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Abstract

Reinforcement Learning (RL) is a subfield of Artificial Intelligence that studies how
machines can make decisions by learning from their interactions with an environ-
ment. The key aspect of RL is evaluating and improving policies, which dictate
the behavior of artificial agents by mapping sensory input to actions. Typically, RL
algorithms evaluate these policies using a value function, generally specific to one
policy. However, when value functions are updated to track the learned policy, they
can forget potentially useful information about previous policies. To address the
problem of generalization across many policies, we introduce Parameter-Based Value
Functions (PBVFs), a class of value functions that take policy parameters as inputs.
A PBVF is a single model capable of evaluating the performance of any policy, given
a state, a state-action pair, or a distribution over the RL agent’s initial states, and it
can generalize across different policies. We derive off-policy actor-critic algorithms
based on PBVFs. To input the policy into the value function, we employ a technique
called policy fingerprinting. This method compresses the policy parameters, render-
ing PBVFs invariant to changes in the policy architecture. This policy embedding
extracts crucial abstract knowledge about the environment, distilled into a limited
number of states sufficient to define the behavior of various policies. A policy can
improve solely by modifying actions in such states, following the gradient of the
value function’s predictions. Extensive experiments demonstrate that our method
outperforms evolutionary algorithms, demonstrating a more efficient direct search
in the policy space. Furthermore, it achieves performance comparable to that of
competitive continuous control algorithms. We apply this technique to learn useful
representations of Recurrent Neural Network weight matrices, showing its effective-
ness in several supervised learning tasks. Lastly, we empirically demonstrate how this
approach can be integrated with HyperNetworks to train a single goal-conditioned
neural network (NN) capable of generating deep NN policies that achieve any desired
return observed during training. The majority of this thesis is based on previous
papers published by the author [Faccio et al., 2021, 2022, 2023; Herrmann et al.,
2023].
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Chapter 1

Introduction

Artificial Intelligence (AI) is a field of computer science focused on creating machines
capable of tasks that typically require human intelligence. This includes activities
like learning, problem-solving, and language understanding. AI is divided into two
main categories: Narrow AI, designed for specific tasks, and General AI, which
mimics human intelligence more broadly. AI applications are extensive and growing,
involving technologies like machine learning and natural language processing, and
have the potential to significantly impact many aspects of daily life and various
industries.

A prominent branch of AI is Reinforcement Learning (RL) [Sutton and Barto,
2018], which centers on sequential decision-making. This process involves an agent
interacting with an environment in a series of steps, where it chooses actions based
on received observations and rewards. The primary objective of the agent is to
maximize the total rewards accumulated during an episode, which begins from an
initial state and is directed towards achieving specific goals as indicated by the
rewards. These rewards vary depending on the context. For example, in locomotion
tasks, rewards may be linked to the agent’s directional velocity, while in gaming,
they might correlate with the player’s score. The agent’s policy is a function that
dictates which actions should be taken based on any given observation. Initially,
these policies may not correspond to desired behaviours. Therefore, RL algorithms
are typically adopted to alternate between collecting new data with the current policy,
and using such data to improve the policy.

A crucial aspect of policy improvement relies on accurate evaluation of policies.
Value functions are designed to estimate the expected sum of rewards of a given
policy when starting from a particular state or after choosing a specific action within
that state. This evaluation is key to understanding and improving the effectiveness
of the policy in achieving the desired outcomes in various RL scenarios. Many RL
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2 1.1 Contributions

breakthroughs were achieved through improved estimates of such values. These
advancements span a diverse range of applications, from board games such as
backgammon [Tesauro, 1995], extending to video games [Mnih et al., 2015], and
even including the complex task of controlling nuclear fusion reactors [Degrave et al.,
2022]. However, learning value functions of arbitrary policies without observing
their behavior in the environment is not trivial. Such off-policy learning must correct
the mismatch between the distribution of updates induced by the behavioral policy
and the one we want to learn. Common techniques include Importance Sampling
(IS) [Hesterberg, 1988] and deterministic policy gradient methods (DPG) [Silver
et al., 2014], which adopt the actor-critic architecture [Sutton, 1984; Konda and
Tsitsiklis, 2001; Peters and Schaal, 2008].

Unfortunately, these approaches have limitations. While estimators of value
functions using IS are generally unbiased, their variance can increase exponentially
when the policy we want to learn diverges significantly from the behavioral
policy [Cortes et al., 2010; Metelli et al., 2018; Wang et al., 2016]. Moreover,
traditional off-policy actor-critic methods introduce off-policy objectives whose
gradients are difficult to follow since they involve the gradient of the action-value
function with respect to the policy parameters [Degris et al., 2012; Silver et al., 2014].
This term is usually ignored, resulting in biased gradients for the off-policy objective.
Furthermore, off-policy actor-critic algorithms learn value functions of a single target
policy. When value functions are updated to track the learned policy, the information
about old policies is lost. While traditional value functions are designed to generalize
across new states or state-action pairs, achieving generalization over new policies
remains an open problem. This thesis introduces a set of novel techniques to tackle
this challenge.

1.1 Contributions

We address the problem of generalization across many policies in the off-policy
setting by introducing a class of parameter-based value functions (PBVFs) defined
for any policy. PBVFs are value functions that take as input the policy parameters,
along with a given state, state-action pair, or distribution over the RL agent’s initial
states. These functions can be learned using Monte Carlo (MC) [Metropolis and
Ulam, 1949] or Temporal Difference (TD) [Sutton, 1988] methods. The PBVF that
considers state-action pairs and policy parameters leads to a novel stochastic and
deterministic off-policy policy gradient theorem. Unlike previous approaches, it
can directly compute the gradient of the action-value function with respect to the
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policy parameters. Based on these results, we develop off-policy actor-critic methods
and compare our algorithms to two strong baselines, ARS and DDPG [Mania et al.,
2018; Lillicrap et al., 2015], outperforming them in some environments. PBVFs are
formally introduced in Chapter 3.

A crucial problem in the application of such value functions is choosing a suitable
representation of the policy. Flattening the policy parameters leads to vanilla PBVFs
that are difficult to scale to larger policies. In Chapter 4, we present an approach that
connects PBVFs and a policy embedding method called “fingerprint mechanism” by
Harb et al. [2020]. Using policy fingerprinting allows us to scale PBVFs to handle
larger neural network (NN) policies and also achieve invariance with respect to the
policy architecture. Policy fingerprinting was introduced to learn maps from policy
parameters to expected return offline and prior to this work was never applied to
the online RL setting. In this approach, which we term static policy fingerprinting,
our PBVF is designed to learn a set of crucial abstract states alongside an evaluator
function. For policy evaluation, these abstract states are passed as input to the policy,
and the evaluator function then maps the resulting actions of the policy in these states
to the expected return. A policy improves solely by changing actions in probing states,
following the gradient of the value function’s predictions. We show in continuous
control problems that our approach can identify a small number of critical “probing
states” that are highly informative of the policies performance. Our learned value
function generalizes across many NN-based policies. It combines the behavior of
many bad policies to learn a better policy, and is able to zero-shot learn policies
with a different architecture. We compare our approach with strong baselines in
continuous control tasks: our method is competitive with DDPG [Lillicrap et al.,
2015] and evolutionary approaches.

While static policy fingerprinting is promising, it presents a crucial drawback: it
uses the same set of learned states to evaluate many different policies. In practice,
the action of each policy might need to be measured in different states for accurate
evaluation. In Section 4.1.2, we introduce a technique called recurrent policy fin-
gerprinting, which sequentially generates a set of states used to probe each specific
policy. While this technique has not been evaluated yet on RL tasks, we show in
Chapter 5 how it can be used to learn useful representations of Recurrent Neural
Networks weight matrices.

Finally, in Chapter 6, we focus on the context of Goal-conditioned RL, which
aims to learn optimal policies when given goals encoded as special command inputs.
We study goal-conditioned NNs that learn to generate deep NN policies in the
form of context-specific weight matrices. This approach is similar to Fast Weight
Programmers (FWP) [Schmidhuber, 1992b, 1993] and other methods from the 1990s.
In our research, we combine PBVFs with policy fingerprinting and a form of weight-
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sharing HyperNetworks [Ha et al., 2016] to train an FWP to generate the parameters
of the desired deep policy in response to a “desired return” command. This facilitates
end-to-end optimization of the return-conditioned generator, producing deep NN
policies by matching the commands (desired returns) to the evaluated returns. Our
analysis reveals that a single learned policy generator can produce policies that
achieve any desired return observed during training.

This thesis concludes with Chapter 7, which outlines promising directions for
future research. In the next chapter, Chapter 2, we provide a succinct introduction to
Machine Learning and, in particular, Reinforcement Learning. This background is
essential for understanding the main methodologies proposed in the thesis.



Chapter 2

Background

This Chapter provides an introduction to Deep Learning and Reinforcement Learning.
For a more advanced introduction, the reader is invited to consult Sutton and Barto
[2018] and Bishop [2006].

2.1 Machine Learning

Machine Learning is a specialized subfield of Artificial Intelligence (AI) that em-
phasizes the development of algorithms capable of identifying patterns in data. In
this context, the learned machine typically refers to a function that operates based on
a set of adjustable parameters. Learning in this field involves using data to modify
these parameters, enabling the function to exhibit desired behaviors. How each
component of a learned machine influences its performance has been identified as
the fundamental credit assignment problem [Minsky, 1963]. The primary aim of
Machine Learning models is to achieve generalization, which means ensuring the
model performs effectively on new, unseen data.

In this overview, we will explore the most prevalent paradigms in Machine Learn-
ing: Supervised Learning, Unsupervised Learning, and Reinforcement Learning.

2.1.1 Supervised Learning

In certain Machine Learning problems, the primary objective is to construct a model
capable of associating input patterns, denoted as x ∈ Rnx , with corresponding targets,
denoted as y ∈Rny . Here the model can assume the form of a parameterized function
fw : Rnx → Rny , so that y = fw(x). The vector w ∈ Rnw represents the model’s
parameters. When the target values are provided in the dataset, meaning that the data
comprises pairs of (x,y), this type of problem is identified as supervised learning.

5



6 2.1 Machine Learning

Regression If the target data are known and assume continuous values, we have a
Regression problem. An example of such a problem is the prediction of temperature,
precipitation levels, or humidity based on weather data and atmospheric conditions.
Given some data D = {(xi,yi)|i = 1,2, . . .}, we can train a model fw by finding the
parameters w∗ minimizing the square of the difference between the predicted target
and the true target in the dataset, i.e.:

w∗ = argmin
w

L(w,D) = argmin
w

E
(x,y)∈D

[( fw(x)− y)T ( fw(x)− y)] (2.1)

Classification Classification is a type of supervised learning problem where the
target is represented as a discrete set of categories. This is typically achieved using
one-hot encoding, where each category is represented by a vector containing a single
’1’ corresponding to the class label, and ’0’s in all other positions. For example, in a
problem with three classes, the target vectors would be [1, 0, 0], [0, 1, 0], and [0, 0,
1] for the first, second, and third classes, respectively.

Given a dataset D = {(xi,yi)|i = 1,2, . . .}, where yi ∈ {0,1}C and C is the number
of classes, the goal is to train a model fw that accurately predicts the class label. The
function fw : Rnx →{0,1}C maps input features to one-hot encoded class labels. The
objective is to find the model parameters w∗ that minimize the discrepancy between
predicted and actual target vectors, often using a loss function like cross-entropy for
multi-class classification.

The optimization problem can be formalized as:

w∗ = argmin
w

L(w,D) = argmin
w

E
(x,y)∈D

[−
C

∑
c=1

yc log fw(x)c] (2.2)

where yc is the cth element of the one-hot encoded vector y, and fw(x)c is the predicted
probability of class c.

2.1.2 Unsupervised Learning

In Unsupervised Learning, the target value y is typically not present in the dataset.
The objective of these problems is to identify groups within the data that share
similar patterns or to develop models that estimate the data’s distribution. These
models can then be employed to generate new data that resembles the existing dataset.
Additionally, Unsupervised Learning can be utilized to understand objects, their
composition and relationships [Greff et al., 2020], and how object representation can
aid various downstream tasks [van Steenkiste et al., 2019]. In specific applications
like data compression, the target values are effectively the input data itself. Here,
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models can be trained to compress and reconstruct the input data in an unsupervised
manner.

2.1.3 Reinforcement Learning

Reinforcement Learning (RL) is a specialized area within Machine Learning that
explores how an artificial agent interacts with its environment. In RL, an agent begins
in an initial state and, through iterative processes, decides which action to take at
each subsequent state. With each action, the environment shifts to a new state, and
the agent receives a reward that reflects the effectiveness of its action. In particularly
complex environments, the impact of an action on the reward can extend far into the
future. RL agents must learn through experimentation to identify actions that yield
the highest rewards.

2.2 Deep Learning in Neural Networks

In this thesis, we will frequently discuss Neural Networks (NNs). NNs comprise
multiple interconnected processors known as neurons. Input neurons gather environ-
mental information through observations, generating real-valued activations. These
values are processed by subsequent neurons via weighted connections, often revealing
complex nonlinear patterns. Output neurons utilize these patterns to initiate actions
that may influence the environment. The process of learning, or credit assignment,
involves adjusting the NN’s weights to achieve desired behavior. This is typically
defined by minimizing a loss function or maximizing accumulated rewards.

The concept of shallow NNs dates back to the 19th century when Gauss used
simple linear models with astronomical data to predict the dwarf planet Ceres’s
location, although the method was published only later in 1809 [Gauss, 1809; Stigler,
1981]. The development of deeper, multi-layer NNs began in the 1950s with the per-
ception [Rosenblatt, 1958]. However, it wasn’t until 1965 that Ivakhnenko and Lapa
[1965] introduced the first practical Deep Learning algorithm for NNs. Initially, NNs
were trained layer by layer, but in 1970, Linnainmaa [1970] introduced an efficient
method for backpropagating errors in deep NNs, which later gained popularity for
learning representations in hidden layers [Rumelhart et al., 1986]. Even more than
two decades later, training very deep NNs (with over 10 layers) remained challenging
due to the vanishing or exploding gradient problem, identified by Hochreiter [1991].
In deep NNs, backpropagated errors either grow or diminish exponentially across
layers. This issue affects both feedforward NNs, where neurons form an acyclic
graph, and recurrent NNs (RNNs), where the graph is cyclic.
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The introduction of gated mechanisms like the Long Short-Term Memory (LSTM)
[Hochreiter and Schmidhuber, 1997] for RNNs and the LSTM-based Highway Net-
works [Srivastava et al., 2015] for feedforward NNs helped mitigate this fundamental
deep learning problem, leading to the development of very deep NNs. Advances in
LSTM [Gers et al., 2000; Graves et al., 2006] and feedforward NNs, particularly in
language modeling and computer vision, have produced models capable of superhu-
man performance, winning several international contests [Graves and Schmidhuber,
2009; Ciresan et al., 2012, 2011; Krizhevsky et al., 2012; He et al., 2015].

For an in-depth exploration of NN history, readers are encouraged to consult
Schmidhuber [2022, 2015a]. The next chapter will formally introduce the NNs
utilized in this thesis.

2.2.1 Neural Network Architectures

Feedforward Neural Networks The simplest and most commonly used type of
neural network (NN) is composed of multiple fully connected layers. This includes
the multi-layer perceptron (MLP), which has L fully connected hidden layers, denoted
as l ∈ 1, . . . ,L, and an output layer. This structure forms a linear graph. The MLP
models a function fw : Rnx → Rny , parameterized by w ∈ Rnw . Each hidden layer l
transforms an input vector xl into an output vector yl . The input to each layer is the
output from the previous layer, meaning xl = yl−1. The first layer takes external data
x ∈ Rnx as its input, while the final output layer produces the output ŷ. Each layer l
linearly transforms the input into a vector zl , which has the same dimensionality as
the next layer, and then applies a nonlinear activation function σ element-wise. The
transformation performed by the jth neuron in layer l is as follows:

zl
j =

nl−1−1

∑
i=0

W l
i, j · yl−1

i +bl
j (2.3)

yl
j = σ(zl

j). (2.4)

Here, W ∈ Rnl−1×nl and b ∈ Rnl represent the weight and bias parameters from layer
l−1 to layer l. Here, y0 is the input layer, and yL+1 is the output of the NN. Common
activation functions used in these networks are the Hyperbolic Tangent (tanh(z)) and
the Rectified Linear Unit (ReLU) [Fukushima, 1969], defined as max(0,z).

Convolutional Neural Networks Convolutional Neural Networks (CNNs)
[Fukushima, 1979; Waibel, 1987; Zhang et al., 1988] are specialized for processing
data with a grid-like structure, such as images. They use convolutional layers, where
small, learnable filters slide across the input image to create feature maps that capture
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spatial features. Unlike fully connected layers, these filters focus on small regions
(receptive fields) and are repeated across the entire input, enabling the network to
detect features like edges or textures regardless of their position in the image. CNNs
also typically include pooling layers, like max pooling, to reduce the size of the fea-
ture maps and control overfitting, making them highly efficient for image recognition
tasks.

Recurrent Neural Networks Many Machine Learning problems involve finding
patterns in sequential data. In the most challenging case, a learned model should cap-
ture long time-lags between relevant events. To address this, contemporary Recurrent
Neural Networks (RNNs) [Elman, 1990] incorporate a cyclic computational graph.
This design ensures that the network’s output depends not only on the current input
data but also on its previous outputs. In this process, each data sequence element is
fed into the RNN at a distinct time step, denoted as t. In its simplest form, the RNN
consists of a single recurrent fully connected layer and transforms at time step t the
input data as follows:

z j[t] =
nx−1

∑
i=0

Wi, j · xi[t]+
nl−1

∑
i=0

Ri, j · y j[t −1]+b j (2.5)

y j[t] = σ(z j). (2.6)

Here, W ∈ Rnx×nl and b ∈ Rnl represent the weight and bias parameters from the
input layer to the hidden layer. R ∈ Rnl×nl represents the weight of the connections
between the hidden layer at time step t −1 and the hidden layer at time step t.

Output layer The choice of activation functions in the final layer of a neural
network (NN) is influenced by the specific task it is designed to perform. For
classification tasks, where the goal is to output a probability distribution across
various categories, the softmax activation function is commonly employed. This
function modifies each element of the output vector yk using the formula y j =

ey j

∑
ny−1
i=0 eyi

,

effectively converting raw scores into probabilities. In contrast, for regression tasks
where the output value is unbounded, the identity activation function is appropriate,
as it leaves the output unchanged. Meanwhile, in situations where the NN’s output
needs to fall within a specific range, the tanh activation function is utilized. This
function scales the values to lie between [−1,1], and these values can subsequently
be adjusted to fit any desired range.
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2.2.2 Learning in Neural Networks

To train an NN, we assume that we can compute a loss function L(w,D) which is
differentiable over the NN parameters w. The loss depends on the NN and on the
data we are using, and can assume different forms based on the task.

Backpropagation As outlined in Section 2.2, backpropagation is a method that
efficiently calculates the derivatives of a neural network’s (NN) loss function relative
to its parameters. This process facilitates credit assignment by iteratively employing
the chain rule.

In this context, we focus on the backpropagation algorithm as it applies to a
Multilayer Perceptron (MLP). The objective here is to determine ∂L(w,D)

∂W l
i, j

and ∂L(w,D)

∂bl
j

.

Let δ l
i := ∂L(w,D)

∂ zl
i

be the error for neuron i in layer l. We can rewrite the derivatives

for each weight as: ∂L(w,D)

∂W l
i, j

= δ l
j · yl−1

i , and ∂L(w,D)

∂bl
j

= δ l
j . The calculation of δ l

j in

backpropagation begins at the output layer and systematically applies the chain rule
through the following steps:

δ
l
i =

∂L(w,D)

∂ zl
i

(2.7)

=
∂yl

i

∂ zl
i

∂L(w,D)

∂yl
i

(2.8)

= σ
′(zl

i)
nl+1−1

∑
j=0

∂L(w,D)

∂ zl+1
j

∂ zl+1
j

∂yl
i

(2.9)

= σ
′(zl

i)
nl+1−1

∑
j=0

δ
l+1
j ·W l

i, j. (2.10)

Given that each neuron is computed only once, the complexity mirrors that of the
forward pass.

When applying backpropagation to Recurrent Neural Networks (RNNs), the key
strategy is to unfold the network’s computational graph forward in time and then
directly implement the backpropagation algorithm. This approach leads to a variant
known as backpropagation through time (BPTT) [Werbos, 1990; Williams and Zipser,
1994].

Gradient Descent After computing the gradients of the loss function with respect
to the neural network (NN) parameters, any optimization technique can be applied to
improve the NN’s performance. The most widely used method is gradient descent.
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This technique iteratively updates the NN parameters in the gradient’s direction, as
expressed in the following equation:

wnew = wold −α
∂L(wold,D)

∂wold
. (2.11)

Here, α > 0 represents the learning rate. Typically, the loss is not calculated over
the entire dataset but on smaller subsets, known as batches. This approach leads to
a method named Stochastic Gradient Descent (SGD) [Robbins and Monro, 1951;
Kiefer and Wolfowitz, 1952; Amari, 1967]. The most prevalent variations of SGD
incorporate momentum techniques to quicken convergence. For instance, the Adam
[Kingma and Ba, 2015] algorithm adjusts learning rates and momentum throughout
the optimization process, aiming for more effective and quicker convergence.

2.3 Reinforcement Learning

2.3.1 General Remarks

In recent years, Reinforcement Learning has achieved remarkable success in simu-
lated and real world applications. For instance, it has been used to learn to achieve
superhuman performance in videogames, including Atari games [Mnih et al., 2015],
Go [Silver et al., 2016], Dota2 [Berner et al., 2019], Starcraft [Vinyals et al., 2019],
and Gran Turismo [Wurman et al., 2022]. Video games are particularly well-suited
for studying RL algorithms [Schaul et al., 2011]. Remarkably, it has also been
applied in diverse areas such as controlling a nuclear fusion reactor [Degrave et al.,
2022], piloting a balloon to the stratosphere [Bellemare et al., 2020], solving the
Rubik’s Cube with a robotic hand [OpenAI et al., 2020], discovering new algorithms
for matrix multiplication [Fawzi et al., 2022], and aligning large language models
[Ouyang et al., 2022]. The RL framework is highly general, allowing a wide range of
learning problems to be formulated within its paradigm. The core objective in RL is
for the agent to determine which actions in specific states yield the highest returns.
However, this process involves a critical tradeoff between exploration, the costly
task of discovering new actions and their consequences, and exploitation, where
the agent uses its existing knowledge to make beneficial decisions. Exploration is
essential but often resource-intensive, as each interaction with the environment incurs
a cost. There are several ways to efficiently explore the environment, including
curiosity-based algorithms [Schmidhuber, 1990], which reward the agent by visiting
surprising states, and reward-free methods [Jin et al., 2020]. To exploit the environ-
ment, researchers build models that can either predict the environment’s reaction to
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the artificial agent, or evaluate the agent’s performance. Model-based methods, for
instance, utilize a model of the environment, either pre-existing or learned, to predict
future states resulting from an agent’s actions. These methods enable planning by
using the model as a surrogate for the actual environment. Examples include World
models [Schmidhuber, 1990; Ha and Schmidhuber, 2018], Dyna [Sutton, 1990],
and methods based on Monte Carlo Tree Search [Silver et al., 2016]. In scenarios
where an environmental model is unavailable or challenging to construct, model-free
algorithms come into play. Model-free, value-based methods focus on learning value
functions, which estimate the expected return of using a specific policy in a given
state or following a particular action. Q-Learning [Watkins and Dayan, 1992], one of
the most well-known RL algorithms, employs a value function to identify actions
that maximize expected returns from any state. Alternatively, policy-based methods
such as policy gradient [Sutton et al., 1999] directly learn a parameterized policy
that dictates the agent’s behavior. These methods define an objective function that
is differentiable with respect to policy parameters and typically learn the policy
by applying gradient ascent to this objective. Policy gradient techniques learn by
increasing the probability of achieving higher returns and may concurrently learn
a value function to accelerate policy improvement. This is the case for actor-critic
methods [Sutton, 1984; Konda and Tsitsiklis, 2001; Peters and Schaal, 2008], where
both policy and value function are iteratively updated. Another distinction can be
made between on-policy and off-policy [Precup et al., 2001] algorithms. On-policy
learning frameworks use data generated by the same policy that is being learned.
Conversely, off-policy learning involves leveraging data gathered from one or mul-
tiple different behavioral policies to learn about a policy that has not been directly
tested in the environment. The next section will present a formal definition of RL
within the framework of Markov Decision Processes.

2.3.2 Markov Decision Processes

We consider a Markov Decision Process (MDP) [Stratonovich, 1960; Puterman, 2014]
M = (S ,A ,P,R,γ,µ0). The state space S ⊂ RnS and the action space A ⊂ RnA

are assumed to be compact sub-spaces. At each step, an agent observes a state s ∈S ,
chooses action a ∈ A , transitions into state s′ with probability P(s′|s,a) and receives
a reward R(s,a) ∈ R. The agent starts from an initial state, chosen with probability
µ0(s). It is represented by a parametrized stochastic policy πθ : S → ∆(A ), which
provides the probability of performing action a in state s, where θ ∈ Θ ⊂ RnΘ are
the policy parameters. The policy is deterministic if for each state s there exists an
action a such that πθ (a|s) = 1. The return Rt is defined as the cumulative discounted
reward from time step t: Rt = ∑

T−t−1
k=0 γkR(st+k+1,at+k+1), where T denotes the time
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horizon and γ ∈ (0,1] a discount factor. The performance of the agent is measured
by the cumulative discounted expected reward (expected return), defined as J(πθ ) =

Eπθ
[R0]. Given a policy πθ , the state-value function V πθ (s)=Eπθ

[Rt |st = s] is defined
as the expected return for being in a state s and following policy πθ . By integrating
over the state space S , we can express the maximization of the expected cumulative
reward in terms of the state-value function J(πθ ) =

∫
S µ0(s)V πθ (s)ds. The action-

value function Qπθ (s,a), which is defined as the expected return for performing
action a in state s, and following the policy πθ , is Qπθ (s,a) = Eπθ

[Rt |st = s,at = a],
and it is related to the state-value function by V πθ (s) =

∫
A πθ (a|s)Qπθ (s,a)da. We

define as dπθ (s′) the discounted weighting of states encountered starting at s0 ∼ µ0(s)
and following the policy πθ : dπθ (s′) =

∫
S ∑

∞
t=1 γ t−1µ0(s)P(s → s′, t,πθ )ds, where

P(s → s′, t,πθ ) is the probability of transitioning to s′ after t time steps, starting from
s and following policy πθ . Sutton et al. [1999] showed that, for stochastic policies,
the gradient of J(πθ ) does not involve the derivative of dπθ (s) and can be expressed
in a simple form:

∇θ J(πθ ) =
∫
S

dπθ (s)
∫
A

∇θ πθ (a|s)Qπθ (s,a)dads. (2.12)

Similarly, for deterministic policies, Silver et al. [2014] obtained the following:

∇θ J(πθ ) =
∫
S

dπθ (s)∇θ πθ (s)∇aQπθ (s,a)|a=πθ (s) ds. (2.13)

2.3.3 Off-policy RL

In off-policy policy optimization, we seek to find the parameters of the policy
maximizing a performance index Jb(πθ ) using data collected from a behavioral
policy πb. Here the objective function Jb(πθ ) is typically modified to be the value
function of the target policy, integrated over dπb

∞ (s) = limt→∞ P(st = s|s0,πb), the
limiting distribution of states under πb (assuming it exists) [Degris et al., 2012; Imani
et al., 2018; Wang et al., 2016]. Throughout this chapter, we assume that the support
of dπb

∞ includes the support of µ0 so that the optimal solution for Jb is also optimal
for J. Formally, we want to find:

Jb(πθ∗) = max
θ

∫
S

dπb
∞ (s)V πθ (s)ds = max

θ

∫
S

dπb
∞ (s)

∫
A

πθ (a|s)Qπθ (s,a)dads.

(2.14)
Unfortunately, in the off-policy setting, the states are obtained from dπb

∞ and not from
dπθ

∞ , hence the gradients suffer from a distribution shift [Liu et al., 2019; Nachum
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et al., 2019]. Moreover, since we have no access to dπθ
∞ , a term in the policy gradient

theorem corresponding to the gradient of the action value function with respect
to the policy parameters needs to be estimated. This term is usually ignored in
traditional off-policy policy gradient theorems1. In particular, when the policy is
stochastic, Degris et al. [2012] showed that:

∇θ Jb(πθ ) =
∫

S
dπb

∞ (s)
∫

A
πb(a|s)

πθ (a|s)
πb(a|s)

(Qπθ (s,a)∇θ logπθ (a|s)+∇θ Qπθ (s,a)) dads

(2.15)

≈
∫

S
dπb

∞ (s)
∫

A
πb(a|s)

πθ (a|s)
πb(a|s)

(Qπθ (s,a)∇θ logπθ (a|s)) dads. (2.16)

Analogously, Silver et al. [2014] provided the following approximation for determin-
istic policies 2:

∇θ Jb(πθ ) =
∫
S

dπb
∞ (s)

(
∇θ πθ (s)∇aQπθ (s,a)|a=πθ (s)+∇θ Qπθ (s,a)|a=πθ (s)

)
ds

(2.17)

≈
∫
S

dπb
∞ (s)

(
∇θ πθ (s)∇aQπθ (s,a)|a=πθ (s)

)
ds. (2.18)

Although the term ∇θ Qπθ (s,a) is dropped, there might be advantages in using the
approximate gradient of Jb in order to find the maximum of the original RL objective
J. Indeed, if we were on-policy, the approximated off-policy policy gradients [Degris
et al., 2012; Silver et al., 2014] would revert to the on-policy policy gradients, while
an exact gradient for Jb would necessarily introduce a bias. However, when we are
off-policy, it is not clear whether this would be better than using the exact gradient of
Jb in order to maximize J. In this work, we assume that Jb can be considered a good
objective for off-policy RL and we derive an exact gradient for it.

1With tabular policies, dropping this term still results in a convergent algorithm [Degris et al.,
2012].

2In the original formulation of Silver et al. [2014] dπb
∞ (s) is replaced by dπb(s).



Chapter 3

Parameter-Based Value
Functions

3.1 Method

In this section, we introduce our parameter-based value functions, the PSSVF V (θ),
PSVF V (s,θ), and PAVF Q(s,a,θ) and their corresponding learning algorithms. All
the proofs of the theorems stated in this section can be found in Appendix A.1. First,
we augment the state and action-value functions, allowing them to receive as an input
also the weights of a parametric policy. The parameter-based state-value function
(PSVF) V (s,θ) = E[Rt |st = s,θ ] is defined as the expected return for being in state
s and following policy parameterized by θ . Similarly, the parameter-based action-
value function (PAVF) Q(s,a,θ) = E[Rt |st = s,at = a,θ ] is defined as the expected
return for being in state s, taking action a and following policy parameterized by θ .
Using PBVFs, the RL objective becomes: J(πθ ) =

∫
S µ0(s)V π(s,θ)ds. Maximizing

this objective leads to on-policy policy gradient theorems that are analogous to the
traditional ones [Sutton et al., 1999; Silver et al., 2014]:

Theorem 3.1.1. Let πθ be stochastic. For any Markov Decision Process, the follow-
ing holds:

∇θ J(πθ ) = Es∼dπθ (s),a∼πθ (.|s) [(Q(s,a,θ)∇θ logπθ (a|s))] . (3.1)

Theorem 3.1.2. Let πθ be deterministic. Under standard regularity assumptions [Sil-
ver et al., 2014], for any Markov Decision Process, the following holds:

∇θ J(πθ ) = Es∼dπθ (s)
[
∇aQ(s,a,θ)|a=πθ (s)∇θ πθ (s)

]
. (3.2)

15
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Parameter-based value functions allow us also to learn a function of the policy
parameters that directly approximates J(πθ ). In particular, the parameter-based
start-state-value function (PSSVF) is defined as:

V (θ) := Es∼µ0(s)[V (s,θ)] =
∫
S

µ0(s)V (s,θ)ds = J(πθ ). (3.3)

Off-policy RL. In the off-policy setting, we assume that we collected
data using a behavioral policy πb. The objective to be maximized becomes:

Jb(πθ∗) = max
θ

∫
S

dπb
∞ (s)V (s,θ)ds = max

θ

∫
S

∫
A

dπb
∞ (s)πθ (a|s)Q(s,a,θ)dads.

(3.4)
By taking the gradient of the performance Jb with respect to the policy parameters

θ we obtain novel policy gradient theorems. Since θ is continuous, we need to
use function approximators Vw(θ) ≈ V (θ), Vw(s,θ) ≈ V (s,θ) and Qw(s,a,θ) ≈
Q(s,a,θ) parametrized by w ∈ W ⊂ RnW . Compatible function approximations
can be derived to ensure that the approximated value function is following the true
gradient. Like in previous approaches [Sutton et al., 1999; Silver et al., 2014], this
would result in linearity conditions. However, here we consider nonlinear function
approximation and we leave the convergence analysis of linear PBVFs as future work.
In episodic settings, we do not have access to dπb

∞ , so in the algorithm derivations
and in the experiments we approximate it by sampling trajectories generated by the
behavioral policy. In all cases, the policy improvement step can be very expensive,
due to the computation of the argmax over a continuous space Θ. Actor-critic
methods can be derived to solve this optimization problem, where the critic (PBVFs)
can be learned using Temporal Difference (TD) or Monte Carlo (MC) methods,
while the actor is updated following the gradient with respect to the critic. All our
algorithms make use of a replay buffer.

3.1.1 Parameter-based Start-State-Value Function V (θ)

We first derive the PSSVF V (θ). Given the original performance index J, and taking
the gradient with respect to θ , we obtain:

∇θ J(πθ ) =
∫
S

µ0(s)∇θV (s,θ)ds = Es∼µ0(s)[∇θV (s,θ)] = ∇θV (θ). (3.5)

In Algorithm 1, the critic Vw(θ) with learnable parameters w is learned using MC to
estimate the value of any policy θ . The actor is then updated following the direction
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of improvement suggested by the critic. Since the main application of PSSVF is in
episodic tasks, we optimize for the undiscounted objective.

Algorithm 1 Actor-critic with Monte Carlo prediction for V (θ)

Input: Differentiable critic Vw : Θ → R with parameters w; deterministic or
stochastic actor πθ with parameters θ ; empty replay buffer D

Output : Learned Vw ≈V (θ)∀θ , learned πθ ≈ πθ∗

Initialize critic and actor weights w,θ

repeat:
Generate an episode s0,a0,r1,s1,a1,r2, . . . ,sT−1,aT−1,rT with policy πθ

Compute return r = ∑
T
k=1 rk

Store (θ ,r) in the replay buffer D
for many steps do:

Sample a batch B = {(r,θ)} from D
Update critic by stochastic gradient descent: ∇wE(r,θ)∈B[r−Vw(θ)]

2

end for
for many steps do:

Update actor by gradient ascent: ∇θVw(θ)

end for
until convergence

3.1.2 Parameter-based State-Value Function V (s,θ)

Learning the value function using MC approaches can be difficult due to the high
variance of the estimate. Furthermore, episode-based algorithms like Algorithm 1
are unable to credit good actions in bad episodes. Gradient methods based on TD
updates provide a biased estimate of V (s,θ) with much lower variance and can credit
actions at each time step. Taking the gradient of Jb(πθ ) in the PSVF formulation1,
we obtain:

∇θ Jb(πθ ) =
∫
S

dπb
∞ (s)∇θV (s,θ)ds = Es∼d

πb
∞ (s)[∇θV (s,θ)]. (3.6)

Algorithm 2 uses the actor-critic architecture, where the critic is learned via TD2.

1Compared to standard methods based on the state-value function, we can directly optimize the
policy following the performance gradient of the PSVF, obtaining a policy improvement step in a
model-free way.

2Note that the differentiability of the policy πθ is never required in PSSVF and PSVF.
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Algorithm 2 Actor-critic with TD prediction for V (s,θ)
Input: Differentiable critic Vw : S ×Θ → R with parameters w; deterministic or

stochastic actor πθ with parameters θ ; empty replay buffer D
Output : Learned Vw ≈V (s,θ), learned πθ ≈ πθ∗

Initialize critic and actor weights w,θ

repeat:
Observe state s, take action a = πθ (s), observe reward r and next state s′

Store (s,θ ,r,s′) in the replay buffer D
if it’s time to update then:

for many steps do:
Sample a batch B1 = {(s,θ ,r,s′)} from D
Update critic by stochastic gradient descent:
∇wE(s,θ ,r,s′)∈B1[Vw(s,θ)− (r+ γVw(s′,θ))]2

end for
for many steps do:

Sample a batch B2 = {(s)} from D
Update actor by stochastic gradient ascent: ∇θ Es∈B2[Vw(s,θ)]

end for
end if

until convergence

3.1.3 Parameter-based Action-Value Function Q(s,a,θ)

The introduction of the PAVF Q(s,a,θ) allows us to derive new policy gradients
theorems when using a stochastic or deterministic policy.

Stochastic policy gradients. We want to use data collected from some
stochastic behavioral policy πb in order to learn the action-value of a target policy πθ .
Traditional off-policy actor-critic algorithms only approximate the gradient of Jb,
since they do not estimate the gradient of the action-value function with respect to
the policy parameters ∇θ Qπθ (s,a) [Degris et al., 2012; Silver et al., 2014]. With
PBVFs, we can directly compute this contribution to the gradient. This yields an
exact policy gradient theorem for Jb:

Theorem 3.1.3. For any Markov Decision Process, the following holds:

∇θ Jb(πθ ) = Es∼d
πb
∞ (s),a∼πb(.|s)

[
πθ (a|s)
πb(a|s)

(Q(s,a,θ)∇θ logπθ (a|s)+∇θ Q(s,a,θ))
]
.

(3.7)
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Algorithm 3 uses an actor-critic architecture and can be seen as an extension of
Off-PAC [Degris et al., 2012] to PAVF.

Algorithm 3 Stochastic actor-critic with TD prediction for Q(s,a,θ)
Input: Differentiable critic Qw : S ×A ×Θ → R with parameters w; stochastic

differentiable actor πθ with parameters θ ; empty replay buffer D
Output : Learned Qw ≈ Q(s,a,θ), learned πθ ≈ πθ∗

Initialize critic and actor weights w,θ

repeat:
Observe state s, take action a = πθ (s), observe reward r and next state s′

Store (s,a,θ ,r,s′) in the replay buffer D
if it’s time to update then:

for many steps do:
Sample a batch B1 = {(s,a, θ̃ ,r,s′)} from D
Update critic by stochastic gradient descent:
∇wE(s,a,θ̃ ,r,s′)∈B1

[Qw(s,a, θ̃)− (r+ γQw(s′,a′ ∼ π
θ̃
(s′), θ̃))]2

end for
for many steps do:

Sample a batch B2 = {(s,a, θ̃)} from D
Update actor by stochastic gradient ascent:
E(s,a,θ̃)∈B2

[
πθ (a|s)
π

θ̃
(a|s) (Q(s,a,θ)∇θ logπθ (a|s)+∇θ Q(s,a,θ))

]
end for

end if
until convergence

Deterministic policy gradients. Estimating Q(s,a,θ) is in general a difficult
problem due to the stochasticity of the policy. Deterministic policies of the form
π : S → A can help improving the efficiency in learning value functions, since the
expectation over the action space is no longer required. Using PBVFs, we can write
the performance of a policy πθ as:

Jb(πθ ) =
∫
S

dπb
∞ (s)V (s,θ)ds =

∫
S

dπb
∞ (s)Q(s,πθ (s),θ)ds. (3.8)

Taking the gradient with respect to θ we obtain a deterministic policy gradient
theorem:

Theorem 3.1.4. Under standard regularity assumptions [Silver et al., 2014], for any
Markov Decision Process, the following holds:

∇θ Jb(πθ ) = Es∼d
πb
∞ (s)

[
∇aQ(s,a,θ)|a=πθ (s)∇θ πθ (s)+∇θ Q(s,a,θ)|a=πθ (s)

]
. (3.9)



20 3.2 Experiments and Results

Algorithm 4 uses an actor-critic architecture and can be seen as an extension of
DPG [Silver et al., 2014] to PAVF.

Algorithm 4 Deterministic actor-critic with TD prediction for Q(s,a,θ)
Input: Differentiable critic Qw : S ×A ×Θ → R with parameters w;
differentiable deterministic actor πθ with parameters θ ; empty replay buffer D
Output : Learned Qw ≈ Q(s,a,θ), learned πθ ≈ πθ∗

Initialize critic and actor weights w,θ

repeat:
Observe state s, take action a = πθ (s), observe reward r and next state s′

Store (s,a,θ ,r,s′) in the replay buffer D
if it’s time to update then:

for many steps do:
Sample a batch B1 = {(s,a, θ̃ ,r,s′)} from D
Update critic by stochastic gradient descent:
∇wE(s,a,θ̃ ,r,s′)∈B1

[Qw(s,a, θ̃)− (r+ γQw(s′,πθ̃
(s′), θ̃))]2

end for
for many steps do:

Sample a batch B2 = {(s)} from D
Update actor by stochastic gradient ascent:
Es∈B2[∇θ πθ (s)∇aQw(s,a,θ)|a=πθ (s)+∇θ Qw(s,a,θ)|a=πθ (s)]

end for
end if

until convergence

3.2 Experiments and Results

Applying algorithms 1, 2 and 4 directly can lead to convergence to local optima,
due to the lack of exploration. In practice, like in standard deterministic actor-critic
algorithms, we use a noisy version of the current learned policy in order to act in
the environment and collect data to encourage exploration. More precisely, at each
episode we use π

θ̃
with θ̃ = θ + ε,ε ∼ N (0,σ2I) instead of πθ and then store θ̃ in

the replay buffer. In our experiments, we report both for our methods as well as the
baselines the performance of the policy without parameter noise.
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3.2.1 Visualizing PBVFs using LQRs

We start with an illustrative example that allows us to visualize how PBVFs are
learning to estimate the expected return over the parameter space. For this purpose,
we use an instance of the 1D Linear Quadratic Regulator (LQR) problem and a linear
deterministic policy with bias. Here, the agent observes a 1-D state, corresponding
to its position and chooses a 1-D action. The transitions are s′ = s+a and there is a
quadratic negative term for the reward: R(s,a) =−s2 −a2. The agent starts in state
s0 = 1 and acts in the environment for 50 time steps. The state space is bounded
in [-2,2]. To maximize the sum of rewards, the agent must reach and remain in
the origin. The agent is expected to perform small steps towards the origin when
it uses the optimal policy. For this task, we use a deterministic policy without tanh
nonlinearity and we do not use observation normalization. Appendix A.3.1 contains
environment details and hyperparameters used.
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Figure 3.1: True episodic return J(θ) and PSSVF estimation V (θ) as a function of
the policy parameters at two different stages in training. The red arrows represent
an optimization trajectory in parameter space. The blue dots represent the perturbed
policies used to train V (θ). θ1 is the bias and θ2 is the weight of the policy.

In figure 3.1, we plot the episodic J(θ), the cumulative undiscounted reward
that an agent would obtain by acting in the environment using policy πθ for a single
episode, and the expected return predicted by the PSSVF V (θ) for two different
times during learning. At the beginning of the learning process, the PSSVF is able
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to provide just a local estimation of the performance of the agent, since only few
data have been observed. However, after 1000 episodes, it is able to provide a more
accurate global estimate over the parameter space.

Optimization after 15 episodes
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Optimization after 100 episodes
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Figure 3.2: True cumulative discounted reward J(θ) and PSVF estimation Vw(s0,θ)

as a function of the policy parameters at two different stages in training. The
red arrows represent an optimization trajectory in parameter space. The blue dots
represent the perturbed policies used to train Vw(s0,θ).

In Figures 3.2 and 3.3 we report J(θ), the cumulative discounted reward that
an agent would obtain by acting in the environment for infinite time steps using
policy πθ and the expected return predicted by the PSVF and PAVF for two different
times during learning. Like in the PSSVF experiment, the critic is able to improve
its predictions over the parameter space. In the plots V (s,θ) and Q(s,πθ (s),θ) are
evaluated only in s0. The results show that PBVFs are able to effectively bootstrap
the values of future states. Each red arrow in Figures 3.2 and 3.3 represents 50 update
steps of the policy.

3.2.2 Main results

Given the similarities between our PAVF and DPG, Deep Deterministic Policy Gradi-
ents (DDPG) [Lillicrap et al., 2015] is a natural choice for the baseline. Additionally,
the PSSVF V (θ) resembles evolutionary methods as the critic can be interpreted
as a global fitness function. Therefore, we include in the comparison Augmented
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Optimization after 15 episodes
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Figure 3.3: True cumulative discounted reward J(θ) and PAVF estimation
Qw(s0,πθ (s0),θ) as a function of the policy parameters at two different stages in
training. The red arrows represent an optimization trajectory in parameter space. The
blue dots represent the perturbed policies used to train Qw(s0,πθ (s0),θ).

Random Search (ARS) [Mania et al., 2018], which is known for its state-of-the-art
performance using only linear policies in continuous control tasks. For the policy,
we use a 2-layer MLP (64,64) with tanh activations and a shallow policy composed
of a linear layer followed by a tanh nonlinearity. Appendix A.3.2 details the method-
ology for identifying the optimal hyperparameters for the main experiments, whereas
Appendix A.3.4 presents the best hyperparameters that were identified. Extended
details about the implementation, as well as ablation studies on several critical imple-
mentation and optimization choices, can be found in Appendix A.2. We compare our
methods with the baselines by measuring the expected return achieved over a fixed
number of interactions in various continuous control environments.

Deterministic policies Figure 3.4 shows results for deterministic policies with
both architectures. In all the tasks the PSSVF is able to achieve at least the same
performance as ARS, often outperforming it. In the Inverted Pendulum environment,
PSVF and PAVF with deep policy are very slow to converge, but they excel in the
Swimmer task and MountainCarContinuous. In Reacher, all PBVFs fail to learn the
task, while DDPG converges quickly to the optimal policy. We conjecture that for
this task it is difficult to perform a search in parameter space. On the other hand, in
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MountainCarContinuous, the reward is more sparse and DDPG only rarely observes
positive reward when exploring in action space. We analyze the sensitivity of the
algorithms on the choice of hyperparameters in Appendix A.3.3.
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Figure 3.4: Average return of shallow and deep deterministic policies as a function
of the number of time steps used for learning (across 20 runs, one standard deviation),
for different environments and algorithms. We use the best hyperparameters found
when maximizing the average return.

Stochastic policies We include some results for stochastic policies when using
PSSVF and PSVF. Figure 3.5 shows a comparison with the baselines when using
shallow and deep policies respectively. We observe results sometimes comparable, but
often inferior with respect to deterministic policies. In particular, when using shallow
policies, PBVFs are able to outperform the baselines in the MountainCar environment,
while obtaining comparable performance in CartPole and InvertedPendulum. Like
in previous experiments, PBVFs fail to learn a good policy in Reacher. When using
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deep policies, the results are slightly different: PBVFs outperform ARS and DDPG in
Swimmer, but fail to learn InvertedPendulum. Although the use of stochastic policies
can help smoothing the objective function and allows the agent exploring in action
space, we believe that the lower variance of the value function estimate provided by
deterministic policies can facilitate learning PBVFs.

Shallow stochastic policies
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Figure 3.5: Average return of shallow and deep stochastic policies as a function of
the number of time steps used for learning (across 20 runs, one standard deviation),
for different environments and algorithms. We use the best hyperparameters found
when maximizing the average return.

3.2.3 Zero-shot learning

Shallow policies on Swimmer In order to test whether PBVFs are generalizing
across the policy space, we perform the following experiment with shallow deter-
ministic policies: while learning using Algorithm 1, we stop training and randomly
initialize 5 policies. Then, without interacting with the environment, we train these
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policies offline, in a zero-shot manner, following only the direction of improvement
suggested by ∇θVw(θ), whose weights w remain frozen. We observe that shallow
policies can be effectively zero-shot trained. Results for PSSVFs in Swimmer-v3
are displayed in Figure 3.6. In particular, we compare the performance of the pol-
icy learned, the best perturbed policy for exploration seen during training and five
policies zero-shot learned at three different stages in training. We note that after the
PSSVF has been trained for 100,000 time steps interactions with the environment
(first snapshot), these policies are already able to outperform both the current policy
and any policy seen while training the PSSVF. They achieve an average return of 297,
while the best observed return is 225. We evaluate the performance of the policies
zero-shot learned evaluating them with 5 test trajectories every 5 gradient steps. For
this task, we use the same hyperparameters as in Figure 3.4.
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Figure 3.6: Policies zero-shot learned during training. The plot in the center repre-
sents the return of the agent learning while interacting with the environment using
Algorithm 1. We compare the best noisy policy π

θ̃
used for exploration to the policy

πθ learned through the critic. The learning curves in the small plots represent the
return obtained by policies zero-shot trained following the fixed critic Vw(θ) after
different time steps of training. The return of the closest policy (L2 distance) in the
replay buffer with respect to the policy zero-shot learned is depicted in green.

Extended results with deep policies We report in Figures 3.7 and 3.8 a com-
parison of zero-shot performance between PSSVF, PSVF and PAVF in three different
environments using deterministic shallow and deep policies (2-layers MLP(64,64)).
In this task we use the same hyperparameters found in tables A.4, A.6 and A.8. In
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Figure 3.6, we use a tuned learning rate of 0.02 for policies zero-shot trained. In the
additional experiments in Figures 3.7 and 3.8, we use a learning rate of 0.05 across
all policies, environments and algorithms when learning zero-shot.
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Figure 3.7: Shallow policies zero-shot learned during training. The plots in the left
column represent the return of agents learning while interacting with the environment
using different algorithms. The learning curves in the other plots represent the return
obtained by policies zero-shot trained following the fixed critics after different time
steps of training. Zero-shot learning curves are averaged over 5 seeds.

We observe that, using shallow policies, PBVFs can effectively zero-shot learn
policies with performance comparable to the policy learned in the environment
without additional tuning for the learning rate. We note the regular presence of a
spike in performance followed by a decline due to the policy going to regions of
the parameter space never observed. This suggests that there is a trade-off between
exploiting the generalization of the critic and remaining in the part of the parameter
space where the critic is accurate. Measuring the width of these spikes can be
useful for determining the number of offline gradient steps to perform in the general
algorithm. When using deep policies the results become much worse and zero-shot
learned policies can recover the performance of the main policy being learned only
in simple environments and at beginning of training (e.g., MountainCarContinuous).
We observe that, when the critic is trained (last column), the replay buffer contains



28 3.2 Experiments and Results

policies that are very distant to policies randomly initialized. This might explain
why the zero-shot performance is better sometimes at the beginning of training (e.g.,
second column in Figure 3.8). However, since PBVFs in practice perform mostly
local off-policy evaluation around the learned policy, this problem is less prone to
arise in our main experiments.
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Figure 3.8: Deep policies zero-shot learned during training. The plots in the left
column represent the return of agents learning while interacting with the environment
using different algorithms. The learning curves in the other plots represent the return
obtained by policies zero-shot trained following the fixed critics after different time
steps of training. Zero-shot learning curves are averaged over 5 seeds.

3.2.4 Offline learning with fragmented behaviors

In our last experiment, we investigate how PSVFs are able to learn in a completely
offline setting. The goal is to learn a good policy in Swimmer-v3 given a fixed
dataset containing 100,000 transitions, without additional environment interactions.
Furthermore, the policy generating the data is perturbed every 200 time steps, for a
total of 5 policies per episode. Observing only incomplete trajectories for each policy
parameter makes TD bootstrapping harder: in order to learn a good policy, the PSVF
needs to generalize across both the state and the parameter space.
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Given the fixed dataset, we first train the PSVF, minimizing the TD error. Then,
at different stages during learning, we zero-shot train 5 new shallow deterministic
policies, following only the gradient of the PSVF. Figure 3.9 describes this process.
In this task, data are generated by perturbing a randomly initialized deterministic
policy every 200 time steps and using it to act in the environment. We use σ = 0.5 for
the perturbations. After the dataset is collected, the PSVF is trained using a learning
rate of 1e−3 with a batch size of 128. We use a learning rate of 0.02 for learning
the policy. All other hyperparameters are set to default values. We note that at the
beginning of training, when the PSVF V (s,θ) has a larger TD error, the policies
learned have poor performance. However, after 7000 gradient updates, they are able
to achieve a reward of 237, before eventually degrading to 167. They outperform the
best policy in the dataset used to train the PSVF, whose return is only of 58.
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Figure 3.9: Offline learning of PSVF. We plot the mean squared TD error of a PSVF
trained using data coming from a set of noisy policies. In the small plots, we compare
the return obtained by policies zero-shot trained following the fixed critic Vw(s,θ)
after different time steps of value function training and the return of the best noisy
policy used to train V.

3.3 Related Work

Parameter-based Search. There is a long history of RL algorithms performing
direct search in parameter space or policy space. The most common approaches
include evolution strategies, e.g., [Rechenberg, 1971; Sehnke et al., 2010, 2008;
Wierstra et al., 2014; Salimans et al., 2017]. They iteratively simulate a population of
policies and use the result to estimate a direction of improvement in parameter space.
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Evolution strategies, however, don’t reuse data: the information contained in the
population is lost as soon as an update is performed, making them sample-inefficient.
Several attempts have been made to reuse past data, often involving importance
sampling (IS) [Zhao et al., 2013], but these methods suffer from high variance
of the fitness estimator [Metelli et al., 2018]. Our method directly estimates a
fitness for each policy observed in the history and makes efficient reuse of past
data without involving IS. Direct search can be facilitated by compressed network
search [Koutnik et al., 2010] and algorithms that distill the knowledge of an NN
into another NN [Schmidhuber, 1992a]. Estimating a global objective function is
common in control theory, where usually a gaussian process is maintained over the
policy parameters. This allows to perform direct policy optimization during the
parameter search. Such approaches are often used in the Bayesian optimization
framework [Snoek et al., 2015, 2012], where a tractable posterior over the parameter
space is used to drive policy improvements. Despite the soundness of these
approaches, they usually employ very small control policies and scale badly with the
dimension of the policy parameters.

Off-Policy Learning. Gradient Temporal Difference [Sutton et al., 2009a,b;
Maei et al., 2009, 2010; Maei, 2011] and Emphatic Temporal Difference meth-
ods [Sutton et al., 2016] were developed to address convergence under on-policy
and off-policy [Precup et al., 2001] learning with function approximation. The first
attempt to obtain a stable off-policy actor-critic algorithm under linear function
approximation was called Off-PAC [Degris et al., 2012], where the critic is updated
using GTD(λ ) [Maei, 2011] to estimate the state-value function. This algorithm
converges when using tabular policies. However, in general, the actor does not follow
the true gradient direction for Jb, the off-policy objective we defined in Chapter 2.3.
A paper on DPG [Silver et al., 2014] extended the Off-PAC policy gradient
theorem [Degris et al., 2012] to deterministic policies. This was coupled with a deep
neural network to solve continuous control tasks through Deep Deterministic Policy
Gradients [Lillicrap et al., 2015]. Imani et al. [2018] used emphatic weights to
derive an exact off-policy policy gradient theorem for Jb. Differently from Off-PAC,
they do not ignore the gradient of the action-value function with respect to the policy,
which is incorporated in the emphatic weighting: a vector that needs to be estimated.
Our off-policy policy gradients provide an alternative approach that does not need
emphatic weights. The widely used off-policy objective function Jb suffers the
distribution shift problem. Liu et al. [2019] provided an off-policy policy gradient
theorem which is unbiased for the true RL objective J(πθ ). This theorem introduces
a term dπθ

∞ /dπb
∞ , which corrects the mismatch between the limiting distributions

of states under the target and behavioral policies. Despite their sound off-policy
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formulation, estimating the state weighting ratio remains challenging. All our
algorithms are based on the off-policy actor-critic architecture. The two algorithms
based on Q(s,a,θ) can be viewed as analogous to Off-PAC and DPG where the
critic is defined for all policies and the actor is updated following the true gradient
with respect to the critic.

3.4 Discussion

We introduced PBVFs, a novel class of value functions that receive the parameters of a
policy as input and can be used for off-policy learning. We empirically demonstrated
that PBVFs are competitive with ARS and DDPG [Mania et al., 2018; Lillicrap
et al., 2015], generalizing across policies and enabling zero-shot training in an offline
setting. While our PSSVF simply maps policy parameters to their expected return,
the PSVF and PAVF algorithms can assign credit for each state (or state-action pair),
effectively generalizing over both state and parameter spaces.

Despite their positive results with both shallow and deep policies, PBVFs suffer
from the curse of dimensionality when the number of policy parameters is high. To
scale up to deeper policies and tackle more challenging environments, it is necessary
to design suitable policy representations to input into the value function. A crucial
aspect of these representations is that they must be differentiable with respect to the
policy parameters, enabling policy improvement through simple backpropagation
through the PBVF to find a better policy. Such embeddings can save not only memory
and computational time but also facilitate the search in the parameter space. We will
investigate a class of such embeddings in the next chapter.
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Chapter 4

General Policy Evaluation and
Improvement by Learning to
Identify Few But Crucial States

4.1 Method

4.1.1 Static Policy fingerprinting

While the algorithms described in the previous sections are straightforward and easy
to implement, feeding the policy parameters as inputs to the value function remains a
challenge. Recently Harb et al. [2020] showed that a form of policy embedding
can be suitable for this task. Their policy fingerprinting creates a lower-dimensional
policy representation. It learns a set of K ‘probing states’ {s̃k}K

k=1 and an evaluation
function U—like the PSSVF. To evaluate a policy πθ , they first compute the ‘probing
actions’ ãk that the policy produces in the probing states. Then the concatenated
vector of these actions is given as input to U : RK×nA → R. While the learned
probing states remain fixed when evaluating multiple policies, the probing actions
in such states depend on the policy we are evaluating. The parameters of the value
function V are the probing states AND the weights of the MLP Uφ parametrized
by φ ∈ Φ ⊂ RnΦ that maps the ‘probing actions’ to the return. When the policy πθ

is deterministic, the probing actions for such policy are the deterministic actions
{ãk = πθ (s̃k)} produced in the probing states 1.

This mechanism has an intuitive interpretation: to evaluate the behavior of

1If the policy is stochastic, the probing actions are the parameters of the output distribution of the
policy in such states (the vector of probability distribution if the action space is discrete)

33
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an agent, the PSSVF with policy fingerprinting learns a set of situations (or states),
observes how the agent acts in those situations, and then maps the agent’s actions
to a score. Arguably, this is also how a teacher would evaluate multiple different
students by simultaneously learning which questions to ask the students and how
to score the student’s answers. Therefore the parameters of the value function
(probing states and evaluator function) can be learned by minimizing MSE loss
LV between the prediction of the value function and the observed return. Setting
w = {φ , s̃1, . . . s̃K}, we retrieve the common notation of Vw(θ) for the PSSVF with
fingerprint mechanism. Given a batch B of data (πθ ,r) ∈ B, the value function
optimization problem is:

min
w

LV := min
w

E
(πθ ,r)∈B

[(Vw(θ)− r)2] = min
φ ,s̃1,...s̃K

E
(πθ ,r)∈B

[(Uφ ([πθ (s̃1), . . . ,πθ (s̃K)])− r)2].

(4.1)
If the prediction of the value function is accurate, policy improvement can be achieved
by changing the way a policy acts in the learned probing states in order to maximize
the prediction of the value function, like in the original PSSVF. This process connects
to the same interpretation as before: a student (the policy) observes which questions
the teacher asks and how the teacher evaluates the student’s answers, and subsequently
tries to improve in such a way to maximize the score predicted by the teacher. This
iterative method is depicted in Figure 4.1.

Probing
States

Probing
Actions

concat.

Environment

Figure 4.1: General policy evaluation aims to evaluate any given policy’s return
based on the policy’s actions (referred to as probing actions) in the learned probing
states. The policy can be improved through maximising the prediction of the learned
value function via gradient ascent.

While Harb et al. applied this technique to the offline setting, we can easily
incorporate it into the online setting when the value function and the policy are
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learned iteratively. Note that Algorithm1 applies directly to this setting. The only
distinction is that the probing states are part of the learned value function. Throughout
this chapter, with the exception of the MNIST experiments, we consider deterministic
policies.

Static Policy fingerprinting presents some significant limitations. First, the set
of probing states that is learned is fixed; therefore, the same set of states is used to
evaluate different policies. In practice, good policies might observe states whose
distribution is very different from that of bad policies. Second, if the number of
probing states is large, the vector of concatenated probing actions will have high
dimensionality. This will cause the number of parameters in Uφ to grow linearly with
the number of probing states. To overcome this issue, we introduce a new method
that recurrently generates probing states.

4.1.2 Recurrent Policy Fingerprinting

We change the architecture of our evaluator function Uφ to be a recurrent neural
network (RNN). To evaluate a policy πθ , our RNN iteratively generates a probing
state s̃, which is given as input to πθ . The resulting probing action ã is fed back
into the RNN, which again generates a new probing state, and so on. The RNN Uφ

is also trained to predict the expected return r̂. Formally, during the forward pass
of the RNN, we have s̃, r̂,h = Uφ (ã,h), where h represents the hidden state of the
RNN. Here, s̃ = fφ1(h) and r̂ = gφ2(h), where f and g are MLPs with parameters
φ1,φ2 ⊂ φ . The probing action is simply determined by running a forward pass
of the policy, i.e., ã = πθ (s̃). The initial probing state is generated using the
initial hidden state h0, as s̃0 = fφ1(h0). After unrolling the RNN of K steps, which
involves generating K probing states based on the previous probing states and
probing actions, the RNN outputs a prediction of the expected return r̂. One can
consider either the final return prediction or a weighted average of all return predic-
tions (one for each step of the RNN) in the loss function to facilitate credit assignment.

We can retrieve the same notation as before if we call Vw the unrolled net-
work Uφ . In this case, w contains the parameters φ and the initial hidden state h0,
and r̂ =Vw(θ) is the return predicted after unrolling Uφ for K steps. The policy can
then be improved following Algorithm1.

This mechanism can be intuitively interpreted with a connection to the ex-
ample of standard fingerprinting. It simulates how a teacher would learn to evaluate
multiple students in an oral exam. The teacher iteratively asks new questions based
on the previous student’s answers, aiming to improve their ability to predict the
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student’s final score. In this analogy, the probing states generated by the RNN
can be seen as the questions posed by the teacher. On the other hand, the student
(policy) observes this process and seeks to modify their answers (actions) in order to
maximize the score predicted by the teacher.

Recurrent policy fingerprinting is experimentally analyzed in Chapter 5, fo-
cusing on learning representations of Recurrent Neural Network Weight Matrices.
Future work will concentrate on applying recurrent policy fingerprinting in RL tasks.
The next section will exclusively focus on experiments with PSSVF using static
fingerprinting.

4.2 Experiments and Results

This section presents an empirical study of parameter-based value functions (PBVFs)
with static fingerprinting. We begin with a demonstration that fingerprinting can
learn interesting states in MNIST purely through the designated evaluation task
of mapping randomly initialized Convolutional Neural Networks (CNNs) to their
expected loss. We also show that such a procedure could be used to construct a
value function for offline improvement in MNIST. Next, we proceed to our main
experiments on continuous control tasks in MuJoCo [Todorov et al., 2012]. Here we
show that our approach is competitive with strong baselines like DDPG [Lillicrap
et al., 2015] and ARS [Mania et al., 2018], while it lacks sample efficiency when
compared to SAC [Haarnoja et al., 2018b]. A strength of our approach is invariance
to policy architecture. To illustrate this, we provide results on zero-shot learning of
new policy architectures. Thereafter, we present a detailed analysis of the learned
probing states in various MuJoCo environments. We conclude our study with the
surprising observation that very few probing states are required to clone near-optimal
behaviour in certain MuJoCo environments.

4.2.1 Motivating experiments on MNIST

We begin our experimental section with an intuitive demonstration of how PBVFs
with fingerprinting work, using the MNIST digit classification problem. The policy
is a CNN, mapping images to a probability distribution over digit classes. The
environment simulation consists of running a forward pass of the CNN on a batch
of data and receiving the reward, which in this case is the negative cross-entropy
between the output of the CNN and the labels of the data. The value function learns to
map CNN parameters to the reward (the negative loss) obtained during the simulation.
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Then the CNN learns to improve itself only by following the prediction of the value
function, without access to the supervised learning loss. These MNIST experiments
can be considered as a contextual bandit problem, where the initial state (or context)
is given by the batch of training data sampled and there are no transition dynamics.
We start with a randomly initialized CNN and value function and iteratively update
them following the PSSVF Algorithm 1. Using only 10 probing states, we obtain a
test set accuracy of 82.5%. When increasing the number of probing states to 50, the
accuracy increases to 87%.

We use the hyperparameters described in Appendix B.1.1. Figure 4.2 shows the
performance of PSSVF using CNNs on MNIST with 10 and 50 probing states as a
function of the number of interactions with the dataset. Each interaction consists of
perturbing the current policy with random noise, computing the loss of the perturbed
policy on a batch of data, storing the perturbed policy and its loss, and updating.
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Figure 4.2: On the left: test accuracy of PSSVF as a function of the interactions with
the dataset. On the right: loss of the perturbed CNN on the training set. Average over
5 independent runs and 95% bootstrapped confidence interval.

Visualization of probing states Figure 4.3 shows some of the probing states
learned by our model, starting from random noise. During learning, we observe the
appearance of various digits (sometimes the same digit in different shapes). Since
probing states are states in which the action of the policy is informative about its
global behavior, it is intuitive that digits should appear. We emphasize that both
the CNNs and the value function are starting from random initializations. The
convolutional filters and the probing states are learned using Algorithm 1, without
access to the supervised loss. For more complex datasets like CIFAR10 our method
found it difficult to learn meaningful probing states. This is possibly due to the high
variance in the training data given a specific class and highlights a limitation of our
method.
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Figure 4.3: Samples of probing states learned while training Algorithm 1 on MNIST.

We plot the evolution of some of the probing states, starting from random noise,
until the PSSVF is learned. We consider one run of the previous experiment with
10 probing states and show how they change during learning. This is depicted in
Figure 4.4 where randomly initialized probing states slowly become similar to digits.

Offline policy improvement Using this setting, we perform another experiment
to evaluate the ability of the PSSVF to generalize when using bad data. We collect
one offline dataset {πθi, li}N

i=1 of N randomly initialized CNN policies and their
losses. We constrain the maximum accuracy of these CNNs in the training set to be
12%. Here every iteration encompasses the following steps. We perturb a randomly
initialized CNN with gaussian noise with standard deviation 0.1. Then we compute
the loss on a batch of 1024 training data. If the accuracy on such batch is below 12%,
we store the CNN and its loss, otherwise we discard the data. At every iteration we
also train a PSSVF with 200 probing states, using the data collected (whose accuracy
is at most 12%). We repeat this for 90000 iterations. Then, we randomly initialize
a new CNN and train it by taking gradient steps through the fixed PSSVF, without
further seeing training data. In Figure 4.5 we plot the performance of the zero-shot
learned CNN. Surprisingly, it achieves a test accuracy of 65%, although only CNNs
with at most 12% accuracy are used in training. From the same figure we also observe
that the prediction of the PSSVF is quite accurate up to 80 gradient steps, after which
the performance degrades. We use a learning rate of 1e−3 for the CNN.

Visualization of learned probing states When training the PSSVF using
CNNs whose accuracy is at most 12%, we also observe the formation of “numbers”
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Figure 4.4: From left to right, the 10 probing states learned by the PSSVF using
Algorithm 1. Each column represents 12500 interactions.
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Figure 4.5: On the left: test accuracy of a random initialized CNN zero-shot learned
using a learned PSSVF. On the right, the prediction of the performance of the CNN
given by the PSSVF and the true performance on the test set. Average over 5
independent runs and 95% bootstrapped c.i.

as probing states, although they are not as evident as in the online setting. We provide
some examples in Figure 4.6.

Figure 4.6: Samples of probing states learned by the PSSVF using CNNs with at
most 12% training set accuracy.

4.2.2 Main experiments on MuJoCo

Here we present our main evaluation on selected continuous control problems from
MuJoCo [Todorov et al., 2012]. Like in the previous chapter, since our algorithm
performs direct search in parameter space, we choose Augmented Random Search
(ARS) [Mania et al., 2018] as baseline for comparison. Moreover, since our algorithm
employs deterministic policies, off-policy data, and an actor-critic architecture, a
natural competitor is the Deep Deterministic Policy Gradient (DDPG) algorithm [Lil-
licrap et al., 2015], a strong baseline for continuous control. We also compare our
method with the state-of-the-art Soft Actor-Critic (SAC) [Haarnoja et al., 2018b].

Implementation details For the policy architecture, we use an MLP with 2
hidden layers and 256 neurons for each layer. We use 200 probing states and later
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provide an analysis of them. In some MuJoCo environments like Hopper and Walker,
a bad agent can fail and the episode ends after very few time steps. This results in an
excessive number of bad policies in the replay buffer, which can bias learning. Indeed,
by the time a good policy is observed, it becomes difficult to use it for training when
uniformly sampling experience from the replay buffer. We find that by prioritizing
more recent data we are able to achieve a more uniform distribution over the buffer
and increase the sample efficiency. We provide an ablation in Appendix B.2.2,
showing the contribution of this component and of policy fingerprinting. Like in the
previous chapter, we use observation normalization and remove the survival bonus
for the reward. The survival bonus, which provides reward 1 at each time step for
remaining alive in Hopper, Walker and Ant, induces a challenging local optimum in
parameter space where the agent would learn to keep still.

For DDPG and SAC, we use the default hyperparameters, yielding results on par
with the best reported results for the method. For ARS, we tune for each environment
step size, number of population and noise. For our method, we use a fixed set of
hyperparameters, with the only exception of Ant. In Ant, we observe that setting
the parameter noise for perturbations to 0.05 results in very rare positive returns
for ARS and PSSVF (after subtracting the survival bonus). Therefore we use less
noise in this environment. We discuss implementation details and hyperparameters
in Appendices B.1.2 and B.2.1.
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Figure 4.7: Return as a function of the environment interactions. The solid curve
represents the mean (across 20 runs), and the shaded region represents a 95% boot-
strapped confidence interval.
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Results Figure 4.7 shows learning curves in terms of expected return (mean and
95% confidence interval) achieved by our algorithm and the baselines across time
in the environments. Our algorithm is very competitive with DDPG and ARS. It
outperforms DDPG in all environments with the exception of HalfCheetah and
Walker, and displays faster initial learning than ARS. In the Swimmer environment,
DDPG and SAC fails to learn an optimal policy due to the problem of discounting2.
On the other hand, in HalfCheetah, parameter-based methods take a long time to
improve, and the ability of DDPG to give credit to sub-episodes is crucial here to
learn quickly. Furthermore, the variance of our method’s performance is less than
DDPG’s and comparable to ARS’s. Like evolutionary approaches, our method uses
only the return as learning data, while ignoring what happens in each state-action
pairs. This is a limitation of our method and it is evident how PSSVF and ARS are
less sample efficient in comparison to SAC in many environments.

Learning with V (s0,θ) In preliminary experiments we tried to learn also a func-
tion V (s0,θ), incorporating the information on the initial state. In practice, we can
store in the buffer tuples (s0,θ ,r) consisting of initial state, policy parameters and
episodic return. When training the PSSVF (now similar to the PSVF), we concatenate
the initial state to the probing actions and map the vector of probing actions and
initial state to the return. Then policy improvement is achieved by finding the policy
parameters that maximize the value function’s prediction taking an expectation over
the initial states sampled from the buffer. The results were very similar to those we
presented in this section, so we decided to use the more straightforward approach that
ignores the initial state and directly maps policy parameters to the expected return.

Comparison to vanilla PSSVF A direct comparison to the standard Parameter-
Based Value function is unfeasible for large NNs. This is because in the vanilla
PSSVF, flattened policy parameters are directly fed to the value function. In our
policy configuration, the flattened vector of policy parameters contains about 70K
elements, which is significantly more than 200× nA elements used to represent
policies with fingerprinting. Nevertheless, we provide a direct comparison between
the two approaches using a smaller policy architecture which consists of an MLP
with 2 hidden layers and 64 neurons per layer. The complete results are provided
in Appendix B.2.3. Our results in this setting show that the fingerprint mechanism
could be useful even for smaller policies.

2This is a common problem for Temporal Difference methods: the policy optimizing expected
return in Swimmer with γ = 0.99 is sub-optimal when considering the expected return with γ = 1.
See the ablation in Figure A.4
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4.2.3 Zero-shot learning of new policy architectures

Here we show that our method can generalize across policy architectures. We train a
PSSVF using NN policies as in the main experiments. Then we randomly initialize a
linear policy and start taking gradient ascent steps through the fixed value function,
finding the parameters of the policy that maximizes the value function’s prediction.
For this task, we use the same hyperparameters as in the main experiments (see
Appendix B.1.2). We use a learning rate of 1e− 4 to zero-shot learn the linear
policy. In Figure 4.8 we observe that a near-optimal linear policy can be zero-shot-
learned through the value function even if it was trained using policies with different
architecture. It achieves an expected return of 345, while the return of best NN used
for training was 360.
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Figure 4.8: Performance of a linear policy (in blue) zero-shot learned (averaged over
5 runs, 95% bootstrapped CI). The orange line shows the best performance of the
deep NN when training the PSSVF.

4.2.4 Fingerprint Analysis

Ablation on number of probing states Our experiments show that learning
probing states helps evaluating the performance of many policies, but how many
of such probing states are necessary for learning? We run our main experiments
again, with fewer probing states, and discover that in many environments, a very
small number of states is enough to achieve good performance. In particular, we
find that the PSSVF with 5 probing states achieves 314 and 2790 final return in
Swimmer and Hopper respectively, while Walker needs at least 50 probing states
to obtain a return above 2000. In general, 200 probing states represent a good
trade-off between learning stability and computational complexity. We compare the
performances of PSSVF versions with varying numbers of probing states. We use the
same hyperparameters as in the main experiments (see Appendix B.1.2), apart for the
number of probing states. Figure 4.9 shows that in Hopper and Swimmer 10 probing
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states are sufficient to learn a good policy, while Walker needs a larger number of
probing states to provide stability in learning.
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Figure 4.9: Average return of PSSVF with different number of probing states as
a function of the number of time steps in the environment. The solid line is the
average over 10 independent runs; the shading indicates 95% bootstrapped confidence
intervals.

Learning Swimmer with 3 states The most surprising result is that a randomly
initialized policy can learn near-optimal behaviors in Swimmer and Hopper by
knowing how to act only in 3 (5) such crucial learned states (out of infinitely many
in the continuous state space). To verify this, we first train a PSSVF with 5 probing
states following Algorithm 1 for 2M time steps. Then we manually select 3 of the
5 learned probing states in Swimmer, and compute the actions of an optimal policy
in such states. Then we train a new, randomly initialized policy, to just fit these 3
data points minimizing MSE loss. After many gradient steps, the policy obtains a
return of 355, compared to the return of 364 of the optimal policy that was used to
compute such actions. Figure 4.10 includes a detailed analysis of this experiment.
The probing actions are the vectors [−0.97,−0.86], [−0.18,−0.99], [0.86,0.68]. In
the plot we notice that when the agent’s state is close to the first probing state (bottom
plot, depicted in blue), then both components of the actions are close to -1, like
the probing action in such state. When the agent’s state is close to the second state
(bottom plot, depicted in orange), the first component of the action moves from -1
to 0 (and then to +1) in a smooth way, while the second component jumps directly
to +1. This behavior is consistent with the second probing action, since the second
component is more negative than the first. Notably, although the distance between the
agent’s state and the third probing state (bottom plot, depicted in green) is never close
to zero, such a probing state is crucial: it induces the agent to take positive actions
whenever the other probing states are far away. We observe similar behavior for other
environments, although they need more of such states to encode the behavior of an
optimal policy.

In order to select the 3 transitions we try all combinations of 3 probing states out
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Figure 4.10: Behavior of the policy learned from 3 probing state-probing action pairs
in Swimmer. From top to bottom: each component of the state vector across time
steps in an environment simulation; each component of the action vector; L2 distance
of the current state to each of the 3 probing states used for learning.

of 5 that we used to train our PSSVF. When cloning using all 5 probing states, the
performance is very similar to the optimal policy. When choosing 4 out of 5 probing
states, we notice that the performance highly depends on which probing state is
removed, suggesting that some of the learned probing states are more important than
others. When trying 3 out of 5 probing states this effect is more evident, and many
combinations of 3 probing states lead to poor cloning performance. We can see in
Figure 4.11 that as the MSE loss goes to zero when fitting the 3 transitions, the return
of the policy increases until it almost matches the optimal value. We use a batch size
of 3 and a learning rate of 2e−5 to fit the new policy. The other hyperparameters are
the same as in the main experiments (see Appendix B.1.2).

Learning Hopper with 5 states We repeat the same experiment of cloning
near-optimal behaviour from a few states in the Hopper environment. Using the
action of a good policy (whose return is 2450) in 5 probing states, we are able to fit a
new policy and obtain a final return of 2200. We use a batch size of 5 and a learning
rate of 1e−4 for the randomly initialized policy. All other hyperparameters are like
in the Swimmer experiment with 3 transitions. Figure 4.12 shows the learning curve,
while Figure 4.13 relates the behavior of the policy learned using the 5 transitions to
the distance of the current agent’s state to the probing states. The 5 probing actions
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Figure 4.11: On the left: return of the policy learned using 3 transitions in Swimmer.
On the right, MSE for fitting the 3 transitions. Average over 5 independent runs and
95% bootstrapped confidence interval.

{ãk}5
k=1 are:

ã1 = [0.4859,0.6492,−0.7818],

ã2 = [0.9251,0.9100,0.2322],

ã3 = [0.0405,0.0475,0.9091],

ã4 = [0.2925,−0.4677,−0.1329],

ã5 = [0.7578,0.4327,−0.1521].

We observe a similar behavior of the Swimmer experiments (Figure 4.10), where
the action chosen by the agent is similar to the probing action of a probing state
whenever the agent’s state is close to the probing state. Although the dynamics in
Hopper are more complex than in Swimmer, 5 probing states are enough to make the
agent perform non-trivial actions in the environment.
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Figure 4.12: On the left: return of the policy learned using 5 transitions in Hopper.
On the right, MSE for fitting the 5 transitions. Average over 5 independent runs and
95% bootstrapped confidence interval.

Figure 4.13: Behavior of the policy learned from 5 probing state-probing action pairs
in Hopper. From top to bottom: each component of the state vector across time steps
in an environmental simulation; each component of the action vector; L2 distance of
the current state to each of the 5 probing states used for learning.
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Visualization of RL probing states It is possible to visualize the probing states
learned by the PSSVF. To understand the behaviour in probing states, we initialize the
MuJoCo environment to the learned probing state (when possible) and let it evolve
for a few time steps while performing no action. In environments like Hopper and
Walker, probing states might not correspond to a real state in the environment (e.g.,
some components of the probing state are outside a specific range). We notice that
this is usually not the case and that the learned probing states generally correspond
to valid environmental states. Moreover, we observe that probing states tend to get
closer to certain critical situations over learning. These are states where certain
actions have a significant effect on the future. In the Ant environment, we notice
that all components of the probing state vector from index 28 to 111 learn a value
of around 1e−8. Interestingly, the process of fingerprinting discovers this ‘bug’ in
MuJoCo 2.0.2.2 that sets all contact forces in Ant to zero. Since these components
of the state vector remain constant during the environmental interactions, and are
therefore not relevant for learning, the PSSVF learns to set them to zero as well.

Figure 4.14 shows the evolution of the Swimmer environment from the selected
probing states when no action is taken. The 3 probing states reported are those used
for the experiment of Figures 4.11 and 4.10.

Figure 4.14: From top to bottom: the three learned probing states in Swimmer. From
left to right: evolution of the environment over time steps. The agent is initialized in
the probing state and performs no action.
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Figure 4.15: From top to bottom: the 5 learned probing states on Hopper. From left
to right: various time steps in the environment. The agent is initialized in the probing
state and performs no action.

Figure 4.15 shows 3 out of the 5 learned probing states on Hopper in the ex-
periment of Figures 4.12 and 4.13. The other 2 probing states do not correspond
to valid states in Hopper and are therefore not visualized. Since the probing state
does not depend on a specific policy, no action is taken in the probing state, and the
environment is allowed to evolve naturally from that state. The duration of interaction
differs in each row of the figure as termination occurs at different points from the
probing states.

Figure 4.16: Evolution of the environment from a probing state when (Top) no
actions taken, (Bottom) the first action in the probing state is taken using a good
policy. Then no action is performed.

Figure 4.16 supports our hypothesis that some probing states might capture
critical scenarios. In the considered probing state from Hopper we see that taking
no action results in immediate failure as indicated by the shorter span of interaction
in the top panel of Figure 4.16. In contrast, acting for a single time-step with a
successful policy in that situation helps the agent survive and prolongs the interaction
(bottom panel of Figure 4.16).
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Additional probing states for all environments can be seen in animated form on
the website https://policyevaluator.github.io/.

4.3 Related Work

Policy Evaluation Networks. Our method is based on a recent class of algorithms
that were developed to address global estimation and improvement of policies. For
Policy Evaluation Networks (PVNs) [Harb et al., 2020], an actor-critic algorithm
for offline learning through policy fingerprinting was proposed. PVNs focus on the
offline RL setting. In PVNs, first a dataset of randomly initialized policies with their
returns is collected. Then, once their V (θ) with policy fingerprinting is trained, they
perform policy improvement through gradient ascent steps on V . Here, however, we
empirically demonstrated that PBVFs with policy fingerprinting mechanisms can be
efficient in the online scenario. A minor difference between our approach and PVNs
is that PVNs predict a discretized distribution of the return, whereas our approach
simply predicts the expected return. Our PSSVF with policy fingerprinting can be
seen like an online version of PVN without some of the tricks used. Fingerprinting
itself is similar to a technique for “learning to think” [Schmidhuber, 2015b] where
one NN learns to send queries (sequences of activation vectors) into another NN and
learns to use the answers (sequences of activation vectors) to improve its performance.

Policy-extended value functions. Recent work [Tang et al., 2020] learned
Parameter-Based State-Value Functions which, coupled with PPO, improved
performance. The authors did not use the value function to directly backpropagate
gradients through the policy parameters, but only exploited the general policy
evaluation properties of the method. They also proposed two dimensionality
reduction techniques. The first, called Surface Policy Representation, consists of
learning a state-action embedding that encodes possible information from a policy
πθ . This requires feeding state-action pairs to a common MLP whose output is
received as input to the value function. The MLP is trained such that it allows
for both low prediction error in the value function and low reconstruction error
of the action, given a state and the embedding. This method is not differentiable
in the policy parameters, therefore it cannot be used for gradient-based policy
improvement. The second method, called Origin Policy Representation (OPR),
consists of using an MLP that performs layer-wise extraction of features from
policy parameters. OPR uses MLPs to take as input direcly the weight matrix
of each layer. This approach is almost identical to directly feeding the policy
parameters to the value function (they concatenate the state to the last layer of

https://policyevaluator.github.io/
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such MLP), and suffers from the curse of dimensionality. Also, OPR was not used
to directly improve the policy parameters, but only to provide better policy evaluation.

Policy Representation. Alternative strategies to represent policies have
been studied in previous work. One such strategy aims to learn a representation
function mapping trajectories to a policy embedding through an auto-encoding
objective [Grover et al., 2018; Raileanu et al., 2020]. In particular, Grover et al.
[2018] use this idea to model the agent’s behavior in a multi-agent setting. A
recent approach [Raileanu et al., 2020] performs gradient ascent steps finding a
policy embedding that maximizes the value function’s predicted return. While this
maximization through the value function is similar to our setting, it relies on a
representation function (or policy decoder). Our method does not use a decoder
and instead directly backpropagates the gradients into the policy parameters for
policy improvement. Closer to our fingerprinting setup, Pacchiano et al. [2020]
utilize pairs of states and actions (from the corresponding policy) as a policy
representation. However, unlike in our approach, the probing states are not learned,
but sampled from a chosen probing state distribution. Closely related to our
fingerprint embedding is also the concept of Dataset Distillation [Wang et al., 2018].
However, in our RL setting, learning to distill crucial states from an environment is
harder due to the non-differentiability of the environment. Recent work [Kanervisto
et al., 2020] suggests representing policies based on visited states via Gaussian
Mixture Models applied to an offline dataset of data from multiple policies. The
authors mention that their current version of policy supervectors is intended for
analysing policies and is not yet suitable for online optimization. Value functions
conditioned on other quantities include vector-valued adaptive critics [Schmidhuber,
1991a], General Value Functions [Sutton et al., 2011], and Universal Value Function
Approximators [Schaul et al., 2015]. Unlike our approach these methods typically
generalize over achieving different goals, and are not used to generalize across
policies.

4.4 Discussion

Our approach connects Parameter-Based Value Functions (PBVFs) and the finger-
printing mechanism of Policy Evaluation Networks. It can efficiently evaluate large
Neural Networks, is suitable for off-policy data reuse, and competitive with existing
baselines for online RL tasks. Zero-shot learning experiments on MNIST and contin-
uous control problems demonstrated our method’s generalization capabilities. Our
value function is invariant to policy architecture changes, and can extract essential
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knowledge about a complex environment by learning a small number of situations
that are important to evaluate the success of a policy. A randomly initialized policy
can learn optimal behaviors in Swimmer (Hopper) by knowing how to act only in 3
(5) such crucial learned states (out of infinitely many in the continuous state space).
This suggests that some of the most commonly used RL benchmarks require to learn
only a few crucial state-action pairs. Our set of learned probing states is instead used
to evaluate any policy, while in practice different policies may need different probing
states for efficient evaluation.

Preliminary experiments using the PSVF in Algorithm 2 with static policy fin-
gerprinting for learning V (s,θ ) showed results that were slightly inferior to those of
the PSSVF V (θ) in all tested environments. Further analysis is necessary to develop
training techniques and hyperparameter tuning to achieve more competitive results.
We leave this as a topic for future work.

A natural direction for improving PBVFs and scaling them to more complex tasks
is to generate probing states using recurrent policy fingerprinting. In the next chapter,
we will apply this method to learn representations of Recurrent Neural Networks
weights.



Chapter 5

Learning Useful Representations
of Recurrent Neural Network
Weight Matrices

For decades, researchers have developed techniques for learning representations in
deep neural networks (NNs). This expertise has significantly advanced the field
by enabling models to convert data into useful formats for solving problems. In
particular, Recurrent NNs (RNNs) have been widely adopted due to their computa-
tional universality [Siegelmann and Sontag, 1991]. Low-dimensional representations
of the programs of RNNs (their weight matrices) are of great interest as they can
speed up the search for solutions to given problems. For instance, compressed RNN
representations have been used to evolve RNN parameters [Koutnik et al., 2010] for
controlling a car from video input [Koutník et al., 2013]. However, such represen-
tations have employed Fourier-type transforms, e.g., the coefficient of the Discrete
Cosine Transform (DCT) [Srivastava et al., 2012], and did not use the capabilities of
NNs to learn such representations. Recent work, including the methods presented
in the previous chapters, has seen a rise of representation learning techniques for
NN weights using powerful neural networks as encoders [Unterthiner et al., 2020;
Schürholt et al., 2021; Dupont et al., 2022; Faccio et al., 2022]. However, there is a
lack of methods for learning representations of RNNs. This chapter introduces novel
techniques for learning them, using powerful NNs which may be RNNs themselves.
Just like representation learning in other fields, such as Computer Vision, facilitates
solving specific tasks, such techniques can facilitate learning, searching, and planning
with RNNs.

53
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5.1 Method

We consider a Recurrent Neural Network (RNN), fθ : RX × RH → RY ×
RH ;(x,ho) 7→ (y,hn), parametrized by θ ∈ Θ ⊂ RnΘ , which maps an input x and
hidden state ho to an output y and a new hidden state hn. The RNN interacts with a
potentially stochastic environment, E , that maps an RNN’s output y to a new input x.
The environment may have its own hidden state η . By sequentially interacting with
the environment, the RNN produces a rollout defined by:{

xt ,ηt = E (yt−1,ηt−1)

yt ,ht = fθ (xt ,ht−1),

with fixed initial states y0,η0 and h0. For instance, fθ might be an autoregressive
generative model, with E acting as a stochastic environment that receives a probabil-
ity distribution over some language tokens, yt—the output of f —, and produces a
representation (e.g., a one-hot vector) of the new input token xt+1. When the envi-
ronment is stochastic, numerous rollouts can be generated for any θ ∈ Θ. A rollout
sequence of a function fθ in environment E has the form Sθ = (x1,y1,x2,y2, . . .).

Encoder and Emulator Our primary objective is to propose, analyze, and train
several methods for representing RNN weights. We define the Encoder Eφ : Θ →
RM;θ 7→ z, parametrized by φ ∈Φ⊂RnΦ as a function mapping the RNN parameters
θ to a lower-dimensional representation z. To train the encoder Eφ , we consider
an Emulator Aξ : RX ×RB ×RZ → RY ×RB;(x,bo,z) 7→ (ỹ,bn), parametrized by
ξ ∈ Ξ ⊂ RnΞ . The Emulator is an RNN with hidden state b that learns to imitate
different RNNs fθ based on their function encoding z = E(θ).

Dataset and Training We consider a dataset D = {(θi,Sθi)|i = 1,2, . . .} com-
posed of tuples, each containing the parameters of a different RNN and a correspond-
ing rollout sequence. We assume that all RNNs have the same initial state h0 but have
been trained on different tasks. Our self-supervised learning approach to training
function representations is inspired by the work of Raileanu et al. [2020]). The
Encoder Eφ and the Emulator Aξ are jointly trained by minimizing a loss function
L . This loss function measures the behavioral similarity between an RNN fθ and
the Emulator Aξ , which is conditioned on the function representation z = Eφ (θ) of θ

as produced by the Encoder Eφ . Put simply, the Emulator utilizes the representations
of a set of diverse RNNs fθ to imitate their behavior:

min
φ ,ξ

E(θ ,S)∼D ∑
(xi,yi)∈S

L
(
Aξ (xi,bi−1,Eφ (θ)),yi

)
. (5.1)
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In the case of continuous outputs y, the mean-squared error provides a suitable loss
function. Conversely, for categorical outputs, we employ the inverse Kullback-Leibler
divergence.

5.1.1 RNN Encoders

In this section, we explore various mechanistic and functionalist methods for con-
structing RNN encoders. These approaches will be compared in our experimental
section.

Flattened Weights (Mechanistic) Flattening the weights into a single vector
presents the most straightforward method for encoding an RNN. While this technique
has shown efficacy on a modest scale [Faccio et al., 2021; Herrmann et al., 2022],
it faces challenges when applied to larger parameter vectors, especially in handling
weight-space symmetries such as neuron permutations. For the flattened weights
Encoder, all parameters θ of the RNN to be encoded are flattened into a vector.
This weight vector is given as input to a multi-layer perceptron (MLP) with ReLU
nonlinearities, which outputs the RNN encoding z.

Neural Functional (Mechanistic) Fast Weight Programmers [Schmidhuber,
1992b, 1993; Schlag et al., 2021; Irie et al., 2021b] are neural networks that can
process the gradients or weights of another neural network. A recent variant thereof,
called Neural Functionals[Navon et al., 2023], has been used to learn representations
of neural network weights that are invariant to the permutation of hidden neurons.
The architecture comprises layers that display equivariance to neuron permutations,
followed by a final pooling operation that ensures the invariance property. Neural
Functionals have been theoretically proven to be able to extract all information from
the weights of a neural network [Navon et al., 2023]. However, their implementation
to date has been confined to feedforward networks, such as MLPs and CNNs. For the
neural functional (NF) Encoder, we adapt the equivariant NF-layer [Zhou et al., 2023]
for LSTMs. To preserve both equivariance to neuron permutation and functional
universality, the appropriate row- and column-wise feature extractors have to be
added for input-to-hidden and hidden-to-hidden weights, considering rollouts across
time and depth of the network.

Non-Interactive RNN Probing (Functionalist) In the context of Reinforce-
ment Learning and Markov Decision Processes, policy fingerprinting has emerged
as an effective way to evaluate feedforward neural network policies [Faccio et al.,
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Figure 5.1: Left: Non-Interactive Encoder. Right: Interactive Encoder.

2022; Harb et al., 2020; Faccio et al., 2023]. In static policy fingerprinting, a set of
learnable probing inputs is given to the network using the techniques introduced in
Section 4.1.1. Based on the set of corresponding policy outputs, a function (policy)
representation is produced. This approach can be adapted in a straightforward way for
RNNs by learning whole probing sequences instead of probing inputs (see Figure 5.1,
left). In the context of this chapter, we refer to this approach as non-interactive RNN
probing. RNN probing Encoders have three main components: the core LSTM ER,
an input projection MLP EI , and an output projection MLP EO.

For the non-interactive Encoder, a learnable latent probing sequence
(S1,S2, . . . ,Sl) with a fixed length l is given to EI . EI(Si) is interpreted as either
one a several parallel probing inputs x̂i and given to fθ . The resulting probing
outputs ŷi := fθ (x̂i) are given to EO (in the case of multiple parallel probing out-
puts, the values ŷi are concatenated). The sequence of probing output projections
(EO(ŷ1), . . . ,EO(ŷl)) is given as input to ER, preceded by a begin-of-sequence (BOS)
and followed by an end-of-sequence (EOS) token. ER’s output after the EOS token is
transformed with a learned linear projection into the RNN representation z.

Interactive RNN Probing (Functionalist) The probing sequences for non-
interactive RNN probing are static, i.e., at test time, the probing sequences do not
depend on the specific RNN being evaluated. The alternative is to make the probing
sequences dynamically dependent on the given RNN by using the recurrent policy fin-
gerprinting technique described in Section 4.1.2. Each item in the probing sequences
should depend on the outputs of the given RNN to the previous items (Figure 5.1,
right). The interactive probing encoder differs from the non-interactive one in one
crucial aspect: Instead of having a learned but static latent probing sequence, the
probing inputs at each step are based on the output of ER from the current step, which
in turn depends on the probing outputs of the previous step. This means that the
interactive probing Encoder can dynamically adapt the probing sequences to the
particular RNN fθ that is being encoded. This idea has been described previously to
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extract arbitrary information from a recurrent world model [Schmidhuber, 2015b].

5.2 Experiments and Results

The experiments in this section were performed by Vincent Herrmann in a common
paper [Herrmann et al., 2023] and are reported here for completeness.

5.2.1 Dataset

We consider the family of context-sensitive languages:

Lm1,...,mk := {an+m1
1 an+m2

2 . . .an+mk
k |n ∈ N}, (5.2)

with m1, . . . ,mk ∈ N and a1, . . . ,ak being the letters/tokens of the language. The
parameters mi define the relative number of times different tokens may appear. As an
example, one member of the language L3,1,2 is the string a1a1a1a1a2a2a3a3a3.

The set of languages used is {Lr,r+o1,r+o2,r+o3|o1,o2,o3 ∈ {−3, . . . ,2} and r =
−min{o1,o2,o3}}, with L defined in Equation 5.2. This set contains 63 = 216
uniquely identifiable languages. The training data for each LSTM are strings from
a particular language of length ≤ 40, with an additional begin-of-sequence and
end-of-sequence token.

The LSTMs trained for the dataset have two layers with a hidden size of 32,
resulting in a total of 13766 parameters. In total, 1000 such networks are trained,
each on one of the 216 possible languages. For each LSTM, 10 snapshots (at steps
0, 100, 200, 500, 1000, 2000, 5000, 10000 and 20000) are saved during training. A
snapshot consists of the LSTM’s current weights and 100 sequences, also of length
40, generated by it.

5.2.2 Emulator

The Emulator Aξ is an LSTM network. The conditioning on the function represen-
tation z is done by adding a learned linear projection of z to the embedding of the
begin-of-sequence token.

5.2.3 Results

We empirically analyze various approaches to learning representations of RNNs,
with a specific focus on LSTM [Hochreiter and Schmidhuber, 1997] weights. Each
LSTM in our dataset serves as an autoregressive generative model of a specific formal
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language. Each LSTM is trained on strings from a particular language using the
standard language modelling objective. We split the dataset into training, validation,
and out-of-distribution (OOD) test parts. The OOD split includes only tasks in
which the relative frequencies of each token appearance are small (i.e., all tokens
appear approximately the same number of times). The validation set is utilized for
early stopping during training. All shown results are derived from the test set. The
experiments employ the four types of function encoders described in Section 5.1.1.
The encoders’ hyperparameters are selected to ensure a comparable number of
parameters among them. The training details remain consistent across all runs (further
details are available in Appendix C.1.1). All encoders are trained end-to-end together
with an LSTM emulator to minimize the loss defined in Equation 5.1, utilizing the
reverse Kullback-Leibler divergence as the loss function L . The objective is to ensure
that the LSTM weight encodings z serve as generally useful representations. We verify
this by training models for two downstream tasks using the fixed representations
provided by the encoder E. The first task involves classifying the language on which
an LSTM fθ was trained, given its encoding E(θ). This classification is inherently
challenging, considering the dataset contains a total of 216 different languages, and
some networks are nearly untrained. The second task aims to predict the performance
of fθ , defined as the percentage of strings generated by fθ belonging to the language
that fθ was trained on. We present the results for these tasks in Figure 5.2.
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Figure 5.2: Left: Accuracy of a language classifier, trained using the generated
function encodings. Right: Loss of a performance predictor, also trained on the
generated function encodings, depicted on the test set. Plots are presented as a
function of the number of parallel probing sequences (only relevant for interactive and
non-interactive probing encoders). Both graphs display the mean and bootstrapped
95% confidence intervals, aggregated across 15 seeds.

From the results, it is evident that the interactive probing encoder yields the most
useful representations for both tasks. Having multiple probing sequences in parallel
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benefits both interactive and non-interactive encoders. The representations derived
from the flattened weights and the neural functional encoder appear to contain no
useful information for the language classifier. In predicting accuracy, representations
from neural functionals outperform those based on flattened weights but fall short
when compared to functionalist representations. A visualization of the learned
embedding spaces can be found in Figure 5.6.
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Figure 5.6: PCA of the function encodings generated by different encoders. Left
column: Colored by language, Right column: Colored by perfomance (accuracy).

Figure 5.7 shows the test losses of the different Emulators (as defined in Equa-
tion 5.1). The relative performance of the different encoders types is similar as for
the downstream tasks shown Figure 5.2.
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Figure 5.7: Loss of the emulator on the test. Plotted as a function of the number of
parallel probing sequences. Mean and bootstrapped 95% confidence intervals across
15 seeds.

We investigate the results for different lengths of the probing sequence for both
interactive and non-interactive probing encoders, as illustrated in Figure 5.8. The
plot reveals a trade-off: a small number of sequential probing steps corresponds to a
simpler emulator function to learn, while a large number of probing steps correlates
with an emulator capable of learning useful representations, albeit resulting in a more
challenging network to train. The optimal number of probing steps appears to be
around 22.
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Figure 5.8: Difference in generation accuracy of the emulated function compared
to the original one. Validation set. Plotted as a function of the length of the probing
sequence. Mean and bootstrapped 95% confidence intervals across 15 seeds.

In Figure 5.9 we plot probing sequences generated by an encoder using recurrent
fingerprinting for different instances of a particular language. For the sequence
lengths 12, 22 and 42, the encoder produces an insightful probing sequence, i.e.,
probing sequences that belong to the corresponding language.
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Figure 5.9: Probing sequences generated for language L3,0,2,4 by the best performing
interactive function encoder with different sequence lengths.

5.3 Discussion

We identified two classes of methods for learning RNN weight representations.
Firstly, we adapted the Mechanistic Neural Functional approach to RNNs and, sec-
ondly, presented two novel Functionalist methods, theoretically demonstrating when
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their representations can be utilized to identify RNNs. Functionalist methods outper-
formed Mechanistic ones, learning more useful RNN weight representations for two
downstream tasks. Future work will explore the combination of both approaches and
evaluate their performance on more challenging problems.

Recurrent Policy Fingerprinting offers several advantages. Firstly, for each policy,
it learns to generate distinct sets of probing states, specifically those that are most
crucial for policy evaluation. Secondly, the number of weights in the evaluator
function remains constant even if the number of probing states increases. Note that
if the number of probing states generated is the same as the number of time steps
for the RNN in the environment, our value function could, in principle, learn to
always generate the next state as a probing state, effectively learning a simulator of
the environment. Future work will focus on applying the techniques developed in
this Chapter to problems involving natural language, and to Reinforcement Learning
problems.



Chapter 6

Goal-Conditioned Generators of
Deep Policies

6.1 Method

Goal-conditioned RL agents can learn to solve many different tasks, where the present
task is encoded by special command inputs [Schmidhuber and Huber, 1991; Schaul
et al., 2015]. Many RL methods learn value functions [Sutton and Barto, 2018] or
estimate stochastic policy gradients (with possibly high variance) [Williams, 1992;
Sutton et al., 1999]. Upside-down RL (UDRL) [Srivastava et al., 2019; Schmidhuber,
2019] and related methods [Ghosh et al., 2019], however, use supervised learning
to train goal-conditioned RL agents. UDRL agents receive command inputs of
the form “act in the environment and achieve a desired return within so much
time” [Schmidhuber, 2019]. Typically, hindsight learning [Andrychowicz et al.,
2017; Rauber et al., 2018] is used to transform the RL problem into the problem
of predicting actions, given reward commands. Consider a command-based agent
interacting with an environment, given a random command c, and achieving return r.
Its behavior would have been optimal if the command had been r. Hence the agent’s
parameters can be learned by maximizing the likelihood of the agent’s behavior,
given command r. Unfortunately, in the episodic setting, many behaviors may satisfy
the same command. Hence the function to be learned may be highly multimodal, and
a simple Gaussian maximum likelihood approach may fail to capture the variability
in the data. In this chapter, we present a method that proposes an alternative solution
to this challenge.

63
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6.1.1 Background

Here, we use a slightly different formulation of the Markov Decision Process that
we formally report for completeness. We define a trajectory τ ∈ T as the sequence
of state-action pairs that an agent encounters during an episode in the MDP τ =

(sτ,0,aτ,0,sτ,1,aτ,1, . . . ,sτ,T ,aτ,T ), where T denotes the time-step at the end of the
episode (T ≤ H). The return of a trajectory R(τ) is defined as the cumulative
discounted sum of rewards over the trajectory R(τ) = ∑

T
t=0 γ tR(sτ,t ,aτ,t), where

γ ∈ (0,1] is the discount factor.
The RL problem consists in finding the policy πθ∗ that maximizes the expected

return obtained from the environment, i.e., πθ∗ = argmaxπθ
J(θ):

J(θ) =
∫

T
p(τ|θ)R(τ)dτ, (6.1)

where p(τ|θ) = µ0(s0)∏
T
t=0 πθ (at |st)P(st+1|st ,at) is the distribution over trajec-

tories induced by πθ in the MDP. When the policy is stochastic and differ-
entiable, by taking the gradient of J(θ) with respect to the policy parame-
ters we obtain an algorithm called REINFORCE [Williams, 1992]: ∇θ J(θ) =∫

T p(τ|θ)∇θ p(τ|θ)R(τ)dτ .
In parameter-based methods [Sehnke et al., 2010, 2008; Salimans et al., 2017;

Mania et al., 2018], at the beginning of each episode, the weights of a policy are
sampled from a distribution νρ(θ), called the hyperpolicy, which is parametrized by
ρ ∈ P ⊂ RnP . Typically, the stochasticity of the hyperpolicy is sufficient for explo-
ration, and deterministic policies are used. The RL problem translates into finding the
hyperpolicy parameters ρ maximizing expected return, i.e., νρ∗ = argmaxνρ

J(ρ):

J(ρ) =
∫

Θ

νρ(θ)
∫

T
p(τ|θ)R(τ)dτ dθ . (6.2)

This objective is maximized by taking the gradient of J(ρ) with respect to the hy-
perpolicy parameters: ∇ρJ(ρ) =

∫
Θ

∫
T νρ(θ)∇ρ logνρ(θ)p(τ|θ)R(τ)dτ dθ . This

gradient can be either approximated through samples [Sehnke et al., 2010, 2008;
Salimans et al., 2017] or estimated using finite difference methods [Mania et al.,
2018]. This only requires differentiability and stochasticity of the hyperpolicy.

6.1.2 Fast Weights Programmers

Fast Weight Programmers (FWPs) [Schmidhuber, 1992b, 1993] are NNs that generate
changes of weights of another NN conditioned on some contextual input. In our
UDRL-like case, the context is the desired return to be obtained by a generated policy.
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The outputs of the FWP are the policy parameters θ ∈ Θ. Formally, our FWP is a
function Gρ : Rnc −→ Θ, where c ∈ Rnc is the context-input and ρ ∈ P are the FWP
parameters. Here, we consider a probabilistic FWP of the form gρ(θ |c) = Gρ(c)+ε ,
with ε ∼ N (0,σ2I) and σ ∈ RnΘ is fixed, with nΘ being the dimensionality of the
policy parameter space. In this setting, the FWP conditioned on context c induces a
probability distribution over the parameter space, similar to the one induced by the
hyperpolicy in the previous Section. Using the FWP to generate the weights of a
policy, we can rewrite the RL objective, making it context-dependent:

J(ρ,c) =
∫

Θ

gρ(θ |c)
∫

T
p(τ|θ)R(τ)dτ dθ . (6.3)

Compared to Eq. 6.2, J(ρ,c) induces a set of optimization problems that now are
context-specific 1. Here, J(ρ,c) is the expected return for generating a policy with
a generator parametrized by ρ , when observing context c. Instead of optimizing
Eq. 6.2 using policy gradient methods, we are interested in learning a good policy
through pure supervised learning by following a sequence of context-commands of
the form “generate a policy that achieves a desired expected return.” Under such
commands, for any c, the objective J(ρ,c) can be optimized with respect to ρ to
equal c. FWPs offer a suitable framework for this setting, since the generator network
can learn to create weights of the policy network so that it achieves what the given
context requires. In the subsequent sections, we will consider unidimensional context
commands c ∈ R.

6.1.3 Gogepo

Here we develop GoGePo, our algorithm to generate policies that achieve any desired
return. In the supervised learning scenario, it is straightforward to learn the parameters
of the FWP that minimize the error LG(ρ) = Ec∈D,θ∼gρ (·|c)[(J(θ)− c)2], where
the context c comes from some set of possible commands D. This is because in
supervised learning J(θ), the expected return, is a differentiable function of the policy
parameters, unlike in general RL. Therefore, to make the objective differentiable, we
learn a PSSVF Vw : Θ −→ R parametrized by w that estimates J(θ) [Faccio et al.,
2021]. This evaluator function is a map from the policy parameters to the expected
return. Once V is learned, the objective LG(ρ) can be optimized end-to-end, like
in the supervised learning scenario, to directly learn the generator’s parameters.

1Note the generality of Eq. 6.3. In supervised learning, common FWP applications include the
case where g is deterministic, θ are the weights of an NN (possibly recurrent), p(τ|θ) is the output of
the NN given a batch of input data, R(τ) is the negative supervised loss.
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Figure 6.1: GoGePo generates policies using a Fast Weight Programmer (hyper-
network) conditioned on a desired return and evaluates the resulting policy using a
parameter-based value function based on fingerprinting. This enables training using
supervised learning.

Concretely, we minimize LG(ρ) = Ec∈D[(Vw(Gρ(c))− c)2] to learn the parameters
ρ .

Our method is described in Algorithm 5 and consists of three steps. First, in each
iteration, a command c is chosen following some strategy. Ideally, to ensure that the
generated policies improve over time, the generator should be instructed to produce
larger and larger returns. We discuss command strategies in the next paragraph. The
generator observes c and produces policy πθ which is run in the environment. The
return and the policy (r,θ) are then stored in a replay buffer. Second, the evaluator
function is trained to predict the return of the policies observed during training. This
is achieved by minimizing MSE loss LV (w) = E(r,θ)∈B[(r−Vw(θ))

2]. Third, we
use the learned evaluator to directly minimize LG(ρ) = Er∈B[(r−Vw(Gρ(r)))2].

By relying on an evaluator function V that maps policy parameters to expected
return, we do not need to model multimodal behavior. The generator is trained to
produce policies such that the scalar return command matches the evaluator’s scalar
return prediction. In practice, the generator finds for each return command c a point
θ in the domain of the evaluator function such that V (θ) = c. As a very simple
example, assume J(θ) = θ 2, θ ∈ [−1,1]. If methods like UDRL observe θ1 = 1/2
with r1 = 1/4 and θ2 = −1/2 with r2 = 1/4, a Gaussian maximum likelihood
approach will learn to map r = 1/4 to θ = 0, but for θ = 0 the return is 0. Our
evaluator function learns to approximate J(θ), so our generator will learn to find a
single θ such that V (θ) = 1/4. The value of θ produced by the generator depends
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Algorithm 5 Gogepo with return commands
Input: Differentiable generator Gρ : R→ Θ with parameters ρ; differentiable

evaluator Vw : Θ → R with parameters w; empty replay buffer D
Output : Learned Vw ≈V (θ)∀θ , learned Gρs.t.V (Gρ(r))≈ r∀r

1: Initialize generator and critic weights ρ,w, set initial return command c = 0
2: repeat
3: Sample policy parameters θ ∼ gρ(θ ,c)
4: Generate an episode s0,a0,r1,s1,a1,r2, . . . ,sT−1,aT−1,rT with policy πθ

5: Compute return r = ∑
T
k=1 rk

6: Store (r,θ) in the replay buffer D
7: for many steps do
8: Sample a batch B = {(r,θ)} from D
9: Update evaluator by stochastic gradient descent: ∇wE(r,θ)∈B[(r −

Vw(θ))
2]

10: end for
11: for many steps do
12: Sample a batch B = {r} from D
13: Update generator by stochastic gradient descent: ∇ρ Er∈B[(r −

Vw(Gρ(r)))2]

14: end for
15: Set next return command c using some strategy
16: until convergence
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on the optimization process and on the shape of V . In other words, the multimodality
issue is turned into having multiple optimal points in the optimization of the generator.

Choosing the Command The strategy of choosing the command c before inter-
acting with the environment is important. Intuitively, asking the generator to produce
low return policies will not necessarily help finding better policies. On the other
hand, asking for too much will produce policies that are out of distribution, given the
training data, and the generator cannot be trusted to produce such values. Hence it is
reasonable to ask the generator to produce a return close to the highest one observed
so far. More on command strategies can be found in Section 6.2.1.

Scaling to Deep Policies Both generating and evaluating the weights of a deep
feedforward MLP-based policy is difficult for large policies. The sheer number of
policy weights, as well as their lack of easily recognizable structure, requires special
solutions for the generator and evaluator. To scale FWPs to deep policies, we rely on
the relaxed weight-sharing of hypernetworks [Ha et al., 2016] for the generator, and
on parameter-based value functions [Faccio et al., 2021] using a static fingerprinting
mechanism [Harb et al., 2020; Faccio et al., 2022] for the evaluator. We discuss
hypernetworks in the next section.

6.1.4 HyperNetworks

The idea behind certain feed-forward FWPs called hypernetworks [Ha et al., 2016] is
to split the parameters of the generated network θ into smaller slices sll . A shared
NN H with parameters ξ ∈ Ξ ⊂ RnΞ receives as input a learned embedding zl and
outputs the slice sll for each l, i.e., sll = Hξ (zl). Following von Oswald et al. [2020],
further context information can be given to H in form of an additional conditioning
input c, which can be either scalar or vector-valued: sll = Hξ (zl,c). Then the weights
are combined by concatenating all generated slices:

θ =
[
sl1 sl2 sl3 . . .

]
. (6.4)

The splitting of θ into slices and the choice of H depend on the specific architecture
of the generated policy. Here we are interested in generating MLP policies whose
parameters θ consist of weight matrices K j with j ∈ {1,2, . . . ,nK}, where nK is
the policy’s number of layers. We use an MLP Hξ to generate each slice of each
weight matrix: the hypernetwork generator Gρ splits each weight matrix into slices
sl j

mn ∈ R f× f , where j is the policy layer, and m,n are indexes of the slice in weight
matrix of layer l. For each of these slices, a small embedding vector z j

mn ∈ Rd is
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learned. Our network Hξ is an MLP, followed by a reshaping operation that turns a
vector of size f 2 into an f × f matrix:

sl j
mn = Hξ (z

j
mn,c). (6.5)

The slices are then concatenated over two dimensions to obtain the full weight
matrices:

K j =


sl j

11 sl j
12 . . .

sl j
21 sl j

22
... . . .

 . (6.6)

The full hypernetwork generator Gρ consists of the shared network Hξ , as well
as all embeddings z j

mn. Its learnable parameters are ρ = {ξ ,z j
mn∀m,n, j}.

Generator Gρ is supposed to dynamically generate policy parameters, conditioned
on the total return these policies should achieve. The conditioning input c is simply
this scalar return command. It is appended to each learned slice embedding z j

mn. The
resulting vectors are the inputs to the network H. Figure 6.2 shows a diagram of this
process.

MLP
re-

shape

Figure 6.2: Generating a weight matrix K by concatenating slices that are generated
from learned embeddings z and conditioning c using a shared network H.

For the the slicing to work, the widths and heights of the weight matrices have to
be multiples of f . For the hidden layers of an MLP, this is easily achieved since we
can freely choose the numbers of neurons. For the input and output layers, however,
we are constrained by the dimensions of environmental observations and actions. To
accommodate any number of input and output neurons, we use dedicated networks
Hi and Ho for the input and output layers. The generated slices have the shape f ×ni
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for the input layer (ni is the number of input neurons) and no × f for the output layer
(no is the number of output neurons).

Figure 6.1 shows a diagram of our method with a hypernetwork generator and a
fingerprinting value function.

6.2 Experiments and Results

We empirically evaluate GoGePo as follows: first, we show competitive performance
on common continuous control problems. Then we use the the learned fingerprinting
mechanism to visualize the policies created by the generator over the course of
training, and investigate its learning behavior.

6.2.1 Results on Continuous Control RL Environments

We evaluate our method on continuous control tasks from the MuJoCo [Todorov et al.,
2012] suite. Augmented Random Search (ARS) [Mania et al., 2018], a competitive
parameter-based method, serves as a strong baseline. We also compare our method
to other popular algorithms for continual control tasks: Deep Deterministic Policy
Gradients (DDPG) [Silver et al., 2014], Soft Actor Critic (SAC) [Haarnoja et al.,
2018a] and Twin Delayed Deep Deterministic Policy Gradients (TD3) [Fujimoto
et al., 2018]. In addition, we include as a baseline UDRL [Srivastava et al., 2019] and
confirm that UDRL is not sample efficient for continuous control in environments
with episodic resets [Schmidhuber, 2019], in line with previous experimental results.

In the experiments, all policies are MLPs with two hidden layers, each having 256
neurons. Our method uses the same set of hyperparameters in all environments. For
ARS and UDRL, we tune a set of hyperparameters separately for each environment
(step size, population size, and noise for ARS; nonlinearity, learning rate and the
“last few” parameter for UDRL). For DDPG, SAC and TD3, we use the established
sets of default hyperparameters. Details can be found in Appendix D.1.

We find that while always asking to generate a policy with return equal to
the best return ever seen, there is a slight advantage when asking for more than that.
In particular, we empirically demonstrate that a simple strategy such as “produce a
policy whose return is 20 above the one of the best policy seen so far” can be very
effective. We present an ablation showing that this strategy is slightly better than the
strategy “produce a policy whose return equal to the one of the best policy seen so
far” in Appendix D.2.2. This suggests that our method’s success is not only due to
random exploration in parameter space but also to generalization over commands: it
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learns to understand and exploit the nature of performance improvements in a given
environment.

For our method and ARS, we use observation normalization (see [Mania et al.,
2018; Faccio et al., 2021]). Furthermore, following ARS, the survival bonus of +1 for
every timestep is removed for the Hopper-v3 environment, since for parameter-based
methods it leads to the local optimum of staying alive without any movement. In
tasks without fixed episode length, quickly failing bad policies from the early stages
of training tend to dominate the replay buffer. To counteract this, we introduce
a recency bias when sampling training batches from the buffer, assigning higher

Figure 6.3: Performance of policies created with GoGePo (our method), ARS,
DDPG, SAC, TD3 and UDRL over the course of training. Curves show the mean
return and 95% bootstrapped confidence intervals from 20 runs as a function of total
environment interactions.



72 6.2 Experiments and Results

probability to newer policies. It is treated as an additional hyperparameter. In
Figure B.1 in Appendix B.2.2 we provide an ablation showing the importance of this
component. Figure 6.3 shows our main experimental result (see also Table D.1 in
Appendix D.2.1).

Our Algorithm 5 performs very competitively in the tested environments with
the exception of Hopper, where TD3 and SAC achieve higher expected return. In
Swimmer and Hopper environments, our method learns faster than ARS, while
eventually reaching the same asymptotic performance. In MountainCarContinuous,
DDPG, SAC and TD3 are unable to explore the action space, and parameter-based
methods quickly learn the optimal policy. Our method always outperforms UDRL.

6.2.2 Analyzing the Generator’s Learning Process

Figure 6.4: Policies generated by the generator during different stages of training.
The background shows all policies executed during training (i.e., in the replay buffer),
colored according to their returns. The 2D coordinates of the policies are determined
by the PCA of their probing actions (obtained by the final critic Vw). The chains
of points show the policies created by the generator when given return commands
ranging from the minimum (darker end of the chain) to the maximum (last point at
the brighter end) possible return in the environment. Each chain represents a different
stage of training, from almost untrained to fully trained. After training, the generator
is able to produce policies across the whole performance spectrum.

The probing actions created by the fingerprinting mechanism of the value function
Vw can be seen as a compact meaningful policy embedding useful to visualize policies
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for a specific environment. In Figure 6.4 we apply PCA to probing actions to show
all policies in the buffer after training, as well as policies created by the generator at
different stages of training when given the same range of return commands. Policies
are colored in line with achieved return. The generator’s objective can be seen as
finding a trajectory through policy space, defined by the return commands, connecting
the lowest with the highest return. In Figure 6.4, this corresponds to a trajectory
going from a dark to a bright area. Indeed, we observe that the generator starts out
being confined to the dark region (producing only bad policies) and over the course
of training finds a trajectory leading from the darkest (low return) to the brightest
(high return) regions.

To create Figure 6.4, we perform Principal Component Analysis (PCA) on the
probing actions of all policies in the buffer after training. The first two principal
components indicate a policy’s position in our visualization. Using Delaunay
triangulation, we assign an area to every policy and color it according to its achieved
return. We then take the generator at different stages of training (of the same run).
Each of these generators is given a set of 20 commands, evenly spaced across
the range of possible returns ([−100,365] for Swimmer, [−100,3000] for Hopper,
[0,1000] for InvertedPendulum and [−100,100] for MountainCarContinuous). The
resulting policies are plotted using probing actions on the probing states of the fully
trained value function Vw (and the same PCA).

Figure 6.5 shows the the returns achieved by policies that are created by a
fully trained generator when given a range of return commands. This highlights
a feature of the policy generator: while most RL algorithms generate only the
best-performing policy, our generator is in principle able to produce by command
policies across the whole performance spectrum. For the environments Swimmer
and Hopper (Figures 6.5a and 6.5b), this works in a relatively reliable fashion. In
Hopper the return used does not include survival bonus. A return of 2000 without
survival bonus corresponds roughly to a return of 3000 with survival bonus.

It is worth noting, however, that in some environments it is hard or even impossible
to achieve every given intermediate return. This might be the case, for example, if the
optimal policy is much simpler than a slightly sub-optimal one, or if a large reward is
given once a goal state is reached. We can observe this effect for the environments
InvertedPendulum and MountainCar—see Figures 6.5c and 6.5d. There the generator
struggles to produce the desired identity of return command and achieved return—
instead we get something closer to a step function. However, this does not prevent
our method from quickly finding optimal policies in these environments.
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Figure 6.5: Achieved returns (mean of 10 episodes) of policies created by fully
trained generators as a function of the given return command. A perfect generator
would produce policies that lie on the diagonal identity line (if the environment
permits such returns). For each environment, results of five independent runs are
shown.

6.2.3 Limitation: obtaining suitable policies from the start

Randomly initialized policy generators produce weights far from those of typical
initialization schemes. In particular, the standard PyTorch [Paszke et al., 2019]
initialization is uniform in [−1/

√
n,1/

√
n], where n is the number of neurons in the

previous layer, resulting in a distribution uniform in [−0.0625,0.0625] in the second
and last layers. Our network tends to generate much larger weights, roughly uniform
in every NN layer. We therefore scale our output such that it is close to the default
initialization. Concretely, we multiply for each layer the output of the generator by
2/
√

n, where n is the number of neurons in the previous layer. Here we provide
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an ablation showing that this choice is crucial. Figure 6.6 shows the importance of
scaling the output of the generator in Swimmer and Hopper. We compare this with
and without weighted sampling from the replay buffer. We observe that in Swimmer,
output scaling is very important, while in Hopper, most of the performance gain is
due to weighted sampling. This choice of output scaling is rather heuristic and does
not match the standard PyTorch initialization for all environments. It might happen
that a randomly initialized generator produces policies that are difficult to perturb.
This exploration issue seems to cause some difficulties for InvertedDoublePendulum,
highlighting a possible limitation of our method.
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Figure 6.6: Comparison between our algorithm with/without weighted sampling
from the replay buffer and output scaling. “No weight” denotes uniform sampling
from the replay buffer. Average over 5 independent runs and 95% bootstrapped
confidence intervals.

6.3 Related Work

6.3.1 Hindsight and Upside Down RL.

Upside Down RL (UDRL) transforms the RL problem into a supervised learning
problem by conditioning the policy on commands such as “achieve a desired re-
turn” [Schmidhuber, 2019; Srivastava et al., 2019]. UDRL methods are related to
hindsight RL where the commands correspond to desired goal states in the environ-
ment [Schmidhuber, 1991b; Kaelbling, 1993; Andrychowicz et al., 2017; Rauber
et al., 2018]. In UDRL, just as in our method Gogepo, the required dataset of states,
actions, and rewards is collected online during iterative improvements of the pol-
icy [Srivastava et al., 2019]. The conceptually highly related Decision Transformer
(DT) [Janner et al., 2021]) is designed for offline RL and thus requires a dataset of
experiences from policies trained using other methods. A recent DT variant called
“Online DT” [Chen et al., 2021] alternates between an offline pretraining phase, using
data already collected, and an online finetuning phase, where hindsight learning is
used. Online DTs and UDRL suffer from the same multi-modality issues when fitting
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data using unimodal distributions and a maximum likelihood approach. Our method
learns online and does not rely on offline pretraining. It solves the multimodality issue
of UDRL and outperforms it in terms of sample efficiency. Instead of optimizing the
policy to achieve a desired reward in action space, our method Gogepo evaluates the
generated policies in command space. This is done by generating, conditioning on
a command, a policy that is then evaluated using a parameter-based value function
and trained to match the command to the evaluated return. This side-steps the issue
with multi-modality in certain types of UDRL for episodic environments, where a
command may be achieved through many different behaviors, and fitting the policy
to varying actions may lead to sub-optimal policies. Alternatively, the multimodality
problem could be solved using a return-conditioned policy that directly outputs a
multimodal action distribution, or is conditioned on random latent variables. To the
best of our knowledge, this has not been tried for return-conditioned RL.

6.3.2 On the convergence of Upside Down RL

In a separate paper [Štrupl et al., 2022a], we proved the divergence of UDRL and
Goal-Conditioned Supervised Learning (GCSL) in stochastic environments with
episodic tasks. The proofs, primarily developed by Mirek Strupl, were not included in
this thesis. Specifically, we showed that in a simple MDP, following UDRL’s update,
under certain simplifications, the sequence of learned policies fails to converge to the
optimal policy. This optimal policy, capable of satisfying any command, resembles
a standard policy in an augmented MDP, where UDRL’s command and horizon are
part of the agent’s state space.

Our study of UDRL’s recursive update also led to proving the convergence of the
algorithm Reward-Weighted Regression (RWR) [Peters and Schaal, 2007] to a global
optimum [Štrupl et al., 2022b]. RWR shares a similar recursive update mechanism
with UDRL. We have not investigated the convergence properties of GoGePo. Our
approach differs from that of Štrupl et al. [2022a] as it does not involve hindsight
learning, making the counterexamples in his paper not applicable to our work.

6.3.3 Fast Weight Programmers and HyperNetworks

The idea of using a neural network (NN) to generate weight changes for another NN
dates back to Fast Weight Programmers (FWPs) [Schmidhuber, 1992b, 1993], later
scaled up to deeper neural networks under the name of hypernetworks [Ha et al.,
2016]. While in traditional NNs the weight matrix remains fixed after training, FWPs
make these weights context-dependent. More generally, FWPs can be used as neural
functions that involve multiplicative interactions and parameter sharing [Kirsch and
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Schmidhuber, 2021]. When updated in recurrent fashion, FWPs can be used as
memory mechanisms. Linear transformers are a type of FWP where information is
stored through outer products of keys and values [Schlag et al., 2021; Schmidhuber,
1992b]. FWPs are used in the context of memory-based meta learning [Schmidhuber,
1993; Miconi et al., 2018; Gregor, 2020; Kirsch and Schmidhuber, 2021; Irie et al.,
2021a; Kirsch et al., 2022], predicting parameters for varying architectures [Knyazev
et al., 2021], and reinforcement learning [Gomez and Schmidhuber, 2005; Najarro
and Risi, 2020; Kirsch et al., 2022]. In contrast to all of these approaches, ours uses
FWPs to conditionally generate policies given a command.

6.4 Discussion

Our GoGePo is an RL framework for generating policies yielding given desired
returns. Hypernetworks in conjunction with fingerprinting-based value functions can
be used to train a Fast Weight Programmer through supervised learning to directly
generate parameters of a policy that achieves a given return. By iteratively asking
for higher returns than those observed so far, our algorithm trains the generator to
produce highly performant policies zero-shot. Empirically, GoGePo is competitive
with ARS and DDPG and outperforms UDRL on continuous control tasks. It also
circumvents the multi-modality issue found in many approaches of the UDRL family.
Further, our approach can be used to generate policies with any desired return.

It remains uncertain whether learning a policy conditioned on a goal is better
than learning a policy generator conditioned on the same goal. This dilemma shares
its foundation with the question of whether it is more effective to learn a Recurrent
Neural Network based on some contextual input versus learning a Fast Weight
Programmer capable of generating the weights for a Neural Network given similar
context. Our framework does not compare these two approaches directly; instead, it
suggests employing the PSSVF to tackle the multi-modality challenges associated
with UDRL. Exploring similar strategies, potentially utilizing the PSVF V (s,θ) to
improve UDRL, represents an avenue for future research. There are two current
limitations of our approach that we want to highlight: First, NNs created by an
untrained generator might have weights that are far from typical initialization schemes.
Exploration starting with such policies might be hard. Second, our method is based on
the episodic return signal. Extending it by considering also the state of the agent might
help to increase sample efficiency. Future work will also consider context commands
other than those asking for particular returns, as well as generators based on latent
variable models (e.g., conditional variational autoencoders) allowing for capturing
diverse sets of policies, to improve exploration of complex RL environments.
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Chapter 7

Outlook

This thesis introduced Parameter-Based Value Functions (PBVFs), which are value
functions capable of incorporating policy parameters alongside states or state-action
pairs as inputs. PBVFs excel in generalizing across a broad range of policies, rapidly
zero-shot learning new policies, and demonstrating strong performance in continuous
control tasks. We explored two methods for reducing policy dimensionality, namely
static and recurrent policy fingerprinting. Static fingerprinting has been evaluated
in Reinforcement Learning (RL) and goal-conditioned problems, aiming to develop
deep policies that achieve specific returns in various environments. Our prelimi-
nary experiments with recurrent fingerprinting in supervised learning tasks have
demonstrated its potential in learning effective representations for Recurrent Neural
Network (RNN) weight matrices. The following paragraphs will present prospective
research directions.

Recurrent fingerprinting for Reinforcement Learning Recurrent policy
fingerprinting, having demonstrated promising results in supervised learning, is
now well-positioned for significant applications in RL. The method’s effectiveness
stems from the ability of the PBVF to consistently query the policy using either the
subsequent state or the most probable upcoming state encountered in the environment.
Additionally, by unrolling the PBVF for fewer steps, it can input only the most
crucial states to the policy. Such an approach is particularly effective in environments
where understanding a policy’s behavior across various states is key to accurately
predicting its return. This is especially true in scenarios where different policies
might experience vastly distinct states. However, the challenge in applying recurrent
fingerprinting arises when we solely map policy parameters to expected returns. The
PBVF tends to develop an implicit model of the environment based only on the loss
associated with the expected return prediction error, which might be a weak learning
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signal. To overcome this, PBVFs that incorporate states or state-action pairs, such as
our PSVF V (s,θ) and our PAVF Q(s,a,θ), are anticipated to offer a richer learning
signal, since they can give credit to every action taken. Future work will focus on
learning our PBVFs with recurrent fingerprinting on complex RL tasks.

Recurrent Fingerprinting and Language In Chapter 5, we empirically demon-
strated the use of recurrent fingerprinting to determine the language an LSTM was
trained in. Initially, our experiments focused on formal languages, but they have the
potential to be extended to tasks involving natural languages. In these tasks, probing
states and actions would encompass complete sentences. Recurrent fingerprinting
enables us to train neural networks to pose natural language questions, thereby ex-
tracting essential information from other neural networks, such as Large Language
Models [Radford et al., 2019; Brown et al., 2020]. This approach is closely linked to
the concept of “Learning To Think” [Schmidhuber, 2015b], which we have recently
adapted for multiagent settings [Zhuge et al., 2023]. In “Learning to Think,” the
policy can learn to ask questions to a world model to solve a task efficiently. Here,
however, it is the value function that is learning to ask questions to the policy to
determine its behavior. Potential applications of this method include cloning lan-
guage models, identifying harmful content, and detecting misalignments [Bai et al.,
2022; Ouyang et al., 2022]. A significant advantage of using recurrent fingerprinting
with natural language is its transparency and explainability, making the information
extraction process directly understandable to humans.

Avoiding Backpropagation Through Time with PBVFs The traditional way
of training an RNN by backpropagation through time (BPTT) or similar methods
[Werbos, 1988; Williams and Zipser, 1994; Robinson and Fallside, 1987] is based on
the runtime view of what the RNN does while it operates on a sequence of inputs. In
the case of long time lags between relevant events, this leads to well-known issues
(e.g., vanishing gradients [Hochreiter, 1991]) at the heart of all of deep learning
[Schmidhuber, 2015a]. An alternative is to use our PBVFs, which allow us to view
the RNN as a static object and optimize it directly using Algorithm 1, without having
to resort to BPTT. In future work, we will train RNNs by directly minimizing the
loss predicted by a PBVF.
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Appendix A

Parameter-Based Value
Functions

A.1 Proofs and derivations

Theorem 3.1.1. Let πθ be stochastic. For any Markov Decision Process, the follow-
ing holds:

∇θ J(πθ ) = Es∼dπθ (s),a∼πθ (.|s) [(Q(s,a,θ)∇θ logπθ (a|s))] . (3.1)

Proof. The proof follows the standard approach by Sutton et al. [1999] and we
report it for completeness. We start by deriving an expression for ∇θV (s,θ):

∇θV (s,θ) = ∇θ

∫
A

πθ (a|s)Q(s,a,θ)da =
∫
A

∇θ πθ (a|s)Q(s,a,θ)+πθ (a|s)∇θ Q(s,a,θ)da

=
∫
A

∇θ πθ (a|s)Q(s,a,θ)+πθ (a|s)∇θ

(
R(s,a)+ γ

∫
S

P(s′|s,a)V (s′,θ)ds′
)

da

=
∫
A

∇θ πθ (a|s)Q(s,a,θ)+πθ (a|s)γ
∫
S

P(s′|s,a)∇θV (s′,θ)ds′ da

=
∫
A

∇θ πθ (a|s)Q(s,a,θ)+πθ (a|s)γ
∫
S

P(s′|s,a)×

×
∫
A

∇θ πθ (a′|s′)Q(s′,a′,θ)+πθ (a′|s′)γ
∫
S

P(s
′′ |s′,a′)∇θV (s

′′
,θ)ds

′′
da′ ds′ da

=
∫
S

∞

∑
t=0

γ
tP(s → s′, t,πθ )

∫
A

∇θ πθ (a|s′)Q(s′,a,θ)dads′.
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84 A.1 Proofs and derivations

Taking the expectation with respect to s0 ∼ µ0(s) we have:

∇θ J(θ) = ∇θ

∫
S

µ0(s)V (s,θ)ds =
∫
S

µ0(s)∇θV (s,θ)ds

=
∫
S

µ0(s)
∫
S

∞

∑
t=0

γ
tP(s → s′, t,πθ )

∫
A

∇θ πθ (a|s)Q(s,a,θ)ds′ dads

=
∫
S

dπθ (s)
∫
A

∇θ πθ (a|s)Q(s,a,θ)dads

= Es∼dπθ (s),a∼πθ (.|s) [(Q(s,a,θ)∇θ logπθ (a|s))] .

Theorem 3.1.2. Let πθ be deterministic. Under standard regularity assumptions [Sil-
ver et al., 2014], for any Markov Decision Process, the following holds:

∇θ J(πθ ) = Es∼dπθ (s)
[
∇aQ(s,a,θ)|a=πθ (s)∇θ πθ (s)

]
. (3.2)

Proof. The proof follows the standard approach by Silver et al. [2014] and we report
it for completeness. We start by deriving an expression for ∇θV (s,θ):

∇θV (s,θ) = ∇θ Q(s,πθ (s),θ) = ∇θ

(
R(s,πθ (s))+ γ

∫
S

P(s′|s,πθ (s))V (s′,θ)ds′
)

= ∇θ πθ (s)∇aR(s,a)|a=πθ (s)+

+ γ

∫
S

P(s′|s,πθ (s))∇θV (s′,θ)+∇θ πθ (s)∇aP(s′|s,a)|a=πθ (s) ds′

= ∇θ πθ (s)∇a

(
R(s,a)+ γ

∫
S

P(s′|s,a)V (s′,θ)ds′
)
|a=πθ (s)+

+ γ

∫
S

P(s′|s,πθ (s))∇θV (s′,θ)ds′

= ∇θ πθ (s)∇aQ(s,a,θ)|a=πθ (s)+ γ

∫
S

P(s′|s,πθ (s))∇θV (s′,θ)ds′

= ∇θ πθ (s)∇aQ(s,a,θ)|a=πθ (s)+

+ γ

∫
S

P(s′|s,πθ (s))∇θ πθ (s′)∇aQ(s′,a,θ)|a=πθ (s′) ds′+

+ γ

∫
S

P(s′|s,πθ (s))γ
∫
S

P(s
′′ |s′,πθ (s′))∇θV (s

′′
,θ)ds

′′
ds′

=
∫
S

∞

∑
t=0

γ
tP(s → s′, t,πθ )∇θ πθ (s′)∇aQ(s′,a,θ)|a=πθ (s′) ds′
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Taking the expectation with respect to s0 ∼ µ0(s) we have:

∇θ J(θ) = ∇θ

∫
S

µ0(s)V (s,θ)ds =
∫
S

µ0(s)∇θV (s,θ)ds

=
∫
S

µ0(s)
∫
S

∞

∑
t=0

γ
tP(s → s′, t,πθ )∇θ πθ (s′)∇aQ(s′,a,θ)|a=πθ (s′) ds′ ds

=
∫
S

dπθ (s)∇θ πθ (s)∇aQ(s,a,θ)|a=πθ (s) ds

= Es∼dπθ (s)
[
∇θ πθ (s)∇aQ(s,a,θ)|a=πθ (s)

]

Theorem 3.1.3. For any Markov Decision Process, the following holds:

∇θ Jb(πθ ) = Es∼d
πb
∞ (s),a∼πb(.|s)

[
πθ (a|s)
πb(a|s)

(Q(s,a,θ)∇θ logπθ (a|s)+∇θ Q(s,a,θ))
]
.

(3.7)

Proof.

∇θ Jb(πθ ) = ∇θ

∫
S

dπb
∞ (s)V (s,θ)ds (A.1)

= ∇θ

∫
S

dπb
∞ (s)

∫
A

πθ (a|s)Q(s,a,θ)dads (A.2)

=
∫
S

dπb
∞ (s)

∫
A
[Q(s,a,θ)∇θ πθ (a|s)+πθ (a|s)∇θ Q(s,a,θ)]dads (A.3)

=
∫
S

dπb
∞ (s)

∫
A

πb(a|s)
πb(a|s)

πθ (a|s)[Q(s,a,θ)∇θ logπθ (a|s)+∇θ Q(s,a,θ)]dads

(A.4)

= Es∼d
πb
∞ (s),a∼πb(.|s)

[
πθ (a|s)
πb(a|s)

(Q(s,a,θ)∇θ logπθ (a|s)+∇θ Q(s,a,θ))
]

(A.5)

Theorem 3.1.4. Under standard regularity assumptions [Silver et al., 2014], for any
Markov Decision Process, the following holds:

∇θ Jb(πθ ) = Es∼d
πb
∞ (s)

[
∇aQ(s,a,θ)|a=πθ (s)∇θ πθ (s)+∇θ Q(s,a,θ)|a=πθ (s)

]
. (3.9)
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Proof.

∇θ Jb(πθ ) =
∫
S

dπb
∞ (s)∇θ Q(s,πθ (s),θ)ds (A.6)

=
∫
S

dπb
∞ (s)

[
∇aQ(s,a,θ)|a=πθ (s)∇θ πθ (s)+∇θ Q(s,a,θ)|a=πθ (s)

]
ds

(A.7)

= Es∼d
πb
∞ (s)

[
∇aQ(s,a,θ)|a=πθ (s)∇θ πθ (s)+∇θ Q(s,a,θ)|a=πθ (s)

]
(A.8)

A.2 Implementation details

In this appendix, we report the implementation details for PSSVF, PSVF, PAVF and
the baselines. We specify for each hyperparameter, which algorithms and tasks are
sharing them.

Shared hyperparameters:

• Deterministic policy architecture (continuous control tasks): We use three
different deterministic policies: a linear mapping between states and actions; a
single-layer MLP with 32 neurons and tanh activation; a 2-layers MLP (64,64)
with tanh activations. All policies contain a bias term and are followed by a
tanh nonlinearity in order to bound the action.

• Deterministic policy architecture (discrete control tasks): We use three differ-
ent deterministic policies: a linear mapping between states and a probability
distribution over actions; a single-layer MLP with 32 neurons and tanh activa-
tion; a 2-layers MLP (64,64) with tanh activations. The deterministic action a
is obtained choosing a = argmaxπθ (a|s). All policies contain a bias term.

• Stochastic policy architecture (continuous control tasks): We use three different
stochastic policies: a linear mapping; a single-layer MLP with 32 neurons and
tanh activation; a 2-layers MLP (64,64) with tanh activations all mapping from
states to the mean of a Normal distribution. The variance is state-independent
and parametrized as e2Ω with diagonal Ω. All policies contain a bias term.
Actions sampled are given as input to a tanh nonlinearity in order to bound
them in the action space.
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• Stochastic policy architecture (discrete control tasks): We use three different
deterministic policies: a linear mapping between states and a probability distri-
bution over actions; a single-layer MLP with 32 neurons and tanh activation; a
2-layers MLP (64,64) with tanh activations. All policies contain a bias term.

• Policy initialization: all weights and biases are initialized using the default
Pytorch initialization for PBVFs and DDPG and are set to zero for ARS.

• Critic architecture: 2-layers MLP (512,512) with bias and ReLU activation
functions for PSVF, PAVF; 2-layers MLP (256,256) with bias and ReLU
activation functions for DDPG.

• Critic initialization: all weights and biases are initialized using the default
Pytorch initialization for PBVFs and DDPG.

• Batch size: 128 for DDPG, PSVF, PAVF; 16 for PSSVF.

• Actor’s frequency of updates: every episode for PSSVF; every batch of episodes
for ARS; every 50 time steps for DDPG, PSVF, PAVF.

• Critic’s frequency of updates: every episode for PSSVF; every 50 time steps
for DDPG, PSVF, PAVF.

• Replay buffer: the size is 100k; data are sampled uniformly.

• Optimizer: Adam for PBVFs and DDPG.

Tuned hyperparameters:

• Number of directions and elite directions for ARS ([directions, elite direc-
tions]): tuned with values in [[1,1], [4,1], [4,4], [16,1], [16,4], [16,16]].

• Policy’s learning rate: tuned with values in [1e−2,1e−3,1e−4].

• Critic’s learning rate: tuned with values in [1e−2,1e−3,1e−4].

• Noise for exploration: the perturbation for the action (DDPG) or the parameter
is sampled from N (0,σ I) with σ tuned with values in [1,1e−1] for PSSVF,
PSVF, PAVF; [1e− 1,1e− 2] for DDPG; [1,1e− 1,1e− 2,1e− 3] for ARS.
For stochastic PSSVF and PSVF we include also the value σ = 0, although it
almost never results optimal.

Environment hyperparameters:
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• Environment interactions: 1M time steps for Swimmer-v3 and Hopper-v3;
100k time steps for all other environments.

• Discount factor for TD algorithms: 0.999 for Swimmer; 0.99 for all other
environments.

• Survival reward in Hopper: True for DDPG, PSVF, PAVF; False for ARS,
PSSVF.

Algorithm-specific hyperparameters:

• Critic’s number of updates: 50 for DDPG, 5 for PSVF and PAVF; 10 for
PSSVF.

• Actor’s number of updates: 50 for DDPG, 1 for PSVF and PAVF; 10 for
PSSVF.

• Observation normalization: False for DDPG; True for all other algorithms.

• Starting steps in DDPG (random actions and no training): first 1%.

• Polyak parameter in DDPG: 0.995.

PAVF ∇θ Q(s,a,θ) ablation We investigate the effect of the term ∇θ Q(s,a,θ)
in the off-policy policy gradient theorem for deterministic PAVF. We follow the same
methodology as in our main experiments to find the optimal hyperparameters when
updating using the now biased gradient:

∇θ Jb(πθ )≈ Es∼d
πb
∞ (s)

[
∇aQ(s,a,θ)|a=πθ (s)∇θ πθ (s)

]
, (A.9)

which corresponds to the gradient that DDPG is following. Figure A.1 reports the
results for Hopper and Swimmer using shallow and deep policies. We observe a
significant drop in performance in Swimmer when removing part of the gradient. In
Hopper the loss of performance is less significant, possibly because both algorithms
tend to converge to the same sub-optimal behavior.

ARS For ARS, we use the official implementation provided by the authors and we
modified it in order to use nonlinear policies. More precisely, we adopt the implemen-
tation of ARSv2-t [Mania et al., 2018], which uses observation normalization, elite
directions and an adaptive learning rate based on the standard deviation of the return
collected. To avoid divisions by zero, which may happen if all data sampled have the
same return, we perform the standardization only in case the standard deviation is not
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Figure A.1: Performance of PAVF and biased PAVF (PAVF without the gradient of
the action-value function with respect to the policy parameters) using deterministic
policies. We use the hyperparameters maximizing average return and report the best
hyperparameters found for the biased version in Table A.1. Learning curves are
averaged over 20 seeds.

Learning rate policy Policy: [] [64,64]
Metric: avg avg

Swimmer-v3 1e-3 1e-4
Hopper-v3 1e-4 1e-4
Learning rate critic
Swimmer-v3 1e-4 1e-4
Hopper-v3 1e-3 1e-3
Noise for exploration
Swimmer-v3 1.0 1.0
Hopper-v3 0.1 0.1

Table A.1: Table of best hyperparameters for biased PAVFs

zero. In the original implementation of ARS [Mania et al., 2018], the survival bonus
for the reward in the Hopper environment is removed to avoid local minima. Since we
want our PSSVF to be close to their setting, we also apply this modification. We do
not remove the survival bonus from all TD algorithms, and we have not investigatet
how this could affect their performance. We provide a comparison of the performance
of PSSVF with and without the bonus in figure A.2 using deterministic policies.

DDPG For DDPG, we use the Spinning Up implementation provided by Ope-
nAI [Achiam, 2018], which includes target networks for the actor and the critic and
no learning for a fixed set of time steps, called starting steps. We do not include
target networks and starting steps in our PBVFs, although they could potentially help
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Figure A.2: Performance of PSSVF with and without the survival bonus for the
reward in Hopper-v3 when using the hyperparameters maximizing the average return.
Learning curves are averaged over 5 seeds.

stabilize training. The implementation of DDPG that we use [Achiam, 2018] does
not use observation normalization. In preliminary experiments, we observed that it
failed to increase or decrease performance significantly; hence, we decided not to use
it. Another difference between our TD algorithms and DDPG consists in the number
of updates of the actor and the critic. Since DDPG’s critic needs to keep track of the
current policy, the critic and the actor are updated in a nested form, with the actor’s
update depending on the critic’s and vice versa. Our PSVF and PAVF do not need to
track the policy learned, hence, when it is time to update, we need only to train once
the critic for many gradient steps and then train the actor for many gradient steps.
This requires less compute. On the other hand, when using nonlinear policies, our
PBVFs suffer the curse of dimensionality. For this reason, we profited from using a
bigger critic. In preliminary experiments, we observed that DDPG’s performance did
not change significantly through a bigger critic. We show differences in performance
for our methods when removing observation normalization and when using a smaller
critic (MLP(256,256)) in figure A.3. We observe that the performance decreases
if observation normalization is removed. However, only for shallow policies in
Swimmer and deep policies in Hopper, there seems to be a significant benefit. Future
work will assess when bigger critics help.

Discounting in Swimmer For TD algorithms, we choose a fixed discount factor
γ = 0.99 for all environments but Swimmer-v3. This environment is known to
be challenging for TD-based algorithms because discounting causes the agents to
become too short-sighted. We observe that, with the standard discounting, DDPG,
PSVF and PAVF were not able to learn the task. However, making the algorithms
more far-sighted greatly improved their performance. In Figure A.4, we report the
return obtained by DDPG, PSVF, and PAVF for different values of the discount factor
in Swimmer when using deterministic policies.
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Figure A.3: Learning curves for PSVF and PAVF for different environments and
policies removing observation normalization and using a smaller critic. We use the
hyperparameters maximizing the average return. Learning curves are averaged over
5 seeds. For this ablation we use deterministic policies.

A.3 Experimental details

A.3.1 LQR

PSSVF We use a learning rate of 1e−3 for the policy and 1e−2 for the PSSVF.
Weights are perturbed every episode using σ = 0.5. The policy is initialized with
weight 3.2 and bias −3.5. All the other hyperparameters are set to their default. The
true episodic J(θ) is computed by running 10,000 policies in the environment with
parameters in [−5,5]× [−5,5]. Vw(θ) is computed by measuring the output of the
PSSVF on the same set of policies. Each red arrow in figure 3.1 represents 200
update steps of the policy.

PSVF and PAVF Using the exact same setting, we run PSVF and PAVF in LQR
environment and we compare learned V (s0,θ) and Q(s0,πθ (s0),θ) with the true
PSVF and PAVF over the parameter space. Computing the value of the true PSVF
and PAVF requires computing the infinite sum of discounted reward obtained by the
policy. Here we approximate it by running 10,000 policies in the environment with
parameters in [−5,−5]× [−5,5] for 500 time steps. This, setting γ = 0.99, provides
a good approximation of their true values, since further steps in the environment
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Figure A.4: Effect of different choices of the discount factor in Swimmer-v3 for
PSVF, PAVF and DDPG, with shallow and deep deterministic policies. We use the
hyperparameters maximizing the average return. Learning curves are averaged over
5 seeds

result in almost zero discounted reward from s0. We use a learning rate of 1e−2 for
the policy and 1e−1 for the PSVF and PAVF. Weights are perturbed every episode
using σ = 0.5. The policy is updated every 10 time steps using 2 gradient steps; the
PSVF and PAVF are updated every 10 time steps using 10 gradient updates. The
critic is a 1-layer MLP with 64 neurons and tanh nonlinearity.

A.3.2 Main Experiments

Methodology In order to ensure a fair comparison of our methods and the base-
lines, we adopt the following procedure. For each hyperparameter configuration,
for each environment and policy architecture, we run 5 instances of the learning
algorithm using different seeds. We measure the learning progress by running 100
evaluations while learning the deterministic policy (without action or parameter noise)
using 10 test trajectories. We use two metrics to determine the best hyperparameters:
the average return over policy evaluations during the whole training process and
the average return over policy evaluations during the last 20% time steps. For each
algorithm, environment and policy architecture, we choose the two hyperparameter
configurations maximizing the performance of the two metrics and test them on 20
new seeds, reporting average and final performance in table A.2 and A.3 respectively.

Figures A.5 and A.6 report all the learning curves from the main results and for
a small non linear policy with 32 hidden neurons.
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A.3.3 Sensitivity analysis

In the following, we report the sensitivity plots for all algorithms, for all deterministic
policy architectures and environments. In particular, figure A.7, A.8, A.9, A.10
and A.11 show the performance of each algorithm given different hyperparameters
tried during training. We observe that in general deep policies are more sensitive
and, apart for DDPG, achieve often a better performance than smaller policies.
The higher sensitivity displayed by ARS is in part caused by the higher number of
hyperparameters we tried when tuning the algorithm.

A.3.4 Table of best hyperparameters

We report for each algorithm, environment, and policy architecture the best hy-
perparameters found when optimizing for average return or final return in ta-
bles A.4, A.5, A.6, A.7, A.8 and A.9.
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Policy: [] MountainCar Inverted Reacher Swimmer Hopper
Continuous-v0 Pendulum-v2 -v2 -v3 -v3

ARS 63±6 886±72 −9.2±0.3 228±89 1184±345
PSSVF 85±4 944±33 −11.7±0.9 259±47 1392±287
DDPG 0±0 612±169 −8.6±0.9 95±112 629±145
PSVF 84±20 926±34 −19.7±6.0 188±71 917±249
PAVF 82±21 913±40 −17.0±7.7 231±56 814±223

Policy:[32]
ARS 37±11 851±46 −9.6±0.3 139±78 1003±66
PSSVF 60±33 701±138 10.4±0.5 189±35 707±668
DDPG 0±0 816±36 −5.7±0.3 61±32 1384±125
PSVF 71±25 529±281 −11.9±1.2 226±33 864±272
PAVF 71±27 563±228 −10.9±1.1 222±28 793±322

Policy: [64,64]

ARS 28±8 812±239 −9.8±0.3 129±68 964±47
PSSVF 72±22 850±93 −10.7±0.2 158±59 922±568
DDPG 0±0 834±36 −5.5±0.4 92±117 767±627
PSVF 80±9 580±107 −10.7±0.6 137±38 843±282
PAVF 73±10 399±219 −10.7±0.5 142±26 875±136

Policy: [] Acrobot-v1 CartPole-v1

ARS −161±23 476±13
PSSVF −137±14 443±105
PSVF −148±25 459±28

Policy:[32]

ARS −296±38 395±141
PSSVF −251±80 463±18
PSVF −270±113 413±61

Policy: [64,64]

ARS −335±35 416±105
PSSVF −281±117 452±34
PSVF −397±71 394±71

Table A.2: Average return with standard deviation (across 20 seeds) for hyperma-
rameters optimizing the average return during training using deterministic policies.
Square brackets represent the number of neurons per layer of the policy. [] represents
a linear policy.
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Policy: [] MountainCar Inverted Reacher Swimmer Hopper
Continuous-v0 Pendulum-v2 -v2 -v3 -v3

ARS 73±5 657±477 −8.6±0.5 334±34 1443±713
PSSVF 84±28 970±126 −10.0±1.0 350±8 1560±911
DDPG 0±1 777±320 −7.3±0.4 146±152 704±234
PSVF 76±36 906±289 −16.5±1.6 238±107 1067±340
PAVF 68±42 950±223 −17.2±15.4 298±40 720±281

Policy:[32]
ARS 54±20 936±146 −9.2±0.4 239±117 1048±68
PSSVF 89±22 816±234 −10.2±1.0 294±41 1204±615
DDPG 0±0 703±283 −4.6±0.6 179±150 1290±348
PSVF 84±31 493±462 −11.3±0.8 290±70 1003±572
PAVF 92±7 854±295 −10.1±0.9 307±34 967±411

Policy: [64,64]

ARS 11±30 976±83 −9.4±0.4 157±54 1006±47
PSSVF 91±16 898±227 −10.7±0.6 224±99 1412±691
DDPG 0±0 943±73 −4.4±0.4 196±151 1437±752
PSVF 93±1 1000±0 −10.6±1.0 257±26 1247±344
PAVF 93±2 827±267 −10.6±0.4 232±42 1005±155

Policy: [] Acrobot-v1 CartPole-v1

ARS −126±26 499±2
PSSVF −97±6 482±53
PSVF −100±18 500±0

Policy:[32]

ARS −215±97 471±110
PSSVF −116±33 500±0
PSVF −244±151 488±36

Policy: [64,64]

ARS −182±45 492±18
PSSVF −233±139 500±0
PSVF −406±51 499±2

Table A.3: Final return with standard deviation (across 20 seeds) for hypermarameters
optimizing the final return during training using deterministic policies.
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Deterministic policies
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Figure A.5: Learning curves representing the average return as a function of the
number of time steps in the environment (across 20 runs) with different environments
and deterministic policy architectures. We use the best hyperparameters found
while maximizing the average reward for each task. For each subplot, the square
brackets represent the number of neurons per policy layer. [] represents a linear
policy.
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Figure A.6: Learning curves representing the average return as a function of the
number of time steps in the environment (across 20 runs) with different environments
and deterministic policy architectures. We use the best hyperparameters found
while maximizing the final reward for each task. For each subplot, the square
brackets represent the number of neurons per policy layer. [] represents a linear
policy.



98 A.3 Experimental details

0.00M 0.02M 0.04M 0.06M 0.08M 0.10M
time steps

500

400

300

200

100

0

re
tu

rn

Acrobot-v1-[]

0.00M 0.02M 0.04M 0.06M 0.08M 0.10M
time steps

500

400

300

200

100

0

re
tu

rn

Acrobot-v1-[32]

0.00M 0.02M 0.04M 0.06M 0.08M 0.10M
time steps

500

400

300

200

100

0

re
tu

rn

Acrobot-v1-[64, 64]

90-100
70-90
30-70
0-30
median

0.00M 0.02M 0.04M 0.06M 0.08M 0.10M
time steps

100

50

0

50

100

re
tu

rn

MountainCarContinuous-v0-[]

0.00M 0.02M 0.04M 0.06M 0.08M 0.10M
time steps

100

50

0

50

100

re
tu

rn

MountainCarContinuous-v0-[32]

0.00M 0.02M 0.04M 0.06M 0.08M 0.10M
time steps

100

50

0

50

100

re
tu

rn

MountainCarContinuous-v0-[64, 64]

90-100
70-90
30-70
0-30
median

0.00M 0.02M 0.04M 0.06M 0.08M 0.10M
time steps

0

100

200

300

400

500

re
tu

rn

CartPole-v1-[]

0.00M 0.02M 0.04M 0.06M 0.08M 0.10M
time steps

0

100

200

300

400

500

re
tu

rn

CartPole-v1-[32]

0.00M 0.02M 0.04M 0.06M 0.08M 0.10M
time steps

0

100

200

300

400

500

re
tu

rn

CartPole-v1-[64, 64]

90-100
70-90
30-70
0-30
median

0.00M 0.02M 0.04M 0.06M 0.08M 0.10M
time steps

0

200

400

600

800

1000

re
tu

rn

InvertedPendulum-v2-[]

0.00M 0.02M 0.04M 0.06M 0.08M 0.10M
time steps

0

200

400

600

800

1000

re
tu

rn

InvertedPendulum-v2-[32]

0.00M 0.02M 0.04M 0.06M 0.08M 0.10M
time steps

0

200

400

600

800

1000

re
tu

rn

InvertedPendulum-v2-[64, 64]

90-100
70-90
30-70
0-30
median

0.00M 0.02M 0.04M 0.06M 0.08M 0.10M
time steps

100

80

60

40

20

0

re
tu

rn

Reacher-v2-[]

0.00M 0.02M 0.04M 0.06M 0.08M 0.10M
time steps

100

80

60

40

20

0

re
tu

rn

Reacher-v2-[32]

0.00M 0.02M 0.04M 0.06M 0.08M 0.10M
time steps

100

80

60

40

20

0

re
tu

rn

Reacher-v2-[64, 64]

90-100
70-90
30-70
0-30
median

0.00M 0.20M 0.40M 0.60M 0.80M 1.00M
time steps

0

100

200

300

re
tu

rn

Swimmer-v3-[]

0.00M 0.20M 0.40M 0.60M 0.80M 1.00M
time steps

0

100

200

300

re
tu

rn

Swimmer-v3-[32]

0.00M 0.20M 0.40M 0.60M 0.80M 1.00M
time steps

0

100

200

300

re
tu

rn

Swimmer-v3-[64, 64]

90-100
70-90
30-70
0-30
median

0.00M 0.20M 0.40M 0.60M 0.80M 1.00M
time steps

0

1000

2000

3000

re
tu

rn

Hopper-v3-[]

0.00M 0.20M 0.40M 0.60M 0.80M 1.00M
time steps

0

1000

2000

3000

re
tu

rn

Hopper-v3-[32]

0.00M 0.20M 0.40M 0.60M 0.80M 1.00M
time steps

0

1000

2000

3000

re
tu

rn

Hopper-v3-[64, 64]

90-100
70-90
30-70
0-30
median

Figure A.7: Sensitivity of PSSVFs using deterministic policies to the choice of the
hyperparameter. Performance is shown by percentile using all the learning curves
obtained during hyperparameter tuning. The median performance is depicted as a
dark line. For each subplot, the numbers in the square brackets represent the number
of neurons per layer of the policy. [] represents a linear policy.
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Figure A.8: Sensitivity of PSVFs using deterministic policies to the choice of the
hyperparameter. Performance is shown by percentile using all the learning curves
obtained during hyperparameter tuning. The median performance is depicted as a
dark line. For each subplot, the numbers in the square brackets represent the number
of neurons per layer of the policy. [] represents a linear policy.
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Figure A.9: Sensitivity of PAVFs using deterministic policies to the choice of the
hyperparameter. Performance is shown by percentile using all the learning curves
obtained during hyperparameter tuning. The median performance is depicted as a
dark line. For each subplot, the numbers in the square brackets represent the number
of neurons per layer of the policy.
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Figure A.10: Sensitivity of DDPG to the choice of the hyperparameter. Performance
is shown by percentile using all the learning curves obtained during hyperparameter
tuning. The median performance is depicted as a dark line. For each subplot, the
numbers in the square brackets represent the number of neurons per layer of the
policy.
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Figure A.11: Sensitivity of ARS to the choice of the hyperparameter. Performance
is shown by percentile using all the learning curves obtained during hyperparameter
tuning. The median performance is depicted as a dark line. For each subplot, the
numbers in the square brackets represent the number of neurons per layer of the
policy.
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Learning rate policy Policy: [] [32] [64,64]
Metric: avg last avg last avg last

Acrobot-v1 1e-2 1e-3 1e-4 1e-4 1e-4 1e-4
MountainCarContinuous-v0 1e-2 1e-3 1e-4 1e-4 1e-4 1e-4
CartPole-v1 1e-3 1e-3 1e-3 1e-3 1e-4 1e-4
Swimmer-v3 1e-3 1e-3 1e-3 1e-3 1e-2 1e-4
InvertedPendulum-v2 1e-3 1e-3 1e-3 1e-3 1e-4 1e-4
Reacher-v2 1e-4 1e-4 1e-4 1e-4 1e-4 1e-4
Hopper-v3 1e-4 1e-4 1e-4 1e-3 1e-4 1e-4
Learning rate critic
Acrobot-v1 1e-2 1e-3 1e-2 1e-2 1e-2 1e-2
MountainCarContinuous-v0 1e-3 1e-2 1e-3 1e-2 1e-2 1e-2
CartPole-v1 1e-2 1e-2 1e-3 1e-3 1e-2 1e-2
Swimmer-v3 1e-3 1e-3 1e-2 1e-2 1e-3 1e-2
InvertedPendulum-v2 1e-2 1e-2 1e-3 1e-2 1e-3 1e-3
Reacher-v2 1e-3 1e-3 1e-3 1e-3 1e-4 1e-4
Hopper-v3 1e-3 1e-3 1e-2 1e-2 1e-2 1e-2
Noise for exploration
Acrobot-v1 1.0 1.0 1e-1 1e-1 1e-1 1e-1
MountainCarContinuous-v0 1.0 1.0 1e-1 1e-1 1e-1 1e-1
CartPole-v1 1.0 1.0 1.0 1.0 1e-1 1e-1
Swimmer-v3 1.0 1.0 1.0 1.0 1.0 1e-1
InvertedPendulum-v2 1.0 1.0 1.0 1.0 1e-1 1e-1
Reacher-v2 1e-1 1e-1 1e-1 1e-1 1e-1 1e-1
Hopper-v3 1.0 1.0 1e-1 1.0 1e-1 1e-1

Table A.4: Table of best hyperparameters for PSSVFs using deterministic policies
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Learning rate policy Policy: [] [32] [64,64]
Metric: avg last avg last avg last

Acrobot-v1 1e-2 1e-3 1e-2 1e-2 1e-2 1e-2
MountainCarContinuous-v0 1e-2 1e-2 1e-2 1e-2 1e-2 1e-2
CartPole-v1 1e-2 1e-2 1e-2 1e-2 1e-2 1e-2
Swimmer-v3 1e-2 1e-2 1e-2 1e-2 1e-2 1e-2
InvertedPendulum-v2 1e-2 1e-2 1e-2 1e-2 1e-2 1e-2
Reacher-v2 1e-2 1e-2 1e-3 1e-2 1e-3 1e-3
Hopper-v3 1e-2 1e-2 1e-2 1e-2 1e-2 1e-2
Number of directions
and elite directions
Acrobot-v1 (4,4) (4,4) (1,1) (1,1) (1,1) (1,1)
MountainCarContinuous-v0 (1,1) (1,1) (1,1) (16,4) (1,1) (1,1)
CartPole-v1 (4,4) (4,4) (1,1) (1,1) (4,1) (4,1)
Swimmer-v3 (1,1) (1,1) (1,1) (4,1) (1,1) (1,1)
InvertedPendulum-v2 (4,4) (4,4) (1,1) (4,4) (4,1) (16,1)
Reacher-v2 (16,16) (16,16) (1,1) (16,4) (1,1) (1,1)
Hopper-v3 (4,1) (4,1) (1,1) (1,1) (1,1) (1,1)
Noise for exploration
Acrobot-v1 1e-2 1e-3 1e-1 1e-1 1e-1 1e-1
MountainCarContinuous-v0 1e-1 1e-1 1e-1 1e-1 1e-1 1e-1
CartPole-v1 1e-2 1e-2 1e-1 1e-1 1e-2 1e-2
Swimmer-v3 1e-1 1e-1 1e-2 1e-1 1e-1 1e-1
InvertedPendulum-v2 1e-2 1e-2 1e-2 1e-2 1e-2 1e-2
Reacher-v2 1e-2 1e-2 1e-2 1e-2 1e-2 1e-2
Hopper-v3 1e-1 1e-1 1e-1 1e-1 1e-1 1e-1

Table A.5: Table of best hyperparameters for ARS
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Learning rate policy Policy: [] [32] [64,64]
Metric: avg last avg last avg last

Acrobot-v1 1e-2 1e-2 1e-4 1e-4 1e-4 1e-2
MountainCarContinuous-v0 1e-2 1e-3 1e-2 1e-4 1e-3 1e-4
CartPole-v1 1e-2 1e-2 1e-2 1e-4 1e-3 1e-4
Swimmer-v3 1e-3 1e-3 1e-3 1e-3 1e-3 1e-3
InvertedPendulum-v2 1e-2 1e-3 1e-4 1e-4 1e-4 1e-4
Reacher-v2 1e-3 1e-2 1e-4 1e-4 1e-4 1e-4
Hopper-v3 1e-3 1e-3 1e-4 1e-4 1e-4 1e-3
Learning rate critic
Acrobot-v1 1e-3 1e-4 1e-2 1e-2 1e-3 1e-2
MountainCarContinuous-v0 1e-4 1e-3 1e-2 1e-4 1e-3 1e-3
CartPole-v1 1e-2 1e-2 1e-2 1e-3 1e-2 1e-4
Swimmer-v3 1e-4 1e-4 1e-4 1e-4 1e-4 1e-4
InvertedPendulum-v2 1e-3 1e-2 1e-3 1e-4 1e-4 1e-3
Reacher-v2 1e-2 1e-2 1e-3 1e-3 1e-4 1e-4
Hopper-v3 1e-2 1e-2 1e-4 1e-4 1e-2 1e-4
Noise for exploration
Acrobot-v1 1.0 1.0 1e-1 1e-1 1e-1 1e-1
MountainCarContinuous-v0 1.0 1e-1 1e-1 1.0 1e-1 1e-1
CartPole-v1 1.0 1.0 1.0 1e-1 1e-1 1e-1
Swimmer-v3 1.0 1.0 1.0 1.0 1.0 1.0
InvertedPendulum-v2 1.0 1.0 1e-1 1e-1 1e-1 1e-1
Reacher-v2 1.0 1.0 1.0 1.0 1e-1 1e-1
Hopper-v3 1.0 1.0 1e-1 1e-1 1e-1 1.0

Table A.6: Table of best hyperparameters for PSVFs using deterministic policies
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Algo: PSSVF PSVF

Learning rate policy Policy: [] [64,64] [] [64,64]
Metric: avg avg avg avg

Acrobot-v1 1e-2 1e-2 1e-2 1e-3
MountainCarContinuous-v0 1e-2 1e-3 1e-2 1e-3
CartPole-v1 1e-3 1e-4 1e-2 1e-3
Swimmer-v3 1e-2 1e-4 1e-3 1e-4
InvertedPendulum-v2 1e-3 1e-4 1e-2 1e-3
Reacher-v2 1e-4 1e-3 1e-2 1e-2
Hopper-v3 1e-4 1e-4 1e-3 1e-4
Learning rate critic
Acrobot-v1 1e-2 1e-4 1e-4 1e-2
MountainCarContinuous-v0 1e-2 1e-2 1e-3 1e-3
CartPole-v1 1e-2 1e-3 1e-2 1e-2
Swimmer-v3 1e-2 1e-3 1e-3 1e-4
InvertedPendulum-v2 1e-3 1e-3 1e-3 1e-2
Reacher-v2 1e-3 1e-3 1e-3 1e-3
Hopper-v3 1e-3 1e-2 1e-2 1e-4
Noise for exploration
Acrobot-v1 1.0 1.0 1.0 1.0
MountainCarContinuous-v0 1.0 1e-1 1.0 1e-1
CartPole-v1 1.0 1.0 1.0 1e-1
Swimmer-v3 1.0 1e-1 1.0 1e-1
InvertedPendulum-v2 1.0 1.0 1.0 1e-1
Reacher-v2 1e-1 0.0 1.0 0.0
Hopper-v3 1.0 1e-1 1.0 1e-1

Table A.7: Table of best hyperparameters for PSSVFs and PSVFs using stochastic
policies
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Learning rate policy Policy: [] [32] [64,64]
Metric: avg last avg last avg last

MountainCarContinuous-v0 1e-2 1e-3 1e-3 1e-4 1e-4 1e-4
Swimmer-v3 1e-3 1e-3 1e-3 1e-3 1e-3 1e-3
InvertedPendulum-v2 1e-2 1e-3 1e-3 1e-4 1e-4 1e-4
Reacher-v2 1e-3 1e-3 1e-4 1e-4 1e-4 1e-4
Hopper-v3 1e-3 1e-4 1e-4 1e-4 1e-4 1e-3
Learning rate critic
MountainCarContinuous-v0 1e-4 1e-4 1e-4 1e-3 1e-4 1e-3
Swimmer-v3 1e-4 1e-4 1e-4 1e-4 1e-4 1e-4
InvertedPendulum-v2 1e-3 1e-2 1e-2 1e-4 1e-2 1e-3
Reacher-v2 1e-3 1e-3 1e-3 1e-2 1e-3 1e-3
Hopper-v3 1e-4 1e-3 1e-3 1e-2 1e-4 1e-3
Noise for exploration
MountainCarContinuous-v0 1.0 1e-1 1e-1 1e-1 1e-1 1e-1
Swimmer-v3 1.0 1.0 1.0 1.0 1.0 1.0
InvertedPendulum-v2 1.0 1.0 1e-1 1e-1 1e-1 1e-1
Reacher-v2 1e-1 1e-1 1e-1 1.0 1.0 1.0
Hopper-v3 1.0 1.0 1e-1 1e-1 1e-1 1.0

Table A.8: Table of best hyperparameters for PAVFs using deterministic policies
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Learning rate policy Policy: [] [32] [64,64]
Metric: avg last avg last avg last

MountainCarContinuous-v0 1e-2 1e-2 1e-2 1e-4 1e-3 1e-3
Swimmer-v3 1e-3 1e-3 1e-2 1e-2 1e-2 1e-2
InvertedPendulum-v2 1e-4 1e-4 1e-3 1e-3 1e-3 1e-4
Reacher-v2 1e-4 1e-3 1e-2 1e-2 1e-3 1e-3
Hopper-v3 1e-2 1e-2 1e-2 1e-4 1e-2 1e-2
Learning rate critic
MountainCarContinuous-v0 1e-4 1e-4 1e-4 1e-3 1e-3 1e-3
Swimmer-v3 1e-3 1e-3 1e-3 1e-3 1e-2 1e-3
InvertedPendulum-v2 1e-3 1e-3 1e-3 1e-4 1e-3 1e-3
Reacher-v2 1e-3 1e-3 1e-3 1e-3 1e-3 1e-3
Hopper-v3 1e-3 1e-3 1e-4 1e-4 1e-4 1e-4
Noise for exploration
MountainCarContinuous-v0 1e-2 1e-2 1e-2 1e-1 1e-1 1e-1
Swimmer-v3 1e-1 1e-1 1e-2 1e-2 1e-2 1e-1
InvertedPendulum-v2 1e-1 1e-1 1e-2 1e-2 1e-2 1e-2
Reacher-v2 1e-1 1e-2 1e-1 1e-1 1e-1 1e-1
Hopper-v3 1e-1 1e-1 1e-1 1e-2 1e-1 1e-2

Table A.9: Table of best hyperparameters for DDPG



Appendix B

General Policy Evaluation and
Improvement by Learning to
Identify Few But Crucial States

B.1 Implementation details

B.1.1 MNIST Implementation

For our experiments with MNIST we adapt the official code for PSSVF to CNN
policies and the MNIST classification problem.

• Policy architecture: The policy consists of two convolutional layers with 4
and 8 output channels respectively, 3× 3 kernels and a stride of 1. Each
convolutional layer is followed by ReLU activations. The output from the
convolutional layers is flattened and provided to a fully connected linear layer
which outputs the logits for the ten MNIST classes. The logits are fed into a
categorical distribution; the outputs are interpreted as class probabilities.

• Value function architecture: MLP with 2 hidden layers and 64 neurons per
layer with bias. ReLU activations.

• Batch size for computing the loss: 1024

• Batch size for value function optimization: 4

• Buffer size: 1000

• Loss: Cross entropy
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• Initialization of probing states: uniformly random in [−0.5,0.5)

• Update frequency: every time a new episode is collected

• Number of policy updates: 1

• Number of value function updates: 5

• Learning rate policy: 1e-6

• Learning rate value function: 1e-3

• Noise for policy perturbation: 0.05

• Priority sampling from replay buffer: True, with weights 1/x0.8, where x is the
number of episodes since the data was stored in the buffer

• Default PyTorch initialization for all networks.

• Optimizer: Adam

B.1.2 RL Implementation

Here we report the hyperparameters used for PSSVF and the baselines. For PSSVF,
we use the open source implementation provided by Faccio et al. [2021]. For DDPG
and SAC, we use the spinning-up RL implementation [Achiam, 2018], whose results
are on par with the best reported results. For ARS, we adapt the publicly available
implementation [Mania et al., 2018] to Deep NN policies.

Shared hyperparameters:

• Policy architecture: Deterministic MLP with 2 hidden layers and 256 neurons
per layer with bias. Tanh activations for PSSVF and ARS. ReLu activations
for DDPG and SAC. The output layer has Tanh nonlinearity and bounds the
action in the action-space limit.

• Value function architecture: MLP with 2 hidden layers and 256 neurons per
layer with bias. ReLU activations for PSSVF and DDPG and SAC.

• Initialization for actors and critics: Default PyTorch initialization

• Batch size: 128 for DDPG and SAC. 16 for PSSVF

• Learning rate actor: 1e-3 for DDPG and SAC; 2e-6 for PSSVF
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• Learning rate critic: 1e-3 for DDPG and SAC, 5e-3 for PSSVF

• Noise for exploration: 0.05 in parameter space for PSSVF; 0.1 in action space
for DDPG

• Actor’s frequency of updates: every episode for PSSVF; every 50 time steps
for DDPG and SAC; every batch for ARS

• Critic’s frequency of updates: every episode for PSSVF; every 50 time steps
for DDPG and SAC

• Replay buffer size: 100k for DDPG and SAC; 10k for PSSVF

• Optimizer: Adam for PSSVF and DDPG and SAC

• Discount factor: 0.99 for DDPG and SAC; 1 for PSSVF and ARS

• Survival reward adjustment: True for ARS and PSSVF in Hopper, Walker, Ant;
False for DDPG and SAC

• Environmental interactions: 300k time steps in InvertedDoublePendulum; 3M
time steps in all other environments

Tuned hyperparameters:

• Step size for ARS: tuned with values in {1e−2,1e−3,1e−4}

• Number of directions and elite directions for ARS: tuned with values in
{[1,1], [8,4], [8,8], [32,4], [32,16], [64,8], [64,32]}, where the first element de-
notes the number of directions and the second element the number of elite
directions

• Noise for exploration in ARS: tuned with values in {0.1,0.05,0.025}

Hyperparameters for specific algorithms:
PSSVF:

• Number of probing states: 200

• Initialization of probing states: uniformly random in [0,1)

• Observation normalization: True

• Number of policy updates: 5
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• Number of value function updates: 5

• Priority sampling from replay buffer: True, with weights 1/x1.1, where x is the
number of episodes since the data was stored in the buffer

ARS:

• Observation normalization: True

DDPG and SAC:

• Observation normalization: False

• Number of policy updates: 50

• Number of value function updates: 50

• Start-steps (random actions): 10000 time-steps

• Update after (no training): 1000 time-steps

• Polyak parameter: 0.995

• Entropy parameter (SAC): 0.2

B.1.3 GPU usage / Computation requirements

Each run of PSSVF in the main experiment takes around 2.5 hours on a Tesla
P100 GPU. We ran 4 instances of our algorithm for each GPU. We estimate a total
of 75 node hours to reproduce our main RL results (20 independent runs for 6
environments).

B.2 Experimental details

B.2.1 Main experiments on MuJoCo

To measure learning progress, we evaluate each algorithm for 10 episodes every
10000 time steps. We use the learned policy for PSSVF and ARS and the determin-
istic actor (without action noise) for DDPG. We use 20 independent instances of
the same hyperparameter configuration for PSSVF and DDPG in all environments.
When tuning ARS, we run 5 instances of the algorithm for each hyperparameter
configuration. Then we select the best hyperparameter for each environment and
carry out a further 20 independent runs. We report the best hyperparameters found for
ARS in Table B.1. We report the final return with a standard deviation in Table B.2.
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Environment step size directions noise
Walker2d-v3 0.01 [8,8] 0.05
Swimmer-v3 0.01 [8,4] 0.05
HalfCheetah-v3 0.01 [8,4] 0.05
Ant-v3 0.01 [32,16] 0.01
Hopper-v3 0.01 [8,4] 0.05
InvertedDoublePendulum-v2 0.01 [8,8] 0.025

Table B.1: Best hyperparameters for ARS

Environment PSSVF ARS DDPG SAC
Walker2d-v3 2333±343 1488±961 2432±1330 555222888777±±±444666777
Swimmer-v3 333444999±±±666000 333444222±±±222111 129±25 44±1
HalfCheetah-v3 3067±820 2497±611 10695±1358 111333555999999±±±999333222
Ant-v3 1549±240 1697±225 466±716 555333111999±±±999999222
Hopper-v3 222999666999±±±111666555 2340±199 1634±1036 333222999222±±±333444555
InvertedDouble
Pendulum-v2 777666444999±±±222666444000 4515±2733 777333777777±±±333777777000 999222333555±±±222222777

Table B.2: Final return (average over final 20 evaluations)

B.2.2 Ablation on weighted sampling

In Figure B.1 we show the benefit of using non-uniform sampling from the replay
buffer in Hopper and Walker environments. We compare uniform sampling (no
weight) to non uniform sampling with weight 1/xk, where k ∈ {1.0,1.1}, and x is
the number of episodes since the data was stored in the buffer. We achieve the best
results in Hopper and Walker for the choice of x = 1.1. It is interesting to take this
into consideration when comparing our approach to vanilla PSSVF.
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Figure B.1: Comparison between our algorithm without weighted sampling from
the replay buffer and with weight 1/xk, where k ∈ {1.0,1.1}. Average over 10
independent runs and 95% bootstrapped confidence interval.
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B.2.3 Comparison to vanilla PSSVF

Here we compare our PSSVF with policy fingerprinting to vanilla PSSVF. For
vanilla PSSVF, we use the best hyperparameters reported in Appendix A.3.4 when
optimizing policies with 2 hidden layers and 64 neurons per layer and optimizing over
the final rewards. Our algorithm uses the policy architecture of vanilla PSSVF and
the hyperparameters of our main experiments, changing only the learning rate of the
policy to 1e−4 and the noise for policy perturbations to 0.1. Figure B.2 shows that
while in Swimmer policy fingerprinting is enough to achieve an improvement over
vanilla PSSVF, in Hopper non-uniform sampling plays an important role. Note that
vanilla PSSVF, learning rates and perturbation noise are tuned for each environment,
while in our experiments we keep a fixed set of hyperparameters for all environments
to maintain consistency. We expect the performance of our approach to also improve
by selecting hyperparameters separately for each environment.
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Figure B.2: Comparison between vanilla PSSVF with no weighted sampling and no
fingerprinting, PSSVF with policy fingerprinting, and our final algorithm that uses
also weighted sampling. The solid line is the average over 10 independent runs; the
shading indicates 95% bootstrapped confidence intervals.



Appendix C

Learning Useful Representations
of Recurrent Neural Network
Weight Matrices

C.1 Experimental details

C.1.1 Hyperparameters

Table C.1 shows the hyperparameters shared by all four encoder types in the experi-
ments. Hyperparameters specific to probing, flattened and neural functional encoders
are shown in Tables C.2, C.3 and C.4, respectively.

Hyperparameter Value
A hidden size 256
A #layers 2
z size 16
batch size 64
optimizer AdamW
learning rate 0.0001
weight decay 0.01
gradient clipping 0.1

Table C.1: General hyperparameters
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Hyperparameter Value
ER hidden size 256
ER #layers 2
EI hidden size 128
EI #layers 1
EO hidden size 128
EO #layers 1
probing sequence length 22

Table C.2: Hyperparameters for probing (interactive and non-interactive) encoders

Hyperparameter Value
hidden size 128
#layers 3

Table C.3: Hyperparameters for flattened weights encoders

Hyperparameter Value
#channels 4
#layers 4

Table C.4: Hyperparameters for neural functional encoders



Appendix D

Goal-Conditioned Generators of
Deep Policies

D.1 Implementation details

D.1.1 Hyperparameters

Here we report the hyperparameters used for GoGePo and the baselines. For DDPG,
TD3, SAC, we use the spinning-up RL implementation [Achiam, 2018], whose
results are on par with the best reported results. For ARS, we use the implementation
of the authors [Mania et al., 2018], adapted to Deep NN policies.

Shared hyperparameters The table below shows hyperparameters relevant to at
least two of the three methods. They stay fixed across environments.
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Hyperparameter ARS GoGePo DDPG

Policy Architecture MLP, 2 hidden layers, 256 neurons each, with bias

Policy Nonlinearity tanh ReLU

Value Function Architecture MLP, 2 hidden layers, 256 neurons
each, with bias

Value Function Nonlinearity ReLU

Initialization MLPs PyTorch default
(for value func-
tion)

PyTorch default
(for actor &
critic)

Batch Size 16 128

Optimizer Adam

Learning Rate Actor/Genera-
tor

2e-6 1e-3

Learning Rate Value Function 5e-3 1e-3

Exploration Noise Scale tuned (see be-
low)

0.1 in parameter
space

0.1 in action
space

Update Frequency Actor/Gen-
erator

every batch every episode every 50 time
steps

Update Frequency Value Func-
tion

every episode every 50 time
steps

Number of Actor/Generator
Updates

20 50

Number of Value Function Up-
dates

5 50

Replay Buffer Size 10k 100k

Discount Factor 1 0.99

Survival Reward Adjustment True (for Hopper) False

Observation Normalization True False

Environmental interactions 100k for InvertedPendulum and MountCarContinuous,
3M for all other environments



119 D.1 Implementation details

Hyperparameters for specific algorithms Fixed across environments:
GoGePo:

• Architecture of the networks H in the generator: MLP with bias, two hidden
layers of size 256, ReLU nonlinearity, no output activation function

• Size of learnable hypernetwork embeddings z j
mn: 8

• Size of slices sl j
mn produced by the hypernetwork: 16×16

• Number of probing states: 200

• Initialization of probing states: Uniformly random in [0,1)

• Priority sampling from replay buffer: True, with weights 1/x1.1, where x is the
number of episodes since the data was stored in the buffer

DDPG:

• Start-steps (random actions): 10000 time steps

• Update after (no training): 1000 time steps

• Polyak parameter: 0.995

TD3/SAC: We use the default hyperparameter values from the spinning-up RL
implementation [Achiam, 2018].

Tuned hyperparameters For ARS, we tune the following hyperparameters for
each environment separately using grid search:

• Step size for ARS: tuned with values in {1e−2,1e−3,1e−4}

• Number of directions and elite directions for ARS: tuned with values in
{[1,1], [8,4], [8,8], [32,4], [32,16], [64,8], [64,32]}, where the first element de-
notes the number of directions and the second element the number of elite
directions

• Noise for exploration in ARS: tuned with values in {0.1,0.05,0.025}

Here we report the best hyperparameters found for each environment:
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ARS Hyperparameter Swimmer Hopper Inverted-
Pendulum

MountainCar-
Continuous

Step Size 0.01 0.01 0.001 0.01

Number of Directions,
Number of Elite Directions

(8, 4) (8, 4) (1, 1) (1, 1)

Exploration Noise Scale 0.05 0.05 0.025 0.05

UDRL For UDRL we use a previous implementation [Srivastava et al., 2019] for
discrete control environments, and implemented additional classes to use it in contin-
uous control tasks with episodic resets (although the original UDRL report [Schmid-
huber, 2019] focused on continuous control in single-life settings without resets). We
use the previous hyperparameters [Srivastava et al., 2019] and tune learning rate (in
{1e−3,1e−4,1e−5}), activation (ReLU, tanh), and their “last_few” parameter (1,
10, 100), which is used to select the command for exploration. For Swimmer, we are
not able to reproduce the performance with the original reported hyperparameters.
Like for the other algorithms, we use an NN with 2 hidden layers and 256 neurons
per layer. Below we report the best hyperparameters found for UDRL.

UDRL Hyperparameter Swimmer Hopper Inverted-
Pendulum

MountainCar-
Continuous

Nonlinearity ReLU ReLU tanh ReLU

Learning Rate 1e-3 1e-5 1e-3 1e-5

Last Few 10 10 1 1

D.1.2 Generator implementation details

Generating bias vectors Here we describe how to generate the bias vectors
of the policies, which is not explicitly mentioned in section 6.1.4. Analogously to
Equations 6.5 and 6.6, the embeddings z j

mn are fed to a dedicated bias-generating
network Hχ that produces slices of the shape f ×1, and those slices are concatenated.
Since we have a two-dimensional grid of learned embeddings z (see Figure 6.2), we
take the mean across the input dimensions of the concatenated slices so that we end
up with a bias vector (and not a matrix).
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D.1.3 GPU usage / compute

We use cloud computing resources for our experiments. Our nodes have an Intel
Xeon 12 core CPU and an NVIDIA Tesla P100 GPU with 16GB of memory. We
were able to run four GoGePo experiments on one node in parallel. Our estimate of
computation time for the main results is 40 node hours.

D.2 Experimental details

D.2.1 Main experiments on MuJoCo

For ARS and UDRL, the best hyperparameters for each environment are determined
by running the algorithm with each hyperparameter configuration across 5 random
seeds. The best configurations are those reported in section D.1.1 We use them for
the final 20 evaluation runs shown in our main results. For DDPG, TD3, SAC and
GoGePo, we use the same hyperparameters for all environments. For 10 episodes,
Figure 6.3 evaluates each run every 10000 time steps for Swimmer and Hopper, every
1000 steps for InvertedPendulum and MountainCarContinuous. Table D.1 shows the
final return and standard deviation of each algorithm.

Swimmer MountainCarContinuous Hopper InvertedPendulum

GoGePo 333333444±±±111666 999333±±±111 2589±300 999888000±±±444000

ARS 333444222±±±222111 55±33 2340±199 936±42

DDPG 129±25 −1±0.01 1634±1036 999666000±±±111777555

UDRL 78±17 −3±0.3 1010±78 219±299

TD3 84±38 0±0 333111555666±±±999999555 999444888±±±111777888

SAC 44±2 5±21 333333444666±±±666000444 999666000±±±111888111

Table D.1: Final returns of GoGePo and baselines (mean and standard deviation over
20 evaluations). We highlight all algorithms that are not statistically significantly
different from the best one in each task (Welch’s t-test with p<0.05).

D.2.2 Command strategies

In early experiments, we tried an alternative approach using Importance Sam-
pling [Hesterberg, 1988] estimators. Given a mixture of weights βi(θ), we considered
estimators of the form Ĵ(c′,w′) = ∑

N
i=1 βi(θi)

p(θi|c′;w′)
p(θi|ci;wi)

ri, which provides an unbiased
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estimate of the performance of a policy produced by a generator with parameters
w′ and command c′, using past data derived from old generators with different com-
mands. Maximizing Ĵ(c′,w′) with respect to the command c′ should yield commands
encouraging the generator to produce highly performant policies. We tested this
using the Balance Heuristic [Veach and Guibas, 1995] estimator for βk, which is
known to have small variance [Papini et al., 2019]. However, in our experiments
we observed that generators using such command strategies did not significantly
outperform the simple strategy mentioned earlier.

Ablation command Figure D.1 shows that when choosing the command for
exploration there is a slight advantage for asking the generator for a policy whose
return exceeds the best return so far by 20. However, just asking for the maximum
return (drive parameter = 0) is also competitive.
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Figure D.1: Comparison of variants of our algorithm with/without drive parameter
for command exploration. Average over 5 independent runs and 95% bootstrapped
confidence intervals.

D.3 Environment details

MuJoCo [Todorov et al., 2012] is licensed under Apache 2.0.
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gen Schmidhuber. Training Agents Using Upside-down Reinforcement Learning.
In NeurIPS Deep RL Workshop, 2019.

Stephen M. Stigler. Gauss and the Invention of Least Squares. The Annals of
Statistics, 9(3):465 – 474, 1981. doi: 10.1214/aos/1176345451. URL https:
//doi.org/10.1214/aos/1176345451.

RL Stratonovich. Conditional Markov processes. Theory of Probability And Its
Applications, 5(2):156–178, 1960.

Miroslav Štrupl, Francesco Faccio, Dylan R Ashley, Jürgen Schmidhuber, and Ru-
pesh Kumar Srivastava. Upside-down reinforcement learning can diverge in
stochastic environments with episodic resets. The 15th European Workshop on
Reinforcement Learning, 2022a. URL https://arxiv.org/abs/2205.06595.

Miroslav Štrupl, Francesco Faccio, Dylan R Ashley, Rupesh Kumar Srivastava, and
Jürgen Schmidhuber. Reward-weighted regression converges to a global optimum.
In Proceedings of the AAAI Conference on Artificial Intelligence, volume 36, pages
8361–8369, 2022b. URL https://arxiv.org/abs/2107.09088.

R. S. Sutton. Integrated architectures for learning, planning and reacting based
on dynamic programming. In Machine Learning: Proceedings of the Seventh
International Workshop, 1990.

Richard S Sutton. Temporal Credit Assignment in Reinforcement Learning. PhD
thesis, University of Massachusetts Amherst, 1984.

Richard S Sutton. Learning to predict by the methods of temporal differences.
Machine learning, 3(1):9–44, 1988.

Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction.
A Bradford Book, USA, 2018. ISBN 0262039249, 9780262039246.

Richard S. Sutton, David McAllester, Satinder Singh, and Yishay Mansour. Policy
gradient methods for reinforcement learning with function approximation. In Pro-
ceedings of the 12th International Conference on Neural Information Processing
Systems, NIPS’99, pages 1057–1063, Cambridge, MA, USA, 1999. MIT Press.

http://doi.acm.org/10.1145/2330784.2330902
https://doi.org/10.1214/aos/1176345451
https://doi.org/10.1214/aos/1176345451
https://arxiv.org/abs/2205.06595
https://arxiv.org/abs/2107.09088


135 Bibliography

Richard S Sutton, Hamid R Maei, and Csaba Szepesvári. A convergent o(n) temporal-
difference algorithm for off-policy learning with linear function approximation. In
Advances in neural information processing systems, pages 1609–1616, 2009a.

Richard S. Sutton, Hamid Reza Maei, Doina Precup, Shalabh Bhatnagar, David
Silver, Csaba Szepesvári, and Eric Wiewiora. Fast gradient-descent methods for
temporal-difference learning with linear function approximation. In Proceedings of
the 26th Annual International Conference on Machine Learning, ICML ’09, page
993–1000, New York, NY, USA, 2009b. Association for Computing Machinery.
ISBN 9781605585161. doi: 10.1145/1553374.1553501.

Richard S. Sutton, Joseph Modayil, Michael Delp, Thomas Degris, Patrick M. Pi-
larski, Adam White, and Doina Precup. Horde: A scalable real-time architecture
for learning knowledge from unsupervised sensorimotor interaction. In The 10th
International Conference on Autonomous Agents and Multiagent Systems - Volume
2, AAMAS ’11, pages 761–768, Richland, SC, 2011. International Foundation
for Autonomous Agents and Multiagent Systems. ISBN 0-9826571-6-1, 978-0-
9826571-6-4.

Richard S Sutton, A Rupam Mahmood, and Martha White. An emphatic approach to
the problem of off-policy temporal-difference learning. The Journal of Machine
Learning Research, 17(1):2603–2631, 2016.

Hongyao Tang, Zhaopeng Meng, Jianye Hao, Chen Chen, Daniel Graves, Dong
Li, Changmin Yu, Hangyu Mao, Wulong Liu, Yaodong Yang, et al. What about
inputting policy in value function: Policy representation and policy-extended value
function approximator. arXiv preprint arXiv:2010.09536, 2020.

Gerald Tesauro. Temporal difference learning and td-gammon. Commun. ACM, 38
(3):58–68, March 1995. ISSN 0001-0782. doi: 10.1145/203330.203343.

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-
based control. In 2012 IEEE/RSJ International Conference on Intelligent Robots
and Systems, pages 5026–5033, 2012. doi: 10.1109/IROS.2012.6386109.

Thomas Unterthiner, Daniel Keysers, Sylvain Gelly, Olivier Bousquet, and Ilya O. Tol-
stikhin. Predicting neural network accuracy from weights. ArXiv, abs/2002.11448,
2020. URL https://api.semanticscholar.org/CorpusID:211506753.

Sjoerd van Steenkiste, Francesco Locatello, Jürgen Schmidhuber, and Olivier
Bachem. Are disentangled representations helpful for abstract visual reason-

https://api.semanticscholar.org/CorpusID:211506753


136 Bibliography

ing? In Advances in Neural Information Processing Systems, pages 14222–14235,
2019.

Eric Veach and Leonidas J Guibas. Optimally combining sampling techniques for
monte carlo rendering. In Proceedings of the 22nd annual conference on Computer
graphics and interactive techniques, pages 419–428, 1995.

Oriol Vinyals, Igor Babuschkin, Wojciech M. Czarnecki, Michaël Mathieu, Andrew
Dudzik, Junyoung Chung, David H. Choi, Richard Powell, Timo Ewalds, Petko
Georgiev, Junhyuk Oh, Dan Horgan, Manuel Kroiss, Ivo Danihelka, Aja Huang,
L. Sifre, Trevor Cai, John P. Agapiou, Max Jaderberg, Alexander Sasha Vezhnevets,
Rémi Leblond, Tobias Pohlen, Valentin Dalibard, David Budden, Yury Sulsky,
James Molloy, Tom Le Paine, Caglar Gulcehre, Ziyun Wang, Tobias Pfaff, Yuhuai
Wu, Roman Ring, Dani Yogatama, Dario Wünsch, Katrina McKinney, Oliver
Smith, Tom Schaul, Timothy P. Lillicrap, Koray Kavukcuoglu, Demis Hassabis,
Chris Apps, and David Silver. Grandmaster level in starcraft ii using multi-
agent reinforcement learning. Nature, 575:350 – 354, 2019. URL https://api.
semanticscholar.org/CorpusID:204972004.

Johannes von Oswald, Christian Henning, João Sacramento, and Benjamin F Grewe.
Continual learning with hypernetworks. In 8th International Conference on Learn-
ing Representations (ICLR 2020)(virtual). International Conference on Learning
Representations, 2020.

A. Waibel. Phoneme recognition using time-delay neural networks. In Meeting of
the IEICE, Tokyo, Japan, 1987.

Tongzhou Wang, Jun-Yan Zhu, Antonio Torralba, and Alexei A Efros. Dataset
distillation. arXiv preprint arXiv:1811.10959, 2018.

Ziyu Wang, Victor Bapst, Nicolas Heess, Volodymyr Mnih, Remi Munos, Koray
Kavukcuoglu, and Nando de Freitas. Sample efficient actor-critic with experience
replay. arXiv preprint arXiv:1611.01224, 2016.

C. J. C. H. Watkins and P. Dayan. Q-learning. Machine Learning, 8:279–292, 1992.

P. J. Werbos. Generalization of backpropagation with application to a recurrent gas
market model. Neural Networks, 1, 1988.

Paul J Werbos. Backpropagation through time: what it does and how to do it.
Proceedings of the IEEE, 78(10):1550–1560, 1990.

https://api.semanticscholar.org/CorpusID:204972004
https://api.semanticscholar.org/CorpusID:204972004


137 Bibliography

Daan Wierstra, Tom Schaul, Tobias Glasmachers, Yi Sun, Jan Peters, and Jürgen
Schmidhuber. Natural evolution strategies. The Journal of Machine Learning
Research, 15(1):949–980, 2014.

R. J. Williams and D. Zipser. Gradient-based learning algorithms for recurrent
networks and their computational complexity. In Back-propagation: Theory,
Architectures and Applications. Hillsdale, NJ: Erlbaum, 1994.

Ronald J Williams. Simple statistical gradient-following algorithms for connectionist
reinforcement learning. In Reinforcement Learning, pages 5–32. Springer, 1992.

Peter R. Wurman, Samuel Barrett, Kenta Kawamoto, James MacGlashan, Kaushik
Subramanian, Thomas J. Walsh, Roberto Capobianco, Alisa Devlic, Franziska Eck-
ert, Florian Fuchs, Leilani Gilpin, Varun Kompella, Piyush Khandelwal, HaoChih
Lin, Patrick MacAlpine, Declan Oller, Craig Sherstan, Takuma Seno, Michael D.
Thomure, Houmehr Aghabozorgi, Leon Barrett, Rory Douglas, Dion Whitehead,
Peter Duerr, Peter Stone, Michael Spranger, , and Hiroaki Kitano. Outracing
champion gran turismo drivers with deep reinforcement learning. Nature, 62:
223–28, Feb. 2022. doi: 10.1038/s41586-021-04357-7.

W. Zhang, J. Tanida, K. Itoh, and Y. Ichioka. Shift invariant pattern recognition
neural network and its optical architecture. In Proceedings of Annual Conference
of the Japan Society of Applied Physics, volume 6p-M-14, page 734, 1988.

Tingting Zhao, Hirotaka Hachiya, Voot Tangkaratt, Jun Morimoto, and Masashi
Sugiyama. Efficient sample reuse in policy gradients with parameter-based explo-
ration. Neural computation, 25(6):1512–1547, 2013.

Allan Zhou, Kaien Yang, Kaylee Burns, Yiding Jiang, Samuel Sokota, J Zico Kolter,
and Chelsea Finn. Permutation equivariant neural functionals. arXiv preprint
arXiv:2302.14040, 2023.

Mingchen Zhuge, Haozhe Liu, Francesco Faccio, Dylan R Ashley, Róbert Csordás,
Anand Gopalakrishnan, Abdullah Hamdi, Hasan Abed Al Kader Hammoud, Vin-
cent Herrmann, Kazuki Irie, et al. Mindstorms in natural language-based societies
of mind. In NeurIPS 2023 Workshop on Robustness of Few-shot and Zero-shot
Learning in Foundation Models, 2023. URL https://arxiv.org/abs/2305.
17066.

https://arxiv.org/abs/2305.17066
https://arxiv.org/abs/2305.17066

	Contents
	Introduction
	Contributions

	Background
	Machine Learning
	Supervised Learning
	Unsupervised Learning
	Reinforcement Learning

	Deep Learning in Neural Networks
	Neural Network Architectures
	Learning in Neural Networks

	Reinforcement Learning
	General Remarks
	Markov Decision Processes
	Off-policy RL


	Parameter-Based Value Functions
	Method
	Parameter-based Start-State-Value Function V()
	Parameter-based State-Value Function V(s,)
	Parameter-based Action-Value Function Q(s,a,)

	Experiments and Results
	Visualizing PBVFs using LQRs
	Main results
	Zero-shot learning
	Offline learning with fragmented behaviors

	Related Work
	Discussion

	General Policy Evaluation and Improvement by Learning to Identify Few But Crucial States
	Method
	Static Policy fingerprinting
	Recurrent Policy Fingerprinting

	Experiments and Results
	Motivating experiments on MNIST
	Main experiments on MuJoCo
	Zero-shot learning of new policy architectures
	Fingerprint Analysis

	Related Work
	Discussion

	Learning Useful Representations of Recurrent Neural Network Weight Matrices
	Method
	RNN Encoders

	Experiments and Results
	Dataset
	Emulator
	Results

	Discussion

	Goal-Conditioned Generators of Deep Policies
	Method
	Background
	Fast Weights Programmers
	Gogepo
	HyperNetworks

	Experiments and Results
	Results on Continuous Control RL Environments
	Analyzing the Generator’s Learning Process
	Limitation: obtaining suitable policies from the start

	Related Work
	Hindsight and Upside Down RL.
	On the convergence of Upside Down RL
	Fast Weight Programmers and HyperNetworks

	Discussion

	Outlook
	Publications during the PhD program
	Parameter-Based Value Functions
	Proofs and derivations
	Implementation details
	Experimental details
	LQR
	Main Experiments
	Sensitivity analysis
	Table of best hyperparameters


	General Policy Evaluation and Improvement by Learning to Identify Few But Crucial States
	Implementation details
	MNIST Implementation
	RL Implementation
	GPU usage / Computation requirements

	Experimental details
	Main experiments on MuJoCo
	Ablation on weighted sampling
	Comparison to vanilla PSSVF


	Learning Useful Representations of Recurrent Neural Network Weight Matrices
	Experimental details
	Hyperparameters


	Goal-Conditioned Generators of Deep Policies
	Implementation details
	Hyperparameters
	Generator implementation details
	GPU usage / compute

	Experimental details
	Main experiments on MuJoCo
	Command strategies

	Environment details

	Bibliography

