
Exposing and Explaining Misbehaviours
of Deep Learning Systems

Doctoral Dissertation submitted to the

Faculty of Informatics of the Università della Svizzera Italiana

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

presented by

Tahereh Zohdinasab

under the supervision of

Prof. Paolo Tonella and Prof. Vincenzo Riccio

April 2024

Dissertation Committee

Prof. Mauro Pezzè Universitàdella Svizzera Italiana, Lugano, Switzerland
Prof. Cesare Alippi Università della Svizzera Italiana, Lugano, Switzerland
Prof. Gordon Fraser University of Passau, Passau, Germany
Prof. Shiva Nejati University of Ottawa, Ottawa, Canada

Dissertation accepted on 5 April 2024

Research Advisor Co-Advisor

Prof. Paolo Tonella Prof. Vincenzo Riccio

PhD Program Director

Prof. Walter Binder

i

I certify that except where due acknowledgement has been given, the work presented
in this thesis is that of the author alone; the work has not been submitted previously, in
whole or in part, to qualify for any other academic award; and the content of the thesis
is the result of work which has been carried out since the official commencement date
of the approved research program.

Tahereh Zohdinasab
Lugano, 5 April 2024

ii

To my beloved son

iii

iv

Abstract

Assessing the quality of Deep Learning (DL) systems is crucial, as they are increasingly
adopted in safety-critical domains. Researchers have proposed several input generation
techniques for DL systems. While such techniques can expose failures, they do not
explain which features of the test inputs influenced the system’s misbehaviour. This
research delves into diverse methodologies aimed at overcoming challenges inherent
in testing DL systems, with a particular focus on generating targeted test cases and
interpreting system behaviours. To this aim, we proposed three novel testing approaches
for DL systems, i.e., DEEPHYPERION-CS, DEEPATASH, and DEEPTHEIA.

DEEPHYPERION-CS explores the feature space at large using Illumination Search and
provides a unique characterisation of a DL system’s quality through an interpretable map
which represents the highest-performing (i.e., misbehaving or closest to misbehaving)
inputs in the space of the relevant, domain-specific features. We introduce a novel
methodology to guide users in manually defining and quantifying feature dimensions
effectively. Our empirical study shows that DEEPHYPERION-CS is more effective than
state-of-the-art DL testing tools in generating failure-inducing inputs associated with
highly diverse features.

DEEPATASH is a focused test generator, i.e., a solution for generating failure-inducing
inputs with specific features. It can address the development to operation (dev2op) data
shift phenomenon, by focusing on interesting feature values observed in operational
environments. Further enhancing test generation efficiency, DEEPATASH-LR integrates
a surrogate model into the process. Experimental results show that both DEEPATASH

and DEEPATASH-LR are effective in generating focused test inputs and improving the
quality of the original DL systems through fine tuning on data with the targeted features
without regression.

DEEPTHEIA is a fully automated illumination-based test generator capable of au-
tonomously extracting features and exploring the feature space using diffusion models.
It overcomes the limitation of illumination-based approaches such as DEEPHYPERION,
i.e. the need of human expert involvement for the definition of the features and the
need of generative input models that can be mutated during the search process.

Finally, we provide a thorough comparison of explanatory techniques used to under-
stand DL system misbehaviours, including our newly proposed feature maps, shedding
light on both their comprehensibility and limitations. Our findings contribute signif-

v

vi

icantly to advancing testing methodologies and enhancing the interpretability of the
causes of DL misbehaviours.

Acknowledgements

I would like to express my deepest gratitude to my advisor, Prof. Paolo Tonella, for his
unwavering guidance, invaluable support, and continuous encouragement throughout
my doctoral journey. His expertise, patience, and mentorship have been instrumental in
shaping my research and academic growth.

I am also deeply thankful to my co-advisor, Prof. Vincenzo Riccio, for his insightful
feedback, valuable insights, and scholarly guidance, which have greatly enriched my
research experience and contributed to the success of this thesis.

I am indebted to my family for their boundless love, unwavering encouragement,
and steadfast belief in my abilities. Their endless support and sacrifices have been my
source of strength and inspiration.

I extend my heartfelt appreciation to my friends and colleagues for their encourage-
ment, camaraderie, and intellectual exchange. Their collaboration and camaraderie
have made this academic journey fulfilling and memorable.

Lastly, I would like to express my gratitude to all those who have contributed to this
thesis in any form. Your support, encouragement, and guidance have been invaluable,
and I am deeply grateful for your contributions.

This work was supported by the H2020 project PRECRIME, funded under the ERC
Advanced Grant 2017 Program (ERC Grant Agreement n. 787703).

vii

viii

Contents

Contents ix

1 Introduction 1

2 Background 7
2.1 Illumination Search . 7
2.2 Explainable AI . 8

2.2.1 Integrated Gradients . 9
2.2.2 LIME . 10

3 Case Studies 11
3.1 Handwritten Digit Classifier . 11
3.2 Self-driving Car . 11
3.3 Movie Sentiment Analysis . 13
3.4 Image Classification . 13

4 State of the Art 15
4.1 DL Test Input Generation and Adequacy . 15
4.2 Explainable AI for DL Testing . 19
4.3 Feature Extraction for DL Testing . 20

5 Exploring the Feature Space of Deep Learning-Based Systems through Illu-
mination Search 23
5.1 Manual Definition of the Feature Map Dimensions 25

5.1.1 Open Coding . 25
5.1.2 Metric Identification . 28
5.1.3 Dimensions for Digit Recognition . 28
5.1.4 Dimensions for Autonomous Driving 30

5.2 The DEEPHYPERION-CS Technique . 31
5.2.1 Input Representation . 33
5.2.2 Fitness Function . 34
5.2.3 Feature Map . 35

ix

x Contents

5.2.4 Initial Population . 38
5.2.5 Contribution Score-Based Rank Selection 38
5.2.6 Model-Based Mutation Operators . 40

5.3 Experimental Evaluation . 40
5.3.1 Research Questions . 40
5.3.2 Experimental Procedure . 42
5.3.3 Results . 45
5.3.4 RQ2: Search Exploration . 49

5.4 Conclusion . 58
5.5 Reproducibility . 58

6 Focused Test Generation for Deep Learning Systems 59
6.1 The DEEPATASH Technique . 61

6.1.1 Input Representation . 62
6.1.2 Fitness Functions . 63
6.1.3 Archive of Solutions . 66
6.1.4 Search Strategies . 68
6.1.5 Population Management . 68
6.1.6 Mutation . 69

6.2 Experimental Evaluation on Image and Text Classifiers 70
6.2.1 Research Questions . 70
6.2.2 Metrics . 71
6.2.3 Evaluation Scenarios . 71
6.2.4 Experimental Procedure . 73
6.2.5 Results . 75

6.3 Focused Test Generation for Autonomous Driving Systems 80
6.4 Focused Testing with Surrogate Models: the DEEPATASH-LR Technique . 81

6.4.1 Input Representation . 84
6.4.2 Fitness Functions . 84
6.4.3 Surrogate Model . 85
6.4.4 Archive of Solutions . 86
6.4.5 Mutation . 88
6.4.6 Population Management . 88

6.5 Experimental Evaluation on ADSs . 88
6.5.1 Research Questions . 88
6.5.2 Metrics . 90
6.5.3 Experimental Procedure . 92
6.5.4 Results . 95

6.6 Conclusions . 102
6.7 Reproducibility . 103

xi Contents

7 Automated Feature Extraction for Testing Deep Learning Systems 105
7.1 The DEEPTHEIA Technique . 106

7.1.1 Automated Feature Extraction . 106
7.1.2 Input Perturbation . 109

7.2 Experimental Evaluation . 112
7.2.1 Research Questions . 112
7.2.2 Experimental Procedure . 113
7.2.3 Results . 116

7.3 Conclusion . 122
7.4 Reproducibility . 122

8 Comparison with Explainable AI Approaches 123
8.1 Comparing High- and Low-level Explanations 124
8.2 Empirical Study . 129

8.2.1 Research Questions . 129
8.2.2 Experimental Procedure . 129
8.2.3 Results . 134

8.3 Conclusion . 142
8.4 Reproducibility . 143

9 Conclusion 145
9.1 Impact . 146
9.2 Future Work . 147

Bibliography 149

xii Contents

Chapter 1

Introduction

Deep Learning (DL) has become an essential component of complex software systems,
including autonomous vehicles and medical diagnosis systems. As a consequence, the
problem of ensuring the dependability of DL systems is critical.

Unlike traditional software, in which developers explicitly program the system’s
behaviour, one peculiarity of DL systems is that they mimic the human ability to learn how
to perform a task from training examples [95]. Therefore, it is essential to understand
to what extent they can be trusted in response to the diversity of inputs they will
process once deployed in the real world, as they could face scenarios that might be not
sufficiently represented in the data from which they have learned [60].

Most importantly, when such underrepresented inputs are discovered by testing
techniques, test results should be interpretable, as developers need to understand which
features of the test inputs might have caused a system’s misbehaviour (e.g., which
characteristics of an input image make the system wrongly classify it or which features
of a driving scenario make the system drive the autonomous vehicle off the road). In
particular, we consider both structural features (i.e., characteristics of the input itself)
and behavioural features (i.e., characteristics of the output of the DL system when
exercised by the input).

Several test generation approaches have been proposed for automatically testing
DL systems [118, 155]. Some of them aim to pragmatically expose the highest number
of misbehaviours [1, 156, 40]. Other approaches, instead, are guided by ad-hoc test
adequacy metrics, such as neuron coverage [112, 51, 143, 154, 143, 91, 24, 26] or
surprise coverage [70, 68], since traditional code coverage metrics fail to measure
whether DL systems have been adequately tested. These approaches are effective in
triggering multiple misbehaviours, but their output cannot be directly used to explain
the behaviour of the DL system under test. For instance, using neuron coverage reports,
developers cannot easily understand why the DL system did not handle correctly the
misbehaviour-inducing inputs.

We introduce a novel way to assess the quality of DL systems by automatically gen-

1

2

erating a large, diverse set of high-performing (i.e., misbehaving or near-misbehaving),
but qualitatively different test inputs that provide developers with a human-interpretable
picture of the system’s quality. With our approach, developers can understand how
different structural and behavioural features of the inputs combine to affect the system’s
performance. To this aim, we developed DEEPHYPERION-CS1, an open-source automated
test input generator for DL systems based on Illumination Search. It promotes the inputs
with higher Contribution Score (CS) i.e. inputs that contributed more to feature space
exploration during previous search iterations. Its output consists of feature maps repre-
senting the generated inputs along with their performance (i.e., closeness to exposing a
misbehaviour), in the space of the relevant, domain- and problem-specific structural and
behavioural features (i.e., the feature space). A feature map provides a representation
of the feature space, which is defined by a set of N relevant dimensions of variation (i.e.,
the map axes, each corresponding to an input feature). In a feature map, test inputs
are placed based on their feature values. These maps can provide insights into a test
set, such as revealing feature value combinations associated with tests that triggered
misbehaviours or indicating the likelihood of observing a misbehaviour for each fea-
ture combination. Our empirical results show that DEEPHYPERION-CS outperforms the
state of the art by significantly improving the efficiency and the effectiveness in finding
misbehaviour-inducing inputs and exploring the feature space. Moreover, we show that
DEEPHYPERION-CS can help DL developers by characterising the deficiencies of the DL
systems’ training dataset and by providing new data to expand it.

During the testing phase, feature maps identify the regions within the feature space
that lack sufficient coverage [13]. However, during operation, it is possible to encounter
critical feature values that are under-represented in the train/test datasets used during
development for which new and diverse scenarios need to be collected and manually
labelled [49]. Therefore, testers need to find multiple misbehaviour-inducing test inputs
associated with specific feature combinations. These additional inputs can be used to
improve the quality of the DL system in production, by fine tuning it on such new data.
To this aim, we present a novel approach, to generate misbehaviour-inducing inputs
using user-defined feature values. Our approach enables focused testing by generating
diverse inputs with critical features, stressing the system by finding failures even in non-
critical regions or by generating new data reflecting underrepresented or unseen feature
value. For instance, consider a scenario where a deployed DL system must handle feature
combinations that were infrequently or never observed during development, known
as the "dev2op" shift. To assess such feature combinations, we propose DEEPATASH, a
search-based focused test generator for DL systems. DEEPATASH can be configured with
various search strategies (single or multi-objective) and sparseness metrics. It takes
target feature value ranges as input and optimizes both input diversity and proximity to
the target feature values in the feature map. We assessed the performance of DEEPATASH

across two distinct classification tasks: recognizing handwritten digits and conducting

1This tool is based on DEEPHYPERION that is also part of this thesis work.

3

sentiment analysis on movie reviews. Our analysis revealed that DEEPATASH is effective
in generating a wide range of test inputs capable of inducing failures within the target
feature map cell across various usage scenarios.

We further extend DEEPATASH ś applicability to the autonomous driving system (ADS)
domain. Testing ADSs is recognized as resource-intensive due to the need for costly
executions, such as simulations, to evaluate the system behavior. As a result, DEEPATASH

may allocate a significant portion of its test generation time to explore less promising
areas of the feature space. These areas may either lack the target features or have
minimal potential for triggering misbehaviours, as each execution (e.g., simulation in a
candidate test scenario) consumes a considerable portion of the available budget. We
present DEEPATASH-LR, a novel tool that efficiently performs focused test generation by
leveraging a surrogate model. DEEPATASH-LR employs a surrogate model as a proxy for
actual system’s execution, thus sidestepping the need for resource-intensive evaluations,
which would involve complete simulations of the driving tasks on the candidate test
scenarios. Our empirical findings underscore the indispensability of the surrogate model
in producing inputs that induce misbehaviour within predefined targets. Furthermore,
the inputs generated by DEEPATASH-LR have proven instrumental in fine-tuning the
ADS under test, thereby enhancing its performance on previously overlooked feature
combinations, particularly those inducing failures.

One significant challenge encountered with illumination search algorithms lies in the
definition of features, typically tailored to specific problems and domains, which requires
the collaboration of multiple domain experts tasked with identifying features (referred
to as map dimensions) and devising metrics for their quantification. Furthermore,
human input is also essential for crafting models of the input subject to perturbation
by mutation operators. While this human involvement enhances the interpretability
and relevance of feature dimensions, defining features, metrics, and input models by
human experts poses non-trivial challenges that potentially limits the broad applicability
of this testing methodologies. Introducing a novel approach named DEEPTHEIA, we
address the limitations of the current state of the art. DEEPTHEIA incorporates automated
feature extraction and input perturbation operators, leveraging modern generative DL
techniques. In particular, DEEPTHEIA utilizes the knowledge automatically acquired by
a DNN about the target domain to extract features that effectively capture the primary
characteristics of test inputs and uses them as feature dimensions for illumination search.
Our empirical evaluation on two different image classification tasks, hand written digit
classifier and classification of real-world images, shows that DEEPTHEIA generates feature
maps with exceptional discriminative capabilities, enabling the identification of feature
value combinations that induce misbehaviors in the DL system. Moreover, our human
study results indicate that the automatically extracted features yield cohesive groups of
inputs, all mapped to the same cell. This observation suggests a certain level of human
interpretability for each feature map cell.

Recent research has proposed several techniques for explaining DL (mis)behaviour,

4

Figure 1.1. Thesis contributions structure.

using different strategies and producing mainly low-level input explanations (i.e. raw
input elements). These explanation methods identify a part of the input vector that
is considered relevant for a specific DL prediction. In contrast, our approach provides
developers with explanations based on high-level features of the input (i.e. manually
or automatically defined abstractions of the input). To compare the similarity between
the output of different explanatory techniques and to assess to what extent they are
understandable by Software Engineering (SE) experts, we conducted an empirical study
involving our approach and 2 state-of-the-art techniques for DL explanation in 13 con-
figurations, applied to 2 different DL classification tasks. We have also collected answers
from 48 questionnaires submitted to human assessors for comparing the understandabil-
ity of explanations for DNN misbehaviours. Experimental results show that low-level
and high-level techniques provide, for the same misbehaviour-inducing inputs, dissimilar
yet highly complementary explanations. So, SE experts should consider both granularity
levels. On the other hand, our results indicate that further research is needed to produce
better explanations, since experts deemed none of the explanations as useful in 28% of
the cases.

Figure 1.1 shows an overview of this thesis. The contributions of this thesis are as
follows:

• DEEPHYPERION-CS, a search-based testing approach for DL systems that explores
at large, the feature space, by providing developers with an interpretable feature
map.

• DEEPATASH, the first search-based focused testing approach for DL systems that
generates inputs with target features.

• DEEPTHEIA, fully automated illumination-based test generator that autonomously
extracts features and explores the feature space using cutting-edge diffusion
models.

5

• An empirical study for in-depth comparison of explanatory techniques for DL
misbehaviours.

Publications

1. Tahereh Zohdinasab, Vincenzo Riccio, Alessio Gambi, and Paolo Tonella. "Deep-
hyperion: exploring the feature space of deep learning-based systems through
illumination search." In Proceedings of the 30th ACM SIGSOFT International
Symposium on Software Testing and Analysis (ISSTA ’21).

2. Tahereh Zohdinasab, Vincenzo Riccio, Alessio Gambi, and Paolo Tonella. "Efficient
and effective feature space exploration for testing deep learning systems." ACM
Transactions on Software Engineering and Methodology 32, no. 2 (2023): 1-38.

3. Tahereh Zohdinasab, Vincenzo Riccio, and Paolo Tonella. "DeepAtash: Focused
Test Generation for Deep Learning Systems." In Proceedings of the 32th ACM
SIGSOFT International Symposium on Software Testing and Analysis (ISSTA ’23).

4. Tahereh Zohdinasab, Vincenzo Riccio, and Paolo Tonella. "An Empirical Study
on Low-and High-Level Explanations of Deep Learning Misbehaviours." In 2023
ACM/IEEE International Symposium on Empirical Software Engineering and
Measurement (ESEM ’23).

5. Tahereh Zohdinasab, and Andrea Doreste, "DeepHyperion-UAV at the SBFT Tool
Competition 2024 - CPS-UAV Test Case Generation Track." In the proceedings of
the 2024 ACM/IEEE International Workshop on Search-Based and Fuzz Testing
(SBFT ’24).

6. Tahereh Zohdinasab, Vincenzo Riccio, and Paolo Tonella. "Focused Test Genera-
tion for Autonomous Driving Systems." To be published in ACM Transactions on
Software Engineering and Methodology.

6

Chapter 2

Background

2.1 Illumination Search

Evolutionary algorithms are a family of meta-heuristic optimization algorithms that
evolve a population of individuals (i.e. a set of candidate solutions to an optimization
problem) by means of genetic operators such as mutation and crossover. A fitness function
provides an approximate, heuristic distance of each individual from the searched opti-
mum. During evolution, the best individuals are selected for the next population based
on the values of one or multiple fitness functions. The solutions found by evolutionary
algorithms might be concentrated in a small portion of the input space, especially when
the search landscape includes local optima with a large basin of attraction.

Novelty search algorithms are a family of algorithms designed to find solutions spread
across the entire input space: they reward individuals that exhibit diversity of behaviours,
instead of promoting only those that contribute to progress toward the optimum [84, 97].
Evolutionary algorithms can be effectively combined with novelty search to mitigate the
problem of local optima since they trade off a lower pressure toward optimal fitness
values with a higher diversity in the population being evolved [119].

Illumination Search denotes a family of search algorithms that “illuminate” the input
space, i.e., find the best solution at each point within all regions of the search space.
These algorithms effectively balance exploitation, i.e., the mechanisms that reward the
most promising inputs, with exploration, which allows to explore the search space at
large by promoting input diversity. Illumination Search has been already effectively
used for testing DL systems. Specifically, Multi-dimensional Archive of Phenotypic
Elites (MAP-Elites) [101] is a popular illumination search algorithm [153]. Figure 2.1
illustrates the main loop of this algorithm.

MAP-Elites starts by filling an empty N-dimensional feature map with an initial
population to be evolved. Its evolutionary search process continues until the termination
of execution budget. In each iteration, MAP-Elites selects an individual occupying a
cell of the current map and mutates it to generate a new individual. To determine the

7

8 2.2 Explainable AI

Figure 2.1. Overview of the MAP-Elites algorithm.

cell corresponding to the new individual, MAP-Elites computes its feature values. If the
identified map cell already contains an individual, MAP-Elites places the individual with
the higher fitness value in the map, thus performing a local competition. When the
termination condition is satisfied, the algorithm outputs the feature map containing the
highest fitness individuals.

2.2 Explainable AI

Explainable Artificial Intelligence (XAI) encompasses a set of methods designed to assist
humans in interpreting decisions and understanding the behaviour of AI systems, by
generating explanations. In the field of XAI, a variety of approaches are available to
explain the predictions of DNNs, since DL architectures are widespread and particularly
difficult to explain in terms of their input elements [115, 127, 139, 130, 89, 100]. We
refer to these approaches as low-level explanation techniques, as they identify a subset
of the input vector that is considered relevant for a given DL prediction.

We categoris low-level explanatory techniques into two groups based on the gran-
ularity of input elements provided in their explanations: (1) fine-grained and (2)
coarse-grained. While the former provides explanations that highlight the small, atomic
elements of the input (e.g. the pixels of an image input or words of a text input) which
contribute to the final prediction; the explanations by the latter group indicate relevant
contiguous regions of input elements, e.g., sets of contiguous pixels. Integrated Gradi-
ents (IG) [139] and LIME [115] represent the state of the art in XAI, respectively in the
fine-grained and coarse-grained categories.

9 2.2 Explainable AI

Figure 2.2. (a) A sample mis-classified hand written digit 5; (b) Explanation by
Integrated Gradients; (c) Explanation by LIME. (darker red highlights indicates
more contributing to the model’s output)

Figure 2.3. A sample mis-classified positive movie review: (a) Explanations by
Integrated Gradients; (b) Explanations by LIME. In the top explanation visual-
ization, the darker the red/green highlighting, the larger is the contribution of the
corresponding word to the negative/positive sentiment. The words contributing to
the negative sentiment (i.e., the wrong class) are marked with a black square. The
explanation visualizations at the bottom report red/green bars for the words mostly
contributing (top 10) to the negative/positive sentiment. The bar length and the
attribution value indicate how much each word is contributing to the corresponding
sentiment.

2.2.1 Integrated Gradients

Associating the prediction of a DNN to the input elements that caused such prediction
(aka, input attribution) is a way of explaining the model’s behaviour. For instance, in
an image classification model, an attribution method could reveal which pixels of the
image are responsible for a certain label being predicted.

The gradient of the output with respect to the input elements (e.g., pixels) quantifies
the impact of each input element on the prediction of a DNN, therefore the gradient
computation can be considered as the most basic attribution method.

10 2.2 Explainable AI

Sundararajan et al. [139] took an axiomatic approach for attributing prediction of
DNN to its input features , called INTEGRATED GRADIENTS. They introduced two axioms
to be preserved, Sensitivity and Implementation Invariance, and proposed INTEGRATED

GRADIENTS by considering the straight-line path in DNN from the baseline (for example,
black image in image classification task) to the input and cumulating the gradients at
all points along the path for a given number of steps. The number of steps is a hyperpa-
rameter of this technique, representing the steps needed by INTEGRATED GRADIENTS

in the gradient approximation for each input image. The output of this technique is
a heatmap highlighting the important elements in the input (e.g. pixels of an image
or words in a text). INTEGRATED GRADIENTS method can be implemented to generate
explanation for a batch of inputs with predefined size.

Figure 2.2 (b) shows a heatmap generated by INTEGRATED GRADIENTS for an image
classification task. The highlighted pixels are contributing the most to the output of
the model. Figure 2.3 (a) shows an example of explanations generated by INTEGRATED

GRADIENTS for a positive movie review, with the words contributing to the negative
sentiment highlighted in red shades, while the green color highlights the words con-
tributing to the positive sentiment (i.e., the darker the shade, the most important is the
element to the final decision).

2.2.2 LIME

Local Interpretable Model-agnostic Explanations (LIME) proposed by Ribeiro et al. [115]
is a method that provides a low-level explanation for the predictions of any classification
model by identifying the portions of the input that mostly affect the model’s output.
LIME produces an explanation for each input instance by mimicking the behaviour of
the model in the neighbourhood of the input. Actually, LIME perturbs the input to train
a linear model (e.g. a decision tree) around the input itself and generates a predefined
number of samples, while the model under test itself is treated as a black box. The
number of samples can be customized, as it can be set as a hyperparameter of the
technique. Such perturbed input regions are called super-pixels and their impact on the
linear model’s decision determines their importance in the final explanation.

LIME is applicable to both image and textual data and provides a visual representa-
tion of the generated explanations. It has been used in different studies to understand
the reasons behind DNN decisions [83, 94, 46].

Figure 2.2 (c) shows an example of visualised explanation generated by LIME for a
hand written digit 5: the darker is the color with which super-pixels are highlighted,
the more important the super-pixel is towards the final decision. Therefore, the darkest
super-pixels are the ones that are most likely responsible for the model’s misbehaviour.
Figure 2.3 (b) shows an example of visualised explanation generated by LIME for a
positive movie review, with the words highlighted in red shades contributing to the
negative sentiment and green shades contributing to the positive sentiment.

Chapter 3

Case Studies

Given the multitude of DL-based systems encompassing classifiers and regressors, where
DL can be employed either directly or as an integral component within a complex system,
it is essential to consider a diverse range of subject systems to capture this variability.
We evaluated our approaches on different DL systems widely used in the literature to
assess testing techniques for DL systems [118, 155].

3.1 Handwritten Digit Classifier

MNIST (Modified National Institute of Standards and Technology) is a large handwritten
digit dataset widely used for machine learning research [118]. The data set includes
60,000 images for training and 10,000 images for testing. Figure 3.1 presents some
sample digit images from MNIST data set.

The DL system recognises handwritten digits from the MNIST dataset [82]; hence, it
performs a classification task. Its DNN predicts which digit is represented in a greyscale
image. In particular, we consider the popular convolutional DNN architecture provided
by Keras [22]. We trained this DNN on the MNIST training set using its default configu-
ration, i.e., 12 epochs, batches of size 128, and a learning rate equal to 1.0. Our digit
classifier achieved 99.8% classification accuracy on the MNIST testing set.

3.2 Self-driving Car

The popularity of self-driving cars has surged as advancements in autonomous driving,
emphasizing the need for rigorous testing. Testing is vital to ensure the safety and
adaptability of autonomous driving systems in diverse real-world scenarios. Simulators
play a crucial role in this process, offering a controlled environment for efficient and
reproducible testing. The BEAMNG system is a simulation-based self-driving car. It
implements an end-to-end, vision-based driving agent that can follow the lane in a road.
BEAMNG includes a DL-based Lane Keeping Assist System (LKAS), i.e., a DNN able to

11

12 3.2 Self-driving Car

Figure 3.1. Sample digit images [18] from MNIST data set.

Figure 3.2. Test execution within the BeamNG simulator.

predict the steering angle of the car given the image of its onboard cameras; hence,
it solves a regression problem. For this task, we adopted the widely known DAVE-2
architecture designed by Bojarski et al. at NVIDIA [17]. DAVE-2 operates through
behavioural cloning, i.e., it learns to establish a mapping between images and steering
angles based on examples.

The whole DL system is tested in the BeamNG.research driving simulator [10], a
state-of-the-art simulator widely used in research [110]. We trained the model for 200
epochs, with batches of size 128 and a learning rate equal to 0.001, achieving a mean
squared error (MSE) of 4.31e�5 on the test set. Our training set consists of images
captured by the on-board camera, labelled with the steering angles provided by the
simulator’s autopilot while driving on virtual roads up to 25Km/h.

The driving model’s performance can be evaluated offline or online. Offline evalua-
tion entails testing the DL model with pre-collected data in a non-real-time setting. The
DNN’s predictions are compared to ground truth labels, serving as an oracle, and a test
is deemed unsuccessful if the error exceeds a predefined threshold. Online evaluation
involves deploying the DL model in a real-time, interactive environment, often using a
simulator. While the DNN still analyzes a stream of unlabeled driving images from an

13 3.3 Movie Sentiment Analysis

onboard camera, its predictions directly influence the overall system behavior, impacting
subsequent driving decisions. Consequently, individual DNN prediction errors become
less meaningful and computationally challenging, as there’s no clear association of
ground truth labels with incoming data.

3.3 Movie Sentiment Analysis

Text classification stands as a fundamental task in natural language processing, finding
diverse applications such as sentiment analysis, topic labeling, spam detection, and
intent detection. The Movie Reviews dataset [92] is a binary sentiment analysis dataset
consisting of 50,000 reviews from the Internet Movie Database (IMDb) labeled as
positive or negative. The DNN solves a text classification problem: it predicts whether
the review has positive or negative sentiment. We used a convolutional DNN architecture
with an embedding layer provided by Keras [107], which accepts as input tokenised
(with vocabulary size equals to 10K) and padded text with length limited to 2K words.
We trained the model on the IMDB training set with 10 epochs, batches of size 32 with
early stopping, and the Adam optimizer, achieving 88.19% test accuracy.

3.4 Image Classification

Image recognition is used to perform many machine-based visual tasks, such as labeling
the content of images with meta tags, conducting content-based image searches, and
providing guidance to autonomous robots. IMAGENET is a large and extremely popular
image dataset, which has been used for the IMAGENET Large Scale Visual Recognition
Challenge (ILSVRC) [126]. Figure 3.3 presents some sample images from different
classes of IMAGENET data set. The large volume of annotated complex images allowed
researchers to train deep neural networks, which require vast amounts of data to learn
effectively. This dataset includes images of 1000 classes, partitioned into three sets:
training (1.3M images), validation (50K images), and testing (100K images with held-
out class labels). For this dataset, we used the pre-trained ResNet50 [57] neural network
provided by the timm library1 in Pytorch2 with 81.17% accuracy.

1https://timm.fast.ai
2https://pytorch.org

14 3.4 Image Classification

Figure 3.3. Sample images from ImageNet data set.

Chapter 4

State of the Art

4.1 DL Test Input Generation and Adequacy

Traditional test adequacy criteria, e.g., code coverage, cannot assess if DL systems are
adequately exercised by a test set , as any test set, even a very weak one, is likely to
cover the code that creates and uses a DNN fully, without however exercising its actual
behaviours. DL systems’ behaviour mostly depends on their training data, architecture
and the tuning of several hyper-parameters, rather than the code. Recent research
defined ad-hoc test adequacy metrics for DL systems and proposed input generation
techniques guided by these metrics.

Pei et al. [112] defined neuron coverage, an adequacy criterion that measures the
percentage of neurons whose activation level exceeds a certain threshold during testing.
They also designed DeepXplore, a test generator guided by neuron coverage to detect be-
haviour inconsistencies between different DNNs. In particular, DeepXplore solves a joint
optimization problem that maximizes both neuron coverage and differential behaviours.
They calculate the gradients of the neurons in both the output and hidden layers with the
input value as a variable and weight parameters as constants. They perform an iterative
gradient ascent to adjust the test input, aiming to maximize the objective function of
the joint optimization problem. However, its implementation necessitates multiple DL
systems with comparable functionality to serve as cross-referencing oracles, a process
that is hindered by scalability challenges and the difficulty of identifying similar DL
systems.

Several other approaches extended neuron coverage [91, 90] or used it to drive test
generation [51, 143, 91, 154, 24, 26]. DLFuzz [51] is a test input generator guided
by neuron coverage. DLFuzz employs an iterative process where it selects the neurons
to activate, aiming to increase neuron coverage. It introduces subtle perturbations to
existing test inputs to guide DL systems in revealing incorrect behaviours. Throughout
the mutation process, DLFuzz keeps mutated inputs that contribute to a specific increase
in neuron coverage for subsequent fuzzing rounds. It identifies the erroneous behaviors

15

16 4.1 DL Test Input Generation and Adequacy

when the prediction of the mutated input is different from the one produced by the
original input.

DeepTest [143] maximises the neuron coverage of a DNN-based steering angle
predictor by applying different image transformations to images captured by the on-
board camera of an autonomous car. In particular, it adopts a greedy search algorithm
to identify the combinations of the transformations that lead to higher neuron coverage
and finds errorneous behaviours using domain-specific metamorphic relations. For
instance, it checks whether an autonomous driving system behaves similarly when the
input image is transformed into the same scene under a different weather condition.

DeepGauge [91] provides a set of multi-granularity coverage criteria that extend
neuron coverage by taking the distribution of training data into consideration. For
instance, k-multisection Neuron Coverage (KMNC) partitions the major function region
of neurons into k sections and requires each of them to be covered by the test inputs.
Neuron Boundary Coverage (NBC) and Strong Neuron Activation Coverage (SNAC)
instead deal with corner case regions: they measure how many corner cases have
been covered with respect to both boundary values and only upper boundary value
of neuron activation functions, respectively. Ma et al. [91] also proposed coverage
criteria at layer-level based on number of neurons that have once been the most active k
neurons on each layer (Top-k neuron coverage). For test generation, they use multiple
adversarial data generation algorithms i.e., Fast Gradient Sign Method (FGSM) [43],
Basic Iterative Method (BIM) [77], Jacobian-based Saliency Map Attack (JSMA) [111]
and Carlini/Wagner attack (CW) [19] and they show their coverage criteria can indicate
a higher chance of detecting DNN failures.

DeepCT [90] uses a set of combinatorial testing (CT) criteria for DNNs based on
the interactions between neurons. It evaluates the activation status of neurons in each
layer by checking the proportion of interactions among activated neurons within a layer.
This technique initializes a CT coverage table for the DNN and iteratively generates
tests guided by the coverage criteria using random testing. Tests are generated layer
by layer, targeting specific coverage goals such as t-way combination sparse coverage
which quantifies the percentage of t-way neuron combinations in layer i where all
neuron-activation configurations are covered by the test set.

DeepHunter [154] leverages multiple previously proposed coverage criteria [112, 91]
as feedback to guide test generation. In particular, it keeps the seeds in the generation
loop only if they contribute to the coverage metrics. To balance diversity, DeepHunter
adopts a seed selection strategy which prioritizes new tests over the seeds that have
been fuzzed many times. Their metamorphic mutation operator includes pixel and
affine transformations. While the former modifies image contrast, brightness, blur and
noise, the latter applies modifications such as scaling, shearing and rotation.

The test generators mentioned above generate adversarial inputs by adding small
perturbations to the original inputs. Adversarial input perturbations are widely used by
the machine learning community to affect model’s predictions [16]. While adversarial

17 4.1 DL Test Input Generation and Adequacy

attacks expose security and robustness vulnerabilities, they do not promote the spread of
such attacks in the feature space. We aim to adopt model-based generative approaches
which modify the input model parameters to ensure at the same time more diversity and
more control on the realism of the generated inputs. For more complex inputs when the
input model is not available or difficult to define, we use generative DL models.

Kim et al. [70] note that NC and KMNC lack practical utility as they provide limited
information about individual inputs. They argue that a higher NC does not necessarily
indicate a better input, as some inputs naturally activate more neurons. To overcome
these limitations, they designed an adequacy criterion named Surprise Adequacy (SA)
that measures the degree of “surprise” of test inputs with respect to the training set.
They propose two variants of SA: (1) Likelihood-based SA (LSA) that estimates the
likelihood of the system encountering a similar input during training using kernel density
estimation; (2) Distance-based SA (DSA) that is calculated based on the Euclidean
distance between vectors representing the neuron activation traces of the given input
and the training data. In their work, SA was used for test case selection and retraining,
not for test input generation.

Kang et. al [66, 68] introduced SINVAD for testing DL systems using the latent space
of VAEs. SINVAD performs optimization to find inputs close to the decision boundary of
the DL system. In particular, it adds perturbations to the elements of the input latent
representations to generate surprising or misbehaviour-inducing inputs. To this aim,
they employ either hill climbing or a genetic algorithm: hill climbing involves searching
for images with a specified Surprise Adequacy [70], while for generating images that
mimic one category but are classified as a different category, as in adversarial examples,
they use the genetic algorithm. Their approach is dependent on the VAE for the definition
of the search space, which may or may not be available for the DL system under test.

Another adequacy metric is mutation adequacy criteria that assess the ability of test
data to expose artificially injected faults that simulate real faults (i.e., mutations). A
notable work in this area is DeepCrime [61], a mutation tool built on top of the notion
of statistical killing proposed by Jahangirova and Tonella [64], which injects mutations
resembling real DL fault classes, such as the ones defined in the taxonomy by Humbatova
et al. [60]. DeepMetis [117] is a search-based test generator that prioritizes mutation
adequacy as its guiding principle. Fundamentally, a mutant is considered "killed" if
the DL model under test exhibits correct behavior, while a "misbehavior" is observed
upon evaluating its mutated counterpart. Through this approach, they generate new
inputs that effectively target and kill mutants not killed by the original test set, hence,
increasing the mutation killing ability of the test set.

All approaches mentioned above aim at maximising some internal adequacy metric,
such as neuron or surprise coverage, while our aim is to explore the feature space of
DL system and explain the misbehaviour of DL system through interpretable features.
Moreover, current approaches necessitate white-box access to the activation levels of
the DNN, particularly if they are guided by coverage criteria like neuron coverage. We

18 4.1 DL Test Input Generation and Adequacy

are interested in testing at functional level the diversified feature combinations that
trigger misbehaviours.

Other testing approaches attempt to maximise the number of failures by using a
variety of techniques. AsFault [40] generates challenging scenarios that maximize the
number of exposed system failures. Its primary objective is to thoroughly test ADSs by
subjecting them to various difficult situations that they may encounter in real-world
driving conditions. To this aim, it combines procedural content generation (PCG)
and search-based testing (SBST). The procedural generation of road networks aims
to provide a detailed description of road and lane structures using splines. Initially,
roads are constructed independently by generating their segments. Subsequently, roads
are combined on the same map to form complete road networks. As a search-based
approach, AsFault employs a genetic algorithm to iteratively evolve road networks, with
a fitness function which rewards those tests that cause the ego-car to move the farthest
away from the lane centre.

NSGAII-DT [2] is a test generator designed for vision-based control systems. It is
guided by decision trees that are constructed based on critical combinations of struc-
tural features learned throughout the exploration process. NSGAII-DT uses ranges of
input/environment variables (e.g., pedestrian position/speed) to automatically identify
the most critical regions of the input space. However, this approach is limited, as in-
put/environment variables do not fully characterise higher level abstract properties of
the road as well as behavioral properties of the driving system. Moreover, in their ap-
proach the user cannot specify a specific range of interest, as the approach automatically
focuses on input values that most likely trigger failures.

DeepJanus [119] characterises a DL system’s quality as its frontier of behaviours, i.e.,
pairs of similar inputs that trigger different (correct vs failing) behaviours of the system.
It uses multi-objective search-based algorithm to generate diverse test inputs at frontier
of the system. While DeepJanus provides users with a set of system’s frontier inputs, it
does not explicitly characterise them based on structural or behavioural features.

X. Zhang et al. [157] proposed an approach for generating test inputs with diverse
uncertainty patterns (i.e., prediction confidence score and variation ratio). They do not
define adequacy criteria, but they suggest to generate test inputs that target the least
frequently covered uncertainty patterns. They introduced KuK, a tool that generates
uncommon data using genetic algorithm. They define fitness function such that it
prompts uncovered uncertainty types such as, data samples with high predication
confidence score (PCS) and high Variation Ratio in terms of original prediction (VRO),
while their mutation operator perturbs seeds only by adding random white noise to
them.

AMBIEGEN [62] is a search-based framework for generating diverse misbehaviour-
inducing test scenarios for ADSs. It explicitly promotes test diversity and employs
a simplified system model to approximate results without running time-consuming
simulations. It uses the NSGAII algorithm with two objectives: one evaluates the

19 4.2 Explainable AI for DL Testing

system’s behaviour deviation from the expected, and the other measures test case
diversity using a reference test case.

SAMOTA (Surrogate-Assisted Many-Objective Testing Approach) [52] is a testing
approach that combines many-objective search and surrogate-assisted optimization
techniques. It aims to achieve multiple safety objectives within a limited time budget
while efficiently searching for critical test data using surrogate models that mimic the
simulator but are computationally less expensive. Its approach consists of two search
phases, global search using global surrogate models to explore the search space and
capture the global fitness landscape, and local search using local surrogate models to
exploit promising areas found by the global search. Each objective of SAMOTA is a
safety violation, and the specific features of the misbehaviour-inducing inputs are not
relevant for SAMOTA.

All the test generators we mentioned above aim at exposing misbehaviours. However,
merely exposing DL misbehaviours is not sufficient to understand the input features
causing them and, thus, thoroughly evaluate the system quality. In fact, a DNN model is
commonly perceived as a black-box, and despite its exceptional performance, it often
struggles to offer meaningful explanations for specific predictions or decisions [50, 141].

4.2 Explainable AI for DL Testing

In the literature, low-level explanations have been leveraged to interpret the output of
DL testing.

Fahmy et al. [30] proposed HUDD (Heatmap-based Unsupervised Debugging of
DNNs) to identify root causes of DNN failures. HUDD uses heatmap explanations
generated by the Layerwise Relevance Propagation (LRP) technique and then clusters
inputs with similar heatmap characteristics. They showed that by inspecting explanations
generated from failure-inducing images within the same cluster developers can find
common root causes for failures. HUDD has been used in the test generator SEDE
(Simulator-based Explanations for DNN FailurEs) [31], to derive properties of unsafe
images relying on a set of decision rules. SEDE generates images similar to the failure-
inducing ones extracted by HUDD (i.e., mapped to the same clusters) and improves the
DL model by retraining it with the artificially generated inputs.

Stocco el. al [134] proposed ThirdEye, a monitor for autonomous driving systems
(ADSs) which relies on heatmaps produced by the SmoothGrad [132] technique to
predict unsafe conditions in advance. ThirdEye computes confidence scores based on
which parts of the image taken from the on-board camera contribute the most to the
ADS decision and warns the main driving component of potential safety-critical failures,
when the confidence is lower than a predefined corresponding threshold.

Existing works considered low-level explanations for testing DL systems. Instead,
our goal is to consider different explanation levels (i.e., both low-level and high-level)
and compare them to assess their usefulness and understandability in explaining DL

20 4.3 Feature Extraction for DL Testing

misbehaviours.

4.3 Feature Extraction for DL Testing

Different techniques proposed in the literature for testing DL systems focus on the
features of the test inputs.

O’Shaughnessy et. al [108] generate post-hoc causal explanations for black-box
classifiers by leveraging a learned low-dimensional representation of the data. Their
method involves constructing a generative model (e.g. a VAE) with a disentangled
representation of the data and a mapping to the data space. They use a structural
causal model (SCM) to formalize the relationships between independent latent factors,
classifier inputs, and outputs. Our approach also relies on latent features of the input
that are automatically extracted. However, our aim is different, i.e., to generate test
inputs by covering the feature space while providing discriminative feature maps for
further analysis of the model’s behaviour.

Dola et. al [27] extracted feature vectors using a VAE trained on the training
data of the DNN under test. These feature vectors establish a coverage domain for the
application of Combinatorial Interaction Testing (CIT) on a partitioned latent space,
facilitating the measurement of test coverage. They capture feature diversity in their test
adequacy metric named Input Distribution Coverage (IDC) by computing the interaction
between abstract features. While VAEs are effective at extracting related features of
the input, they can be less accurate when they encounter inputs that differ from their
training set and lead to unrelated connections between features and behaviour of the
model.

Attaoui et.al [8] used a pre-trained VGGNet model to extract relevant features of
misbehaviour-inducing inputs. Their tool, called SAFE, uses these features to compute
root cause clusters and selects unsafe test inputs to improve the DL system through
retraining. More specifically, SAFE extracts features of unsafe images using transfer
learning and applies a dimensionality reduction method to extract important dimensions.
Root cause clusters are determined through clustering, followed by visual inspection
conducted by engineers as mandated by functional safety analysis. Engineers supply
a new batch of images, known as the improvement set, for model retraining. SAFE
chooses the unsafe set, a subset of images from the improvement set, which engineers
then label and use for retraining the model to enhance its prediction accuracy. While
they automated feature extraction and retraining, their approach still includes manual
steps for visual inspection of images for safety analysis and labeling newly generated
images.

Neelofar et. al [103] proposed an adequacy metric for black-box testing of au-
tonomous vehicles considering their instance space. An instance space refers to a 2D
representation of the test scenarios, defined based on the most effective features of
the test scenarios. Their approach requires significant domain knowledge to extract

21 4.3 Feature Extraction for DL Testing

meaningful features from a test scenario.
Our goal is to explore the feature space comprehensively, seeking inputs that demon-

strate both high performance and diversity across different regions of this space. By
doing so, we aim to reveal various weaknesses inherent to the DL system, enhancing
our understanding of its performance intricacies.

22 4.3 Feature Extraction for DL Testing

Chapter 5

Exploring the Feature Space of Deep
Learning-Based Systems through
Illumination Search

As discussed in the comprehensive work by Riccio et al. [118] and by Zhang et al. [155],
the Software Engineering research community is working hard at adequately testing the
functionality of DL systems by proposing a steadily growing number of approaches. Since
part of the program logic of these systems is determined by the training data, traditional
code coverage metrics are not effective in determining whether their logic has been
adequately exercised. Therefore, recent testing solutions aim at maximising ad hoc white-
box adequacy metrics, such as neuron [112, 51, 143, 154] or surprise coverage [70], or
at exposing misbehaviours [1, 156, 40]. A limitation of these approaches is that their
output cannot be directly used to explain the behaviour of the DL system under test, e.g.
coverage reports do not provide enough information to understand what input features
might have caused misbehaviours. Consequently, the usefulness of these approaches for
the developers is strongly limited in practice.

Few approaches [2, 119] use behavioural properties during test generation, but none
of them considers the combination of interpretable features of the DL system under test
as the target of test generation. This hinders them from exploring the feature space at
large and providing a detailed explanation on how the system behaves for qualitatively
different inputs.

We introduce DEEPHYPERION-CS which addresses this limitation by offering an
interpretable characterisation of DL systems’ behaviours. It is the first approach to apply
Illumination Search to DL system testing and to provide developers with a feature map,
where the automatically generated inputs are positioned based on their characteristics
and where the misbehaviours they expose can be interpreted. DEEPHYPERION-CS ś
output comprises feature maps that indicates the performance of generated inputs in the
space of the relevant features. As an example, for testing handwritten digit classifiers,

23

24

Figure 5.1. Feature map for a hand-
written digit classifier. The two axes
quantify the discontinuity and bold-
ness of digits. Circled cells highlight
misclassified inputs.

Figure 5.2. Feature map for a lane
keeping system. The two axes quan-
tify the complexity and smoothness of
virtual roads. Circled cells highlight
inputs in which the driving agent went
astray.

DEEPHYPERION-CS can use features like the number of disconnected segments within
each digit and the boldness of the stroke.

Feature maps are N-dimensional grids, in which each axis corresponds to a considered
feature. These maps are discretised so that each of their cells correspond to an interval
of features’ values. Test inputs are automatically assigned to a map cell, computed by
measuring the metric that quantifies each feature. Figure 5.1 illustrates a 2-dimensional
feature map for a handwritten digit classifier, where the x-axis corresponds to the
Discontinuity feature, while the y-axis corresponds to digits’ Boldness. Each feature’s
value range is discretised into 4 intervals, resulting in a 4⇥4 map. The resulting feature
map highlights that the classifier under test cannot correctly handle thin strokes (i.e.,
the bottom row of the feature map), as well as bold strokes with moderate discontinuity.
Similarly, Figure 5.2 shows that the driving agent under test is in trouble on roads with
sharp curves (low values of Smoothness) regardless of their Complexity, where road
Complexity is measured as the number of times the road changes direction significantly.

A crucial element of our approach is the choice of the dimensions that define
the feature space of interest. In particular, the features should represent meaningful
properties of the test scenarios, i.e. discriminative and interpretable properties of the
inputs, or behavioural properties manifested by the DL system when exercised by the
test inputs. To this aim, we proposed a novel systematic methodology that can be used
in conjunction with DEEPHYPERION-CS to define the feature dimensions in a domain of

25 5.1 Manual Definition of the Feature Map Dimensions

interest, making it possible to generate test cases that illuminate the associated map in
such domain. This methodology supports the identification of the features that better
characterise the generated inputs and the definition of metrics that quantify the selected
features.

We evaluated the proposed technique on both a classification problem (handwritten
digit recognition) and a regression problem (steering angle prediction in a self-driving
car). Results show that, for both problems, DEEPHYPERION-CS is effective in generating
failure-inducing inputs that are structurally or behaviourally different among them,
as they cover different regions of the feature space. We compared DEEPHYPERION-CS
with state-of-the-art test input generators. Our results show that DEEPHYPERION-CS can
explore the feature space at large, whereas existing tools ignore parts of the feature
space and expose only misbehaviours that belong to a narrow region of such space.

5.1 Manual Definition of the Feature Map Dimensions

A crucial element of our approach is the choice of the dimensions of variation of the
automatically generated test cases. Such dimensions define both the feature space of
interest to the user [101] and the search space of DEEPHYPERION-CS. In the case of
DL testing, they should represent meaningful properties of the test scenarios: either
discriminative and interpretable structural features of the inputs, or behavioural features
observed as the DL system processes the input and produces its output.

We propose an empirical methodology that can be used to define the feature dimen-
sions in a new domain of interest. Our methodology consists of two macro-steps (see
Figure 5.3): (1) open coding: select the features that better characterise the generated
inputs, and (2) metric identification: quantify the selected features. The second step is
needed to provide DEEPHYPERION-CS with quantitative feature values to position the
generated tests in the feature map.

5.1.1 Open Coding

The first step entails an open coding procedure [128] in which a set of existing inputs is
manually analysed by human assessors to select the relevant features in a given domain.
Since we are interested in both structural and behavioural features, the information
provided to the human assessors is not restricted to the bare inputs (e.g., images
or roads): it also includes the output of the DL system when processing the given
existing inputs (e.g., the class predicted by an image classifier), as well as any relevant
behavioural data (e.g., the trajectory of the car driving on the input road).

The assessors independently tag the inputs assigned to them by either reusing an
existing feature label or defining a new one. Each feature label is composed of a feature
name, paired with the corresponding feature value, chosen from a rating scale, usually
with five levels. For instance, a hypothetical speed of a self-driving car label will have

26 5.1 Manual Definition of the Feature Map Dimensions

Figure 5.3. Feature Selection Methodology

values that range between -2 and +2, where -2 means “very low”, while +2 means “very
high”.

This procedure is supported by a Web application that we developed, which ensures
that unlabelled inputs are equally distributed among the assessors and enables assessors
to label inputs according to the existing features as well as to define new features.
Figure 5.4 shows a snapshot of this Web application for labelling road images. It
contains an interactive image of the road with arrows indicating the sample positions of
the car in the road 1 and a text box to assign the label 2 . As shown at the bottom of
the figure, the Web application provides the list of already created labels 3 , which can
be reused by the assessors. This choice helps them to use consistent naming without
introducing substantial bias [60]. In the example in Figure 5.4, the assessor carefully
inspected the road shape provided in the left panel 1 and decided that it has a very sharp
angle, a very large number of turns, and covers a moderately small range of directions.
Consequently, the assessor filled the text box in the right panel 2 by assigning a value
in the range [-2;+2] to each feature. Notably, the assessor reused the suggested existing
tags 3 as they satisfactorily encoded the identified features. Otherwise, the assessor
could have introduced different tags, which would be later proposed to all the assessors
in the bottom panel. Based on our experience, this procedure took up to 1 minute for
each image.

27 5.1 Manual Definition of the Feature Map Dimensions

Figure 5.4. A view of the Web application used for labelling the inputs. The
(interactive) left panel shows the aerial view of a virtual road divided into road
segments. In this panel, little triangles depict the field of view of an hypothetical
vehicle driving in the middle of the road, while additional meta-data about the road
(e.g., total length) are given for reference. The right panel shows the form used by
the labellers to tag the input or define additional tags. The bottom panel shows the
set of tags currently defined for virtual roads. Note: a similar page (not shown in
the figure) is used to label the images of handwritten digits.

In our methodology, it is strongly advised to run a preliminary pilot study on a subset
of inputs to gain confidence in the labelling procedure and, more importantly, agree
on the meaning of the features and on the interpretation of the corresponding values.
The pilot is concluded with a consensus meeting in which the disagreements are solved
either by consensus among the assignees or arbitration by the other assessors. In our
experience, a disagreement is worth being discussed in the consensus meeting when the
assigned values differ by more than 1 position in the rating scale (e.g., a disagreement
between “very low” and “low” speed can be just ignored, while one between “low” and
“high” is worth being discussed and solved). It might happen that the assessors realise
through the discussion that some important features have been overlooked. Therefore,
as part of the consensus meeting, assessors are allowed to agree upon additional features
to be considered during the labelling procedure.

Only when a common understanding of the features and of their possible values is
reached, we suggest that it is possible to switch from the pilot study to the study mode.
In the final study, it is usually enough that each remaining unlabelled input is evaluated
by a single assessor. In fact, while during the pilot study the number of inputs being
labeled is kept small, in the final labelling phase we typically want to label as many
inputs as possible.

28 5.1 Manual Definition of the Feature Map Dimensions

Table 5.1. Feature selection and validation: output of the proposed methodology in
the two reference application domains

Application Domain Case Study Feature Metric Agree Correl p-value

Digit Recognition MNIST Boldness Lum 100% 0.67 <0.002
Smoothness AvgAng 66% 0.05 0.241
Discontinuity Mov 100% 0.90 <0.002
Rotation Or 100%⇤ 0.43 <0.002

Autonomous Driving BeamNG Smoothness Curv 95.8% -0.60 <0.002
Complexity TurCnt 87.5% 0.63 <0.002
Orientation DirCov 89.5% 0.66 <0.002
Passenger Comfort StdSA⇤⇤ – – –
Safety MLP⇤⇤ – – –

⇤ Rotation was identified during the consensus meeting, after all the assessors agreed upon its
meaning (i.e., Agreement= 100%).
⇤⇤StdSA and MLP were identified in the study about quality of driving metrics for self-driving cars
by Jahangirova et al. [63]

5.1.2 Metric Identification

The second step of our methodology aims to define a set of metrics that can accurately
quantify the domain-relevant features. The metrics can be either (1) selected from the
most used in the literature or (2) designed ad-hoc to accurately quantify the features
identified in the Open Coding step. To select the most accurate metrics for the features
that have been identified in the previous step, we compute the Pearson correlation
coefficient [73] and the associated p-value, between the manually defined feature
values, converted from the rating scale to a numeric scale (e.g., in the range [1:5]), and
the values returned by the candidate metrics. The metrics with highest, statistically
significant (p-value < 0.05) correlation are chosen to quantify the selected features. In
the following, we provide the details about how this methodology was applied to each
of our case studies, i.e. digit recognition and autonomous driving.

5.1.3 Dimensions for Digit Recognition

Open Coding

In this phase, I and two colleagues acted as assessors. In the pilot, we randomly selected
30 images from the MNIST database and each assessor was assigned 20 images, such
that each input was evaluated by two assessors. The assessors identified the following
features, to which they assigned values within a range from -2 to 2:

• Boldness, indicates how strong the stroke of the handwriting is. It ranges from very

29 5.1 Manual Definition of the Feature Map Dimensions

thin (�2) to very thick line (2).

• Smoothness, indicates the absence of sharp angles in the digit. It ranges from sharp
angles (�2) to smooth angles (2).

• Discontinuity, indicates how continuous the stroke of the handwriting is. It ranges
from continuous line (�2) to digits made of multiple disconnected segments (2).

• Rotation with respect to the vertical axis. It ranges from strongly tilted to the left
(�2) to strongly tilted to the right (2).

Examples of images of handwritten digits at various levels of Boldness and Discontinuity
can be found in Figure 5.1. The inter-rater agreement during the pilot study, measured
as the percentage of inputs that were assigned the same feature value or feature values
with a difference of 1, is reported in Table 5.1 under Agree. We observed that assessors
strongly agreed over Boldness and Discontinuity (i.e., no conflicts have been registered).
Noticeably, Table 5.1 does not report any agreement value for Rotation, as the assessors
introduced this feature during the consensus meeting, i.e., after the data collection for
the pilot study ended. In the final phase, we randomly selected 600 images from MNIST
and each of the three assessors labelled 200 images.

Metric Identification

To measure each feature resulting from the labelling procedure, we designed several
candidate metrics and applied them to the 630 images labelled by the assessors. Table 5.1
(top) shows the metric with highest correlation for each MNIST feature, together with
the corresponding correlation and p-value:

• Luminosity (Lum): number of light pixels of the image, i.e., pixels whose value is
above 127.

• Average Angle (AvgAng) the average angle of the Bezier curves in the SVG represen-
tation of the digit.

• Moves (Mov): sum of the Euclidean distances between pairs of consecutive sections
of the digit. To obtain the sections of a digit, we convert its bitmap to SVG.

• Orientation (Or): vertical orientation of the digit, obtained by computing the angular
coefficient of the linear regression of the non-black pixels, i.e., pixels with value
greater than 0.

As shown in Table 5.1, for Boldness, Discontinuity and Rotation we were able to define
metrics that significantly correlate with the human assessment, whereas this was not
possible for Smoothness, which turned out to be both difficult to evaluate for humans
(see low inter-rater agreement) and difficult to quantify precisely. Hence, this feature
was not included among those used by DEEPHYPERION-CS for input generation.

30 5.1 Manual Definition of the Feature Map Dimensions

5.1.4 Dimensions for Autonomous Driving

Open Coding

In this phase, I with the colleagues involved in the previous step and an additional
colleague acted as assessors. In the pilot, we randomly generated 40 virtual roads ac-
cording to our model representation. Each assessor was assigned 20 images representing
roads, so that each road was evaluated by two assessors. The assessors identified the
following features, to which they assigned values within a range from �2 to +2:

• Smoothness, indicates how smooth the turns of the road are. It ranges from sharp
turns (�2) to gentle turns (+2).

• Complexity, indicates how complex the road’s shape is. It ranges from almost straight
roads (�2) to roads with many turns (+2).

• Orientation, indicates how many directions (i.e., N, NE, E, SE, S, SW, W, NW) the
road covers. It ranges from straight road which is oriented to one direction only (�2)
to road that covers the whole spectrum of directions (+2).

As reported at the bottom of Table 5.1, during the pilot, we observed that assessors
generally agreed upon all the features. In the final phase, we randomly generated 400
roads and each assessor tagged 100 of them.

Metric Identification

We designed a set of candidate metrics and applied them to the 440 images labelled by
the assessors. We eventually selected the following 3 metrics that best correlate with
the corresponding features, as reported in Table 5.1 (bottom):

• Maximum Curvature (Curv), which quantifies road smoothness as the inverse of its
turns’ radius.

• Turn Count (TurCnt): number of turns in the road, where a turn is a change of
direction between consecutive road segments by more than 5�.

• Direction Coverage (DirCov): number of different angular sectors covered by the
directions of the road segment. In particular, we consider 36 sectors, each spanning
10�.

In addition to the features that characterise the structure of the test input, we considered
further features to capture the behaviour of the car during the simulation. In particular,
we used the following metrics that have been proposed as quality metrics for self-driving
cars [63] to measure the quality of driving:

• Standard deviation of the steering angle (StdSA): standard deviation of the se-
quence of steering angles collected along the road during self-driving.

31 5.2 The DeepHyperion-CS Technique

• Mean lateral position of the car (MLP): mean distance between the center of the
car and the center of the driving lane, where the mean is computed across all car
positions observed along the road.

5.2 The DeepHyperion-CS Technique

DEEPHYPERION-CS aims to extensively explore the feature space of a DL system to
find inputs with diverse characteristics that induce the system to deviate from the
expected behaviour. Given N dimensions of variation of interest, which define the
feature space (i.e., the feature map to explore), MAP-Elites looks for test inputs that
expose misbehaviours in the system under test at each point in the space defined by
those dimensions (i.e., the map’s cells). Its goal is to fill the feature map with the fittest
individuals, i.e., inputs that expose or are close to exposing misbehaviours.

MAP-Elites needs a domain- and problem-specific fitness function to measure the
degree of misbehaviour exhibited by the system when executed with a given candidate
solution as input. For example, when testing Deep Neural Networks (DNNs) that
recognise handwritten digits in greyscale images, two dimensions of interest may be
the boldness and discontinuity of the handwriting stroke (see section 5.1). In this case,
DEEPHYPERION-CS uses the misclassification distance as fitness function [20, 119, 28] to
generate greyscale images containing digits written using strokes with different boldness
and discontinuity (see Figure 5.1). The misclassification distance is computed as the
difference between the activation value of the neuron associated with the correct label
and the highest incorrect activation from the DNN’s softmax layer output (hence, it
becomes negative as a misclassification occurs).

The original MAP-Elites algorithm uses uniform random individual selection to
perform the search, i.e., at each iteration, it generates a new input by modifying an
individual randomly chosen among the ones already occupying some map cells. The
motivation behind this choice is that random selection avoids biasing the search and
possibly achieving suboptimal solutions [101]. For instance, selecting the fittest indi-
vidual at each iteration may drastically reduce the population’s diversity and lead to
premature convergence of the search.

However, smarter selection mechanisms usually improve search-based algorithms
compared to the random baseline, e.g. survival of the fittest [35] and promotion of the
most diverse individuals [85, 97]. Therefore, in this approach we integrated a novel
selection operator into MAP-Elites, specifically designed to promote individuals that
contribute more to the map exploration. The ability of an individual to generate many
and diverse new inputs is captured by our novel metric, named contribution score (CS)
(see section 5.2.5 for a detailed description). Our assumption is that an individual
contributes to the search when it generates mutants that occupy previously empty cells
or are fitter than existing individuals. If an individual contributes to the search more
often, it could be more useful to generate better mutants also in next iterations. On

32 5.2 The DeepHyperion-CS Technique

Algorithm 1: DEEPHYPERION-CS’s Illumination Search
Input : B: execution budget

featurelist: list of features
seedsize: seed pool size
popsize: population size
rankselectionprob: rank selection probability
rankbias: rank bias

Output : M : feature map
1 map M INITIALIZEMAP(featurelist);
2 seeds S GENERATESEEDS(seedsize);
3 foreach s 2 S do
4 EVALUATE(s);
5 end
6 population P INITIALISEPOPULATION(S, popsize);
7 foreach ind 2 P do
8 M UPDATEMAP(ind) ;
9 end

10 while elapsedBudget < B do
11 ind CS-RANKSELECTION(M, rankselectionprob, rankbias);
12 indµ MUTATE(ind);
13 EVALUATE(indµ);
14 M UPDATEMAP(indµ);
15 ind UPDATECS(M);
16 end
17 return (M)

the other hand, if an individual does not contribute to the search for several iterations,
it is unlikely that it will generate better mutants later; in this case, we progressively
reduce that individual’s CS score in order to give it a lower priority during the selection.
Consequently, selecting individuals with higher CS can lead to fill more cells of the
feature map, possibly in fewer iterations, than uniform random selection. Moreover,
exploring more feature combinations may also lead to exposing more misbehaviours.

Algorithm 1 outlines the high-level steps of the Illumination Search approach imple-
mented by DEEPHYPERION-CS. The algorithm starts by filling an empty N-dimensional
and discretised feature map M (line 1) with an initial population P to be evolved (line 6),
where N is the number of features in the featurelist provided as input. The initial popu-
lation is drawn from a pool S of valid candidate inputs, called seeds, that are evaluated
using the EVALUATE function which computes the fitness function (i.e. closeness to
misbehaviour) and the features’ values of the considered individual (lines 3–5). The
cost of input evaluation is domain-dependent and spans from a simple model prediction,

33 5.2 The DeepHyperion-CS Technique

e.g., for handwritten digits, to performing expensive simulations, e.g., for lane keeping.
On the basis of the computed features, the candidate inputs are placed into M following
the update map rule (lines 7–9), i.e., each map cell can be occupied only by the fittest
individual with feature values corresponding to that cell. After creating P, the algorithm
performs the main evolutionary loop (lines 10-15) until a termination condition on
the execution budget is met. At each loop iteration, an individual ind is chosen from
the current map using the CS-based rank selection operator (line 11). The selected
individual is mutated to generate a new input indµ (line 12) and, then, its features and
fitness are evaluated (line 13). The map is updated with indµ (line 14): if it has a higher
fitness value than the individual in the map cell it occupies, it replaces the existing entry
in the map (this is done also if the map entry is currently empty). Finally, the CS of
the parent individual ind is updated according to whether its mutant indµ contributed
to the exploration or not (line 15). In the next sections, we detail the key aspects of
DEEPHYPERION-CS and describe how we applied it to the chosen application domains.

5.2.1 Input Representation

DEEPHYPERION-CS is a model-based test input generation technique [146]: it generates
complex inputs (e.g., greyscale images) by manipulating a model of the input, instead
of directly modifying the raw input data (e.g., pixels). Consequently, DEEPHYPERION-CS
requires a generative model of the input data processed in the application domain.
Generative input models are largely domain-specific and are commonly employed in
several domains, including safety-critical ones [79].

A possible alternative to model-based manipulation could be to directly modify
the raw input data (e.g., pixels for MNIST) as done in traditional adversarial Machine
Learning (ML). Adversarial ML techniques focus on applying the minimal changes that
can trigger a misbehaviour and are guaranteed to achieve this goal [16]. However,
they are not focused on generating inputs with different structural features and, thus,
covering the feature map. Another alternative for input generation are generative ML
approaches that approximate the input distribution, such as Variational Auto-Encoders
(VAEs) [67] and Generative Adversarial Networks (GANs) [28]. VAEs and GANs are
very useful when a model of the inputs is not available, e.g., real-world images from
ImageNet. However, generative ML based approaches rely on the quality of both a
representative training set and trained generative ML models, which might be hard to
achieve for complex problems.

We evaluated DEEPHYPERION-CS on two reference problems, handwritten digit
recognition in the image classification domain and lane-keeping in the automotive
domain.

For the handwritten digits recognition problem, we refer to the image format adopted
by the MNIST database [82] that consists of 70000 greyscale 28⇥ 28 images of hand-
written digits. DEEPHYPERION-CS abstracts each digit as a sequence of (start, end, and
control) points that define Bézier segments by utilising the Potrace algorithm [129] and

34 5.2 The DeepHyperion-CS Technique

Figure 5.5. Digit input representation
and mutation. (a) original input; (b)
original SVG model after vectoriza-
tion; (c) SVG model mutated by mov-
ing a control point; (d) mutated input.

Figure 5.6. Road input representation
and mutation. (a) original input; (b)
original model; (c) model mutated by
moving a control point; (d) mutated
input.

stores them as Scalable Vector Graphics (SVG)1 files, as shown in Figure 5.5. In par-
ticular, Potrace performs a sequence of operations, including binarisation, despeckling
and smoothing, which draw a smooth contour made of Bezier segments around the
considered image. We used Potrace since it represents the state of the art in vector model
extraction from images, (see, e.g., the Inkscape tool2), and can be easily integrated into
Python code via the pypotrace3 API.

For the lane-keeping problem, we refer to the simulated driving scenarios defined by
state-of-art approaches for testing lane-keeping systems [119, 40, 110] that consist of
flat, two-lane, two-way, asphalt roads surrounded by green grass on which the ego-car
(i.e., the vehicle under test) has to drive on the right lane. The environment is set to a
clear day without fog. DEEPHYPERION-CS abstracts roads as sequences of control points
in a bi-dimensional space. DEEPHYPERION-CS interpolates the control points using
Catmull-Rom cubic splines [21] to transform them into virtual roads to be rendered in
the simulator. Figure 5.6 shows the control points of the centre line spline as larger red
dots and the interpolated points that define the road as smaller grey dots.

5.2.2 Fitness Function

Intuitively, a suitable fitness function for testing DL systems should quantify how close
the DL system is to exhibit a misbehaviour [119, 40, 56]. In the following, we describe
the two fitness functions we designed to address the handwritten digit recognition and
lane-keeping problems, respectively.

For the handwritten digit recognition problem, we rely on the fact that the DNN
under test recognises the digits in the input image by selecting the class with the highest
activation level in its softmax output layer [42]. Therefore, by computing the difference
between the activation level of the neuron associated with the correct class and the
maximum activation level associated with the other, incorrect classes, we can effectively

1https://www.w3.org/Graphics/SVG/
2https://wiki.inkscape.org/wiki/Potrace
3https://github.com/flupke/pypotrace

https://www.w3.org/Graphics/SVG/
https://wiki.inkscape.org/wiki/Potrace
https://github.com/flupke/pypotrace

35 5.2 The DeepHyperion-CS Technique

measure whether the prediction was correct (positive fitness value) or wrong (negative
fitness value). More importantly, using this fitness function, DEEPHYPERION-CS can
measure how close an input is to cause a misbehaviour and can expose misbehaviours
by minimising the fitness value.

For the lane-keeping problem, we adopt a fitness function that scores higher tests
causing the ego-car to drive closer to, or even across, the lane’s margins. Specifically,
DEEPHYPERION-CS calculates the fitness of a test as min(w/2� d), where w is the width
of the lane the ego-car travels on, and d is the distance of the ego-car from the lane
centre. The position of the car is approximated by its centre of mass. The fitness function
returns its maximum value w/2 when the car is at the lane centre. DEEPHYPERION-CS
aims to minimise this fitness function causing the ego-car to drive over the lane’s margins
(negative fitness values).

Since it is more important to find all unique misbehaviours that happen in differ-
ent conditions, rather than finding test inputs that cause a “large amount” of misbe-
haviour (large negative value of the fitness function), the fitness function is capped to
a small negative value (i.e., �0.1) independently of the misbehaviour, thus avoiding
that DEEPHYPERION-CS ends up replacing individuals that caused already discovered
misbehaviours with individuals causing more extreme misbehaviours that happen in
similar or the same conditions. This strategy has the advantage of making it hard
for the fittest individuals to dominate the selection, which might lead to premature
convergence [6].

5.2.3 Feature Map

A feature map represents the feature space defined by N dimensions of variation (i.e., the
features) that are relevant for characterising the tests generated by DEEPHYPERION-CS.

DEEPHYPERION-CS characterises each individual by placing it into the feature map
M using the following mapping function:

xi = b↵i · ind. fic (5.1)

where ind. fi ,8i 2 [1 : N] refers to an individual’s feature values. According to Equa-
tion 5.1, DEEPHYPERION-CS computes the i-th index of a cell (i.e., the integer xi that
defines its coordinate along the i-th dimension) by scaling the feature value ind. fi using
the scaling factors ↵i .

It should be noticed that if a feature fi can have negative values, the resulting index
xi becomes also negative. Correspondingly, the feature map will span between negative
and positive integers (one way to achieve this in the implementation is to use the index
xi as a hash key and to display a grid spanning along all keys). DEEPHYPERION-CS
uses ↵ to control the map’s granularity based on the expected range of each feature
and to transform continuous values into the map coordinate system, which is based
on integers. The granularity of the feature map (i.e., the number of cells along each

36 5.2 The DeepHyperion-CS Technique

dimension) is decided by the user of our approach when setting the scaling factor ↵i.
Specifically, ↵i can be empirically computed as the ratio between the desired granularity,
i.e., the desired number of cells, and the expected range of the corresponding feature
fi. The choice of the map granularity affects its discriminative power, since a too low
granularity might be insufficient to characterize the misbehaviours and to distinguish
them from correct behaviours. However, in our experience any reasonably high choice
(as a rule of thumb, more than 25 cells) is enough to ensure good discrimination.

For instance, if the i-th feature’s values are expected to range between 0.0 and 2.0,
and the desired granularity is 100, a suitable value of ↵i would be 50. The ↵ values
remain constant during the search, while the size of the map M dynamically increases
as DEEPHYPERION-CS generates individuals with feature values outside the current map
boundaries. Initially, M contains no cells; then, as soon as DEEPHYPERION-CS generates
new tests with features that map to indexes outside the current range of values, it
grows M to accommodate the newly discovered individuals and adjusts the range of
values along the extended dimensions. For instance, if the first mapped individual in a
hypothetical bi-dimensional map has indexes (x1, x2) = (2,3), the initial empty map
M would be updated to have one cell in each direction at position (2,3) and ranges
([2 : 2], [3 : 3]). If later DEEPHYPERION-CS maps another individual to (x1, x2) = (5, 1),
M grows along its first dimension to the range [2 : 5] and to [1 : 3] along the second
dimension. At this point, the feature map contains 12 cells, 2 of which are filled, i.e.,
they contain an individual.

Since the size of the final dynamically discovered map may be different between
various runs of the algorithm, which may hinder visual inspection of the results,
DEEPHYPERION-CS allows testers to define the granularity of the final map produced by
the algorithm. It produces the final map by rescaling the search results as follows:

x 0i =
õ
GSi ·

ind. fi �mini

maxi �mini

û
(5.2)

where GSi is the desired grid size of the final map, and mini and maxi are the minimum
and maximum values empirically observed for the i-th feature. Rescaling the feature
maps eases the comparison of maps produced by DEEPHYPERION-CS and other test
generators across various runs, when results have different ranges. Therefore, we rely
on map rescaling in the experimental evaluation.

In particular, we rescale the maps so that they have the same size and features’
ranges across all runs of all test generators, hence avoiding any misalignment between
maps.

The generation of multiple inputs that belong to the same cell, e.g., through multiple
DEEPHYPERION-CS’s runs, allows the identification of feature map regions where the
probability of observing misbehaviours is higher. In fact, a combination of feature values
that often corresponds to a misbehaviour may suggest that such feature values are very
likely to induce a misbehaviour. In this way, DEEPHYPERION-CS provides developers with

37 5.2 The DeepHyperion-CS Technique

Figure 5.7. Misbehaviour probability maps: darker cells correspond to feature
combination values that are more likely to induce misbehaviours, dark borders
highlight cells with high confidence of producing a misbehaviour.

a powerful tool to understand the causes of misbehaviours. Therefore, we synthesise the
information collected by DEEPHYPERION-CS across multiple runs (i.e., all the generated
inputs and the corresponding outputs) in misbehaviour probability maps, that report
the Average Misbehaviour Probability (AMP) associated with each cell. We compute
these maps by (1) measuring, within each cell, the ratio of the number of misbehaviour-
inducing inputs to the total number of inputs generated by DEEPHYPERION-CS during
each run, and then (2) averaging the resulting values per cell across all the tool’s
runs. Since DEEPHYPERION-CS may generate only a small number of inputs in some
cells, the corresponding AMP values might be affected by a large error. Hence, we also
compute the confidence interval of AMP. In particular, we use Wilson’s confidence interval
estimator for binomial random variables, which indicates whether the misbehaviour
probability estimated for a particular combination of feature values has a low or high
error range. We consider a combination of feature values to produce misbehaviours
with high confidence if its AMP value is greater than 0.8 and the lower bound of its
confidence interval is above 0.65. As shown in Figure 5.7, misbehaviour probability
maps contain blank cells corresponding to feature combination values that have never
been observed, while the other cells are shaded proportionally to their AMP values.
Combinations producing misbehaviours with high confidence have thick borders.

38 5.2 The DeepHyperion-CS Technique

5.2.4 Initial Population

DEEPHYPERION-CS generates an initial population of size popsize by choosing inputs
from a larger pool of seeds of size seedsize, consisting of valid inputs for the system
under test. For the handwritten digit recognition problem, these seeds are existing
images randomly drawn from the MNIST database and converted to SVG, while for the
lane-keeping problem, seeds are valid roads that are generated randomly.

Generation of DEEPHYPERION-CS’s initial population aims to create a set of diverse
individuals from the feature space. Therefore, after evaluating the seed fitness and
computing the seed position on the map based on the feature values, DEEPHYPERION-
CS greedily selects individuals from the seed pool so as to maximise their Manhattan
distance (sum of the absolute differences of the map coordinates) [76].

5.2.5 Contribution Score-Based Rank Selection

As shown in Algorithm 1, each DEEPHYPERION-CS’s evolutionary iteration starts by
selecting an existing individual to be mutated from the non-empty cells of the feature
map. To select such individual, DEEPHYPERION-CS can use either a random strat-
egy (RANDOMSELECTION) or our novel strategy based on the contribution score (CS-
RANKSELECTION). The rank selection probability parameter rankselectionprob controls
the frequency of usage of each selection strategy. Specifically, increasing values of
rankselectionprob result in adopting CS-RANKSELECTION more frequently than RANDOM-
SELECTION.

RANDOMSELECTION is a standard selection strategy, in which an individual is uni-
formly sampled among the ones already placed in the feature map.

CS-RANKSELECTION implements a rank selection scheme which selects individuals
with a probability proportional to their rank, such that high-ranked individuals are
selected with higher probability than low-ranked ones.

Individuals are ranked by CS-RANKSELECTION according to their Contribution Score
(CS), which represents the individual’s contribution to exploration. An individual has
contributed to exploration if it has generated mutants which filled previously empty
cells or which replaced existing individuals with better ones. In detail, CS is computed
as follows:

CS(x) =
⇢ CC(x)

SC(x) if SC(x)> 0
1 otherwise

(5.3)

where CC(x), the Contribution Count, indicates the number of times mutants of indi-
vidual x have been successfully placed in the map, while SC(x), the Selection Count,
indicates the number of times the individual has been selected during the search. Ac-
cording to its definition, CS is always bounded between (0, 1]. Each individual’s CS is
initially set to 1, which means that 1. all the individuals are selected with equal proba-
bility before collecting any observation (unbiased initial selection); and 2. individuals

39 5.2 The DeepHyperion-CS Technique

who have never been selected are more likely to be selected than others (promoted
exploration).

During the search, CS values are updated to reflect each individual’s actual contri-
bution. For instance, if an individual x1 with CC(x1) = 1 and SC(x1) = 1 is selected
but its mutant is not placed on the map (i.e., the existing individual already placed into
its same cell has higher fitness), SC(x1) increments but CC(x1) remains the same. As
a result, CS(x1) drops from a solid 1.0 to a less considerable value of 0.5, halving the
chances to select x1 in the following iterations. Interestingly, the contribution score of
an individual does not always monotonically decrease during the search since every
time SC(x) increases, the corresponding value of CC(x) may or may not increase. The
initial value of CS(x) is 1.0 to promote individuals that have not been yet selected.
Regime values for SC(x) are usually big, making the difference between contiguous
values of CS(x) small, i.e., CS is overall smoothly changing. However, there is an initial,
transient phase where by design CS(x) is less smooth, e.g. jumping from 1.0 to CS =
0.0 (non contributing individual) and then to CS = 0.5 (contributing individual), to
quickly lower the rank of individuals that proved not to contribute to the search.

To perform rank selection of individuals, we use the linear ranking function proposed
by Whitley [151]. This approach to rank individuals is widely used in search-based soft-
ware testing since it addresses the problem of maintaining a constant selective pressure
of genetic algorithms throughout the search [98, 34, 41, 9, 54, 55]. In accordance with
this technique, DEEPHYPERION-CS sorts the individuals in ascending order based on
their CS value. Then, it selects from the ordered list the individual corresponding to the
index computed with the following formula:

index = size(Individuals)⇥
�p

rankbias2 � 4⇥ (rankbias� 1)⇥ random(0, 1)
�

2.0⇥ (rankbias� 1)
(5.4)

where function size returns the length of a list and the function random(0,1) returns
a random floating point number between 0 and 1. The rankbias parameter ranges
between 1.0 and 2.0 and influences the algorithm’s behaviour by biasing the selection
towards individuals with higher ranks (i.e., rankbias values close to 2.0) or lower ranks
(i.e., rankbias values close to 1.0) [151]. In the former case, the selection operator does
not always select the best individual, which helps to avoid local optima.

In summary, by adopting our rank selection operator based on contribution score,
DEEPHYPERION-CS can bias the search towards solutions with high contribution scores,
hence exploring the feature space at large, “illuminating” the search space as much as
possible. Additionally, by exposing parameters such as rankselectionprob and rankbias,
DEEPHYPERION-CS enables testers to control the selection pressure and the level of bias
imposed by the rank selection on the overall search process.

40 5.3 Experimental Evaluation

5.2.6 Model-Based Mutation Operators

After selecting an individual, DEEPHYPERION-CS mutates it to generate a new input. Since
DEEPHYPERION-CS is a model-based test generator, its mutation operators manipulate
an input model rather than the input itself. DEEPHYPERION-CS uses mutation operators
that apply small perturbations to the input models within a customisable range.

For the handwritten digit recognition problem, DEEPHYPERION-CS manipulates the
SVG image model’s points to mutate the corresponding digit shape while preserving
realism [119]. Then it applies a rasterisation operation to obtain the input in the MNIST
database format4 (see Figure 5.5). For the lane-keeping problem, DEEPHYPERION-CS
mutates the road geometry by applying a displacement to the coordinates of the model’s
control points (see Figure 5.6).

Despite the small perturbations applied by DEEPHYPERION-CS, the generated mutants
may not be different from their parents or even valid once concretised into actual test
inputs. Therefore, DEEPHYPERION-CS verifies that the mutants are different from their
parents and comply with the constraints of the input domain before evaluating them.
DEEPHYPERION-CS keeps mutating the same parent individual until a valid mutant is
found.

For the handwritten digit recognition problem, DEEPHYPERION-CS (i) computes the
Euclidean distance between the mutant and its parent, which must be greater than 0;
(ii) computes the Euclidean distance between the mutant and the starting seed, which
must be greater than 0 and lower than 2.

For the lane-keeping problem, it checks that mutated roads (i) do not have control
nodes identical to the parent’s control nodes; (ii) are entirely contained within a squared
bounding box of fixed size (i.e., the driving simulator’s map boundaries); and (iii) do
not self-intersect.

5.3 Experimental Evaluation

5.3.1 Research Questions

The goal of our evaluation is to understand whether coupling feature maps and auto-
mated test generation is an effective technique for DL testing, which (1) can thoroughly
stress the DL system under different conditions, and (2) can provide information useful
to characterise problems in DL systems. Therefore, we seek to answer the following
research questions:
RQ1 (Failure Diversity): How effective is DEEPHYPERION-CS in generating test inputs
that expose diverse failures?

Generating tests that trigger failures is more useful when these failures are diverse.
Whereas, a test generator that repeatedly exposes the same problem is not desirable, as

4DEEPHYPERION-CS utilises the open-source graphic libraries LibRsvg and Cairo for rasterising SVG
images to the MNIST format.

41 5.3 Experimental Evaluation

it wastes computational resources.
Metrics: To assess how many different failures are triggered during a run, we

measure the number of Mapped Misbehaviours (MM), i.e. how many cells of the feature
map M contain at least one failure-inducing input.

To measure the diversity of the misbehaviour-inducing inputs, we compute the
Misbehaviour Sparseness. In particular, we compute the average Manhattan distance
between cells containing misbehaviours and the average maximum Manhattan distance
between cells containing misbehaviours. We consider two slightly different sparseness
metrics to take into account outliers and denser map regions:

Misbehaviour Sparseness (Avg. Max)=

P
i2M M max j2M M dist(i, j)

|M M | (5.5)

Misbehaviour Sparseness (Avg.)=

P
i, j2M M ,i 6= j dist(i, j)

|M M |(|M M |� 1)
(5.6)

RQ2 (Search Exploration): How extensively does DEEPHYPERION-CS explore the feature
space?

Effective test generation should exercise different behaviours of the systems under
test. This can be achieved by exploring the feature space extensively, at large.

Metrics: We measure the thoroughness of exploration by counting the Filled Cells
(FC) in the map, i.e., the cells of the feature map that contain at least one input. We
quantify how broadly those filled cells spread over the feature space by measuring their
sparseness, i.e., the Coverage Sparseness. Similarly to Misbehaviour Sparseness, we
consider the following two sparseness metrics:

Coverage Sparseness (Avg. Max)=

P
i2FC max j2FC dist(i, j)

|FC | (5.7)

Coverage Sparseness (Avg.)=

P
i, j2FC ,i 6= j dist(i, j)

|FC |(|FC |� 1)
(5.8)

RQ3 (Efficiency): How efficient is DEEPHYPERION-CS in exploring the feature space and
generating test inputs that expose diverse misbehaviours?

Testing DL systems can be costly, especially when it is conducted at the system level, as
happens, e.g., with simulation-based testing of self-driving cars. Therefore, we evaluate
how quickly test generators fulfill the testing objectives of triggering misbehaviours and
extensively exploring the feature space.

Metrics: We assess test generation efficiency by measuring the Area Under the Curve
(AUC) of Mapped Misbehaviours and Filled Cells. AUC is a standard performance metric,
and higher values of AUC indicate more efficient test generators.
RQ4 (Training Data Expansion): Can DEEPHYPERION-CS be used to expand the training
data? Can it find misbehaving inputs also in cells that were already occupied by non-
misbehaving training data?

42 5.3 Experimental Evaluation

The knowledge acquired by a DL system is limited by the diversity of the data that
have been used to train it. We evaluate how DEEPHYPERION-CS can expand such knowl-
edge beyond the training set, by identifying feature combinations that are not covered
by the existing training set. New input data generated for such initially uncovered
feature map cells can expand the training set and increase the generalisation capability
of the system.

Such initially uncovered cells are particularly interesting when they contain an input
triggering a misbehaviour. On the other hand, DEEPHYPERION-CS’s fitness-guided local
competition can also generate misbehaviour-inducing inputs for feature combinations
that were not associated to any misbehaviour in the training set. Therefore, we also
evaluate how many unknown misbehaviours are triggered by DEEPHYPERION-CS in cells
that are either covered or uncovered by the training set.

Metrics: We answer this question by comparing the feature maps produced from
the training set with those generated by DEEPHYPERION-CS. We measure the size of
Filled Cell Expansion (FCE), computed as the cells filled by DEEPHYPERION-CS that were
uncovered in the training set:

FCE= |FCDH \ FCts| (5.9)

where FCDH is the set of cells filled by DEEPHYPERION-CS, whereas FCts is the set of
cells filled with training set data. To measure how DEEPHYPERION-CS is able to generate
new misbehaviours, we define Mapped Misbehaviour Expansion (MME) as:

M M E = |M MDH \M Mts| (5.10)

where M MDH is the set of cells containing misbehaviours in maps generated by DEEPHYPERION-
CS, whereas M Mts is the set of cells containing misbehaviours in the training set. M M E
consists of two distinct sets: (1) the misbehaviours generated by DEEPHYPERION-CS in
cells not covered by the training set (M M Euncov); and, (2) the misbehaviours generated
by DEEPHYPERION-CS in cells that are covered by training set data, but only by correctly
behaving inputs (M M Ecov). We define these sets as follows:

M M Euncov = M M E \ FCts (5.11)

M M Ecov = M M E \ FCts (5.12)

5.3.2 Experimental Procedure

We addressed our research questions by running DEEPHYPERION-CS and other state-of-
the-art test input generators against the two considered test subjects. At the end of the
runs, we used the results generated by each tool to compute the corresponding feature
maps. To ensure a fair comparison, all the maps were generated with the same number

43 5.3 Experimental Evaluation

Table 5.2. DeepHyperion-CS Configurations

Parameter Test Subject
MNIST BeamNG

seed pool size 900 80
population size 800 48
time budget (s) 3600 36000
mutation range lower bound 0.01 1
mutation range upper bound 0.6 6
ranked selection probability 0.5 0.5
rank bias 1.5 1.5
feature combinations (Mov, Or) (MLP, StdSA)

(Or, Lum) (MLP, TurnCnt)
(Lum, Mov) (StdSA, Curv)

of cells for each feature, i.e. up to 25 cells. The extreme values defining the range for
each feature are the ones observed across the runs of all the tools. Since the final maps
produced by different tools may have different ranges and higher number of cells, we
rescaled them by using the formula described in Equation 5.2.

Since the test subjects are fundamentally different, we adopted two separate config-
urations for testing them (see Table 5.2). We empirically obtained those configurations
after observing DEEPHYPERION-CS’s behaviour in few preliminary runs. Specifically,
DEEPHYPERION-CS obtained the seeds for MNIST by randomly selecting 900 inputs from
the official MNIST test set, all belonging to the same class (i.e., digit “5”) and then
selecting the 800 most diverse inputs as initial population. The seeds for BEAMNG were
80 valid roads randomly generated by DEEPHYPERION-CS. Each seed was defined by
10 control points in which the initial point was always at a fixed position, whereas the
remaining points were placed at a random position 25 meters away from the previous
one and deviating from the previous segment by an angle randomly chosen within a
predefined range. DEEPHYPERION-CS then selects the 48 most diverse roads as initial
population.

As regards the selected feature dimensions, we used the features identified by
applying our methodology (see Section 5.1). We considered only pairwise combinations
of features to ease visualisation and discussion of the results, although DEEPHYPERION-
CS can work also with higher-dimensional maps. For MNIST, we considered all the pairs
obtained by combining Boldness (Lum), Discontinuity (Mov), and Rotation (Or), as these
are the most significant features we found in our feature selection study (see Table 5.1).
For BEAMNG, we considered three out of ten possible pairs of features because executing
driving simulations becomes soon prohibitively expensive and running experiments that
cover all the possible combinations would take excessive computation time. Nevertheless,

44 5.3 Experimental Evaluation

we believe that the results we achieved are representative as we cover one combination
of two behavioural features and two combinations of a structural and a behavioural
feature.

To contextualise the results achieved by DEEPHYPERION-CS, we compare it against
the DEEPHYPERION (the tool without CS guidance mechanism) and other state-of-the-
art testing tools for DL systems. We configured those approaches according to the
configurations that achieved the best performance in their papers.

Specifically, we compared DEEPHYPERION-CS against:

DEEPHYPERION This tool is the same as DEEPHYPERION-CS, except that it adopts the
original MAP-Elites algorithm, i.e. it uses random uniform selection to perform
the evolutionary search.

DLFUZZ [51] This tool generates adversarial inputs for image classifiers, such as MNIST,
by applying perturbations to the pixels of existing images. It is mainly used for
testing the robustness of DL systems. However, since it can only manipulate
individual images, we could not apply DLFUZZ for testing BEAMNG at the system
level;

DEEPJANUS [119] This tool generates test inputs at the frontier of behaviours of DL
systems, i.e., pairs of similar inputs that trigger different system behaviours, by
using a multi-objective search algorithm. DEEPJANUS shares with DEEPHYPERION-
CS the same model-based input representation; hence, we could apply it to both
MNIST and BEAMNG;

ASFAULT [40] This tool generates safety-critical virtual roads for testing lane-keeping
systems utilising a single-objective genetic algorithm. Therefore, we could apply
it for testing only BEAMNG.

To enable a fair comparison with ASFAULT, we replaced its original failure identifi-
cation mechanism with the one employed by the other tools (i.e., DEEPHYPERION-CS
and DEEPJANUS). Additionally, since ASFAULT generates longer roads than the other
tools, we split each road it generates into multiple segments when placing the inputs
on feature maps, making it possible to directly compare its output with the other tools.
However, in this way a single ASFAULT input may contribute to coverage of more than
one cell in the feature map. While this might introduce an unfair advantage for ASFAULT,
it is balanced by the increased time it takes to simulate longer roads. Therefore, given
the same simulation budget, ASFAULT generates fewer inputs than the other tools, but
each such input covers multiple cells.

As the purpose of the considered baseline tools is finding misbehaviour-inducing
inputs or frontier inputs, not illuminating the feature space, in our experiments we
consider the inputs generated (and possibly discarded) during the input generation
process, in addition to the inputs reported as final outputs of the tools. In particular, we

45 5.3 Experimental Evaluation

report separately the feature maps obtained from the final results of each tool (black
box results) and the feature maps which contain all the inputs produced during a run of
each tool (white box results). Noticeably, for DEEPHYPERION-CS and its variation the
white box and black box maps coincide by construction, as all generated inputs are used
during the search in the local competition within each cell. For ASFAULT, white box
results also coincide with black box results, as this tool returns all the inputs generated
during the search.

We followed the guidelines by Arcuri and Briand [5] for comparing the considered
randomised algorithms: we ran each tool multiple times and assessed the statistical
significance of our conclusions by performing the Mann-Whitney U-test and measuring
the effect size using the Vargha-Delaney’s Â12 statistic. To enable a fair comparison, we
ran the tools in isolation on the same computing nodes and used the same generation
budget: 1 hour for MNIST and 10 hours of simulation time for BEAMNG. We consid-
ered simulated time rather than real time for BEAMNG since the former is usually the
bottleneck in simulation-based testing [2].

The reason for this remarkable difference between the generation budgets is that
testing MNIST consists of feeding it small images and getting the corresponding predic-
tions, an operation that takes milliseconds, while testing BEAMNG requires the execution
of real-time driving simulations that take minutes to complete. Correspondingly, we
were able to repeat the MNIST experiments 30 times, whereas we repeated the BEAMNG
experiments between 10 and 20 times, adopting the following stopping condition (after
10 runs): no further repetition is conducted when the statistical test used to compare the
considered tools reaches statistical significance (p-value < 0.05) or when no statistical
significance is reached, but there is sufficient statistical power (statistical power � >
0.8). In no case the number of repetitions exceeds the upper bound, 20.

5.3.3 Results

RQ1: Failure Diversity

In this RQ, we investigate how many diverse inputs the test subjects failed to handle
correctly (i.e., Mapped Misbehaviours) and how much they differ between them (i.e.,
Misbehaviours Sparseness).

Figure 5.8 reports the results achieved by the considered tools on MNIST as box
plots grouped by feature combination.

As DEEPJANUS and DLFUZZ output only a subset of the generated inputs at the end
of each run, we considered separately the misbehaviours reported at the end of the run
(i.e., black box analysis) and the (possibly bigger) set of all the misbehaviours triggered
during the same run (i.e., white box analysis).

Correspondingly, the boxes labelled as DEEPJANUS-WB report more misbehaviours
than DEEPJANUS-BB. DLFUZZ’s final results (DLFUZZ-BB) show the same values of the
boxes obtained from all its generated inputs (DLFUZZ-WB) because this tool returns to

46 5.3 Experimental Evaluation

)HDWurHs CombLnDWLon
0

50

100

150

200

250

300
0

DS
SH

d
0

Ls
b.

DHHSHySHrLon-C6
DHHSHySHrLon
DHHS-Dnus-WB
DHHS-Dnus-BB
DL)uzz-WB
DL)uzz-BB

10

12

14

16

18

20

22

0
Ls

b.
 6

SD
rs

Hn
Hs

s
(A

vJ
. 0

Dx
)

0ov
Lum

2r
Lum

2r
0ov

5

6

7

8

9

10

11

12

0
Ls

b.
 6

SD
rs

Hn
Hs

s
(A

vJ
.)

Figure 5.8. RQ1: Mapped misbehaviours found on MNIST by the considered tools
(top) and their sparseness (middle and bottom).

the user all the misbehaviours it triggers during a run.
Figure 5.8 (top) shows that DEEPHYPERION-CS found more than 200 diverse mis-

behaviours for each feature combination. The illumination search based tools, i.e.
DEEPHYPERION and DEEPHYPERION-CS, always found a significantly larger number
of mapped misbehaviours than the other tools (p-value < 0.05 and large effect size).
DEEPHYPERION-CS significantly improves DEEPHYPERION’s effectiveness in triggering di-
verse misbehaviours (p-value< 0.05 and large effect size). In particular, DEEPHYPERION-
CS produced a neatly higher number of mapped misbehaviours than DEEPHYPERION for
the Or-Mov feature combination, with over 120 more misbehaviours.

Both misbehaviour sparseness metrics reported in Figure 5.8 show that DEEPHYPERION-
CS produced comparably sparse or sparser misbehaviours than the other tools. In the
majority of feature combinations (i.e. Or-Lum and Or-Mov), it produced significantly
sparser misbehaviours than the other tools (p-values< 0.05 and large effect size). As for
Mov-Lum, DEEPHYPERION-CS performed as good as DEEPHYPERION and DEEPJANUS-BB
(p-values> 0.05) and significantly better than the other tools (p-values< 0.05 and large
effect size) in terms of Misbehaviour Sparseness (Avg. Max). Moreover, DEEPHYPERION-
CS is significantly better than DEEPJANUS-BB for Mov-Lum in terms of Misbehaviour
Sparseness (Avg.) (p-values < 0.05 and large effect size).

This result was achieved despite DEEPJANUS explicitly rewards the generated inputs’
diversity, having a fitness function that promotes the euclidean distance among solutions.

47 5.3 Experimental Evaluation

0.0 2.9 5.8 8.8 11
.7
14
.6
17
.5
20
.4
23
.3
26
.2
29
.2
32
.1
35
.0

0ov

0.0

17.2

34.5

51.8

69.0

86.2

103.5

120.8

138.0

155.2

172.5

189.8

207.0

Lu
m

-18
1.0
-15
0.8
-12
0.5 -90

.2
-60
.0
-29
.8 0.5 30

.8
61
.0
91
.2
12
1.5
15
1.8
18
2.0

2r

0.0

17.2

34.5

51.8

69.0

86.2

103.5

120.8

138.0

155.2

172.5

189.8

207.0

Lu
m

-18
1.0
-15
0.8
-12
0.5 -90

.2
-60
.0
-29
.8 0.5 30

.8
61
.0
91
.2
12
1.5
15
1.8
18
2.0

2r

0.0

2.9

5.8

8.8

11.7

14.6

17.5

20.4

23.3

26.2

29.2

32.1

35.0

0
ov

0.0

0.2

0.4

0.6

0.8

1.0

(a) DeepHyperion

0.0 2.9 5.8 8.8 11
.7
14
.6
17
.5
20
.4
23
.3
26
.2
29
.2
32
.1
35
.0

0ov

0.0

17.2

34.5

51.8

69.0

86.2

103.5

120.8

138.0

155.2

172.5

189.8

207.0

Lu
m

-18
1.0
-15
0.8
-12
0.5 -90

.2
-60
.0
-29
.8 0.5 30

.8
61
.0
91
.2
12
1.5
15
1.8
18
2.0

2r

0.0

17.2

34.5

51.8

69.0

86.2

103.5

120.8

138.0

155.2

172.5

189.8

207.0

Lu
m

-18
1.0
-15
0.8
-12
0.5 -90

.2
-60
.0
-29
.8 0.5 30

.8
61
.0
91
.2
12
1.5
15
1.8
18
2.0

2r

0.0

2.9

5.8

8.8

11.7

14.6

17.5

20.4

23.3

26.2

29.2

32.1

35.0

0
ov

0.0

0.2

0.4

0.6

0.8

1.0

(b) DeepHyperion-CS

Figure 5.9. Misbehaviour probability maps generated by DeepHyperion (a) and
DeepHyperion-CS (b) for MNIST

We further analyse the relationship between the results achieved by DEEPHYPERION-
CS and DEEPHYPERION by comparing their misbehaviour probability maps (see Figure 5.9
and Figure 5.11).

The misbehaviour probability maps of DEEPHYPERION (see Figure 5.9b) and DEEPHYPERION-
CS (see Figure 5.9a) for MNIST show well-characterised regions of the feature space
that are likely to expose failures, e.g. continuous and thick digits. Therefore, our feature
maps can be a powerful tool for developers to understand the conditions responsible for
misbehaviours, similarly to the more traditional root-cause analysis.

The probability maps produced by the two tools for the Mov-Lum feature combination
are similar, with DEEPHYPERION-CS’s map containing slightly more dark cells and 2 more
cells with thick border; this is expected, since the two tools achieved similar Mapped
Misbehaviours and Misbehaviour Sparseness (see Figure 5.8).

For what concerns Or-Lum and Or-Mov, DEEPHYPERION-CS’s misbehaviour probabil-
ity maps are more informative (i.e. have less empty cells) than DEEPHYPERION’s ones.
Consistently with the boxplots in Figure 5.8, DEEPHYPERION-CS’s maps contain more
dark cells than DEEPHYPERION’s maps.

48 5.3 Experimental Evaluation

)HDWurHs CoPbLnDWLon
0

5

10

15

20

25

30

35
0

DS
SH

d
0

Ls
b.

DHHSHySHrLon-CS
DHHSHySHrLon
DHHS-Dnus-WB
DHHS-Dnus-BB
As)DulW

0

5

10

15

20

25

0
Ls

b.
 S

SD
rs

Hn
Hs

s
(A

vJ
. 0

Dx
)

0L3
SWdSA

0L3
TurnCnW

SWdSA
Curv

0

5

10

15

20

25

0
Ls

b.
 S

SD
rs

Hn
Hs

s
(A

vJ
.)

Figure 5.10. RQ1: Mapped misbehaviours found on BeamNG by the considered
tools (top) and their sparseness (middle and bottom).

Additionally, thanks to this visualisation we can easily identify the regions in the
feature space that DEEPHYPERION-CS explored and DEEPHYPERION missed. For instance,
DEEPHYPERION-CS was able to explore large feature space regions characterised by
Or values smaller than �60.0 (i.e., the left side of Or-Lum and Or-Mov maps) that
DEEPHYPERION missed. The exploration of those regions paid off, as DEEPHYPERION-CS
discovered a massive number of new misbehaviours there.

Figure 5.10 shows the Mapped Misbehaviours and Misbehaviour Sparseness obtained
when running the tools against our second subject system, BEAMNG.

DEEPHYPERION-CS exposed several diverse misbehaviours for all three feature combi-
nations (more than 10, on average). In particular, DEEPHYPERION-CS found significantly
more mapped misbehaviours than the other tools for MLP-TurnCnt (more than 20,
on average). The contribution score guidance of DEEPHYPERION-CS led to significant
improvements over DEEPHYPERION for the MLP-StdSA and MLP-TurnCnt feature combi-
nations (p-values < 0.05 with medium and large effect size, respectively).

DEEPHYPERION-CS performed almost always significantly better and never performed
worse than the other competitors. In fact, only DEEPHYPERION for StdSA-Curv and
DEEPJANUS-WB for MLP-StdSA and StdSA-Curv managed to achieve results comparable
to DEEPHYPERION-CS (p-values > 0.05), whereas DEEPHYPERION-CS found a signifi-
cantly higher number of mapped misbehaviours in all the other comparisons (p-values
< 0.05, large effect size).

49 5.3 Experimental Evaluation

DEEPJANUS-WB reported significantly more mapped misbehaviours than DEEPJANUS-
BB and proved to be a valid challenger to DEEPHYPERION-CS in two feature combinations
out of three. Instead, ASFAULT reported almost no misbehaviour across all its runs, which
suggests that it might be better suited for testing lane keeping systems at higher speeds
and on longer roads than the ones considered in our experimental configuration (we
divided the long roads generated by ASFAULT into segments to make them comparable
to those generated by the other tools).

Misbehaviour sparseness metrics (see middle and bottom of Figure 5.10) show
a similar trend. For MLP-TurnCnt, DEEPHYPERION-CS generated significantly sparser
misbehaviours than all the other tools considering Average Max Misbehaviour Sparseness,
whereas it has a comparable misbehaviour sparseness to DEEPJANUS-BB in terms of
Average Misbehaviour Sparseness.

For StdSA-Curv and MLP-StdSA, DEEPHYPERION-CS’s sparseness is higher than
ASFAULT, comparable to DEEPHYPERION and DEEPJANUS-WB, but significantly lower
than DEEPJANUS-BB for both misbehaviour sparseness metrics.

This result can be explained by considering the relatively small number of mapped
misbehaviours reported by DEEPJANUS-BB and their distribution on distant places of
the subject’s behavioural frontier, which inflate the resulting Misbehaviour Sparseness
metric.

The misbehaviour probability maps of DEEPHYPERION (Figure 5.11a) and DEEPHYPERION-
CS (Figure 5.11b) show almost the same pattern. The probability maps show also that
both tools were able to trigger different test outcomes even when the same behavioural
feature is exhibited by the driving agent: in the leftmost maps, the same values of the
standard deviation of steering angle (StdSA) feature may or may not trigger misbe-
haviours, depending on the value of the mean lateral position feature.

Summary: DEEPHYPERION-CS can find diverse misbehaviour-inducing inputs for
all feature combinations, detecting up to 100 more misbehaviours than its best
competitor on MNIST. The guidance offered by contribution score significantly
improved DEEPHYPERION’s effectiveness for 5 out of 6 feature combinations across
both test subjects.

5.3.4 RQ2: Search Exploration

RQ2 investigates the generated tests’ adequacy in terms of their feature map coverage
(i.e., Filled Cells) and diversity (i.e., Coverage Sparseness). Figure 5.12 reports the results
for MNIST as box plots grouped by feature combination.

For DEEPJANUS and DLFUZZ, we report the cells filled by the inputs returned at
the end of the run (i.e., black box) and the number of all the cells filled during the
same run (i.e., white box) as two separate boxes. DEEPJANUS finds pairs of similar
inputs that trigger different behaviours (expected vs misbehaviours); since inputs within

50 5.3 Experimental Evaluation

14
5.0
14
9.5
15
4.0
15
8.5
16
3.0
16
7.5
17
2.0
17
6.5
18
1.0
18
5.5
19
0.0
19
4.5
19
9.0

0L3

1.0

18.8

36.5

54.2

72.0

89.8

107.5

125.2

143.0

160.8

178.5

196.2

214.0

6t
d6
A

14
5.0
14
9.5
15
4.0
15
8.5
16
3.0
16
7.5
17
2.0
17
6.5
18
1.0
18
5.5
19
0.0
19
4.5
19
9.0

0L3

0.0

2.0

4.0

6.0

8.0

7u
rn
Cn
t

1.0 18
.8
36
.5
54
.2
72
.0
89
.8
10
7.5
12
5.2
14
3.0
16
0.8
17
8.5
19
6.2
21
4.0

6td6A

0.0

2.1

4.2

6.2

8.3

10.4

12.5

14.6

16.7

18.8

20.8

22.9

25.0

Cu
rv

0.0

0.2

0.4

0.6

0.8

1.0

(a) DeepHyperion

14
5.0
14
9.5
15
4.0
15
8.5
16
3.0
16
7.5
17
2.0
17
6.5
18
1.0
18
5.5
19
0.0
19
4.5
19
9.0

0L3

1.0

18.8

36.5

54.2

72.0

89.8

107.5

125.2

143.0

160.8

178.5

196.2

214.0

6t
d6
A

14
5.0
14
9.5
15
4.0
15
8.5
16
3.0
16
7.5
17
2.0
17
6.5
18
1.0
18
5.5
19
0.0
19
4.5
19
9.0

0L3

0.0

2.0

4.0

6.0

8.0

7u
rn
Cn
t

1.0 18
.8
36
.5
54
.2
72
.0
89
.8
10
7.5
12
5.2
14
3.0
16
0.8
17
8.5
19
6.2
21
4.0

6td6A

0.0

2.1

4.2

6.2

8.3

10.4

12.5

14.6

16.7

18.8

20.8

22.9

25.0

Cu
rv

0.0

0.2

0.4

0.6

0.8

1.0

(b) DeepHyperion-CS

Figure 5.11. Misbehaviour probability maps generated by DeepHyperion (a) and
DeepHyperion-CS (b) for BeamNG

pairs are likely to occupy the same cell, DEEPJANUS’s Filled Cells values are close to the
corresponding Mapped Misbehaviours reported in Figure 5.8. DLFUZZ-BB shows the
same values reported for DLFUZZ in Figure 5.8 since this tool returns only misbehaviours.
Instead, DLFUZZ-WB has higher values because it includes also the correctly behaving
inputs produced during each run.

Figure 5.12 (top) shows that DEEPHYPERION-CS covered all feature maps significantly
more extensively than the other tools (with p-values < 0.05 and effect size which is
small for Mov-Lum and large for Or-Lum and Or-Mov).

Similarly to RQ1, DEEPHYPERION-CS produced the best results for the Or-Mov feature
combination, almost doubling the coverage achieved by DEEPHYPERION and tripling the
one achieved by DEEPJANUS-WB.

The sparseness metrics reported in Figure 5.12 show that DEEPHYPERION-CS pro-
duced significantly sparser inputs than all the other tools for two feature combinations
out of three (i.e., Or-Lum and Or-Mov) with p-values < 0.05 and large effect size. For
Mov-Lum, DEEPHYPERION-CS achieved a level of coverage sparseness comparable to
DEEPHYPERION (p-values > 0.05), but significantly higher than all the other tools.

51 5.3 Experimental Evaluation

)HDWurHs CombLnDWLon
0

50

100

150

200

250

300
)L

OOH
d

CH
OOs

DHHSHySHrLon-C6
DHHSHySHrLon
DHHS-Dnus-WB
DHHS-Dnus-BB
DL)uzz-WB
DL)uzz-BB

10

12

14

16

18

20

22

Co
v.

 6
SD

rs
Hn

Hs
s

(A
vJ

. 0
Dx

)

0ov
Lum

2r
Lum

2r
0ov

5

6

7

8

9

10

11

12

13

Co
v.

 6
SD

rs
Hn

Hs
s

(A
vJ

.)

Figure 5.12. RQ2: Filled cells (top) and coverage sparseness (middle and bottom)
achieved by the considered tools on MNIST.

Figure 5.13 reports the Filled Cells and the Coverage Sparseness achieved by the tools
on the BEAMNG subject system. Figure 5.13 (top) shows that DEEPHYPERION-CS was
again particularly good in covering the feature maps. In particular, for the StdSA-Curv

feature combination, it achieved significantly higher coverage than DEEPHYPERION

(p-value < 0.05, medium effect size). For the other feature combinations, it behaved
comparably to DEEPHYPERION (p-values > 0.05) but filled significantly more cells than
all the other tools (p-values < 0.05, large effect size).

As shown in Figure 5.13 both sparseness metrics show that DEEPHYPERION-CS
produced tests that are significantly sparser than DEEPJANUS-WB, comparably sparse as
DEEPHYPERION, but less sparse than DEEPJANUS-BB and ASFAULT.

This result is due to the low feature map coverage achieved by DEEPJANUS-BB and
ASFAULT, which amplifies the relative sparseness of the (few) filled cells.

Summary: Our illumination based test generators (i.e., DEEPHYPERION-CS and
DEEPHYPERION) always explored the feature space more extensively than the other
tools (up to 3⇥ more for MNIST). The guidance provided by Contribution Score
allowed DEEPHYPERION-CS to fill significantly more cells than DEEPHYPERION for
the vast majority of feature combinations (i.e. 4 out of 6).

52 5.3 Experimental Evaluation

)HDWurHs CoPbLnDWLon
0

20

40

60

80

100

120

140
)L

llH
d

CH
lls

DHHSHySHrLon-C6
DHHSHySHrLon
DHHS-Dnus-WB
DHHS-Dnus-BB
As)DulW

0

5

10

15

20

25

Co
v.

 6
SD

rs
Hn

Hs
s

(A
vJ

. 0
Dx

)

0LP
6Wd6A

0LP
TurnCnW

6Wd6A
Curv

0

2

4

6

8

10

12

Co
v.

 6
SD

rs
Hn

Hs
s

(A
vJ

.)

Figure 5.13. RQ2: Filled cells (top) and coverage sparseness (middle and bottom)
achieved by the considered tools on BeamNG.

RQ3: Efficiency

RQ3 investigates DEEPHYPERION-CS’s efficiency by analysing the cumulative mapped
misbehaviours (Figures 5.14a and 5.15a) and filled cells (Figures 5.14b and 5.15b)
for MNIST and BEAMNG. We visualise the evolution of mapped misbehaviours and
filled cells throughout the runs by plotting their average values over time as solid lines,
surrounded by their standard deviation as transparent shade.

We consider the AUC for mapped misbehaviours and filled cells to quantitatively
compare the considered tools’ efficiency, i.e., the larger the AUC, the faster the metric
increases to high values. For this RQ, we did not consider white box and black box
performance separately since we can measure the evolution over time only when white
box information is collected during the run.

For MNIST, Figure 5.14 shows that DEEPHYPERION-CS achieved a significantly greater
AUC than all the other tools for both metrics (p-values < 0.05 and large effect size, with
the only exception of mapped misbehaviours AUC for Mov-Lum vs DEEPHYPERION, in
which the effect size is medium).

In particular, for Or-Mov, DEEPHYPERION-CS produced a higher number of mapped
misbehaviours in remarkably less time than the other tools (AUC for Mapped Misbe-
haviours is 65% larger than the second best).

Figure 5.14 also shows that it took a small part of the 1-hour budget (i.e., less than

53 5.3 Experimental Evaluation

0 500 1000 1500 2000 2500 3000 3500
TLmH (sHF)

0

50

100

150

200

250

300
0

DS
SH

d
0

Ls
b.

0ov,Lum

0 500 1000 1500 2000 2500 3000 3500
TLmH (sHF)

2r,Lum

0 500 1000 1500 2000 2500 3000 3500
TLmH (sHF)

2r,0ov
DHHSHySHrLon-CS
DHHSHySHrLon
DHHS-Dnus
DL)uzz

(a) Mapped Misbehaviours over time for DeepHyperion-CS, DeepHyperion, DeepJanus and

DLFuzz on MNIST

0 500 1000 1500 2000 2500 3000 3500
TLmH (sHF)

0

50

100

150

200

250

300

)L
OOH

d
CH

OOs

0ov,Lum

0 500 1000 1500 2000 2500 3000 3500
TLmH (sHF)

2r,Lum

0 500 1000 1500 2000 2500 3000 3500
TLmH (sHF)

2r,0ov
DHHSHySHrLon-CS
DHHSHySHrLon
DHHS-Dnus
DL)uzz

(b) Filled Cells over time for DeepHyperion-CS, DeepHyperion, DeepJanus and DLFuzz on

MNIST

Figure 5.14. RQ3: Filled Cells and Mapped Misbehaviours over time for
DeepHyperion-CS, DeepHyperion, DeepJanus and DLFuzz on MNIST (shadows
indicate standard deviations for each tool)

three minutes) for DEEPHYPERION-CS and DEEPHYPERION to outperform the other tools,
by generating a significantly higher number of misbehaviours and filled cells for all
feature combinations (p-values < 0.05 and large effect size).

By comparing the results achieved over time by DEEPHYPERION-CS and DEEPHYPER-
ION, we can notice that DEEPHYPERION-CS dramatically outperformed DEEPHYPERION

after only three minutes for Or-Lum and eight minutes for Or-Mov, whereas they followed
a similar trend for Mov-Lum.

These results confirm that DEEPHYPERION-CS is extremely efficient from the very
beginning of the search process in exploring the feature space and exposing diverse
misbehaviours in MNIST. Moreover, DEEPHYPERION-CS kept discovering new cells,
although at a lower pace as time progresses, which suggests that it did not reach
saturation within the given time budget.

Figure 5.15 shows the evolution of mapped misbehaviours and filled cells for

54 5.3 Experimental Evaluation

0 10000 20000 30000 40000
TLPH (sHF)

0

5

10

15

20

25

0
DS

SH
d

0
Ls

b.
0L3,StdSA

0 5000 10000 15000 20000 25000 30000 35000
TLPH (sHF)

0L3,TurnCnt

0 5000 10000 15000 20000 25000 30000 35000
TLPH (sHF)

StdSA,Curv
DHHSHySHrLon-CS
DHHSHySHrLon
DHHS-Dnus
As)Dult

(a) Mapped Misbehaviours over time for DeepHyperion-CS, DeepHyperion and DeepJanus

on BeamNG

0 10000 20000 30000 40000
TLPH (sHF)

0

20

40

60

80

100

120

)L
llH

d
CH

lls

0L3,6td6A

0 5000 10000 15000 20000 25000 30000 35000
TLPH (sHF)

0L3,TurnCnt

0 5000 10000 15000 20000 25000 30000 35000
TLPH (sHF)

6td6A,Curv
DHHSHySHrLon-C6
DHHSHySHrLon
DHHS-Dnus
As)Dult

(b) Filled Cells over time for DeepHyperion-CS, DeepHyperion, DeepJanus and AsFault on

BeamNG

Figure 5.15. RQ3: Filled Cells and Mapped Misbehaviours over time for
DeepHyperion-CS, DeepHyperion, DeepJanus and AsFault on BeamNG (shadows
indicate standard deviations for each tool)

BEAMNG. While we assigned all tools a budget of 10 hours of simulation time, in
this RQ we are interested in assessing their practical efficiency and, thus, we compute
the evolution of the considered metrics over real time. As a consequence, the results
span across different time ranges for each tool. To guarantee a fair comparison, we
compute the AUC by considering the minimum run time of all the tools.

Figure 5.15a shows that DEEPHYPERION-CS was significantly more efficient in finding
diverse misbehaviours than all the other tools for MLP-TurnCnt (higher AUC, with p-
values< 0.05, large effect size), while it never performed worse than the competitors for
the other feature combinations: for StdSA-Curv, DEEPHYPERION-CS achieved AUC of
mapped misbehaviours comparable to DEEPHYPERION and DEEPJANUS, and significantly
better than ASFAULT; whereas only DEEPJANUS was as efficient as DEEPHYPERION-CS for
MLP-StdSA.

As regards AUC of filled cells, Figure 5.15b shows that DEEPHYPERION and DEEPHYPERION-
CS covered the feature maps significantly more efficiently than DEEPJANUS and ASFAULT

55 5.3 Experimental Evaluation

(a) MNIST (b) BeamNG

Figure 5.16. RQ4: Average Filled Cells Expansion achieved by DeepHyperion-CS
(green/right circles) over the training set (red/left circles).

for all feature combinations (p-values < 0.05 and large effect size).
In particular, DEEPHYPERION-CS showed significantly better efficiency in filling cells

than DEEPHYPERION for MLP-TurnCnt (p-value < 0.05, medium effect size), whereas,
they achieved comparable efficiency for the other two feature combinations (p-values
> 0.05).

Summary: DEEPHYPERION-CS was extremely efficient, as it increasingly explored
the feature space throughout the time budget and it found misbehaviours within the
first few minutes of exploration. DEEPHYPERION-CS was always significantly more
efficient than the competitors on MNIST. On BEAMNG, DEEPHYPERION-CS showed
either significantly higher or comparable efficiency in comparison with the other
tools. The guidance of the contribution score remarkably improved efficiency (in 9
out of 12 comparisons against DEEPHYPERION).

RQ4: Training Data Expansion

RQ4 studies the relationship between the data used for training the DL system under test
and the test inputs generated by DEEPHYPERION-CS, by identifying features that were
under-represented in the training set or were not associated with any misbehaviour.

Venn diagrams in Figure 5.16a and Figure 5.16b illustrate the Filled Cell Expansion
achieved by DEEPHYPERION-CS over the training set for each feature combination. The
red circles (left) represent the cells filled by the training set, the green circles (right)
represent the ones filled by DEEPHYPERION-CS’s generated inputs, and the overlapping
region represent cells that are covered by both.

DEEPHYPERION-CS achieved a remarkable filled cell expansion for the BEAMNG
system (see Figure 5.16b), where not only it filled most cells already covered by training
data, but it also explored new uncovered regions in the feature maps, especially for the
MLP-StdSA and MLP-TurnCnt feature combinations.

Figure 5.16a shows that DEEPHYPERION-CS was also able to improve the MNIST
initial training set by adding samples that better cover some feature combinations (see,

56 5.3 Experimental Evaluation

Table 5.3. RQ4: Mapped misbehaviour expansion achieved by DeepHyperion-CS
over the training set

Subject Feature Combination Mapped Misbehaviour Expansion
M M Euncov M M Ecov

MNIST (Mov, Lum) 101.1± 12.0 60.9± 3.4
(Or, Lum) 19.7± 4.9 19.6± 2.4
(Or, Mov) 127.8± 16.5 48.3± 2.2

BEAMNG (MLP, StdSA) 12.4± 5.1 3.1± 2.1
(MLP, TurnCnt) 11.2± 3.9 9.5± 2.6
(StdSA, Curv) 12.1± 4.9 0.0± 0.0

e.g., the Venn diagram for Mov-Lum). This task was not trivial since the MNIST training
set by LeCun et al. [82] has been carefully crafted to be representative of its domain.

Table 5.3 summarises the average mapped misbehaviours expansion achieved by
DEEPHYPERION-CS. Specifically, column M M Euncov reports the mapped misbehaviours
that DEEPHYPERION-CS found in cells that were not covered by the training set, while
column M M Ecov reports the mapped misbehaviours found by DEEPHYPERION-CS in cells
already covered by correctly behaving training inputs.

The results show that DEEPHYPERION-CS was always able to find new misbehaviour-
inducing feature combination values in cells that were either uncovered or already
covered by the training set. In particular, DEEPHYPERION-CS found misbehaviours in
cells that did not expose any issue in the training set for 5 out of 6 feature combinations.

Each M M Euncov value is generally higher than the corresponding M M Ecov for the
same feature combination. This indicates that cells covered by correctly behaving
training inputs could still trigger misbehaviours, but such misbehaviours are harder to
expose.

Summary: DEEPHYPERION-CS was able to expand the initial training data for all
feature combinations, achieving up to 200% more filled cells for the StdSA-Curv fea-
ture combination. Moreover, DEEPHYPERION-CS not only found new misbehaviour-
inducing feature combination values in cells that were uncovered by the training set,
but often also in covered ones.

Threats to Validity

Construct Validity: The performance of the proposed approach and the quality of
its results depend on the selected features and the procedures to quantify them. For
instance, there is the risk that the adopted metrics do not accurately quantify the selected
features. Moreover, the relevance of the features depends on the assessors’ knowledge

57 5.3 Experimental Evaluation

of the domain and the representativeness of the data used to extract the features. To
mitigate this threat, we followed a systematic procedure to identify relevant features
and utilised a well established statistical correlation analysis to check that the adopted
metrics can quantify them. In particular, this procedure involved assessors that are
experts on testing DL systems and relied on large dataset of 630 images for MNIST and
440 virtual roads for BEAMNG.

Internal Validity: To limit as much as possible the chance that the comparison between
DEEPHYPERION and DEEPHYPERION-CS was affected by other con-causes, we used the
same code base for both tools. As a result, we provide a unique framework in which
the users can control the level of contribution-based selection pressure on the overall
search process, i.e., the users can easily use the original DEEPHYPERION by setting the
hyper-parameter controlling the probability of using the contribution score selection
to 0. A threat that could affect the experimental comparison against existing test
input generators is that their purpose is different from illuminating the feature space.
Therefore, their output may contain only the most critical inputs but exclude interesting
inputs found during their runs. We addressed this threat by considering also the inputs
generated (and possibly discarded) during the input generation process, in addition
to the ones reported as final result by the tools. Furthermore, the internal validity of
the open coding may be threatened by elements that may introduce inconsistencies
in the assessors’ evaluations independently of the data, such as the data order and
the repetitiveness of the task. To mitigate this threat, we conducted a pilot study in
which multiple assessors evaluated the same images, presented in a randomised order.
Moreover, we granted the assessors a generous time budget to perform this task (i.e.,
one month) through our Web application, which allowed them to interrupt the task
whenever they felt tired and resume it later on.

External Validity: The choice of subject DL systems is a possible threat to the external
validity. To mitigate this threat, we chose two DL systems which solve two different
problems, i.e., MNIST solves a classification problem, while BEAMNG is a self-driving
car software that solves a regression problem. We considered DL architectures which
are widely used in the literature and regarded as state of the art. Moreover, we adopted
standard training procedures and validated them with standard performance metrics,
i.e. classification accuracy and mean squared error. In comparison to the original DEEP-
HYPERION’s experimental setup [159], in this work we extend the generalisability of the
results by considering another state-of-the-art test generator, i.e., ASFAULT. The choice
of relevant features introduces another threat to external validity as DEEPHYPERION

might not identify misbehaviours that do not align with the selected features. Further
studies involving more test subjects and domain experts, including practitioners from
industry, should be carried out to fully assess the generalisability of our findings and the
impact of the feature selection.

Conclusion Validity: Random variations might have affected the results, given the highly
stochastic nature of both DL systems and the considered test generators. We mitigated

58 5.4 Conclusion

this threat by following the widely adopted guidelines for comparing randomised test
generation algorithms proposed by Arcuri and Briand [5]. In particular, we used a
generous budget (i.e., multiple, long runs) and assessed the results’ significance through
standard statistical tests.

5.4 Conclusion

DEEPHYPERION-CS has demonstrated to be able to explore the DL systems’ feature
space at large and trigger diverse misbehaviours thanks to its illumination search based
algorithm.

Our empirical study showed that DEEPHYPERION-CS is more effective than state-
of-the-art DL testing tools in generating failure-inducing inputs associated with highly
diverse features. In the reverse direction, we showed that DEEPHYPERION-CS is useful
to detect the feature combinations that are most likely to induce a system misbehaviour.
Moreover, we provided evidence that the inputs generated by DEEPHYPERION-CS can be
also useful for characterising and expanding the datasets used to train the DL system.

5.5 Reproducibility

The code implementing DEEPHYPERION-CS, the dataset, and all the scripts to replicate
the experimental evaluation are available online [160].

Chapter 6

Focused Test Generation for Deep
Learning Systems

A feature map depicts the feature space defined by N relevant dimensions of variation
(i.e., the map axes, each corresponding to an input feature). Test inputs are placed in a
feature map based on their feature values. Figure 6.1 shows an instance of bi-dimensional
feature map for a classifier of handwritten digits from the MNIST database [81]. This
feature map is defined by the digit rotation (Orientation) and the stroke’s boldness
(Luminosity) and represents, for each combination of feature values (a map cell), the
corresponding probability of exposing a misbehaviour, i.e., darker colors correspond to
higher probabilities.

At testing time, feature maps highlight areas of the feature space that are not
adequately covered [13], while, during operation, critical feature values may be observed
that are under-represented in the train/test datasets used at development time. For
them, new and diverse input data need to be collected and labelled manually [49].
Testers will try to find multiple misbehaviour-inducing inputs, focusing on specific
feature combinations, as these additional inputs can be used to improve the DL system
quality delivered to production, by fine tuning the DL models on such new data.

We introduced a novel way to generate misbehaviour-inducing inputs with specific,
user-defined feature values. Our approach is the first focused input generator for DL
based systems targeting human-interpretable features. It can be employed to collect new
diverse inputs with critical, misbehaviour-inducing characteristics (1 in Figure 6.1),
to stress the system to expose failures with inputs that do not seem critical (2), or to
generate new data with underrepresented or unseen feature values (3). An example of
usage scenario is a DL system that, once deployed in operation, has to handle frequently
feature combinations never (3) or rarely (1 , 2) observed at development time (this
is also called the development to operation, dev2op, shift [49]).

To test such feature combinations, we propose DEEPATASH, a search-based focused
test generator for DL systems. DEEPATASH can be configured with alternative search

59

60

Figure 6.1. Feature map for a handwritten digit classifier. The axes quantify
orientation and luminosity of the digits. The cells report the probability of exposing
a misbehaviour for the corresponding feature value combinations, i.e., darker colors
correspond to higher misbehaviour probabilities.

strategies (single or multi-objective) and sparseness metrics. It takes as input the desired
target feature value ranges and it optimizes both the generated input sparseness and
the input closeness to the target in the feature map.

We evaluated DEEPATASH on two different classification problems (recognition of
handwritten digits and sentiment analysis of movie reviews). For both problems, results
show that DEEPATASH is effective at generating diverse failure-inducing test inputs
within the target feature map cell in different usage scenarios. The inputs generated
by DEEPATASH have been used to fine-tune the DL models under study and improve
their performance on under-represented feature combinations, which were initially not
handled at all (0% accuracy) and reached approximately 99% accuracy after fine-tuning,
with no regressions.

However, DEEPATASH may face challenges in generating diverse inputs for systems
with higher evaluation costs, such as ADSs. To address this issue in resource-intensive
case studies, we introduce DEEPATASH-LR. This extension integrates DEEPATASH with a
surrogate model, predicting misbehavior likelihood and behavioral features, optimizing
computational resources and enhancing the use of the test generation budget. Evaluation
in the context of a LKAS DL component shows that DEEPATASH-LR, with its surrogate
model, effectively generates misbehavior-inducing inputs, allowing fine-tuning of the
ADS and significant performance improvements without notable regressions.

61 6.1 The DeepAtash Technique

6.1 The DeepAtash Technique

DEEPATASH aims to generate misbehaviour-inducing test inputs with characteristics
defined by the user, i.e., inputs belonging to a predefined feature map cell that trigger
an unexpected behaviour. As a secondary goal, it maximises the sparseness among
the generated solutions to obtain diverse inputs. Given the desired target ranges of
feature values, referred to as the target cell (e.g., [1:5]⇥ [10:15] if we want the first
feature f1 to be between 1 and 5 and the second f2 between 10 and 15), DEEPATASH

directs the generation of new inputs toward the feature subspace defined by these
values. DEEPATASH adopts evolutionary search to generate inputs that: (1) are close
to the target cell; (2) are diverse from the already found solutions; and (3) trigger a
misbehaviour of the DL system. It iteratively manipulates an initial set of inputs (called
seeds) until they fall into or near to the target cell. The evolution is guided by fitness
functions representing the closeness to misbehaviour, the distance to the target cell and
the distance from the previously found solutions.

Algorithm 2 outlines the high-level steps of our focused test input generation tech-
nique. The algorithm starts by initialising an empty archive A (line 1), which will store
the best test inputs generated during the search, i.e., the most sparse inputs with feature
values inside or close to the target ranges.

Function INITIALISEPOPULATION (line 2) instantiates an initial population P with the
desired number of individuals (popsize), by drawing elements from an initial pool of
seeds S provided as input. Usually, S is a subset of the test set available with the DL
system under test. The warm-up phase is completeted by determining the fitness values
of all the individuals of the initial population (line 3).

The main evolutionary loop is performed until the termination condition is satisfied
(lines 4-13). At each iteration, the population is mutated by genetic operators to produce
its offspring Q (lines 5-8). The worst individuals of the population are replaced by the
REPOPULATION operator, which generates new inputs from the initial pool of seeds S
(line 9). REPOPULATION takes as input the archive A to avoid selecting seeds already
used to produce individuals stored in the current archive A.

Function EVALUATE calculates the fitness of the current population P and its offspring
Q (line 10). The inputs close to the target cell, i.e., those whose distance from the
target cell is smaller than a threshold, are stored in the archive A, if they are better than
the previously discovered solutions (line 11). Then, the popsize fittest individuals are
selected for the next generation by the SELECT function (line 12). When optimizing
multiple fitness functions at the same time, ranking of individuals for selection is based on
Pareto dominance and crowding distance, as prescribed by the NSGA-II multi-objective
optimization algorithm [23]. When the execution budget B is elapsed, the algorithm
returns the misbehaviour-inducing inputs stored in the archive as final outcome (lines
14-15).

In the rest of this Section, we describe the key aspects of DEEPATASH and how we

62 6.1 The DeepAtash Technique

Algorithm 2: DEEPATASH’s Focused Test Generation
Input : B: execution budget

targetCell: target feature value ranges
archivesize: target archive size
S: set of input seeds
popsize: population size

Output : A: archive of test inputs in the target cell
1 A ;;
2 population P INITIALISEPOPULATION(S, popsize);
3 EVALUATE(P, A, targetCell);
4 while elapsedBudget < B do
5 offspring Q P ;
6 foreach q 2 Q do
7 q MUTATE(q) ;
8 end

// substitute the worst individuals

9 P REPOPULATION(P, S, A);
10 EVALUATE(P [Q, A, targetCell);
11 A UPDATEARCHIVE(P [Q, archiveSize, targetCell);
12 P SELECT(P [Q, popsize);
13 end
14 A FILTERMISBEHAVIOURS(A);
15 return (A)

applied it to the handwritten digit recognition and movie review sentiment analysis
tasks.

6.1.1 Input Representation

DEEPATASH performs semantic-based input generation, i.e., it leverages semantic infor-
mation about the inputs (e.g., digit shape or sentiment polarity of a word), rather than
simply corrupting them (e.g., changing pixel values or modifying letters in a word). Ex-
amples of semantic-based approaches are model-based techniques, which are standard
practice in several domains, including safety-critical ones such as automotive [146, 79].
Semantic-based test input generation has been already successfully applied to DL system
testing [1, 2, 3, 119, 159, 117]. In general, it is applicable to any domain for which the
semantic of the input data can be modeled. For this reason, in this work we consider
two domains for which semantic models are available: handwritten digit recognition
and movie review sentiment analysis.

For handwritten digit recognition, test inputs are images in the MNIST database format

63 6.1 The DeepAtash Technique

[81]. In particular, digits are encoded as 28 ⇥ 28 images with greyscale levels that range
from 0 to 255. DEEPATASH models each digit as a sequence of control points that define
a Bézier curve, according to the Scalable Vector Graphics (SVG) representation. To this
aim, DEEPATASH leverages the operations performed by the Potrace algorithm [129],
which vectorises a binary image by drawing a smooth contour made of Bézier segments.

For movie review sentiment analysis, test inputs are texts from the IMDB database
[92]. DEEPATASH represents each text as a tokenised padded sequence with a predefined
length, i.e., a tokeniser converts text inputs to the corresponding sequence of tokens
and then applies padding to have vectors of the same length. DEEPATASH obtains the
semantic information of a text by associating each of its words to the corresponding
polarity, obtained from the English Opinion Lexicon [59] which contains a list of words
with positive and negative polarity. The words that are neither positive nor negative are
considered neutral.

6.1.2 Fitness Functions

We use three fitness functions to guide DEEPATASH’s focused generation. They quantify:
(1) the distance of the test input from the target cell; (2) the closeness of the DL system
to exhibiting a misbehaviour when executing the given test input; and, (3) the distance
of the input from the previously found solutions (i.e., its sparseness).

Distance from the Target Cell

To measure the distance of an individual x from the target cell c, DEEPATASH computes
the Manhattan distance between the cell containing the individual x and the target cell.
This fitness function is minimised.

min fitness1(x) =min dist(x , c) (6.1)

Given a target cell c = [l1 :u1]⇥ . . .⇥ [lN :uN], with N the number of features being
considered (usually 2), the range size si = ui � li along each dimension fi (with i 2
{1, . . . , N}) determines the Manhattan distance of a given individual x from the target
cell c, according to the following equations:

d(xi , ci) =

8
>>><
>>>:

†
li�x . fi

si

£
, if x . fi < li

0, if li x . fi < ui†
x . fi�ui

si

£
, if x . fi > ui

1, if x . fi = ui

(6.2)

d(x , c) =
NX

i=1

d(xi , ci) (6.3)

64 6.1 The DeepAtash Technique

Along each dimension i, the difference between the individual’s coordinate x . fi and
the cell’s lower/upper bound (li or ui), divided by the cell size si , gives the number of
cells that separate x and c along fi (the value is rounded up, to get an integer). The sum
of the number of separating cells across all dimensions corresponds to the Manhattan
distance between x and c. Let us consider for example a target cell c = [2:6]⇥ [6:8]
and a candidate solution x whose feature values are x . f1 = 8, x . f2 = 3. The Manhattan
distance between x and c is hence d(8� 6)/4e+ d(6� 3)/2e= 1+ 2= 3.

Closeness to Misbehaviour

DEEPATASH aims to generate test inputs that trigger misbehaviours of the DL system
under test. Therefore, it promotes inputs that are more likely to trigger a misbehaviour
by minimising a problem-specific fitness function which measures how close the DL
system is to misbehave, when exercised with the evaluated input.

min fitness2(x) =min evaluateBehaviour(x) (6.4)

For the handwritten digit recognition problem, we exploit the activation levels of
the classifier’s output softmax layer, since they can be interpreted as a confidence level
assigned to each of the possible classes [42], i.e., the predicted class corresponds to the
one with highest confidence. As a fitness function, DEEPATASH considers the difference
between the confidence level associated to the expected class (which corresponds to
the expected behaviour) and the maximum confidence level associated to any other
class. In this way, the fitness value decreases when the system becomes less confident
towards the expected class and more confident towards one of the other classes, while
it assumes a negative value when the input is misclassified.

The movie review sentiment analysis problem has two classes, i.e., negative and
positive sentiments. Therefore, we consider the fitness as the difference between the
confidence level associated to the expected class and the one associated to the other
class.

Sparseness

An effective focused test input generator should ensure that the inputs found are different
among them, thus providing a richer set of execution scenarios than a mere repetition
of the same one. To achieve this goal, DEEPATASH maximises a fitness function which
measures how different an input is from the solutions already found during the search.
More specifically, DEEPATASH computes the sparseness of the individual x with respect
to the ones in the archive A as follows:

max fitness3(x) =max spars(x , A) (6.5)

Function spars measures the minimum distance of x from the solutions in the archive
A: miny2A dist(x , y). The distance function dist is computed on pairs of inputs and is
domain-specific.

65 6.1 The DeepAtash Technique

Figure 6.2. Explanatory heatmaps generated by the Integrated Gradients technique.
(a) A heatmap for a sample digit 5 is shown, with red pixels highlighting the parts of
the digit that contribute more to the predicted label; (b) A heatmap for sample text
is presented, green shades highlight the words contributing to the positive sentiment,
while red shades highlight the words contributing to the negative sentiment.

Since different distance functions may lead to different results, for the digit recogni-
tion and movie review sentiment analysis problems, we considered alternative metrics:
input space, explanation space, and latent space sparseness.

Input space sparseness measures distances between inputs in the space defined by
the input elements. For handwritten digit recognition, it is computed as the Euclidean
distance between pairs of image vectors. This metric is the most widely used in the
literature due to its simplicity and has been already successfully applied to test image-
based DL systems [119, 159, 51]. For movie review sentiment analysis, sparseness is
computed as the Levenshtein distance between pairs of text input strings [86, 113, 149].

Computing distances in such high-dimensional spaces is inefficient and suffers from
scalability problems. High-dimensional and sparse spaces naturally hinder the search
from finding similarity between data and contain information that is not relevant to the
prediction of the DL system, i.e. they are affected by the curse of dimensionality [11].

Explanation sparseness leverages Integrated Gradients [139], an explainable AI
technique [144], which highlights the pixels/words of the original image/text that
contribute the most to the DL system’s prediction in a so-called heatmap, as in the
one shown in Figure 6.2. Then, we compute the Euclidean distance between pairs of
heatmaps. While handwritten digit images have the same size, movie reviews may
have different lengths. Therefore, we generate a vector of size S, corresponding to the
size of the vocabulary used by the tokeniser, where each vector component ei is the
contribution value of the i-th word.

Explanation sparseness is still based on the original, high dimensional input space,
but it focuses on the relevant part of the inputs by replacing input values with heatmap
values.

Latent space sparseness measures distances between inputs in the latent space.
For digit recognition, it is defined on the latent vectors produced by an autoencoder.
Autoencoders are neural networks trained to learn a representation of the input data

66 6.1 The DeepAtash Technique

(the encoding or latent space) that has a lower dimensionality than the original input
space, but retains most of the original information and discards noise. In this way, it is
still possible to reconstruct the input in the original input space starting from its latent
vector. To measure latent space diversity, we train a Variational AutoEncoder (VAE),
a particular autoencoder architecture that maps the original image to a latent vector
of Gaussian random variables by estimating the mean and the variance of each latent
vector variable. To compute the distance between two handwritten digit images, our
latent space diversity metric uses the Euclidean distance between the means of the latent
vector variables.

For movie review sentiment analysis, the latent space sparseness is defined on
the latent vectors generated by a Doc2Vec model [80], which is an unsupervised DL
algorithm for representing documents as vectors in a lower-dimensional space. More
specifically, Doc2Vec represents each document as a single vector which encapsulates
the semantics of the whole document.

Latent space sparseness tackles the issues of high-dimensional and noisy input spaces
by focusing on lower-dimensional representations of the relevant information carried
by the inputs.

6.1.3 Archive of Solutions

The archive of solutions stores the best individuals encountered during the search and,
at the end of the last search iteration, it contains the final solutions. The archive is
particularly useful to prevent the cycling phenomenon, i.e., when the search moves from
one cell of the feature space to another and back again, with no memory of the cells it
has already explored [101].

The UPDATEARCHIVE function manages the archive and is described in Algorithm 3.
When the archive is not full, all the candidate individuals placed on target or in the
neighbouring feature map cells, i.e. those with a distance to the target cell lower than
1, are included into the archive (lines 2-4). Otherwise, if the archive is full, the new
candidate input competes with the worst individual in the archive based on their values
of fitness1, fitness2 and fitness3. The worst individual in the archive is the one with
the highest distance to the target and (for equal distances to the target) the lowest
sparseness (line 6). If the candidate individual has lower distance to the target than the
worst archived individual, UPDATEARCHIVE replaces the former with the latter within
the archive (lines 7-9). When the compared inputs have equal distance to the target,
the algorithm evaluates their closeness to misbehaviour and keeps in the archive the
best one, which is closer to exposing a misbehaviour (lines 11-15). If the compared
individuals have the same distance to the target and to a misbehaviour, they compete
on the basis of their sparseness: the sparser one is kept, while the other is discarded
(lines 17-19).

Since the archive may contain correctly-behaving inputs, the FILTERMISBEHAVIOURS

function is performed at the end of the search to keep only misbehaviour-inducing

67 6.1 The DeepAtash Technique

Algorithm 3: The UPDATEARCHIVE function
Input : P: population

archiveSize: target size of the archive A
targetCell: target feature value ranges

1 foreach p 2 P do
2 if DIST(p, tar getCel l) 1 then
3 if A is not full and p /2 A then
4 A.insert(p) ;
5 else
6 ind GETWORSTINDIVIDUAL(A);
7 if DIST(p, tar getCel l) < DIST(ind, tar getCel l) then
8 A.insert(p) ;
9 A.remove(ind) ;

10 else
11 if DIST(p, tar getCel l) == DIST(ind, tar getCel l) then
12 if p.behaviour < ind.behaviour then
13 A.insert(p) ;
14 A.remove(ind) ;
15 else
16 if p.behaviour == ind.behaviour & p.sparse > ind.sparse

then
17 A.insert(p) ;
18 A.remove(ind) ;
19 end
20 end
21 end
22 end
23 end
24 end
25 end
26 return A ;

68 6.1 The DeepAtash Technique

inputs (see Algorithm 2).

6.1.4 Search Strategies

We evaluated two different search strategies for DEEPATASH: Single-Objective search,
which optimizes only the distance to the target, and Multi-Objective search, which
explicitly rewards also the closeness to misbehaviour and the sparseness.

Single-Objective Search

As single-objective search strategy, we adopt a Genetic Algorithm (GA) since it previously
showed to be very effective for test generation [33]. In particular, we adopt a population-
based GA that minimises the Manhattan distance to the target cell. At each iteration,
the best individuals in the current population and the offspring are selected, based on
their single fitness value, to be part of the next population.

Multi-Objective Search

In this strategy, we cast the focused test generation problem as a multi-objective search
problem, by optimising all three fitness functions defined in Section 6.1.2 at the same
time. In particular, we adopt the NSGA-II algorithm [23] since it is widely used and it is
reported to be very effective in test case generation [78, 96, 109, 2, 119, 117]. NSGA-II
applies Pareto front analysis and promotes the solutions that are not dominated by any
other individual, i.e., those representing the best trade-offs among the fitness functions.
More precisely, a solution x dominates another solution y if x is not worse than y in
all fitness values, and x is strictly better than y in at least one fitness value. The final
ranking of individuals is based on Pareto dominance (i.e., non dominated fronts are
selected and removed from the solutions one after the other) and crowding distance (i.e.,
within the same Pareto front, distant individuals are selected), as recommended by the
NSGA-II multi-objective optimisation algorithm [23]. While this search strategy comes
with some overhead, as it computes multiple fitness functions, dominance and crowding
distances, it may improve the archived solutions by explicitly promoting diverse and
misbehaviour-inducing inputs.

6.1.5 Population Management

DEEPATASH starts its search from an initial population of size popsize, which is obtained by
randomly choosing from a pool of inputs, named seeds. Function INITIALISEPOPULATION

(line 2 in Algorithm 2) selects popsize different initial individuals among the seeds.
More specifically, for handwritten digit recognition, seeds are all the inputs from

the MNIST test set. Instead, for movie review sentiment analysis, seeds are the inputs
in the IMDB test set that are closer than a predefined threshold maxDist to the target

69 6.1 The DeepAtash Technique

cell. This choice is due to the large size of the IMDB test set: we consider only the
most promising inputs. We determined maxDist after some preliminary DEEPATASH

runs with increasing values of maxDist (starting from 0) and selected the minimum
value that resulted in a reasonable number of archived solutions (see Table 6.1). One
common issue in search-based approaches is that the exploration could get stuck in
local optima, despite the use of mechanisms to promote diversity such as our fitness
function in Equation 6.5. To mitigate this situation and further vary the population,
DEEPATASH uses the REPOPULATION operator, which replaces at each iteration a fraction
of the worst performing individuals in the current population, i.e., the individuals with
the lowest fitness. The new individuals are generated starting from a randomly chosen
seed, which is not already represented in the current population and the archive.

This genetic operator can be tuned by setting the repopulation upperbound hyperpa-
rameter, that determines the range from which the number of individuals to replace is
uniformly sampled. As an example, if the repopulation upper bound is set to 100, at
each iteration, a number nrep is uniformly sampled between 1 and 100, and the nrep
worst individuals in the current population are replaced by newly generated individuals
(see Table 6.1).

6.1.6 Mutation

A new input is obtained from an existing one by applying the MUTATE operator (line 7
in Algorithm 2). This operator applies a perturbation to the original input by lever-
aging its semantic (i.e., the digit model control points or the word’s synonyms). For
the handwritten digit recognition problem, the mutation operator randomly chooses a
control point of the SVG model and applies a displacement to it in the two-dimensional
space. For the movie review sentiment analysis problem, we defined three mutation
operators: (1) replacing a word with its synonym obtained from Wordnet1; (2) adding
an "and" conjunction after an adjective, followed by a synonym of the adjective; and (3)
duplicating a sentence.

Each time an input is mutated, DEEPATASH verifies that the mutant complies with the
ad hoc constraints to ensure that the input still belongs to the input validity domain and
preserves its original label [120]. When the mutated individual is considered invalid
it is discarded and its parent is mutated again. For the handwritten digit recognition
problem, DEEPATASH verifies that the Euclidean distance between the mutant and the
starting seed is greater than 0 and lower than or equal 2. For the movie review sentiment
analysis problem, the mutated individual is considered invalid if the number of sentiment
words differs more than a threshold sentimentDist from the initial one. To validate such
heuristic constraints, we manually inspected a set of test inputs produced by DEEPATASH

and found that in all cases label preservation and validity were confirmed. Therefore,
we are confident that misbehavior-inducing inputs are actually producing misbehaviours

1https://wordnet.princeton.edu

70 6.2 Experimental Evaluation on Image and Text Classifiers

with high probability. When moving to a different domain, proper heuristic validation
functions must be designed for domain-specific mutation operators.

6.2 Experimental Evaluation on Image and Text Classifiers

6.2.1 Research Questions

The goal of our evaluation is to understand the effectiveness of our approach in gen-
erating misbehaviour-inducing test inputs with the desired features. In particular, we
consider different possible configurations of DEEPATASH, compare it with an existing
state-of-the-art test generator (DEEPHYPERION-CS), and investigate the usefulness of
the generated test inputs. Therefore, we answer the following research questions:
RQ1 (Effectiveness): Which DEEPATASH configuration is the most effective in generating
focused test inputs?

As detailed in Sections 6.1.2 and 6.1.4, DEEPATASH can be configured with alternative
search strategies (single- or multi-objective) and distance metrics (sparseness can be
measured on the input, latent or explanation space). This RQ aims at comparing the
effectiveness of such six alternative configurations.
RQ2 (Comparison): How does DEEPATASH compare with the state of the art tool Deep-
Hyperion-CS?

In this RQ, we are interested in whether our focused approach is more effective
than DeepHyperion-CS in generating test inputs in proximity of and within the target
cell. We compare the best performing DEEPATASH configuration (obtained from RQ1)
against DEEPHYPERION-CS (introduced in Chapter 5), as the latter is the only state-of-
the-art test generator that targets the feature space at large by means of an illumination
search algorithm. Unlike Active Learning techniques [114] or unguided test generators,
DEEPHYPERION-CS tries to cover all feature combinations and thus it is more likely to
produce inputs on the selected target. On the contrary, random techniques produce few
or no inputs on the target, making the comparison with DEEPATASH impossible.

Actually, to the best of our knowledge, no state of the art DL test generator is
a focused test generator, capable of targeting a specific region of the feature space.
DEEPHYPERION-CS is a model-based test generator that is applicable to MNIST and
IMDB. DEEPHYPERION-CS explores the feature space using the same input representation
and mutation genetic operators as DEEPATASH. Therefore, our experimental comparison
can effectively rule out all confounding factors and assess the actual contribution of our
focused algorithm in isolation.
RQ3 (Usefulness): Can the test inputs generated by DEEPATASH be used to improve the
DL system under the test?

In this RQ, we aim to investigate the usefulness of DEEPATASH in a common DL usage
scenario. We simulate a scenario in which a dev2op data shift has been observed, i.e.,
a feature combination is frequently observed during operation, but it was scarcely (or

71 6.2 Experimental Evaluation on Image and Text Classifiers

not) represented at development time. A tester can use DEEPATASH to target the feature
values of interest and fine tune the DL system with the generated tests inputs, in order
to improve its quality without introducing regressions.

6.2.2 Metrics

We evaluate the focused test generator’s effectiveness by measuring the Tests Close to
the target (TC) as the number of generated failure-inducing inputs in the proximity
of the target feature map’s cell, i.e. the solutions in the archive whose distances to
the target are lower than or equal to 1. Moreover, we assess the generator’s ability to
reach the target by computing the number of Tests on Target (TT), i.e., the number of
failure-inducing inputs that fall within the boundaries of the target cell.

For a given target feature map cell, we prefer a generator that produces diversified
inputs. To evaluate this aspect, we measure test input diversity by introducing the
Tests Close to the target Diversity (TCD) and Tests on Target Diversity (TTD) metrics. To
this aim, we represent the generated inputs in a lower dimensional space by using the
t-distributed Stochastic Neighbor Embedding (t-SNE) algorithm [58, 147], which projects
similar inputs to neighbouring points and dissimilar inputs to distant points with high
probability. Then, we project the inputs generated by all approaches being compared
onto the same t-SNE space and compute the clusters of neighbouring points in such
a space. The diversity value of each approach is computed as the number of clusters
containing at least one input generated by the corresponding approach divided by the
total number of clusters [15]: TCD and TTD measure the relative coverage of the clusters
by each approach.

We configured t-SNE by choosing 2 as number of dimensions since it performed
well in preliminary runs and it eases the results’ interpretation. As regards the t-SNE
perplexity (which affects the way inputs are scattered or concentrated), we set it to 0.1
after a visual inspection of the plots obtained with different values. For clustering, we
applied the k-Means algorithm [7] and performed Silhouette analysis [124] to determine
the optimal number of clusters k⇤, i.e., the value that better balances between cohesion
and separation of the clusters.

Figure 6.3 exemplifies the diversity comparison between three DEEPATASH configura-
tions. The points represent the inputs generated by each configuration in the 2D t-SNE
space. Each configuration is assigned a different color. Points are grouped into clusters
(represented as circles) and diversity is computed as the number of clusters covered by
each configuration. In this example, the diversity value for NSGAII-Input is 0.1; it is 0.5
for NSGAII-Explanation and 0.7 for NSGAII-Latent.

6.2.3 Evaluation Scenarios

A crucial aspect of focused input generation is the choice of the target cells. Developers
can use information from the operation environment to identify feature map cells that

72 6.2 Experimental Evaluation on Image and Text Classifiers

Figure 6.3. Example t-SNE plot to explain the computation of test diversity metrics,
with clusters represented as empty circles containing inputs (smaller, solid shapes).

occur in operation, but are under-represented in the train/test set. Since we do not
have access to operation data, we chose our targets starting from the misbehaviour
probability map (such as the one in Figure 6.1), a feature map that encodes the DL
failure probability for different feature combinations. In the misbehaviour probability
map shown in Figure 6.1, the darkness level of the cells is proportional to their Average
Misbehaviour Probability (AMP) values; thick borders highlight combinations producing
misbehaviours with high confidence, while blank cells correspond to uncovered feature
combination values. We leveraged misbehaviour probability maps and AMP to mimick
various possible user choices by evaluating DEEPATASH in the following scenarios:

Dark Targets: targets selected among the dark, thick-bordered cells (misbehaviour
probability > 0.8 and confidence interval > 0.65). These cells correspond to error-
prone feature values and mostly contain individuals with high probability of causing
misbehaviours. In this scenario, the user wants to collect diverse new inputs with critical
characteristics, e.g., to fine tune the DL system;

Grey Targets: targets corresponding to covered cells with misbehaviour probability
 0.8. These cells correspond to feature value combinations for which the DL system
generally behaves correctly. Therefore, in this scenario the user wants to stress the DL
system with inputs whose characteristics seem not critical, to see if they can possibly
trigger any misbehaviour;

White Targets: targets corresponding to uncovered cells, i.e., cells that do not
contain inputs. In this scenario, the user wants to generate new data with missing

73 6.2 Experimental Evaluation on Image and Text Classifiers

Table 6.1. Hyperparameters used in the experiments

Parameter MNIST IMDB
seed pool size 800 1000
population size 100 100
time budget (s) 3600 3600
mutation lower bound 0.01 -
mutation upper bound 0.6 -
sentimentDist - 5
maxDist - 5
repopulation upper bound 10 10
target archive size 81 42
number of epochs for retraining 6 5
learning rate for retraining 0.001 0.0001

feature combinations or check the feasibility of the selected combination of feature
values.

Since the usage scenario we are mimicking is one where operation data occur in
regions of the feature map that are under-populated, for dark and grey cells we apply
the additional filter that the selected cell must contain a number of individuals lower
than the average number of individuals observed across all feature map cells (this filter
is not necessary for white cells, which are not populated at all).

6.2.4 Experimental Procedure

To answer our research questions, we ran DEEPATASH in the three evaluation scenarios
introduced in Section 6.2.3 along with DEEPHYPERION-CS on the subject systems, in all
the possible 2D combinations of the proposed features. For each scenario, the first step
is the selection of the target cell from the misbehaviour probability maps generated by
DEEPHYPERION-CS.

As regards the dark and grey targets, we chose a cell among the underpopulated
dark and grey cells of the misbehaviour probability map. More specifically, we randomly
chose a cell for which the coverage (i.e., number of individuals assigned to the cell)
achieved by DEEPHYPERION-CS is lower than the average cell coverage, computed by
considering all cells in all DEEPHYPERION-CS runs. As white targets, we chose uncovered
cells in the DEEPHYPERION-CS misbehaviour probability maps. Since uncovered cells
may be unfeasible, we considered white cells in the neighborhood of covered cells.

Then, we ran DEEPATASH focusing on the identified target cells and collected the
resulting archives of solutions.

For our experiments, we used three features defined for MNIST digits (see Sec-
tion 5.1.3): (1) Luminosity (Lum): number of light pixels of the image, i.e., pixels whose

74 6.2 Experimental Evaluation on Image and Text Classifiers

value is above 127; (2) Orientation (Or): vertical orientation of the digit, obtained by
computing the angular coefficient of the linear regression of the non-black pixels; (3)
Moves (Mov): sum of the Euclidean distances between pairs of consecutive sections of
the digit.

We used three features defined for IMDB movie reviews: (1) Positive words count
(Pos): number of words in the text with positive polarity, obtained by counting the words
tagged as positive in the English Opinion Lexicon by Liu and Hu [59]; (2) Negative words
count (Neg): number of words in the text with negative polarity, obtained by counting
the words tagged as negative in the aforementioned lexicon; (3) Verb count (Verb):
number of verbs in the text, a proxy for the text complexity, computed by counting the
words with a verb tag, according to the part-of-speech tagging performed by the NLTK
library2.

The hyperparameters of DEEPATASH were obtained whenever possible from the
experiments conducted with DEEPHYPERION-CS and were fine tuned in a few preliminary
runs to ensure the target cells are reachable with them. The resulting hyperparameter
values are reported in Table 6.1. For DEEPHYPERION-CS, we used the latest version of
the tool along with the configuration reported in Chapter 5.

To facilitate a fair comparison, we used the same initial seeds for the compared tools.
The seeds for MNIST were obtained by considering all test set inputs that belong to
class “5”. For IMDB, the seeds were selected from the test set inputs, all belonging to
class “positive”. Since we had a huge number (i.e., 12500) of positive reviews in the
IMDB test set, we randomly selected an initial seed pool of 1000 inputs among the ones
closer to the target (with distance lower than a threshold maxDist; see Table 6.1).

To allow statistical analysis, we ran each approach 10 times for each target, for a
total of 240 runs on each subject. To ensure a fair comparison, we ran all tools with
the same time budget (1h for MNIST and IMDB). To assess the statistical significance
of the comparisons between different DEEPATASH configurations (RQ1), and between
DEEPATASH and DEEPHYPERION-CS (RQ2), we applied the Mann-Whitney U-test and
measured the effect size by means of the Vargha-Delaney’s Â12 statistic [5].

To answer RQ3, we fine tuned [12] the original DL models and trained them for
additional epochs at the same or lower learning rate (see Table 6.1) with the inputs
generated by DEEPATASH close (TC) and within (TT) the considered targets. First, for
each feature combination, we collected the inputs generated by DEEPATASH within and
close to the targets. Then, we equally divided these inputs into two sets, i.e., t rainingDA
and testDA. The combination of the original training set and t rainingDA was used to
fine tune the DL system, while the original test set and testDA were used to evaluate the
accuracy of the fine-tuned DL system. We repeated the fine tuning procedure 10 times
for each run of DEEPATASH on each target cell, to measure the statistical significance of
the accuracy improvement.

2Natural Language Toolkit - https://www.nltk.org

https://www.nltk.org

75 6.2 Experimental Evaluation on Image and Text Classifiers

6.2.5 Results

RQ1: Effectiveness

Table 6.2 reports the results achieved on MNIST and IMDB by the 6 alternative configu-
rations of DEEPATASH, obtained by combining the search strategies (GA and NSGA-II)
and the sparseness metrics (i.e., distance computed in the Input, Latent and Explanation
space).

For each evaluation scenario described in Section 6.2.3, the table reports a row for
each feature combination. The columns report the number of failure-inducing inputs
generated in the proximity of the target (TC), those of them exactly on target (TT), and
their diversity (TCD and TTD, respectively). For each target-feature combination (row),
the largest value is highlighted in bold, while the underlined values are comparable
among them (p-value � 0.05) and significantly higher than the remaining ones (p-value
< 0.05, large or medium effect size), which, when they exist, are not underlined.

As regards MNIST (Table 6.2 - top), the configuration NSGA-II + Latent produced
significantly more and sparser inputs close to the target (TC and TCD) than the other
configurations, on average across all the target-feature combinations (39% of them on
target). Instead, in terms of TT and TTD, NSGA-II + Latent performed comparably to
GA + Latent and GA + Input (p-value > 0.05), and significantly better than the other
DEEPATASH configurations.

For IMDB (Table 6.2 - bottom), NSGA-II + Latent performed significantly better than
the other configurations, on average across all the target-feature combinations and for
all the considered metrics.

We can observe that in terms of sparseness (metrics TCD, TTD), heatmaps (column
“Explanations”) perform consistently worse across most configurations, with only a few
exceptions. This may be either due to the information that they discard by considering
only input elements that contribute to a prediction, or to the heatmap computation
itself, which introduces an overhead and hence consumes the overall test generation
budget more quickly.

RQ1: Overall, the multi-objective DEEPATASH configuration guided by the sparseness
metric computed in the latent space generated a significantly larger number of
diverse inputs close to the target than the other tool configurations. For IMDB, this
configuration performs significantly better also in terms of tests on target.

76 6.2 Experimental Evaluation on Image and Text Classifiers

Ta
bl

e
6.

2.
R

Q
1

-
Te

st
s

cl
os

e
to

ta
rg

et
(T

C
),

te
st

s
on

ta
rg

et
(T

T
),

te
st

s
cl

os
e

to
ta

rg
et

di
ve

rs
ity

(T
C

D
),

an
d

te
st

s
on

ta
rg

et
di

ve
rs

ity
(T

T
D

)
by

al
te

rn
at

iv
e

D
ee

pA
ta

sh
co

nfi
gu

ra
tio

ns
fo

r
M

N
IS

T
an

d
IM

D
B

.I
n

ea
ch

ro
w

,b
ol

df
ac

e
in

di
ca

te
s

th
e

m
ax

im
um

;
un

de
rl

in
e

in
di

ca
te

s
va

lu
es

si
gn

ifi
ca

nt
ly

hi
gh

er
th

an
th

e
re

m
ai

ni
ng

on
es

(p
-v

al
ue
<

0.
05

,n
on

-n
eg

lig
ib

le
eff

ec
t

si
ze

).

In
pu

t
La

te
nt

Ex
pl

an
at

io
n

G
A

N
SG

A
-I

I
G

A
N

SG
A

-I
I

G
A

N
SG

A
-I

I
Fe

at
ur

es
TC
[T

C
D
]

TT
[T

TD
]

TC
[T

C
D
]

TT
[T

TD
]

TC
[T

C
D
]

TT
[T

TD
]

TC
[T

C
D
]

TT
[T

TD
]

TC
[T

C
D
]

TT
[T

TD
]

TC
[T

C
D
]

TT
[T

TD
]

MNIST
DarkM

ov
-L

um
41

.1
0
[0

.3
8]

41
.1

0
[0

.4
8]

43
.1

0
[0

.3
6]

23
.9

0
[0

.1
2]

51
.7

0
[0

.3
7]

51
.7

0
[0

.4
7]

50
.5

0
[0

.3
1]

46
.8

0
[0

.5
8]

16
.4

0
[0

.2
4]

1.
00
[0

.0
5]

33
.6

0
[0

.2
8]

1.
80
[0

.2
5]

M
ov

-O
r

69
.1

0
[0

.2
8]

4.
40
[0

.1
0]

58
.6

0
[0

.2
2]

1.
60
[0

.1
5]

66
.1

0
[0

.3
0]

10
.2

0
[0

.4
5]

55
.3

0
[0

.2
2]

1.
20
[0

.1
3]

28
.5

0
[0

.1
4]

0.
00
[0

.0
0]

26
.7

0
[0

.1
2]

3.
00
[0

.2
5]

O
r-

Lu
m

70
.3

0
[0

.2
7]

24
.2

0
[0

.6
5]

32
.1

0
[0

.1
4]

5.
90
[0

.3
5]

65
.5

0
[0

.3
1]

25
.9

0
[0

.7
0]

64
.3

0
[0

.2
2]

15
.6

0
[0

.5
0]

55
.3

0
[0

.2
1]

8.
60
[0

.5
5]

42
.8

0
[0

.1
8]

5.
80
[0

.4
5]

GreyM
ov

-L
um

41
.4

0
[0

.6
0]

38
.3

0
[0

.7
3]

21
.8

0
[0

.2
8]

0.
00
[0

.0
0]

22
.1

0
[0

.3
8]

16
.2

0
[0

.3
5]

53
.4

0
[0

.7
8]

28
.4

0
[0

.4
0]

5.
10
[0

.2
5]

0.
60
[0

.0
8]

13
.4

0
[0

.4
9]

0.
40
[0

.1
0]

M
ov

-O
r

18
.5

0
[0

.4
5]

3.
00
[0

.2
0]

15
.3

0
[0

.4
3]

2.
40
[0

.2
0]

16
.0

0
[0

.2
4]

0.
70
[0

.1
1]

20
.5

0
[0

.5
3]

4.
70
[0

.2
8]

13
.1

0
[0

.3
0]

1.
80
[0

.1
5]

14
.9

0
[0

.4
9]

0.
40
[0

.1
0]

O
r-

Lu
m

10
.1

0
[0

.2
9]

10
.1

0
[0

.3
4]

22
.9

0
[0

.4
7]

8.
60
[0

.2
7]

9.
20
[0

.2
3]

9.
20
[0

.3
0]

19
.2

0
[0

.5
2]

6.
80
[0

.1
9]

6.
40
[0

.2
9]

3.
50
[0

.2
4]

28
.1

0
[0

.5
6]

6.
20
[0

.5
5]

WhiteM
ov

-L
um

14
.3

0
[0

.3
6]

11
.6

0
[0

.2
8]

28
.2

0
[0

.6
1]

2.
30
[0

.3
0]

20
.6

0
[0

.4
2]

10
.7

0
[0

.3
6]

29
.6

0
[0

.5
4]

10
.4

0
[0

.2
5]

10
.9

0
[0

.3
8]

5.
10
[0

.1
5]

15
.4

0
[0

.6
0]

6.
20
[0

.5
5]

M
ov

-O
r

24
.6

0
[0

.4
4]

2.
00
[0

.2
1]

11
.3

0
[0

.3
1]

7.
70
[0

.1
0]

22
.1

0
[0

.5
0]

5.
90
[0

.3
5]

25
.1

0
[0

.6
5]

1.
80
[0

.1
8]

6.
70
[0

.4
3]

0.
00
[0

.0
0]

7.
30
[0

.3
2]

0.
00
[0

.0
0]

O
r-

Lu
m

23
.3

0
[0

.4
8]

21
.6

0
[0

.5
8]

30
.2

0
[0

.5
2]

10
.1

0
[0

.3
8]

28
.7

0
[0

.5
1]

24
.3

0
[0

.7
1]

51
.0

0
[0

.6
6]

28
.0

0
[0

.6
5]

21
.5

0
[0

.5
1]

6.
80
[0

.4
8]

20
.8

0
[0

.5
2]

4.
30
[0

.4
8]

AV
G

34
.7

4
[0

.3
9]

17
.3

7
[0

.4
0]

29
.2

8
[0

.3
7]

6.
94
[0

.2
1]

33
.5

6
[0

.3
6]

17
.2

0
[0

.4
2]

40
.9

9
[0

.4
9]

15
.9

7
[0

.3
5]

18
.2

1
[0

.3
1]

3.
00
[0

.1
9]

22
.5

6
[0

.4
0]

2.
68
[0

.2
6]

IMDB
DarkN

eg
-P

os
33

.0
0
[0

.6
8]

22
.0

0
[0

.5
]

29
.4

0
[0

.5
3]

6.
90
[0

.3
4]

25
.8

0
[0

.5
8]

14
.3

0
[0

.5
3]

40
.3

0
[0

.7
4]

33
.4

0
[0

.6
4]

25
.7

0
[0

.4
9]

7.
8
[0

.3
1]

29
.9

0
[0

.5
1]

9.
60
[0

.3
7]

N
eg

-V
er

b
7.

20
[0

.3
1]

3.
20
[0

.1
2]

9.
20
[0

.3
6]

6.
30
[0

.1
6]

5.
00
[0

.1
6]

0.
70
[0

.1
0]

27
.1

0
[0

.6
3]

14
.6

0
[0

.3
4]

11
.2

0
[0

.5
3]

3.
60
[0

.1
5]

19
.7

0
[0

.5
4]

6.
60
[0

.1
7]

Po
s-

Ve
rb

33
.8

0
[0

.5
3]

33
.8

0
[0

.4
3]

31
.6

0
[0

.4
5]

31
.6

0
[0

.4
7]

33
.7

0
[0

.5
0]

33
.4

0
[0

.5
8]

37
.6

0
[0

.5
2]

37
.6

0
[0

.5
7]

28
.8

0
[0

.5
0]

27
.8

0
[0

.3
8]

28
.3

0
[0

.4
7]

6.
60
[0

.1
7]

GreyN
eg

-P
os

7.
50
[0

.3
0]

5.
20
[0

.3
5]

6.
40
[0

.2
2]

3.
50
[0

.0
9]

5.
00
[0

.2
5]

3.
80
[0

.0
6]

10
.8

0
[0

.5
2]

8.
30
[0

.3
5]

0.
80
[0

.0
5]

0.
00
[0

.0
0]

5.
60
[0

.3
4]

0.
10
[0

.0
0]

N
eg

-V
er

b
7.

30
[0

.4
5]

7.
30
[0

.4
1]

15
.0

0
[0

.5
7]

14
.9

0
[0

.6
1]

10
.7

0
[0

.5
1]

10
.7

0
[0

.4
9]

15
.7

0
[0

.6
3]

13
.1

0
[0

.6
2]

9.
50
[0

.5
4]

8.
60
[0

.5
4]

12
.2

0
[0

.4
5]

11
.2

0
[0

.5
5]

Po
s-

Ve
rb

27
.1

0
[0

.5
0]

27
.1

0
[0

.6
0]

28
.7

0
[0

.4
9]

28
.7

0
[0

.4
9]

24
.1

0
[0

.6
2]

27
.3

0
[0

.4
1]

32
.0

0
[0

.5
3]

32
.0

0
[0

.5
6]

27
.3

0
[0

.4
1]

27
.3

0
[0

.6
8]

25
.5

0
[0

.6
2]

25
.5

0
[0

.5
8]

WhiteN
eg

-P
os

24
.2

0
[0

.6
5]

15
.4

0
[0

.6
5]

31
.1

0
[0

.6
2]

22
.4

0
[0

.6
3]

29
.4

0
[0

.6
4]

18
.0

0
[0

.5
3]

38
.9

0
[0

.6
0]

29
.2

0
[0

.6
3]

24
.3

0
[0

.5
2]

20
.9

0
[0

.5
8]

26
.4

0
[0

.6
7]

14
.2

0
[0

.5
8]

N
eg

-V
er

b
4.

10
[0

.2
6]

1.
80
[0

.1
0]

0.
00
[0

.0
0]

0.
00
[0

.0
0]

5.
60
[0

.5
2]

0.
00
[0

.0
0]

13
.0

0
[0

.3
7]

3.
60
[0

.2
5]

0.
70
[0

.0
6]

0.
00
[0

.0
0]

0.
40
[0

.0
2]

0.
00
[0

.0
0]

Po
s-

Ve
rb

6.
10
[0

.1
3]

2.
30
[0

.1
0]

25
.1

0
[0

.6
0]

9.
40
[0

.3
8]

3.
00
[0

.1
0]

1.
70
[0

.0
7]

25
.7

0
[0

.4
8]

3.
80
[0

.1
9]

8.
40
[0

.1
5]

0.
00
[0

.0
0]

15
.9

0
[0

.5
3]

1.
30
[0

.0
7]

AV
G

16
.7

0
[0

.4
2]

13
.1

2
[0

.3
6]

19
.6

0
[0

.4
3]

13
.7

0
[0

.3
5]

15
.8

1
[0

.4
3]

11
.8

6
[0

.3
3]

26
.8

0
[0

.5
6]

19
.5

1
[0

.4
6]

19
.6

0
[0

.4
3]

13
.7

0
[0

.3
5]

18
.2

1
[0

.4
6]

10
.8

0
[0

.3
0]

77 6.2 Experimental Evaluation on Image and Text Classifiers

RQ2: Comparison

Table 6.3 compares the results achieved on MNIST and IMDB by the best DEEPATASH

configuration (i.e., NSGA-II - Latent) with the baseline tool DEEPHYPERION-CS.

For MNIST and IMDB, DEEPATASH achieved significantly larger TC, TCD, TT and TTD
values than DEEPHYPERION-CS, on average across all the target-feature combinations.
DEEPATASH generated up to 29.2 more inputs on targets than DEEPHYPERION-CS. In
white cells where the competitor generated none (e.g., for IMDB, White target, Neg-Pos
feature combination), DEEPATASH was able to find some inputs with the desired feature
combinations. DEEPATASH outperformed DEEPHYPERION-CS for all the target-feature
combinations (with statistical significance 80% of the times).

These results confirm that our focused approach can generate inputs in feature space
areas where state-of-the-art, general-purpose generator DEEPHYPERION-CS can generate
few or no inputs.

RQ2: DEEPATASH outperforms the state of the art tool DEEPHYPERION-CS in gener-
ating misbehaviour-inducing inputs with target feature value combinations.

RQ3: Usefulness

Table 6.4 shows the accuracy improvement achieved by fine tuning the considered DL
systems with t rainingDA, the training partition of the inputs generated by DEEPATASH.
The “before” columns show the accuracy of the original DL systems on the original test
set and testDA, the test set partition generated by DEEPATASH. The “after” columns show
the accuracy values achieved after fine tuning the DL systems with t rainingDA. All
values in the “after” columns are underlined, which indicates statistically significant
accuracy improvement after the fine tuning (p-value < 0.05, large effect size).

Since we selected state-of-the-art DL systems, their initial accuracy on the original
test set was quite high, i.e., 99.11% for MNIST and 88.19% for IMDB. On the other hand,
their initial accuracy on testDA was obviously 0% since we considered misbehaviour-
inducing inputs generated by DEEPATASH.

Quite surprisingly, by fine tuning the considered DL systems using t rainingDA, we
improved their accuracy on the original test set despite their initial high quality. In
fact, for all feature combinations, the accuracy on the original test set significantly
increased (up to 1.39% for Neg-Pos). This might be due to an increased generalization
capability induced by the additional training on inputs with under-represented feature
combinations. So, not only we observed no sign of regressions, but we also achieved
a slight accuracy improvement on the original test set. As expected, the accuracy on
testDA dramatically increased from 0% to at least 97.35%.

78 6.2 Experimental Evaluation on Image and Text Classifiers

Table 6.3. RQ2 - Results achieved by the compared tools for MNIST and IMDB.
Tests close to target (TC) and their diversity (TCD); tests on target (TT) and their
diversity (TTD). In each row, boldface is the maximum; underline indicates values
significantly higher than the remaining ones (p-value < 0.05, non-negligible effect
size).

DEEPATASH DEEPHYPERION-CS
Features TC [TCD] TT [TTD] TC [TCD] TT [TTD]

M
N

IS
T

D
ar

k Mov-Lum 50.50 [0.90] 46.80 [0.97] 18.30 [0.38] 2.30 [0.07]
Mov-Or 55.30 [0.86] 1.20 [0.27] 37.60 [0.47] 2.40 [0.42]
Or-Lum 64.30 [0.95] 15.60 [0.74] 13.80 [0.30] 2.70 [0.15]

G
re

y Mov-Lum 53.40 [0.81] 28.40 [0.50] 22.70 [0.50] 3.70 [0.10]
Mov-Or 20.50 [0.88] 4.70 [0.45] 24.70 [0.45] 1.10 [0.15]
Or-Lum 19.20 [0.81] 6.80 [0.39] 2.20 [0.19] 0.10 [0.01]

W
hi

te Mov-Lum 29.60 [0.74] 10.40 [0.40] 11.90 [0.42] 0.00 [0.00]
Mov-Or 25.10 [0.71] 1.70 [0.20] 20.70 [0.50] 0.00 [0.00]
Or-Lum 51.00 [1.00] 28.00[1.00] 0.80 [0.05] 0.00 [0.00]

AVG 40.99 [0.85] 15.96 [0.55] 16.97 [0.36] 1.37 [0.10]

IM
D

B

D
ar

k Neg-Pos 40.30 [0.94] 33.40 [1.00] 8.20 [0.11] 1.60 [0.05]
Neg-Verb 27.10 [1.00] 14.60 [0.43] 10.80 [0.05] 4.50 [0.07]
Pos-Verb 32.00 [0.95] 32.00 [1.00] 2.40 [0.05] 1.10 [0.05]

G
re

y Neg-Pos 10.80 [0.73] 8.30 [0.40] 10.20 [0.20] 1.00 [0.20]
Neg-Verb 15.70 [0.95] 13.10[0.93] 7.70 [0.11] 1.80 [0.08]
Pos-Verb 37.60 [0.95] 37.60 [0.95] 12.00 [0.15] 5.20 [0.11]

W
hi

te Neg-Pos 38.90 [1.00] 29.20 [1.00] 0.20 [0.00] 0.00 [0.00]
Neg-Verb 13.00 [0.50] 3.60 [0.30] 0.30 [0.10] 0.00 [0.00]
Pos-Verb 25.70 [0.70] 3.50 [0.30] 0.70 [0.10] 0.00 [0.00]

AVG 26.79 [0.86] 19.48 [0.70] 5.83 [0.10] 1.69 [0.06]

79 6.2 Experimental Evaluation on Image and Text Classifiers

Table 6.4. RQ3 - Model Accuracy (ACC) on the original test set and on the test
set generated by DeepAtash, before and after fine tuning the DL system with the
training partition of generated inputs. In each row, boldface indicates the maximum;
underline indicates values significantly higher than the remaining ones (p-value
< 0.05, non-negligible effect size).

Original Test Set DA Test Set
Features ACC before ACC after ACC before ACC after

M
N

IS
T Mov-Lum

99.11
99.23

0.00
99.92

Mov-Or 99.24 99.65
Or-Lum 99.23 99.02

IM
D

B Neg-Pos
88.19

89.58
0.00

98.36
Neg-Verb 89.56 99.47
Pos-Verb 89.56 97.35

RQ3: DEEPATASH is useful to improve the accuracy of a DL system trough fine tuning,
by targeting feature combinations under-represented or unseen during development.

Threats to Validity

External Validity: The choice of subjects might have threatened the external validity.
We chose DL systems widely used in SE research that belong to separate domains. In
particular, we chose subjects for which semantic information on the inputs is accessible.
In fact, the key requirement for DEEPATASH is that a generative model of the inputs exists,
such that genetic operators can operate on the generative model’s parameters. Therefore,
our main limitation is the availability of a generative input model. Generative models are
widely used in many domains, such as cyber-physical systems, where the environment
is often modeled and simulated. In domains where a model would be prohibitively
expensive, like image processing, generative neural networks (e.g., GANs [44, 28]) can
be used as an input model. Replication of our experiments on additional case studies
would be important to corroborate our findings. Another external validity threat is
introduced by the choice of the targets, because results may not generalize to different
choices of the target. To mitigate this threat, we chose three types of targets (Dark, Grey,
White), corresponding to different usage scenarios.

Conclusion Validity: The stochastic nature of DL systems and search-based approaches
may affect the results. Therefore, we ran each experiment multiple times and conducted
standard statistical tests to assess the results’ significance.

80 6.3 Focused Test Generation for Autonomous Driving Systems

6.3 Focused Test Generation for Autonomous Driving Systems

Autonomous Driving Systems (ADSs) have become popular due to their potential to
revolutionize transportation by enhancing safety, improving efficiency, and providing a
more convenient and accessible mode of travel for individuals around the world. On the
other hand, the consequences of a misbehaviour might be catastrophic for life-critical
systems like ADSs, potentially endangering all road participants (e.g., driver, passengers,
and pedestrians). For instance, a lane-keeping assist system (LKAS) might predict an
erroneous steering angle when presented with a road with an exceptionally sharp turn,
if this particular variation is not adequately represented in the training set. Hence, ADSs
necessitate rigorous testing employing appropriate techniques capable of generating
data beyond the datasets used during development [118, 140].

Through its search-based focused testing approach, DEEPATASH proved its effective-
ness by generating multiple diverse inputs with predefined target feature values for
different DL systems, i.e., image and text classifiers. However, DEEPATASH may not be the
ideal choice for testing ADSs. In fact, its evolutionary nature demands multiple system
executions to produce misbehaviour-inducing inputs within the specified target. Testing
ADSs is known to be resource-intensive, since it requires expensive executions (e.g.,
simulations) to assess the system behaviour. Consequently, DEEPATASH might invest
most of its test generation time-budget exploring unpromising regions of the feature
space, i.e., those that do not contain the target features or have a minimal likelihood of
causing misbehaviours, because each execution (i.e., simulation in the candidate test
scenario) consumes a substantial fraction of the available budget.

We propose a novel focused test generator named DEEPATASH-LR, specifically de-
signed for ADSs, with the primary goal of overcoming the aforementioned limitations
of its predecessor. The core innovation of DEEPATASH-LR is its ability to reduce the
computational resource demands associated with the evaluation of less promising so-
lutions. Our approach achieves this goal by integrating a surrogate model within the
evolutionary process. Surrogate models have been extensively used for ADS testing
since they closely emulate system behaviour, while drastically reducing computational
overhead [104]. Within DEEPATASH-LR, the surrogate model plays a pivotal role in
predicting both the likelihood of a misbehaviour and the behavioural features of the
generated inputs. Consequently, DEEPATASH-LR executes the system only when the input
is likely to belong to the target feature map cell and is likely to trigger a misbehaviour.
This strategic approach optimizes the utilisation of computational resources in ADS
testing and makes a dramatically better use of the available test generation budget.

Our evaluation of DEEPATASH-LR was conducted in the context of a LKAS DL com-
ponent, using the BeamNG driving simulator [10] across different usage scenarios.
Our empirical results show that the surrogate model is indispensable for generating
misbehaviour-inducing inputs within the predefined targets. Moreover, the inputs gen-
erated by DEEPATASH-LR have been used to fine tune the ADS under study and enhance

81 6.4 Focused Testing with Surrogate Models: the DeepAtash-LR Technique

its performance on under-represented feature combinations, which were initially not
handled at all (i.e., on failure-inducing feature combinations). After fine tuning, the
system improved remarkably, with no significant regressions.

6.4 Focused Testing with Surrogate Models: the DeepAtash-LR

Technique

The original DEEPATASH algorithm (Section 6.1) computes the closeness to misbehaviour
of the generated inputs by running the ADS in the generated driving scenarios within
a simulator, which can be quite computationally expensive. It should be noticed that
also the computation of behavioural features requires the execution of the ADS under
test in a simulator. This translates into multiple executions of the ADS under test in
each iteration. Even though evolutionary search algorithms generally demonstrate
good scalability, their ability to effectively generate inputs with specific features may
decrease when the evaluation of such inputs is expensive. A clear example of this
occurs when testing the lane-keeping assist component of an ADS. In this context, the
assessment of the system’s behaviour in each input scenario requires the execution
of time-intensive simulations, which eventually constrain the evolutionary process
by restricting the number of iterations performed within a given time budget (i.e.,
the number of generations of the evolutionary search). We address this limitation by
proposing a way to improve the efficiency of the search-based algorithm, which translates
also into its effectiveness, as a better use of the available time budget might lead to
higher fault detection. Specifically, we employ surrogate models to predict the system’s
behaviour without the need for executing time-consuming simulations and, thus, saving
time during the optimization process. Surrogate models have recently gained popularity
[1, 48, 15, 52, 104] for emulating the behaviour of the original system. Surrogate
models are trained on datasets containing inputs and the corresponding behaviours
of the systems. They approximate and mimic the behaviour of the original system
without executing it, hence providing a faster and more efficient way to evaluate the
fitness of candidate test inputs, although such evaluation is affected by some degree
of approximation, due to the use of a surrogate instead of the real system. Hence,
their practical usefulness depends on the degree of approximation involved and on
the tolerance to approximation errors of the test generation algorithm, which can be
only assessed empirically. With surrogate models, ADS simulations are executed only
when necessary, such as when collecting data to train the surrogate model or when
storing an input in the archive as a final solution. The surrogate model allows the
algorithm to decide whether an input is close enough to the target or exhibits the
desired characteristics without the need to run costly simulations for all inputs.

Algorithm 4 presents an overview of our technique. This general pseudocode can be
instantiated either as a single- or multi-objective optimization process. The highlighted
lines of pseudocode indicate the changes over the original DEEPATASH algorithm. The

82 6.4 Focused Testing with Surrogate Models: the DeepAtash-LR Technique

Algorithm 4: DEEPATASH-LR’s Focused Test Generation
Input : B: execution budget

archivesize: target archive size
S: set of input seeds
popsize: population size
targetCell: target of focused test generation
epsilon: threshold for surrogate training

Output : A: archive of test inputs in the target cell
1 A ;;
2 population P INITIALISEPOPULATION(S, popsize);

3 UseSurrogate False ;

4 EVALUATE(P, A, targetCell, UseSurrogate) ;

5 TrainingDS P ;

6 while elapsedBudget < B do
7 if elapsedBudget > epsilon⇥ B and UseSurrogate is False then

8 TRAINSURROGATE(TrainingDS) ;

9 UseSurrogate True ;

10 end
11 offspring Q P ;
12 foreach q 2 Q do
13 q MUTATE(q) ;
14 end

// substitute the worst individuals

15 P REPOPULATION(P, S, A);

16 EVALUATE(P [Q, A, targetCell, UseSurrogate) ;

17 if UseSurrogate is False then

18 TrainingDS TrainingDS[Q ;

19 end
20 A UPDATEARCHIVE(P [Q, archiveSize, targetCell, UseSurrogate);
21 P SELECT(P [Q, popsize);
22 end
23 A FILTERMISBEHAVIOURS(A);
24 return A

83 6.4 Focused Testing with Surrogate Models: the DeepAtash-LR Technique

algorithm starts by initialising an empty archive A (line 1), that will store the best test
inputs generated during the search, i.e., the most sparse inputs with feature values falling
within or close to the target ranges. Then, the algorithm proceeds by generating an
initial population P (function INITIALISEPOPULATION at line 2), consisting of a specified
number of individuals. These individuals are instantiated by selecting elements from an
initial pool of seeds S, which is provided as input to the algorithm. Typically, S can be a
subset of the test set available in the data set of the ADS under test. Indeed, if a test set
is not available or desirable, the subset S can alternatively be composed of randomly
generated inputs to serve as the initial pool for the test input generation process. The
first phase is concluded by determining the fitness values of all the individuals of the
initial population without using the surrogate model (lines 3-4). Since there is no data
available about the behaviour of the original ADS at this stage, we need to prepare the
training data set for the surrogate model based on these initial evaluations. Then, the
algorithm initialises TrainingDS, i.e., the training data set for the surrogate model, with
the inputs from the current population P (line 5).

The main evolutionary loop is performed until the termination condition is met
(lines 6-22). During the evolutionary loop, training of the surrogate model occurs only
when a sufficient number of iterations has been performed and, thus, enough inputs
have been generated to train the surrogate model. Once this condition is satisfied (line
7), the algorithm trains the surrogate model (line 8), and sets the UseSurrogate variable
to True (line 9). At each iteration, the population is mutated by genetic operators to
produce its offspring Q (lines 11-14). The REPOPULATION operator avoids stagnation in
local optima by replacing the worst individuals of the population (i.e., the ones with
the lowest fitness values) with new inputs selected from the initial pool of seeds S (line
15). In particular, REPOPULATION takes as input the archive A to avoid selecting seeds
already used to generate individuals present in the current archive A.

Function EVALUATE calculates the fitness of the current population P and its offspring
Q. This function avoids redundant evaluations of the distance from the target cell and
the closeness to misbehaviour for the individuals that have been already evaluated in the
previous iterations, i.e., the individuals from P that have not undergone repopulation.
However, the evaluation of sparseness is performed at each iteration as it measures how
dissimilar is each individual from solutions previously discovered and currently stored
in the archive. In fact, the sparseness value of an individual may vary at each iteration
based on the current composition of the archive. The evaluation of the behaviour and
the feature values can be performed either using the surrogate model or the system
under test depending on the value of the UseSurrogate variable (line 16). The evaluated
inputs are added to the training data set of the surrogate model only when we have
used the actual ADS for their evaluations (line 17-19).

The inputs that are close to the target cell, i.e., those with a distance from the target
cell smaller than a certain threshold, are saved in the archive A if they outperform the
previously found solutions. In other words, if these inputs exhibit better fitness than the

84 6.4 Focused Testing with Surrogate Models: the DeepAtash-LR Technique

existing stored solutions, they are added to the archive (line 20). It should be noticed
that when an archive replacement is supposed to happen, because a better individual
was generated, the actual fitness values are needed. If the individual’s evaluation was
approximated by the surrogate model, when the individual becomes a candidate for the
archive it must be first evaluated against the real system, which means the ADS must be
simulated in the candidate input scenario.

Then, the SELECT function selects the popsize fittest individuals for the next gen-
eration (line 21). When dealing with the optimization of multiple fitness functions
simultaneously, the ranking of individuals for selection in DEEPATASH-LR is determined
based on the principles of Pareto dominance and crowding distance, as prescribed by
the NSGA-II multi-objective optimization algorithm [23] (see Section 6.1.4). When the
execution budget B is finished, the algorithm filters the misbehaviour-inducing inputs
from the archive and reports them as final outcome (lines 23-24), together with the
AMP values of each feature map cell.

In the rest of this section, we will describe in detail only the key aspects of DEEPATASH-
LR that differ from DEEPATASH, and how we have applied it to the lane-keeping applica-
tion domain.

6.4.1 Input Representation

DEEPATASH-LR can be classified as a model-based input generation technique [146], since
it represents individuals, i.e., test inputs, as model instances and directly manipulates
the model to generate new data.

In our setting, test inputs are scenarios in which the car drives within the BEAMNG
simulator. Following the state-of-the-art [40, 119, 159, 161], we represent a driving
scenario to test the lane keeping component as a plain asphalt road surrounded by green
grass on which the car has to drive by keeping the right lane. Such simulated roads are
modelled as a sequence of consecutive points in a bi-dimensional space, interpolated by
Catmull-Rom cubic splines [21] (for more details see Section 5.2.1).

6.4.2 Fitness Functions

DEEPATASH-LR’s optimization process utilises three fitness functions. They quantify: (1)
the distance of the test input from the target cell (see Section 6.1.2); (2) the closeness
of the ADS to cause a misbehaviour when executing the given test input; and, (3) the
distance of the input from the already found solutions (i.e., its sparseness).

Closeness to Misbehaviour

DEEPATASH-LR aims to generate test inputs that trigger misbehaviours of the ADS under
test. Therefore, it employs a problem-specific fitness function that quantifies how close
the ADS is to misbehaving when exercised with the evaluated input. By minimizing

85 6.4 Focused Testing with Surrogate Models: the DeepAtash-LR Technique

this fitness function, DEEPATASH-LR identifies inputs that are more likely to trigger
misbehaviours (see Section 6.4).

For the lane-keeping problem, we characterise the behaviour of the system by the
maximum distance of the car from the center of the right lane during the simulation [137,
63, 119]. The fitness value is calculated as min(w/2� d), where w is the lane width
and d the distance of the car from the centre of the right lane. This fitness function gets
its maximum value (w/2) when the car is at the center of the right lane, whereas it
gets a negative value when there is a misbehaviour, i.e., the car is beyond one of the
lane margins. All instances where this fitness function has a negative value indicate a
misbehaviour, i.e., the vehicle does not keep the lane. To ensure equal importance for
all misbehaviours, we cap the value of this fitness function for all misbehaviour-inducing
individuals to a small negative value (i.e., -0.1). To evaluate this fitness function,
DEEPATASH-LR can use either the original ADS under test or the surrogate model trained
with the inputs generated during the evolution, along with the corresponding behaviours
observed through simulation.

Sparseness

Ensuring diversity and distinctiveness in the generated test inputs is essential for the
effectiveness of a focused test input generator. By generating a wide variety of inputs
that are significantly different from one another, the generator can cover a broader range
of execution scenarios, which helps in thoroughly exploring the system’s behaviour.

To achieve this objective, DEEPATASH-LR uses a fitness function that quantifies how
dissimilar an input is from the solutions previously discovered during the search. By
maximizing this fitness function, DEEPATASH-LR encourages the generation of novel and
unique inputs, leading to a richer and more comprehensive set of test cases that can
reveal different aspects of the system’s behaviour (see Section 6.5).

Specifically, we use the weighted Levenshtein distance [119]. This metric considers
the minimum number of edit operations to transform one road into the other. Edit
operations apply to the two sequences of angles sampled on the spines of the two roads
being compared. This distance metric is suitable for the comparison of shapes of roads
with different lengths and is robust against translation and rotation. In fact, it takes
into account the order of the points along the road spines, as well as the relative angle
between consecutive points.

6.4.3 Surrogate Model

As shown in Algorithm 4, each iteration of DEEPATASH-LR involves the evaluation of
newly generated individuals to compute their behavioural features and fitness values.
This evaluation can be performed using either the original ADS or the surrogate model,
depending on the value of the UseSurrogate variable. The surrogate model functions as

86 6.4 Focused Testing with Surrogate Models: the DeepAtash-LR Technique

a black-box component, accepting test input (e.g. sequence of control points which rep-
resents the road shape) as input and generating the desired variable (e.g. a behavioural
feature) as output. DEEPATASH-LR requires a set of labeled inputs to train an accurate
surrogate model. Consequently, a portion of the time budget is dedicated to evaluating
the generated inputs using the original ADS under test through simulations. Once a
reasonable amount of training data has been accumulated (i.e., after a given number of
iterations), this data is utilized to train the surrogate model. The amount of collected
training data is determined using the threshold ✏ in Algorithm 4, which defines the
portion of time budget dedicated to training data collection. This threshold can be
chosen through preliminary runs to ensure that the performance of the surrogate model
is satisfactory. It is essential to set the threshold ✏ at a relatively low value; otherwise,
adopting the surrogate model would be inefficient as the training data collection time
and the training time would be excessively long.

The trained surrogate model becomes a valuable asset for DEEPATASH-LR within
the remaining time budget. Instead of relying on the original ADS for evaluations, our
tool can use the surrogate model to predict the behaviour of the ADS for new inputs
(line 9). This replacement may reduce the time and computational resources needed for
evaluations, if the surrogate model is capable of delivering fast and accurate predictions.
For problems such as lane-keeping, where input evaluation involves costly simulations,
utilizing the surrogate model can significantly impact the exploration of the algorithm.

We adopted three distinct surrogate models to predict two behavioural features (i.e.
mean lateral position and standard deviation of steering angle) along with the closeness
to misbehaviour (i.e. distance to the road boundaries). These predictions would need
the execution of simulations in the original configuration of DEEPATASH.

6.4.4 Archive of Solutions

The UPDATEARCHIVE function that manages the fixed-size archive of solutions is described
in Algorithm 5. In DEEPATASH-LR, the surrogate model can be employed to predict
the behaviour of the original ADS, allowing for faster fitness evaluations during the
evolutionary process. However, when an individual is deemed as eligible for inclusion
in the archive by the surrogate model, i.e., its predicted distance from the target cell is
lower or equal to 1, DEEPATASH-LR re-evaluates it by performing a simulation using the
original ADS. As shown in lines 3-4 of Algorithm 5, the re-evaluation takes place only
if the candidate was evaluated through the surrogate model, instead of performing a
simulation. Such re-evaluation recomputes the values of the behavioural features and
of the fitness functions, allowing to obtain a more accurate and reliable assessment. In
fact, this additional evaluation step ensures that individuals that are close enough to the
target cell undergo a final assessment with the original ADS to confirm their suitability
for inclusion in the archive. By doing so, DEEPATASH-LR maintains the integrity of the
archived solutions and ensures that the best-performing inputs are validated against the
real ADS system.

87 6.4 Focused Testing with Surrogate Models: the DeepAtash-LR Technique

Algorithm 5: The UPDATEARCHIVE function
Input : P: population

A: initial archive
targetCell: target feature value ranges
UseSurrogate: if surrogate model is used or not

Output : A: updated archive
1 foreach p 2 P do
2 if DIST(p, tar getCel l) 1 then
3 if UseSurrogate then

4 EVALUATE(p, A, targetCell, UseSurrogate=False);

5 end

6 if A is not full and p /2 A and DIST(p, tar getCel l) 1 then
7 A.insert(p) ;
8 else
9 ind GETWORSTINDIVIDUAL(A);

10 if DIST(p, tar getCel l) < DIST(ind, tar getCel l) then
11 A.insert(p) ;
12 A.remove(ind) ;
13 else
14 if DIST(p, tar getCel l) == DIST(ind, tar getCel l) then
15 if p.behaviour < ind.behaviour then
16 A.insert(p) ;
17 A.remove(ind) ;
18 else
19 if p.behaviour == ind.behaviour & p.sparse > ind.sparse

then
20 A.insert(p) ;
21 A.remove(ind) ;
22 end
23 end
24 end
25 end
26 end
27 end
28 end
29 return A ;

88 6.5 Experimental Evaluation on ADSs

When the archive is not yet full (i.e., it contains less solutions than its predefined
target size), DEEPATASH-LR adopts an inclusive approach towards candidate individuals.
All individuals that reach the target cell or the neighboring feature map cells are included
in the archive (lines 6-8). Otherwise, if the archive reaches its maximum capacity, the
new candidate input competes with the worst individual currently present in the archive,
i.e., the individual stored in the archive with the highest distance to the target and (for
equal distances to the target) the lowest sparseness (line 9).

At the end of the search process, the FILTERMISBEHAVIOURS function (line 27 of
Algorithm 4) is executed to filter and retain only the misbehaviour-inducing inputs in
the archive. Since the archive may also contain correctly-behaving inputs, this filtering
step is necessary to focus solely on the inputs that cause misbehaviours in the ADS under
test.

6.4.5 Mutation

The MUTATE function (line 13 in Algorithm 4) mutates an existing input to generate a
new input. This operator applies a perturbation, uniformly sampled in a customisable
range, to the input model’s control parameters. More specifically, DEEPATASH-LR mutates
the road geometry by applying a displacement to the coordinates of the model’s control
points. Each time an input is mutated, DEEPATASH-LR verifies that the mutant complies
with the domain-specific validity constraints. In particular, DEEPATASH-LR verifies that
the mutant is different from its parent and it is a valid road, i.e., (1) the start point and
the end point of the road should be different, (2) the road should fall within a square
bounding box of fixed size, and (3) a road should not self-intersect. If any of these
checks fails, the mutation operator is applied repeatedly, until a valid input is obtained.

6.4.6 Population Management

DEEPATASH-LR starts its search from an initial population of size popsize, which is
obtained by selecting from a larger pool of inputs, named seeds. Function INITIALISE-
POPULATION (line 2 in Algorithm 4) selects the popsize individuals closest to the target
from the seeds S. More specifically, to generate the seed pool S, we randomly generate
valid roads, i.e., roads with different start/end points that do not self-intersect and are
entirely contained within a squared bounding box of fixed size.

6.5 Experimental Evaluation on ADSs

6.5.1 Research Questions

The goal of our evaluation is to understand the effectiveness of our approach in generat-
ing misbehaviour-inducing test inputs with the desired features for ADS. In particular,
we compare two alternative surrogate model candidates, assess different alternative

89 6.5 Experimental Evaluation on ADSs

configurations of DEEPATASH-LR, compare the best DEEPATASH-LR configuration with
an existing state-of-the-art test generator (DEEPHYPERION-CS), and investigate the use-
fulness of the generated test inputs for improving ADSs. Therefore, we answer the
following research questions:
RQ0 (DNN vs LR): Which type of surrogate model is more efficient and effective?

A crucial aspect of our approach involves the careful selection of the surrogate model,
which is tailored to the specific characteristics of the domain. To this aim, we explored
the possibility of employing either Linear Regression (LR) or Deep Neural Networks
(DNN) as surrogate models to predict the behaviour of the driving agent. LR fits a linear
model with coefficients (�0, ..,�p) to minimize the residual sum of squares between the
observed targets in the dataset, and the targets predicted by the linear approximation.
Mathematically it solves a problem of the form:

min
�0,�1,...,�p

nX

i=1

�
yi � (�0 + �1 xi1 + �2 xi2 + . . .+ �p xip)

�2

where n is the number of observations, p is the number of features, yi is the observed
target for the ith observation, and xi j is the jth feature value for the ith observation.
We adopted three separate LR models for predicting two behavioural features values
and the value of closeness to misbehaviour fitness.

As DNNs are general function approximators even for non linear functions, we
considered two distinct DNN architectures. The former consists of 3 dense layers with
Sigmoid activation, aimed to predict the closeness to misbehaviour. In fact, the Sigmoid
is a nonlinear function that supports also negative values. The latter consists of 3 dense
layers with ReLU activation, aimed to predict each behavioural feature. We use a ReLU
activation as it is monotonic and positive and, thus, it works well for values between
0 and infinity. While there are other alternatives for designing the architecture of the
surrogate models, we chose a simple 3-layered architecture as it is not a complicated
task and because we wanted to keep our approach efficient, i.e., with low training and
prediction time.
RQ1 (Surrogate Model): Does the surrogate model improve the effectiveness of the original
tool, DEEPATASH?

This RQ assesses whether the use of the surrogate model impacts the effectiveness
of focused test generation in DEEPATASH-LR. Specifically, our objective is to compare the
performance of DEEPATASH-LR with the previous version, DEEPATASH, which does not
utilize surrogate models.
RQ2 (Single vs Multi Objective): Is DEEPATASH-LR mode effective in the single or in the
multi objective configuration for generating focused test inputs?

DEEPATASH-LR can be alternatively configured with single- or multi-objective search
strategies, as explained in Section 6.1.4. This RQ aims at comparing the effectiveness of
such two alternative configurations.

90 6.5 Experimental Evaluation on ADSs

RQ3 (Comparison): How does DEEPATASH-LR compare with the state-of-the-art tool
DEEPHYPERION?

In this RQ, we are interested in whether DEEPATASH-LR outperforms DEEPHYPERION-
CS in generating test inputs in proximity of and within the target cell. We com-
pare the best performing DEEPATASH-LR configuration (obtained from RQ2) against
DEEPHYPERION-CS, as the latter is the only state-of-the-art test generator that targets the
feature space at large by means of an illumination search algorithm. DEEPHYPERION-CS
tries to cover all feature combinations and thus it is more likely to produce inputs on
the selected target than e.g. random techniques, which may produce few or no inputs
on the target, making the comparison with DEEPATASH-LR impossible. To the best of
our knowledge, no other DL test generator is focused, i.e., capable of targeting a specific
region of the feature space. Moreover, DEEPHYPERION-CS (Chapter 5) is a model-based
test input generator that is applicable to BEAMNG and shares the same input represen-
tation and mutation genetic operators as DEEPATASH-LR. Such similarities allow for a
fair and unbiased experimental comparison by eliminating confounding factors, which
helps us to assess the specific and isolated contribution of our focused algorithm and
the associated surrogate model (DEEPATASH-LR) to the test input generation process.
RQ4 (Usefulness): Can the test inputs generated by DEEPATASH-LR be used to improve
the ADS system under test?

To investigate the usefulness of DEEPATASH-LR in a common DL usage scenario, we
simulate a situation where a dev2op data shift is observed. This means that a particular
feature combination is frequently encountered during the operation of the DL system,
but it was inadequately represented or not present at all during the system’s development
phase, e.g., in the original training data. In this context, DEEPATASH-LR serves as a
valuable tool for testers to address this data shift and target specific feature values of
interest. By generating test inputs that focus on underrepresented and critical feature
combinations, testers can effectively fine-tune the DL system. In this way, the generated
test inputs are used to improve the quality of the DL system. Obviously, testers should
assess also that fine-tuning does not introduce regressions or unintended side effects,
e.g., the system may learn how to deal with the new test inputs, but might “forget” the
correct behaviour for inputs belonging to the original training set.

6.5.2 Metrics

In this study, we define feature maps by considering high-level features that effectively
characterize a self-driving scenario from the input and behavioural viewpoint. Specif-
ically, we resorted to the features proposed in the Chapter 5. These features and the
metrics to measure them were obtained by adopting a systematic methodology for
feature definition and metric identification (Section 5.1). For this work, we chose the
following features that cover both structural and behavioral attributes of the test inputs,
thereby providing a comprehensive assessment of the driving agent’s quality.

91 6.5 Experimental Evaluation on ADSs

• Standard Deviation of Steering Angle (StdSA): measures the level of activity ex-
hibited by the driving agent on the steering wheel and can be used to quantify
passenger comfort and driving quality;

• Mean Lateral Position (MLP): represents the ego-car’s positioning within the right
lane. It is computed as the mean distance between the center of the car and the
right lane margins;

• Turn Count (TurnCnt): corresponds to the number of direction changes between
consecutive road segments, with a requirement that the angle of change be at
least 5�.;

• Maximum Curvature (Curv): provides insight into the severity of the turns com-
posing each road, by computing the reciprocal of the minimum road turn radius.

To compare alternative surrogate models, we use Mean Squared Error (MSE). This
metrics are commonly used to evaluate the performance of ADS components in offline
mode, i.e., without performing simulations. Given a set of predictions ŷi and the
corresponding expected values yi for n data points, MSE is computed as follows:

MSE =
1
n

nX

i=1

(ŷi � yi)2 (6.6)

A lower MSE indicates that the model’s predictions are closer to the expected values,
suggesting a better fit of the model to the data. In addition, we report the training time
of each model to assess their efficiency.

We evaluate DEEPATASH-LR’s effectiveness by counting the inputs that fall within
or close to the target cell. To this aim, we measure the Tests Close to the target (TC), a
metric that quantifies the number of generated misbehaviours in the proximity of the
target feature map’s cell, i.e. the solutions stored in the archive with distance to the
target lower than or equal to 1. Additionally, we assess DEEPATASH-LR’s ability to cover
the target cell by computing the number of Tests on Target (TT), i.e., the number of
misbehaviours that fall exactly within the boundaries of the target cell. To evaluate the
diversity of test inputs, we resort to the Tests Close to the target Diversity (TCD) and Tests
on Target Diversity (TTD) metrics (see Section 6.2.2).

We evaluate DEEPATASH-LR’s usefulness by assessing the driving model’s performance
after fine tuning it on DEEPATASH-LR’s inputs. We consider both offline and online
evaluation. Offline evaluation involves testing the DL model using pre-collected data
without real-time interaction, while online evaluation involves deploying the DL model
in a real-time, interactive environment, typically using a simulator.

MSE is particularly useful for assessing regression tasks, in which the goal is to predict
continuous numerical values. We measure MSE before and after fine tuning the model
in offline mode. To evaluate the model in online mode, we measure Success Rate (SR)
which indicates the ability of the self-driving car to drive on the road without any failure

92 6.5 Experimental Evaluation on ADSs

0.0 2.1 4.2 6.2 8.3 10
.4
12
.5
14
.6
16
.7
18
.8
20
.8
22
.9
25
.0

Curv

155.0

156.9

158.8

160.8

162.7

164.6

166.5

168.4

170.3

172.2

174.2

176.1

178.0

0
L3

0.0 2.1 4.2 6.2 8.3 10
.4
12
.5
14
.6
16
.7
18
.8
20
.8
22
.9
25
.0

Curv

0.0

2.0

4.0

6.0

8.0

7u
rn
Cn
t

0.0 2.0 4.0 6.0 8.0

7urnCnt

11.0

24.9

38.8

52.8

66.7

80.6

94.5

108.4

122.3

136.2

150.2

164.1

178.0

6t
d6
A

0.0

0.2

0.4

0.6

0.8

1.0

Figure 6.4. Average Misbehaviour Probability (AMP) maps generated by DeepHyper-
ion for BeamNG. The axes quantify different features. The cells report the probability
of exposing a misbehaviour for the corresponding feature value combinations, i.e.,
darker colors correspond to higher misbehaviour probabilities.

(i.e. without driving out of the boundaries of road). Online evaluation is conducted also
to verify that the model successfully passes the regression test scenarios [53, 136].

6.5.3 Experimental Procedure

We evaluate DEEPATASH-LR on a popular, safety-critical DL-based ADS. Specifically, we
considered the DAVE-2 end-to-end driving agent, which utilizes the DL architecture
developed by Bojarski et al. [17]. The objective of DAVE-2 is to address a regression
task by predicting steering angles based on images captured by the on-board camera,
ensuring the ego-car remains within the right road lane. DAVE-2 has been adopted as
subject system by a large number of studies on ADS and DL system testing [70, 75, 138,
119, 61, 159, 161, 135].

To answer our research questions, we ran DEEPATASH-LR in the three evaluation
scenarios outlined in Section 6.2.3, along with DEEPHYPERION-CS, on the subject system.
We focused our analysis on a subset of three pairs of features, chosen from the total of
six possible pairs, due to practical considerations. Specifically, the cost of conducting
complex and resource-intensive driving simulations escalates significantly. To ensure a
controlled and effective evaluation process, we carefully selected three representative
and diverse pairs of features that were likely to provide valuable insights into the
performance and behaviour of the DL system. In particular, we chose a combination
of two structural features (i.e., Curv-TurnCnt) and two combinations consisting of a
structural and a behavioural feature (i.e., TurnCnt-StdSA and Curv-MLP). These selections
are particularly interesting because for these combinations the exploration achieved by
DEEPHYPERION-CS is not as extensive as for other feature combinations (which justifies
a focused approach) and because they contain a lower number of misbehaviours.

For each evaluation scenario, the first step is the selection of the target cell from

93 6.5 Experimental Evaluation on ADSs

Table 6.5. Hyperparameters used in the experiments

Parameter BEAMNG
seed pool size 80
initial pop size 48
population size 10
time budget (s) 36000
repopulation upper bound 2
target archive size 10
number of epochs for retraining 20
learning rate for retraining 0.0001

the misbehaviour probability maps generated by DEEPHYPERION-CS (see Figure 6.4).
Specifically, we require that the chosen target cell contains a number of instances
that falls below the average count observed across all cells within the feature map.
This filtering mechanism ensures that cells with comparatively fewer occurrences are
prioritized for selection, tackling the scarcity of data in such regions. Correspondingly,
we randomly chose dark cells and grey cells with a coverage (i.e., number of individuals
assigned to the cell) achieved by DEEPHYPERION-CS lower than the average cell coverage
across all DEEPHYPERION-CS’s runs.

Notably, this filter is not applicable to white cells, as they do not contain any existing
data. For white targets, we selected cells that were not covered in the DEEPHYPERION-CS
misbehaviour probability maps. However, since uncovered cells might correspond to
unfeasible feature combinations, we randomly selected white cells that were adjacent
(with a distance 1) to covered cells.

We ran DEEPATASH-LR focusing on the identified target cells and collected the
resulting archives of solutions. The hyperparameters of DEEPATASH-LR were derived,
whenever possible, from the experiments conducted with DEEPHYPERION-CS, reported
in Chapter 5. We fine tuned these hyperparameters through a few preliminary runs to
ensure that the target cells could be reached. The values of the hyperparameters are
presented in Table 6.5.

We initiated the search process by randomly generating a pool of seeds, the quantity
of which was defined as the seed pool size. These seeds serve as starting points for the
search processes. From this pool of seeds, we selected the initial pop size inputs that
were closest to the target cell. These chosen inputs constituted the initial population
for the targeted test generation. By starting the search in proximity to the target, we
focus the optimization process on relevant regions, thereby increasing the likelihood of
generating inputs that trigger failures and possess feature values of interest.

To allow statistical analysis, we performed the same number of runs for each con-
figuration of every test generator. We ran DEEPATASH-LR 10 times for each type of
target (i.e. dark, grey and white targets), for each feature combination (Curv-TurnCnt,

94 6.5 Experimental Evaluation on ADSs

TurnCnt-StdSA, Curv-MLP), and for each considered search strategy (i.e. GA and NSGA-
II). Since there were no dark target areas in the AMP of the TurnCnt � StdSA feature
combination, we excluded the dark target area specifically for this target type – feature
combination pair. Hence, in total we performed 10⇥(3⇥3�1)⇥2 = 160 DEEPATASH-LR
runs. For what concerns DEEPATASH, we started our experimentation considering one
feature combination for each type of target. Correspondingly, DEEPATASH underwent
execution with 2 search strategies for three pairs of target type and feature combination,
resulting in a total of 2 ⇥ 3 ⇥ 10 = 60 DEEPATASH runs. Since after collecting these
results the superiority of DEEPATASH-LR was undoubtedly obvious, we preferred to save
experimentation time and we did not run the remaining 5 pairs of target type – feature
combination. DEEPHYPERION-CS is not a focused test generator, so it does not require
to be executed for different target types. Consequently, we run DEEPHYPERION-CS 10
times for each of the three feature combinations (10⇥ 3 = 30 DEEPHYPERION runs)
In summary, the total number of runs performed was 250 (160 DEEPHYPERION + 60
DEEPATASH + 30 DEEPATASH-LR).

To ensure a fair comparison, we ran all tools with the same time budget (i.e., 10
hours). To assess the statistical significance of the comparisons between DEEPATASH

and DEEPATASH-LR (RQ1), between different DEEPATASH-LR configurations (RQ2), and
between DEEPATASH and DEEPHYPERION-CS (RQ3), we applied the Mann-Whitney U-test
and measured the effect size by means of the Vargha-Delaney’s Â12 statistic [5].

In our experiments we used the best-performing surrogate model found by RQ0.
Specifically, we ran DEEPATASH-LR on a predefined target cell with a time budget of
2 hours to collect the training data and trained the surrogate models, i.e., a LR and a
DNN. Then, we assessed the surrogate models on a random pool of 40 valid roads. To
allow statistical analysis, we repeated this experiment 10 times, using a different test
set for each repetition.

To address RQ4, we performed fine tuning [12] of the DL model under test. The
fine tuning process involved extending the model’s training by conducting additional
epochs under the same configuration (see Table 6.5). Such training was performed
using the test inputs generated by DEEPATASH-LR that were close to (TC) and within
(TT) the designated target regions. To this aim, we collected all the inputs generated
by DEEPATASH-LR within and close to the targets. Then, we divided these inputs into
two distinct sets, i.e., t rainingDA and testDA, 80% for training and the remaining 20%
for testing. The combination of the original training set and t rainingDA was used to
fine tune the DL system. This choice reduces the risk of forgetting the learned task, by
ensuring that both original training data and newly generated inputs are simultaneously
available during training. We generated 10 random valid roads to serve as the test set.
This test set and testDA were employed to evaluate the accuracy improvement of the
fine-tuned DL system and verify if the driving agent exhibited a decline in handling
inputs that were previously managed correctly before fine-tuning. To establish the
statistical significance of the improvement in accuracy, we repeated the fine-tuning

95 6.5 Experimental Evaluation on ADSs

Table 6.6. RQ0 - Mean Squared Error (MSE) and training time (Time) for DNN
and Linear Regression (LR) as surrogate model for DeepAtash-LR. In each column,
boldface indicates the minimum for MSE and time; underline indicates values
significantly higher than the remaining ones (p-value < 0.05, non-negligible effect
size).

MLP StdSA Closeness to Misbehaviour
Surrogate Model MSE Time (s) MSE Time (s) MSE Time (s)

DNN 2837.120 4.154 999.487 2.7436 0.056 2.461
LR 4.823 0.059 793.185 0.000 0.102 0.001

procedure 10 times for every run of DEEPATASH-LR on each target cell. This allowed us
to gather sufficient data and obtain reliable statistical results.

6.5.4 Results

RQ0: DNN vs LR

To choose the most suitable surrogate model for our purpose, we compared the candidate
models, i.e., DNNs and LRs (see Section 6.5). Table 6.6 shows the results achieved by
adopting DNN and LR models in terms of MSE along with the time needed to train them.
LR achieved significantly lower MSE and training time than DNN for both behavioural
features. Remarkably, LR achieved 588⇥ lower MSE than DNN for the MLP feature. As
fitness predictors, i.e., for the value of closeness to misbehaviour, DNN led to better
predictions in terms of MSE, while training time were significantly worse than LR. Hence,
we ultimately selected LR as the surrogate model for DEEPATASH-LR.

The good performance of LR suggests that the relationship between the input features
and the fitness values can be assumed to be approximately linear. LR is typically known
for its computational efficiency and accuracy, when dealing with problems that exhibit
linear trends in the data.

Summary: Linear Regressors are more effective and efficient than DNNs as surrogate
models for predicting behavioural features and the performance of the considered
ADS.

96 6.5 Experimental Evaluation on ADSs

Ta
bl

e
6.

7.
R

Q
1

-
Te

st
s

cl
os

e
to

ta
rg

et
(T

C
),

te
st

s
on

ta
rg

et
(T

T
),

te
st

s
cl

os
e

to
ta

rg
et

di
ve

rs
ity

(T
C

D
),

an
d

te
st

s
on

ta
rg

et
di

ve
rs

ity
(T

T
D

)
by

D
ee

pA
ta

sh
an

d
D

ee
pA

ta
sh

-L
R

.I
n

ea
ch

ro
w

,
bo

ld
fa

ce
in

di
ca

te
s

th
e

m
ax

im
um

m
et

ri
c

va
lu

es
be

tw
ee

n
D

ee
pA

ta
sh

an
d

D
ee

pA
ta

sh
-L

R
,

bo
th

w
it

h
G

A
(r

es
p.

N
SG

A
-I

I)
;

un
de

rl
in

e
in

di
ca

te
s

va
lu

es
si

gn
ifi

ca
nt

ly
hi

gh
er

th
an

th
e

re
m

ai
ni

ng
on

es
(p

-v
al

ue
<

0.
05

,n
on

-n
eg

lig
ib

le
eff

ec
t

si
ze

).

D
E

E
PA

TA
SH

D
E

E
PA

TA
SH

-L
R

G
A

N
SG

A
-I

I
G

A
N

SG
A

-I
I

Fe
at

ur
es

TC
[T

C
D
]

TT
[T

TD
]

TC
[T

C
D
]

TT
[T

TD
]

TC
[T

C
D
]

TT
[T

TD
]

TC
[T

C
D
]

TT
[T

TD
]

D
ar

k
C

ur
v-

Tu
rn

C
nt

0.
00
[0

.0
0]

0.
00
[0

.0
0]

0.
00
[0

.0
0]

0.
00
[0

.0
0]

4.
30
[0

.5
0]

3.
70
[0

.4
0]

7.
40
[0

.9
0]

6.
40
[0

.8
0]

G
re

y
Tu

rn
C

nt
-S

td
SA

0.
00
[0

.0
0]

0.
00
[0

.0
0]

0.
00
[0

.0
0]

0.
00
[0

.0
0]

2.
40
[0

.7
0]

2.
30
[0

.7
0]

3.
70
[0

.7
0]

1.
70
[0

.5
0]

W
hi

te
C

ur
v-

M
LP

0.
00
[0

.0
0]

0.
00
[0

.0
0]

0.
00
[0

.0
0]

0.
00
[0

.0
0]

4.
80
[0

.5
0]

2.
90
[0

.3
0]

4.
70
[0

.5
0]

4.
70
[0

.5
0]

97 6.5 Experimental Evaluation on ADSs

Table 6.8. RQ1 - Number of iterations performed by DeepAtash and DeepAtash-LR
in the same time budget. In each row, boldface indicates the maximum metric
values between DeepAtash and DeepAtash-LR, both with GA (resp. NSGA-II);
underline indicates values significantly higher than the remaining ones (p-value
< 0.05, non-negligible effect size).

DEEPATASH DEEPATASH-LR
Features GA NSGA-II GA NSGA-II

Dark Curv-TurnCnt 116.10 132.70 187.30 183.10
Grey TurnCnt-StdSA 104.70 122.70 155.20 196.80
White Curv-MLP 117.60 114.40 312.80 284.80

RQ1: Surrogate Model

To assess the usefulness of the surrogate model, we conducted a comparative analysis
between DEEPATASH-LR and DEEPATASH. Specifically, we considered only the three
evaluation scenarios in which both test generators were focused on the same type
of target for the same feature combination (see first two columns of Table 6.7 and
Table 6.8).

Table 6.7 presents the results achieved by DEEPATASH and DEEPATASH-LR, using two
distinct search strategies (GA and NSGA-II). As illustrated in the table, DEEPATASH was
not able to generate inputs close to the target, when operating without the support of
a surrogate model. In fact, DEEPATASH achieved zero test inputs both directly on the
target (TT) and in close proximity to the target (TC) across all of its runs. Conversely, by
integrating a Linear regression model within the search process, DEEPATASH-LR exhibited
a substantial enhancement. This improvement is manifested in the presence of diverse
inputs generated, both in close proximity to the target (TC) and directly on the target
(TT), across all feature combinations.

Furthermore, Table 6.8 reports the number of iterations performed by DEEPATASH

and DEEPATASH-LR within the given time budget. This count of iterations serves as an
indicator of the extent of the search process undertaken by each approach during the test
input generation procedure. DEEPATASH-LR executed a significantly higher number of
search iterations compared to DEEPATASH, for all targets (i.e., up to 199 more iterations
for the white target). This increase can be attributed to the time-saving advantage
gained by leveraging the surrogate model to avoid expensive simulations.

These results indeed affirm the crucial role of the surrogate model in directing
DEEPATASH-LR towards the target feature space through increased (surrogate) eval-
uations, thereby resulting in the creation of more focused test inputs, reaching the
target.

98 6.5 Experimental Evaluation on ADSs

Summary: The integration of surrogate models into the focused test generation
process is beneficial in scenarios where evaluations entail resource-intensive simu-
lations. The adoption of surrogate models allowed DEEPATASH-LR to navigate the
feature space with increased efficiency and efficacy, facilitating the production of
diverse misbehaviour-inducing inputs in proximity of and within the target cells. In
our case study, without surrogate model DEEPATASH did not reach any target cell
and performed substantially less search iterations than DEEPATASH-LR.

RQ2: Single vs Multi-objective

Table 6.9. RQ2 - Tests close to target (TC), tests on target (TT), tests close to target
diversity (TCD), and tests on target diversity (TTD) by alternative DeepAtash-LR
configurations. In each row, boldface indicates the maximum of each of the four
metrics between GA and NSGA-II; underline indicates values significantly higher
than the remaining ones (p-value < 0.05, non-negligible effect size).

GA NSGA-II
Features TC [TCD] TT [TTD] TC [TCD] TT [TTD]

D
ar

k Curv-MLP 5.50 [0.50] 5.50 [0.44] 6.70 [0.63] 5.30 [0.34]
Curv-TurnCnt 4.30 [0.36] 3.70 [0.31] 7.40 [0.65] 6.40 [0.65]

G
re

y Curv-MLP 1.60 [0.19] 1.50 [0.12] 5.80 [0.71] 4.60 [0.47]
Curv-TurnCnt 2.10 [0.31] 0.50 [0.10] 4.10 [0.51] 0.70 [0.10]
TurnCnt-StdSA 2.40 [0.50] 2.30 [0.30] 3.70 [0.54] 1.70 [0.15]

W
hi

te Curv-MLP 4.80 [0.36] 2.90 [0.26] 4.70 [0.36] 4.70 [0.44]
Curv-TurnCnt 4.10 [0.38] 3.30 [0.30] 7.80 [0.74] 7.20 [0.63]
TurnCnt-StdSA 0.00 [0.00] 0.00 [0.00] 2.00 [0.50] 0.00 [0.00]

AVG 3.10 [0.32] 2.46 [0.22] 5.27 [0.58] 3.82 [0.34]

Table 6.9 reports the results achieved by the two configurations of DEEPATASH-
LR, which adopt alternative search strategies. Specifically, we implemented GA as
single-objective approach and NSGA-II as multi-objective approach. For each evaluation
scenario detailed in Section 6.2.3, the table presents a row for every feature combination
under consideration. It should be reminded that in the dark cell scenario, we computed
the metrics only for two (Curv-MLP and Curv-TurnCnt) feature combinations, since
there was not any dark cell in the TurnCnt-StdSA AMP.

For dark and grey targets, NSGA-II always produced the highest number of diverse
inputs in close proximity to the target (i.e., TC and TCD values).

For white targets, NSGA-II achieved the highest TC, TT, TCD and TTD values for two

99 6.5 Experimental Evaluation on ADSs

feature combinations out of three. Remarkably, NSGA-II was the only DEEPATASH-LR
configuration able to generate inputs in proximity of the white target for the TurnCnt-
StdSA feature combination.

These findings highlight overall the effectiveness of both search strategies (DEEPATASH-
LR with GA vs NSGA-II), with an advantage observed in favor of NSGA-II. The last row
of Table 6.9 shows that on average, NSGA-II generated a higher number of diverse
misbehaviours both close to and on the target cell.

The statistical significance of this performance difference was observed in all metrics,
except for the test on the target diversity (TTD) metric, for which both strategies achieved
statistically comparable results. By employing the NSGA-II algorithm, our tool optimized
multiple fitness functions simultaneously. Such multi-objective approach allowed for
a more comprehensive exploration of the feature space. Consequently, this led to an
increased number of useful test inputs and provided a diverse set of driving scenarios.

Summary: The multi-objective configuration of DEEPATASH-LR generated a larger
number of inputs in close proximity to and exactly on the target cell compared to the
single-objective configuration. Moreover, the multi-objective configuration exhibited
higher diversity of the generated inputs.

RQ3: Comparison

Table 6.10 reports the results achieved by DEEPATASH-LR and the existing approach
DEEPHYPERION-CS. In this comparison, we focused on the DEEPATASH-LR configuration
featuring the NSGA-II multi-objective search strategy, as it had demonstrated superior
performance in the previous research question.

As indicated in the first two rows, for all dark targets, DEEPATASH-LR demonstrated its
superiority by generating significantly more and more diverse inputs in close proximity
to and exactly on the target cell. Remarkably, for Curv-MLP and Curv-TurnCnt feature
combinations, DEEPATASH-LR generated an average of 58.5⇥ more misbehaviours on
target compared to DEEPHYPERION-CS.

For most of the grey targets, DEEPATASH-LR and DEEPHYPERION-CS showed statisti-
cally comparable performance. Notably, DEEPATASH-LR outperformed DEEPHYPERION-
CS by generating a significantly higher number of tests close and on the target for
TurnCnt-StdSA and tests on the target for the Curv-MLP feature combinations, along
with achieving higher diversity. This performance gap was statistically significant for TT
(46⇥ higher) and TTD (7⇥ higher).

As regards targets for which DEEPHYPERION-CS was unable to generate failure-
inducing inputs (i.e., white targets), DEEPATASH-LR produced an average of up to 7.20
such inputs. This highlights DEEPATASH-LR’s ability to successfully cover regions in
the feature space that were completely unexplored by DEEPHYPERION-CS. Specifically,
for the TurnCnt-StdSA feature combination, DEEPHYPERION-CS failed to generate any

100 6.5 Experimental Evaluation on ADSs

Table 6.10. RQ3 - Results achieved by the compared tools. Tests close to target (TC)
and their diversity (TCD); tests on target (TT) and their diversity (TTD). In each
row, boldface indicates the maximum of each of the four metrics; underline indicates
values significantly higher than the remaining ones (p-value < 0.05, non-negligible
effect size).

DEEPATASH-LR DEEPHYPERION

Features TC [TCD] TT [TTD] TC [TCD] TT [TTD]

D
ar

k Curv-MLP 6.70 [0.64] 5.30 [0.68] 0.90 [0.10] 0.10 [0.02]
Curv-TurnCnt 7.40 [0.79] 6.40 [0.78] 1.50 [0.40] 0.10 [0.02]

G
re

y Curv-MLP 5.80 [0.60] 4.60 [0.70] 2.30 [0.31] 0.10 [0.10]
Curv-TurnCnt 4.10 [0.55] 0.70 [0.10] 1.20 [0.2] 0.10 [0.05]
TurnCnt-StdSA 3.70 [0.70] 1.70 [0.50] 0.40 [0.25] 0.10 [0.10]

W
hi

te Curv-MLP 4.70 [0.48] 4.70 [0.50] 1.00 [0.52] 0.00 [0.00]
Curv-TurnCnt 7.80 [0.97] 7.20 [0.90] 0.30 [0.12] 0.00 [0.00]
TurnCnt-StdSA 2.00 [0.50] 0.00 [0.00] 0.00 [0.00] 0.00 [0.00]

AVG 4.86 [0.59] 3.62 [0.47] 0.95 [0.30] 0.06 [0.08]

misbehaviours even in close proximity to the target, while DEEPATASH-LR succeeded in
producing an average of two diverse misbehaviour-inducing inputs.

The comparisons carried out across various evaluation scenarios consistently show
that DEEPATASH-LR outperformed DEEPHYPERION-CS, with statistically significant su-
periority observed in 60% of these comparisons. In the final row of Table 6.10, it is
evident that, on average, DEEPATASH-LR achieved better results than DEEPHYPERION-CS.
The statistical significance of this performance difference was observed across all the
considered metrics. In particular, DEEPATASH-LR generated an impressive 60 times
more inputs for the selected targets, underlining its substantial advantage. Our results
demonstrate the capability of DEEPATASH-LR in generating test inputs in feature space
areas where the test generator DEEPHYPERION-CS can generate few or no inputs.

Summary: DEEPATASH-LR outperforms the state-of-the-art tool DEEPHYPERION-
CS in generating misbehaviour-inducing inputs with specific target feature value
combinations. DEEPATASH-LR can effectively explore crucial areas of the feature
space of the DL system, which might be overlooked by DEEPHYPERION-CS.

101 6.5 Experimental Evaluation on ADSs

Table 6.11. RQ4 - Mean Squared Error (MSE) and Success Rate (SR) on the original
test set and on the test set generated by DeepAtash-LR, before and after fine tuning
the DL system with the training partition of generated inputs. In each row, boldface
indicates the minimum for MSE and maximum for SR; underline indicates values
significantly lower/higher than the remaining ones (p-value < 0.05, non-negligible
effect size).

Test Set DA Test Set

MSE before MSE after MSE before MSE after

Curv-MLP
0.0006

0.0003 0.0150 0.0095
Curv-TurnCnt 0.0003 0.0301 0.0139
TurnCnt-StdSA 0.0003 0.0222 0.0159

SR before SR after SR before SR after

Curv-MLP
1.00

0.99
0.00

0.75
Curv-TurnCnt 0.93 0.57
TurnCnt-StdSA 1.00 0.58

RQ4: Usefulness

Table 6.11 shows the improvements of the driving agent, which were achieved through
fine tuning using t rainingDA, the training partition of the inputs generated by DEEPATASH-
LR. The improvement is assessed by using two different test sets: (1) the test set made
of 10 random roads and (2) testDA, the test set partition generated by DEEPATASH-LR.
The “before” columns display the performance of the DL system on these two test sets;
the “after” columns display the performance of the fine-tuned DL system.

Since we selected a high-quality ADS, its initial MSE on the original test set was
quite low. Consequently, it was able to perfectly handle the driving task on such roads,
achieving a SR of 1. On the other hand, the ADS’s initial MSE on testDA was higher and
its success rate was obviously 0, as this set consisted of misbehaviour-inducing inputs.

Table 6.11 (top) reports the results of the offline evaluation, in terms of MSE.
Across all feature combinations, the fine-tuned ADS exhibited an improvement in its
prediction accuracy. In fact, MSE significantly diminished after the fine tuning process,
for both the test set and testDA. Quite surprisingly, we improved the MSE also on
the original test set despite the system’s initial high quality. Therefore, we not only
witnessed the absence of any signs of regression during the offline validation, but also
noticed a slight improvement in MSE on the original test set. This might be due to
an increased generalization capability induced by the additional training on inputs
with under-represented feature combinations. Table 6.11 (bottom) reports the results
of the evaluation in the simulation loop, in terms of SR. After fine tuning, we notice

102 6.6 Conclusions

minimal regression in terms of the system’s ability to successfully complete the driving
task. In fact, the SR on the test set remains notably high and is statistically comparable
to the perfect score achieved before the fine tuning process. On the other hand, the
fine-tuned ADS demonstrated a significant improvement in its ability to drive on the
roads belonging to testDA (i.e., SR = 63% on average).

Summary: DEEPATASH-LR is useful to improve the performance of the ADS through
fine tuning, by targeting feature combinations under-represented or unseen during
development. The inputs generated by our tool can serve as a diverse training set,
facilitating the enhancement of the performance of the ADS without compromising
its success rate.

Threats to Validity

External Validity: The selection of the experimental subject may pose a potential
threat to external validity. Nevertheless, we mitigated this concern by choosing an
ADS widely employed in SE research and adopting a driving simulator with precise
physics simulation capabilities. Furthermore, we verified that our chosen subject could
successfully manage all the driving tasks within a randomly generated test set.

The choice of targets introduces another potential external validity threat, as the
obtained results may not necessarily generalize to different target selections. To address
and mitigate this threat, we adopted a strategy for selecting three distinct types of
targets, each corresponding to different usage scenarios.

Finally, the comparison between LR and DNN may not be representative of all the
existing surrogate models. LRs have small number of parameters and can be trained
with small sample of training data. DNNs are more general, as they can approximate
any non linear function, but they have more parameters to train and, correspondingly,
require more training data and time. Therefore, we believe that these two models cover
the two most interesting classes of surrogate models, although we acknowledge that
alternatives do exist.
Conclusion Validity: The stochastic nature of DL-based ADSs and search-based ap-
proaches may affect the results. To address this concern, we adopted a rigorous ex-
perimental methodology by running each experiment multiple times and conducting
standard statistical tests to assess the significance of the obtained results.

6.6 Conclusions

DEEPATASH is the first automated focused test generator for DL systems. Our experiments
show that it outperforms the state of the art in generating diverse misbehaviour-inducing
inputs on predefined targets. Results show also that fine tuning a DNN on underrep-

103 6.7 Reproducibility

resented inputs produced by DEEPATASH not only increases its prediction accuracy on
them, but also its generalization ability on the whole input distribution.

We also proposed DEEPATASH-LR, a novel focused test generator for ADSs. DEEPATASH-
LR employs a surrogate model as a proxy for actual system’s execution, thus sidestepping
the need for resource-intensive evaluations, which would involve complete simulations
of the driving tasks on the candidate test scenarios. Our empirical study shows that
the evaluation using surrogate model implemented within DEEPATASH-LR significantly
improves the effectiveness of DEEPATASH in generating misbehaviour-inducing inputs in
the proximity of the target features. Moreover, we obtained empirical evidence showing
that the focused inputs generated by DEEPATASH-LR can be useful for improving the
ADS through fine tuning.

6.7 Reproducibility

The code implementing DEEPATASH and DEEPATASH-LR, the dataset, and all the scripts
to replicate the experimental evaluation are available online [163].

104 6.7 Reproducibility

Chapter 7

Automated Feature Extraction for
Testing Deep Learning Systems

Recent approaches based on illumination search, such as DEEPHYPERION-CS (Chapter 5),
evaluate DL system quality by explicitly searching for critical, misbehaviour-inducing
inputs with different features. Their output consists of feature maps, N-dimensional
grids that represent the performance of generated inputs in the space of the relevant
features. Feature maps proved to be extremely useful in several testing tasks such as
test selection [105], test adequacy assessment [39, 13], and misbehaviour explanation
[162].

A crucial problem of illumination search algorithms is the definition of features, as
these are usually problem- and domain-specific. We introduced a systematic method-
ology for defining features within a domain of interest. This methodology involves
multiple human experts with domain knowledge, who identify features (i.e., map di-
mensions) and metrics for quantifying such features (see Section 5.1). Additionally,
we require human effort also for designing models of the input to be perturbed by
mutation operators. Indeed, involving human experts contributes to more meaningful
and understandable feature dimensions. However, the careful engineering required
for defining features, metrics and input models is not trivial and may impose several
limitations on the applicability of this testing approach.

We propose a novel approach, DEEPTHEIA, that tackles the limitations of the state of
the art by introducing automated feature extraction and input perturbation operators
based on modern generative DL, which greatly reduce the costs of illumination search.
Specifically, DEEPTHEIA leverages the knowledge about the target domain automatically
learned by a DNN to extract the features that better capture the main characteristics of
test inputs. This information is easily accessible from the weights of the internal layers
of a general-purpose feature extractor or the network under test.

We evaluated our proposed technique on two different popular image classification
problems with increasing complexity, i.e., classification of handwritten digits and clas-

105

106 7.1 The DeepTheia Technique

Figure 7.1. Overview of DeepTheia

sification of real-world images. Our results show that, for both problems, DEEPTHEIA

produces feature maps that are highly discriminative in identifying the combinations of
feature values that trigger misbehaviours of the DL system. In particular, DEEPTHEIA

outperforms the features manually defined by experts in problems where DEEPHYPERION-
CS was applied with success. Remarkably, the features automatically extracted by
DEEPTHEIA perform well also for IMAGENET [126], where human-defined features could
not be defined. Furthermore, we conducted a study involving independent human asses-
sors. Results show that the automatically extracted features produce cohesive groups of
inputs mapped to the same cell, which indicates some degree of human interpretability
of each feature map cell.

7.1 The DeepTheia Technique

As described in Chapter 5, the DEEPHYPERION-CS approach relies on human experts for
feature definition and input model design, which requires domain expertise. In contrast,
our new approach overcomes these limitations by automating feature definition and
introducing input perturbation operators using generative DL. This results in a significant
reduction in the costs associated with the illumination search process.

Figure 7.1 presents an overview of DEEPTHEIA and highlights our proposed solutions
for fully automating the test generation process. DEEPTHEIA can perturb inputs by
leveraging diffusion models, besides input models explicitly defined by test engineers
(step 4). Unlike DEEPHYPERION-CS, DEEPTHEIA extracts features automatically using its
feature extractor component that exploits a transfer learning approach (step 5). In the
next sections, we detail the key steps of DEEPTHEIA.

7.1.1 Automated Feature Extraction

A crucial element of our approach is the automated feature extraction, as it directly
influences the ability of the test generator to produce a diverse test suite. Indeed, the
extracted features define the feature map, which is progressively populated with the

107 7.1 The DeepTheia Technique

Figure 7.2. Automated feature extraction from test inputs

most promising inputs during exploration. The key characteristics of features required
by illumination search are that they must be discriminative and quantifiable.

Figure 7.2 shows an overview of our proposed approach for extracting features to be
used as dimensions of the feature map. The goal of feature extraction is to identify input
characteristics that allow DEEPTHEIA to cluster similar inputs together, hence providing
a similarity based explanation for the causes of DL system’s misbehaviour, when a cell
contains misbehaviours. We automatically generate features using the following process:
firstly, using a feature extractor we obtain feature vectors, i.e., vectors of numerical
values that preserve the relevant information in the original input (Section 7.1.1). Then,
we project features onto the latent space through dimensionality reduction, to obtain
data points with reduced dimensions, while retaining the maximum possible amount of
information (i.e., data variation; see Section 7.1.1).

Feature Vector Generation

As shown in Figure 7.2, there are two alternative ways to generate feature vectors: (1)
the model under test itself; (2) an external feature extractor.

The Model Under Test, which is a DNN, already includes feature extraction layers
that are necessary for its processing. These may be convolutional, pooling and fully
connected layers, which can be used to extract the features associated with a given
input [47, 142]. For instance, in image processing the main building blocks of the DNN
are convolutional layers that extract visual features from the input. By adding pooling
layers on top of convolutional layers, the model can identify such visual features. To
use the model under test for feature extraction, we need to pre-process the data to
reshape the input vector and generate a vector with the size required by the model. We
then feed the pre-processed vector to the model and extract features. To obtain higher
level features, the output of the last feature extraction layers is collected. For instance,
such output can come from the last fully connected layer before the softmax layer of an
image classifier. The result is an abstract feature vector of size Nc , i.e., the size of c-th

108 7.1 The DeepTheia Technique

layer of the DNN. In this way, we can extract high level features from an input without
having to define and train any additional feature extraction model. On the other hand,
we are bounded by the capabilities of the model under test. If this is not good at feature
extraction, we will obtain poorly performing features.

Alternatively, we can apply a transfer learning based feature extraction method
using an External Feature Extractor model. Transfer learning leverages knowledge
from a general domain and applies it to a specific domain through the fine tuning of
a pre-trained model. Beyond the considerable time savings associated with transfer
learning, empirical evidence suggests that starting with a pre-trained model can yield
superior performance compared to training from scratch, even when addressing a distinct
problem [150].

There are several pre-trained models which are widely used for feature extraction in
the literature [65, 4, 8, 102]. For instance, VGGNet is a convolutional neural network
with multiple layers (i.e., 11 to 19 layers) for image recognition proposed by the Visual
Geometry Group at the University of Oxford [131]. Its feature extraction component
spans from the input layer to the final maximum pooling layer that outputs the feature
matrix. In order to use an external feature extractor, the input vector must be pre-
processed to fit the required input size and shape of the model. Then, the pre-processed
input is fed to the model. In the case of VGGNet, the last pooling layer returns a feature
matrix, which is flattened to generate the final feature vector.

Using any of the above approaches, the output of this step is a multi-dimensional
feature vector that abstracts important characteristics of the input into a numerical
embedding vector.

Dimensionality Reduction

In this step, we apply dimensionality reduction techniques to the high-dimensional
feature vector generated in the previous step. The goal is to obtain a lower-dimensional
vector in the latent space, a low-dimensional representation, inferred from the distri-
bution of input data and preserving the similarity among inputs with similar features.
In this work, each dimension of the latent space corresponds to one of the axes of
DEEPTHEIA’s feature map.

The rationale behind reducing their dimensionality lies in the richness and diversity
of feature vectors, which contain a plethora of information: attempting to find common
characteristics among different inputs in such high dimensional space and generating
discriminative feature maps is impractical without dimensionality reduction. In fact, in
a high dimensional space, feature map cells tend to be sparse and scarcely populated,
providing little additional information to the feature map user.

Hence, we use Principal Component Analysis (PCA) [37], a statistical method
commonly used for dimensionality reduction and data visualization. It transforms
high-dimensional data into a new coordinate system, where the axes are the princi-
pal components. These principal components are linear combinations of the original

109 7.1 The DeepTheia Technique

variables, and they are chosen to capture the space directions of maximum variance in
the data. To this aim, we “train” a PCA model on each considered input dataset. PCA
computes the Np space directions (eigen-vectors) where the input domain is projected
(with Np the number of reduced dimensions, defined by the user). In this way, PCA
summarizes the information content in a high dimensional dataset, by transforming
a large number of attributes into a smaller one, while retaining the majority of the
information (variance) present in the original attribute values.

Through PCA, we can generate a pre-defined number of feature dimensions (i.e.
the number of components selected after PCA) while preserving the most important
information of the inputs. Once PCA is trained, we can use it to determine the latent
vector corresponding to each input feature vector.

Since the latent space is continuous, we obtain the feature map coordinate along
each dimension through discretization, by scaling the latent feature value ind.li using
the scaling factors ↵i:

xi = b↵i · ind.lic (7.1)

where ind.li ,8i 2 [1 : N] indicates an individual’s latent feature values. The granular-
ity of the map, representing the number of cells in each dimension, is adjustable by
changing ↵i , which can be tailored for a given problem to achieve the desired level of
discrimination in the feature map.

7.1.2 Input Perturbation

Illumination search algorithms use mutation as an evolutionary operator to introduce
small, random changes to individuals (i.e., candidate solutions) in the population. It
mimics the concept of genetic mutation in biological evolution. In the context of testing,
mutation is used to generate new and potentially better solutions, by making incremental
modifications to existing test inputs.

The purpose of mutation operators is to explore the solution space by generating
different (and potentially better) test inputs. Specifically, DEEPTHEIA projects the solution
space to a feature space with lower dimensionality, i.e., the feature map, and applies
mutation operators to perturb inputs from the map cells, so as to explore the feature
map at large.

Test input generators for DL [91, 154, 24, 26, 90, 119] typically apply small pertur-
bations to initial seeds, i.e., inputs with known ground truth labels, under the assumption
that such perturbations will not change the label. For instance, a simple method for input
perturbation may apply small changes [112, 51, 143] directly to the input space, e.g.,
by modifying pixel values for images. While these techniques proved to be extremely
effective in assessing the robustness of the DL systems against adversarial attacks, they
are limited in testing the DNN performance in the presence of unexpected data, i.e.,
inputs not represented in the training set that may occur during system operation. To

110 7.1 The DeepTheia Technique

overcome such limitations, two main families of approaches gained popularity in DL test-
ing, i.e., the manipulation of models of the inputs and generative DL. We applied these
two input perturbation approaches to our case studies. For classification of handwritten
digits from the MNIST dataset, we used model-based input perturbation presented in
Section 5.2.1. In the following, we describe how we applied a diffusion-based input
perturbation approach to our case study, classification of photo-realistic images from
the ImageNet-1K dataset.

Diffusion-Based Input Perturbation

When the DNN input is an image, we can use generative DL to perform input perturbation.
Generative DL models operate by reconstructing the underlying probability distribution
of their training data as a low-dimensional latent space usually consisting of a normal
multivariate probability distribution of parameters. This knowledge is then used to
generate new inputs or to modify existing inputs that belong to the considered input
domain.

Differently from model-based input perturbation approaches, generative DL models
do not need human effort in designing manually the input model, as the probability
distribution of data is automatically extracted from the inputs used for training. For
this reason, generative DL models are particularly useful when an input model is not
available and is difficult to craft, e.g., for feature-rich input datasets such as real images.

Recent work from the literature adopt Variational AutoEncoders (VAEs) [72] and
Generative Adversarial Networks (GANs) [45]. However, these DL models may generate
invalid inputs due to the lack of continuity in the latent space. GANs are known for
their potentially unstable training and lack of diversity of generated inputs due to their
adversarial training.

Overall, the quality of inputs generated by these techniques heavily relies on the
quality of the training set and of the adopted generative model [120]. Hence, we prefer
to adopt more recent diffusion models for generating image variations, which result
in more realistic and valid images [25], by using domain-specific text prompts (i.e, a
text prompt including the expected class label) that guarantee the preservation of the
ground truth classification label with high probability.
Diffusion Models: Diffusion models [133] are probabilistic models designed to learn
a data distribution, denoted as p(x), through a gradual denoising process applied to
a variable sampled from a Gaussian distribution. In particular, the sampling process
initiates with a noisy sample xt and progressively generates less noisy samples xt�1,
xt�2, ... until arriving to a final sample x0. At each time step t, there is a corresponding
noise level, and xt can be understood as a mixture of a signal x0 with some noise ✏,
where the signal-to-noise ratio is determined by the time step t.

Instead of operating directly on the image, latent diffusion models (LDMs) [122]
operate by repeatedly reducing noise in a latent representation space generated by a
VAE. Like other categories of generative models, LDMs have the potential to characterize

111 7.1 The DeepTheia Technique

conditional distributions. Text conditioned (text-to-image) LDMs [25, 106] process a
text prompt fed into the noise predictor U-Net [123]. Text-to-image models start from a
random noisy image, while image-to-image latent diffusion models accept as input an
image along with a textual prompt. The model starts by encoding the input image to
the latent space. During the sampling step, the noise predictor U-Net takes the latent
noisy image and the textual prompt as inputs and predicts the noise in the latent space,
considering the image features described within the prompt. Then, it generates a new
latent vector by subtracting the noise from the input latent vector. After repeating this
sampling step a predefined number of times, the VAE decodes the obtained latent vector
to generate the new image. Generating realistic images while retaining the style and
semantic content of the input image is challenging for image-to-image LDMs, since
the latent distribution is biased in comparison to a standard Gaussian distribution. For
this reason, Zhang et. al. introduced an inference pipeline called Real-world Image
Variation by Alignment (RIVAL) [158] for diffusion models, which is able to generate
high-quality image variations by performing adaptive cross-image attention and latent
distribution alignment in the denoising steps. Using the RIVAL pipeline, it is possible to
generate image variations while maintaining semantic and style consistency with the
seed image (i.e. the reference image).

DEEPTHEIA’s diffusion-based approach: DEEPTHEIA generates image variations using
a modern image-to-image diffusion model. This involves supplying the model with a
reference image and a domain-specific textual prompt. In this way, we address our
twofold objective: to use a reference image for mutation and to ensure label preservation.

In particular, we adopt a pre-trained LDM called Stable Diffusion [122] and fine-
tune it by using images from the training set of the target class. While the pre-trained
model lays a robust foundation, tailoring it to a specific dataset and task significantly
enhances its efficacy, ensuring alignment with user-defined objectives and preserving
style, format and other qualitative aspects of the given input domain through fine
tuning [38, 125]. By using the RIVAL inference pipeline, we feed the LDM with the
reference image (i.e., the image to be mutated) and a predefined domain-specific textual
prompt. As output, the LDM generates a new input, which is a variation of the reference
image. One can control how much the output image adheres to the textual prompt
by determining the Guidance Scale parameter. Hence, higher guidance scale means
less creativity capacity for the LDM. The Sampling Steps parameter can also be used
to determine the number of iterations LDM performs to denoise the image. With each
step, some noise is progressively eliminated, leading to an improvement in the output
image quality. However, the greater the number of sampling steps, the longer it takes to
produce an image. Using textual prompts beside the image as inputs for the diffusion
model guarantees label preservation, as the prompt ensures the presence of the subject
class in the generated image.

Figure 7.3 shows two example images generated by our diffusion-based mutator.
Figure 7.3 (a) is a sample "pizza" image and (b) is the mutant image generated by LDM

112 7.2 Experimental Evaluation

Figure 7.3. Diffusion-based input mutation. (a) original input of class ”pizza”; (b)
mutated input; (c) original input of class ”tedd y”; (d) mutated input.

starting from the previous sample image and the text prompt: "A photo of pizza, best
quality, extremely detailed". Figure 7.3 (c) is a sample image labeled as "teddy", while
(d) is the mutated image generated by LDM when feeding it with the sample image and
the text prompt: "A photo of teddy, best quality, extremely detailed".

7.2 Experimental Evaluation

7.2.1 Research Questions

The goal of our evaluation is to understand whether the features automatically extracted
by DEEPTHEIA are effective for testing DL systems through illumination search. Therefore,
we seek answers for the following research questions:
RQ1 (Feature Discrimination): How are the features automatically extracted by DEEPTHEIA

able to discriminate failure-inducing inputs?
Effective features should be able to define feature maps that identify the combinations

of feature values that are likely to trigger a misbehaviour of the DL system under
test. This insight could offer developers a deeper understanding of the root causes of
misbehaviours. In fact, the presence of regions in the feature map (i.e., one or more
adjacent cells) characterized by significantly high probabilities of misbehaviours can
suggest that the input data clustered into these cells are prone to causing misbehaviours.
Moreover, generation or acquisition of new data that fall into these cells can be useful
to obtain more evidence about the observed failures and to possibly fix them (e.g., by
re-training).

Metrics: We aim to assess whether the generated feature map M , defined by the
automatically extracted features, is discriminative. Moreover, we aim to verify that the
combination of DEEPTHEIA’s features with illumination search is effective as it enables a
thorough exploration of the feature map. For the latter aspect, we measure the map
coverage as number of Filled Cells (FC) in the map; for the former the Average Cell
Impurity (ACI) of the map with respect to the behaviour of the inputs in each filled cell:

113 7.2 Experimental Evaluation

ACI(M)=

PFC
i=1 1� (p2

misbi
+ p2

cor recti
)

FC
(7.2)

where pmisbi
and pcorrecti

are the probabilities of misbehaviour and correct behaviour
of the model in the ith filled cell of the map M , respectively. Based on Equation 7.2,
the ACI value is between 0 and 0.5. A low value of ACI means that DEEPTHEIA can
effectively discriminate the system’s behaviour, by grouping in the same cells inputs
with the same behaviour.
RQ2 (Understandability): How understandable are the features automatically extracted
by DeepTheia?

Although features are automatically extracted (hence, not necessarily human in-
terpretable), it would be useful if they were also able to group inputs in a way that is
understandable to humans.

Metrics: The comprehensive evaluation of the understandability of our approach
requires humans in the loop. Therefore, we performed a human study involving inde-
pendent assessors to determine whether the group of images from a feature map cell are
more cohesive (i.e., contains more similar images) than a group of randomly selected
images. We report the cohesiveness rate for the groups of images from the same cell vs
randomly selected images from different cells of the feature map.

7.2.2 Experimental Procedure

We evaluate our approach using two popular image datasets, i.e., MNIST and IMAGENET.
These datasets are commonly employed in the literature to assess testing techniques
for DL systems [87, 66, 117, 27, 8, 152] and enable two distinct image classification
tasks. In particular, IMAGENET, with its 1k classes and large-size real images poses a
challenging task to test generators. Due to the complexity of IMAGENET images, it is
extremely difficult to define discriminative and understandable features. For each of
these two subjects, we consider widely adopted, pre-trained DL models.

We trained a weaker model for MNIST to show how DEEPTHEIA performs as model
quality varies. To obtain a weaker model we injected the “sub-optimal learning rate”
fault from the taxonomy of real faults for DL [60]. Specifically, we maintained the same
configuration but used a lower learning rate of 1⇥ 10�6, resulting in a test accuracy of
88.12%.

To answer our research questions, we ran DEEPTHEIA against the considered subjects.
As a baseline, we considered DEEPHYPERION-CS, the approach presented in Chapter 5.
Since it can perform only model-based input perturbations and an input model is
available only for the MNIST subject, we can compare our new tool with DEEPHYPERION-
CS only on MNIST.

We consider the results achieved by DEEPTHEIA on the two considered subjects with
two different feature extraction approaches, i.e., by using (1) the same model under

114 7.2 Experimental Evaluation

Table 7.1. Hyperparameters used in the experiments

Parameter MNIST IMAGENET

class/classes 5 Pizza, Teddy
initial pop size 800 100
time budget (s) 3600 10800
input perturbation type model-based diffusion-based
guidance scale - 5
sampling steps - 50
image size 28 ⇥ 28 224 ⇥ 224
model ConvNet ResNet50
framework Tensorflow PyTorch

test or (2) an external feature extractor. For each feature extractor, we trained its PCA
extractor by using the inputs with the label of interest from the original training set and
setting the number of components to be selected (which corresponds to the number of
feature dimensions) to 2. We performed only one training of each PCA component for
each considered subject as the output of PCA is deterministic.

Additionally, we report the results without test generation, exclusively considering
inputs from the MNIST test set and the IMAGENET training set. Due to the insufficient
number of inputs (50 inputs) for each class in the IMAGENET test set for generating the
feature maps, we used inputs from the training set instead.

For MNIST, we used DEEPHYPERION-CS with three different combinations of the
following manually defined features (see Section 5.1.3): (1) Luminosity (Lum), i.e.
number of pixels whose value is above 127; (2) Orientation (Or), i.e. vertical orientation
of the digit, obtained by computing the angular coefficient of the linear regression of
the non-black pixels; (3) Moves (Mov), i.e., sum of the Euclidean distances between
pairs of consecutive sections of the digit. Instead, on IMAGENET we do not report any
results for DEEPHYPERION-CS as it is not applicable to this complex dataset, which is
not equipped with manually defined/quantified features and with a model of the input
data, needed to perform input perturbation.

To ensure a fair comparison, all the feature maps were generated with the same
number of cells for each feature, i.e. 25 cells, and dimensions, i.e., 2. The extreme
values defining the range for each feature are the ones observed across the runs of the
tools.

To account for non-determinism, we ran each tool 10 times on both MNIST and
IMAGENET. This allowed us to analyse the statistical significance of the differences
between tools. We used the Mann-Whitney U-test and measured the effect size by means
of the Vargha-Delaney’s Â12 statistic [5].

Table 7.1 presents the values of the hyperparameters we used for each tool. We
configured DEEPHYPERION-CS according to the configuration suggested in the original

115 7.2 Experimental Evaluation

paper. We empirically obtained the configurations for DEEPTHEIA through some pre-
liminary runs. For MNIST, DEEPTHEIA randomly selects an initial population made of
800 inputs from the official MNIST test set, all belonging to the same class (i.e. digit
"5"). For IMAGENET, DEEPTHEIA randomly selects 100 inputs from the IMAGENET official
training set. We considered two different IMAGENET classes in our experiments (i.e.
"pizza" and "teddy").

We used the same model-based input perturbation approach to manipulate MNIST
inputs both with DEEPTHEIA and DEEPHYPERION-CS. In this way, we can effectively rule
out all confounding factors and clearly compare the features automatically extracted by
DEEPTHEIA with the ones defined by experts for DEEPHYPERION-CS.

For IMAGENET, we used our novel diffusion-based input perturbation approach,
presented in Section 7.1.2. In particular, we used the pre-trained Stable-Diffusion V1.51

model provided by Runway2 and fine-tuned it on an NVIDIA GeForce RTX 2080 Ti GPU
machine using Dreambooth [125] for 3000 training steps. For the fine tuning, we used
all the inputs in the IMAGENET training set belonging to the considered target class
(i.e., pizza or teddy) and 200 images generated by the diffusion model itself with a
domain-specific prompt (e.g. "A photo of pizza") designed to ensure label preservation.
For the inference, we used the RIVAL pipeline3 (the most recent approach for generating
real and high quality images at the time of writing) with guidance scale 5 and sampling
steps 50.

For the human study, we published two surveys (one for each subject) using the
Mechanical Turk platform provided by Amazon4. Each survey consists of 11 questions
to be answered by human assessors: 10 assessment questions (ASQ) and 1 attention
check question (ACQ). Specifically, we randomly selected 10 cells from a feature map
generated by DEEPTHEIA with the best performing feature extractor and generated plots
with groups of 4 images from each cell. Then, we generated 10 groups of 4 random
images from different cells (with a minimum mutual distance of 9, which was the
maximum possible distance to have at least 10 different groups of random images) from
the same feature map. In each ASQ, we showed the human assessor a group of images
from one feature map cell and a group of random images and asked them “Which group
of images are more cohesive (i.e. contains more similar images)?” The assessors were
provided with three possible choices: they could indicate that either the first group of
images (>) or the second group of images (<) is more cohesive, or the two groups
have the same level of cohesiveness (=). Assessors were also provided some examples
of cohesive vs random groups of images, to explain them how to carry out the task.
To avoid bias, such examples come from an independent dataset (Fashion-MNIST).
Figure 7.4 and Figure 7.5 show two sample questions from the human study for MNIST

1https://huggingface.co/runwayml/stable-diffusion-v1-5
2https://runwayml.com
3https://github.com/dvlab-research/RIVAL
4https://www.mturk.com

116 7.2 Experimental Evaluation

Figure 7.4. sample human study question for MNIST. The group of images on the
right are from the same cell of a feature map. The group of images on the left are
selected randomly from different cells of the same feature map.

and IMAGENET, respectively. For ACQ instead, we showed the human assessors the same
groups of images, hence the two groups should be rated as equal in cohesiveness level
(=). To ensure the quality of the answers we restricted the participation to the workers
with approval rate above 95% and we only accepted answers from the users who passed
the ACQ. We collected 80 answers from the human assessors, 40 for each case study.

7.2.3 Results

RQ1: Feature Discrimination

In this RQ, we investigate the discriminative capability of the features automatically
extracted by DEEPTHEIA. Table 7.2 and Table 7.3 report the results achieved by the
considered tools for MNIST and IMAGENET, respectively. Metric values are computed on
the feature maps filled by either the original test/training sets or the inputs generated
by the test generation approaches. This allows us to analyze the compared feature
extractors both with and without integration with the test generators.

Columns 2 and 3 of Table 7.2 report the results obtained on the original MNIST test
set, while columns 5 and 6 report the results by multiple runs of DEEPHYPERION-CS
and DEEPTHEIA. The results with and without test generation are in agreement. In

117 7.2 Experimental Evaluation

Figure 7.5. sample human study question for ImageNet. The group of images on the
right are from the same cell of a feature map. The group of images on the left are
selected randomly from different cells of the same feature map.

particular, the external feature extractor and the weak DNN generate maps that are
always more significantly covered than those obtained by the human-defined features
with large effect size. Moreover, the strong DNN model always achieves a significantly
lower impurity (with large effect size and p-value < 0.05). This means DEEPTHEIA

is better at grouping inputs with the same behaviours when a strong model is used
as feature extractor. The V GG16 feature extractor achieves a significantly better ACI
than the Mov � Lum and Or �Move feature combinations with large effect size, and
has a comparable ACI with the Or � Lum feature combination (p-value > 0.05), while
covering the map more extensively than all of them (FC = 346.3).

We further analysed the results obtained by DEEPHYPERION-CS and DEEPTHEIA by
comparing their Average Misbehaviour Probability (AMP) maps (see Figure 7.6). As
shown in Figure 7.6 (b), maps obtained by the strong and external feature extractors
have specific regions where the probability of misbehaviour is high (bold-bordered dark
cells). This result is comparable with the AMP maps generated by DEEPHYPERION-CS
(see Figure 7.6 (a)). Instead, the weak model failed to generate discriminative feature
maps as it produces multiple regions with high misbehaviour probability scattered across
the feature space.

As for IMAGENET, Table 7.3 shows that both automated feature extractors generated

118 7.2 Experimental Evaluation

0
.0

2
.8

5
.7

8
.5

1
1
.3

1
4
.2

1
7
.0

1
9
.8

2
2
.7

2
5
.5

2
8
.3

3
1
.2

3
4
.0

Mov

1.0

17.9

34.8

51.8

68.7

85.6

102.5

119.4

136.3

153.2

170.2

187.1

204.0

L
u
m

-1
6
3
.0

-1
3
5
.7

-1
0
8
.3

-8
1
.0

-5
3
.7

-2
6
.3

1
.0

2
8
.3

5
5
.7

8
3
.0

1
1
0
.3

1
3
7
.7

1
6
5
.0

Or

1.0

17.9

34.8

51.8

68.7

85.6

102.5

119.4

136.3

153.2

170.2

187.1

204.0

L
u
m

0
.0

2
.8

5
.7

8
.5

1
1
.3

1
4
.2

1
7
.0

1
9
.8

2
2
.7

2
5
.5

2
8
.3

3
1
.2

3
4
.0

Mov

-163.0

-135.7

-108.3

-81.0

-53.7

-26.3

1.0

28.3

55.7

83.0

110.3

137.7

165.0

O
r

0.0

0.2

0.4

0.6

0.8

1.0

(a) DeepHyperion-CS

(b) DeepTheia

Figure 7.6. Average Misbehaviour Probability (AMP) maps generated by (a)
DeepHyperion-CS and (b) DeepTheia for MNIST. The axes quantify different features.
The cells report the probability of exposing a misbehaviour for the corresponding
feature value combinations, i.e., darker colors correspond to higher misbehaviour
probabilities.

119 7.2 Experimental Evaluation

Table 7.2. RQ1 - Number of Filled Cells (FC) and Average Cell Impurity (ACI)
of DeepTheia and DeepHyperion-CS for MNIST using different Feature Extraction
(FE) models; best results in boldface.

Test set DEEPHYPERION-CS
Features FC ACI FC ACI
Mov-Lum 93 0.006 269.2 ± 7.1 0.070 ± 0.007
Or-Lum 217 0.007 288.6 ± 7.6 0.031 ± 0.005
Or-Mov 88 0.005 279.2 ± 10.7 0.083 ± 0.008

Test set DEEPTHEIA

FE FC ACI FC ACI
Strong DNN 225 0.004 262.5 ± 8.2 0.028 ± 0.004
Weak DNN 278 0.196 357.1 ± 5.1 0.169 ± 0.010
VGG16 272 0.008 346.3 ± 9.3 0.052 ± 0.007

Table 7.3. RQ1 - The number of Filled Cells (FC) and Average Cell Impurity (ACI)
of DeepTheia for ImageNet using different Feature Extractors (FE), for two different
classes, i.e., “Pizza” and “Teddy”; best results in boldface

Training set DEEPTHEIA

Class FE FC ACI FC ACI

Pizza
ResNet50 276 0.048 146.4 ± 5.1 0.021 ± 0.004
VGG16 272 0.039 185.4 ± 6.1 0.011 ± 0.004

Teddy
ResNet50 229 0.100 163.9 ± 7.5 0.061 ± 0.015
VGG16 251 0.052 159.2 ± 6.1 0.047 ± 0.009

discriminative maps, with low ACI both on training set and on tests generated by
DEEPTHEIA. In particular, the features extracted by the VGG16 model showed better ACI
values with statistical significance for both subjects, while achieving a map coverage
higher than (p-value < 0.05 for the class Pizza) or comparable to (p-value > 0.05 for
the class Teddy) the features extracted by the model under test (Table 7.3 columns 5
and 6).

Singletons in feature map cells artificially decrease the value of ACI, because their
impurity is by definition 0. To make sure that our results are not influenced by some
unbalance in the occurrence of singletons, we analysed their prevalence and found it
consistently around 40% with both ResNet50 and V GG16 feature extractors.

120 7.2 Experimental Evaluation

Summary: Automatically extracted features result in highly discriminative feature
maps (ACI < 0.04), enabling DEEPTHEIA to cover the feature space extensively
(FC > 200). External feature extractors (VGG16) achieved superior or comparable
performance as internal ones.

A major implication of this study for practitioners is that not only automated feature
extraction is possible and results in discriminative maps, but also that general purpose
feature extractors, independent of the model under test, can be used for feature map
construction. This relieves developers from the need of a strong model as feature
extractor, which might not be available in the initial development phase, when the
model might be still weak.

RQ2: Understandability

Table 7.4. RQ2 - Human assessment of Feature map vs Random based on cohesiveness,
highlighted with best results.

Subject Feature map Random No difference
MNIST 78.25% 4.00% 18.50%
IMAGENET 78.25% 8.75% 13.00%

Table 7.4 reports the results of our human study on the cohesiveness of DEEPTHEIA’s
feature maps. In the Feature map column, we report the average percentage of the
crowdworkers who identified the group of images from the same cell as more cohesive.
The Random column, reports the percentage of answers where the randomly selected
group of images was considered more cohesive. The last column indicates the average
percentage of crowdworkers who considered a similar cohesiveness level between the
two groups.

Overall, crowdworkers were able to perceive the higher cohesiveness of feature map
cells (more than 78%). Despite the variety of IMAGENET images, the cohesiveness of the
feature map cells was clear for the large majority of the assessors. Statistical significance
of the cohesiveness difference between one feature map cell and multiple random cells
was assessed by applying the Mann-Whitney U-test: a significantly higher percentage
(78.25%) of assessors chose the one cell images as more cohesive than the random cell
ones, with p-value < 0.05 and large effect size.

Figure 7.7 shows image groups used in the human study: the images selected from
one feature map cell are clearly similar among them (see Figure 7.7 (a) and (c)), while
random images from different cells are more diverse (see Figure 7.7 (b) and (d)).

121 7.2 Experimental Evaluation

(a) Selected from one cell of the feature map

of MNIST

(b) Randomly selected from different cells

of MNIST

(c) Selected from one cell of the feature map

of ImageNet

(d) Randomly selected from different cells

of ImageNet

Figure 7.7. Sample groups of images used for the human study.

122 7.3 Conclusion

Summary: The features automatically extracted by DEEPTHEIA are associated with
a perception of high cohesiveness in human assessors. The automatically generated
feature map cells contain cohesive groups of images.

A major implication of this study for practitioners is that the presence of a high
proportion of misbehaviour-inducing inputs in a given feature map cell is to some extent
human-interpretable. In fact our study shows that misclassified images assigned to the
same cell form a cohesive group of images that share substantial similarity. This may
possibly point to some human-understandable reason for the misbehavior, which might
trigger proper corrective actions (re-training on real-world images with such features).

Threats to Validity

External Validity: A potential threat to external validity is the selection of the exper-
imental subjects and datasets. To mitigate this threat, we chose two diverse image
datasets with increasing complexity that have been widely adopted in the literature.
Conclusion Validity: The inherent stochasticity in DL and search-based approaches
introduces variability in the results. To mitigate this, we employed a rigorous experimen-
tal methodology, running each experiment multiple times. We further applied standard
statistical tests to evaluate the significance of the observed differences.

7.3 Conclusion

We introduced DEEPTHEIA, a novel test generator for DL systems based on illumination
search. It automates the extraction of relevant input features using pre-trained models,
overcoming limitations of existing illumination-based tools by eliminating the need for
human experts to define features.

DEEPTHEIA shows significant improvements in the discriminative power of feature
maps, while preserving their cohesiveness and understandability, with respect to expert-
aided illumination search. Additionally, our novel mutation operator based on diffusion
models enables the generation of valid tests for complex image classification tasks, while
ensuring label preservation.

7.4 Reproducibility

The code implementing DEEPTHEIA, the dataset, and all the scripts to replicate the
experimental evaluation are available online [165].

Chapter 8

Comparison with Explainable AI
Approaches

The lack of explainability of DL models may impact the trust in their predictions and
consequently hinder the adoption of such systems. A common issue of DL systems is
that they may take wrong decisions based on spurious correlations or biases in the
training data, e.g., classifying wolves images as huskies due to the presence of snow on
the background rather than leveraging the characteristics of the animal [115].

Multiple techniques address the aforementioned issues and explain DL systems’ (mis-
)behaviours. Existing explanatory techniques characterise the misbehaviour-inducing
inputs either at a low level, by identifying the raw input elements (e.g., image pixels)
that are most relevant for the prediction, or at a high level, in terms of abstract features
that characterise the input as a whole. We will refer to these techniques as follows:

Low Level Explanations identify a portion of the input as relevant to a specific DL
prediction. Such identification is performed directly in the input space of the DL model.
Low-level techniques can provide explanations with different aggregations, reporting,
e.g., atomic input elements (e.g., pixels/words for an image/text) or contiguous regions
of input elements (e.g., sets of contiguous pixels/words). We considered two techniques
with different aggregations, representing the state of the art in the eXplainable AI (XAI)
community: LIME [115] and INTEGRATED GRADIENTS (IG) [139].

High Level Explanations identify relevant features that characterise the whole input.
Such identification is performed in the feature space, a manually-defined abstraction
of the input space. As high-level technique, we considered FEATURE MAPS (FM) that
characterise inputs through human-interpretable features defined by domain experts
(see Chapter 5).

We conduct an empirical study to investigate the similarity between explanations
provided by low- and high-level techniques for the same sets of inputs. In this way, we
can understand whether and to what extent different techniques are overlapping or
complementary in explaining DL misbehaviours. Explanatory techniques provide an

123

124 8.1 Comparing High- and Low-level Explanations

Figure 8.1. An overview of our evaluation pipeline

input characterisation that practitioners (e.g., software testers) can use to understand
why an input triggered a misbehaviour [99]. For this reason, we involved human experts
in our study to assess the understandability of the produced explanations, i.e., whether
human assessors consider the explanations as effectively pointing to a plausible cause
of the misbehaviour.

By leveraging input clustering and a novel ad-hoc similarity metric, our results show
that high- and low-level techniques provide different explanations, i.e., they partition the
same inputs in different ways. For most of the inputs, human experts chose either a low-
or a high-level technique as effective in explaining misbehaviours. These results show
that high- and low-level explanations are highly complementary. Results also show that
both explanations often do not match human judgement, especially when explaining
misbehaviours for image classifiers, hence demanding for novel XAI techniques that can
cover the mis-explained cases. The lack of explainability of DL models may impact the
trust in their predictions and consequently hinder the adoption of such systems.

8.1 Comparing High- and Low-level Explanations

To compare high-level and low-level explanations, we designed the evaluation pipeline
shown in Figure 8.1. Initially, we gather the inputs to be explained. Such inputs can
be either obtained directly from an existing dataset or can be automatically generated
by test generators (Sample Generation step). For each input, we obtain high-level
explanations in the Feature Map Computation step, i.e., we compute the FM cells it
belongs to. In this way, each FM cell represents a cluster of inputs sharing similar high-
level features. To obtain low-level explanations, we perform the Explanation Generation
step, in which we apply low-level techniques that generate heatmaps. Moreover, we
perform a Dimensionality Reduction step on low-level explanations to generate lower-
dimensional latent vectors. A latent vector is the projection of an input onto the latent
space. Using latent vectors allows us to avoid high variability and sparseness in the high-

125 8.1 Comparing High- and Low-level Explanations

dimensional heatmap explanations. Indeed, a sparse, highly variable representation of
the inputs would prevent the construction of meaningful clusters of the inputs, as in the
higher-dimensional space all distances/similarities tend to degenerate to the extreme
values, giving raise to degenerate clusters. Since both low-level explanatory techniques
and dimensionality reduction approaches are non-deterministic, we repeat the low-level
explanation generation multiple times. To make the explanations provided by low-level
techniques comparable to the high-level ones, we cluster low-level explanations by
using a Clustering technique. In the Clustering step, we group together similar heatmap
explanations, or the corresponding latent vectors (to address the sparseness problem).
In the Comparison step, we assess how similar the clusters generated by high-level and
low-level techniques are, based on our custom definition of a Gini similarity metric,
which is close to zero when the elements grouped together by one technique are scattered
across many clusters produced by the other technique and is equal to one when the
elements grouped together by one technique are all in the same cluster produced by the
other technique. Finally, we submit a questionnaire to experts in order to evaluate the
understandability of explanations in the Human Assessment step. In the following, we
provide a detailed explanation of each step of our evaluation pipeline.

Sample Generation: Since we are interested in investigating DL misbehaviours, we
resort to failure-inducing inputs artificially crafted by test generators, besides the ones
from the original dataset. In this way, we can collect enough misbehaviour-inducing
inputs even for robust DL models for which there are only a few misbehaviours in
the original test set. By considering both types of inputs, we perform our study on a
sufficient number of misbehaviours, covering a diversified variety of samples. We do
not use the train set because we mimic the testing phase, when developers evaluate a
DL model against new, unseen inputs

FM Computation: To provide high-level explanations, we used FM. FEATURE MAPS

can be generated with different feature combinations and numbers of dimensions. For
the sake of completeness, we considered all possible numbers of dimensions and feature
combinations when computing the FM. In this way, we can discuss the similarity between
high- and low-level explanations at increasing FM dimensionality (e.g., when moving
from one isolated feature to a combination of multiple features). For each input obtained
in the Sample Generation step, we compute its corresponding feature values, so we can
assign each input to the corresponding FM cell, i.e., the map cell whose value intervals
contain the measured input feature values. We use the non-empty FM cells, i.e., those
containing at least one misbehaviour-inducing input, as high-level explanation clusters.

Explanation Generation: In this step, we consider two popular XAI techniques as
our low-level explanatory techniques: IG for fine-grained explanations and LIME for
coarse-grained explanations. We apply the two considered XAI techniques separately
on the generated inputs and extract heatmaps as vectors representing the relevance of
input elements/regions.

Dimensionality Reduction: Beside the heatmap explanations in the original input

126 8.1 Comparing High- and Low-level Explanations

space, we consider explanations projected onto a latent space, i.e., latent vectors. In
fact, by projecting heatmaps to latent space, we keep a lower number of dimensions,
which are more representative of the meaningful directions of variability of the inputs,
possibly avoiding the construction of degenerate clusters. For generating latent vectors,
we choose the t-SNE algorithm [58, 147], since it projects similar inputs to neighbouring
points and dissimilar inputs to distant points with high probability.

We generate latent vectors in two modes: (1) global latent: the projections of expla-
nations in the latent space are computed considering inputs from all output classes; (2)
local latent: the projections of explanations in the latent space are computed considering
only inputs from a specific class. While the local latent space can achieve good separation
of inputs from a specific class, the global latent space aims at separating both different
classes of inputs and inputs within each class. The former is better if the generated
inputs stay confined within one class, while the latter might be beneficial when the
generated inputs tend to cross the borders between classes.

Clustering: The explanations generated by high-level techniques are FM cells based
on high-level feature values of the inputs, whereas low-level explanations are vectors of
contributions of low-level input elements/regions. Therefore, there is no way to directly
measure the similarity between explanations at these two different abstraction levels.
To make the comparison feasible, we propose to compare the clusters of explanations
instead of the raw explanations (which are uncomparable). The underlying idea is the
following: if two explanatory techniques group the inputs in a similar way, then they
can be deemed similar; otherwise they are different.

For high-level explanations we use map cells as clusters. For low-level explanations,
we need to group the explanations by using clustering approaches in such a way that
objects in the same group, i.e., a cluster, are more similar to each other than to those in
other groups. There exist multiple clustering techniques in the literature [93, 71, 29, 36].
For our study, we rely on the Affinity Propagation clustering technique [36] which
recursively exchanges messages between data points; such messages encode the affinity
of one point when choosing another point as its neighbor. The recursive exchange of
messages continues until a set of highly-affine groups emerges. The main advantage of
this clustering technique is that, unlike other techniques such as K-Means [93], (1) all
the points are considered as possible centroids of the clusters, which avoids biasing the
clusters to some randomly chosen points, used as the initial centroids; and (2) there
is no need to provide the number of clusters to the algorithm in advance. In this step,
we cluster the explanations in the three considered input spaces: original, consisting
of raw explanation vectors; global latent, consisting of globally projected explanations;
and local latent, consisting of locally projected explanations. Of course, each considered
space may lead to different clusters, based on the distribution of the inputs in the
corresponding space. The output of this step consists of the clusters generated for the
fine-grained and the coarse-grained explanations, in each of the considered input spaces.

Comparison: In the previous steps, we generated high-level and low-level expla-

127 8.1 Comparing High- and Low-level Explanations

nations for the considered inputs and processed them to generate clusters. The main
evaluation step of our study is the comparison of these explanation clusters. Exist-
ing similarity or distance metrics to compare two sets of clusters, such as the MoJo
metric [145], are based on the transformation of one cluster into the other. The com-
putational complexity involved in the computation of these metrics is typically high
(exponential in the worst case), but what is even more concerning in our usage scenario
is that such metrics are highly sensitive to the number of clusters, and when there is
a disparity in such number the distance tends to grow (similarity tends to decrease),
because more transformation steps are needed to change one clustering into the other.
However, a high disparity in the number of clusters is not necessarily an indicator of
distance in our case. In fact, if all clusters in one set are pure, because their elements
come from the same clusters in the other set, we deem the two clusterings very similar
between each other, regardless of any disparity in the number of clusters. To capture
such a notion of similarity between two sets of clusters, we define a novel metric based
on Gini Impurity (GI) [121]. GI reflects the impurity level of a group of entities by
indicating the probability that two samples from the given group have different labels,
i.e., belong to different classes. So, to compute GI we need to define what are the groups
and what are the labels. In our setting, when comparing two sets of clusters (low- vs
high-level explanations), groups are the clusters identified in one set (source clustering),
while labels are the cluster identifiers from the other set (target clustering). Hence, the
impurity of a group of data D (i.e., a cluster from the source clustering) against the
target clustering A can be measured as follows:

GI(D, A)= 1�
|A|X

i=1

p2
Ai (8.1)

where |A| is equal to the number of clusters in A, and pAi is the probability that cluster
id i of clustering A occurs in dataset D. GI ranges between 0 and 1, being 0 when D
contains no impurity (i.e., all its elements belong to the same cluster from A) and being
minimum when D is uniformly impure (i.e., all its elements belong to a different cluster
from A).

Let us consider cluster CB1 in Figure 8.2 (d). GI of CB1 against clustering A
(Figure 8.2 (a)) is computed as follows: GI(CB1, A) = 1�

P3
i=1 p2

Ai = 1� (1+0+0) = 0.
(pA1 = 1 is the probability of cluster CA1 to be found in cluster CB1; pA2 = pA3 = 0 is
the probability to find CA2, CA3).

We can now aggregate the computation of GI across all clusters that belong to
the source clustering B, using the clusters in A as labels, by taking the average cluster
impurity. The complement of such average impurity gives a Gini Similarity (GS) metric
between clusterings, ranging between 0 and 1, where 1 is achieved when all clusters in
B are pure (i.e., have GI = 0):

GS(B,A) = 1� 1
|B|

|B|X

i=1

GI(Ci , A) (8.2)

128 8.1 Comparing High- and Low-level Explanations

Figure 8.2. Gini Impurity (GI) computation with source B and target A (col. (d),
(a)), and with source A and target B (col. (c), (b)); colors and text in (d), (c) are
used to indicate the labels obtained from the target clusters (resp. (a), (b))

where |B| is equal to the number of clusters in clustering B, and Ci is the i th cluster in
clustering B.

Figure 8.2 (a) and (b) present two examples of clusterings A and B. To compute the
similarity between A and B, we consider the clustering B as source and then we color (and
label) its elements based on the clusters in clustering A (see Figure 8.2 (d)). GS(B,A) =
1� 1

4(GI(CB1, A)+GI(CB2, A)+GI(CB3, A)+GI(CB4, A)) = 1� 1
4(0+

1
2 +

4
9 +0) = 0.76.

GS is not symmetric by definition, as the labels assigned to the elements of one
clustering depend on the other, and such labeling changes when we swap the two
clusterings in the computation. For the example in Figure 8.2, let us now compute the
similarity between A and B. We now consider the clustering A as source and we color
(label) its elements based on the clusters they belong to in clustering B (see Figure 8.2
(c)). GS(A,B) = 1� 1

3(GI(CA1, B)+GI(CA2, B)+GI(CA3, B)) = 1� 1
3(

4
9 +

1
2 +

4
9) = 0.53.

To deal with the asymmetric nature of our metric, we report the maximum of the
two GS values obtained when considering source and target clusterings in both orders:

Similari t y(A, B) = Max(GS(A,B), GS(B,A)) (8.3)

Considering clusters A and B in Figure 8.2, Similari t y(A, B) = Max(0.53, 0.76) =

129 8.2 Empirical Study

0.76
Human Assessment: In this step, we conduct a human study to investigate the

understandability of explanations. We design a survey and provide human assessors
with low- and high-level explanations of misbehaviour-inducing inputs. Then, we ask
the assessors whether the shown explanations effectively indicate the cause of the
misbehaviour.

8.2 Empirical Study

8.2.1 Research Questions

RQ1 (Similarity): How similar are high-level and low-level explanations of DL misbe-
haviours?

High- and low-level approaches provide explanations about failure-inducing in-
puts from different perspectives. We aim to measure the similarity of these different
explanations to assess to what extent they are comparable or complementary.

Metrics: To assess how similar the explanations generated by high-level and low-
level techniques are, we compare the way inputs are grouped by similar explanations.
To this aim, we measure (1) the number of clusters generated by each technique and
(2) the similarity between these clusters according to our custom Gini Similarity (GS)
metric. If two techniques produce explanations that group the inputs in a similar way
(i.e., they produce nearly the same number of clusters that are pairwise very similar to
each other), then they can be deemed similar; otherwise they differ, as they partition
the input vectors in a different way.
RQ2 (Understandability): How understandable are high-level and low-level explanations
of DL misbehaviours?

Since high-level techniques quantify high-level input features, while low-level ap-
proaches highlight low-level elements of the inputs, it is important to investigate whether
these two types of explanations are equally understandable to humans.

Metrics: Effectively assessing the understandability of an explanation requires
humans in the loop. Therefore, we designed a human study to assess if explanations
are understandable and if they match the human expectations. We count the number of
cases in which the explanation Matches with Human (MH), i.e., the number of times
human assessors select a given explanation as possibly pointing to the cause of the
misbehaviour.

8.2.2 Experimental Procedure

In our study, we consider two DL systems belonging to different domains, i.e., hand-
written digit recognition and sentiment analysis, which have been widely used in the
literature to generate explanations for DL systems [115, 139].

130 8.2 Empirical Study

Table 8.1. Hyperparameters and configuration details

MNIST IMDB

Number of cells per feature 5 5
Number of runs 10 10
t-SNE components 2 2
t-SNE perplexity 1 1
Similarity metric Euclidean Euclidean
Input size 28⇥ 28 2000
Vocabulary size - 10000
Number of inputs 250 250
Target class label “5” “positive”
Number of steps for IG 50 50
Batch size for IG 64 100
Number of samples for LIME 100 5000
Explanation library Xplique Alibi, LIME

To obtain the explanations, we adopted the pipeline described in Section 8.1 (con-
figuration reported in Table 8.1).

As misbehaviour-inducing inputs, for MNIST, we used a set of 250 inputs belonging
to the same ground-truth class (i.e., digit "5"), either from the test set or generated by
test input generators. We used the DeepJanus [119] and Sinvad [66] test generators
since they (1) belong to different families of approaches (i.e., model-based and DL
generative, respectively), and (2) have been demonstrated to produce the highest ratio
of valid input that preserve their ground-truth label [120]. In particular, we could obtain
only 11 misclassified inputs belonging to the class digit "5" from the MNIST test set,
due to high accuracy of the considered model. Therefore, we also included 35 inputs
generated by DeepJanus and 204 inputs generated by Sinvad, to have enough and
diverse misbehaviour-inducing inputs for our study.

For IMDB, we also used a set of 250 inputs either from the test set or generated by
test input generators, all belonging to the same class ("positive" sentiment). We obtained
1924 misclassified inputs belonging to the class "positive" from the test set. Then, to
have more diverse inputs we also included 663 inputs generated by DEEPHYPERION-CS
(Chapter 5). Finally, we randomly selected 250 inputs from the overall set of 2587
candidate inputs.

To obtain low-level explanations, we used three open source libraries for images
and textual inputs, i.e., Xqlique [32] for image, and Alibi [74] and LIME [116] for text.

To obtain high-level explanations, we needed high-level features for each considered
domain. For MNIST inputs, we used the three high-level features (Section 5.1.3) defined
in our study involving human experts, i.e., (1) Luminosity (Lum): number of light
pixels in the image, obtained by counting the pixels whose value is above 127; (2)

131 8.2 Empirical Study

Orientation (Or): vertical orientation of the digit, obtained by computing the angular
coefficient of the linear regression of the non-black pixels; (3) Moves (Mov): sum of the
Euclidean distances between pairs of consecutive segments of the digit, the distance
being zero when consecutive segments are connected and greater than zero when there
are discontinuities. For IMDB reviews, we defined three features: (1) Positive word
count (Pos): number of words in the text with positive polarity, obtained by counting the
words tagged as positive in the English Opinion Lexicon [59]; (2) Negative word count
(Neg): number of words in the text with negative polarity, obtained by counting the
words tagged as negative in the English Opinion Lexicon; (3) Verb count (Verb): number
of verbs in the text, a proxy for the text complexity, computed by counting the words
with a verb tag, according to the part-of-speech (POS) tagging produced by the NLTK
library.

Our experimental procedure consists of the following two steps: (1) high- and
low-level explanations comparison, using clustering; and (2) human assessment of the
explanations, by means of two surveys: one for MNIST and one for IMDB.

High- and Low-Level Explanations Comparison

We generate FEATURE MAPS with 1, 2, and 3 dimensions re-scaled to size 5 per dimension.
We selected 5 as number of cells since the number of clusters (i.e., filled cells) with
this configuration is comparable to the number of clusters obtained through low-level
techniques, which allowed us to interpret each cell as a cluster without any need for an
additional clustering step. We ran FM generation only once since the clusters (i.e., the
cells) are deterministic.

As regards low-level explanations, we ran IG and LIME approaches 10 times each,
since the corresponding clusterings are obtained trough t-SNE, which is non-deterministic.
To obtain the best configuration for the t-SNE hyperparameters (i.e., number of compo-
nents and perplexity), we performed preliminary runs with different configurations and
selected the one producing the highest silhouette score. The best configurations of the
hyperparameters of IG and LIME are reported in Table 8.1.

For clustering the low-level explanations, we used the Euclidean distance to compute
the similarity matrices, where distances are computed in three different vector spaces:
original, global latent, and local latent (see Section 8.1). In the original space, we
consider heatmaps as vectors to be clustered. For MNIST, a heatmap is a 28⇥28 matrix,
where each vector component ei j is the contribution value of the pixel occupying the
i-th row and the j-th column in the image. The matrix is flattened into a vector before
applying clustering. For IMDB, a heatmap is a vector of size 10000, the size of the
vocabulary used by the tokeniser (which maps each word to the corresponding one-hot
encoding) and each vector component ei is the contribution value of the i-th word in
the text. In both global latent and local latent spaces, we use vectors of size 2, the same
number of dimensions that was found to be optimal for the t-SNE algorithm.

132 8.2 Empirical Study

Figure 8.3. Sample survey question for MNIST

Human Assessment of the Explanations

To determine whether an explanation is human-understandable, we asked humans to
determine which of the explanations provided them meaningful information about the
reason why the model misbehaves for specific inputs. We published two surveys (one for
each case study) by using Qualtrics, a survey platform commonly used also for software
engineering research [148, 88]. To ensure the assessment quality, we selected software
engineering researchers and allowed each of them to devote up to 1 week to answer
the questions and take at most 1 questionnaire for each case study.

For MNIST, we created a survey with 10 questions to be answered by human assessors.
To this aim, we randomly selected 10 "5" digit images from the MNIST data set which
are misclassified by the considered model and we computed high-level and low-level
explanations for each of them. More specifically, for the high-level explanations we
reported the feature values provided by the three-dimensional FM and for the low-level

133 8.2 Empirical Study

Table 8.2. RQ1 - Number of clusters (NC) for high-level techniques with different
feature combinations for MNIST and IMDB.

MNIST IMDB
HL Technique Features NC Features NC

Feature map 3D Mov-Lum-Or 31 Pos-Neg-Verb 27

Feature map 2D
Mov-Lum 17 Pos-Neg 15
Lum-Or 15 Neg-Verb 14
Or-Mov 14 Pos-Verb 12

Feature map 1D
Mov 5 Pos 5
Lum 5 Neg 5
Or 5 Verb 5

explanations we visualized IG and LIME heatmaps, overlayed on the original digit
images. We used 3D FEATURE MAPS for the human study to include all the available
features for the high-level explanations. For each MNIST image, we showed the human
assessors the possible explanations (i.e. FM, IG, and LIME) and asked them to answer
the following question: "Below is a digit "5" that was incorrectly believed to be another digit
by the computer. Please, select a possible explanation for such a mistake (you are allowed
to select more than one explanation if they make sense, or none of them if they do not make
sense)". Figure 8.3 shows a misclassified digit "5" with the three different explanations.
The assessors could select the explanations that they considered as a plausible reason
for the misbehaviour. In particular, the assessors were allowed to choose zero or more
explanations. We collected 29 answers from the human assessors in the MNIST survey.

For IMDB, we created a survey with 10 questions by randomly selecting 10 positive
reviews from the IMDB dataset, which are misclassified by the model. For the high-level
explanations, we reported the feature values provided by the three-dimensional FM and
the explanations generated by LIME and IG and we visualised the words with highest
contributions to negative and positive sentiments in a bar chart (i.e., we reported up
to 10 most contributing words with non-zero contribution). For each text, we asked
humans to answer the following question: "Below is a positive review that was incorrectly
believed to be a negative review by the computer. Please, select a possible explanation for
such a mistake (you are allowed to select more than one explanations if they make sense,
or none of them if they do not make sense)". Also in this case, we showed explanations
provided by the FM, IG, and LIME (as shown in Figure 8.4). In the IMDB survey we
collected 19 answers from the human assessors.

134 8.2 Empirical Study

Figure 8.4. Sample survey question for IMDB

8.2.3 Results

RQ1: Similarity

Tables 8.2 and 8.3 report the number of clusters generated by each explanatory technique.
For each low-level approach, we report the minimum and maximum number of clusters
(NC) in order to show their variability due to non-determinism.

For MNIST, the number of clusters generated by FM 3D is 31, larger than the

135 8.2 Empirical Study

Figure 8.5. MNIST input from the human study for which the majority selected IG.

Table 8.3. RQ1 - Number of clusters (NC) for low-level techniques for MNIST and
IMDB.

MNIST IMDB
LL Technique Input space NC [min, max] NC [min, max]

IG
Original 44.0 [44, 44] 35.1 [35, 36]
Global Latent 18.7 [17, 20] 14.8 [12, 18]
Local Latent 20.5 [19, 21] 18.2 [16, 22]

LIME
Original 39 [37, 44] 38.5 [37, 39]
Global Latent 17.7 [16, 19] 17.3 [16, 19]
Local Latent 19.0 [17, 21] 18.3 [16, 21]

136 8.2 Empirical Study

Figure 8.6. IMDB input from the human study for which the majority selected both
FM and IG explanations.

137 8.2 Empirical Study

number of clusters generated by FM with any other dimensionality (i.e., 1D and 2D).
Not surprisingly, the lower the dimensionality, the lower the number of clusters. In fact,
all the FM dimensions were rescaled to size 5, leading to a lower number of cells for
lower dimensionality maps (e.g., in 3D maps there are at most 125 cells to fill, while for
1D maps there are only 5 cells). The highest difference between high- and low-level
techniques is between FM 1D and IG in the Original input space (39 clusters). Instead,
the NC value for both FM 2D and 3D is comparable to the number of clusters generated
by low-level techniques (resp. global/local latent space and original space).

As regards IMDB, the highest difference between high- and low-level techniques is
the one between FM 1D and LIME in the Original input space, i.e., 33.5. Also for IMDB,
the closest NC values between the two classes of techniques is produced by FM 2D and
low-level techniques in the global/local latent space. The number of clusters for FM 3D
is comparable to low-level techniques in the original space.

For both case studies, IG produces a more stable number of clusters in the original
space due to its deterministic nature (i.e. it is based on a mathematical equation which
computes linear interpolation from a baseline), whereas there are some variations for
global and local latent spaces due to the non-deterministic nature of the t-SNE algorithm.
Instead, LIME always generates slightly different explanations across multiple runs,
because of the randomness introduced by input sampling and surrogate model training
during the explanation computation, and thus produces a variable number of clusters.

Table 8.4 reports the similarity between clusterings. To assess the statistical signifi-
cance of the comparisons between different configurations, we performed the Mann-
Whitney U-test and measured the effect size by means of the Vargha-Delaney’s A12
statistic [5]. For both MNIST and IMDB (fifth and seventh columns), the similarity
values between high- and low-level techniques are almost always significantly higher
(p-value < 0.05, large effect size) when considering the original input space, rather
than global and local latent spaces within the same configuration (i.e., up to 0.34 more
in the comparison between FM 1D and IG for MNIST). This result may be due to the fact
that the heatmaps in the original space retain more feature-related information than
their projections into the latent space. For MNIST, the highest similarity is achieved
between FM 1D (Orientation) and IG in the original space (0.94). For IMDB, the high-
est clustering similarity is between FM that considers the Verb feature only and LIME
explanations in the original space (0.89). The most different partitions between low-
and high-level techniques (i.e., lowest similarity) are obtained when considering FM
2D and low-level explanations in the latent space (either local or global). In fact, for
MNIST we have the lowest similarity when considering Mov-Lum maps and LIME in the
global latent space (0.39), whereas for IMDB the lowest similarity is between Pos-Neg
maps and IG in the global latent space.

On average, the similarity between FM and IG, across input spaces and subjects, is
0.65, while it is 0.64 with LIME. These are relatively low values. As a reference, such
similarity values are obtained when a cluster with 100 elements contains 23 impure

138 8.2 Empirical Study

Table 8.4. RQ1 - Comparing high-level and low-level explanations’ Similarity (Sim),
considering different input spaces for MNIST and IMDB; boldface indicate statistical
significance when comparing original with latent space similarities.

MNIST IMDB
HL technique LL technique Input space Features Sim Features Sim

Feature map 3D

IG
Original

Mov-Lum-Or

0.70

Pos-Neg-Verb

0.74
Global Latent 0.55 0.68
Local Latent 0.55 0.66

LIME
Original 0.55 0.81
Global Latent 0.53 0.66
Local Latent 0.53 0.68

Feature map 2D

IG
Original

Mov-Lum

0.71

Pos-Neg

0.74
Global Latent 0.40 0.52
Local Latent 0.41 0.53

LIME
Original 0.56 0.77
Global Latent 0.39 0.55
Local Latent 0.40 0.56

Feature map 2D

IG
Original

Lum-or

0.76

Neg-Verb

0.78
Global Latent 0.52 0.60
Local Latent 0.52 0.60

LIME
Original 0.65 0.82
Global Latent 0.49 0.61
Local Latent 0.49 0.61

Feature
map 2D

IG
Original

Mov-Or

0.80

Pos-Verb

0.77
Global Latent 0.54 0.57
Local Latent 0.54 0.59

LIME
Original 0.64 0.81
Global Latent 0.52 0.61
Local Latent 0.51 0.63

Feature map 1D

IG
Original

Mov

0.83

Pos

0.80
Global Latent 0.49 0.64
Local Latent 0.52 0.65

LIME
Original 0.68 0.83
Global Latent 0.50 0.66
Local Latent 0.54 0.69

Feature map 1D

IG
Original

Lum

0.78

Neg

0.82
Global Latent 0.47 0.63
Local Latent 0.53 0.65

LIME
Original 0.69 0.84
Global Latent 0.45 0.67
Local Latent 0.50 0.67

Feature map 1D

IG
Original

Or

0.94

Verb

0.87
Global Latent 0.82 0.71
Local Latent 0.83 0.73

LIME
Original 0.89 0.89
Global Latent 0.82 0.72
Local Latent 0.83 0.74

139 8.2 Empirical Study

Table 8.5. RQ2 - Number of Matches with Human Explanations (MH); ‘None’
indicates the number of cases when no match was found.

MH
MNIST IMDB

Q# FM 3D IG LIME None FM 3D IG LIME None

Q1 12 2 10 8 2 13 3 3
Q2 5 23 5 1 5 3 3 9
Q3 4 7 9 12 11 17 8 0
Q4 6 7 5 14 6 15 3 2
Q5 3 15 2 11 10 14 7 1
Q6 7 6 4 14 12 15 8 0
Q7 7 11 7 10 0 14 5 3
Q8 9 5 8 13 11 14 12 1
Q9 5 1 9 17 6 8 4 4
Q10 13 10 5 8 11 12 7 2

Sum 71 87 64 108 74 125 60 25

elements, i.e., 23 elements that are assigned a different cluster by the other technique
(see Equation 8.2).

RQ1: High-level and low-level techniques partition inputs in different ways.
Despite FM 2D and low-level techniques in the global latent space produce nearly
the same number of clusters, those show low similarity. Likewise, FM 1D produces
clusterings similar to the ones obtained by low-level techniques in the original
space, but with very different number of clusters.

RQ2: Understandability

Table 8.5 shows the results extracted from questionnaires for MNIST and IMDB. Each
column reports the number of assessors who chose the explanation provided by each
considered technique (choices were not mutually exclusive). The last column highlights
the cases for which no explanation was selected by the assessor. Since each assessor can
select 0 to 3 explanations in each question, the sum of the values in each row does not
correspond to the number of assessors.

Table 8.5 (left) reports the answers we collected for MNIST. IG was selected more
than other explanations 4 times, e.g., for Q2 IG has been chosen 18 times more than the
others. The explanations by FM are selected more than the other explanations 4 times.
LIME was selected more than the others in only 2 questions. We can conclude that

140 8.2 Empirical Study

there is no technique clearly more understandable than the others for explaining digit
misclassications, according to human assessors. Overall, the explanations generated
by IG match more frequently with the human expectations, as they have been selected
30% of the times by the assessors. FM explanations and LIME heatmaps have been
selected 24% and 22% of the times. However, in more than one third of the answers
the assessors chose none of the explanations. This result suggests that there is large
room for improvement in explaining image misclassifications. Table 8.5 (right) reports
the answers for IMDB. IG was selected more than the other techniques 9 times, while
FM was selected more than the others in the remaining case (i.e., Q2). Instead, LIME
explanations were never selected more often than the other techniques. IG was selected
the highest number of times by human assessors, i.e., 66% , followed by FM with 39%
and LIME with 31%. Explanations were more understandable for textual inputs, than
for handwritten digit images. In fact, only 13% of the times the assessors did not
choose any explanation for a question on IMDB. For MNIST, only for 2 questions we
have a majority, i.e., more than half of the assessors selected the same answer. Instead,
for IMDB in 8 questions we have answers selected by the majority of assessors. This
indicates that the explanations provided for IMDB find more consensus among humans
than the explanations provided for MNIST.

RQ2: Both high- and low-level techniques produce human-understandable ex-
planations of misbehaviours of text classifiers. In particular, IG explanations
were selected 125 times out of 190 answers for IMDB. On the other hand, the
explanations for misbehaviours of image classifiers poorly matched with the
human judgement. In fact, in more than one third of the answers the assessors
chose none of the proposed explanations for MNIST. On the remaining two thirds,
high- and low-level explanations are chosen approximately the same number of
times.

Discussion

The answers provided by the human assessors offer several insights that we discuss
qualitatively in the following.

• For MNIST, the two most understandable explanations are IG and FM. Not only are
these explanations at different levels (i.e., low- and high-level, respectively), but they
show also some degree of complementarity. In fact, for Q1, Q8 and Q9, FM were
selected more times than IG with a MH difference higher than 4. On the other hand,
for Q2, Q5 and Q7, IG was selected more times than FM. Remarkably, for question
Q2 (reported in Figure 8.5), IG was selected 18 times more than FM. In this case, the
assessors did not find the FM explanation useful, while IG highlights the pixels that
make the upper part of the five look like a nine, i.e., the leftmost pixels, making the
upper part round, and the rightmost pixels, closing the circle.

141 8.2 Empirical Study

(a) MNIST

(b) IMDB

Figure 8.7. Comparison of the number of matches with human between high-level
and low-level techniques.

• For IMDB, FM and IG explanations are the most chosen by human assessors. In
particular, for half of the questions, IG and FM were chosen by at least 10 assessors and
the difference in MH was lower than or equal to 4. For instance, Figure 8.6 reports Q8,
where the assessors selected FM 11 times and IG 14 times. In this case, the assessors
acknowledged that the review actually contained more negative than positive words
as reported by the FM explanation. At the same time, the assessors probably agreed
with the IG heatmap that the word “stupid” contained in the text can negatively affect
the prediction.

• For some questions, all the explanations were judged as poorly understandable by
humans, who did not choose any of the provided explanations as possible causes of
the misbehaviour. For MNIST, Q9 can be considered the most challenging question,
since only 15 times out of 87 an explanation was selected, while the majority of the
assessors selected none of the explanations. Similarly, in the IMDB survey, Q2 is the
question with the lowest number of selected explanations, since the assessors chose
an explanation only 11 times out of 57, while the majority chose none.

• As shown in Figure 8.7 (a), for MNIST, assessors selected only FM 36 times and
only LIME 45 times while they selected both explanations 14 times. Similarly, they
selected only FM 36 times, only IG 58 times and both FM and IG 24 times. This
suggests that high-level and low-level explanations for MNIST digit misclassifications
are highly complementary. Figure 8.7 (b) shows that for IMDB, most of the times
both high- and low-level explanations have been selected together. However, the
number of times assessors selected one of the two and not the other remains quite
high, which indicates substantial complementarity.

In summary, in several instances either high- or low-level explanations look under-

142 8.3 Conclusion

standable for humans and provide hints on what are the properties of the inputs that
make the DNN misbehave. In most cases, either high- or low-level explanations, but
not both, were chosen as useful explanations, indicating that such explanations are
highly complementary. On the other hand, there is still a large fraction of cases in which
none of the two are deemed useful by humans, which points to the need for better DNN
explanations.

Threats to Validity

Construct Validity: FM depends on the features selected to generate the map dimensions.
For feature selection, we relied on previous work [159], while for the combination of
features, we exhaustively considered all available dimensions and all their combinations.
Moreover, the selection of different hyper-parameters for our study can affect the final
results. To reduce this risk, we developed our framework in order to be configurable
and we performed some preliminary runs with different hyper-parameters to select the
best configuration.
External Validity: The selection of subjects could be a threat to external validity.
Therefore, we considered two different domains, i.e., image and text. To represent
different types of explanations, we considered one state-of-the-art, openly available
technique for each explanation type.
Conclusion Validity: The stochastic nature of some of the considered low-level tech-
niques, the dimensionality reduction approach and the clustering algorithm might affect
the final outcome. To mitigate this threat, we ran these techniques multiple times,
reported average value across runs, and conducted statistical tests.

8.3 Conclusion

Due to the growing adoption of DL software in solving complex and safety critical tasks,
understanding the behaviour of DL systems attracted enormous attention in the research
community. As the demand for explainable DL models rises, a large variety of techniques
have been proposed to interpret the DL system’s behaviour.

We provided an extensive and in-depth analysis and comparison of explanatory
techniques with different granularity levels. To this aim, we adopt a novel methodology
to compare the different explanatory techniques proposed in the literature.

Our empirical results show that while high-level and low-level explanation are
both understandable for humans, they provide different and complementary insights
about failure-inducing inputs. Furthermore, our human study suggests that current
explanations are not always satisfactory, as they do not provide human-interpretable
causes of misbehaviours.

143 8.4 Reproducibility

8.4 Reproducibility

The code implementing our comparison method, the dataset, and all the scripts to
replicate the experimental evaluation are available online [164].

144 8.4 Reproducibility

Chapter 9

Conclusion

In this thesis, we explored the topic of exposing and explaining misbehaviours of DL
systems. We resorted to Illumination Search to find the highest-performing test cases (i.e.,
misbehaving and closest to misbehaving), spread across the cells of a map representing
the feature space of the system. We introduced a methodology that guides the users of
our approach in the tasks of identifying and quantifying the dimensions of the feature
space for a given domain. We developed DEEPHYPERION-CS, a search-based tool for
DL systems that illuminates, i.e., explores at large, the feature space, by providing
developers with an interpretable feature map where automatically generated inputs
are placed along with information about the exposed behaviours. Our results showed
that DEEPHYPERION-CS outperforms state-of-the-art tools. It exposed significantly more
misbehaviours for 5 out of 6 feature combinations. DEEPHYPERION-CS was useful for
expanding the datasets used to train the DL systems, populating up to 200% more
feature map cells than the original training set.

When deployed in the operation environment, Deep Learning (DL) systems often
experience the so-called development to operation (dev2op) data shift, which causes
a lower prediction accuracy on field data as compared to the one measured on the
test set during development. To address the dev2op shift, developers must obtain new
data with the newly observed features, as these are under-represented in the train/test
set, and use them to fine tune the DL model, so as to reach the desired accuracy level.
We addressed the issue of acquiring new data with the specific features observed in
operation, which caused a dev2op shift, by proposing DEEPATASH, a novel search-based
focused testing approach for DL systems. DEEPATASH targets a cell in the feature space,
defined as a combination of feature ranges, to generate misbehaviour-inducing inputs
with predefined features. Experimental results showed that DEEPATASH was able to
generate up to 29⇥ more targeted, failure-inducing inputs than the baseline approach.
The inputs generated by DEEPATASH were useful to significantly improve the quality of
the original DL systems through fine tuning not only on data with the targeted features,
but quite surprisingly also on inputs drawn from the original distribution.

145

146 9.1 Impact

The resource-intensive nature of testing ADSs requires efficient methodologies for
generating targeted and diverse tests. We introduced a novel approach, DEEPATASH-LR,
that incorporates a surrogate model into the focused test generation process. This
integration significantly improves focused testing effectiveness and applicability in
resource-intensive scenarios. Experimental results showed that the integration of the
surrogate model is fundamental to the success of DEEPATASH-LR. Our approach was able
to generate an average of up to 60⇥ more targeted, failure-inducing inputs compared to
the baseline approach. Illumination-based techniques require the expensive involvement
of human experts in defining features of interest and metrics for their measurement. This
limitation restricts the broader applicability of these testing approaches. We addressed
this limitation with DEEPTHEIA, our fully automated illumination-based test generator
that autonomously extracts features and explores the feature space using cutting-edge
diffusion models. Experimental results showed that DEEPTHEIA consistently extracts
highly discriminative features. Independent human assessors certified that DEEPTHEIA is
able to group misbehaviour-inducing inputs in a way that is understandable to humans
in over 78% of the cases.

With the increasing demand for explainable Deep Learning (DL) models, a plethora
of techniques have emerged to interpret the behavior of DL systems. We undertook
an extensive and thorough comparison of explanatory techniques, focusing on various
granularity levels. Employing a novel methodology, we systematically compared different
explanatory techniques proposed in the literature. Our empirical findings reveal that
both high-level and low-level explanations are comprehensible to humans, offering
distinct and complementary insights into failure-inducing inputs. However, our human
study suggests that current explanations often fall short of providing satisfactory human-
interpretable causes of misbehaviours.

9.1 Impact

The Feature maps introduced by our approach have been used for different testing tasks.
Nguyen et al. [105] used feature map for test selection. In particular, they ensure the
diversity between test inputs by selecting those that occupy different feature map cells.

Our feature maps have also been used to assess the adequacy of a test suite, measured
as the number of feature cells covered by the test inputs in the test suite. This was done
in a recent search-based testing competition to compare different test generators for
ADSs [39, 13].

Biagiola et al. [14] used our feature maps to group failures by similarity and compare
the performance of different simulators for testing autonomous driving systems. More
specifically, they adopt DEEPHYPERION for test generation using two general-purpose,
cheap simulators (aka, digital siblings). They merged the generated feature maps to
combine the testing output of the two digital siblings and approximate the behavior of
the model in the high-fidelity, expensive digital twin.

147 9.2 Future Work

9.2 Future Work

Despite the remarkable results achieved so far, our work on testing DL systems using
feature maps and illumination search is at its dawn and opens many interesting directions
for future research. We plan to apply the feature maps produced by our approach to
other DL software development tasks. In fact, we believe they are an intuitive approach
for evaluating test set adequacy or guiding test selection.

Additionally, we plan to extend the application domain of our approach to a broader
range of DL systems. Our preliminary results in the SBFT-UAV competition [69] showed
that DEEPHYPERION-CS is effective in generating failure-inducing inputs associated with
highly diverse features for Unmanned Aerial Vehicles (UAV). As a future work, we plan
to define more effective features and extend the applicability of DEEPHYPERION-CS for
UAV systems.

We are also interested in improving our proposed automatic image generation
approach for complex systems considering domain-specific prompts on diffusion models.

148 9.2 Future Work

Bibliography

[1] Abdessalem, R. B., Nejati, S., Briand, L. C. and Stifter, T. [2016]. Testing advanced
driver assistance systems using multi-objective search and neural networks, Pro-
ceedings of the 31st IEEE/ACM International Conference on Automated Software
Engineering, ASE 2016, Singapore, September 3-7, 2016, ACM, pp. 63–74.
URL: https://doi.org/10.1145/2970276.2970311

[2] Abdessalem, R. B., Nejati, S., Briand, L. C. and Stifter, T. [2018]. Testing vision-
based control systems using learnable evolutionary algorithms, Proceedings of the
40th International Conference on Software Engineering, ICSE ’18, ACM, pp. 1016–
1026.
URL: http://doi.acm.org/10.1145/3180155.3180160

[3] Abdessalem, R. B., Panichella, A., Nejati, S., Briand, L. C. and Stifter, T. [2018].
Testing autonomous cars for feature interaction failures using many-objective
search, Proceedings of the 33rd ACM/IEEE International Conference on Automated
Software Engineering, ASE 2018, ACM, pp. 143–154.
URL: http://doi.acm.org/10.1145/3238147.3238192

[4] Ahadit, A. B. and Jatoth, R. K. [2022]. A novel multi-feature fusion deep neural
network using hog and vgg-face for facial expression classification, Machine Vision
and Applications 33(4): 55.

[5] Arcuri, A. and Briand, L. [2014]. A hitchhiker’s guide to statistical tests for assessing
randomized algorithms in software engineering, Software Testing, Verification and
Reliability 24(3): 219–250.
URL: https://onlinelibrary.wiley.com/doi/abs/10.1002/stvr.1486

[6] Arcuri, A. and Fraser, G. [2011]. On parameter tuning in search based software
engineering, in M. B. Cohen and M. Ó. Cinnéide (eds), Search Based Software Engi-
neering - Third International Symposium, SSBSE 2011, Szeged, Hungary, September
10-12, 2011. Proceedings, Vol. 6956 of Lecture Notes in Computer Science, Springer,
pp. 33–47.
URL: https://doi.org/10.1007/978-3-642-23716-4_6

149

150 Bibliography

[7] Arthur, D. and Vassilvitskii, S. [2006]. k-means++: The advantages of careful
seeding, Technical report, Stanford.

[8] Attaoui, M., Fahmy, H., Pastore, F. and Briand, L. [2023]. Black-box safety analysis
and retraining of dnns based on feature extraction and clustering, ACM Transactions
on Software Engineering and Methodology 32(3): 1–40.

[9] Back, T. [1994]. Selective pressure in evolutionary algorithms: a characterization
of selection mechanisms, Proceedings of the First IEEE Conference on Evolutionary
Computation. IEEE World Congress on Computational Intelligence, pp. 57–62 vol.1.

[10] BeamNG GmbH [2018]. BeamNG.research.
URL: https://www.beamng.gmbh/research

[11] Bellman, R. [1966]. Dynamic programming, Science 153(3731): 34–37.
URL: https://www.science.org/doi/abs/10.1126/science.153.3731.34

[12] Bengio, Y. [2011]. Deep learning of representations for unsupervised and transfer
learning, Proceedings of the 2011 International Conference on Unsupervised and
Transfer Learning Workshop - Volume 27, UTLW’11, JMLR.org, Washington, USA,
p. 17â37.

[13] Biagiola, M., Klikovits, S., Peltomäki, J. and Riccio, V. [2023]. Sbft tool competition
2023-cyber-physical systems track, 2023 IEEE/ACM International Workshop on
Search-Based and Fuzz Testing (SBFT), IEEE, pp. 45–48.

[14] Biagiola, M., Stocco, A., Riccio, V. and Tonella, P. [2023]. Two is better than
one: Digital siblings to improve autonomous driving testing, arXiv preprint
arXiv:2305.08060 .

[15] Biagiola, M. and Tonella, P. [2023]. Testing of deep reinforcement learning agents
with surrogate models, arXiv preprint arXiv:2305.12751 .

[16] Biggio, B. and Roli, F. [2018]. Wild patterns: Ten years after the rise of adversarial
machine learning, Pattern Recognition 84: 317–331.

[17] Bojarski, M., Testa, D. D., Dworakowski, D., Firner, B., Flepp, B., Goyal, P., Jackel,
L. D., Monfort, M., Muller, U., Zhang, J., Zhang, X., Zhao, J. and Zieba, K. [2016].
End to end learning for self-driving cars, CoRR abs/1604.07316: 1–9.
URL: http://arxiv.org/abs/1604.07316

[18] Bouayed, A. M., Atif, K., Deriche, R. and Saim, A. [2020]. Improving auto-encoders’
self-supervised image classification using pseudo-labelling via data augmentation
and the perceptual loss.

[19] Carlini, N. and Wagner, D. [2017a]. Towards evaluating the robustness of neural
networks, 2017 ieee symposium on security and privacy (sp), Ieee, pp. 39–57.

151 Bibliography

[20] Carlini, N. and Wagner, D. [2017b]. Towards evaluating the robustness of neural
networks, 2017 IEEE Symposium on Security and Privacy (SP), IEEE Computer
Society, Los Alamitos, CA, USA, pp. 39–57.
URL: https://doi.ieeecomputersociety.org/10.1109/SP.2017.49

[21] Catmull, E. and Rom, R. [1974]. A class of local interpolating splines, in R. E.
Barnhill and R. F. Riesenfeld (eds), Computer Aided Geometric Design, Academic
Press, pp. 317 – 326.
URL: http://www.sciencedirect.com/science/article/pii/B9780120790500500205

[22] Chollet, F. [2020]. Simple mnist convnet, https://github.com/keras-team/
keras-io/blob/master/examples/vision/mnist_convnet.py.

[23] Deb, K., Pratap, A., Agarwal, S. and Meyarivan, T. [2002]. A fast and elitist multi-
objective genetic algorithm: Nsga-ii, IEEE transactions on evolutionary computation
6(2): 182–197.

[24] Demir, S., Eniser, H. F. and Sen, A. [2020]. Deepsmartfuzzer: Reward guided test
generation for deep learning, Proceedings of the Workshop on Artificial Intelligence
Safety 2020 (IJCAI-PRICAI 2020), Yokohama, Japan, January, 2021, Vol. 2640 of
CEUR Workshop Proceedings, CEUR-WS.org, pp. 134–140.
URL: http://ceur-ws.org/Vol-2640/paper_19.pdf

[25] Dhariwal, P. and Nichol, A. [2021]. Diffusion models beat gans on image synthesis,
Advances in neural information processing systems 34: 8780–8794.

[26] Dola, S., Dwyer, M. B. and Soffa, M. L. [2021]. Distribution-aware testing of neural
networks using generative models, 2021 IEEE/ACM 43rd International Conference
on Software Engineering (ICSE), pp. 226–237.

[27] Dola, S., Dwyer, M. B. and Soffa, M. L. [2023]. Input distribution coverage: Mea-
suring feature interaction adequacy in neural network testing, ACM Transactions
on Software Engineering and Methodology 32(3): 1–48.

[28] Dunn, I., Pouget, H., Kroening, D. and Melham, T. [2021]. Exposing previously
undetectable faults in deep neural networks, Proceedings of the 30th ACM SIGSOFT
International Symposium on Software Testing and Analysis, ISSTA 2021, Association
for Computing Machinery, New York, NY, USA, pp. 56–66.
URL: https://doi.org/10.1145/3460319.3464801

[29] Ester, M., Kriegel, H.-P., Sander, J. and Xu, X. [1996]. A density-based algorithm
for discovering clusters in large spatial databases with noise, Proceedings of the
Second International Conference on Knowledge Discovery and Data Mining, KDD’96,
AAAI Press, p. 226â231.

https://github.com/keras-team/keras-io/blob/master/examples/vision/mnist_convnet.py
https://github.com/keras-team/keras-io/blob/master/examples/vision/mnist_convnet.py

152 Bibliography

[30] Fahmy, H., Pastore, F., Bagherzadeh, M. and Briand, L. [2021]. Supporting deep
neural network safety analysis and retraining through heatmap-based unsupervised
learning, IEEE Transactions on Reliability 70(4): 1641–1657.

[31] Fahmy, H., Pastore, F., Briand, L. and Stifter, T. [2022]. Simulator-based explanation
and debugging of hazard-triggering events in dnn-based safety-critical systems,
arXiv preprint arXiv:2204.00480 .

[32] Fel, T., Hervier, L., Vigouroux, D., Poche, A., Plakoo, J., Cadene, R., Chalvidal, M.,
Colin, J., Boissin, T., Bethune, L., Picard, A., Nicodeme, C., Gardes, L., Flandin, G.
and Serre, T. [2022]. Xplique: A deep learning explainability toolbox, Workshop
on Explainable Artificial Intelligence for Computer Vision (CVPR) .

[33] Fraser, G. and Arcuri, A. [2011]. Evolutionary generation of whole test suites,
2011 11th International Conference on Quality Software, IEEE, pp. 31–40.

[34] Fraser, G. and Arcuri, A. [2013]. Whole test suite generation, IEEE Transactions on
Software Engineering 39(2): 276–291.

[35] Fraser, G., Arcuri, A. and McMinn, P. [2015]. A memetic algorithm for whole test
suite generation, Journal of Systems and Software 103: 311–327.
URL: https://www.sciencedirect.com/science/article/pii/S0164121214001216

[36] Frey, B. J. and Dueck, D. [2007]. Clustering by passing messages between data
points, science 315(5814): 972–976.

[37] Fukunaga, K. [2013]. Introduction to statistical pattern recognition, Elsevier.

[38] Gal, R., Alaluf, Y., Atzmon, Y., Patashnik, O., Bermano, A. H., Chechik, G. and
Cohen-Or, D. [2022]. An image is worth one word: Personalizing text-to-image
generation using textual inversion, arXiv preprint arXiv:2208.01618 .

[39] Gambi, A., Jahangirova, G., Riccio, V. and Zampetti, F. [2022]. Sbst tool competition
2022, Proceedings of the 15th Workshop on Search-Based Software Testing, pp. 25–32.

[40] Gambi, A., Müller, M. and Fraser, G. [2019]. Automatically testing self-driving
cars with search-based procedural content generation, Proceedings of the 28th ACM
SIGSOFT International Symposium on Software Testing and Analysis, ISSTA 2019,
Beijing, China, July 15-19, 2019, ACM, pp. 318–328.
URL: https://doi.org/10.1145/3293882.3330566

[41] Goldberg, D. E. and Deb, K. [1991]. A comparative analysis of selection schemes
used in genetic algorithms, Vol. 1 of Foundations of Genetic Algorithms, Elsevier,
pp. 69–93.
URL: https://www.sciencedirect.com/science/article/pii/B9780080506845500082

153 Bibliography

[42] Goodfellow, I. J., Bengio, Y. and Courville, A. [2016]. Deep Learning, MIT Press.
http://www.deeplearningbook.org.

[43] Goodfellow, I. J., Shlens, J. and Szegedy, C. [2014]. Explaining and harnessing
adversarial examples, arXiv preprint arXiv:1412.6572 .

[44] Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S.,
Courville, A. and Bengio, Y. [2020]. Generative adversarial networks, Commun.
ACM 63(11): 139â144.
URL: https://doi.org/10.1145/3422622

[45] Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S.,
Courville, A. and Bengio, Y. [n.d.]. Generative adversarial nets, Advances in neural
information processing systems 27.

[46] Goyal, Y., Khot, T., Summers-Stay, D., Batra, D. and Parikh, D. [2017]. Making
the v in vqa matter: Elevating the role of image understanding in visual ques-
tion answering, Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 6904–6913.

[47] Gu, J., Wang, Z., Kuen, J., Ma, L., Shahroudy, A., Shuai, B., Liu, T., Wang, X., Wang,
G., Cai, J. et al. [2018]. Recent advances in convolutional neural networks, Pattern
recognition 77: 354–377.

[48] Gu, Q., Wang, Q., Xiong, N. N., Jiang, S. and Chen, L. [2021]. Surrogate-assisted
evolutionary algorithm for expensive constrained multi-objective discrete optimiza-
tion problems, Complex & Intelligent Systems pp. 1–20.

[49] Guerriero, A., Pietrantuono, R. and Russo, S. [2021]. Operation is the hardest
teacher: estimating dnn accuracy looking for mispredictions, 2021 IEEE/ACM 43rd
International Conference on Software Engineering (ICSE), IEEE, pp. 348–358.

[50] Guidotti, R., Monreale, A., Ruggieri, S., Turini, F., Giannotti, F. and Pedreschi, D.
[2018]. A survey of methods for explaining black box models, ACM computing
surveys (CSUR) 51(5): 1–42.

[51] Guo, J., Jiang, Y., Zhao, Y., Chen, Q. and Sun, J. [2018]. Dlfuzz: differential fuzzing
testing of deep learning systems, Proceedings of the 2018 ACM Joint Meeting on
European Software Engineering Conference and Symposium on the Foundations
of Software Engineering, ESEC/SIGSOFT FSE 2018, Lake Buena Vista, FL, USA,
November 04-09, 2018, ACM, pp. 739–743.
URL: https://doi.org/10.1145/3236024.3264835

[52] Haq, F. U., Shin, D. and Briand, L. [2022]. Efficient online testing for dnn-enabled
systems using surrogate-assisted and many-objective optimization, Proceedings of
the 44th international conference on software engineering, pp. 811–822.

http://www.deeplearningbook.org

154 Bibliography

[53] Haq, F. U., Shin, D., Nejati, S. and Briand, L. [2021]. Can offline testing of deep
neural networks replace their online testing? a case study of automated driving
systems, Empirical Software Engineering 26(5): 90.

[54] Harman, M. and McMinn, P. [2010]. A theoretical and empirical study of search-
based testing: Local, global, and hybrid search, IEEE Transactions on Software
Engineering 36(2): 226–247.

[55] Harman, M., McMinn, P., Teixeira de Souza, J. and Yoo, S. [2010]. Search based
software engineering: Techniques, taxonomy, tutorial, in B. Meyer and M. Nor-
dio (eds), Empirical Software Engineering and Verification - International Summer
Schools, LASER 2008-2010, Elba Island, Italy, Revised Tutorial Lectures, Vol. 7007 of
Lecture Notes in Computer Science, Springer, pp. 1–59.
URL: https://doi.org/10.1007/978-3-642-25231-0_1

[56] Hauer, F., Pretschner, A. and Holzmüller, B. [2019]. Fitness functions for testing
automated and autonomous driving systems, Computer Safety, Reliability, and Se-
curity - 38th International Conference, SAFECOMP 2019, Turku, Finland, September
11-13, 2019, Proceedings, Vol. 11698, Springer, pp. 69–84.

[57] He, K., Zhang, X., Ren, S. and Sun, J. [2016]. Deep residual learning for image
recognition, Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 770–778.

[58] Hinton, G. E. and Roweis, S. [2002]. Stochastic neighbor embedding, Advances in
neural information processing systems 15.

[59] Hu, M. and Liu, B. [2004]. Opinion lexicon, https://www.cs.uic.edu/~liub/
FBS/sentiment-analysis.html.

[60] Humbatova, N., Jahangirova, G., Bavota, G., Riccio, V., Stocco, A. and Tonella,
P. [2020]. Taxonomy of real faults in deep learning systems, Proceedings of the
ACM/IEEE 42nd International Conference on Software Engineering, ICSE ’20, Associ-
ation for Computing Machinery, p. 1110â1121.
URL: https://doi.org/10.1145/3377811.3380395

[61] Humbatova, N., Jahangirova, G. and Tonella, P. [2021]. Deepcrime: Mutation
testing of deep learning systems based on real faults, Proceedings of the 30th ACM
SIGSOFT International Symposium on Software Testing and Analysis.

[62] Humeniuk, D., Khomh, F. and Antoniol, G. [2022]. A search-based framework for
automatic generation of testing environments for cyber–physical systems, Informa-
tion and Software Technology 149: 106936.

https://www.cs.uic.edu/~liub/FBS/sentiment-analysis.html
https://www.cs.uic.edu/~liub/FBS/sentiment-analysis.html

155 Bibliography

[63] Jahangirova, G., Stocco, A. and Tonella, P. [2021]. Quality metrics and oracles for
autonomous vehicles testing, Proceedings of 14th IEEE International Conference on
Software Testing, Verification and Validation, ICST ’21, IEEE, pp. 194–204.

[64] Jahangirova, G. and Tonella, P. [2020]. An empirical evaluation of mutation
operators for deep learning systems, IEEE International Conference on Software
Testing, Verification and Validation, ICST’20, IEEE, p. 12 pages.

[65] Jogin, M., Madhulika, M., Divya, G., Meghana, R., Apoorva, S. et al. [2018].
Feature extraction using convolution neural networks (cnn) and deep learning,
2018 3rd IEEE international conference on recent trends in electronics, information
& communication technology (RTEICT), IEEE, pp. 2319–2323.

[66] Kang, S., Feldt, R. and Yoo, S. [2020a]. Sinvad: Search-based image space naviga-
tion for dnn image classifier test input generation, Proceedings of the IEEE/ACM
42nd International Conference on Software Engineering Workshops, pp. 521–528.

[67] Kang, S., Feldt, R. and Yoo, S. [2020b]. SINVAD: search-based image space navi-
gation for DNN image classifier test input generation, ICSE ’20: 42nd International
Conference on Software Engineering, Workshops, Seoul, Republic of Korea, 27 June -
19 July, 2020, ACM, pp. 521–528.
URL: https://doi.org/10.1145/3387940.3391456

[68] Kang, S., Feldt, R. and Yoo, S. [2023]. Deceiving humans and machines alike:
Search-based test input generation for dnns using variational autoencoders, ACM
Transactions on Software Engineering and Methodology .

[69] Khatiri, S., Saurabh, P., Zimmermann, T., Munasinghe, C., Birchler, C. and
Panichella, S. [2024]. SBFT tool competition 2024 - cps-uav test case genera-
tion track, IEEE/ACM International Workshop on Search-Based and Fuzz Testing,
SBFT@ICSE 2024.

[70] Kim, J., Feldt, R. and Yoo, S. [2019]. Guiding deep learning system testing using
surprise adequacy, Proceedings of the 41st International Conference on Software
Engineering, ICSE 2019, Montreal, QC, Canada, May 25-31, 2019, IEEE / ACM,
pp. 1039–1049.
URL: https://doi.org/10.1109/ICSE.2019.00108

[71] King, R. S. [2015]. Cluster analysis and data mining: An introduction, Mercury
Learning and Information.

[72] Kingma, D. P. and Welling, M. [2013]. Auto-encoding variational bayes, arXiv
preprint arXiv:1312.6114 .

156 Bibliography

[73] Kirch, W. (ed.) [2008]. Pearson’s Correlation Coefficient, Springer Netherlands,
pp. 1090–1091.
URL: https://doi.org/10.1007/978-1-4020-5614-72569

[74] Klaise, J., Looveren, A. V., Vacanti, G. and Coca, A. [2021]. Alibi explain: Algorithms
for explaining machine learning models, Journal of Machine Learning Research
22(181): 1–7.
URL: http://jmlr.org/papers/v22/21-0017.html

[75] Kong, Z., Guo, J., Li, A. and Liu, C. [2020]. Physgan: Generating physical-world-
resilient adversarial examples for autonomous driving, Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 14254–14263.

[76] Krause, E. F. [1986]. Taxicab geometry: An adventure in non-Euclidean geometry,
Courier Corporation.

[77] Kurakin, A., Goodfellow, I. J. and Bengio, S. [2018]. Adversarial examples in the
physical world, Artificial intelligence safety and security, Chapman and Hall/CRC,
pp. 99–112.

[78] Lakhotia, K., Harman, M. and McMinn, P. [2007]. A multi-objective approach to
search-based test data generation, Proceedings of the 9th Annual Conference on
Genetic and Evolutionary Computation, GECCO ’07, ACM, pp. 1098–1105.
URL: http://doi.acm.org/10.1145/1276958.1277175

[79] Larman, C. [1997]. Applying UML and Patterns: An Introduction to Object-Oriented
Analysis and Design, Prentice Hall.

[80] Le, Q. and Mikolov, T. [2014]. Distributed representations of sentences and
documents, International conference on machine learning, PMLR, pp. 1188–1196.

[81] LeCun, Y., Bottou, L., Bengio, Y. and Haffner, P. [1998]. Gradient-based learning
applied to document recognition, Proceedings of the IEEE 86(11): 2278–2324.

[82] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P. et al. [1998]. Gradient-based learning
applied to document recognition, Proceedings of the IEEE 86(11): 2278–2324.

[83] Ledel, B. and Herbold, S. [2022]. Studying the explanations for the auto-
mated prediction of bug and non-bug issues using lime and shap, arXiv preprint
arXiv:2209.07623 .

[84] Lehman, J. and Stanley, K. O. [2011a]. Abandoning objectives: Evolution through
the search for novelty alone, Evolutionary Computation 19(2): 189–223.
URL: https://doi.org/10.1162/EVCOa00025

157 Bibliography

[85] Lehman, J. and Stanley, K. O. [2011b]. Evolving a diversity of virtual creatures
through novelty search and local competition, Proceedings of the 13th Annual
Conference on Genetic and Evolutionary Computation, GECCO ’11, ACM, pp. 211–
218.
URL: http://doi.acm.org/10.1145/2001576.2001606

[86] Levenshtein, V. I. et al. [1966]. Binary codes capable of correcting deletions,
insertions, and reversals, Soviet physics doklady, Vol. 10, Soviet Union, pp. 707–
710.

[87] Li, Z., Ma, X., Xu, C., Cao, C., Xu, J. and Lü, J. [2019]. Boosting operational
dnn testing efficiency through conditioning, Proceedings of the 2019 27th ACM
Joint Meeting on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, pp. 499–509.

[88] Linares-Vásquez, M., Li, B., Vendome, C. and Poshyvanyk, D. [2016]. Documenting
database usages and schema constraints in database-centric applications, Pro-
ceedings of the 25th International Symposium on Software Testing and Analysis,
pp. 270–281.

[89] Lundberg, S. M. and Lee, S.-I. [2017]. A unified approach to interpreting model
predictions, Advances in neural information processing systems 30.

[90] Ma, L., Juefei-Xu, F., Xue, M., Li, B., Li, L., Liu, Y. and Zhao, J. [2019]. DeepCT:
Tomographic combinatorial testing for deep learning systems, 26th IEEE Interna-
tional Conference on Software Analysis, Evolution and Reengineering, SANER 2019,
Hangzhou, China, February 24-27, 2019, IEEE, pp. 614–618.
URL: https://doi.org/10.1109/SANER.2019.8668044

[91] Ma, L., Juefei-Xu, F., Zhang, F., Sun, J., Xue, M., Li, B., Chen, C., Su, T., Li, L., Liu,
Y., Zhao, J. and Wang, Y. [2018]. Deepgauge: Multi-granularity testing criteria for
deep learning systems, Proceedings of the 33rd ACM/IEEE International Conference
on Automated Software Engineering, ASE 2018, ACM, pp. 120–131.
URL: http://doi.acm.org/10.1145/3238147.3238202

[92] Maas, A., Daly, R. E., Pham, P. T., Huang, D., Ng, A. Y. and Potts, C. [2011]. Learning
word vectors for sentiment analysis, Proceedings of the 49th annual meeting of the
association for computational linguistics: Human language technologies, pp. 142–
150.

[93] MacQueen, J. [1967]. Classification and analysis of multivariate observations, 5th
Berkeley Symp. Math. Statist. Probability, pp. 281–297.

[94] Magesh, P. R., Myloth, R. D. and Tom, R. J. [2020]. An explainable machine
learning model for early detection of parkinson’s disease using lime on datscan
imagery, Computers in Biology and Medicine 126: 104041.

158 Bibliography

[95] Manning, C. D., Raghavan, P. and Schütze, H. [2008]. Introduction to Information
Retrieval, Cambridge University Press.

[96] Mao, K., Harman, M. and Jia, Y. [2016]. Sapienz: Multi-objective automated
testing for android applications, Proceedings of the 25th International Symposium
on Software Testing and Analysis, ISSTA 2016, ACM, pp. 94–105.
URL: http://doi.acm.org/10.1145/2931037.2931054

[97] Marculescu, B., Feldt, R. and Torkar, R. [2016]. Using exploration focused tech-
niques to augment search-based software testing: An experimental evaluation,
2016 IEEE International Conference on Software Testing, Verification and Validation
(ICST), pp. 69–79.

[98] McMinn, P. [2004]. Search-based software test data generation: a survey, Software
testing, Verification and reliability 14(2): 105–156.

[99] Miller, T. [2019]. Explanation in artificial intelligence: Insights from the social
sciences, Artificial intelligence 267: 1–38.

[100] Montavon, G., Lapuschkin, S., Binder, A., Samek, W. and Müller, K.-R. [2017]. Ex-
plaining nonlinear classification decisions with deep taylor decomposition, Pattern
recognition 65: 211–222.

[101] Mouret, J.-B. and Clune, J. [2015]. Illuminating search spaces by mapping elites.

[102] Musleh, D., Alotaibi, M., Alhaidari, F., Rahman, A. and Mohammad, R. M. [2023].
Intrusion detection system using feature extraction with machine learning algo-
rithms in iot, Journal of Sensor and Actuator Networks 12(2): 29.

[103] Neelofar, N. and Aleti, A. [2023]. Towards reliable ai: Adequacy metrics for
ensuring the quality of system-level testing of autonomous vehicles, arXiv preprint
arXiv:2311.08049 .

[104] Nejati, S., Sorokin, L., Safin, D., Formica, F., Mahboob, M. M. and Menghi, C.
[2023]. Reflections on surrogate-assisted search-based testing: A taxonomy and
two replication studies based on industrial adas and simulink models, Information
and Software Technology p. 107286.

[105] Nguyen, V., Huber, S. and Gambi, A. [2021]. Salvo: Automated generation of
diversified tests for self-driving cars from existing maps, 2021 IEEE International
Conference on Artificial Intelligence Testing (AITest), IEEE, pp. 128–135.

[106] Nichol, A., Dhariwal, P., Ramesh, A., Shyam, P., Mishkin, P., McGrew, B., Sutskever,
I. and Chen, M. [2021]. Glide: Towards photorealistic image generation and editing
with text-guided diffusion models, arXiv preprint arXiv:2112.10741 .

159 Bibliography

[107] Omernick, M. and Chollet, F. [2020]. Text classification from scratch,
https://github.com/keras-team/keras-io/blob/master/examples/nlp/

text_classification_from_scratch.py.

[108] O’Shaughnessy, M., Canal, G., Connor, M., Rozell, C. and Davenport, M. [2020].
Generative causal explanations of black-box classifiers, Advances in neural informa-
tion processing systems 33: 5453–5467.

[109] Panichella, A., Kifetew, F. M. and Tonella, P. [2018]. Automated test case gen-
eration as a many-objective optimisation problem with dynamic selection of the
targets, IEEE Transactions on Software Engineering 44(2): 122–158.

[110] Panichella, S., Gambi, A., Zampetti, F. and Riccio, V. [2021]. Sbst tool competition
2021, 2021 IEEE/ACM 14th International Workshop on Search-Based Software
Testing (SBST), pp. 20–27.

[111] Papernot, N., McDaniel, P., Jha, S., Fredrikson, M., Celik, Z. B. and Swami,
A. [2016]. The limitations of deep learning in adversarial settings, 2016 IEEE
European symposium on security and privacy (EuroS&P), IEEE, pp. 372–387.

[112] Pei, K., Cao, Y., Yang, J. and Jana, S. [2019]. Deepxplore: Automated whitebox
testing of deep learning systems, Commun. ACM 62(11): 137?145.
URL: https://doi.org/10.1145/3361566

[113] Pettersson, E., Megyesi, B. and Nivre, J. [2013]. Normalisation of historical text
using context-sensitive weighted levenshtein distance and compound splitting,
Proceedings of the 19th Nordic conference of computational linguistics (Nodalida
2013), pp. 163–179.

[114] Ren, P., Xiao, Y., Chang, X., Huang, P.-Y., Li, Z., Gupta, B. B., Chen, X. and Wang,
X. [2021]. A survey of deep active learning, ACM computing surveys (CSUR)
54(9): 1–40.

[115] Ribeiro, M. T., Singh, S. and Guestrin, C. [2016]. "why should i trust you?":
Explaining the predictions of any classifier, Proceedings of the 22nd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, KDD ’16, Associ-
ation for Computing Machinery, New York, NY, USA, p. 1135â1144.
URL: https://doi.org/10.1145/2939672.2939778

[116] Ribeiro, M. T., Singh, S. and Guestrin, C. [2017]. Lime, https://github.com/
marcotcr/lime.

[117] Riccio, V., Humbatova, N., Jahangirova, G. and Tonella, P. [2021]. Deepmetis:
Augmenting a deep learning test set to increase its mutation score, arXiv preprint
arXiv:2109.07514 .

https://github.com/keras-team/keras-io/blob/master/examples/nlp/text_classification_from_scratch.py
https://github.com/keras-team/keras-io/blob/master/examples/nlp/text_classification_from_scratch.py
https://github.com/marcotcr/lime
https://github.com/marcotcr/lime

160 Bibliography

[118] Riccio, V., Jahangirova, G., Stocco, A., Humbatova, N., Weiss, M. and Tonella, P.
[2020]. Testing machine learning based systems: a systematic mapping, Empir.
Softw. Eng. 25(6): 5193–5254.
URL: https://doi.org/10.1007/s10664-020-09881-0

[119] Riccio, V. and Tonella, P. [2020]. Model-based exploration of the frontier of
behaviours for deep learning system testing, Proceedings of the ACM Joint European
Software Engineering Conference and Symposium on the Foundations of Software
Engineering, ESEC/FSE ’20, Association for Computing Machinery, p. 13 pages.

[120] Riccio, V. and Tonella, P. [2023]. When and why test generators for deep learning
produce invalid inputs: an empirical study, Proceedings of the IEEE/ACM Interna-
tional Conference on Software Engineering, ICSE ’23, IEEE/ACM.

[121] Rokach, L. and Maimon, O. [2005]. Top-down induction of decision trees
classifiers-a survey, IEEE Transactions on Systems, Man, and Cybernetics, Part C
(Applications and Reviews) 35(4).

[122] Rombach, R., Blattmann, A., Lorenz, D., Esser, P. and Ommer, B. [2022]. High-
resolution image synthesis with latent diffusion models, Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pp. 10684–10695.

[123] Ronneberger, O., Fischer, P. and Brox, T. [2015]. U-net: Convolutional networks
for biomedical image segmentation, Medical Image Computing and Computer-
Assisted Intervention–MICCAI 2015: 18th International Conference, Munich, Ger-
many, October 5-9, 2015, Proceedings, Part III 18, Springer, pp. 234–241.

[124] Rousseeuw, P. J. [1987]. Silhouettes: a graphical aid to the interpretation and
validation of cluster analysis, Journal of computational and applied mathematics
20: 53–65.

[125] Ruiz, N., Li, Y., Jampani, V., Pritch, Y., Rubinstein, M. and Aberman, K. [2023].
Dreambooth: Fine tuning text-to-image diffusion models for subject-driven gen-
eration, Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 22500–22510.

[126] Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z.,
Karpathy, A., Khosla, A., Bernstein, M. et al. [2015]. Imagenet large scale visual
recognition challenge, International journal of computer vision 115: 211–252.

[127] Samek, W., Montavon, G., Lapuschkin, S., Anders, C. J. and Müller, K.-R. [2021].
Explaining deep neural networks and beyond: A review of methods and applica-
tions, Proceedings of the IEEE 109(3): 247–278.

[128] Seaman, C. B. [1999]. Qualitative methods in empirical studies of software
engineering, IEEE Transactions on Software Engineering 25: 557–572.

161 Bibliography

[129] Selinger, P. [2003]. Potrace: a polygon-based tracing algorithm.
URL: http://potrace.sourceforge.net/potrace.pdf

[130] Selvaraju, R. R., Cogswell, M., Das, A., Vedantam, R., Parikh, D. and Batra, D.
[2017]. Grad-cam: Visual explanations from deep networks via gradient-based
localization, Proceedings of the IEEE international conference on computer vision,
pp. 618–626.

[131] Simonyan, K. and Zisserman, A. [2014]. Very deep convolutional networks for
large-scale image recognition, arXiv preprint arXiv:1409.1556 .

[132] Smilkov, D., Thorat, N., Kim, B., Viégas, F. and Wattenberg, M. [2017]. Smooth-
grad: removing noise by adding noise, arXiv preprint arXiv:1706.03825 .

[133] Sohl-Dickstein, J., Weiss, E., Maheswaranathan, N. and Ganguli, S. [2015].
Deep unsupervised learning using nonequilibrium thermodynamics, International
conference on machine learning, PMLR, pp. 2256–2265.

[134] Stocco, A., Nunes, P. J., dâAmorim, M. and Tonella, P. [2022]. Thirdeye: Atten-
tion maps for safe autonomous driving systems, Proceedings of 37th IEEE/ACM
International Conference on Automated Software Engineering, ASE, Vol. 22.

[135] Stocco, A., Pulfer, B. and Tonella, P. [2022]. Mind the gap! a study on the
transferability of virtual vs physical-world testing of autonomous driving systems,
IEEE Transactions on Software Engineering .

[136] Stocco, A., Pulfer, B. and Tonella, P. [2023]. Model vs system level testing of
autonomous driving systems: a replication and extension study, Empirical Software
Engineering 28(3): 73.

[137] Stocco, A. and Tonella, P. [2020]. Towards anomaly detectors that learn con-
tinuously, 2020 IEEE International Symposium on Software Reliability Engineering
Workshops (ISSREW), pp. 201–208.

[138] Stocco, A., Weiss, M., Calzana, M. and Tonella, P. [2020]. Misbehaviour prediction
for autonomous driving systems, Proceedings of the ACM/IEEE 42nd international
conference on software engineering, pp. 359–371.

[139] Sundararajan, M., Taly, A. and Yan, Q. [2017]. Axiomatic attribution for deep
networks, International conference on machine learning, PMLR, pp. 3319–3328.

[140] Tang, S., Zhang, Z., Zhang, Y., Zhou, J., Guo, Y., Liu, S., Guo, S., Li, Y.-F., Ma,
L., Xue, Y. and Liu, Y. [2023]. A survey on automated driving system testing:
Landscapes and trends, ACM Trans. Softw. Eng. Methodol. 32(5).
URL: https://doi.org/10.1145/3579642

162 Bibliography

[141] Tantithamthavorn, C. and Jiarpakdee, J. [2021]. Monash University. Retrieved
2021-05-17.
URL: http://xai4se.github.io/

[142] Tatulli, E. and Hueber, T. [2017]. Feature extraction using multimodal convo-
lutional neural networks for visual speech recognition, 2017 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), IEEE, pp. 2971–
2975.

[143] Tian, Y., Pei, K., Jana, S. and Ray, B. [2018]. Deeptest: Automated testing of
deep-neural-network-driven autonomous cars, Proceedings of the 40th International
Conference on Software Engineering, ICSE ’18, ACM, pp. 303–314.
URL: http://doi.acm.org/10.1145/3180155.3180220

[144] Tjoa, E. and Guan, C. [2020]. A survey on explainable artificial intelligence (xai):
Toward medical xai, IEEE transactions on neural networks and learning systems
32(11): 4793–4813.

[145] Tzerpos, V. and Holt, R. C. [1999]. Mojo: A distance metric for software cluster-
ings, Sixth Working Conference on Reverse Engineering, WCRE ’99, Atlanta, Georgia,
USA, October 6-8, 1999, p. 187.

[146] Utting, M., Pretschner, A. and Legeard, B. [2012]. A taxonomy of model-based
testing approaches, Software testing, verification and reliability 22(5): 297–312.

[147] Van der Maaten, L. and Hinton, G. [2008]. Visualizing data using t-sne., Journal
of machine learning research 9(11).

[148] Vidoni, M. [2021]. Evaluating unit testing practices in r packages, 2021 IEEE/ACM
43rd International Conference on Software Engineering (ICSE), IEEE, pp. 1523–1534.

[149] Wang, J. and Dong, Y. [2020]. Measurement of text similarity: a survey, Informa-
tion 11(9): 421.

[150] Weiss, K., Khoshgoftaar, T. M. and Wang, D. [2016]. A survey of transfer learning,
Journal of Big data 3(1): 1–40.

[151] Whitley, L. D. [1989]. The GENITOR algorithm and selection pressure: Why rank-
based allocation of reproductive trials is best, in J. D. Schaffer (ed.), Proceedings of
the 3rd International Conference on Genetic Algorithms, George Mason University,
Fairfax, Virginia, USA, June 1989, Morgan Kaufmann, pp. 116–123.

[152] Wu, Z., Wang, Z., Chen, J., You, H., Yan, M. and Wang, L. [2024]. Stratified
random sampling for neural network test input selection, Information and Software
Technology 165: 107331.

163 Bibliography

[153] Xiang, Y., Huang, H., Li, S., Li, M., Luo, C. and Yang, X. [2023]. Automated test
suite generation for software product lines based on quality-diversity optimization,
ACM Transactions on Software Engineering and Methodology 33(2): 1–52.

[154] Xie, X., Ma, L., Juefei-Xu, F., Xue, M., Chen, H., Liu, Y., Zhao, J., Li, B., Yin, J. and
See, S. [2019]. Deephunter: A coverage-guided fuzz testing framework for deep
neural networks, Proceedings of the 28th ACM SIGSOFT International Symposium on
Software Testing and Analysis, ISSTA 2019, Association for Computing Machinery,
pp. 146–157.
URL: https://doi.org/10.1145/3293882.3330579

[155] Zhang, J. M., Harman, M., Ma, L. and Liu, Y. [2020]. Machine learning test-
ing: Survey, landscapes and horizons, IEEE Transactions on Software Engineering
48(1): 1–36.

[156] Zhang, M., Zhang, Y., Zhang, L., Liu, C. and Khurshid, S. [2018]. Deeproad:
Gan-based metamorphic testing and input validation framework for autonomous
driving systems, Proceedings of the 33rd ACM/IEEE International Conference on
Automated Software Engineering, ASE 2018, Montpellier, France, September 3-7,
2018, ACM, pp. 132–142.
URL: https://doi.org/10.1145/3238147.3238187

[157] Zhang, X., Xie, X., Ma, L., Du, X., Hu, Q., Liu, Y., Zhao, J. and Meng, S. [2020].
Towards characterizing adversarial defects of deep learning software from the lens
of uncertainty, Proceedings of 42nd International Conference on Software Engineering,
ICSE ’20, ACM, p. 12 pages.

[158] Zhang, Y., Xing, J., Lo, E. and Jia, J. [2023]. Real-world image variation by
aligning diffusion inversion chain, arXiv preprint arXiv:2305.18729 .

[159] Zohdinasab, T., Riccio, V., Gambi, A. and Tonella, P. [2021a]. Deephyperion:
exploring the feature space of deep learning-based systems through illumination
search, Proceedings of the 30th ACM SIGSOFT International Symposium on Software
Testing and Analysis, pp. 79–90.

[160] Zohdinasab, T., Riccio, V., Gambi, A. and Tonella, P. [2021b]. :replication package,
https://github.com/testingautomated-usi/DeepHyperion.

[161] Zohdinasab, T., Riccio, V., Gambi, A. and Tonella, P. [2022]. Efficient and effective
feature space exploration for testing deep learning systems, ACM Trans. Softw. Eng.
Methodol. . Just Accepted.
URL: https://doi.org/10.1145/3544792

[162] Zohdinasab, T., Riccio, V. and Tonella, P. [2023a]. An empirical study on low-and
high-level explanations of deep learning misbehaviours, 2023 ACM/IEEE Interna-

https://github.com/testingautomated-usi/DeepHyperion

164 Bibliography

tional Symposium on Empirical Software Engineering and Measurement (ESEM),
IEEE, pp. 1–11.

[163] Zohdinasab, T., Riccio, V. and Tonella, P. [2023b]. :replication package, https:
//github.com/testingautomated-usi/DeepAtash.

[164] Zohdinasab, T., Riccio, V. and Tonella, P. [2023c]. Unboxer:replication package,
https://github.com/testingautomated-usi/unboxer.

[165] Zohdinasab, T., Riccio, V. and Tonella, P. [2024]. :replication package, https:
//github.com/testingautomated-usi/DeepTheia.

https://github.com/testingautomated-usi/DeepAtash
https://github.com/testingautomated-usi/DeepAtash
https://github.com/testingautomated-usi/unboxer
https://github.com/testingautomated-usi/DeepTheia
https://github.com/testingautomated-usi/DeepTheia

	Contents
	Introduction
	Background
	Illumination Search
	Explainable AI
	Integrated Gradients
	LIME

	Case Studies
	Handwritten Digit Classifier
	Self-driving Car
	Movie Sentiment Analysis
	Image Classification

	State of the Art
	DL Test Input Generation and Adequacy
	Explainable AI for DL Testing
	Feature Extraction for DL Testing

	Exploring the Feature Space of Deep Learning-Based Systems through Illumination Search
	Manual Definition of the Feature Map Dimensions
	Open Coding
	Metric Identification
	Dimensions for Digit Recognition
	Dimensions for Autonomous Driving

	The DeepHyperion-CS Technique
	Input Representation
	Fitness Function
	Feature Map
	Initial Population
	Contribution Score-Based Rank Selection
	Model-Based Mutation Operators

	Experimental Evaluation
	Research Questions
	Experimental Procedure
	Results
	RQ2: Search Exploration

	Conclusion
	Reproducibility

	Focused Test Generation for Deep Learning Systems
	The DeepAtash Technique
	Input Representation
	Fitness Functions
	Archive of Solutions
	Search Strategies
	Population Management
	Mutation

	Experimental Evaluation on Image and Text Classifiers
	Research Questions
	Metrics
	Evaluation Scenarios
	Experimental Procedure
	Results

	Focused Test Generation for Autonomous Driving Systems
	Focused Testing with Surrogate Models: the DeepAtash-LR Technique
	Input Representation
	Fitness Functions
	Surrogate Model
	Archive of Solutions
	Mutation
	Population Management

	Experimental Evaluation on ADSs
	Research Questions
	Metrics
	Experimental Procedure
	Results

	Conclusions
	Reproducibility

	Automated Feature Extraction for Testing Deep Learning Systems
	The DeepTheia Technique
	Automated Feature Extraction
	Input Perturbation

	Experimental Evaluation
	Research Questions
	Experimental Procedure
	Results

	Conclusion
	Reproducibility

	Comparison with Explainable AI Approaches
	Comparing High- and Low-level Explanations
	Empirical Study
	Research Questions
	Experimental Procedure
	Results

	Conclusion
	Reproducibility

	Conclusion
	Impact
	Future Work

	Bibliography

