

Creation of a web application using FSL tools

Bachelor Project submitted for the degree of

Bachelor of Science HES in Business Information Technology

by

Jennifer SCHLAPPINGER

Bachelor Project Mentor

Dr. Stefan Kambiz BEHFAR, Professor HEG

Genève, 8th of May 2023

Haute École de Gestion de Genève (HEG-GE)

Business Information Technology

Creation of a web application using FSL tools
SCHLAPPINGER Jennifer i

Disclaimer

This report is submitted as part of the final examination requirements of the Haute école

de gestion de Genève (HEG) for the Bachelor of Science HES-SO in Business

Information Technology.

The student sent this document by email to the address given by his or her bachelor’s

thesis mentor for analysis by the URKUND plagiarism detection software, following the

procedure detailed at the following URL: https://www.urkund.com.

The use of any conclusions or recommendations made in or based upon this report, with

no prejudice to their value, engages the responsibility neither of the author, nor the

author’s mentor, nor the jury members nor the HEG any of its employees.

« I certify that I have carried out the present work alone without the use of sources other

than those cited in the bibliography. »

Annemasse, 8th of May 2023

Jennifer Schlappinger

Creation of a web application using FSL tools
SCHLAPPINGER Jennifer ii

Acknowledgements

First of all, I would like to express my deepest gratitude to my professor Stefan Behfar

for his patience, availability and support. This endeavour would not have been possible

without him.

A special thank you go to my mother, my sister and my father, who supported me

emotionally and practically throughout this entire writing process. Last but not least, I’d

like to thank the Lord Jesus for giving me strength all along this journey.

Creation of a web application using FSL tools
SCHLAPPINGER Jennifer iii

Abstract

Nowadays, non-invasive scanning procedures, such as MRI, allow scientists to look at

the brain in more detail and thereby detect connections between various brain regions

that - when put together - construct an entire brain network. They do not do that by

themselves but with the help of medical software applications, which will briefly be

reviewed in this thesis for their functionalities and their technical characteristics. Using

the well-documented FSL application, the goal of this thesis is to conceptualize and

finally implement a medical web application that creates a brain connectivity matrix that

is user-friendly and easily extensible, creating an application framework for future,

more automated research about Alzheimer’s disease.

Creation of a web application using FSL tools
SCHLAPPINGER Jennifer iv

Table of contents

Disclaimer .. i

Acknowledgements ... ii

List of tables .. vi

List of figures .. vi

List of codes ... vii

List of abbreviations .. vii

1. Introduction .. 1

1.1 Thesis objective ... 2

1.2 Thesis structure ... 2

2. Background .. 3

2.1 MRI Images ... 3

2.1.1 The difference between fMRI and sMRI .. 4

2.2 Preprocessing .. 5

2.3 Analysis .. 5

2.3.1 Network analysis ... 6

2.3.2 Building a brain connectivity matrix (BCM) .. 7

2.4 MRI Application Software .. 7

2.4.1 Web application .. 8

2.4.2 MRI analysis software ..10

2.4.3 FMRIB Software Library ...11

3. Research model ... 13

3.1 FSL-Web-Application ..13

3.1.1 Functionalities ..13

3.1.2 Analysis of the advantages linked to a web application16

3.1.3 Future vision ..17

4. Implementation .. 18

4.1 Technical specifications ...18

4.2 Technical implementation choices ..19

4.2.1 Frontend – Javascript with React ...19

4.2.2 Backend – Python with Flask, Nypipe and Oct2Py20

4.2.3 Database - PostgreSQL ...21

4.3 Software design ..22

Creation of a web application using FSL tools
SCHLAPPINGER Jennifer v

4.3.1 Analysis ...25

4.3.2 Preprocessing ..31

4.3.3 User management ..35

4.4 Tests and output ...41

4.4.1 Testing requirements ...41

4.4.2 Outputs and results ..43

4.4.3 Test data ..49

4.5 Installation and employment ..50

4.5.1 Installation ..50

4.5.2 Employment ...50

5. Conclusion ... 51

Bibliography ... 52

Appendix 1: Installation manual for developers .. 58

Creation of a web application using FSL tools
SCHLAPPINGER Jennifer vi

List of tables
Table 1: Preprocessing steps [13] .. 5
Table 2: Comparison desktop application vs web applications 9
Table 3: Number of references obtained from Google scholar website until 05-May-
2023 and other software specificities [5, 33, 34, 35, 36] ..10
Table 4: Steps to generate a BMC ..12
Table 5: Functionalities ...14
Table 6: Basic functionality of the web application ...15
Table 7: Coding conventions frontend ...20
Table 8: Coding conventions backend ...21
Table 9: Backend - coding conventions ...21

List of figures
Figure 1: MRI image of a human brain [14] .. 3
Figure 2: Acquisition process of fMRI [16] .. 4
Figure 3: Time series extraction [17] .. 4
Figure 4: Connectivity matrix [13 – Main Course Material, Ch. 34]] 6
Figure 5: Construction of a BCM [20] ... 7
Figure 6: Web applications basic architecture [51] ... 8
Figure 7: Global Internet Users Over Time January 2022 DataReportal [29] 8
Figure 8: Drawn illustration of an EEG [50] ..17
Figure 9: Future functionalities ..22
Figure 10 : Backend design ...23
Figure 11: Database model ...24
Figure 12: User interface of FSL Nets ...25
Figure 13 : All processes linked to one user ..26
Figure 14 : Result folder of a network analysis ..27
Figure 15 : Automated BCM output ...27
Figure 16: Backend creation of a BMC sequence diagram ..28
Figure 17: GUI Preprocessing ...31
Figure 18: Sequence diagram preprocessing ..33
Figure 19: GUI Login ...35
Figure 20: Backend - Verification of credentials [67] ..36
Figure 21: Backend - Verfication of the session token [67] ..36
Figure 22: Frontend Registration ...37
Figure 23: Registration service ..38
Figure 24: Frontend, forgot password ..39
Figure 25: Password reset request ..40
Figure 26: Successful backend pytest test ..42
Figure 27: Failed backend pytest test ..43
Figure 28 : BCM parameters ...43
Figure 29 : BCM A, changing parameters 1 and 2 ...45
Figure 30 : BCM B and C, changing parameters 1 and 2 ..45
Figure 31 : Process’ names in database ..45
Figure 32 : Invalid process name (not unique) ...45
Figure 33 : BCM with 5 nodes (right) and 44 nodes (left) ...46
Figure 34 : BCM - full correlation ...46
Figure 35 : BCM - Partial correlation ...47
Figure 36 : BCM - full correlation, with r to z ..47
Digure 37 : BCM - Covariance ...47
Figure 38 : BCM - Partial ridge regression ...48
Figure 39 : Preprocessing - brain extraction ..48
Figure 40 : BET extracted brain ...49

Creation of a web application using FSL tools
SCHLAPPINGER Jennifer vii

Figure 41 : Mail when requesting a password reset ...49

List of codes
Code 1: Creation of tables ...24
Code 2: Frontend - Get TR ..26
Code 3: Backend - Octave interface ..29
Code 4: octave script, named createMatrix.m ..29
Code 5: Frontend - Initial form ...31
Code 6: Frontend - Parameters ...32
Code 7: Frontend - Parameter submission ..32
Code 8: Backend - Preprocessing ...34
Code 9: Backend - Password encryption ...37
Code 10: Backend - Recieving encoded password from database37
Code 11: Database - Hashed password ..37
Code 12: Retrieving the user’s mail from database with python39
Code 13: Set up of a correct test ...42
Code 14: Set up of an incorrect test ..42

List of abbreviations

API Application Programming Interfaces

BCM Brain Connectivity Matrix

CL Command Line

DICOM Digital Imaging and Communications in Medicine

fMRI functional MRI

FMRIB Functional Magnetic Resonance Imaging of the Brain

FSL FMRIB Software Library

GUI Graphical User Interface

MRI Magnetic Resonance Imaging

OS Operating System

sMRI structural MRI (sometimes also aMRI, for anatomical MRI)

TR Time series of an fMRI

Creation of a web application using FSL tools
SCHLAPPINGER Jennifer 1

1. Introduction

Alzheimer's disease is a well-known neurodegenerative disorder leading progressively

to memory deficits and thereby causing dementia - it mainly affects elderly persons [1].

Until this day, no definitive cure has been found, but treatments are available [2,3]. Since

Alzheimer's disease causes the death of the neuron's connections [3], research

concerning Alzheimer evolves primarily around brain analyses. For Alzheimer, in

particular, the network analysis is extremely helpful since it correlates different brain

regions and indicates each connection's intensity. The connectivity matrix resulting from

the network analysis, pinpoints alterations of the neurological network compared to a

healthy brain’s network and thus allows quicker identification of the disease in its earlier

stages [1,4].

In spite of the easily understandable theoretical idea of such network analyses,

practically generating a brain connectivity matrix (BMC) with some Magnetic Resonance

Imaging (MRI) images only, can be complex and requires prior knowledge of the subject,

which includes the building and acquisition of an MRI image, the preparation and

processing methods of MRI images prior to analysis and finally how these images can

be inspected and interpreted correctly. In practice, these fundamental concepts are

always realised with the help of a technical device such as an MRI-Scanner, MRI image

software and other appliances. For network analyses, in particular, functional MRI (fMRI)

-image applications, which enable the user to apply single-stepped procedures on the

acquired data depending on the desired output, are typically used or even required [5].

The medical software available around fMRI- and MRI images of the brain are diverse

[5,6]. Hence, the selection of fitting software depends on various factors, such as the

medical application field, the type of processes to be executed, the technical

requirements of the software itself, the costs linked to the software acquisition and

maintenance, and ultimately even personal preference can play a role [6].

The adequate application choice is also relevant when daring a glance at what lies ahead

in a time when artificial intelligence (AI) could significantly contribute to the early

detection of Alzheimer's disease [3]. AI commonly deals with massive data flux

containing diverse data formats. This phenomenon, across many other domains as well,

is referred to as big data, which has characteristically data streams that are high in

volume, velocity and variety (3 Vs) [7]. Why is this important? Because it highlights the

need for an application that has a powerful performance - or at the very least, can be

adapted conformingly in the foreseeable future. A tool that easily manages the process

of generating network connectivity matrices and simultaneously uses AI to handle a large

input of data, could eventually find patterns of brain alterations in the matrices and predict

Creation of a web application using FSL tools
SCHLAPPINGER Jennifer 2

signs of Alzheimer in a more automated way opening the door for even more research

in that area.

Simultaneously, these applications should meet the continuously higher standard of the

user's requirements. A user-friendly interface and online-accessibility has become a

must for new applications [8].

However, such a tool does not exist yet. Consequently, in the scope of this thesis, an

answer to the following answer is sought: Can a basic, but extensible framework for a

web-application that generates network connectivity matrices, to allow future research

concerning Alzheimer’s disease based on the methodology of brain networks be built?

1.1 Thesis objective

The project aims to develop a web application

- that allows a user from a non-medical background to without any further need for

profound instructions

- to view and have simple analyses performed on MRI-brain-images

- which takes MRI images as the principal input element and

- generates brain connectivity matrices as the principal output element

1.2 Thesis structure

To do so, the following chapters will explore the fundamental concepts of MRI imaging

to understand how a network connectivity matrix is built in theory. In the next step, we

will look at the applications of the medical field in general from a technical point of view

to better understand the different software for MRI preprocessing and analysis available.

The FMRIB Software Library (FSL) library will be the software application with which this

thesis will work. Once the brain connectivity matrix and MRI imaging concepts are

understood, they will be brought together and with the help of FSL, a step-by-step

reference pipeline will be set up. It is then, that the utility of an FSL web application will

be analysed. Eventually, the conceptualisation of the subsequent implementation will be

described, and the thesis will be concluded.

Creation of a web application using FSL tools
SCHLAPPINGER Jennifer 3

2. Background

Analysing the brain is nearly as complex as the brain itself. This is why this chapter is

entirely dedicated to delving into the basic concepts of MRI images and their application

methods. Especially in earlier days, the person’s death was inevitable if his/her brain

should be analysed [9]. Thankfully today, various non-evasive methods have been

discovered, such as positron emission tomography (PET), near-infrared spectroscopy

(NIRS), magnetoencephalogram (MEG), electroencephalography (EEG) and functional

and structural magnetic resonance imaging (sMRI), to only name a few [10]. The latter,

one of the most recently developed forms of neuroimaging, is the technique this thesis

will focus on.

2.1 MRI Images
As evoked above, MRI stands for magnetic resonance imaging and allows the brain to

be analysed in a non-invasive way. This is achieved due to the energy released by our

bodies' protons when they interact with the magnetic field and radiofrequency pulses in

the MRI machine. This generated energy is registered by the connected computer, which

then calculates a three-dimensional image composed of various voxels [11]. Voxels are

the entity of a cubic volume of a 3-dimensional computer-generated space, similar to

pixels in a 2-dimensional space [12]. The voxels of an MRI image could be either whitish

if that area had a high signal intensity, hyperintense, or darkish if that area had a low

signal intensity, hypointense. The "white matter" connects the neurons to each other and

conducts impulses away from the soma. They are the output entity of electrical signals

sent within the central nervous system and are commonly an indicator of a neuro-chronic

disease. The "grey matter," on the other hand, is mainly made up of neuron cell bodies,

neuron somas. They are the input unit of electrical signals sent within the central nervous

system. Lastly, when examining an MRI image, hollow spaces are noticeable. These are

spaces filled with Cerebrospinal fluid (CSF) and are usually referred to as the "third

tissue" [13].

Figure 1: MRI image of a human brain [14]

Each image, also brain volume, consists of roughly 100’000 equally sized voxels or

volume elements that are spatially located [12].

Creation of a web application using FSL tools
SCHLAPPINGER Jennifer 4

2.1.1 The difference between fMRI and sMRI

Structural magnetic resonance imaging (MRI) examines the anatomy and pathology of

the brain - as opposed to functional magnetic resonance imaging [fMRI], which examines

the brain activity while the subject is performing a specific task – actively or passively.

Furthermore, structural MRIs provide an anatomical reference for visualizing the

activation patterns and regions of interest (ROI) to extract helpful signal information [13].

In fMRI, the brain areas which were active during the performed task are highlighted due

to changed blood oxygenation and blood flow. It is differentiated between resting state

fMRI and task fMRI, even if they are often used complementary [15].

When registering an fMRI multiple brain volumes are repeatedly “photographed” about

every two seconds [12]. This time lapse from one registration to the next is called TR =

Repetition Time, while the concatenated string of all volumes is named a run of data [16].

Figure 2: Acquisition process of fMRI [16]

Another essential concept is the time series extraction which englobes the process of

zooming in on a single voxel and lining up its intensity according to each volume across

time, as seen in the next Figure 3.

Figure 3: Time series extraction [17]

Creation of a web application using FSL tools
SCHLAPPINGER Jennifer 5

Finally, when putting these notions into correlation, one slice of Figure 2 would

figuratively correspond to one of the regions marked with a red-dotted circle in Figure

4. And each line of the table in Figure 3 shows the variations of the voxel’s intensity

throughout the fMRI session.

2.2 Preprocessing
The freshly generated MRI-Image cannot be analysed immediately but must first

undergo a "cleaning process" called preprocessing. Several factors can distort the

outputs of an MRI scanning session and thus falsify the results. They are referred to as

noise and can have multiple sources, such as [18, 13]:

• Minor movements of the person influencing the final MRI

• Heartbeat, respiration, low-frequency oscillations

• The complexity of the brain structure, tissues are not clearly distinguishable

• Technical issues in the scanner, so-called scanner artefacts

Typically, experienced professionals will apply a step-by-step procedure (also: workflow

or pipeline) best adapted to target and eliminate the noise by removing unwanted

movements of the image, adding depth and detail, and smoothing other technical

disturbances. Moreover, re-arranging each step's order may influence the final image's

outcome.

Table 1: Preprocessing steps [13]

Conventional preprocessing steps Special preprocessing steps

Motion and distortion correction Nuisance regression

High pass temporal filtering Global signal regression

Slice time correction Volume censoring

Spatial smoothing ICA-based clean-up

 Low pass temporal filtering

2.3 Analysis

Once the preprocessing is done, the images can be analysed depending on the MRI-

type. As mentioned in the introduction, the web application should create a brain

connectivity matrix. A network analysis must be performed on the desired data to do so.

This type of analysis is often performed on resting-state fMRI and describes brain

functions by how strongly the individual brain regions are interconnected [19]. These

connections are contextualized and visualized by creating a brain connectivity matrix for

deeper understanding.

Creation of a web application using FSL tools
SCHLAPPINGER Jennifer 6

2.3.1 Network analysis

As with any other type of networks, the following two fundamental elements must be

given, for a network to be classified as such: the nodes and the edges. That is not

different for the brain connectivity matrix. While the node is represented by a region or a

parcel of the brain, sometimes also called ROI, the edges will show the strength of the

interrelation between these processing units. Each column and row corresponds to one

predefined brain region [13]. For Figure 4, the stronger the connectivity between two

nodes, the darker the intersections in the matrix. Directionality will not be considered in

the scope of this project. The diagonal top-left to bottom-right is greyed out, as it points

to the same node on both axes.

Figure 4: Connectivity matrix [13 – Main Course Material, Ch. 34]]

2.3.1.1 Brain parcellation

Brain parcellation, or node definition, is the process that will split the brain into multiple

ROIs. These regions can either be contiguous or non-contiguous. If contiguous, each

node will be a "real" area of the brain, whereas a non-contiguous node will consider a

node as one of multiple parts of the brain that are logically linked. Moreover, nodes can

be defined as either binary or non-binary. With a binary approach, the brain undergoes

a hard parcellation, meaning every voxel is clearly attributed to one voxel. In a non-binary

approach, the brain has a weighted parcellation; thus, not every region, especially a

node's borders, is equally counted. The notion of atlases serves as a roadmap/reference

map for the detected ROIs. They are usually established by using sMRIs. Applications

of these atlases in the process of a network analyses must be considered thoroughly.

[13].

Creation of a web application using FSL tools
SCHLAPPINGER Jennifer 7

2.3.2 Building a brain connectivity matrix (BCM)

How is a connectivity matrix built? First, as seen in Figure 5 when the fMRI timeseries is

completed, the brain will be parcelled using a desired atlas.

Figure 5: Construction of a BCM [20]

Once parcellation completed, the time series of each region will be extracted and

averaged. The extracted time course looks similar to the one shown Figure 7, at step 3.

The edges are then calculated by putting every node into correlation with each other.

The time series is always linked to one node [20].

In summary, to create a BMC the following steps must be performed:

(0) Data acquisition → (1) Preprocessing → (2) Node definition → (3) Timeseries

extraction → (4) Timeseries averaging → (5) Edge calculation → (6) Creation of

network matrix [13, 20, 21]

2.4 MRI Application Software
Brain analyses are complicated procedures, mainly when performed on living subjects.

Several appliances, applications and machines have been developed by now that

facilitate these complex processes for medical professionals. Medical applications are

the type of support this thesis will focus on. According to Law insider a medical

application is defined as follows:

Medical Applications means diagnostic products, therapeutic and prophylactic
drugs or vaccines, intended for the diagnosis, prevention, or treatment of disease
in humans, animals or plants and all discovery, research, development and
commercialization efforts to support those uses, including without limitation,
elucidation of gene function and target validation. [22]

 As the definition above implies, medical applications can be very vast, and finding an

application that suits all the user’s needs and requirements can be difficult.

From a technical point of view, however, we can differentiate between different types of

applications, as we will see in the following chapter.

Creation of a web application using FSL tools
SCHLAPPINGER Jennifer 8

2.4.1 Web application

A web application is a computer program that utilizes web browsers and web technology

to perform tasks over the internet. A web application is accessible via a web browser. It

is, hence, irrelevant on what operating system (OS) the computer is running. The user

simply needs an internet connection [26]. If the web application is accessed via its

Uniform Resource Locator (URL), the web server will execute a script that is typically

based on HTML and JavaScript [27]. If the website is static, no additional process is

required. Nowadays, most applications are dynamic, meaning they will need to send

specific requests to an application server, which will process the request by also

interacting with other services and databases. Some popular web applications are

Google Apps that include Gmail, Google Docs, online storage and more [28].

Figure 6: Web applications basic architecture [51]

There are no content-based limitations of web applications. Web applications are getting

more popular day by day. This does not come as a surprise. According to the Digital

2022 Global Overview Report, the number of active internet users has gradually

increased over the last ten years [29]. The use of web application, and thus the demand

for web applications will therefore also grow conformably.

Figure 7: Global Internet Users Over Time January 2022 DataReportal [29]

Creation of a web application using FSL tools
SCHLAPPINGER Jennifer 9

The major counterpart to web applications are the native applications such as the FSL

application, though no clear line can be drawn between all different types of application.

In the following Table 2 a quick comparison between web and native applications is

made.

Table 2: Comparison desktop application vs web applications

 Web application Native application

Installation No installation needed. Before being able to use the desktop

application, it must be installed locally

on the computer.

Updates Updates are done on the server side only.

The user does not have to do anything.

Each update must be done on the

specific machine, on which the

application was installed.

Access The application can be accessed via a web

browser. An active internet connection is a

prerequisite.

The application can only be accessed

on the machine the applications was

previously installed.

OS The operating system is irrelevant for the web

application. It runs on the web server.

The desktop application will run on

the operating systems it was coded

for. (Example: FSL can only be run on

Linux based OS).

System

requirements

All the application processes and calculations

are run on the application or web server.

Therefore, only the latter two must be up to

date.

The machine on which the application

is desired to be used, must be

enough performant to comply with the

applications demand, since it is the

machine itself that will process the

applications calculations.

Security Considering the fact that the application is

running via the internet, everyone can access

it – also hackers. Web applications are

consequently more vulnerable to a possible

hacker attack.

Desktop applications are not likely to

be hacked, since the hacker must

have direct access to the machine.

Performance If the internet connection is weak or instable,

the application’s performance can be slowed

down. Moreover, depending on the way the

web application is built, the RAM memory, the

type of processor and the amount of your

The application can directly interact

with the machine and therefore use

its resources in the most optimized

way possible.

Creation of a web application using FSL tools
SCHLAPPINGER Jennifer 10

cache memory may impact the application’s

performance.

[30, 52]

Finally, hybrid applications unite features of both worlds. While running on a web browser

(the latter is invisible to the user) they can access native platform on the device itself.

They are typically installed on the device, similarly to native applications [31, 32].

2.4.2 MRI analysis software

In a 2012 article from Mehdi Behroozi and Mohammed Reza Daliri reviewed the different

medical software tools that allow preprocessing and analysing of MRI data, which gives

an overview on the vast application landscape [5]. In the scope of this thesis only the

four most conventional applications [5, 6] will be considered further on.

Table 3: Number of references obtained from Google scholar website until
05-May-2023 and other software specificities [5, 33, 34, 35, 36]

Software Name

(Reference to the original paper [5])

Nb. of references Source
code

availability

OS Type of
app

08.2012 05.2023

SPM: Statistical parametric maps in
functional imaging: A general linear
approach. [72]

6095 11069
(+81.6%)

Open
source

Linux,
Mac OS

and
Windows*

Native,
written in
MATLAB

AFNI: Software for analysis and
Visualization of Functional Magnetic
Resonance Neuroimages. [73]

3055 10764
(+252.3%)

Open
source

Linux an
Mac OS,

**

Native,
written in
ANSI C

FSL: Advance in functional and structural
MR image analysis and implementation
as FSL. [74]

1909 13238
(+593.5%)

Open
source

Linux and
Mac OS,

**

Native,
written in

C++

BrainVoyager: Analysis of FIAC data with
BrainVoyager QX: From single-subject to
cortically aligned group GLM analysis
and self-organizing group ICA. [75]

295 1062
(+260.0%)

Closed
source

Linux,
Mac OS

and
Windows

Native,
written in

C++

*runs on Windows only when installing additional features, **runs on Windows only over a virtual environment

Each of one of the applications cited in Table 3 could witness an increasing number of

references, according to Google Scholar over the course of the last ten years, notably

FSL, which overtook the in 2012 most cited SPM application. Except for BrainVoyager

all the other applications are open source, which means that the source code is available

and accessible for free [37]. On the other hand, BrainVoyager is the only tool that can

efficiently, be run on Windows, which is the dominant OS worldwide [38]. Consequently,

to use FSL, AFNI or SPM, a Windows user will either need to run the application on a

Creation of a web application using FSL tools
SCHLAPPINGER Jennifer 11

virtual Linux machine or find other solutions like investing in a new Linux computer, for

example. All these applications are native applications.

In regard to the software features, all four applications support preprocessing and

statistical analysis and output. They can process 2-dimensional, 3-dimensional and 4-

dimensional data input, display it and allow the user to manipulate the image view. While

all five applications support the output of brain regions, only Brain Voyager and FSL

include features for ROI analyses [5, 35]. It can be concluded that FSL is the only tool,

that is open-source and that comes with features for ROI analyses, which is especially

important in the context of creating a network matrix. Moreover, having experienced the

most significant growth of reference, utilisation guides and supporting documentation is

amply available.

2.4.3 FMRIB Software Library

According to the official FSL website, FSL is described as below:

“FMRIB Software Library (FSL) is a comprehensive library of analysis tools for

FMRI, MRI and DTI brain imaging data. Most of the tools can be run both from the

command line and as GUIs ("point-and-click" graphical user interfaces).” [35]

The scripts from the FSL library can be run on either Linux or macOS. Its first stable

release was in March 2019 and most of its code is open source.

FSL is an extremely powerful tool when it comes to applying and automating workflows.

It does so, by unifying some of the most crucial preprocessing and analysis steps into

one single pipeline. The person handling the data must not run the steps manually and

thereby the entire workflow is simplified.

The software library is split as follows [42]:

Functional MRI; FEAT, MELDOIC, FABBER, BASIL VERBENA, FSLNets

Structural MRI; BET, FAST, FIRST, FLIRT & FNIRT, FSLVBM, SIENA & SIENAX,

MIST, BIANCA, MSM, fsl_anat

Diffusion MRI; FFT, TBSS, XTRACT, edgy, topup, eddyqc

GLM / Statistics; FSLeyes, FSLView, Fslutils, Atlases, Atlasquery, SUSAN, FUGUE,

MCFLIRT, Miscvis, POSSUM, BayCEST, ICA_PNM, FSL-MRS

It also comes with a handful of data, that are typically used as masks or reference-MRI-

files during the different steps of the workflow.

Creation of a web application using FSL tools
SCHLAPPINGER Jennifer 12

As mentioned, multiple ways exist to set up a network analysis pipeline. The following

Table 4 will serve as a reference of the minimum steps recommended for how a BMC

can be generated.

Table 4: Steps to generate a BMC

Step Process FSL-Tool Utility

0 Data acquisition Not covered in this thesis.

1 Preprocessing FEAT, BET,

MCFLIRT

Typical preprocessing steps for a network analysis

are Slice time correction (FEAT), motion

correction (MCFLIRT) and brain extraction (BET).

However, depending on the analysis, other

preprocessing steps might be useful.

2 Node definition Melodic Responsible for the brain’s parcellation. This can

be done with the help of an atlas, that in the

context of FSL is also named brain mask.

3 Time series extraction dual_regression The time series will be extracted from each node,

that has been defined in the previous step.

4 Timeseries averaging FSLNets Optionally, the extracted and averaged timeseries

can be cleaned to avoid unrealistic nodes.

5 Edge calculation FSLNets Caclulates the strenth of the correlations from

each node n [0] --> n[1-n]

6 BCM generation FSLNets Visual construction of the BCM.

[13]

This pipeline will serve as the framework for the rest of this thesis. It is important to

underline that each step could be realised in a different way and order, according to the

user’s need and still generate a BMC in the end.

In FSL these pipelines can be automated by writing personal scripts that are read and

interpreted by the FSL application.

As for now, there is no medical web application yet that runs preprocessing and brain

analyses.

Creation of a web application using FSL tools
SCHLAPPINGER Jennifer 13

3. Research model

The FSL tools are versatile and with the help of other software such as Octave and

MATLAB, brain connectivity matrices can be generated. It does require though, profound

background knowledge of each of these tools plus a lot of time and effort to set these

applications up. These are all considerable burdens that make it almost impossible for a

person without any medical background to create such a matrix that could, however,

provide deeper insight into the brain’s health state - not only to the patient oneself but

possibly also to the medical professionals. Implementing all these functionalities into web

application will not only solve these above mentioned issues but also provide additional

advantages that will be explored in this chapter.

3.1 FSL-Web-Application

Building a web application comes with a lot of advantages as seen in the previous

chapter. Yet, the FSL-Web-Application will not be a copy-paste of the already existing

FSL application, but rather a user-friendly adaptation, which has, in a first time, the

priority to easily conduct a network connectivity analysis and the preprocessing steps

that are highly recommended when doing such an analysis. Furthermore, it should be

possible to extend the application in a potential future adaptation and additions of other

analysis processes, such as EEG and NPT (see chapter 3.1.3 Future vision). In order to

structure all the needs around the application, a list of the functionalities that are wished

to be implemented must be established first.

3.1.1 Functionalities

The FSL library is large. Hence, implementing the entire library into the web application

would go way beyond the scope of this thesis. The functionalities will therefore be limited

to the FSL tools required to generate the BCM only. The functionalities are listed in the

Table 6 below. They are ordered from most to least important and grouped by the

functionality category. The application contains four functionality categories which are:

- Analysis: all functionalities related to the generation of a BCM

- Preprocessing: all functionalities related to FSL’s preprocessing

- User space: all functionalities related to access personal processed data

- User management: all functionalities related to the user’s role and rights

The method used to hierarchise the functionality by its priority is the MoSCoW

Prioritization tool. It can be defined as follows:

“MoSCoW prioritization is a tool for establishing a hierarchy of priorities during a
project. It's based on the agile method of project management, which aims to

Creation of a web application using FSL tools
SCHLAPPINGER Jennifer 14

strictly establish factors like the cost of a product, quality and requirements as early
as possible. “MoSCoW” is an acronym for must-have, should-have, could-have
and won't-have, each denoting a category of prioritization.” [49].

Table 5: Functionalities

ID Group Functionality Prioritization

1.1 Analysis Generate simple BCM Must-Have

4.1 User space Download generated BCM Must-Have

2.1 Preprocessing Slice time correction Should-Have

2.2 Preprocessing Motion correction Should-Have

2.3 Preprocessing Brain extraction Should-Have

4.2 User space Download preprocessed files Should-Have

3.1 User management Login Should-Have

3.2 User management Logout Should-Have

3.3 User management Registration Should-Have

3.4 User management Change password Should-Have

3.5 User management Admin: Activate and deactivate user Should-Have

1.2 Analysis Personalised node definition Could-Have

1-3 Analysis Add personalised labels to BCM Could-Have

2.4 Preprocessing Spatial smoothing Could-Have

2.5 Preprocessing Highpass filtering Could-Have

4.3 User space Store and view past analyses results Could-Have

2.6 Preprocessing Change order of preprocessing pipeline Wished-Have

4.4 User space Save preprocessing and analysis scripts Wished-Have

4.5 User space View files Wished-Have

Creation of a web application using FSL tools
SCHLAPPINGER Jennifer 15

3.1.1.1 Must-Haves

“The Must-Haves are the essential features that need to be included in the product.
Failing to include one would result in a failed release” [49]

In its most basic usage, the application must be able to process one fMRI file as an input

into a brain connectivity matrix as an output (single subject analysis).

Table 6: Basic functionality of the web application

Thereby, it can ignore any additional or optional parameters and preprocessing steps.

3.1.1.2 Should-Haves

“Should-Haves are important requirements but not essential. They are initiatives
that are of great importance and add significant value, but are not crucial” [49]

In a more developed version of the application, the user can decide which of the

preprocessing steps he will consider relevant for the generation of BCM. Moreover, he

can insert optional values for all functionality’s parameters that have a default value and

the output directory/filename. The order of the preprocessing steps, however, cannot be

changed.

The user should also be able to log in and log out again. New users can register

themselves and ask for a new password. System admins can accept new user requests,

update a new password as well as activate and deactivate users.

3.1.1.3 Could-Haves

“The Could-Haves are nice-to-have initiatives, as the do not quite affect the core
function and would have a very small impact if left out” [49]

The more advanced version of the application should allow the user to change the order

of the preprocessing steps and to apply whatever optional parameter he wants.

The user can add a label-file which will allows a more personalised BCM generation,

since the nodes can be labelled accordingly.

3.1.1.4 Wished-Haves

“The Won’t-Haves are definitely not a priority for the foreseen time frame and
therefore not to be included in this specific release. [49]

Creation of a web application using FSL tools
SCHLAPPINGER Jennifer 16

A DICOM-file viewer is wished in which the input, as well as the output, can be displayed.

Additionally, it should be possible that each user has his own user-space in which he can

store individual files, save personalised workflows and assemble all previous BCMs.

3.1.2 Analysis of the advantages linked to a web application

By now, it should be clear what needs the web application should meet and what features

it will include. The advantages of a web application over the traditional FSL tool are yet

to be discussed.

3.1.2.1 Complexity of FSL

The FSL application is rich and multifunctional library that various healthcare

professionals use. However, to use it in its fullness a not neglectable amount of

apprenticeship time is to be invested.

3.1.2.2 Limited availabilities on different OS

As for now, FSL can only be used on macOS or Linux OS. Windows users are obliged

to run the application on a virtual machine. The web application is not OS-dependent

and thus accessible by anyone with a stable internet connection.

3.1.2.3 Lacking availability

FSL must be installed locally on a machine. The installation process can be time-

consuming, especially when not everything works as intended or when the operating

system is a Windows sub-type. The web application will skip this step and the user can

work with all the FSL utilities from whenever and wherever he needs to.

3.1.2.4 Extensibility

The tools offered by FSL are resourceful and vast but not complete. For some analysis

steps external software must be used as a workaround. The web application will no

longer be restricted to the FSL functionalities only. Additional tools - like Octave and

MATLAB, to just cite two examples – can be implemented later on. These advantages

make the web application more versatile and complex and leaves room for further usage.

Creation of a web application using FSL tools
SCHLAPPINGER Jennifer 17

3.1.3 Future vision

In a final vision of this implementation medical data linked to Alzheimer is easily

accessible and comprehensible for everyone. Via the application MRI-data can be

uploaded and processed and their results stored in database. However, in a future vision,

the application should only be the base frame for other brain analysis methods and

expand on further medical tools such as electroencephalogram [50]

An EEG is a test that measures electrical activity in the brain using small, metal
discs (electrodes) attached to the scalp. Brain cells communicate via electrical
impulses and are active all the time, even during asleep. This activity shows up as
wavy lines on an EEG recording. [50]

Figure 8 is an image of what an EEG could typically look like and how the electrodes are

attached to the subject's brain.

Figure 8: Drawn illustration of an EEG [50]

As for now, the implementation of a brain networking analysis is the main goal of the

thesis.

Creation of a web application using FSL tools
SCHLAPPINGER Jennifer 18

4. Implementation

Having already a broad idea of what FSL is and what it is used for, this chapter will define

the conditions and set the requirements for the FSL web application implementation.

Firstly, the technical limits of the implementation will be set, starting with the application

as a whole and then specifying the restrictions for the frontend, backend and the

database. Once declared, the technical tools that meet these requirements are

presented, briefly analysed and set within the project's implementation scope.

Next, the software design is described by disassembling the main functionality categories

(Table 6) into, again, frontend, backend and database.

Finally, the testing method for each part of the application, frontend, backend and

database will briefly be described.

4.1 Technical specifications

As for the technical requirements, they have to be SMART, meaning that they are

specific, measurable, achievable, relevant and time-bound. Therefore, they will be

described in the format: [Part of the application] [will | shall | must] [requirement] [53].

Moreover, they must be non-functional requirements and align with the greater goal of

this application’s purpose, as stated in the introduction (Chapter 3.1.3 Future vision).

These are the requirements for the entire web applications:

1) The web application must be developed but not deployed.

2) A docker image of the application to facilitate the deployment is wished but not

required.

3) The application must not contain external software that are not open-source and

free.

4) The application shall be runnable on a server on which FSL and other

complementary software, is already installed and set up.

5) The application shall only apply basic security features.

Frontend

The requirements for the frontend implementation are as follows:

1) The user interface must be user-friendly and intuitive.

2) The user interface is not a priority of the project, it must first and foremost be

functional.

Creation of a web application using FSL tools
SCHLAPPINGER Jennifer 19

3) The user interfaces must be structured clear enough, so that a person with a non-

medical background can use the basic features of the application and generate

a BCM.

Backend

The requirements for the backend implementation are as follows:

1) The backend must allow future extensions.

2) The backend shall be simply structured.

Database

The requirements for the database implementation are as follows:

1) The database will only include compressed file paths, no files.

4.2 Technical implementation choices

Deciding on the right technical choice is crucial since it can hardly be changed later.

Technical choices include platform choice and, from the latter derived, choices about the

applications coding language and framework. [54].

Since the platform is predefined – the goal is a web implementation – the following three

chapters will present the language and the frameworks chosen for the FSL web

application and define the naming conventions that should be used in the code

implementation. For reference, according to GitHub’s Coding Best Practices, there are

four main types of how variables with more than one word should be delimited. These

conventions are Pascalecase, Camelcase, Snakecase and the Hungarian notation [55].

4.2.1 Frontend – Javascript with React

The frontend will be written in JavaScript implementing the React library. The React

library is a widespread and well-documented library that makes it easy to create

interactive user interfaces. With React, entire components can be encapsulated and the

DOM state managed separately. This approach allows a fast re-render of the page,

which not only makes the interface more user friendly but also more reactive [56].

The user interface is not the focus of this thesis. Using a react interface will still grant a

quick yet professional setup of the website’s appearance.

Creation of a web application using FSL tools
SCHLAPPINGER Jennifer 20

Table 7: Coding conventions frontend

Type Requirements Example

React Hooks and

variables related

to these hooks

Camelcase delimination

- must not be numbers

- must not be named none, null, is, else, if

useReact()

visibilityChair

Other functions Snakecase delinination

- must not be numbers

- must not be named none, null, is, else, if

var_to_throw_away

Components Camelcase delimination

- must describe an understandable name

ReactComponent

4.2.2 Backend – Python with Flask, Nypipe and Oct2Py

The backend will be written in Python. Python is a high-level, general-purpose

programming language. It is known for its intuitive language, making the code easier to

write and more understandable to read. Needless to say, their documentation is broad

and Python is regularly ranked as one of the most popular languages [57, 58].

The FSL library itself is written in C++ and TCL – one exception being the Python

installation file. However, not only can Python easily interact with the operating system

via the shell, but the entire Nipype library is written in python as well. The Nypipe library

is an FSL interface that lets multiple FSL processes run simultaneously and accelerates

thereby the overall execution of the analysis [68]. Plus, since the application field of this

web application is extremely specific and hard to understand for non-professionals of the

area, it is undoubtedly useful – if not vital – that the source code can also be partly

understood and read by non-professional developers [57, 58, 59].

Similarly, the Oct2Py library allows to interact with the octave application easily [60].

Notably, this is a handy extension for the generation of the brain network matrices and

for eventual further expansions of the application.

Creation of a web application using FSL tools
SCHLAPPINGER Jennifer 21

Table 8: Coding conventions backend

Type Requirements Example

Variables and

functions

Snakecase delimination

- lowercase and separated by an underscore

- must not be a number

- must not be numbers

- must not be named none, null, is, else, if

another_variable

another_function()

Global variable All uppercase, with snakecase delimination

- separated by underscore

GLOBAL_VAR

URL

annotations

Camelcase delimination RequestRessource

4.2.3 Database - PostgreSQL

The project will use a PostgreSQL database. PostgreSQL is open source and object

relational-management system. It supports unstructured data types such as audios,

videos or images and several advanced security features. A fast database performance

is not demanded by this project since most of the data processing will be done on the

server directly and immediately after presented to the user to download. Juxtaposed, the

advanced security features of PostgreSQL such as data encryption will allow a safe but

easy user management [61,62]. Even with the implementation of the low priority features

PostgreSQL is perfectly suited to store larger MRI data.

MRI-data can be very large, especially fMRI since they are a concatenation of multiple

scan volumes (Figure 4) as briefly explained in Chapter 2.1.1, which can make single

DICOM fMRI file 35 MB heavy. Juxtaposed, as the Microsoft report suggest, all files that

are larger than 1 MB are best stored in a filesystem [63]

Table 9: Backend - coding conventions

Type Requirements Example

Postgres

nominators

All uppercase SELECT * FROM

Created variables All lowercase with Snakecas delimitation. The

column names must typically use the first 3

letters of the table’s name, followed by the

name of the attribute, which is written in full

length.

col_attribute

Creation of a web application using FSL tools
SCHLAPPINGER Jennifer 22

4.3 Software design

Frontend

As mentioned in the beginning of this chapter, the application should create the soil for

a larger application, that will englobe much more functionalities and analysis methods.

Consequently, the frontend will include sections that are not developed yet. The menu

bar, as displayed in Figure 9, mentions these possible future implementations.

The Frontend was built with a template from CoreUI, that can be accessed via the

following link: https://coreui.io/product/free-react-admin-template/

Figure 9: Future functionalities

https://coreui.io/product/free-react-admin-template/

Creation of a web application using FSL tools
SCHLAPPINGER Jennifer 23

Backend/API

The backend of this application will not only mange the project’s APIs, from frontend to

backend to database and vice-versa, but also manage the interaction with FSL and

Octave [64]. The latter is indispensable for the creation of the BCM. As indicated in Figure

11 all user requests will always pass via the servers API-service first. There, they will be

dispatched and sent to the corresponding service. For example, when the user tries to

log in, the log-in data will be sent to the backend’s API service. There it will send it to the

corresponding application service, which in this case would be the authentication service.

The authentication service will handle the transferred data and ask for identification by

sending requests to the database. The databases response will be sent to the application

service, which, again will forward the response back to the API. Finally, the latter will tell

the frontend if the login request was successful or not.

What is more, when referring to the FSL interface, it is crucial that the FSL application is

already installed properly (Appendix 1) on the server for it to execute successfully. The

application will then call the Nipype library [68] that serves as FSL interface and executes

the FSL commands using python. The Nipype library is thus responsible for interpreting

the python commands to launch the diverse FSL processes.

Similarly, the Octave interface requires a proper Octave installation (see Appendix 1

Installation manual). The octave interface, however, can also implement external scripts

and execute them. For the network analysis, the Octave interface will call the

brain_generation.m script to generate the BCM.

Figure 10 : Backend design

Creation of a web application using FSL tools
SCHLAPPINGER Jennifer 24

Database

Like the frontend, the database should be adapted to a possible growth of the application.

Therefore, it will rely on a rather simple structure, as seen in Figure 11. All processes

generate a variety of files, regardless of the outcome. They can either success or fail. If

a process failed, the “failed_” prefix will be added to the processes type attribute

(pro_type), e.g. failed_Matrix. It is up to the user to check if he’s process failed or

succeeded. With this approach the outputs of each analysis can be stored in a “one-

serves-all"-class.

Figure 11: Database model

Code 1: Creation of tables

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 13

 14

 15

 16

 17

 18

 19

 20

 21

 22

 23

 24

CREATE SEQUENCE user_id_seq MINVALUE 1;

CREATE TABLE public.user (

 use_id INTEGER NOT NULL DEFAULT EXTVAL('user_id_seq'),

 use_name CHARACTER varying(128) NOT NULL,

 use_password CHARACTER varying(256) NOT NULL,

 use_mail CHARACTER varying(256) NOT NULL,

 use_admin BOOLEAN NOT NULL DEFAULT FALSE,

 CONSTRAINT user_pkey PRIMARY KEY (use_id),

 CONSTRAINT uni_use_name UNIQUE (use_name),

 CONSTRAINT uni_use_mail UNIQUE (use_mail));

CREATE SEQUENCE pro_id_seq MINVALUE 1;

CREATE TABLE public.process (

 pro_id INTEGER NOT NULL DEFAULT NEXTVAL('pro_id_seq'),

 pro_name CHARACTER varying(500) NOT NULL,

 pro_use_id INTEGER NOT NULL REFERENCES public.user (use_id),

 pro_zip CHARACTER varying(500) NOT NULL,

 pro_timestamp TIMESTAMP NOT NULL DEFAULT NOW(),

 pro_type CHARACTER (100),

 CONSTRAINT pro_pkey PRIMARY KEY (pro_id),

 CONSTRAINT uni_pro_name UNIQUE (pro_name)

);

Creation of a web application using FSL tools
SCHLAPPINGER Jennifer 25

4.3.1 Analysis

The functionalities for the analysis englobe all procedures needed to generate a brain

connectivity matrix. As per se, preprocessing is highly recommended to be able to create

a clean BMC – it is though not required. Consequently, the generation of the BCM should

be possible, with a simple fMRI input file.

Frontend

The GUI must allow the user to simply select an fMRI and give a desired name to this

specific analysis process. The input of an sMRI mask is optional, but strongly

recommended for a more accurate result. The TR used, that is fetched via the file’s

header – if possible – is displayed and the user can decide whether the indicated TR

should be used or not [65]. Each step (1 – Node definition, 2 – Timeseries extraction and

3 – Brain connectivity matrix) of the analysis can be customised. As for now, the analysis

should create a BCM without needing to alter any of the parameters. How a changed

parameter can modify the output, will be explored in chapter 4 Outputs and tests.

Figure 12: User interface of FSL Nets

Creation of a web application using FSL tools
SCHLAPPINGER Jennifer 26

The following lines of code show how the TR is requested and fetched in the frontend.

Code 2: Frontend - Get TR

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

const [fMRIFile, setfMRIFile] = useState()

const onfMRIFileChange = (e) => {

 setfMRIFile(e.target.files[0])}

const formData = new FormData();

formData.append("fMRIFile", fMRIFile);

fetch('http://localhost:5000/get_tr', {

 method: 'POST',

 body: formData})

 .then((res) => res.json())

 .then((data) => setTr(data.TR))}

During the run of the analysis the Generate Connectivity Matrix (see Figure 12) button

will be disabled and in the localstorage value of the user indicating if a process is

currently being executed is set to true. As for now, running multiple processes at the

same time reduces performance and puts the server at risk of crushing, which is why

this restriction has been implemented. Once the analysis completed the user will be

informed conformingly by a pop-up notification. The user can then navigate to the result

page of the application (Figure 13), where all his processes will be listed.

Figure 13 : All processes linked to one user

The user can now download the output directory in a compressed file. If the default

parameters were kept, the downloaded folder should contain (see also Figure 14):

- The files generated during the melodic ICA

o log.txt

o mask.nii.gz, mean.nii.gz

o eigenvalues_percent

o melodic_FTmix, melodic_ICstats, melodic_mix, melodic_Tmodes

o melodic_IC.nii.gz

- The files generated during the dual regression

o melodic_IC.dr (containing files depending on the number of nodes)

- The files generated during the creation of the BCM

o BCM.jpg → visual output of the BCM

o BCM.csv

Creation of a web application using FSL tools
SCHLAPPINGER Jennifer 27

Figure 14 : Result folder of a network analysis

Of course, the generated BCM will look different depending on the input file, Figure 15

simply serves as an example to illustrate what the output should look like.

Figure 15 : Automated BCM output

In the csv file, the exact numeric values corresponding to each field are listed.

Creation of a web application using FSL tools
SCHLAPPINGER Jennifer 28

Backend

In the backend the process to create a BCM is triggered once the Generate Connectivity

Matrix (see Figure 12) button is clicked. As seen in Figure 16, in the beginning, the user’s

request, that also carries the parameters, will be sent to the application server (step 1).

The latter will then ask the FSL interface to start melodic (step 2) and then, if successfully

executed (steps 2a & 3a), start the dual regression in the same way (step 3). If one of

these two processes fails for whatever reasons, the files that were already generated

during the precedent processes, notably the log file, are zipped and the path is saved to

the database (steps 2.1b & 3.1b). A fail-response is sent via the application server to the

frontend, informing the user that the process is finished, but that something went wrong

(steps 2.2b & 3.2b). In a next step, the application server will ask the octave interface

with the help of the oct2Py library to execute the script responsible to generate the BCM

(step 4) and, if the script is available, execute it (step 5). It is the oct2Py library that

creates an interface with Octave and thereby allows the script, that is responsible for the

creation of the BCM, to be accessed. The octave interface informs the application if the

execution of the script was successful or not (step 6) and stores the generated data in

the database (step 7). If step 5 did not succeed, the keyword “failed_” will be prefixed to

the processing_type attribute (see Figure 11, chapter 4.3 Software design – Database).

Finally, the user is informed that the process has been run and he can view and download

the output in the result page (step 8).

Figure 16: Backend creation of a BMC sequence diagram

Creation of a web application using FSL tools
SCHLAPPINGER Jennifer 29

From the octave interface the corresponding script is called in the following way. The

octave command, createMatrix must correspond to the file name containing the script.

Code 3: Backend - Octave interface

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 13

 14

 15

def add_octave(melodic_filepath: str,

 tr: float,

 normalisation: bool,

 matrixType: str,

 colour: str,

 matrixTitle: str):

 oct = octave.Oct2Py()

 oct.addpath(app.config["FSL_PATH"])

 oct.addpath(app.config["OCTAVE_PATH"])

 oct.addpath('..//fsl_backend/scripts')

 try:

oct.createMatrix(melodic_filepath, tr,

normalisation, matrixType, colour, matrixTitle)

 oct.exit()

 except Exception as e:

 print(str(e))

In the above Code 2, lines 7 to 10 will make sure that the application has access to all

FSLNets scripts, to the octave library and the web application’s own scripts. Then in

line 12 the script which will calculate the BCM is called. Oct2Py will associate the

script’s filename to the function name.

Code 4: octave script, named createMatrix.m

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 13

 14

 15

 16

 17

 18

 19

 20

% Parameters :

% melodic_filepath: string | Example: '../X_PROCESS/me_IC.dr'

% tr: number | Threshhold, example: 0.42

% normalisation: boolean | Example: 1

% matrixType: string | Example: ['corr'|

% colout: String | Example: ["jet"|

function createMatrix(melodic_filepath,

 tr,

 normalisation,

 matrixType,colour,matrixTitle)

 ts = nets_load(melodic_filepath, tr, normalisation)

 net_matrix = nets_netmats(ts,1,matrixType)

 corr=reshape(net_matrix,ts.Nnodes,ts.Nnodes)

 corr(corr==0)=NA

 imagesc(corr)

 colormap(colour)

 title(matrixTitle)

 close all force

end

This is the core of the application, which is why this file will be explained in more detail.

The function createMatrix takes 6 parameters, of which only the first two are

indispensably required. The path to the melodic directory (melodic_filepath: me_IC.dr)

Creation of a web application using FSL tools
SCHLAPPINGER Jennifer 30

and the TR of the current fMRI file. In line 12, all melodic files from the melodic directory

are loaded. Then, in line 13 a first matrix is generated and then properly reshaped in line

14. In line 15, all values of the diagonal are set to NA (null) in order to avoid ambiguous

coloration of the matrix and distinguish the diagonal line clearly from the rest of the

matrix. Eventually, in line 16 to 18 the BCM is named, coloured and labelled after the

user’s preference.

With the oct2Py interface other octave scripts can extremely easily be added later on.

For example, if a wishedAnalysis script is available, the latter file just needs to be added

to the application’s folder and then called via the octave interface with the command

oct.wishedAnalysis([parameters]) (see Code 2, line 12).

Database

The tables used for a successful implementation of the MRI-Analysis functions into to

the database are the tables; Process, User (see Figure 11, chapter 4.3 Software design

– Database).

Creation of a web application using FSL tools
SCHLAPPINGER Jennifer 31

4.3.2 Preprocessing

Thanks to the Nipype library the implementation of the diverse preprocessing steps is

relatively similar, independently of what type of preprocessing is being applied. The main

difference will be the parameters and the associated output. Therefore, the

preprocessing will only briefly be described.

Frontend

Under the input section, the user will have the choice of what type of MRI he wants to

process, anatomical or functional. Each preprocessing steps has its own parameters and

default values that can be changed after the user’s preference. Changing the order of

preprocessing with a simple drag&drop is not yet possible.

Figure 17: GUI Preprocessing

The frontend must send all parameters in the correct form, so the application service can

process it correctly. These parameters are all in a React form in which they will be filtered

by their belonging to a certain preprocessing step.

Code 5: Frontend - Initial form

 1

 2

const initialForm = {bet:false, mcf:false, sli:false, spat:false};

const [form, setForm] = React.useState(initialForm);

Creation of a web application using FSL tools
SCHLAPPINGER Jennifer 32

All BET parameters are, therefore, named with a prefix “bet_”, all Motion correction

parameters with the prefix “mcf_” (for FSL McFlirt) and all Slice timing correction

parameters with the prefix “sli_”. Additional preprocessing steps can be added if wished.

Code 6: Frontend - Parameters

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 13

 14

 15

 16

 17

 18

 19

 20

 21

function extractParams(allParams,steps){

 let extracted = {}

 for (let s of steps){

 if (allParams[s] == true){

 let typeParams = {}

 for (let p of allParams.target.elements) {

 if (p.name.substring(0, 3) == s){

 Object.assign(typeParams,

{[p.name.substring(4, p.name.length)]:p.value})}}

 typeParams N= setParams(typeParams, s)

 Object.assign(extracted, {[s]:typeParams})}}

 return extracted

}

function setParams(extractedParams, type){

 if (type == "bet"){

 return setBetParams(extractedParams["bet"])

 }else if (type == "mcf"){

 return setMcfParams(extractedParams["mcf"])

 }else if (type == "sli"){

 return setSliParams(extractedParams["sli"])

 }

}

Once the form gets submitted via the Start Preprocessing button all parameters are

assembled, adjusted and sent to the backend with the correct formatting (dictionary).

Code 7: Frontend - Parameter submission

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 13

 14

 15

 16

 17

 18

 19

 20

const startPreprocessing = (e) => {

 e.preventDefault();

 alert("Your data is being preprocessed. This may take a while...")

 const extractedParams = extractParams(form);

 if (form.bet == true){form["bet"] =

setBetParams(extractedParams["bet"])}

 if (form.mcf == true){form["mcf"] =

setMcfParams(extractedParams["mcf"])}

 if (form.sli == true){form["sli"] =

setSliParams(extractedParams["sli"])}

 /*-- Other submit actions irrelevant for the parameters--*/

 const formData = new FormData();

 formData.append("file", file);

 formData.append("processName", processName);

 formData.append("bet", JSON.stringify(form.bet));

 formData.append("mcf", JSON.stringify(form.bet));

 formData.append("sli", JSON.stringify(form.sli));

 fetch('http://localhost:5000/preprocess', {

 method: 'POST',

 body: formData})

 .then((res) => res.json())

 .then((data) => {/* Re-initalising form and window--*/})

 .catch((err) => console.log(err))}

Creation of a web application using FSL tools
SCHLAPPINGER Jennifer 33

Backend

Similarly to the network connectivity analysis, the user will send its request to the FSL

interface Nypipe (step 1). There it will make sure that the folder location in the server is

given. This is important since the preprocessing steps can generate a lot of different files

(step 2). Then, if every process run successfully (step 3a) the data will be preprocessed

(step 4), the files compressed and the process saved into the database (step 5). Finally,

the user receives a notification indicating that the preprocessing has finished and that it

can be viewed. If the preprocessing failed, the user will be informed correspondingly and

the keyword “failed_” will be prefixed to the processing_type attribute (3b).

The parameters needed for the preprocessing steps are included in the preprocessing

request (step 1).

Figure 18: Sequence diagram preprocessing

The FSL interface Nypipe must be able to process all parameters, if given or not, which

can be achieved with the python **kwargs functionality. In the next section of Code 8 the

FSL interface which handles the BET requests is shown. The parameters are classified

into compulsory parameters, without which the preprocessing step cannot be executed,

default parameters, these parameters provide a default value, even if it was not given by

the user, and the optional parameters that will, if not indicated, just be ignored.

Creation of a web application using FSL tools
SCHLAPPINGER Jennifer 34

It has to be noted that all the preprocessing services proposed by Nypipe are built in the

same way, only the name of the function changes. Therefore, this example also serves

as model for all other preprocessing steps that are, or are yet to be implemented.

Code 8: Backend - Preprocessing

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 13

 14

 15

 16

 17

 18

 19

 20

 21

 22

 23

 24

 25

 26

 27

 28

 29

 30

 31

 32

 33

 34

 35

 36

 37

 38

 39

def launch_bet(input_file, **kwargs):

 myb = fsl.BET()

 ################# MANDATORY PARAMETERS ###################

 myb.inputs.in_file = input_file

 myb.inputs.out_file = set_extraced_brain_name(input_file, "_brain")

 ###### OPTIONAL PARAMETERS WITH DEFAULT ###################

 myb.inputs.frac = kwargs.get("frac", 0.5)

 myb.inputs.vertical_gradient = kwargs.get("vertical", 0)

 ####### OPTIONAL PARAMETERS WITHOUT DEFAULT ###############

 if kwargs.get("outline"): myb.inputs.outline = kwargs.get("outline")

 if kwargs.get("mask"): myb.inputs.mask = kwargs.get("mask")

 if kwargs.get("no"): myb.inputs.no_output = kwargs.get("no")

 if kwargs.get("radius"): myb.inputs.radius = kwargs.get("radius")

 if kwargs.get("center"): myb.inputs.center = kwargs.get("center")

 if kwargs.get("thresh"): myb.inputs.threshold = kwargs.get("thresh")

 if kwargs.get("mesh"): myb.inputs.mesh = kwargs.get("mesh")

 if kwargs.get("skull"): myb.inputs.skull = kwargs.get("skull")

 match kwargs.get("vars"):

 case "robust":

 myb.inputs.robust = True

 case "remove_eyes":

 myb.inputs.remove_eyes = True

 case "reduce_bias":

 myb.inputs.reduce_bias = True

 case "padding":

 myb.inputs.padding = True

 case "surfaces":

 myb.inputs.surfaces = True

 if kwargs.get("t2_guided"):

 try:

 myb.inputs.t2_guided = kwargs.get("t2_guided")

 except Exception as e:

 print(e)

 try:

 myb.run()

 except Exception as e:

 print(e)

Database

The tables used for a successful implementation of the Preprocessing functions in the

database are the tables; Process, User (see Figure 11, chapter 4.3 Software design –

Database).

All MRI files (input and output) are saved on the server directly. The database will only

reference the path to the file’s location on the server.

Creation of a web application using FSL tools
SCHLAPPINGER Jennifer 35

4.3.3 User management

Beside the core functionalities that are directly linked to the FSL services, the web

application also integrates user-oriented functionalities, which are (see table 3, chapter

3.1 Functionalities) :

- Login and logout function

- User management

o User management for regular users (registration, new password request)

o User management for system admins (activate and deactivate users)

The user management is split into two sub-sections. On the one hand, there are the

functionalities for a non-admin user and on the other hand, the system administrator will

be able to accept new registrations request and block users.

4.3.3.1 Login and Logout

For the login and logout management a very simple micro-service-oriented approach

was chosen which is explained as follows.

Frontend

The Login GUI is very conventionally designed after a template accessible via the

following link: https://coreui.io/product/free-react-admin-template/

Figure 19: GUI Login

Creation of a web application using FSL tools
SCHLAPPINGER Jennifer 36

Backend/API

The authentication service runs in two steps, as indicated in Figure 20 and Figure 21.

Firstly, the user is identified and, secondly, the thereby generated Token verified to

validate the session, after an example of Shane Larson.

Figure 20: Backend - Verification of credentials [67]

Figure 21: Backend - Verfication of the session token [67]

The received credentials secrets (passwords) are hashed with the Secure Hash

Algorithm 2 (SHA-2) immediately before sending the request to the database. Currently

even some cryptocurrencies make use of this hashing method for transaction verification

for example [66]. The token, as well as the username are saved in the user’s

localstorage.

Creation of a web application using FSL tools
SCHLAPPINGER Jennifer 37

Code 9: Backend - Password encryption

 1

 2

 3

 4

 5

hash_object =

 hashlib.sha256(bytes(client_secret_input, 'utf-8'))

hashed_client_secret = hash_object.hexdigest()

authentication_check =

 db_user.authenticate(client_id, hashed_client_secret)

Code 10: Backend - Recieving encoded password from database

 1

 2

 3

 4

 5

 6

try:

 encoded_jwt = jwt.encode(payload.__dict__, AUTHSECRET,

algorithm='HS256')

 resp = ResponseAuth(encoded_jwt, EXPIRESSECONDS, isAdmin)

 c.close()

 cnx_db.close_commit_db(c, cnx)

 return resp.__dict__

Database

The tables used for a successful implementation of the Login and Logout functions into

to the database are the tables; User (see Figure 11, chapter 4.3 Software design –

Database).

Moreover, when sending a simple select query to the User table, it can be noticed that

the password outputs are hashed.

Code 11: Database - Hashed password

4.3.3.2 Register

Frontend

Again, the register GUI is conventionally designed after the template accessible via the

following link: https://coreui.io/product/free-react-admin-template/

Figure 22: Frontend Registration

Creation of a web application using FSL tools
SCHLAPPINGER Jennifer 38

Backend/API

As seen in the below Figure 23, once the user wants to create a new user profile, the

username, mail address and password are sent to the database to verify that the user is

not created twice, either with the username or with the mail address.

Figure 23: Registration service

Database

As we can see in the creation of the database, Code 1 Creation of tables, it should not

be possible to create a duplicate user, as the user ID is generated dynamically and

neither the user id, user name nor the user mail is allowed to be empty, which is indicated

by the keyword NOT NULL.

The tables used for a successful implementation of the User management functions into

to the database are the tables; User (see Figure 11, chapter 4.3 Software design –

Database).

Creation of a web application using FSL tools
SCHLAPPINGER Jennifer 39

4.3.3.3 Request new password

It can happen, that the user forgets his password. In this case he can request a password

reset. Figure 24 displays what the user will see once he requests a new password.

Figure 24: Frontend, forgot password

When requiring the new password, it is important, that the mail address typed in (Figure

24) corresponds to the mail address the user provided during registration. The submitted

mail address will be verified in the backend, using the following code to access the

database.

Code 12: Retrieving the user’s mail from database with python

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 13

 14

 15

 16

def get_userMail(user_mail):

 query = "SELECT * FROM public.user WHERE use_mail = %s"

 cnx = cnx_db.open_db()

 if cnx is not None:

 c = cnx.cursor()

 try:

 c.execute(query, (user_mail,))

 if c.rowcount == 1:

 return 1

 else:

 return 0

 finally:

 c.close()

 cnx_db.close_commit_db(c, cnx)

 else:

 raise Exception("No connection!")

Creation of a web application using FSL tools
SCHLAPPINGER Jennifer 40

Figure 25: Password reset request

The password reset procedure is set off when the user clicks on the “Forgot password?”

link in the Login page (Step 1). If the user mail is in the database (Step 2) the user

management service will send a mail to the user’s mail address, with a link that includes

a newly generated Token (Step 3,4). If the mail was successfully sent (Step 5), a pop up

will appear that asks the user to follow the instructions sent to personal mail account

(Step 6). The user will then be redirected to the login page. Once the user opens the mail

and clicks on the link, a verification request of the Token will be sent to the User

management service, which will – if the Token is valid (Step7) – navigate the user to the

“Password reset” page (Step 8). The user will then be requested to reset his password

(Step 9). If the password is not empty, the user’s password is updated in the database

and the user will receive a confirmation pop-up (Step 10).

Creation of a web application using FSL tools
SCHLAPPINGER Jennifer 41

4.4 Tests and output

Even though it can be challenging for a user without any medical background knowledge

to state if the extracted BCM or the MRI result looks satisfying, the code quality and

coherence can still be tested. Testing code is indispensable if the application should be

robust and have a minimum resistance not to bug on arbitrary user exploration. There

are usually three categories of testing: functional testing, non-functional/performance

testing and maintenance testing [69]. As for this project, the tests limit themselves to unit

and integration testing only.

4.4.1 Testing requirements

Frontend

For the react frontend, the Jest library will be used. It is currently the most popular testing

framework. Meta, formerly Facebook, takes care of the maintenance [70]. Moreover, a

separate folder for each page component is set up for further testing implementations.

To run the tests, run the following commands in the command line terminal: npm jest.

For further run options, please consult the Jest Documentation: https://jestjs.io.

A simple example is to check if the loading button is disabled during the process of a

matrix generation.

With the jest library the component to be tested is copied using the keyword

describe(Compnent, () => {

In the parenthesis, the developers test will be written. Then with the expect

keyword the expected results will be compared to the actual result. If both results

are equal, the test returns true, otherwise, the test will return an error.

excpect(ReactStatus of variable).toEqual(The result I expect from this test)}.

Since the frontend of the application was built on a template, these templates will not be

tested.

Creation of a web application using FSL tools
SCHLAPPINGER Jennifer 42

Backend

For the flask – python backend, the pytest library is used. An integrated testing feature

in Python, called unittest, can be considered as equally powerful as pytest. The latter

framework was chosen due to the more detailed output [71] and the personal preference

of the author.

All files that want to be included in the pytest test run must have either “test_” as a prefix

or “_test” as a suffix to the file’s name. Then, the tests can simply be run by sending the

command pytest <directory of test files>. If warninga about deprecated packages should

be ignored, the parameter pytest -W ignore::DeprecationWarning can be added to the

command. For further run options, please consult the pytest Documentation:

https://docs.pytest.org/en/7.3.x/contents.html/.

Like for the frontend, a separate folder for all tests has been prepared. One example is

to check if the file uploaded by the user corresponds to the file that is retrieved by the

Nypipe interface. A simple test will look as follows:

Code 13: Set up of a correct test

1

2

3

4

5

def test_files(set_vars):

 testfile = "/home/jen/X_DATA/structural.nii.gz"

 myb = fsl.BET()

 myb.inputs.in_file = testfile

 assert myb.inputs.in_file == testfile, "Bet files do not

match"+testfile+" - "+myb.inputs.in_file

Since the file is the same, the result should be correct.

Figure 26: Successful backend pytest test

However, if the code is slightly changed, an error will appear:

Code 14: Set up of an incorrect test

1

2

3

4

5

def test_files(set_vars):

 testfile = "/home/jen/X_DATA/structural.nii.gz"

 myb = fsl.BET()

 myb.inputs.in_file = testfile

 assert myb.inputs.in_file == testfile, "Bet files do not

match"+testfile+" - "+myb.inputs.in_file

https://docs.pytest.org/en/7.3.x/contents.html/

Creation of a web application using FSL tools
SCHLAPPINGER Jennifer 43

Figure 27: Failed backend pytest test

This test seems trivial at first sight, but in the case of a missing letter in the file name for

example, the error can quickly be traced back to and thus make maintenance work more

efficient in the long run.

PostgreSQL

Due to the size of the database (two tables only) no testing process was yet implemented

for the database.

4.4.2 Outputs and results

By now it is clear what needs the web application fulfils and how the functionalities are

implemented technically. Finally, the BCMs generated by the application must be verified

to their correctness regarding the parameters that the user can modify or ignore.

As stated beforehand, the tests described in the following few paragraphs aim to verify,

when a parameter is isolated and then modified, if these modifications are reflected in

the output. Moreover, only the parameters that can be checked without the need of any

medical background information will be tested. All parameters that can be set by the user

himself are listed in Table 28 below. Other tests such as user input formats will not be

handled in this paper.

Figure 28 : BCM parameters

N Parameter Input Mandatory Comment

1 Input file, fMRI

file for BCM

File Yes If no file is selected, the button to

launch the process is disabled.

Similarly, if the file selected does not

correspond to the expected file

extension, the button to launch the

process rests disabled as well.

2 TR used Float Yes, default:

DICOM header

If the TR is readable in the fMRI’s

header file, it will retrieve the TR from

the header directly. Otherwise, the user

must indicate the correct TR manually.

Creation of a web application using FSL tools
SCHLAPPINGER Jennifer 44

3 Process name String Yes If the process name was already used

by the user, the button to launch the

process is disabled. The process name

will be the name of the output zip file.

4 Nb of nodes Integer No, default:

automatic

estimation

The nodes can be estimated

automatically by melodic. The number

of nodes will define the size of the BCM

(nbNodes * nbNodes).

5 Mask File No, default: none The mask file must correspond to the

input fMRI file. Otherwise, the melodic

process will fail.

6 Bet Boolean No, default: No The basic brain extraction procedure is

applied to the fMRI input file.

7 Normalise

timecourse

Integer No, default: No This input should not be modified.

9 Normalisation Boolean No, default: True This input should not be modified.

10 Correlation String No, default: Full

correlation

FSLNets gives the user the possibility

to create a network using different

approaches. Each string corresponds

to one of these approach-options, that

are; covariance, full correlation, partial

correlation, amplitudes only, Ridge

regresseion (partial), Hyvarinen

11 R to Z Integer 1, default: 1 If 0, this options is turned off.

12 Matrix’ name String No, default,

“Brain

connectivity

matrix”

This input will be the title of the BCM

image generated.

Tests: mandatory parameters

As mentioned in the introduction the goal of the application is to allow a regular user

(user without any medical background) to create a BMC via a web application. Therefore,

when the user only fills in the mandatory input fields, the application should still create a

plausible BCM.

For parameters 1 and 2 the application will not test the correctness of the filetype or of

the TR, simply because these two parameters must be gathered during the MRI

sessions. However, the output BCM should be different if the input fMRI file changes.

The two figures on the next page (Figure 29, 30) are the outputs of three different fMRI

input files.

Creation of a web application using FSL tools
SCHLAPPINGER Jennifer 45

Figure 29 : BCM A, changing parameters 1 and 2

Figure 30 : BCM B and C, changing parameters 1 and 2

It must be noted, that each BCM is mirrored on the diagonal.

The application itself will only verify if the process name (parameter 3) already exists in

the database and advise the user to change the process name.

Figure 31 : Process’ names in database

Figure 32 : Invalid process name (not unique)

Creation of a web application using FSL tools
SCHLAPPINGER Jennifer 46

Output: parameter 4

The ROIs can be estimated automatically by the application it is, however, recommended

to only use about 30 regions with the ICA method. It must consequently be tested if there

is a difference between the BCMs generated when all other parameters stay the same

and only parameter 4 is modified. Conforming to the description in Table 28, if the BCM

is generated setting parameter 4 on number 5, the expected outcome matrix should have

a size of 25, respectively 1’936 if set to 44. As it becomes evident in Figure 33, the output

corresponds to the expected result.

Figure 33 : BCM with 5 nodes (right) and 44 nodes (left)

Outputs: parameters 10 and 12

FSLNets provides six options on how a matrix can be generated. However, only the

options, “full correlation” (Figure 34), “partial correlation” (Figure 35), “partial correlation”

“full correlation with r to z” (Figure 36), “covariance” (Figure 37) and “partial ridge

regression” (Figure 38) can be generated. For better readability, in the following outputs

the csv file has been overlaid to the BCM image.

Figure 34 : BCM - full correlation

NA -10.017 11.194 -5.474 -0.487 5.912 4.678 -0.135 0.645 -0.219

-10.017 NA -10.013 5.226 0.407 -5.938 -4.716 0.054 -1.176 0.201

11.194 -10.013 NA -4.502 -0.098 6.108 4.583 -0.730 0.604 0.037

-5.474 5.226 -4.502 NA 1.340 -2.841 -2.483 -2.632 -2.421 0.194

-0.487 0.407 -0.098 1.340 NA 1.248 0.275 -0.252 -4.486 2.022

5.912 -5.938 6.108 -2.841 1.248 NA 4.522 0.542 -0.922 -0.241

4.678 -4.716 4.583 -2.483 0.275 4.522 NA 2.560 -0.175 0.158

-0.135 0.054 -0.730 -2.632 -0.252 0.542 2.560 NA 1.864 -0.075

0.645 -1.176 0.604 -2.421 -4.486 -0.922 -0.175 1.864 NA -1.565

-0.219 0.201 0.037 0.194 2.022 -0.241 0.158 -0.075 -1.565 NA

Creation of a web application using FSL tools
SCHLAPPINGER Jennifer 47

Figure 35 : BCM - Partial correlation

Figure 36 : BCM - full correlation, with r to z

Digure 37 : BCM - Covariance

NA -2.420 4.635 -2.101 -0.676 0.708 0.763 -0.362 -0.721 -0.311

-2.420 NA -2.692 1.386 -0.189 -1.329 -1.159 0.748 -1.132 0.082

4.635 -2.692 NA 0.025 0.423 1.268 0.834 -1.586 0.621 0.439

-2.101 1.386 0.025 NA 0.462 0.151 1.108 -2.859 -1.096 -0.321

-0.676 -0.189 0.423 0.462 NA 1.067 -0.330 0.751 -3.518 1.435

0.708 -1.329 1.268 0.151 1.067 NA 1.262 0.766 -1.216 -0.759

0.763 -1.159 0.834 1.108 -0.330 1.262 NA 3.319 -0.921 0.234

-0.362 0.748 -1.586 -2.859 0.751 0.766 3.319 NA 1.805 -0.009

-0.721 -1.132 0.621 -1.096 -3.518 -1.216 -0.921 1.805 NA -0.779

-0.311 0.082 0.439 -0.321 1.435 -0.759 0.234 -0.009 -0.779 NA

NA -8.558 9.458 -4.514 -0.425 5.052 4.071 -0.103 0.478 -0.255

-8.558 NA -8.481 4.326 0.358 -5.072 -4.097 0.034 -0.934 0.232

9.458 -8.481 NA -3.705 -0.087 5.180 3.949 -0.614 0.452 -0.025

-4.514 4.326 -3.705 NA 1.157 -2.329 -2.098 -2.345 -1.999 0.180

-0.425 0.358 -0.087 1.157 NA 1.056 0.217 -0.214 -3.830 1.707

5.052 -5.072 5.180 -2.329 1.056 NA 3.918 0.446 -0.838 -0.249

4.071 -4.097 3.949 -2.098 0.217 3.918 NA 2.135 -0.183 0.119

-0.103 0.034 -0.614 -2.345 -0.214 0.446 2.135 NA 1.566 0.030

0.478 -0.934 0.452 -1.999 -3.830 -0.838 -0.183 1.566 NA -1.337

-0.255 0.232 -0.025 0.180 1.707 -0.249 0.119 0.030 -1.337 NA

1694.183 -1511.540 1518.872 -66.108 579.943 -511.193 556.781 -3.397 61.322 -77.830

-1511.540 1985.756 -1570.850 60.800 -630.279 534.516 -604.934 -6.636 -125.780 83.027

1518.872 -1570.850 1879.160 -10.22773 614.804 -451.305 562.156 -79.133 59.757 -50.661

-66.108 60.800 -10.227 751.443 93.531 107.529 20.714 -19.812 -284.485 117.802

579.943 -630.279 614.804 93.531 568.355 -157.053 305.533 41.009 -59.516 -34.589

-511.193 534.516 -451.305 107.529 -157.053 625.711 -167.139 -201.576 -150.179 32.889

556.781 -604.934 562.156 20.714 305.533 -167.139 675.769 188.065 -11.017 -11.232

-3.397 -6.636 -79.133 -19.812 41.009 -201.576 188.065 633.959 119.905 -5.062

61.322 -125.780 59.757 -284.485 -59.516 -150.179 -11.017 119.905 482.489 -76.866

-77.83 83.027 -50.661 117.802 -34.589 32.889 -11.232 -5.0628 -76.866 338.805

Creation of a web application using FSL tools
SCHLAPPINGER Jennifer 48

Figure 38 : BCM - Partial ridge regression

NA -2.809 4.260 -0.544 0.894 -1.759 0.907 -0.307 -0.442 -0.309

-2.809 NA -2.933 -0.045 -1.331 1.257 -1.190 0.511 -0.942 0.205

4.260 -2.933 NA 0.358 1.189 -0.181 0.806 -1.435 0.385 0.308

-0.544 -0.045 0.358 NA 1.016 0.487 -0.096 0.491 -3.077 1.286

0.894 -1.331 1.189 1.016 NA 0.098 1.212 0.636 -1.005 -0.544

-1.759 1.257 -0.181 0.487 0.098 NA 0.728 -2.386 -1.104 -0.166

0.907 -1.190 0.806 -0.096 1.212 0.728 NA 2.754 -0.703 0.189

-0.307 0.511 -1.435 0.491 0.636 -2.386 2.754 NA 1.528 -0.031

-0.442 -0.942 0.385 -3.077 -1.005 -1.104 -0.703 1.528 NA -0.688

-0.309 0.205 0.308 1.286 -0.544 -0.166 0.189 -0.031 -0.688 NA

Even if the medical correctness of the data is not controlled, the fact that the same input

file generated different output when changing just one parameter, implies that parameter

10 is working. The title of the BCM corresponds to the input parameter 12.

Output: preprocessing

Each preprocessing process varies. So much so, that it would go beyond the scope of

this thesis to check each parameter individually. Specially, because each parameter can

generate additional output files and therefore, not only the correctness of the parameter’s

application on the output would need to be tested, but also if the generated files

correspond to the expected number and type of files.

For illustration purpose only, a basic brain extraction will be run on a sMRI file. The output

folder contains the unprocessed (input file) and the preprocessed sMRI file, as seen in

Figure 39. In other preprocesses, many additional files can be generated.

Figure 39 : Preprocessing - brain extraction

To check if the procedure worked, the FSLeyes DIOCOM-viewer can be used. Figure 40

shows the unprocessed brain (white-and-black-coloured) which is overlaid by the

Creation of a web application using FSL tools
SCHLAPPINGER Jennifer 49

extracted brain which is blue-coloured. It can be concluded that the brain extraction was

applied successfully.

Figure 40 : BET extracted brain

Output: reset password

Last and least, it will be checked if the user really receives a mail with a functioning link

when requesting a password reset. As expected, the user, in this case the author,

receives a mail with a link, that once clicked brings him back to reset password page.

Figure 41 : Mail when requesting a password reset

4.4.3 Test data

To test the application’s functionalities two main sources were used:

Source 1: Flanker task (event related) retrieved from

https://legacy.openfmri.org/dataset/ds000102/, containing 26 samples. Revision 2.0.0, -

27-May-2016 [Last accessed 06-May-2023]. The data can simply be downloaded as a

zip file via the indicated link.

Source 2: FSL, Downloading and Installing FSL Course Data, retrieved from

https://open.win.ox.ac.uk/pages/fslcourse/website/downloads.html. FSL explains in a

stpb-by-step manual how the FSL Course Data can be downloaded. As indicated on their

website, these sources are “provided for educational use only, not for research”.

https://legacy.openfmri.org/dataset/ds000102/
https://open.win.ox.ac.uk/pages/fslcourse/website/downloads.html

Creation of a web application using FSL tools
SCHLAPPINGER Jennifer 50

4.5 Installation and employment

4.5.1 Installation

This web application will only run in a Linux or Mac environment. If this condition is given,

the installation guide’s instructions can be followed. The user manual is also available in

the GitHub repository directly.

- Link to the GitHub repository: https://github.com/stefankam/predprodalzheimer/

- Installation manual, Appendix 1

4.5.1.1 Project structure

As mentioned in the requirement specifications, the application's extensibility is

elementary. Hence, the project is clearly structured and components can easily be found,

deleted and added without jeopardising the functioning of the entire project.

fsl-backend;
All the backend, and API-services will be found in this folder.

api_services;
The API-services, connecting the frontend to the backend are managed here.

database-services;
 There are two type of files in this folder. One is the service that manages the database connection
(cnx_db), while the others send and recieve the database request per SQL-Table.

helper_services;
 All services that are particular to this project, such as the FSL and Octave interfaces are
 managed here.

tests;
 all unit tests, can be developed and tested in this folder’s files.

settings.py : This file will tell the backend if it should be run in production, testing or development mode.
Note, that changes should made in the .env/ .flaskenv file, if they are requirement dependant, such as
personal passwords etc.

.flaskenv : Global setting file for Flask configurations

requirements.txt; : Here is an exhaustive list of all npm requirements needed for this project.

src;
The entire frontend is implemented here.

assets;
All images and other are stored here.

components;
 New components that can be used across the entire application such as Footers and Headers

pages;
 The largest part of the frontend is built here

routes.js : This file handles navigation once the user is logged in.

index.js : From here the App is rendered. Change should be made with caution.

4.5.2 Employment

An audio-visual guide on using the application to its full extent can be found in the

application itself.

Creation of a web application using FSL tools
SCHLAPPINGER Jennifer 51

5. Conclusion

The number of web applications is gradually increasing, and the healthcare industry is

inclined to follow this evolution [47]. But it is still a long path to go. As for now, no web

application on the market would suit the need for MRI processing and analysing tool.

The reason for this shortage is namely due to security and privacy concerns of patients

and medical professionals alike, but further investigations are needed to complete the

list and find further reasons for the overall absence of medical web applications [41,48].

Next to instant accessibility and a more user-oriented interface as the major benefits of

this FSL web application, the primary asset is the application's extensibility. With the rise

of artificial intelligence and big data, MRI data could be faster and more precisely

analysed and interpreted, thereby accelerating the predictions of diseases, notably

Alzheimer, in this context. The application generated for this thesis is, therefore, a

framework on which further functionalities can be added and an opportunity to automate

the processing of medical (big) data. Other programs and tools that make use of AI

algorithms can easily be added on top of the base frame of the FSL web application and

multiple datasets of brain connectivity matrices can be compared and interpreted by the

computer, potentially revealing a breakthrough in Alzheimer-linked research.

With the implementation of an FSL web application, a possible structure of what a

medical web application could look like is created and the advantages of the different

technologies in the context of a medical web application are underlined.

Creation of a web application using FSL tools
SCHLAPPINGER Jennifer 52

Bibliography

[1] K. Ganasegeran, A. Swee Hock Ch’ng, and I. Looi, "Handbook of Decision Support
Systems for Neurological Disorders". Elsevier Inc, 2021, p 71 - 84.

[2] WHO, “Dementia: Key Facts,” World Health Organization, 20-Sep-2022. [Online].
Available at https://www.who.int/en/news-room/fact-sheets/detail/dementia. [Accessed:
06-May-2023].

[3] National Institute on Aging, “What happens to the brain in alzheimer's disease?,”
National Institute on Aging , 08-Jul-2021. [Online]. Available:
https://www.nia.nih.gov/health/what-happens-brain-alzheimers-
disease#:~:text=In%20Alzheimer's%20disease%2C%20as%20neurons,significant%20l
oss%20of%20brain%20volume. [Accessed: 06-May-2023].

[4] N. Amoroso, M. La Rocca, S. Bruno, T. Maggipinto, A. Monaco, R. Bellotti, & S. Tangaro,
2017. “Brain structural connectivity atrophy in Alzheimer's
disease”. ArXiv. /abs/1709.02369. [Online]. Available at
https://arxiv.org/pdf/1709.02369.pdf. [Accessed: 06-May-2023].

[5] M. Behroozi, M. Reza Daliri, “Software Tools for the Analysis of Functional Magnetic
Resonance Imaging”. Basic and Clinical Neuroscience, vol. 3, no. 5, p. 71 – 83, Autumn
2012. [Online]. Available at
https://applications.emro.who.int/imemrf/Basic_Clin_Neurosci/Basic_Clin_Neurosci_20
12_3_5_71_83.pdf. [Accessed: 06-May-2023].

[6] J. A. Mumford, T. E. Nichols, R. A. Poldrack. “Handbook of Functional MRI Data
Analysis”. USA: Cambridge University Press, 22-August-2011. ISBN:9781139498364.

[7] B. Balusamy, N. A. R., and A. H. Gandomi, "Big Data: Concepts, technology and
Architecture". Hoboken NJ: John Wiley and Sons, Inc.,13-April-2021. p,254.

[8] T. Lowdermilk, “User-Centered Design: A Developer’s Guide to Building User-Friendly
Applications”. USA: O’Reilly Media, 29-March-2013. ISBN: 9781449359836.

[9] A. L. Weber, “History of head and Neck Radiology: Past, present, and future,” Radiology,
vol. 218, no. 1, pp. 1–4, Jan. 2001.

[10] G. Xue, C. Chen, Z.-L. Lu, and Q. Dong, “Brain imaging techniques and their applications
in decision-making research,” Xin li xue bao. Acta psychologica Sinica, 03-Feb-2010.
[Online]. Available at https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2849100/.
[Accessed: 06-May-2023].

[11] A. Berger, “How does it work?: Magnetic resonance imaging,” BMJ, vol. 324, no. 7328,
pp. 35–35, Jan. 2002.

[12] T. Wager, “Principles of fMRI Part 1, Module 2: Analysis of fMRI Data.” YouTube, 2015.
[Online]. Available at
https://www.youtube.com/watch?v=tQyMqRqHwao&list=PLfXA4opIOVrGHncHRxI3Qa
5GeCSudwmxM&index=2. [Accessed: 06-May-2023].

[13] FSL, "FSL Course ". open.win.ox.ac.uk:, Beijng, 2019. [Online]. Available at
https://open.win.ox.ac.uk/pages/fslcourse/website/online_materials.html. [Accessed:
06-May-2023].

[14] D. A. Micheau and D. D. Hoa, “Brain MRI 3D: Normal anatomy: E-anatomy,” IMAIOS,
05-Oct-2022. [Online]. Available: https://www.imaios.com/en/e-anatomy/brain/mri-brain.
[Accessed: 07-May-2023].

[15] The University of Edinburgh, “Functional Mr (fmri),” The University of Edinburgh, 23-Jun-
2021. [Online]. Available at https://www.ed.ac.uk/clinical-sciences/edinburgh-

https://www.who.int/en/news-room/fact-sheets/detail/dementia
https://arxiv.org/pdf/1709.02369.pdf
https://applications.emro.who.int/imemrf/Basic_Clin_Neurosci/Basic_Clin_Neurosci_2012_3_5_71_83.pdf
https://applications.emro.who.int/imemrf/Basic_Clin_Neurosci/Basic_Clin_Neurosci_2012_3_5_71_83.pdf
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2849100/
https://www.youtube.com/watch?v=tQyMqRqHwao&list=PLfXA4opIOVrGHncHRxI3Qa5GeCSudwmxM&index=2
https://www.youtube.com/watch?v=tQyMqRqHwao&list=PLfXA4opIOVrGHncHRxI3Qa5GeCSudwmxM&index=2
https://open.win.ox.ac.uk/pages/fslcourse/website/online_materials.html

Creation of a web application using FSL tools
SCHLAPPINGER Jennifer 53

imaging/research/themes-and-topics/medical-physics/imaging-techniques/functional-
mr-fmri. [Accessed: 06-May-2023].

[16] K. Chee Keong, “Vulnerability to sleep deprivation: A Drift Diffusion Model Perspective,”
Neurobit Inc., pp. 86–88, Apr. 2015.

[17] I. Cifre, M. Zarepour, S. G. Horovitz, S. A. Cannas, and D. R. Chialvo, “Further results
on why a point process is effective for estimating correlation between brain regions,”
Papers in Physics, vol. 12, pp. 120003–2-120003–4, Jun. 2020.

[18] L. M. Hocke, Y. Tong, and B. de B. Frederick, “An automatic motion-based Artifact
Reduction Algorithm for fNIRS in concurrent functional magnetic resonance imaging
studies (amara–fmri),” Algorithms, vol. 16, no. 5, p. 230, Apr. 2023.

[19] W. S. Sohn, T. Y. Lee, K. Yoo, M. Kim, J.-Y. Yun, J.-W. Hur, Y. B. Yoon, S. W. Seo, D.
L. Na, Y. Jeong, and J. S. Kwon, “Node identification using inter-regional correlation
analysis for mapping detailed connections in resting state networks,” Frontiers in
Neuroscience, vol. 11, no. TECHNOLOGY REPORT article, May 2017.

[20] A. J. C. Eijlers, M. M. Schoonheim, J. J. G. Geurts, L. Douw, K. A. Meijer, and A. M.
Wink, “Functional network dynamics on functional MRI: A Primer on an emerging frontier
in neuroscience,” Radiology, Jun-2019. [Online]. Available at
https://pubmed.ncbi.nlm.nih.gov/31237814/. [Accessed: 06-May-2023].

[21] Y. Diao, T. Yin, R. Gruetter, and I. O. Jelescu, “Piracy: An optimized pipeline for functional
connectivity analysis in The rat brain,” Frontiers in Neuroscience, vol. 15, Mar. 2021.

[22] Law insider, “Medical applications definition,” Law Insider. [Online]. Available:
https://www.lawinsider.com/dictionary/medical-
applications#:~:text=Medical%20Applications%20means%20diagnostic%20products,th
ose%20uses%2C%20including%20without%20limitation%2C. [Accessed: 06-May-
2023].

[23] Technostacks, “Different types of application software: Technostacks,” Technostacks
Infotech, 13-Jan-2023. [Online]. Available at https://technostacks.com/blog/types-of-
application-software/. [Accessed: 06-May-2023].

[24] Simplilearn, “What is application software? (with examples): Simplilearn,”
Simplilearn.com, 25-Apr-2023. [Online]. Available at
https://www.simplilearn.com/tutorials/programming-tutorial/what-is-application-software.
[Accessed: 07-May-2023]

[25] T. Vinay. “How to Speak Tech: The Non-Techie’s Guide to Key Technology
Concepts.” Germany: Apress, 26-March-2019, p. 109 – 120

[26] R. Ye, “.NET MAUI Cross-Platform Application Development”. Packt Publishing, 2023,
vol 1, p. 4-7. ISBN: 978-1-80056-922-5

[27] Vinugayathri, S. Dighe, and A. Deshpande, “5 javascript alternatives for Front End
Development,” Build Offshore Technology Team in India. In No Time, 2020. [Online].
Available at https://www.clariontech.com/blog/5-javascript-alternatives-for-front-end-
development. [Accessed: 06-May-2023].

[28] StackPath, “What is a web application?,” stackpath.com. [Online]. Available at
https://www.stackpath.com/edge-academy/what-is-a-web-application/. [Accessed: 06-
May-2023].

[29] HooSuite and we are social, “Digital 2022: Global Overview Report - DataReportal –
Global Digital Insights,” DataReportal, 04-May-2022. [Online]. Available:
https://datareportal.com/reports/digital-2022-global-overview-report. [Accessed at 06-
May-2023].

Creation of a web application using FSL tools
SCHLAPPINGER Jennifer 54

[30] J. Desai, “Web application vs Desktop Application: Pros and cons,” POSITIWISE, 15-
Apr-2022. [Online]. Available at https://positiwise.com/blog/web-application-vs-desktop-
application-pros-and-cons/. [Accessed: 06-May-2023].

[31] S. L. Fowler and V. R. Stanwick, Web application design handbook: Best practices for
web-based software. Amsterdam: Elsevier, 2004, Ch. 1. ISBN 9780080481708.

[32] G. Nizamettin, and K. Nitin. “Building Hybrid Android Apps with Java and JavaScript:
Applying Native Device APIs”. USA: O'Reilly Media, 23-July-2013. ISBN:
9781449361877.

[33] AFNI Installation

[34] AFNI, Documentation, Version 32.1.04. National Institute of Mental Health, Last compile
05-May-2023. Available at
https://afni.nimh.nih.gov/pub/dist/doc/htmldoc/background_install/install_instructs/steps
_windows10.html. [Accessed: 06-May-2023].

[35] CONTRIBUTORS (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/Contributors), FMRIB software
library, Version 6.0, FSL, 20-Feb-2023. [Online]. Available at
https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSL. [Accessed: 06-May-2023].

[36] R. Goebel, “Products - brainvoyager,” Brain Innovation, May-2015. [Online]. Available at
https://www.brainvoyager.com/products/brainvoyager.html. [Accessed: 07-May-2023].

[37] Wikipedia. “Open source”. Wikipedia, 2023. [Online]. Available at
https://en.wikipedia.org/wiki/Open_source

[38] T. Petroc , “Operating systems market share of desktop PCs 2013-2023, by month.” 27-
Feb-2023. [Online]. Available at https://www.statista.com/statistics/218089/global-
market-share-of-windows-
7/#:~:text=Microsoft%20Windows%20was%20the%20dominant,in%20the%20desktop
%20OS%20market. [Accessed: 06-May-2023].

[39] A. Khrupa, “Top Healthcare Apps,” QUARA, 24-Mar-2023. [Online]. Available at
https://qarea.com/blog/top-healthcare-apps. [Accessed: 06-May-2023].

[40] Virtual Group Expo, “Medical Technical Facilities,” The B2B marketplace for medical
equipment. [Online]. Available at https://www.medicalexpo.com/medical-
manufacturer/medical-web-application-11312.html. [Accessed: 06-May-2023].

[41] K. Fultz Hollis, “To share or not to share: What motivates researchers to share their
data?,” AMIA Jt Summits Transl Sci Proc., pp. 420–427, Jul. 2016. [Online]. Available at
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5001759/. [Accessed: 06-May-2023].

[42] FMRIB Software Library.FMRIB Software Library Manuals, version 3.2 – September
2004. [Online]. Available at https://poc.vl-e.nl/distribution/manual/fsl-3.2/. [Accessed: 06-
May-2023]

[43] Barkhof, S. Haller, and S. A. Rombouts, “Resting-state functional Mr Imaging: A new
window to the brain,” Radiology, vol. 272, no. 1, pp. 1–49, Apr. 2014.

[44] A. Blazejewska, "Introduction to MRI data processing with FSL”, Why N How Seminar,
Martinos Center, 30-March-2017. [Online]. Available at
https://gate.nmr.mgh.harvard.edu/wiki/whynhow/images/8/8f/WhyNhow_FSL_final-
WEB.pdf. [Accessed: 06-May-2023].

[45] A. Jahn, “Andy’s Brain Book,” University of Michigan Sp., 2019. [Online]. Available at
https://andysbrainbook.readthedocs.io/en/latest/. [Accessed: 06-May-2023]

[46] Chou and al. AJNAR, “rPython/FSL Resting State Pipeline,” Brain Imaging &
Analysis Cente, May-2012. [Online]. Available:
https://wiki.biac.duke.edu/biac:analysis:resting_pipeline. [Accessed: 06-May-2023].

https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSL
https://www.statista.com/statistics/218089/global-market-share-of-windows-7/#:~:text=Microsoft%20Windows%20was%20the%20dominant,in%20the%20desktop%20OS%20market
https://www.statista.com/statistics/218089/global-market-share-of-windows-7/#:~:text=Microsoft%20Windows%20was%20the%20dominant,in%20the%20desktop%20OS%20market
https://www.statista.com/statistics/218089/global-market-share-of-windows-7/#:~:text=Microsoft%20Windows%20was%20the%20dominant,in%20the%20desktop%20OS%20market
https://www.statista.com/statistics/218089/global-market-share-of-windows-7/#:~:text=Microsoft%20Windows%20was%20the%20dominant,in%20the%20desktop%20OS%20market
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5001759/
https://poc.vl-e.nl/distribution/manual/fsl-3.2/
https://gate.nmr.mgh.harvard.edu/wiki/whynhow/images/8/8f/WhyNhow_FSL_final-WEB.pdf
https://gate.nmr.mgh.harvard.edu/wiki/whynhow/images/8/8f/WhyNhow_FSL_final-WEB.pdf
https://andysbrainbook.readthedocs.io/en/latest/

Creation of a web application using FSL tools
SCHLAPPINGER Jennifer 55

[47] H. Mukhtar, H. F. Ahmad, M. Z. Khan, and N. Ullah, “Analysis and evaluation of COVID-
19 web applications for Health Professionals: Challenges and opportunities,” Healthcare
(Basel, Switzerland), 07-Nov-2020. [Online]. Available at
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7712438/. [Accessed: 06-May-2023].

[48] C. Mata Miquel, “Web-based application for Medical Imaging Management,” Universitat
de Girona, 2015. [Online]. Available at https://dugi-
doc.udg.edu/bitstream/handle/10256/11660/tcmm1de1.pdf?sequence=5. [Accessed:
06-May-2023]

[49] Airfocus. MoSCoW prioritization. Airfocus, 24-July-2020. [Online]. Available:
https://airfocus.com/glossary/what-is-moscow-
prioritization/#:~:text=%E2%80%9CMoSCoW%E2%80%9D%20is%20an%20acronym
%20for,included%20to%20help%20with%20pronunciation. [Accessed: 06-May-2023].

[50] Mayo Clinic, “EEG (electroencephalogram),” Mayo Clinic, 11-May-2022. [Online].
Available: https://www.mayoclinic.org/tests-procedures/eeg/about/pac-20393875.
[Accessed: 06-May-2023].

[51] D. Larimer, “Blockchain is a better application server and database,” More Equal
Animals, 10-Feb-2020. [Online]. Available at
https://moreequalanimals.com/posts/blockchain-is-better-application-server-and-
database. [Accessed: 06-May-2023].

[52] D. Ruibo, "A web application's limited resources - web application performance and
scalability", Beginning Django, 2015. [Online]. Available at
https://www.webforefront.com/performance/limitedresources.html. [Accessed: 06-May-
2023].

[53] J. Brown, "5 SMART goals for a QA analyst". Boston University, 26-August-2020.
Available at https://www.techtarget.com/searchsoftwarequality/feature/Goal-1-for-the-
QA-tester-Take-ownership. [Accessed: 06-May-2023]

[54] N. Kostyshak, “Healthcare Web Application Development: An ultimate guide,” OTAKOYI,
03-Nov-2022. [Online]. Available at https://otakoyi.software/blog/healthcare-web-
application-development-an-ultimate-guide. [Accessed: 06-May-2023].

[55] ResearchComputing, “Documentation/coding-best-practices.md at main ·
researchcomputing/documentation,” GitHub, 06-May-2022. [Online]. Available at
https://github.com/ResearchComputing/Documentation/blob/main/docs/programming/c
oding-best-practices.md. [Accessed: 06-May-2023].

[56] Meta Open Source. “React – The library for web and native user interfaces,” React, 2023.
[Online]. Available at https://react.dev/. [Accessed: 06-May-2023].

[57] M. Lutz, Python: Kurz Gut, vol. 5. Germany Köln: O'Reilly Verlag, 2014.

[58] Python Software Foundation. Python Language Reference, version 2.7. Available at
http://www.python.org

[59] Wikipedia.“Python (Programmiersprache),” Wikipedia, 04-May-2023. [Online]. Available
at https://de.wikipedia.org/wiki/Python_(Programmiersprache). [Accessed: 06-May-
2023].

[60] Oct2Py Contributers, “Oct2Py: Python to GNU octave bridge,” Oct2Py. Version 4.0.6.
[Online]. Available: https://blink1073.github.io/oct2py/. [Accessed: 06-May-2023].

[61] PostgreSQL, Ed, “Documentation,” PostgreSQL. [Online]. Available at
https://www.postgresql.org/docs/current/. [Accessed: 07-May-2023].

[62] Google Cloud, Ed., “PostgreSQL im Vergleich zu SQL server: Was ist der unterschied?
,” Google. [Online]. Available at https://cloud.google.com/learn/postgresql-vs-sql?hl=de.
[Accessed: 06-May-2023].

https://airfocus.com/glossary/what-is-moscow-prioritization/#:~:text=%E2%80%9CMoSCoW%E2%80%9D%20is%20an%20acronym%20for,included%20to%20help%20with%20pronunciation
https://airfocus.com/glossary/what-is-moscow-prioritization/#:~:text=%E2%80%9CMoSCoW%E2%80%9D%20is%20an%20acronym%20for,included%20to%20help%20with%20pronunciation
https://airfocus.com/glossary/what-is-moscow-prioritization/#:~:text=%E2%80%9CMoSCoW%E2%80%9D%20is%20an%20acronym%20for,included%20to%20help%20with%20pronunciation
https://moreequalanimals.com/posts/blockchain-is-better-application-server-and-database
https://moreequalanimals.com/posts/blockchain-is-better-application-server-and-database
https://www.webforefront.com/performance/limitedresources.html
https://www.techtarget.com/searchsoftwarequality/feature/Goal-1-for-the-QA-tester-Take-ownership
https://www.techtarget.com/searchsoftwarequality/feature/Goal-1-for-the-QA-tester-Take-ownership
https://react.dev/
http://www.python.org/
https://de.wikipedia.org/wiki/Python_(Programmiersprache)

Creation of a web application using FSL tools
SCHLAPPINGER Jennifer 56

[63] R. Sears, C. van Ingen, and J. Gray, "To BLOB or Not To BLOB: Large Object Storage
in a Database or a Filesystem ». Microsoft Research Microsoft Corporation One
Microsoft Way, Redmond, WA, tech., 2006. Available at https://www.microsoft.com/en-
us/research/publication/to-blob-or-not-to-blob-large-object-storage-in-a-database-or-a-
filesystem/?from=https://research.microsoft.com/apps/pubs/default.aspx?id=64525&typ
e=exact. [Accessed: 06-May-2023]

[64] GNU Octave. GNU Octave Documentation, version 8.2.0. Available at
https://docs.octave.org/v8.2.0/Displaying-Images.html.

[65] J. B. Poline and M. Brett, “Sometimes, the NIFTI image stores the TR in the header,”
Psych 214 – functional MRI methods, 2016. [Online]. Available at https://bic-
berkeley.github.io/psych-214-fall-2016/tr_and_headers.html. [Accessed: 06-May-2023].

[66] Patrick, “What is SHA-256 and how is it related to bitcoin?,” Mycryptopedia, 26-Apr-2022.
[Online]. Available: https://www.mycryptopedia.com/sha-256-related-bitcoin/.
[Accessed: 06-May-2023].

[67] “How to build an OAuth service using Python, Flask, postgres and JWT,” Grizzly Peak
Software, Feb-2020. [Online]. Available at
https://www.grizzlypeaksoftware.com/articles?id=5SCpQMgookgKNtupzNHg9K.
[Accessed: 06-May-2023].

[68] Nypipe contributors (https://github.com/nipy/nipype/graphs/contributors), “Neuroimaging
in Python - Pipelines and Interfaces - nipy pipeline and interfaces package”, Release
1.8.7. [Online]. Available at
https://nipype.readthedocs.io/en/latest/api/generated/nipype.interfaces.fsl.html.
[Accessed: 06-May-2023].

[69] A. Norden, “Learn software testing in 24 Hours,” Google Books, 31-Oct-2020. [Online].

[70] S. Felice, “Top testing libraries for react in 2023,” BrowserStack, 14-Feb-2023. [Online].
Available: https://www.browserstack.com/guide/top-react-testing-libraries. [Accessed:
06-May-2023]

[71] K. Pykes, “How to Use Pytest for Unit Testing”. Datacamp, July-2022. Available at
https://www.datacamp.com/tutorial/pytest-tutorial-a-hands-on-guide-to-unit-testing.
[Accessed: 06-May-2023]

[72] J. Ashburner, K.J. Friston, 1997. The role of registration and spatial normalization in
detecting activations in functional imaging. Clinical MRI/Developments in MR, 7(1):26-
28.

[73] W. C. Robert, 1996. AFNI: software for analysis and visualization of Functional Magnetic
Resonance Neuroimages.Computer and Biomedical Research, 29:162-173.

[74] S. M. Smith, M. Jenkinson, M. W. Woolrich, C. Beckmann, F. and et al., 2004. Advances
in functional and structural MR image analysis and implementation as FSL. Neuroimage,
23: S208-S219.

[75] R. Goebel, F. Esposito, E. Formisano, 2006. Analysis of FIAC data with BrainVoyager
QX: From single-subject to cortically aligned group GLM analysis and self-organizing
group ICA. Human Brain Mapping. 27(5): 392-401.

[X] M. L. Stanley, M. N. Moussa, B. M. Paolini, R. G. Lyday, J. H. Burdette, and P. J.
Laurienti, “Defining nodes in complex brain networks,” Frontiers in Computational
Neuroscience, vol. 7, Nov. 2013.

[X] M. Saeidi, W. Karwowski, F. V. Farahani, K. Fiok, P. A. Hancock, B. D. Sawyer, L.
Christov-Moore, and P. K. Douglas, “Decoding task-based fmri data with graph neural
networks, considering individual differences,” Brain Sciences, vol. 12, no. 8, p. 1094,
2022.

https://www.microsoft.com/en-us/research/publication/to-blob-or-not-to-blob-large-object-storage-in-a-database-or-a-filesystem/?from=https://research.microsoft.com/apps/pubs/default.aspx?id=64525&type=exact
https://www.microsoft.com/en-us/research/publication/to-blob-or-not-to-blob-large-object-storage-in-a-database-or-a-filesystem/?from=https://research.microsoft.com/apps/pubs/default.aspx?id=64525&type=exact
https://www.microsoft.com/en-us/research/publication/to-blob-or-not-to-blob-large-object-storage-in-a-database-or-a-filesystem/?from=https://research.microsoft.com/apps/pubs/default.aspx?id=64525&type=exact
https://www.microsoft.com/en-us/research/publication/to-blob-or-not-to-blob-large-object-storage-in-a-database-or-a-filesystem/?from=https://research.microsoft.com/apps/pubs/default.aspx?id=64525&type=exact
https://docs.octave.org/v8.2.0/Displaying-Images.html
https://bic-berkeley.github.io/psych-214-fall-2016/tr_and_headers.html
https://bic-berkeley.github.io/psych-214-fall-2016/tr_and_headers.html
https://www.datacamp.com/tutorial/pytest-tutorial-a-hands-on-guide-to-unit-testing

Creation of a web application using FSL tools
SCHLAPPINGER Jennifer 57

[X] Nijholt Anton, S. Nam Chang, Lotte Fabien, 2018. Brain–Computer Interfaces
Handbook: Technological and Theoretical Advances. USA: CRC Press, 9. Januar 2018.
ISBN 9781351231947

[X] D. Ahmedt-Aristizabal, M. A. Armin, S. Denman, C. Fookes, and L. Petersson, “Graph-
based deep learning for medical diagnosis and analysis: Past, present and future,”
Sensors, vol. 21, no. 14, p. 4758, Jul. 2021.

[X] Vemuri, P., Jack, C.R, 2010. Role of structural MRI in Alzheimer's disease. Alz Res
Therapy 2, 31 August 2010. https://doi.org/10.1186/alzrt47

[X] BrainFacts/SfN, “The neuron,” BrainFacts.org, 01-Apr-2012. [Online]. Available at
https://www.brainfacts.org/brain-anatomy-and-function/anatomy/2012/the-neuron.
[Accessed: 06-May-2023].

https://doi.org/10.1186/alzrt47https:/www.ed.ac.uk/clinical-sciences/edinburgh-imaging/research/themes-and-topics/medical-physics/imaging-techniques/functional-mr-fmri
https://www.brainfacts.org/brain-anatomy-and-function/anatomy/2012/the-neuron

Creation of a web application using FSL tools
SCHLAPPINGER Jennifer 58

Appendix 1: Installation manual for developers

The FSL-web-application visualises and simplifies the use of FSL. The goal of this

document is, hence, to help developers to quick and easily get started with the setup of

this project.

Please note, since FSL is only runnable on Linux and MacOs, this guide does not

provide any information on specific windows application options. If you are a windows

user, please use a virtual machine for this set up procedure.

1: Downloading the project

1) Go to GitHub and download the project via the following link:

https://github.com/stefankam/predprodalzheimer, Alternatively, you can clone

the files directly into you own local directory.

2: Installing FSL and Octave (you could also use MATHLAB

1) To install FSL, follow the instructions given on the official FSL website,

https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FslInstallation. Once installed, simply type fsl

in the terminal to check if the application is running. Make sure, that FSL is

saved to your computer’s environment. ($FSLDIR).

2) Install octave. This step should be runnable without any further issues

3: Checking the pre-requirements

1) Firstly, you will have to make sure you will have to make sure that Pyhton is

available on your computer.

2) Also npm has to be downloaded and accessible on your computer. To do so

navigate to the following link to access the nodejs packages

https://nodejs.org/en/download/

3) Then verify if the package PIP (“PIP Installs Packages”) is installed and up to

date. You can do that by following the instructions below:

> python3 -m pip install --user --upgrade pip

> python3 -m pip –version

> pip –version

If the outcome of this last command is somewhat like:

pip 22.0.2 from C:\Users\…\Programs\Python\Python310\lib\site-packages\pip

(python 3.10)., pip was successfully installed.

https://github.com/stefankam/predprodalzheimer
https://nodejs.org/en/download/

Creation of a web application using FSL tools
SCHLAPPINGER Jennifer 59

4) Finally, check if you have the virtual envirnoment package for python, and if not,

install it.

> python3 -m pip install --user virtualenv

Once all pre-requirements met, you can move on to point four.

4: Setting up your virtual environment

Open the downloaded project in a code editor of your preference and via the terminal

navigate to: cd ../predprodalzheimer-scratch/fsl_frontend/fsl_backend

1) And there create your virtual environment:

> python3 -m venv [yourVirtualEnvironmentName]

If your virtual environment was created, a new folder carrying the name of

[yourVirtualEnvironmentName] will appear.

Now, you should be able to activate and disactivate your virtual environment by typing

the following command in your terminal:

> source env/bin/activate

Once activated the name of your virtual environment should appear in parentheses.

To deactivate the virtual environment simply type deactivate.

5: Installing packages

With the activated virtual environment, you can proceed with the installation on the

various packages needed.

1) Therefor simply run :

> python3 -m pip install -r requirements.txt

which will install all the packages listed in the requirements.txt.

2) Next, installing npm, but make sure your virutal environment is not activated.

> sudo apt install npm

A folder containing the relevant node modules should appear.

3) Finally you can configure the. flaskenv and .env files, so you can access the

postgreSQL database of your choice.

4) Run the database script, that is located in the project’s folder postgresql.

