The goal of this line of research is
not to replace human developers, but rather to support them and save some of the time they
spend on code review. As we have discussed, there is still a lot of room for improvement
which make code review automation a hot research topic nowadays.



Appendices





In this appendix we report other contributions in SE that do not fall within the specific topic
of this thesis.

Appendix A presents the research done in the context of video game testing. We applied
reinforcement learning to train an agent able to play and, at the same time, search for area
of the game in which there is a drop in frame per seconds.

Appendix B describes an approach able to recommend how to replace custom implemen-
tations with open source APIs.
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A
Using Reinforcement Learning for Load Testing
of Video Games

Different from what happens for most types of software systems, testing video games
has largely remained a manual activity performed by human testers. This is mostly due to
the continuous and intelligent user interaction video games require. Recently, reinforcement
learning (RL) has been exploited to partially automate functional testing. RL enables training
smart agents that can even achieve super-human performance in playing games, thus being
suitable to explore them looking for bugs. We investigate the possibility of using RL for load
testing video games. Indeed, the goal of game testing is not only to identify functional bugs,
but also to examine the game’s performance, such as its ability to avoid lags and keep a
minimum number of frames per second (FPS) when high-demanding 3D scenes are shown
on screen. We define a methodology employing RL to train an agent able to play the game
as a human while also trying to identify areas of the game resulting in a drop of FPS. We
demonstrate the feasibility of our approach on three games. Two of them are used as proof-
of-concept, by injecting artificial performance bugs. The third one is an open-source 3D
game that we load test using the trained agent showing its potential to identify areas of the
game resulting in lower FPS.
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The content of this chapter has been presented in the following paper:

Using Reinforcement Learning for Load Testing of Video Games

Rosalia Tufano, Simone Scalabrino, Luca Pascarella, Emad Aghajani, Rocco Oliveto,
Gabriele Bavota. In Proceedings of the 44th International Conference on Software
Engineering (ICSE 2022), pp. 2303–2314.

A.1 Introduction

The video game market is expected to exceed $200 billion in value in 2023 [mar]. In
such a competitive market, releasing high-quality games and, consequently, ensuring a great
user experience, is fundamental. However, the unique characteristics of video games (from
hereon, games) make their quality assurance process extremely challenging. Indeed, be-
sides inheriting the complexity of software systems, games development and maintenance
require a diverse set of skills covered by many stakeholders, including graphic designers,
story writers, developers, AI (Artificial Intelligence) experts, etc.

Also, games can hardly benefit from testing automation techniques [PPPB18], since even
just exploring the total space available in a given game level requires an intelligent interaction
with the game itself. For example, in a racing game, identifying a bug that manifests when
the finish line is crossed requires a player able to successfully drive the car for the whole
track (i.e., requires the ability to drive the car). Thus, random exploration is not a viable
option here.

Therefore, it comes without surprise that game testing is largely a manual process. Zheng
et al. [ZXS+19] report that 30 human testers were employed for testing one of the games
used in their study. Also, the challenges in testing games have been stressed by Lin et al.
[LBH16], who showed that 80% of the 50 popular games they studied have been subject to
urgent updates.

To support developers with game testing, researchers have proposed several techniques.
These include approaches to test the stability of game servers [JLS+05, BJK06, CLS+10],
model-based testing [IIKM15] using domain modeling for representing the game and UML
state machines for behavioral modeling, as well as techniques specifically designed for test-
ing board games [SNM09, dMSLTN17]. When looking at recent techniques aimed at propos-
ing more general testing frameworks, those exploiting Reinforcement Learning (RL) are on
the rise. This is due to the remarkable results achieved by RL-based techniques in playing
games with super-human performance reported in the literature [BKM+19, AI19, HMVH+18,
MKS+13, MKS+15, VEB+17].

RL is a machine learning technique aimed to train smart agents able to interact with
a given environment (e.g., a game) and to take decisions to achieve a goal (e.g., win the
game). RL is based on the simple idea of trial and error: The agent performs actions in the
environment (of which it only has a partial representation) and receives a reward that allows
it to assess its past actions/behavior with respect to the desired goal.



A.1 Introduction 109

Recently, researchers started using RL not only to play games but also to test them and,
in general, to improve their quality. The common idea behind these approaches is to reduce
the human effort in playtesting using intelligent agents. RL-based agents have been used to
help game designers in balancing crucial parameters of the game (e.g., power-up item effects)
[ZBB+19, PLV+20, ZFR14] and in testing the game difficulty [GEP+18, SNMB20]. Also, RL-
based agents have been used to look for bugs in games [PSM17, BGTG20, ZXS+19, ABS21].

While agents are usually trained to play a game with the goal of winning, the aforemen-
tioned works trained the agent to not only advance in the game but also to explore it to search
for bugs. For example, Ariyurek et al. [ABS21] combine RL and Monte Carlo Tree Search to
find issues in the behavior of a game, given its design constraints and game scenario graph.
The ICARUS framework [PSM17] is able to identify crashes and blockers bugs (e.g., the game
get stuck for a certain amount of time) while the agent is playing. Similarly, the approach
by Zheng et al. [ZXS+19], also exploiting RL, can identify bugs spotted by the agent during
training (e.g., crashes). While these approaches pioneered the use of RL for game testing,
they are mostly aimed at testing functional (e.g., finding crashes) or design-related (e.g.,
level design) aspects. However, these are not the only types of bug developers look for in
playtesting. In a recent survey, Politowski et al. [PPG21] reported that for two out of the
five games they considered (i.e., League of Legends by Riot and Sea of Thieves by Rare) devel-
opers partially automated game performance checks (e.g., frame-rate). Similarly, Naughty
Dog used specialized profiling tools1 for finding which parts of a given scene caused a drop
in the number of frames per second (FPS) in The Last of Us. Truelove et al. [TdAA21] report
that game developers agree that Implementation response problems may severely impact the
game experience.

Despite such a strong evidence about the importance of detecting performance issues
in video games, to the best of our knowledge no previous work introduced automated ap-
proaches for load testing video games. We present RELINE (Reinforcement lEarning for Load
testINg gamEs), an approach exploiting RL to train agents able to play a given game while
trying to load test it with the goal of minimizing its FPS. The agent is trained using a reward
function enclosing two objectives: The first aims at teaching the agent how to advance in
the game. The second rewards the agent when it manages to identify areas of the game
exhibiting low FPS. The output of RELINE is a report showing areas in the game being neg-
ative outliers in terms of FPS, accompanied by videos of the gameplays exhibiting the issue.
Such “reports” can simplify the identification and reproduction of performance issues, that
are often reported in open-source 3D games (see e.g., [dwac, 3dc, geo, dwab]) and that, in
some cases, are challenging to reproduce (see e.g., [dwaa, dwad]).

We experiment RELINE with three games. The first two are simple 2D games that we
use as a proof-of-concept. In particular, we injected in the games artificial “performance
bugs” [DPSSMB21] to check whether the agent is able to spot them. We show that the agent
trained using RELINE can identify the injected bugs more often than (i) a random agent, and
(ii) a RL-based agent only trained to play the game. Then, we use RELINE to load test an
open-source 3D game [sup], showing its ability to identify areas of the game being negative
outliers in terms of FPS.

1https://youtu.be/yH5MgEbBOps?t=3494

https://youtu.be/yH5MgEbBOps?t=3494
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Figure A.1. RELINE overview

A.2 Approach

In this section we explain, from an abstract perspective, the idea behind RELINE. We describe
in the study designs how we instantiated RELINE to the different games we experiment with
(e.g., details about the adopted RL models).

RELINE requires three main components: the game to load test, a RL model, representing
the agent that must learn how to play the game while load testing it, and a reward function,
used to reward the agent so that it can evaluate the worth of its actions for reaching the
desired goal (i.e., playing while load testing). The RL model is trained through the 4-step
loop depicted in Fig. A.1 (see the circled numbers). The continuous lines represent steps
performed at each iteration of the loop, while the dashed ones are only performed after a
first iteration has been run (i.e., after the agent performed at least one action in the game).
When the first episode (i.e., a run of the game) of the training starts (step 1), at each time
step τ the game provides its state sτ. Such a state can be, for example, a set of frames or
a numerical vector representing what is happening in the game (e.g., the agent’s position).
The RL model takes as input sτ (step 2) and provides as output the action aτ to perform in
the game (step 3). When the agent has no experience in playing the game at the start of
the training, the weights of the neural network in the RL model are randomly initialized,
producing random actions. The action aτ is executed in the game (step 4), which, in turn,
generates the subsequent state sτ+1.

After the first iteration (i.e., after having received at least one aτ), the game also pro-
duces, at each iteration, the data needed to compute the reward function. In RELINE we col-
lect (i) the information needed to assess how well the agent is playing the game (e.g., time
since the episode started and the episode score), and (ii) the FPS at time τ. It is required
that the game developer instruments the game and provide APIs through which RELINE can
acquire such pieces of information. We assume that this requires a minor effort.
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The reward function aims at training an agent that is able to (i) play the game, thanks
to the information indicating how well the agent is playing, and (ii) identify low-FPS areas,
thanks to the information about the FPS. The output of the reward function is a number
representing the reward obtained by the agent at time τ. In RELINE, the reward function
for a given action is composed of two sub-functions: A game reward function, depending on
how good the action is in the game (rgτ), and a performance reward function, depending on
how the action impacts the performance (rpτ).

We combine such functions in rτ = rgτ+rpτ. The game reward function clearly depends
on the game under test: A function designed for a racing game likely makes no sense for a
role-playing game. In general, defining the reward function for learning to play should be
performed by considering (i) what the goal of the game is (e.g., drive on a track), and (ii)
which information the game provides about the “successful behavior of the player” (e.g., is
there a score?). Even if less intuitive, the performance reward function is game-dependent
as well: Assuming a tiny FPS drop (e.g.,-1%), the reward can be small for a role-playing
game, in which it likely does not affect the whole experience, while it should be high for
an action game, in which it could even cause the (unfair) player’s defeat. Unlike the game
reward function, we expect however minor changes to be required to adapt the performance
reward function to a different video game (i.e., tuning of the thresholds to use).

The state sτ, the action aτ, and the reward rτ are then stored in an experience buffer.
When enough experience has been accumulated, it is used to update the network weights.
How experience is stored and used to update the network depends on the used RL model.

The episode ends when a final state is reached. Again, the definition of the final state
depends on the game, and it could be based on a timeout (e.g., each episode lasts at most
90 seconds) or on a specific condition that must be met (e.g., the agent crosses the finish
line). Once the episode ends, the game is reinitialized and the loop restarts. The training is
performed for a number of episodes sufficient to observe a convergence in the total reward
achieved by an agent during an episode (e.g., if the trained agent obtains a reward of 100
for ten consecutive episodes the training is stopped).

A.3 Preliminary Study: Injecting Artificial Performance Issues

This preliminary study aims at assessing the ability of RELINE in identifying artificial “perfor-
mance bugs” [DPSSMB21]we simulate in two 2D games. It is important to highlight that the
goal of this study is only to demonstrate the applicability of RELINE for load testing games
as a proof-of-concept. A case study on a 3D open-source game is presented in Section A.4.

A.3.1 Study Design

We select two 2D games, CartPole [Car] and MsPacman [Pac]. The former — Fig. A.2-(a)
— is a dynamic system in which an unbalanced pole is attached to a moving cart, and the
player must move the cart to balance the pole and keep it in a vertical position. The player
loses if the pole is more than 12 degrees from vertical or the cart moves too far from the
center.
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(a) (b) (c)

preliminary study case study

Figure A.2. Screenshots of games used in the preliminary study—Section A.3 (a) CartPole and (b)
MsPacman, and in the case study—Section A.4 (c) SuperTuxKart.

The latter — Fig. A.2-(b) — is the classic Pac-Man game in which the goal is to eat all
dots without touching the ghosts. Both games employ simple 2D graphics which bound the
player’s possible moves in only one (e.g., left and right, for CartPole) or two (e.g., left, right,
up, and down, for MsPacman) dimensions. This is one of the reasons we selected these
games for assessing whether a RL-based agent that learned how to play them can also be
trained to look for artificial “performance bugs” we injected. Also, both games are integrated
in the popular GYM Python toolkit [Gym] developed by OpenAI [BCP+16].

GYM can be used for developing and comparing RL-based agents in playing games. It
acts as a middle layer between the environment (the game) and the agent (a virtual player).
In particular, GYM collects and executes actions (e.g., go left, go right) generated by the
agent and returns to it the new state of the environment (i.e., screenshots) with additional
information such as the score in the episode. GYM comes with a set of integrated arcade
games including the two we used in this preliminary study.

Bug Injection

We injected two artificial “performance bugs” in CartPole and four in MsPacman. The idea
behind them is simple: When the agent visits specific areas for the first time during a game,
the bugs reveal themselves (simulation of heavy resource loading). A natural way of achiev-
ing this goal would have been to introduce the bugs in the source code of the game and
to implement the logic to spot FPS drops in the agent accordingly. This, however, would
have slowed down the training of the agent. Therefore, we chose to use a more practically
sound approach, inspired by the simulation of Heavy-Weight Operation (HWO) operator for
performance mutation testing [DPSSMB21]: We directly assume that the agents observe the
bugs when they visit the designated areas and act accordingly.

In CartPole, the agent can only move on the x axis (i.e., left or right). When the game
starts, the agent is in position x = 0 (i.e., center of the axis) and it can change its position
towards positive (by moving right) or negative (left) x values. The two bugs we injected
manifest when x ∈ [−0.50,−0.45] and x ∈ [0.45, 0.50]— dashed lines in Fig. A.2-(a). We
use intervals rather than specific values (e.g.,-0.45) because the position of the agent is a
float: if it moves to position -0.450001, we want to reward it during the training for having
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found the injected bug. Concerning MsPacman, we assume that a performance bug manifests
when the agent enters the four gates indicated by the white arrows in Fig. A.2-(b).

As detailed in Section A.3.1, we assess the extent to which RELINE is able to identify
the bugs we injected while playing the games. To have a baseline, we compare its results
with those of a RL-based agent only trained to play each of the two games (from hereon, rl-
baseline), and with a random agent. Since RELINE will be trained with the goal of identifying
the bugs (details follow), we expect it to adapt its behavior to not only successfully play the
game, but to also exercise more often the “buggy” areas of the games.

Learning to Play: RL Models and Game Reward Functions

We trained the rl-baseline agent (i.e., the one only trained to learn how to play) for CartPole
using the cross-entropy method [RK04] as RL model. We choose this method because, despite
its simplicity, it has been shown to be effective in applications of RL to small environments
such as CartPole [Lap18].

The core of the cross-entropy method is a feedforward neural network (FNN) that takes
as input the state of the game and provides as output the action to perform. The state of the
game for CartPole is a vector of dimension 4 containing information about the x coordinate
of the pole’s center of mass, the pole’s speed, its angle with respect to the platform, and its
angular speed. There are two possible actions: go right, go left. Once initialized with random
weights, the agent (i.e., the FNN) starts playing while retaining the experience acquired in
each episode: The experience is represented by the state, the action, and the reward obtained
during each step of the episode.

The goal is to keep the pole in balance as long as possible or until the maximum length
of an episode (that we set to 1,000 steps) is reached. The game reward function is defined
so that the agent receives a +1 reward for each step it manages to keep the pole balanced.
The total score achieved is also saved at the end of each episode. After n = 16 consecutive
episodes the agent stops playing, selects the m = 11 (70%) episodes having the highest
score, and uses the experience in those episodes to update the weights of the FNN (n and m
have been set according to [Lap18]).

Instead, we trained the rl-baseline agent for MsPacman using a Deep Q Network (DQN)
[MKS+13]. In our context, a DQN is a Convolutional Neural Network (CNN) that takes as
input a set of contiguous screenshots of the game (in our case 4, as done in previous works
[MKS+13, MKS+15]) representing the state of the game and returns, for each possible action
defined in the game (five in this case: go up, go right, go down, go left, do nothing), a value
indicating the expected reward for the action given the current state (Q value). The multiple
screenshots are needed to provide more information to the model about what is happening
in the game (e.g., in which direction the agent is moving). The goal of the DQN is the same
as the FNN: selecting the best action to perform to maximize the reward given the current
state. Differently from the previous model, the DQN is updated not on entire episodes but
by randomly batching “experience instances” among 10k steps saved during the most recent
episodes. An “experience instance” is saved after each step τ, and is represented by the
quadruple (sτ−1, aτ, sτ, rτ), where sτ−1 is the input state, aτ is the action selected by the
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agent, sτ is the resulting state obtained by running aτ in sτ−1 and rτ is the received reward.
The CNN is initialized with random weights, and the agent starts playing while retaining

the experience of each step. When enough experience instances have been collected (10k
in our implementation [Lap18]), the CNN starts updating at each step selecting a random
batch of experience instances. The reward function for MsPacman provides a +1 reward
every time the agent eats one of the dots and a 0 reward otherwise.

Instantiating RELINE: Performance Reward Functions

To train RELINE to play while looking for the injected bugs, we use a simple performance
reward function: In both the games, we give a reward of +50 every time the agent, during
an episode, spots one of the injected artificial bugs. As previously mentioned, the bugs
reveal themselves only the first time the agent visits each buggy position; this means that the
performance-based reward is given at most twice for CartPole and four times for MsPacman.

Data Collection and Analysis

We compare RELINE against the two previously mentioned baselines: rl-baseline and the
random agent. Both RELINE and rl-baseline have been trained for 3,200 episodes on CartPole
and 1,000 on MsPacman. The different numbers are due to differences in the games and in
the RL model we exploited. In both cases, we used a number of episodes sufficient for rl-
baseline to learn how to play (i.e., we observed a convergence in the score achieved by the
agent in the episodes).

Once trained, the agents have been run on both games for additional 1,000 episodes,
storing the performance bugs they managed to identify in each episode. Since different
trainings could result in models playing the game following different strategies, we repeated
this process ten times. This means that we trained 10 different models for both RELINE
and rl-baseline and, then, we used each of the 10 models to play additional 1,000 episodes
collecting the spotted performance bugs. Similarly, we executed random agent 10 times for
1,000 episodes each. In this case, no training was needed.

We report descriptive statistics (mean, median, and standard deviation) of the number
of performance bugs identified in the 1,000 played episodes by the three approaches. A high
number of episodes in which an approach can spot the injected bugs indicate its ability to
look for performance bugs while playing the game.

A.3.2 Preliminary Study Results

Table A.1 shows for each of the two games (CartPole and MsPacman) the number k of artifi-
cial bugs we injected and, for each of the three techniques (i.e., RELINE, rl-baseline, and the
random agent), descriptive statistics of the number of episodes (out of 1,000) they managed
to identify at least n of the injected bugs, with n going from 1 to k at steps of 1.

For both games, it is easy to see that the random agent is rarely able to identify the bugs.
Indeed, this agent plays without any strategy as it is able to identify bugs only by chance in
a few episodes out of the 1,000 it plays. This is also due to the fact that the random agent
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Table A.1. Number of episodes (out of 1,000) in which RELINE, rl-baseline, and the random agent
identify the injected bugs.

Game
#Bugs RELINE rl-baseline random agent
found mean median stdev mean median stdev mean median stdev

CartPole
1/2 965 984 47 715 706 107 12 11 4
2/2 102 47 177 5 1 7 0 0 0

MsPacman

1/4 971 989 59 700 680 228 24 23 5
2/4 966 985 63 356 343 169 17 16 3
3/4 914 941 87 114 80 90 1 1 1
4/4 879 907 106 25 23 17 1 1 1

quickly looses the played episodes due to its inability to play the game. This confirms that
these approaches are not suitable for testing video games.

Concerning CartPole, both RELINE and rl-baseline are able to spot at least one of the two
bugs in several of the 1,000 episodes. The median is 984 for RELINE and 706 for rl-baseline.
The success of rl-baseline is soon explained by the characteristics of CartPole: Considering
where we injected the bugs — see Fig. A.2-(a) — by playing the game it is likely to discover
at least one bug (e.g., if the player tends to move towards left, the bug on the left will be
found). What it is instead unlikely to happen by chance is to find both bugs within the same
episode. We found that it is quite challenging, even for a human player, to move the cart first
towards one side (e.g., left) and, then, towards the other side (right) without losing due to
the pole moving more than 12 degrees from vertical. As it can be seen in Table A.1, RELINE
succeeds in this, on average, for 102 episodes out of 1,000 (median 47), as compared to the
5 (median 1) of rl-baseline. This indicates that RELINE is pushed by the reward function to
explore the game looking for the injected bugs, even if this makes playing the game more
challenging. Similar results have been achieved on MsPacman.

In this case, the DQN is effective in allowing RELINE to play while exercising the points
in the game in which we injected the bugs. Indeed, on average, RELINE was able to spot all
four injected bugs in 879 out of the 1,000 played episodes (median=907), while rl-baseline
could achieve such a result only in 25 episodes.

Summary of the Prelimiary Study. RELINE allows obtain agents able not only to ef-
fectively play a game but also to spot performance issues. Compared to rl-baseline, the
main advantage of RELINE is that it identifies bugs more frequently while playing.

A.4 Case Study: Load Testing an Open Source Game

We run a case study to experiment the capability of RELINE in load testing an open-source
3D game. Differently from our preliminary study (Section A.3), we do not inject artificial
bugs. Instead, we aim at finding parts of the game resulting in FPS drops.
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A.4.1 Study Design

For this study, we use a 3D kart racing game named SuperTuxKart [sup]— see Fig. A.2-(c).
This game has been selected due to the following reasons. First, we wanted a 3D game in
which, as compared to a 2D game, FPS drops are more likely because of the more complex
rendering procedures. Second, SuperTuxKart is popular open-source project that counts, at
the time of writing, over 3k stars on GitHub. Third, it is available an open-source wrapper
that simplifies the implementation of agents for SuperTuxKart [PyS].

The existence of a wrapper like the one we used is crucial since it allows, for example, to
advance in the game frame by frame (thus simplifying the generation of the inputs to the RL
model), to execute actions (e.g., throttle or brake), and to acquire game internals (e.g., kart
centering, distance to the finish line). Also, using this wrapper, it is possible to compute the
time needed by the game to render each frame and, consequently, calculate the FPS. Finally,
the wrapper allows to have simplified graphics (e.g., removing particle effects, like rain, that
could make the training more challenging).

Learning to Play: RL Models and Game Reward Functions

The training of the rl-baseline agent has been performed using the DQN model previously
applied in MsPacman.

We use the previously mentioned PySuperTuxKart [PyS] to make the agent interact with
the game. For the sake of speeding up the training, the screenshots extracted from the game
have been resized to 200x150 pixels and converted in grayscale before they are provided as
input to the model. Moreover, as previously done for MsPacman, multiple (four) screenshots
are fed to the model at each step. Thus, the representation of the state of the game provided
to the model is a 4×200×150 tensor. The details of the model and its implementation are
available in our replication package [repg].

A critical part of the learning process is the definition of the game reward function. Being
SuperTuxKart a racing game, an option could have been to penalize the agent for each addi-
tional step required to finish the game. Consequently, to maximize the final score, the agent
would have been pushed to reduce the number of steps and, therefore, to drive as fast as
possible towards the finish line. However, considering the non-trivial size of the game space,
such a reward function would have required a long training time. Thus, we took advantage
of the information that can be extracted from the game to help the agent in the learning
process.

SuperTuxKart provides two coordinates indicating where the agent is in the game:
path_done and centering.

The former indicates the path traversed by the agent from the starting line of the track,
while the latter represents the distance of the agent from the center of the track. In par-
ticular, centering equals 0 if the agent is at the center of the track, and it moves away
from zero as the agent moves to either side: going towards right results in positive values
of the centering value, going left in negative values. We indicate these coordinates with
x (centering) and y (path_done), and we define δy as the path traversed by the agent
in a specific step: Given yi the value for path_done at step i, we compute δy as yi − yi−1.
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Basically, δy measures how fast the agent is advancing towards the finish line.
Given x and δy for a given step i, we compute the reward function as follows:

rgi =

¨

−1 if |x |> θ
max(min(δy , M), 0) otherwise

First, if the agent goes too far from the center of the track (|x |> θ), we penalize it with
a negative reward. Otherwise, if the agent is close to the center (|x | ≤ θ), we can have two
scenarios: (i) if it is not moving towards the finish line (δy ≤ 0), we do not give any reward
(the minimum reward is 0); (ii) if it is moving in the right direction (δy > 0), we give a
reward proportional to the speed at which it is advancing (δy), up to a maximum of M.

In our experimental setup, we set θ = 20 because it roughly represents the double of
|x | when the agent approaches the sides of the road in the level, and M = 10 as it is the
same maximum reward also given by the performance reward function, as we explain below.
Finally, we reward the agent when it crosses the finish line with an additional +1,000 bonus.

Instantiating RELINE: Performance Reward Function

To define the performance reward function of RELINE for SuperTuxKart, the first step to per-
form is to define a way to reliably capture the FPS of the game during the training. In this
way, we can reward the agent when it manages to identify low-FPS points. As previously
said, we use PySuperTuxKart to interact with the game and such a framework keeps the
game frozen while the other instructions of RELINE (e.g., the identification of the action to
execute) are run. Since the framework runs the game in the same process in which we run
RELINE and since we do not use threads, we can safely use a simple method for computing
the time needed to render the four frames: We get the system time before (Tbefore) and after
(Tafter) we trigger the rendering of the frames and we compute the time needed at step i as
rT i = Tafter − Tbefore. Such a value is negatively correlated with the FPS (higher rendering
time means lower FPS).

The performance reward function we use is the following:

rpi =

¨

10 if |x | ≤ θ ∧ rT i > t

0 otherwise

We give a performance-based reward of 10 when the agent takes more than t milliseconds
to render the frames at a given point (causing an FPS drop). We explain the tuning of t
later. We do not give such a reward when |x | > θ (the kart is far from the center) since we
want the agent to spot issues in positions that are likely to be explored by real players (i.e.,
reasonably close to the track).

Finally, in RELINE we do not give a fixed +1,000 bonus reward when the agent crosses
the finish line but we assign a bonus computed as 10 ×

∑steps
i=1 rpi , i.e., proportional to the

total performance-based reward accumulated by the agent in the episode. This is done to
push the agent to visit more low-FPS points during an episode.
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Data Collection and Analysis

As done in our preliminary study, we compare RELINE with rl-baseline (i.e., the agent only
trained to play the game) and with a random agent.

Training rl-baseline and RELINE. While we used different reward functions for the two
RL agents, we applied the same training process for both of them. We trained each model
for 2,300 episodes, with one episode having a maximum duration of 90 seconds or ending
when the agent crosses the finish line of the racing track (the agent is required to perform
a single lap). We set the 90 seconds limit since we observed that, by manually playing the
game, ∼70 seconds are sufficient to complete a lap. The 2,300 episodes threshold has been
defined by computing the average reward obtained by the two agents every 100 episodes
and by observing when a plateau was reached by both agents. We found 2,300 episodes to
be a good compromise for both agents (graphs plotting the reward function are available in
the replication package [repg]).

The trained rl-baseline agent has been used to define the threshold t needed for the
RELINE’s reward function (i.e., for identifying when the agent found a low-FPS point and
should be rewarded).

In particular, once trained, we run rl-baseline for 300 episodes, storing the time needed
by the game to render the subsequent four frames after every action recommended by the
model.2 This resulted in a total of 48,825 data points sF PS , representing the standard FPS
of the game in a scenario in which the player is only focused on completing the race as fast
as possible.

Starting from the 48,825 sF PS data points collected in the 300 episodes played by the
trained rl-baseline agent, we apply the five-σ rule [Gra06] to compute a threshold able to
identify outliers. The five-σ rule states that in a normal distribution (such as sF PS) 99.99%
of observed data points lie within five standard deviations from the mean. Thus, anything
above this value can be considered as an outlier in terms of milliseconds needed to render
the frames. For this reason, we compute tb = mean(sF PS)+5× sd(sF PS) as a candidate base
threshold to identify low-FPS points. However, tb cannot be directly used as the t value of
our reward function. Indeed, we observed that the time needed for rendering frames during
the RELINE’s training is slightly higher as compared to the time needed when the trained
rl-baseline agent is used to play the game. This is due to the fact that the load on the server
(and in particular on the GPU) is higher during training. To overcome this issue, we perform
the following steps.

At the beginning of the training, we run 100 warmup episodes in which we collect the
time needed to render the four frames after each action performed by the agent. Then, we
compute the first (Qtr

1 ) and the third (Qtr
3 ) quartile of the obtained distribution and compare

them to the Q1 and Q3 of the distribution obtained in the 300 episodes used to define tb
(i.e., those played by the trained rl-baseline agent). During the warmup episodes, the agent
selects the action to perform almost randomly (it still has to learn): Therefore, it would
not be able to explore a substantial area of the game (i.e., of the racing track), thus not

2Since we wanted to measure the frames rendering time in a standard scenario in which the agent was driving
the kart, we stopped an episode if the agent got stuck against some obstacle.
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providing a distribution of timings comparable with the ones obtained when the trained rl-
baseline agent that played the 300 episodes. For this reason, during the 100 warmup episodes
of the training, the action to perform is not chosen by the agent currently under training,
but by the trained rl-baseline agent (i.e., the same used in the 300 episodes). This does not
impact in any way the load on the server that remains the one we have during the training
of RELINE since the only change we have is to ask for the action to perform to the rl-baseline
agent rather than to the one under training. However, the whole training procedure (e.g.,
capturing the frames and updating the network) stays the same.

We compute the additional “cost” brought by the training in rendering the frames during
the game using the formula δ = max(Qtr

1 −Q1,Qtr
3 −Q3). We use the first and third quartiles

since they represent the boundaries of the central part of the distribution, i.e., they should
be quite representative of the values in it. We took as δ the maximum of the two differences
to be more conservative in assigning rewards when the agent identifies low-FPS points. The
final value t we use in our reward function when training RELINE to load test SuperTuxKart
is defined as: t = tb +δ = 18.36.3

Thus, if RELINE is able, during the training, to identify a point in the game requiring
more than t milliseconds to render four frames, then it receives a reward as explained in
Section A.4.1.

The training of rl-baseline took ∼3 hours, while RELINE requires substantially more time
due to the fact that, after each step performed by the agent, we collect and store information
about the time needed to render the frames (this is done million of times). This pushed the
training for RELINE up to ∼30 hours.

Reliability of Time Measurements. It is important to clarify that the FPS of the game
can be impacted by the hardware specifications and the current load of the machine run-
ning it. In other words, running the same game on two different machines or on the same
machine in two different moments can result in variations of the FPS. For this reason, all
the experiments have been performed on the same server, equipped with 2 x 64 Core AMD
2.25GHz CPUs, 512GB DDR4 3200MHz RAM, and an nVidia Tesla V100S 32GB GPU. Also,
the process running the training of the agents or the collection of the 48,825 sF PS with the
trained rl-baseline agent was the only process running on the machine besides those handled
by the operating system (Ubuntu 20.04). On top of that, the process was always run using
the chrt -rr 1 option, that in Linux maximizes the priority of the process, reducing the
likelihood of interruptions.

Despite these precautions, it is still possible that variations are observed in the FPS not
due to issues in the game, but to external factors (e.g., changes in the load of the machine).
To verify the reliability of the collected FPS data, we run a constant agent performing always
the same actions in the game for 300 episodes. The set of actions has been extracted from
one of the episodes played by the rl-baseline agent, that was able to successfully conclude
the race. Then, we plotted the time needed by the game to render the four frames following

3We identify as low-FPS points the ones in which the FPS is lower than 218. Such a number is still very
high, more than enough for any human player, in practice. Note that we run the game using high-performance
hardware and, most importantly, with the lowest graphic settings. The equivalent in normal conditions would
be much lower.
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each action made by the agent. Since we are playing 300 times exactly the same episode,
we expect to observe the same trend in terms of FPS for each game. If this is the case, it
means that the way we are measuring the FPS is reliable enough to reward the agent when
low-FPS points are identified.
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Figure A.3. Rendering times for 300 episodes (same actions).

Fig. A.3 shows the achieved results: The y-axis represents the milliseconds needed to
render four frames in response to an agent’s action (x-axis) performed in a specific part of
the game. While, as expected, small variations are possible, the overall trend is quite stable:
Points of the game requiring longer time to render frames are consistently showing across
the 300 episodes, resulting in a clear trend. We also computed the Spearman’s correlation
[Spe04] pairwise across the 300 distributions, adjusting the obtained p-values using the
Holm’s correction [Hol79b].

We found all correlations to be statistically significant (adjusted p-values < 0.05) with a
minimum ρ=0.77 (strong correlation) and a median ρ=0.91 (very strong correlation). This
confirms the common FPS trends across the 300 episodes.

Running the Three Techniques to Spot Low-FPS Areas. After the 2,300 training
episodes, we assume that both the RL-based agents learned how to play the game, and
that RELINE also learned how to spot low-FPS points. Then, as also done in our preliminary
study, we train both agents for additional 1,000 episodes, storing the time needed to render
the frames in every single point they explored during each episode (where a point is repre-
sented by its coordinates, i.e., centering=x and path_done=y). We do the same also with
the random agent.

Data Analysis. The output of each of the three agents is a list of points with the mil-
liseconds each of them required to render the subsequent frames. Since each agent played
1,000 episodes, it is possible that the same point is covered several times by an agent, with
slightly different FPS observed (as previously explained, small variations in FPS are possible
and expected across different episodes). We classify as low-FPS points those that required
more than t milliseconds to render the four subsequent frames more than 50% of times they
have been covered by an agent. This means that, if across the 1,000 episodes a point p
is exercised 100 times by an agent, at least 51 times the threshold t must be exceeded to
consider p as a low-FPS point.
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In practice, a developer using RELINE for identifying low-FPS points could use a higher
threshold to increase the reliability of the findings. However, for the sake of this empirical
study, we decided to be conservative.
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Figure A.4. Results of the study: (a) reports the distributions of timings for the low-FPS points with
summary statistics, while (b) and (c) depict the path done and centering coordinates at which the
such points were observed, respectively.

Then, we compare the characteristics of the low-FPS points identified by the three ap-
proaches. Specifically, we analyze: (i) how many different low-FPS points each approach
identified; (ii) the number of times each low-FPS point has been exercised by each agent in
the 1,000 episodes; (iii) the confidence of the identified points (i.e., the percentage of times
an exercised point resulted in low FPS). Given the low-FPS points identified by each agent,
we draw violin plots showing the distribution of timings needed to render the frames when
the agent exercised them (the higher the timings, the lower the FPS). We compare these
distributions using Mann-Whitney test [Con98] with p-values adjustment using the Holm’s
correction [Hol79b].
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We also estimate the magnitude of the differences by using the Cliff’s Delta (d), a non-
parametric effect size measure [GK05b] for ordinal data. We follow well-established guide-
lines to interpret the effect size: negligible for |d| < 0.10, small for 0.10 ≤ |d| < 0.33,
medium for 0.33≤ |d|< 0.474, and large for |d| ≥ 0.474 [GK05b].

A.4.2 Study Results

Fig. A.4 summarizes the main findings of our case study. Fig. A.4-(a) shows the distribution
of time needed to render the game frames (i.e., our proxy for FPS) for four groups of points.
The first violin plot on the left (i.e., Regular FPS) shows the timing for points that have
never resulted in a drop of FPS in any of the 3,000 episodes played by the three agents
(1,000 each). These serve as baseline to better interpret the low-FPS points exercised by the
agents. The other three violin plots show the distributions of timing for the low-FPS points
identified by RELINE (blue), rl-baseline (green), and the random agent (red).

Below each violin plot we report the number of low-FPS points identified by each agent
and descriptive statistics (average, median, min, max) of the confidence for the low-FPS
points. A 100% confidence means that all times that a low-FPS point has been exercised
in the 1,000 episodes played by the agent it required more than t = 18.36 milliseconds to
render the subsequent frames. The t threshold is represented by the red horizontal line. On
average, RELINE exercised each low-FPS point 89 times in the 1,000 episodes, against the
210 of rl-baseline and the 829 of the random agent (the same point can be exercised multiple
times in an episode).

RELINE identified 173 low-FPS points, as compared to the 33 of rl-baseline and the 90
of the random agent. The confidence is similar for RELINE (median=99%) and rl-baseline
(median=94%), while it is lower for the random agent (median=76%). Thus, the low-
FPS points identified by the two RL-based agents are, overall, quite reliable. Concerning the
number of low-FPS points identified, RELINE identifies more points as compared to rl-baseline
(173 vs 33). This is expected since it has the explicit goal of load testing the game, However,
what could be surprising at first sight is the high number of low-FPS points identified by the
random agent (90). Fig. A.4-(b) and Fig. A.4-(c) help in interpreting this finding.

Fig. A.4-(b) plots the path_done (y coordinate) for each low-FPS point identified by each
agent, using the same color schema of the violin plots (e.g., blue corresponds to RELINE).
If multiple points fall in the same coordinate (i.e., same path_done but different center-
ing), they are shown with a red border. The scale of the path_done has been normalized
between 0 and 100, where 0 corresponds to the starting line of the track and 100 to its finish
line. Similarly, Fig. A.4-(c) plots the centering (x coordinate) for the low-FPS points. The
line at 0 represents the center of the track, while the continuous lines in position ∼-18 and
∼18 depict the limits of the track. Finally, the dashed lines represent the area of the game
we asked RELINE to explore: based on our reward function, we penalize the agent for going
outside the [-20, +20] range that, normalized, corresponds to ∼[-36, +36]. Also rl-baseline
is penalized outside of this area.
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As expected, the random agent is not able to advance in the game: The low-FPS points it
identifies are all placed near the starting line — red dots in Fig. A.4-(b). This indicates that
a random agent can be used to exercise a specific part of a game, but it is not able to explore
the game as a player would do. This is also confirmed by the red dots in Fig. A.4-(c), with
the random agent exploring areas of the game far from the track and that a human player is
unlikely to explore. Also, it is worth noting that in SuperTuxKart each episode lasts (based
on our setting) 90 seconds if the agent does not cross the finish line. However, as shown in
our preliminary study, in other games such as MsPacman a random agent could quickly lose
an episode without having the chance to explore the game at all.

The low-FPS points identified by RELINE (blue dots) and by rl-baseline (green) are instead
closer to the track and, for what concerns RELINE, they are within or very close the area of
the game we ask it to explore — see dashed lines in Fig. A.4-(c). Thus, by customizing the
reward function, it is possible to define the area of the game relevant for the load testing.

Looking at Fig. A.4-(b), we can see that RELINE is also able to identify low-FPS in different
areas of the game with, however, a concentration close to the beginning and the end of the
game. It is difficult to explain the reason for such a result, but we hypothesize two possible
explanations.

First, it is possible that the “central” part of the game simply features less low-FPS areas.
This would also be confirmed by the fact that rl-baseline only found one low-FPS point in
that part of the game. Also, the training and the reward function could have driven RELINE
to explore more the starting and the ending of the game. The starting part is certainly the
most explored since, at the beginning of the training, the agent is basically a random agent.
Thus, it mostly collects experience about low-FPS points found in the beginning of the game
since, similarly to the random agent, it is not able to advance in the game. It is important
to remember that the data in Fig. A.4 only refers to the 1,000 games played by RELINE
after the 2,300 training games, so we are not including the random exploration done at the
beginning of the training in Fig. A.4. However, once the agent learns several low-FPS points
in the starting of the game, it can exercise them again and again to get a higher reward.

Concerning the end of the game, we set a maximum duration of 90 seconds for each
game, but we know that a well-trained agent can complete the lap in ∼70 seconds. It is
possible that the agent used the remaining time to better explore the last part of the game
before crossing the finish line, thus finding a higher number of low-FPS points in that area.
Additional trainings, possibly with a different reward function, are needed to better explain
our finding.

Concerning the violin plots in Fig. A.4-(a), we can see that RELINE and rl-baseline exhibit
a similar distribution, with RELINE being able to identify some stronger low-FPS points (i.e.,
longer time to render frames). All distributions have, as expected, the median above the
t threshold, with RELINE’s one being higher (24.54 vs 21.69 for rl-baseline and 19.39 for
random agent). The highest value of the distributions is 65.92 (60.7 FPS) for RELINE, against
44.81 (89.3 FPS) for rl-baseline and 50.73 (78.8 FPS) for random agent. Remember that all
these values represent milliseconds to load frames after an action performed by the agents.
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Table A.2. Results of Mann-Whitney test (adjusted p-value) and Cliff’s Delta (d) when comparing the
distributions of rendering times — boldface indicates higher times.

Test p-value OR

RELINE vs rl-baseline <0.001 0.34 (Medium)
RELINE vs random agent <0.001 0.36 (Medium)
rl-baseline vs random agent <0.001 0.16 (Small)

Table A.2 shows the results of the statistical comparisons among the three distributions.
In each test, the approach reported in boldface is the one identifying stronger low-FPS points
(i.e., more extreme points requiring longer rendering time for their frames). The adjusted
p-values report a significant difference (p-value < 0.001) in favor of RELINE against both
rl-baseline and the random agent (in both cases, with a medium effect size). Thus, the low-
FPS points identified by RELINE tend to require longer times to render frames. Fig. A.2-(c)
shows an example of low-FPS point identified by RELINE: Crashing against the sheep results
in a drop of FPS.

Finally, it is worth commenting about the overlap of low-FPS points identified by the
three agents. Indeed, RELINE and rl-baseline found 14 low-FPS points in common (i.e., same
x and y coordinates), while the overlap is of 11 points for RELINE and random agent, and
10 for rl-baseline and random agent. The most interesting finding of this analysis is that rl-
baseline was able to identify only 19 points missed by RELINE, while the latter found 159
points missed by rl-baseline. This supports the role played by the reward function in pushing
RELINE to look for low-FPS points.

Summary of the Case Study. RELINE is the best approach for finding low-FPS points in
SuperTuxKart. A random agent is not able to spot issues that require playing skills, and
rl-baseline only finds a small portion of the low-FPS points.

A.5 Threats to Validity

Threats to Construct Validity. The main threats to the construct validity of our study are
related to the process we adopted in our case study (Section A.4) to identify low-FPS points.
Based on our experiments, and in particular on the findings reported in Fig. A.3, our method-
ology should be reliable enough to identify variations in FPS. Still, some level of noise can be
expected, and for this reason all our analyses have been run at least 300 times, while 1,000
episodes were played by each of the experimented approaches.

Concerning our preliminary study (Section A.3), it is clear that the bugs we injected are
not representative of real performance bugs in the subject games. However, they are in-
spired from a performance mutation operator defined in the literature [DPSSMB21]. Our
preliminary study only serves as a proof-of-concept to verify whether, by modifying the re-
ward function, a RL-based agent would adapt its behavior to look for bugs while playing the
game.
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Threats to Internal Validity. In our case study, to ease the training we did not use the
“real” game, but its wrapped version, i.e., PySuperTuxKart [PyS]. While the core game is the
same, the version we adopted does not contain the latest updates and it includes additional
Python code that may affect the rendering time. We assume that such a time is constant
for all the frames since it simply triggers the frame rendering operation in the core game.
Besides, we forced the game to run with lowest graphics settings to speed up rendering: For
example, we excluded dynamic lighting, anti-aliasing, and shadows. Therefore, the low-FPS
points found in PySuperTuxKart may be irrelevant in the original game or with other graphic
settings. Also, we applied the five-σ rule to define a threshold for defining what a low-FPS
point is. The threshold we set might be not indicative of relevant performance issues.

Still, the goal of our study was to show that once set specific requirements (e.g., the
threshold t, the area to explore, etc.), the agent is able to adapt trying to maximize its
reward. Thus, we do not expect changes in the threshold to invalidate our findings.

Threats to conclusion validity. In our data analysis we used appropriate statistical
procedures, also adopting p-value adjustment when multiple tests were used within the same
analysis.

Threats to External Validity Besides the proof-of-concept study we presented in Sec-
tion A.3, our empirical evaluation of RELINE includes a single game. This does not allow
us to generalize our findings. The reasons for such a choice lie in the high effort we experi-
enced as researchers in (i) building the pipeline to interact with the game, (ii) finding and
experimenting with a reliable way to capture the FPS, (iii) defining a meaningful reward
function that allowed the agent to successfully play the game in the first place and, then,
to also spot low-FPS points. These steps were a long trial-and-error process with the most
time consuming part being the trainings needed to test the different reward functions we
experimented before converging towards the ones presented in this paper. Indeed, testing a
new version of a reward function required at least one week of work with the hardware at
our disposal (including implementation, training, and data analysis).

This was also due to the impossibility of using multiple machines or to run multiple
processes in parallel on the same server. Indeed, as explained, using the exact same environ-
ment to run all our experiments was a study requirement. It is worth noting that, because of
similar issues, other state-of-the-art approaches targeting different game properties were ex-
perimented with only one game as well (see e.g., [ZFR14, PLV+20, BGTG20, WCX+20]). We
believe that instantiating RELINE on a new game would be much easier by collaborating with
the game developers. While this would only slightly simplify the definition of a meaningful
reward function, the original developers of the game could easily provide through APIs all
information needed by RELINE (including, e.g., the FPS), cutting away weeks of work.

A.6 Related Work

Three recent studies [PPG21, TdAA21, LZS21] suggest that finding performance issues in
video games is a relevant problem, according to both game developers [PPG21, TdAA21] and
players [LZS21]. Nevertheless, to the best of our knowledge, no previous work introduced
automated approaches for load testing video games. Therefore, in this section, we discuss
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some important works on the quality assurance of video games in general. We first introduce
the approaches defined in the literature for training agents able to automatically play and
win a game. Then, we show how such approaches are used for play-testing for (i) finding
functional issues and (ii) assessing game/level design (e.g., finding unbalanced levels).

A.6.1 Training Agents to Play

Reinforcement Learning (RL) is widely used to train agents able to automatically play video
games. Mnih et al. [MKS+13, MKS+15] presented the first approach based on high-dimensional
sensory input (i.e., raw pixels from the game screen) able to automatically learn how to play
a game. The authors used a Convolutional Neural Network (CNN) trained with a variant
of Q-learning to train their agent. The proposed approach is able to surpass human expert
testers in playing some games from the Atari 2600 benchmark.

Vinyals et al. [VEB+17] introduced SC2LE, a RL environment based on the game Star-
Craft II that simplifies the development of specialized agents for a multi-agent environment.

Hessel et al. [HMVH+18] analyzed six extensions of the DQN algorithm for RL and they
reported the combinations that allow to achieve the best results in terms of training time on
the Atari 2600 benchmark.

Baker et al. [BKM+19] explored the use of RL in a multi-agent environment (i.e., the hide
and seek game). They report that agents create self-supervised autocurricula [LHLG19], i.e.,
curricula naturally emerging from competition and cooperation. As a result, the authors
found evidence of strategy learning not guided by direct incentives.

Berner et al. [AI19] reported that state-of-the-art RL techniques were successfully used
in OpenAI Five to train an agent able to play Dota 2 and to defeat the world champion in
2019 (Team OG). Finally, Mesentier et al. [dMSLTN17] reported that AI agents could be
easily trained to explore the states of a board game (Ticket to Ride) performing automated
play-testing.

A.6.2 Testing of Video Games

Functional testing of video games aims at finding unexpected behaviors in a game. Defin-
ing the test oracle, i.e., determining if a specific game behavior is defective, is not triv-
ial. Several categories of test oracles were identified to determine if a bug was found:
crash (the game stops working) [PSM17, ZXS+19], stuck (the agent can not win the game)
[PSM17, ZXS+19], game balance (game too easy or too hard) [ZXS+19], logical (an invalid
state is reached) [ZXS+19], and user experience bugs (related to graphic and sound, e.g.,
glitches) [PSM17, ZXS+19]. While heuristics can be used to find possible crash-, stuck-,
and game-balance-related bugs [ZXS+19], logical and user-experience bugs may require the
developers to manually define an oracle.

Iftikhar et al. [IIKM15] proposed a model-based testing approach for automatically per-
form black-box testing of platform games. More recent approaches mostly rely on RL.

Pfau et al. [PSM17] introduced ICARUS, a framework for autonomous play-testing aimed
at finding bugs. ICARUS supports the fully automated detection of crash and stuck bugs,
while it also provides semi-supervised support for user-experience bugs.
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Zheng et al. [ZXS+19] used Deep Reinforcement Learning (DLR) in their approach, Wuji.
Wuji balances the aim of winning the game and exploring the space to find crash, stuck, game
balance, and logical bugs in three video games (one simple, Block Maze and two commercial,
L10 and NSH).

Bergdahl et al. [BGTG20] defined a DLR-based method which provides support for con-
tinuous actions (e.g., mouse or game-pads) and they experimented it with a first-person
shooter game.

Wu et al. [WCX+20] used RL to automatically perform regression testing, i.e., to com-
pare the game behaviors in different versions of a game. They experimented with such an
approach on a Massive Multiplayer Online Role-Playing Game (MMORPG).

Ariyurek et al. [ABS21] experimented RL and Monte Carlo Tree Search (MCTS) to define
both synthetic agents, trained in a completely automated manner, and human-like agents,
trained on trajectories used by human testers.

Finally, Ahumada and Bergel [AB20] proposed an approach based on genetic algorithms
to reproduce bugs in video games by reconstructing the correct sequence of actions that lead
to the desired faulty state of the game.

A.6.3 Game- and Level-Design Assessment

One of the main goals of a video game is to provide a pleasant gameplay to the player.
Assessing the game balance and other aspects related to game- and level-design is, therefore,
of primary importance.

For this reason, previous work defined several approaches for automatically finding game-
and level-design issues in video games. Zook et al. [ZFR14] proposed an approach based
on Active Learning (AL) to help designers performing low-level parameter tuning. They
experimented such an approach on a shoot ’em up game.

Gudmundsson et al. [GEP+18] introduced an approach based on Deep Learning to learn
human-like play-testing from player data. They used a CNN to automatically predict the
most natural next action a player would take aiming to estimate difficulty of levels in Candy
Crush Saga and Candy Crush Soda Saga.

Zhao et al. [ZBB+19] report four case studies in which they experiment the use of human-
like agent trained with RL to predict player interactions with the game and to highlight
possible game-design issues. On a similar note, Pfau et al. [PLV+20] used deep player be-
havioral models to represent a specific player population for Aion, a MMORPG. They used
such models to estimate the game balance and they showed that they can be used to tune it.

Finally, Stahlke et al. [SNMB20] defined PathOS, a tool aimed at helping developers to
simulate players’ interaction with a specific game level, to understand the impact of small
design changes.
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A.7 Conclusions and Future Work

We presented RELINE, an approach that uses RL to load test video games. RELINE can be
instantiated on different games using different RL models and reward functions.

Our proof-of-concept study performed on two subject systems shows the feasibility of
our approach: Given a reward function able to reward the agent when artificial performance
bugs are identified, the agent adapts its behavior to play the game while looking for those
bugs.

We performed a case study on a real 3D racing game, SuperTuxKart, showing the ability
of RELINE to identify areas resulting in FPS drops. As compared to a classic RL agent only
trained to play the game, RELINE is able to identify a substantially higher number of low-FPS
points (173 vs 33).

Despite the encouraging results, there are many aspects that deserve a deeper investi-
gation and from which our future research agenda stems. First, we plan additional tests on
SuperTuxKart to better understand how the agent reacts to changes in the reward function
(e.g., is it possible to find more low-FPS points in the central part of the game?). Also, with
longer training times it should be possible to train an agent able to play more challenging
versions of this game featuring additional 3D effects (e.g., rainy conditions), possibly allow-
ing to find new low-FPS points. We also plan to instantiate RELINE on other game genres
(e.g., role-playing games), possibly by cooperating with their developers.

A.8 Replication Package

We release all code and data used in our study in a comprehensive replication package [repg].
It contains:

• everything needed to replicate study 1 on CartPole and MsPacman games;

• everything needed to replicate study 2 on SuperTuxKart game;

• all the results obtained and described in this study.
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Replacement of Custom Implementations with
APIs

Reusing code is a common practice in software devel-
opment: It helps developers speedup the implementa-
tion task while also reducing the chances of introducing
bugs, given the assumption that the reused code has been
tested, possibly in production. Despite these benefits, op-
portunities for reuse are not always in plain sight and,
thus, developers may miss them. We present our prelim-
inary steps in building RETIWA, a recommender able to
automatically identify custom implementations in a given
project that are good candidates to be replaced by open
source APIs. RETIWA relies on a “knowledge base” consist-
ing of real examples of custom implementation-to-API re-
placements. In this work, we present the mining strategy
we tailored to automatically and reliably extract replace-
ments of custom implementations with APIs from open
source projects. This is the first step towards building the
envisioned recommender.

The content of this chapter has been presented in the following paper:

Don’t Reinvent the Wheel: Towards Automatic Replacement of Custom Imple-
mentations with APIs

Rosalia Tufano, Emad Aghajani, Gabriele Bavota. In Proceedings of the 38th Inter-
national Conference on Software Maintenance and Evolution (ICSME 2022), pp. 394-
398.
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B.1 Introduction

Code reuse is a well-known practice aimed at improving both developers productivity and
code quality [GC92]. There is evidence about the benefits of systematically reusing code,
especially for what concerns a lower likelihood of having bugs in reused code [FF96, LGA+07,
HvKS08, MC08]. Such benefits arise when the reused code is not outdated [XMYI14] and
follows good patterns of code reuse [KG08].

In such a context, Application Programming Interfaces (APIs) provide reusable function-
alities that can be exploited by developers to (i) speedup the implementation of new features,
and (ii) rely on well-tested implementations that have been possibly deployed in hundreds
of client projects. Despite these benefits, developers may not be aware of the availability
of a specific feature implementation as an API offered by a third-party library, thus miss-
ing the opportunity of reusing it. To reduce such a risk, researchers proposed techniques
aimed at recommending APIs given the coding context of the developer (i.e., the code they
are currently writing) [HH11, Thu16, NDRDS+21]. While these tools could reduce the risk
of reimplementing features offered in well-known libraries, such a scenario is still likely to
happen, as also demonstrated by the results we present.

We describe our vision for RETIWA (REplacing cusTom Implementations With Apis),
a recommender to identify custom implementations (i.e., code implemented from scratch)
that can be replaced by third-party APIs. RETIWA is complementary to existing API recom-
menders [HH11, Thu16, NDRDS+21]: The latter can recommend APIs while the developer is
implementing. Differently, RETIWA comes into play once the custom code has been already
implemented, automatically identifying it as a “clone” of a feature offered by well-known
third-party APIs. This implies that RETIWA cannot save implementation effort, but can still
avoid the maintenance of custom code that can be replaced with well-known and likely well-
tested APIs, thus boosting code quality.

We present the overall idea behind RETIWA and the first steps we made to build it. We
started building a “knowledge base” featuring real replacements of custom implementations
with APIs performed by developers in open source projects. We show the challenges behind
such a task and the strategies we defined to address it. Such a knowledge base allows to
identify common “replacement patterns” that can be used to trigger custom implementation-
to-API replacement recommendations.

B.2 Envisioned Tool

Fig. B.1 shows the main steps behind RETIWA. First, based on our preliminary tests, it is not
realistic to reliably identify commits in which a custom implementation is replaced with an
API without having a starting set of known APIs to support. Thus, our approach starts by
mining software libraries with the goal of collecting a set of APIs (Step 1 in Fig. B.1) through
the Libraries miner component. The libraries to support can be defined by the user. The set of
mined APIs is then provided as input to the Client projects analyzer (Step 2). The latter, given
a collection of GitHub repositories, clones and analyzes the change history of the projects to
identify candidate replacements where a custom implementation c is replaced with one of
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Figure B.1. Overview of RETIWA Workflow

the known APIs (Step 3). We indicate these custom implementation to API replacements as
c → API , with c representing the lefthand side (LHS) and API the righthand side (RHS). A
single commit may contain multiple replacements, i.e., several custom implementations are
replaced with different APIs.

The parsing performed to identify such replacements may result in false positives. For
this reason, the Replacements selector applies a set of heuristics to exclude from the dataset
instances likely to represent false positives (Step 5). The instances surviving such a filter
are provided as input to the Replacements clustering component (Step 6), which is in charge
of grouping replacement instances characterized by the same RHS. These are code changes,
possibly coming from different repositories, in which developers replaced a variety of custom
implementations with the same API . The output of this step are the actual replacement
rules C → API , with C being a set of custom implementations (Step 7). These rules can be
used to recommend to developers the replacement of custom implementations with suitable
APIs (Steps 8 and 9). In particular, a clone detector can be used to identify, either in a git
repository or directly in the IDE, a component p being similar to one of the clusters of custom
implementations (C). Assuming the reliability of such a clone detector, the corresponding
RHS (i.e., the associated API) can then be recommended to the developer as a replacement
for p. We implemented the steps 1-6 shown in Fig. B.1 by instantiating RETIWA to the Java
language and by working at method-level granularity: We look for replacement instances in
the form m→ API , where m is a Java method.

In Section B.3 we analyze the meaningfulness of the method-to-API replacements that
RETIWA was able to automatically identify, leaving the finalization of the recommender sys-
tem (dashed part in Fig. B.1) as future work. In the following, we provide details on the
components we implemented and the design decisions we took.

B.2.1 Libraries Miner

The first component is in charge of building a database of potential APIs that our approach
may suggest as replacement for an equivalent custom implementation. Libraries miner cur-
rently supports the collection of APIs from Maven libraries. Given a list of libraries of in-
terest, Libraries miner retrieves their source code by downloading and uncompressing the
*-source.jar for their latest release hosted on the Maven Central Repository [mvn22]. The
set of public methods (APIs) in each library is then extracted using the Eclipse Java Parser
[ecl22].
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For each identified API we store the following information: package name, the path of
the file from which it has been extracted, and its method signature. Libraries miner also
extracts all packages defined in the source code of each library. Such information will be
used to identify if import statements in client projects refer to any of the target libraries.

B.2.2 Client Projects Analyzer

This component is responsible for cloning a set of given GitHub repositories and analyzing
their change history with the goal of identifying potential replacements of a custom method
with one of the APIs of interest. The analysis of each client project starts by creating a linear
history of commits of the repository’s default branch using the git log <default-branch>

--first-parent command. Then, we iterate through all commits and perform the following
steps on every two consecutive snapshots si and si+1, where si is the system’s snapshot before
the changes introduced by commit ci and si+1 is the snapshot after the changes introduced
by ci .

We start by extracting all method declarations and method invocations in the si and si+1
snapshots. The method declarations represent all internal methods (i.e., methods actually
implemented in the system under analysis, excluding those imported from external libraries)
existing in the system at a given snapshot. We indicate them with Dsi

and Dsi+1
. We use in-

stead Isi
and Isi+1

to indicate all method invocations existing in the two snapshots. These lists
are extracted by checking out the corresponding snapshot (i.e., git checkout <commit>) and
parsing the obtained Java files using SrcML [srca]. The main idea behind extracting these
lists is to check in the following steps if the commit ci: (i) replaced all method invocations
to an internal method m with invocations to a non-internal API ; and (ii) deleted the imple-
mentation of the internal method m, replaced by the usage of API .

To perform this check, we start by running the command git diff si si+1 −−word-diff
−−unified=0 −−ignore-all-space −−F.java for each file F. java modified or renamed in
ci . This version of git diff outputs pairs of [-oldcode-] {+newcode+} snippets, with the
diff algorithm trying to match newly added code fragments (i.e., newcode) with deleted code
ones (i.e., oldcode) when possible. We use such a command to identify invocations to m
replaced with invocations to API in commit ci . This is done by parsing the diff output using
SrcML to match replaced method invocations. A few clarifications are needed on this step.
First, we only focus on files modified or renamed in ci since we look for method invocation
replacements which cannot happen in added or deleted files. Second, git diff relies on
heuristics to match deleted and added code fragments when possible, thus being a source of
imprecisions in our approach. Third, similarly, SrcML is applied to parse fragments of code
in the diff output, thus again resulting in imprecisions when matching method invocations.

To exclude pairs m→ API which are not of our interest (e.g., AP I is not an actual external
API), we make sure that:

(1) Dsi
contains m. This ensures that the method m was an internal method declared in

snapshot si .
(2) The m implementation in si is non-empty (i.e., it has a body) and does not invoke any

method having the same exact name as API (even with a different signature). This filtering
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step ensures that m actually implemented something and, thus, could be a candidate to be
replaced with an external API.

Also, it excludes cases in which the developers were already using the API (or a slightly
different version of it taking different parameters), with m acting as a wrapper for API . We
are not interested in these cases since our goal is to recommend replacements of custom
methods with APIs. However, if the developers are already aware of the existence of API ,
there is no reason for recommending it and probably they had a reason for not using it in
the first place.

(3) Isi+1
contains API (i.e., the set of invocations in snapshot si+1 must contain the invo-

cation to the candidate API), otherwise SrcML failed to recognize a true method invocation
from the newcode code fragment.

(4) There is no m declaration in Dsi+1
nor m invocation in Isi+1

. This indicates that (i) the
implementation of the candidate custom method m has been deleted from the system (m 6∈
Dsi+1

); and (ii) no invocations to it exist anymore (m 6∈ Isi+1
).

(5) There is no method declarations matching API in Dsi+1
, otherwise API is a not an

external API method.
The outcome of the aforementioned steps on commit ci is a set of candidate method-to-

API replacements in form of m → API for which (i) m is a custom method that has been
deleted in ci; and (ii) API is an external method that has been added in ci to replace all
invocations to m. The Client projects analyzer also makes sure that the API is part of the
libraries of interest provided as input to the Libraries miner. This is done by verifying whether
at least one of the added import statements in the files in which a m → API replacement
happened matches with the list of packages extracted by the Libraries miner for the libraries
of interest. If this is not the case, the corresponding candidate replacement pair is removed.

The final set of candidate replacement instances for each commit contains: (i) the GitHub
repository owner/name; (ii) the commit sha; (iii) custom method information, including its
signature and full implementation; (iv) information about the added API, including signature
and potential libraries it belongs to based on the import statements analysis; (v) file paths
in which the replacements occurred; and (vi) the total number invocation replacements
occurred in that commit (i.e., the number of times an invocation to m is replaced with API).

B.2.3 Replacements Selector

This component is in charge of further filter out from the set of candidate replacement those
instances likely to be false positives. Indeed, while implementing our approach, we noticed
that two simple heuristics could be used to remove instances unlikely to be relevant for our
goal. First, we exclude all replacement instances in which the custom method m is either a
getter, a setter, or a main method. We do not see interesting scenarios in which it could make
sense to recommend the replacement of these types of methods with APIs.

Second, we conjecture that the number of m→ API invocation replacements performed
in a commit can be an indicator of how “reliable” is the method-to-API replacement we
identified. Indeed, if we observe that in a given instance the internal method m is removed
and the several invocations to it that were present in the system are replaced with invocations
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to API , this (i) supports the idea that m was a sort of “utility” method invoked in different
parts of the code; and (ii) reduces the chances that the replacement is the result of a parsing
error in the diff. We study how applying a threshold t on the minimum number of call
replacements impacts the reliability of the identified replacement instances (Section B.3).

B.3 Preliminary Study

The goal of this study is to assess the feasibility of RETIWA in terms of the possibility to
automatically identify changes in which custom implementations are replaced with APIs.We
aim at answering RQ1: To what extent is it possible to automatically identify method-to-API
replacements? The automatic identification of m → API replacements is a pre-requisite for
building RETIWA. RQ1 looks at the precision of the approaches described in Section B.2.

B.3.1 Study Design

The Libraries miner collected 38 Apache commons libraries by leveraging the MVN repository
website [mvn22]. These libraries can be identified as those having org.apache.commons as
maven group-id and have been downloaded and parsed as described in Section B.2.1. We
used the SEART GitHub Search [ghs] to collect as client projects all non-fork Java GitHub
repositories having at least 500 commits and 10 stars. These filters have been set in an
attempt to exclude toy/personal projects. The Client projects analyzer obtained 9,788 repos-
itories as result of this search. However, only a fraction of these repositories (1,856) declared
a dependency towards one of the considered libraries during their change history. These are
the only projects from which we can expect useful data points for our study.

The analysis of these repositories, performed as described in Section B.2, resulted in 337
candidate replacements which we manually analyzed to answer RQ1. In particular, each
m→ API candidate replacement was inspected independently by two researchers with the
goal of classifying it as a true or false positive. To come up with such a classification, the
inspector looked at (i) the diff of the commit on GitHub, (ii) a summary we created featuring
all the invocations to m that were replaced with an invocation to API , and (iii) the commit
note. Conflicts, that arisen for 34 instances (10%), have been solved by a third researcher not
involved in the original classification. We report the precision of the identified instances (i.e.,
the percentage of true positives among the candidate replacements) and discuss how it can
be improved by increasing the minimum number t of call replacements (see Section B.2.3).

B.3.2 Results Discussion

Table B.1 reports the results achieved as output of our manual validation. The first column
shows the threshold applied as additional filtering criterion to remove replacement commits
not featuring at least t call replacements.

The first row (i.e., t ≥ 1) represents the scenario in which such a filter is not applied,
since all instances RETIWA identified will have by construction at least one call replacement.
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Table B.1. Manual analysis of 337 replacements identified by RETIWA

t # Instances # True Positives Precision (%)

≥ 1 337 165 48.9%
≥ 2 80 67 83.8%
≥ 3 46 39 84.8%
≥ 4 33 28 84.8%
≥ 5 25 23 92.0%

krasserm/ipf @ f71e2fe

“use Apache Commons instead of 
redundant home-grown routines”

Custom method removed:

Example of replaced method call:

Figure B.2. Replacing the custom indexOf method with contains API

As it can be seen, without any additional filtering the precision of the 337 identified
replacements is limited to 48.9%. By increasing the value of the t threshold, the precision
quickly increases, with a 83.8% already achieved with t ≥ 2 (i.e., at least two invocations
to the custom method m have been replaced with the API in the commit). Clearly, such an
increase in precision has a cost in terms of true positive replacements that are excluded as
having t < 2 (165-67=98 true positives are excluded). This is the usual recall vs precision
tradeoff that should be assessed based on how the envisioned recommender system will
be built on top of this data. One option is also to provide developers with the possibility
to decide the value of t: Higher values will result in less recommendations likely to be of
high quality, while lower values, especially 1, will trigger more recommendations including,
however, a higher percentage of false positives. In the following we discuss three concrete
examples of replacements we found, while the whole dataset is available in our replication
package [repb].

In Fig. B.2 the name of the GitHub repository and the commit we refer to are shown at the
top. Following in italic is the commit message used by the developer who explicitly indicates
the aim of the commit of removing “home-grown routines” in favor of APIs implemented in
Apache commons. In the reported example the custom method indexOf returns the index
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of a given String in the array provided as parameter or -1 if the array does not contain the
String.

This method is used in the system to check for the existence of the given String in the
array as it can be seen from the replaced method call, in which it is used to return true in
case indexOf returns a value != -1. The replacing API contains already returns a boolean

thus also simplifying the locations in the code in which it is used instead of indexOf.

cassandre-tech / cassandre-trading-bot @ 5e89e6e

“Review util package code”
Custom method removed:

Example of replaced method call:

Figure B.3. Replacing the custom isNumeric method with isCreatable API

Fig. B.3 reports another example of replacement RETIWA identified. Differently from the
previous commit, the commit message in this case does not allow to infer the presence of a
m → API replacement without looking at the code diff. This is something we observed in
the vast majority of commits in our dataset. Indeed, our initial idea was to match textual
patterns in the commit messages to identify the candidate replacement commits as those
containing e.g., “replaced custom [*] with [*]”. However, such an approach is simply not an
option due to the limited number of commits explicitly documenting these changes in their
message.

In this example, the replaced custom method is isNumeric, which was in charge of veri-
fying whether a String provided as parameter was composed by only numbers. Invocations
to such a method have been replaced by the NumerUtils.isCreatable API which also takes
as input a String and, accordingly to its documentation, “checks whether the String is a valid
Java number”.

Finally, Fig. B.4 depicts a commit, again characterized by a rather vague “various im-
provements” message, in which the custom randomString method used to generate random
strings has been replaced with the randomAlphabetic Apache API.
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apache / syncope @ 0b4c4c8

“Various improvements”
Custom method removed:

Example of replaced method call:

Figure B.4. Replacing the custom randomString method with randomAlphabetic API

Answer to RQ1. The automatic identification of changes replacing custom implementa-
tions with APIs is challenging but feasible. Indeed, the approach we presented was able
to identify 337 of these commits with a precision of 48.9% and, using specific filtering
heuristics (e.g., t ≥ 2), the precision level can be substantially boosted to > 80%. More
research is needed to optimize the recall vs precision tradeoff.

B.3.3 Threats to Validity

Construct validity. Our parsing procedure exploiting the output of the git diff and
SrcML may be subject to imprecisions when identifying the custom method invocations, the
API invocations, and when mapping the API to the corresponding library through the analysis
of the import statements. Still, our goal was to investigate the feasibility of our approach and
we are aware that better implementations based on full static code analysis of the involved
snapshots can increase the parsing accuracy.

Internal validity. Subjectiveness in the manual analyses could have affected our results.
To mitigate such a bias, when classifying the candidate replacement commits as true or false
positives, two researchers independently classified each comment, and a third one was in-
volved in case of conflict. Despite such a process, imprecisions are still possible. The output
of our manual analysis is publicly available for inspection [repb].

External validity. Our preliminary study focuses on a set of 38 Apache libraries and
1,856 Java client projects. Most of the steps behind RETIWA are independent from the target
language, assuming the reimplementation of the low-level components such as the parser.
Larger studies involving more diverse set of libraries are planned to corroborate our findings
and designing the final version of RETIWA.
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B.4 Conclusions and Future Work

We presented our vision for RETIWA, an approach aimed at automatically identifying custom
implementations that can be replaced by well-known third-party APIs. RETIWA takes as
input a set of libraries of interest that are parsed to identify the APIs they contain. Then,
a large set of client projects is mined to identify code changes in which developers replace
a custom implementation with one of the known APIs. Heuristics are then applied to filter
out false positives. By using the process we propose it is possible to automatically identify
these replacements with a 48.9% precision and such a precision can be boosted to >80% by
increasing the threshold t (see Section B.2.3). The replacement changes represent the basic
data on top of which we plan to build the full recommender system depicted in Fig. B.1.

Towards this goal, our future work will span three main directions. First, we plan to
explore alternatives for a more reliable code parsing. The obvious one is to perform a full
parsing of the snapshots before and after each commit to identify custom code replaced with
APIs. Such a process, while precise, is extremely expensive when applied on thousands of
systems (i.e., hundreds of thousands of commits to analyze).

Second, the combination of heuristics we adopt to identify replacement commits may
be suboptimal and exclude several true positives. For example, RETIWA only selects as can-
didate replacement commits those in which a known import statement (i.e., an import

statement coming from one of the parsed libraries) is added in the commit. This is based on
the assumption that the API usage implies the addition of the import statement.

Third, once the identification of replacements is crystallized, we will focus on imple-
menting the two remaining steps of RETIWA, namely the clustering and the triggering of
recommendations, as described in Section B.2.

B.5 Replication Package

We release all code and data used in our study in a comprehensive replication package [repb].
It contains:

• the code for the first three RETIWA components: Libraries Miner, API Extractor and
Client Project Analyzer;

• the list of 38 libraries parsed for creating API knowledge based;

• the information of the 1033 m→ API replacements found in 10k parsed client projects;

• the result of the manual analysis on the data.
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