
Research Advisor

Prof. Dr. Gabriele Bavota

EXPLORING THE USAGE OF
PRE-TRAINED MODELS FOR
CODE-RELATED TASKS

Antonio Mastropaolo

SE ART

Dissertation Committee

Prof. Antonio Carzaniga Università della Svizzera italiana, Switzerland
Prof. Michele Lanza Università della Svizzera italiana, Switzerland
Prof. Davide Di Ruscio University of L’Aquila, Italy
Dr. Alexey Svyatkovskiy Google DeepMind, USA

Dissertation accepted on 15 May 2024

Research Advisor
Prof. Gabriele Bavota

Ph.D. Program Co-Director Ph.D. Program Co-Director

Prof. Walter Binder Prof. Stefan Wolf

i

I certify that except where due acknowledgement has been given, the work presented in
this thesis is that of the author alone; the work has not been submitted previously, in whole
or in part, to qualify for any other academic award; and the content of the thesis is the result
of work which has been carried out since the official commencement date of the approved
research program.

Antonio Mastropaolo
Lugano, 15 May 2024

ii

Abstract

Developers are often faced with the challenge of writing high-quality code while meeting
strong time constraints. Recent literature exploits Deep Learning (DL) models to support
developers in code-related tasks. For example, DL-based approaches have been proposed to
automate bug-fixing activities, code summarization, and code review. Some of these tasks
require to work with both code and technical natural language (e.g., code summarization),
posing additional challenges in the training of DL models which must deal with bi-modal
data. Our goal is to widen the support given to developers when dealing with code-related
tasks characterized by technical natural language and code. To this extent, we started investi-
gating the benefits brought by the “pretrain-then-finetune” paradigm when using DL models
to automate code-related activities. The basic idea of this paradigm is to first pre-train the
model with self-supervised tasks with the only goal of learning the languages of interest
(e.g., technical English and code). Then, the fine-tuning phase takes care of specializing the
model for the specific task of interest (e.g., code summarization). Given the positive results
we achieved, we focused our research on two code-related tasks characterized by both code
and natural language. The first is the already mentioned code summarization which consists
in generating a code summary for a given piece of code at hand (e.g., method, code snippet).
In this context, we also present a novel metric aimed at assessing automatically generated
code summaries. The second is the generation and injection of complete log statements in
which the DL model takes as input a code component and is in charge of recommending to
developers which log statements may be beneficial to inject, thus taking care of generating
the log statement (including a meaningful log message) and inject it in the correct code
location. Finally, given the increasing popularity of the GitHub Copilot code recommender,
we ran an empirical study on a third task characterized by both code and natural language,
namely code generation (i.e., generate the code needed to implement a functionality de-
scribed in natural language). In particular, we investigated Copilot’s robustness in handling
different yet semantically-equivalent natural language descriptions of the code to implement
(prompts), showing its sensitivity to the wording used in the prompt (i.e., minor changes to
the prompt result in different code synthesized by Copilot).

iii

iv Abstract

Acknowledgments

Well, it seems I am about to conclude another chapter of my life and what a CHAPTER!.
Let me be quite frank, my Ph.D. started in October 2020, right between the first and on-
coming second waves of COVID-19. Beginning a new life abroad only to be confronted with
such “uncontrollable” events—those beyond the reach of any willpower and perhaps left to
fate—was hardly ideal. However, it wasn’t all doom and gloom; I made it through, albeit
picking up smoking as my bad habit along the way. But as they say, such is life. The jour-
ney was challenging, yet realizing the fantastic people around me made all the difference so
much so that at a certain point persevere was the only thing to do.

Matteo and Rosalia, for instance, together we embarked on the DEVINTA project. De-
spite our different life phases, we clicked since the very beginning. We’ve become more than
colleagues; we’re friends who’ve spent countless hours working, joking, and, most memo-
rably, traveling to Australia together. Speaking of which, our return flight saw us upgraded
to business class, for free!

My journey also introduced me to Luca and Emad, both post-docs at the time, amazing
colleagues. Luca and I, to this day, share countless moments. From gym sessions to dinner
invitations from him and his fiancée, Claudia—“Anto, pizza tonight?”—Never skipped!. Luca
and Claudia became such good friends that I even spent a couple of days in Luca’s hometown
of Benevento to critique his pizza-making skills in a wood-fired oven.

The SoftwarE Analytic Research Team (SEART) truly stands out, thanks to the visionary
leadership of Gabriele. He’s exceptional and always pushed me to aim for more and do better.
This means a great deal to me! Gabriele’s ability to foster growth and development in others
is remarkable. I can confidently say Gabriele is in a league of his own, he’s built different.
Forget about those horror stories on student-advisor dynamics; Gabriele transforms that
narrative. He’s not just an advisor but also a colleague, a friend, and a mentor. He thought
me several lessons for which I will always be grateful, but the most important one I’ve learned
from Gabriele is what kind of academic I aspire to be!. Reflecting on mentorship, I’ve been
incredibly fortunate to receive an exceptional support from numerous mentors throughout
my academic journey—a support I hope will continue. During my time as a bachelor’s and
later a master’s student, my first academic advisor, Rocco Oliveto, introduced me to the world
of research. Thanks to him and Gennaro Parlato, a small but persistent spark of interest was
kindled within me. This passion has grown steadily over the years, culminating in September
2023 when I decided to pursue Assistant Professor positions primarily in North America.
Since making this decision, I have received unwavering encouragement from Gabriele, Max,
Michele, Andy, Denys, Gennaro, and many others.

Their support was phenomenal. Gabriele and Max, even before the interviews started,
told me, “Anto, get ready for a journey across continents; you’ll be invited for interviews all
over the places.” Initially skeptical, I thought, “We’ll see...,” but indeed, I traveled extensively–

v

vi Acknowledgments

Singapore, Montreal, San Francisco, Williamsburg, not to mention the interviews I declined
because my decision was already made. Thanks to their support when I asked reference let-
ters, providing continuous feedback, and guidance, especially when choosing between two
places I wanted to go, I am proud to announce that in August 2024, I’ll begin my role as an
Assistant Professor at William & Mary, Virginia (USA).

Sharing my journey is crucial because the role of those who guides and supports us
often goes unrecognized. Therefore, I must express my profound gratitude to Gabriele,
Max, Michele, Andy, Denys, Rocco and Gennaro. They saw something in me, even when
I doubted myself, and their genuine intentions, have been invaluable. To these people, I
owe!. Recognizing someone’s potential before they see it in themselves is a rare gift. So, a
heartfelt thank you to all of you, truly, for everything!

Earlier, I mentioned how exceptional our team is, a sentiment largely attributable to
its current members. Ozren, Alessandro, and Alberto are fantastic people who contribute
significantly both within and beyond our team dynamics. Alessandro, affectionately known
as the small man, is not just a colleague but a dear friend and my scapegoat during stressful
times. Despite the occasional fun I make of him, he’s well aware of my respect and concern
for him. I often find myself encouraging him, confident in the success of his Ph.D. because
of his remarkable determination and passion. Ozren, or Oz as I like to call him, was once my
gym “buddy” and trusted spotter for those heavy lift. Even though he’s traded weightlifting
for rock climbing, he remains my favorite buddy for adventures and fun. A special shoutout
to Alberto, the latest addition to the SEART group, who provided invaluable insights when I
was prepping for my interviews.

Furthermore, I must extend my gratitude to all the colleagues and friends I’ve had the
pleasure of meeting on this incredible journey, who have been part of some truly memorable
moments. A heartfelt thank you to Emanuela, Federica, Vittorina, Ciccio, Federico, Alejo,
Bin, Camilo, and Carlos. I’d like to use these final words to express my deepest gratitude to
my family, who are the cornerstone of my life. Firstly, I want to extend my heartfelt thanks
to my mother, my father, my sister, my grandmothers, and my grandfather. The values and
principles they have instilled in me have made me aware of the blessings in my life. Their
unwavering presence and support, no matter what challenges I faced, truly embody the kind
of family I wish for everyone. My mother, Antonella, is always the first person who comes
to mind when I think of family. Words fail to capture the immense gratitude I have for all
that she has done and continues to do for me. I cannot express enough admiration for her;
she is my entry into this world, my best friend, and my invaluable treasure. Her support and
love have been indispensable to me. She is even tattooed on my forearm! Thank you, Mom,
for giving me your all, regardless of the situation. Now it’s my turn to take care of you; you
can take a step back and enjoy the fruits of your hard work. I am also aware that I could not
have grown into the man I am today without the lessons my Dad taught me, lessons that he
continues to impart. You Dad, together with Mom, have given me so much over the past 28
years that simply mentioning over the few lines I’m writing does not make enough justice to
your love and support. This thesis represents the outcome of our effort!

Grazie Mamma e Grazie Papà, per avermi guidato fin qui. Godetevi il traguardo, perché
questo, è il nostro targuardo!

Contents

Contents ix

I Prologue 1

1 Introduction 3
1.1 Thesis Statement . 4
1.2 Research Contributions . 5

1.2.1 Automating Code-related Tasks via Pre-trained Models 5
1.2.2 Improving the Evaluation of Code Summarization Techniques 6
1.2.3 Evaluating the Robustness of DL-based techniques for Generating Code 7

1.3 Outline . 7

II Empirical Investigations About the Usage of DL-based Solutions for Code-
Related Tasks 9

2 Background and Related Work 13
2.1 Automated Bug-Fixing . 13
2.2 Source Code Mutation . 16
2.3 Generation of Assert Statements . 17
2.4 Method-level Code Summarization . 17
2.5 Strength and Weaknesses of AI-driven Solutions for Software Developers . . . 19

3 Towards Automating Code-Related Tasks via Pre-trained Models of Code 21
3.1 Text-to-Text-Transfer-Transformer . 23

3.1.1 An Overview of T5 . 23
3.1.2 Pre-training of T5 . 23
3.1.3 Fine-tuning of T5 . 25
3.1.4 Fine-tuning dataset . 25
3.1.5 Decoding Strategy . 27
3.1.6 Data Balancing for the multi-task model 28

3.2 Research Questions and Context . 29
3.2.1 Data Collection and Analysis . 29
3.2.2 Hyperparameter Tuning . 31

3.3 Results Discussion . 32

vii

viii Contents

3.3.1 Performance of T5 (RQ1) and impact of transfer learning on perfor-
mance (RQ1.1-RQ1.2) . 32

3.3.2 Competitiveness of the T5 model compared to the baselines (RQ2) . . 34
3.3.3 Qualitative Analysis . 39
3.3.4 Training and Inference Time . 41

3.4 Threats to Validity . 42
3.5 Conclusions . 44

4 Evaluating the Robustness of DL-based techniques for Generating Code 47
4.1 Study Design . 48

4.1.1 Context Selection . 49
4.1.2 Data Collection . 51
4.1.3 Data Analysis . 52
4.1.4 Replication Package . 54

4.2 Results Discussion . 54
4.2.1 RQ0: Evaluation of Automated Praphrase Generators 54
4.2.2 RQ1: Robustness of GitHub Copilot . 55

4.3 Threats to Validity . 60
4.4 Conclusions . 61

III Automated Log Generation 63

5 Background and Related Work 67

6 Log Statement Generation via Deep Learning 69
6.1 LEONID . 70

6.1.1 Datasets Needed for Training, Validation, and Testing 70
6.1.2 Pre-Training Dataset . 72
6.1.3 Fine-tuning Dataset: Single Log Generation 72
6.1.4 Fine-tuning Dataset: Single Log Generation with IR 73
6.1.5 Fine-tuning Dataset: Multi-log Injection with IR 75
6.1.6 Fine-tuning Dataset: Deciding Whether Log Statements are Needed . 75
6.1.7 Training and Hyperparameter Tuning . 76
6.1.8 Generating Predictions . 78

6.2 Study Design . 78
6.2.1 Data Collection and Analysis . 79

6.3 Results Discussion . 81
6.3.1 RQ1: Injecting a single log statement . 81
6.3.2 RQ2: Injecting multiple log statements 84
6.3.3 RQ3: Deciding whether log statements are needed 85

6.4 Threats to Validity . 88
6.5 Conclusions . 89

Contents ix

IV Code Summarization 91

7 Background and Related Work 95
7.1 Snippet-level Code Summarization . 95
7.2 Evaluation of Code Summarization Techniques and Metrics 97

7.2.1 Evaluating Code Summarization Techniques 97
7.2.2 Assessing the Quality of Code Comments 98

8 Towards Summarizing Code Snippets 101
8.1 Building a Dataset of Documented Code Snippets 103

8.1.1 Study Design . 103
8.1.2 Dataset . 105

8.2 Automatic Classification of Code Comments and Linkage to Documented Code 106
8.2.1 Approach Description . 106
8.2.2 Pre-training Dataset . 107
8.2.3 Fine-tuning Dataset . 107
8.2.4 Training Procedure and Hyperparameters Tuning 108
8.2.5 Study Design . 109
8.2.6 Data Collection And Analysis . 110
8.2.7 Results Discussion . 111

8.3 Snippets Summarization Using T5 . 112
8.3.1 Approach Description . 112
8.3.2 Fine-tuning Dataset . 113
8.3.3 Training Procedure and Hyperparameters Tuning 114
8.3.4 Study Design . 114
8.3.5 Data Collection And Analysis . 115
8.3.6 Results . 116

8.4 Threats to Validity . 117
8.5 Conclusions . 118

9 Supporting Code Summarization via Comment Completion Techniques 119
9.1 T5 to Support Code Comment Completion . 120

9.1.1 Problem Definition . 120
9.1.2 Dataset Preparation . 120
9.1.3 Pre-training of T5 . 122
9.1.4 Fine-tuning of T5 . 122
9.1.5 Preparing the Dataset for the Model Fine-Tuning 122
9.1.6 Dataset Splitting . 124
9.1.7 Decoding Strategy . 125
9.1.8 Hyperparameter Tuning . 125

9.2 Study Design . 126
9.2.1 N -Gram Model . 126
9.2.2 Evaluation Metrics and Data Analysis . 126

9.3 Results Discussion . 128

x Contents

9.4 Threats to Validity . 133
9.5 Conclusions . 133

10 A New Metric for Evaluating Code Summarization Techniques 135
10.1 SIDE . 136

10.1.1 MPNet in a Nutshell . 137
10.1.2 Contrastive Learning . 138
10.1.3 Fine-tuning Dataset . 138
10.1.4 Training and Model Evaluation . 140

10.2 Study Design . 140
10.2.1 Evaluation Dataset . 141
10.2.2 Variable Selection . 141
10.2.3 Words/characters-overlap based Metrics 142
10.2.4 Embedding-based Metrics . 143
10.2.5 Analysis Methodology . 144

10.3 Results Discussion . 145
10.3.1 Qualitative Analysis . 150
10.3.2 Ablation Study - Impact of Hard-negatives 150

10.4 Threats to Validity . 152
10.5 Conclusions . 153

V Epilogue 155

11 Conclusions and Future Work 157
11.1 Limitations and Future Work . 157

11.1.1 Applicability and generalizability of our findings across various pro-
gramming languages and models . 157

11.1.2 Evaluating the perceived usefulness of our techniques 158
11.1.3 In-context learning and prompt engineering for software-related prac-

tices . 158
11.1.4 Green-AI for software engineering . 158

11.2 Closing Words . 159

Appendices 161

A Towards Automatically Addressing Self-Admitted Technical Debt: How Far Are
We? 165
A.1 Study Definition, Design and Planning . 167

A.1.1 Research Questions . 167
A.1.2 Context: Datasets . 168

A.2 Experimented Techniques . 172
A.2.1 No Pre-training + Fine-tuning (RQ1) . 173

Contents xi

A.2.2 Self-supervised Pre-training + Fine-tuning (RQ1) 173
A.2.3 Self-supervised & Supervised Pre-training + Fine-tuning (RQ2 and RQ3)174
A.2.4 Zero-Shot Prompt Tuning (RQ4) . 174

A.3 Data Collection and Analysis . 174
A.4 Results . 175

A.4.1 RQ1: To what extent do pre-trained models of code support the auto-
mated SATD repayment? . 176

A.4.2 RQ2: To what extent does the infusion of “similar-task knowledge” in
pre-trained models of code benefits the automated SATD repayment? 177

A.4.3 RQ3: To what extent does the presence of “context-specific knowl-
edge” help pre-trained models of code in the automated SATD repay-
ment? . 179

A.4.4 RQ4: Are general-purpose large language models zero-shot learners
for SATD repayment? . 180

A.5 Threats to Validity . 180
A.6 Conclusions and Future Work . 181

B Toward Automatically Completing GitHub Workflows 183
B.1 Background . 184
B.2 GH-WCOM . 186

B.2.1 An overview of T5 . 186
B.2.2 Abstraction . 186
B.2.3 Training and Testing Datasets . 188
B.2.4 Training and Hyperparameter Tuning . 191

B.3 Study Design . 193
B.3.1 Data Collection and Analysis . 193

B.4 Study Results . 196
B.4.1 Why not just using a state-of-the-art chatbot or code recommender? . 201

B.5 Threats to Validity . 201
B.6 Conclusions and Future Work . 203

C Automated Variable Renaming: Are We There Yet? 205
C.1 Data-driven Variable Renaming . 207

C.1.1 N-gram Cached Model . 208
C.1.2 Text-To-Text-Transfer-Transformer (T5) 208
C.1.3 Deep-Multi-Task code completion model 209

C.2 Study Design . 209
C.2.1 Datasets Creation . 209
C.2.2 Training and Hyperparameters Tuning of the Techniques 212
C.2.3 Performance Assessment . 214

C.3 Results Discussion . 216
C.3.1 Implications of our Findings . 222

C.4 Threats to Validity . 222
C.5 Conclusions and Future Work . 223

xii Contents

D Unveiling ChatGPT’s Usage in Open Source Projects: A Mining-based Study 225
D.1 Study Design . 226

D.1.1 Mining Candidate Instances . 227
D.1.2 Manual Analysis and Taxonomy Definition 227

D.2 Results Discussion . 229
D.2.1 Feature implementation/enhancement 229
D.2.2 Process . 233
D.2.3 Learning . 234
D.2.4 Generating/manipulating data . 234
D.2.5 Development environment . 235
D.2.6 Software quality . 236
D.2.7 Documentation . 237

D.3 Threats to Validity . 238
D.4 Conclusions and Future Work . 239

Bibliography 241

Part I
Prologue

1
Introduction

The ever-increasing complexity of software systems often pushes developers to look for a
helping hand either from a team-mate or, when not possible, by relying on (semi-)automated
tools. In response to these needs, researchers have proposed recommender systems for soft-
ware developers. Robillard et al. [RWZ10] defined such systems as “software tools that
can assist developers with a wide range of activities, from reusing code to writing effective
bug reports”. The first generation of recommender systems for software developers was
characterized by approaches built on top of limited and manually-crafted heuristics. For
instance, Moreno et al. [MAS+13b] presented JSummarizer, an eclipse plug-in to automat-
ically generate a natural language description of a Java class by using a set of pre-defined
templates. Although empirical studies have shown the potential usefulness of these tools
[MMTM12, MBDP+16, LYTH13], they suffer of generalizability issues. For example, the
number of templates that can be manually defined to document Java classes is clearly lim-
ited, and unlikely to cover all possible coding scenarios.

Lately, the surge of software development data hosted on platforms such as GitHub,
paved the way to a new class of approaches based on data-driven recommenders that can
learn how to automate code-related tasks by “looking” at activities performed by real devel-
opers in open source projects. To give the reader a better idea of the quantity of software
data that can be found on these code repositories, as of January 2023, GitHub counts more
than 100 Million developers and more than 400 Million repositories1. Such a sheer amount
of data unlocked the usage of deep learning (DL) models to support code-related tasks,
such as automatic bug-fixing [TWB+19a, CKT+19, MRJ+19, HSN18], code summarization
[LHWM20, HLWM20, LOZ+21] and code completion [SDFS20, SLH+21, CCP+21, SZFS19,
LLZJ20, LWLK17], among others. To better understand how such techniques work, let us
discuss the DL model proposed by Tufano et al. [TWB+19a] to automatically fix bugs in Java
methods. The model learns bug-fixing patterns by being trained on ∼58k pairs of buggy
and fixed methods mined from software repositories. In particular, these are methods which
have been subject to bug-fixing activities and, as such, it is possible to retrieve from software
repositories their version before (buggy) and after (fixed) the bug-fix. Other techniques fo-

1https://en.wikipedia.org/wiki/GitHub

3

https://en.wikipedia.org/wiki/GitHub

4 Introduction

cus on tasks characterized by bi-modal data in the form of technical natural language (e.g.,
code comments) and source code. This is the case of code summarization (i.e., generat-
ing a natural language summary of a given code) and code generation (i.e., generating the
code needed to implement a functionality described in natural language). Automating these
tasks implies the capability of the model to deal at the same time with both natural and
programming languages.

The emergence of pre-trained models has brought considerable progress, opening up a
breadth of opportunities for the automation of code-related tasks. With “pre-trained mod-
els”, we refer to DL models which are pre-trained with self-supervised tasks to learn char-
acteristics of the language of interest (e.g., English and Java). For example, a classic pre-
training objective is the masked language model, consisting in randomly masking a certain
percentage (e.g., 15%) of the tokens composing the input sequence (e.g., an English sen-
tence, a Java method), asking the model to predict those tokens that have been masked.
This equips pre-trained models with a re-usable body of knowledge about the languages of
interest that can be exploited when the model is then fine-tuned (i.e., specialized) to support
a specific task. For example, in the case of code summarization, the fine-tuning will provide
the model with examples of code components (input) and their natural language summary
(expected output).

The idea of using the “pretrain-then-finetune” paradigm to support software engineering
(SE) tasks has been firstly proposed by Robbes et al. [RJ19], which suggested it as a way
to overcome the limited size of training datasets available for specific tasks (e.g., sentiment
analysis on software-related corpora such as Stack Overflow discussions). Since then, also
due to the advent of the Transformer DL architecture [VSP+17], pre-trained models have
been widely adopted in SE, with tools such as Microsoft’s GitHub Copilot [cop] exemplifying
the start of a new era in coding automation.

Despite the advancements made in automating code-related tasks through DL-based
techniques, we observe that (i) there are still tasks, especially those characterized by bi-
modal data (e.g., code summarization, code generation), for which the support provided to
developers is limited and would benefit from further research [LSZ+22]; (ii) the empirical
evaluation of these generative DL models is extremely challenging since, in most cases, it is
difficult to objectively assess the correctness/quality of the output they generate (e.g., is a
generated code summary a good description of the code provided as input?); and (iii) the
advent of tools such as GitHub Copilot poses new questions about how software will be de-
veloped and whether new skills will be required to software developers (e.g., the ability to
provide proper prompts to the tool to maximize its effectiveness).

1.1 Thesis Statement

Given the aforementioned premises, we formulate our thesis as follow:

Pre-trained deep learning models can effectively support the automation of tasks
characterized by both code and natural language. Novel metrics are needed to
properly assess their performance in the context of generative tasks.

1.2 Research Contributions 5

To validate our thesis, we first investigate the effectiveness of pre-trained models for sev-
eral code related tasks, including those characterized by bi-modal data. Then, we propose
solutions aimed at boosting two specific code-related tasks: snippet-level code summariza-
tion (i.e., the task of describing in natural language a snippet of code composed by an ar-
bitrary number of statements) and log injection (i.e., the task of synthesizing and injecting
log statements in source code). We assess the proposed solutions both quantitatively and
qualitatively, pointing to their strengths and limitations.

Then, based on our experience with the evaluation of code summarization techniques,
we present a novel metric aimed at assessing whether a natural language summary is ap-
propriate for a given code. We show that such a metric captures orthogonal aspects of code
summary quality as compared to those employed in the state-of-the-art, and it is the one
having the highest correlation with human judgment of summary quality.

Finally, we take GitHub Copilot as representative of a state-of-the-art pre-trained model
for code generation, and study its sensitivity to the prompt provided as input (i.e., the nat-
ural language text describing the code to generate), showing its lack of robustness when
prompted with semantically equivalent (but different) code descriptions.

1.2 Research Contributions

The research contributions of this thesis can be grouped into three high-level categories: (i)
the definition and experimentation of DL-based techniques exploiting pre-trained models to
automate code-related tasks, especially those involving bi-modal data such as code summa-
rization and log statement generation, detailed in Chapters 3, 6, 8 and 9; (ii) the introduction
of a novel metric aimed at assessing the effectiveness of code summarization methods, dis-
cussed in Chapter 10; and (iii) an empirical assessment of the robustness of GitHub Copilot
[cop] for the task of code generation, covered in Chapter 4. The research presented in this
thesis has been conducted in the context of the DEVINTA ERC project [Dev].

1.2.1 Automating Code-related Tasks via Pre-trained Models

We studied the extent to which pre-trained DL models can be instantiated to automate code-
related tasks, including bug-fixing, source code mutation, generation of assert statements,
code summarization and log generation. We started by running a first empirical study aimed
at exploring the capabilities of a pre-trained DL model for the automation of several code-
related tasks by comparing it against state-of-the-art techniques. We demonstrated the ad-
vantages of the pre-training process for each task undertaken, concluding that it serves as a
useful mechanism for knowledge transfer, ultimately leading to superior performance com-
pared to prior DL methodologies. This work resulted in the following publications:

Studying the Usage of Text-To-Text Transfer Transformer to Support Code-Related Tasks

A. Mastropaolo, S. Scalabrino, N. Cooper, D.N. Palacio, D. Poshyvanyk, R. Oliveto, G.Bavota.. In 43rd
International Conference on Software Engineering (ICSE 2021), 336–347

6 Introduction

Using Transfer Learning for Code-Related Tasks

A. Mastropaolo, N. Cooper, D.N. Palacio, S. Scalabrino, D. Poshyvanyk, R. Oliveto, G.Bavota. In IEEE
Transactions on Software Engineering (TSE 2022), 4818-4837

Then, given the promising results we achieved, we devised techniques exploiting pre-
trained models to (partially) automate code summarization. A first approach, aimed at sum-
marizing code snippets, while a second one focused on comment completion (i.e., automat-
ically completing a comment partially written by a developer). This part of the thesis has
been presented in the following publications:

An Empirical Study on Code Comment Completion

A. Mastropaolo, E. Aghajani, L. Pascarella, G. Bavota. In 37th International Conference on Software
Maintenance and Evolution (ICSME 2021), 159-170

Towards Summarizing Code Snippets Using Pre-Trained Transformers

A. Mastropaolo, E. M. Ciniselli, R. Tufano, L. Pascarella, E. Aghajani, G. Bavota. In 32nd International
Conference on Program Comprehension (ICPC 2024), To Appear, 12 pages.

Finally, we presented and empirically evaluated the first approach in the literature ex-
ploiting a pre-trained model to provide complete automation of log statements injection in
Java programs:

Using Deep Learning to Generate Complete Log Statements

A. Mastropaolo, L. Pascarella, G. Bavota. In 44th International Conference on Software Engineering
(ICSE 2022), 2279-2290

Log Statements Generation via Deep Learning: Widening the Support Provided to Developers

A. Mastropaolo, V. Ferrari, L. Pascarella, G.Bavota. In Elsevier Journal of Systems and Software (JSS
2023),

1.2.2 Improving the Evaluation of Code Summarization Techniques

We proposed a new metric aimed at overcoming the limitations of state-of-the-art metrics
usually adopted to assess code summarization techniques (e.g., BLEU [PRWZ02], METEOR
[BL05]). Ideally, software developers should be involved in assessing the quality of the
generated summaries. However, in most cases, researchers rely on automatic evaluation
metrics. These metrics are all based on the same assumption: The higher the textual similarity
between the generated summary and a reference summary written by developers, the higher its
quality. However, there are two reasons for which this assumption falls short: (i) reference
summaries, e.g., code comments collected by mining software repositories, may be of low
quality or even outdated; (ii) generated summaries, while using a different wording than a
reference one, could be semantically equivalent to it, thus still being suitable to document
the code snippet.

We performed a thorough empirical investigation on the complementarity of different
types of metrics in capturing the quality of a generated summary. Then, we proposed to ad-
dress the limitations of existing metrics by considering a new dimension, capturing the extent
to which the generated summary aligns with the semantics of the documented code snippet,
independently from the reference summary. To this end, we presented a new metric based

1.3 Outline 7

on contrastive learning to capture said aspect. We empirically showed that the inclusion
of this novel dimension enables a more effective representation of developers’ evaluations
regarding the quality of automatically generated summaries. This part of the thesis resulted
in the following publication:

Evaluating Code Summarization Techniques: A New Metric and an Empirical Characterization

A. Mastropaolo, M. Ciniselli, G. Bavota, M. Di Penta. In 46th International Conference on Software
Engineering (ICSE 2024), To Appear, 12 pages.

1.2.3 Evaluating the Robustness of DL-based techniques for Generating Code

We studied the robustness of DL-based code generators by focusing on GitHub Copilot, cur-
rently being the most popular code generator among practitioners. Indeed, while the useful-
ness of Copilot is evident, it is still unclear the extent to which semantic-preserving changes
in the natural language description provided to the model have an effect on the generated
code. In particular, we studied whether different but semantically equivalent natural language
descriptions result in the same recommended function. A negative answer would pose ques-
tions on the robustness of DL-based code generators since it would imply that developers us-
ing different wordings to describe the same code would obtain different recommendations.
Our results showed that modifying the description results in different code recommenda-
tions in ∼46% of cases. Also, differences in the semantically equivalent descriptions might
impact the correctness of the generated code (±28%). This part of the thesis resulted in the
following publication:

On the Robustness of Code Generation Techniques: An Empirical Study on GitHub Copilot

A. Mastropaolo, L. Pascarella, G. Guglielmi, M.Ciniselli, S.Scalabrino, R.Oliveto, G.Bavota. In 45th
International Conference on Software Engineering (ICSE 2023), 2149-2160

1.3 Outline

This dissertation is organized into parts, which are further split into chapters as described
below.

Part II revolves around empirical investigations about the usage of DL-based techniques
for code-related tasks and software engineering automation. Chapter 2 discusses the
literature related to the code-related tasks under investigation in this part of the the-
sis, namely bug fixing, source code mutation, generation of assert statements, and
method-level source code summarization. Chapter 2 also discusses empirical studies
focusing on the advantages and limitations of AI-driven solutions for software devel-
opment. Chapter 3 presents our study investigating the viability of employing the
“pretrain-then-finetune” approach to foster the automation of the tasks of interests.
We compared our technique against the state-of-the-art techniques proposed at that
time for solving the same tasks. Chapter 4 details instead our study on the robustness
of GitHub Copilot.

8 Introduction

Part III comprises two different chapters. Chapter 5 provides general concepts about log-
ging and discusses the most recent advancement and techniques to automate logging
activities. Chapter 6 introduces LEONID, the end-to-end solution we devised to equip
developers with a method that enables complete automation of log statements injec-
tion.

Part IV is dedicated to the topic of code summarization, outlining the methodologies we
have established to enhance this task, along with introducing SIDE, a novel metric
designed to improve the evaluation of code summarization techniques. Chapter 7
detail the status of current literature in the field concerning snippet-level code sum-
marization and methods to evaluate approaches for documenting the code. Chapter 8
presents our approach for snippet-level summarization, while Chapter 9 focuses on the
comment completion task. Finally, Chapter 10 outlines our efforts to develop a more
effective evaluation framework for assessing the quality of automatically generated
code summaries.

Part V concludes the thesis and outlines directions for future work.

Appendices A, B, C, and D detail additional research conducted during the PhD that falls
outside the scope of this thesis.

Part II
Empirical Investigations About

the Usage of DL-based
Solutions for Code-Related

Tasks

11

In this part, we present two studies investigating, from different perspectives, the ap-
plication of DL-based solutions to code-related tasks. Specifically, our first study (Chapter
3) presents an empirical analysis on the usage of transfer learning for code-related tasks.
Particularly, we explore the capabilities of a Text-to-Text Transfer Transformer (T5) model
[RSR+20] that has been trained to support four different code-related tasks, namely: bug-
fixing, injection of code mutants, generation of assert statements in test methods, and code
summarization. To this extent, we start by pre-training the T5 model using a large dataset
consisting of 499,618 English sentences and 1,569,889 source code components (i.e., Java
methods). Subsequently, we refine the model’s capabilities through two distinct approaches:
fine-tuning in a single-task and in a multi-task framework. In the single-task approach, we
develop four different models, each tailored for only one of the tasks under investigation.
Conversely, the multi-task approach involves training a single model designed to handle var-
ious tasks simultaneously (thus investigating the boost in performance provided by transfer
learning, if any).

Our findings reveal that the pre-training phase of the T5 model significantly enhances its
effectiveness across all tasks, showcasing the value of the pre-training step in boosting overall
performance. However, when it comes to fine-tuning for multiple tasks simultaneously, the
benefits are not uniformly observed. Still, the T5 model outperforms the baseline models
(state-of-the-art techniques when we run our study back in 2021) in all four tasks. The
results of this work have been published in the two following papers:

Studying the Usage of Text-To-Text Transfer Transformer to Support Code-
Related Tasks

Antonio Mastropaolo, Simone Scalabrino, Nathan Cooper, David N. Palacio, Denys
Poshyvanyk, Rocco Oliveto, Gabriele Bavota. In Proceedings of the 43rd IEEE/ACM
International Conference on Software Engineering (ICSE 2021), pp. 336-347

Using Transfer Learning for Code-Related Tasks

Antonio Mastropaolo, Nathan Cooper, David N. Palacio, Simone Scalabrino, Denys
Poshyvanyk, Rocco Oliveto, Gabriele Bavota. In Transaction on Software Engineering
(TSE 2022), Volume 49(4), pp. 1580-1598

The second study (Chapter 4) has been instead conducted after the advent of GitHub
Copilot [CTJ+21], which has changed the landscape of coding automation by providing un-
precedented performance in complex tasks such as code generation, i.e., providing the tool
with a natural language description of the code to implement (prompt) expecting as output
the required code. One open question related to the adoption of this tool is what is the im-
pact of the wording used when defining the prompt on the generated source code. In other
words, what happens if two developers use a slightly different (but semantically equivalent)
wording to describe the code they want to be automatically implemented? Will they obtain
the same method as output? Will the quality of the obtained code be affected? To answer this

12

question, we collected a set of 892 Java methods that are (i) accompanied by a Doc Comment
for the Javadoc tool, and (ii) exercised by a test suite written by the project’s contributors.
Then, we considered the first sentence of the Doc Comments as a “natural language descrip-
tion” of the method and generate (both manually and automatically) paraphrases of this
sentence providing both as input to Copilot. We found that in ∼46% of cases semantically
equivalent but different method descriptions result in different code recommendations. We
observed that some correct recommendations can only be obtained using one of the seman-
tically equivalent descriptions as input. These results highlight the importance of providing
a proper code description when asking DL-based recommenders to synthesize code. In the
new era of AI-supported programming, prompt engineering is thus a fundamental skill for
developers. This research has been presented in the following publication:

On the Robustness of Code Generation Techniques: An Empirical Study on
GitHub Copilot

Antonio Mastropaolo, Luca Pascarella, Emanuela Guglielmi, Matteo Ciniselli, Si-
mone Scalabrino, Rocco Oliveto, Gabriele Bavota. In Proceedings of the 45th
IEEE/ACM International Conference on Software Engineering (ICSE 2023), pp. 2149-
2160

Before presenting the two studies, Chapter 2 discuss the literature related to this part of
the thesis.

2
Background and Related Work

We start by discussing the literature related to the four tasks subject of the study presented
in Chapter 3 (i.e., bug-fixing, injection of code mutants, generation of assert statements in test
methods, and code summarization).

Then, we discuss empirical works investigating the strengths and weaknesses of AI-based
solutions of software developers, since those are related to our investigation on the impact
of prompting on the recommendations generated by GitHub Copilot (Chapter 4).

2.1 Automated Bug-Fixing

A variety of approaches have been developed for automatically fixing software bugs (see e.g.,
[LNFW12, LGDVFW12, SDLLR15, PP09, GS10, CGM+13, NNN+13]). Given the focus of this
thesis, we discuss only those that make use of DL-based methodologies.

While the underlying technique and DL architecture may vary, all these approaches rely
on large training sets featuring buggy and fixed versions of code components which have
been collected from bug-fixes commits performed by developers in open source repositories.
The basic idea is to provide the model with the buggy version of a code (e.g., a buggy Java
method) asking it to generate its fixed version. In other words, the DL model is in charge of
learning bug-fixing patterns from the given training set.

Former attempts to DL-based bug-fixing involved the usage of Neural Machine Trans-
lation (NMT) under the assumption that the bug-fixing problem can be addressed as a
translation from buggy to fixed code [GPKS17, BKS18, LKB+18, HSN18, MRJ+19, CKT+19,
TWB+19a, LPP+20b, JLT21]. The underlying DL architectures are in these cases sequence-
to-sequence models mostly exploiting RNNs (Recurrent Neural Networks) [She18] or CNN
(Convolutional Neural Networks) [ON15]. Gupta et al. [GPKS17] have been pioneers in
this area with their DeepFix approach, an end-to-end technique leveraging DL for fixing
prevalent programming errors in C. Their assessment of DeepFix, carried out on a dataset
of 6,971 student-written erroneous C programs, underscored the effectiveness of the pro-
posed methods, achieving complete fixes for 27% of the programs and partial fixes for an
additional 19%. Mesbah et al. [MRJ+19] focused instead on build-time compilation failures

13

14 Background and Related Work

by presenting DeepDelta, an approach using NMT to fix the build. The input is represented
by features characterizing the compilation failure (e.g., type of error, AST path, etc.). As
output, DeepDelta provides the AST changes needed to fix the error. In the presented empir-
ical evaluation, DeepDelta correctly fixed 19,314 out of 38,788 (50%) compilation errors.
Chen et al. [CKT+19] presented SequenceR, a sequence-to-sequence approach trained on
over 35k single-line bug-fixes. SequenceR takes as input the buggy line together with its
“abstract buggy context”, meaning the relevant code lines from the buggy class. The output
of the approach is the recommended fix for the buggy line. The approach, tested on a set
of 4,711 bugs, was able to automatically fix 950 (∼20%) of them. Similar approaches have
been proposed by Hata et al. [HSN18], Tufano et al. [TWB+19a] and Li et al. [LWJ+22].

Other authors exploited GNN (Graph Neural Networks[ZCH+20] or tree-based represen-
tations [LWN20, LWN22a], with the idea that the tree-based structure inherent of the source
code can be better represented exploiting GNNs [YL20, TLB+21, YL21, XWX22]. For in-
stance, Tang et al. [TLB+21] presented Grasp, an end-to-end method for fixing bugs in Java
programs that leverages a graph-to-sequence learning model. This technique transforms the
source code into a graph format to preserve its structural integrity, thus providing the DL
model with a more comprehensive understanding of the code’s structure (as opposed to the
flat sequence of tokens used in sequence-to-sequence models) to facilitate the synthesis of
more accurate patches.

With the advent of the Transformer architecture [VSP+17] and its superior performance
in tasks involving natural language [WSM+18], most of the proposals for novel bug-fixing
tools shifted towards transformer-based solutions, possibly exploiting pre-trained models
[MSC+21, JLT21, BHRV21, ZSX+21, YZH+22, NLN+22, LLF+22, JLL+23, ZSZ+23, YXF+23,
ZPN+22a, WWJH23, ZLJX23, WXZ23]. In this context, we were among the first exploit-
ing the advantages provided by a bimodal pre-training (i.e., a pre-training step involving
both natural language and code) on the automation of bug-fixing activities [MSC+21] —
see Chapter 3. The T5 model we adopted, has then been also exploited in different fash-
ions in several of the subsequent works (see e.g., [YZH+22, ZPN+22a]). Following this, the
availability of large Transformers already pre-trained on code such as CodeBERT [FGT+20]
further pushed the research in this area [MH21a, KS20, HYS+22].

Finally, the latest generation of proposed techniques exploit Large Language Models
(LLMs) such as CodeX and ChatGPT [cha]. These models undergo extensive pre-training
across diverse datasets, encompassing billions of instances that include not just code files,
but also a vast array of textual content sourced from the internet. Furthermore, the scale
of these models significantly surpasses those previously discussed (e.g., CodeBERT). This al-
lows them to tackle complex tasks such as bug-fixing without the need for training them on
large-scale datasets showcasing the task of interest. In the context of bug-fixing, this means
avoiding the need to specialize the model on pairs representing a defective program and
its corresponding fix. Instead, a proper prompt possibly accompanied by a few examples
(i.e., shots) of the target task may be sufficient. Fig. 2.1 presents a scenario showcasing
1-shot learning with OpenAI Codex [CTJ+21], with the model learning the task from only
one example. In the figure, part 1 of the prompt explains the model the task to perform
(i.e., bug-fixing in Python); part 2 provides the 1-shot example; part 3 displays the faulty

2.1 Automated Bug-Fixing 15

Python code that needs to be fixed, representing the code for which the practitioner would
like to receive a fix. Finally, the model’s proposed fix appears in 4 .

Figure 2.1. Example of bug fix using OpenAI Codex LLM [CTJ+21]

Buggy Python
def requestChanges(x,y):
 …
 return 0

Fixed Python Code
def requestChanges(x):
 …
 return 0

Buggy Python
def stopActions(machine):
 …
 return machine.start()

Fix Python Code Task Description

1 Shot Example

Code to Fix

Fixed Python Code
def stopActions(machine):
 …
 return machine.stop() Model’s Fix

1

2

3

4

In this context, the ability to obtain good performance from the LLM mostly resides in
crafting proper prompts (i.e., prompt engineering) and several researchers studied how to ex-
ploit the potential of LLMs for bug-fixing [ZCG+22, JSG+23, FGM+23]. For instance, Zhang
et al. [ZCG+22] examine the viability of employing LLMs, such as CodeX [CTJ+21], to re-
pair bugs in python assignments. Specifically, the authors investigate the extent to which
multi-modal prompts, iterative querying and few-shot selection help in producing correct
patches for faulty python programs. Jin et al. [JST+23] presented InferFix, a comprehensive
framework for fixing bugs in Java and C# programs that utilizes OpenAI Codex [CTJ+21]
alongside a novel static analyzer.

Kong et al. [KCX+24] have made additional steps in enhancing conversation-driven bug-
fixing with the introduction of ContrastRepair. This method capitalizes on the capabilities of
the advanced chatbot, i.e., ChatGPT, and utilizes contrastive testing pairs comprising both
passing and failing test cases. The results demonstrate how ContrastRepair advances the
state-of-the-art by effectively isolating the underlying cause of bugs through additional in-
formation supplemented in the form contrastive test pairs.

Also Xia et al. [XZ23] introduced a fully automated conversation-driven bug-fixing sys-
tem harnessing ChatGPT [cha]. Their technique learns from both prior unsuccessful and
viable patches, incorporating test failure data to offer real-time, adaptive feedback for gen-
erating new patches.

Contribution in the area. The introduction of DL in software engineering marked a
significant transition in automated bug-fixing, moving from rule-based and meta-heuristic
approaches [LNFW12] to techniques emulating human-like processes in generating patches.
In this area, we contributed with one of the first applications of pre-trained transformers for
generating more accurate patches [MSC+21, MCP+22] — see Chapter 3 — outperforming
the leading technique of that time [TWB+19a].

16 Background and Related Work

2.2 Source Code Mutation

Another of the tasks we tackle in Chapter 3 is code mutation, namely the injection of artificial
bugs in software programs, which are at the basis of mutation testing [JH10].

Several mutation frameworks are available in the literature, e.g., µJava [MOK05], Jester [Jes00],
Major [JJE14], Jumble [Two], PIT [PIT10], and javaLanche [SZ09]. These frameworks how-
ever are based on predefined catalogues of mutation operators. Brown et al. [BVLR17] were
the first to propose a data-driven approach for generating code mutants, leveraging bug-
fixes performed in software systems to extract syntactic-mutation patterns from the diffs of
patches. Tufano et al. [TWB+19b] built on this concept by presenting an approach using
NMT to inject mutants that mirror real bugs. The idea is to reverse the learning process
used for fixing bugs [TWB+19a]: The model is trained to transform correct methods (i.e.,
the method obtained after the bug-fixing activity) into buggy methods (before the bug-fix).

In another study, Tufano et al. [TKW+20] present DeepMutation, an NMT model that
incorporates a pre-trained component. This model underwent training with datasets com-
prised of bug-fix pairs sourced from numerous GitHub repositories, demonstrating its efficacy
in creating significant mutants.

Tian et al. [TCZ+22] suggested LEAM, a deep learning framework designed to gener-
ate mutants by learning from actual faults. The innovative aspect of this approach is its
adaptation of the syntax-guided encoder-decoder architecture, aiming to maintain the syn-
tactic accuracy of the produced mutants. The conducted analysis showcases LEAM’s superior
performance when compared to the earlier state-of-the-art tool, DeepMutation [TKW+20].

Patra and Pradel introduced SemSeed [PP21], a novel technique that identifies mutation
patterns from actual bug fixes and applies them to different code segments by evaluating the
resemblance of identifiers and literals through the use of trained token embeddings.

Degiovanni and Papadakis [DP22, KDPT23] build upon the pre-trained language model
of code CodeBERT [FGT+20] and propose µBERT a framework for mutants generation. The
achieved results highlighted that the fault revelation ability of µBERT is 17% higher than
that of PiTest [PIT10], the state-of-the-art tool for mutation testing.

Garg et al. [GDM+23b, GDM+23a] tackled the problem of source code mutation testing
by focusing on a specific type of mutation: those that can be identified through assertion
inference. They proposed AIMS, an approach that utilizes a DL encoder-decoder model to
learn how to represent mutants. Then, these representations are used to classify whether
the mutation is likely to be detected by assertion inference.

Ibrahimzada et al. [ICRJ23] propose BugFarm a technique that leverages Foundation
Models i.e., GPT3.5-turbo, for generating mutants via bug injection. The authors demon-
strated that BugFarm is more creative in generating mutants thanks to the power of LLMs
in code synthesis in comparison to state-of-the-art techniques such as LEAM [TCZ+22] and
µBERT [KDPT23].

Contribution in the area. DL models are used to learn from large-scale training datasets
mutants which are representative of real bugs. In this context, we were the first employing
pre-trained transformers to mutate source code [MSC+21] — Chapter 3, showing its supe-
riority to the state-of-the-art technique at that time [TWB+19b].

2.3 Generation of Assert Statements 17

2.3 Generation of Assert Statements

The third code-related task subject of Chapter 3 is the generation of assert statements. This
task entails the generation of assert statements conditioned to the particular context and
demands of a given test. The general idea is to provide the model a test method that lacks
an assert statement, alongside the focal method it is designed to evaluate (i.e., the method
under test), while being trained to predict how to generate an appropriate assert statement
for the input test method.

We only discuss research addressing the generating assert statements, omitting DL-based
techniques developed for synthesizing entire test cases [DRML22, TDS+20, ATA23].

Watson et al. [WTM+20] start from the work by Shamshiri et al. [Sha15], who ob-
served that tools for the automatic generation of test cases such as Evosuite [FA11], Randoop
[PDE07] and Agitar [agi] exhibit insufficiencies in the automatically generated assert state-
ments. Thus, they propose ATLAS, an approach for generating syntactically and semantically
correct unit test assert statements using NMT. Once provided with a test method missing an
assert statement and the corresponding focal method it intends to test, ATLAS successfully
generates assert statements that match those crafted by developers in ∼31% of cases.

In another investigation, Tufano et al. [TDSS22] explore the concept of transfer learn-
ing to automate the generation of assert statements. Specifically, they initially pre-train a
sequence-to-sequence transformer model (i.e., BART [LLG+20]) on a large-scale dataset that
includes both source code and English language texts. Following this, the model undergoes
fine-tuning specifically for the task of generating assert statements. The outcomes demon-
strate the effectiveness of the proposed approach, with a success rate of 62% in producing
assert statements comparable to those crafted by developers, thereby underscoring the ad-
vantages of applying transfer learning to coding tasks.

Zhang et al. [ZJW+23] also used pre-trained models for the generation of assert state-
ments by presenting SAGA, a DL-based method exploiting CodeT5 [WWJH21] and a context-
aware fine-tuning which incorporates contextual elements like developers’ written sum-
maries during its specialization. This approach has been demonstrated to result in improved
performance when experimented on state-of-the-art benchmarks.

Contribution in the area. For this task, we showed how the “pretrain-then-finetune”
training strategy helps in substantially boost performance when generating assert statements
as compared to the state-of-the-art [WTM+20]. Subsequent works in the literature [TDSS22,
ZJW+23] built on top of that idea.

2.4 Method-level Code Summarization

In the field of code summarization, we can distinguish between two different class of tech-
niques: extractive [HAMM10, SPV11b, MAS+13a, RJAM17] and abstractive [SPV11a, MM16,
JAM17, HLX+18a, HLWM20]. The former create a summary of a code component which in-
cludes information extracted from the component being summarized, while the latter may
include in the generated summaries information that is not present in the code component
to document. DL techniques have been used to support the generation of abstractive sum-

18 Background and Related Work

maries at different level of granularity such as method-level and snippet-level. The upcoming
discussion focuses on the former.

The most straightforward approach to train a DL model for method-level summariza-
tion is to provide it with pairs 〈method, comment〉, where comment is a natural language
summary for the method. This data is usually automatically collected by mining software
repositories [HLX+18a, HLX+20a, LWZ+19, HLWM20, LHWM20, ACRC20, LZ18]. For ex-
ample, Hu et al. [HLX+18a] employ a NMT model to automatically generate comments for a
given Java method by collecting the training/testing data from ∼9k Java projects hosted on
GitHub, and consider as “comment” the first sentence of the Javadoc linked to the method.

While the basic idea behind these approaches is the same, some of them adopt strategies
aimed at boosting the model performance. One possibility is to enrich the model’s input, con-
sidering additional information besides the method’s source code [ZYY+19, LWZ+19, LJM19,
HLX+20a, ZWZ+20a, XYSZ21, YXZ+20]. For instnace, LeClair et al. [LJM19] combine AST
information with source code tokens, showing major improvements as compared to the best
techniques available in the literature at that tim [HLX+18a, IKCZ16]. A similar idea has also
been exploited by Hu et al. [HLX+20a]. Later on, Haque et al. [HLWM20] further enriched
the input provided to the model by aggregating: (i) the source code of the method, as a
flattened sequence of tokens representing the method; (ii) its AST representation; and (iii)
the “file context”, meaning the code of every other method in the same file. The authors
show that adding the contextual information as one of the inputs substantially improves the
BLEU score obtained by deep learning techniques.

Other authors experimented with different neural network architectures, such as tree-
based DL methods [SKY+19, LHWM20, HRC19], Deep Reinforcement Learning (DRL) [WZY+18,
WZZX20, WZS+20] and ensamble methods [LBM21]. For example, Wan et al. [WZY+18]
introduce a methodology where sequential segments of code snippets, which represent meth-
ods, are inputted into a DRL actor-critic network that once properly trained using the BLEU
metric [PRWZ02] as a reward function, provides high-quality code summaries, achieving
new state-of-the-art results in the field.

As already discussed for tasks such as bug-fixing, the advent of the Transformer architec-
ture with its attention mechanism [VSP+17] pushed researchers to propose Transformer-
based solutions for code summarization [LZJ20, ACRC20, WZL+20, GRL+21] as well as
techniques exploiting variations of the vanilla Transformer [LOZ+21, GGH+23, WZZX20].
In this context, Gao et al. [GGH+23] proposed SG-Trans, a method that refines the original
self-attention mechanism [VSP+17] specializing it to more accurately represent the struc-
tural characteristics of code, covering local structures at both the token and statement levels.
This adaptation allows for a more nuanced understanding and modeling of code structure,
enhancing the model’s overall effectiveness in processing and interpreting code for summa-
rization.

Finally, recent works exploit LLMs with specific prompts to automatically document code
at function-level [HZD+22, GHLH21, SS20, TMC+21, YLGS, AD22, APDB24].

For example, Yun et al. [YLGS] examine in-context learning methods for project-specific
code summarization. In particular, they discovered that utilizing ChatGPT with contextual
examples (i.e., shots) —– specifically, code snippets from the same project –— significantly

2.5 Strength and Weaknesses of AI-driven Solutions for Software Developers 19

enhances the ability of the chatbot in generating good, high-quality summaries, setting new
benchmarks for the field. On a similar note, Ahmed and Devambu [AD22] delved into the
effectiveness of Codex in performing code summarization through in-context, few-shot learn-
ing. They discovered that as few as ten project-specific shots, used to steer the model towards
generating code summaries, surpass the performance of conventional models fine-tuned on
thousands of examples when generating meaningful summaries for Java and Python meth-
ods.

Contribution in the area. In our exploration of the role pre-trained models play in
facilitating code-related tasks (Chapter 3), we demonstrated that our bi-modal pre-trained
technique significantly surpassed the then-current state of the art [HLWM20].

2.5 Strength and Weaknesses of AI-driven Solutions for Software
Developers

Chapter 4 features a study on the robustness of GitHub Copilot for the code generation task
(i.e., generating code starting from a natural language description). We thus review other
works in the literature studying Copilot from different perspectives.

Most of the previous research aimed at evaluating the impact of GitHub Copilot on devel-
opers’ productivity and its effectiveness (in terms of correctness of the provided solutions).
Imai [Ima22] investigated to what extent Copilot is actually a valid alternative to a human
pair programmer. They observed that Copilot results in increased productivity (i.e., number
of added lines of code), but decreased quality in the produced code. Ziegler et al. [ZKL+22]
conducted a case study in which they investigated whether usage measurements about Copi-
lot can predict developers’ productivity. They found that the acceptance rate of the suggested
solutions is the best predictor for perceived productivity. Vaithilingam et al. [VZG22] ran
an experiment with 24 developers to understand how Copilot can help developers complete
programming tasks. Their results show that Copilot does not improve the task completion
time and success rate. However, developers report that they prefer to use Copilot because
it recommends code that can be used as a starting point and saves the effort of searching
online.

Nguyen and Nadi [NN22] used LeetCode questions as input to Copilot to evaluate the
solutions provided for several programming languages in terms of correctness — by run-
ning the test cases available in LeetCode — and understandability — by computing their
Cyclomatic Complexity and Cognitive Complexity [Cam18]. They found notable differences
among the programming languages in terms of correctness (between 57%, for Java, and
27%, for JavaScript). On the other hand, Copilot generates solutions with low complexity
for all the programming languages.

Two previous studies aimed at evaluating the security of the solutions recommended
by Copilot. Pearce et al. [PAT+21] investigated the likelihood of receiving from Copilot
recommendations including code affected by security vulnerabilities. They observed that
vulnerable code is recommended in 40% of cases out of the completion scenarios they ex-
perimented with. On a similar note, Sobania et al. [SBR21] evaluated GitHub Copilot on

20 Background and Related Work

standard program synthesis benchmark problems and compared the achieved results with
those from the genetic programming literature. The authors found that the performance of
the two approaches are comparable. However, approaches based on genetic programming
are not mature enough to be deployed in practice, especially due to the time they require to
synthesize solutions.

Other researchers focused on exploring different AI-driven solutions such as ChatGPT
[cha] by examining aspects revolving around the correctness of the generated code [LXWZ24],
code explanation [CHC+23], the safety of ChatGPT’s generated code [EGOK+23], for which
tasks developers use ChatGPT [TMP+24], and how the usage of these technologies impacts
software engineering education [DB23].

Contribution in the area. The undeniable impact of AI in automating software engi-
neering practices is evident, with industry leaders like Microsoft and OpenAI enhancing AI
models to unprecedented levels. Yet, this advancement calls for a critical evaluation of these
AI-driven recommenders for software engineering tasks. In this context, we explored the
aspect of Robustness, particularly how different but semantically equivalent prompts impact
the performance of Copilot in code generation (Chapter 4).

3
Towards Automating Code-Related Tasks via
Pre-trained Models of Code

Recent years have seen the rise of transfer learning in the field of natural language processing.
The basic idea is to first pre-train a model on a large and generic dataset by using a self-
supervised task, e.g., masking tokens in strings and asking the model to guess the masked
tokens. Then, the trained model is fine-tuned on smaller and specialized datasets, each one
aimed at supporting a specific task. In this context, Raffel et al. [RSR+20] proposed the T5
(Text-To-Text Transfer Transformer) model, pre-trained on a large natural language corpus
and fine-tuned to achieve state-of-the-art performance on many tasks, all characterized by
text-to-text transformations and bi-modal data manipulation.

Drawing inspiration from recent advancements in the NLP field, we decided to empiri-
cally investigate the potential of a T5 model when pre-trained and fine-tuned to support four
code-related tasks characterized by text-to-text transformations. In particular, we started by
pre-training a T5 model using a large dataset consisting of 499,618 English sentences and
1,569,889 source code components (i.e., Java methods). Then, we fine-tuned the model
using four datasets from previous work with the goal of supporting four tasks:

Automatic bug-fixing. We used the dataset by Tufano et al. [TWB+19a], composed of
instances in which the “input string” is represented by a buggy Java method and the “output
string” is the fixed version of the same method.

Injection of code mutants. This dataset is also by Tufano et al. [TWB+19b], and features
instances in which the input-output strings are reversed as compared to automatic bug-fixing
(i.e., the input is a fixed method, while the output is its buggy version).

Generation of assert statements in test methods. We use the dataset by Watson et al.
[WTM+20], composed of 158,096 instances in which the input string is a representation of a
test method without an assert statement and a focal method it tests (i.e., the main production
method tested), while the output string encodes an appropriate assert statement for the input
test method.

Code Summarization. We use the dataset by Haque et al. [HLWM20] which features
2.1M Java methods paired with summaries.

Our analysis also seeks to uncover the tangible benefits (if any) that transfer learning pro-

21

22 Towards Automating Code-Related Tasks via Pre-trained Models of Code

vides for code-related. Such observation holds for both (i) the pre-training phase, that should
provide the model with general knowledge about a language of interest (e.g., Java) being at
the core of the tasks to automate (e.g., bug-fixing); and (ii) the multi-task fine-tuning, that
should allow the model to exploit knowledge acquired when trained for a specific task (e.g.,
bug-fixing) also for the automation of other tasks (e.g., generation of assert statements), thus
possibly boosting the overall performance in all the tasks.

To this extent, we assess the performance of the T5 in the following scenarios:

• No Pre-training: We do not perform any pre-training step. We directly fine-tune four
different T5 models, each one supporting one of the four tasks we experiment with.

• Pre-training single task: We first pre-train the T5 model on the dataset presented in
Table 3.1. Then, starting from it, we fine-tune four models, one for each single task.

• Pre-training Multi-Task: Lastly, we fine-tune the pre-trained model using a multi-task
learning framework in which we train a single model to support all four code-related
tasks. We experiment with two different multi-task fine-tunings: (i) the percentage
of training instances from each of the four tasks is proportional to the size of their
training dataset; (ii) the percentage of training instances is the same for all four tasks
(i.e., 25% per task).

In total, this results in the training, hyperparameters tuning, and testing of ten different
models. Note that the choice of the four tasks subject of our study (i.e., bug-fixing, mutants
injection, asserts generation, and code summarization) is dictated by the will of experiment-
ing with tasks that use, represent, and manipulate code in different ways. In particular, we
include in our study tasks aimed at (i) transforming the input code with the goal of chang-
ing its behavior (bug-fixing and mutants injection); (ii) “comprehending code” to verify its
behavior (asserts generation); and (iii) “comprehending code” to summarize it in natural
language (code summarization). Also, following what has been done in the original datasets
from previous work, the four tasks involve abstracted source code (bug-fixing [TWB+19a],
mutants injection [TWB+19b], and asserts generation [WTM+20]), raw source code (asserts
generation [WTM+20] and code summarization [HLWM20]), and natural language (code
summarization [HLWM20]). Such a mix of tasks helps in increasing the generalizability of
our findings.

We also aim at assessing the generalizability of our models by looking at the level of data
snooping among our training and test datasets.

Our results confirm that the T5 can substantially boost the performance on all four code-
related tasks. For example, when the T5 model is asked to generate assert statements on raw
source code,∼70% of test instances are successfully predicted by the model, against the 18%
of the original baseline [WTM+20]. Also, we show that the pre-training is beneficial for all
tasks, while the multi-task fine-tuning does not consistently help in improving performance.
Finally, our datasets analysis confirm the generalizability of the tested models. The code and
data used in this work are publicly available [repg].

3.1 Text-to-Text-Transfer-Transformer 23

3.1 Text-to-Text-Transfer-Transformer

The T5 model has been introduced by Raffel et al. [RSR+20] to support multitask learning in
Natural Language Processing (NLP). The idea is to reframe NLP tasks in a unified text-to-text
format in which the input and output are always text strings. For example, a single model can
be trained to translate across languages and to autocomplete sentences. This is possible since
both tasks can be represented in a text-to-text format (e.g., in the case of translation, the input
is a sentence in a given language, while the output is the translated sentence). T5 is trained
in two phases: pre-training, which allows defining a shared knowledge-base useful for a
large class of sequence-to-sequence tasks (e.g., guessing masked words in English sentences
to learn about the language), and fine-tuning, which specializes the model on a specific
downstream task (e.g., learning the translation of sentences from English to German). We
briefly overview the T5 model and explain how we pre-trained and fine-tuned it to support
the four said code-related tasks. Finally, we describe the decoding strategy for generating
the predictions.

3.1.1 An Overview of T5

T5 is based on the transformer model architecture that allows handling a variable-sized input
using stacks of self-attention layers. When an input sequence is provided, it is mapped into
a sequence of embeddings passed into the encoder. The T5, in particular, and a transformer
model [VSP+17], in general, offer two main advantages over other state-of-the-art models:
(i) it is more efficient than RNNs since it allows to compute the output layers in parallel, and
(ii) it is able to detect hidden and long-ranged dependencies among tokens, without assum-
ing that nearest tokens are more related than distant ones. This last property is particularly
relevant in code-related tasks since a variable declaration may be distant from its usage. Five
different versions of T5 have been proposed [RSR+20]: small, base, large, 3 Billion, and 11
Billion. These variants differ in terms of complexity, with the smaller model (T5small) having
60M parameters against the 11B of the largest one (T511B). As acknowledged by the authors
[RSR+20], even if the accuracy of the most complex variants is higher than the less complex
models, the training complexity increases with the number of parameters. Considering the
available computational resources, we decided to use the simplest T5small model.

T5small architectural details. The T5small architecture is characterized by six blocks for
encoders and decoders. The feed-forward networks in each block consist of a dense layer
with an output dimensionality (d f f) of 2,048. The key and value matrices of all attention
mechanisms have an inner dimensionality (dkv) of 64, and all attention mechanisms have
eight heads. All the other sub-layers and embeddings have a dimensionality (dmodel) of 512.

3.1.2 Pre-training of T5

In the pre-training phase we use a self-supervised task similar to the one used by Raffel
et al. [RSR+20], consisting of masking tokens in natural language sentences and asking
the model to guess the masked tokens. However, we did not perform the pre-training by
only using natural language sentences, since all the tasks we target involve source code.

24 Towards Automating Code-Related Tasks via Pre-trained Models of Code

We use a dataset composed of both (technical) natural language (i.e., code comments) and
source code. To obtain the dataset for the pre-training we start from the CodeSearchNet
dataset [HWG+19] which provides 6M functions from open-source code. We only focus on
the ∼1.5M methods written in Java, since the four tasks we aim at supporting are all related
to Java code and work at method-level granularity (e.g., fixing a bug in a method, generating
the summary of a method, etc.).

Then, since for three of the four tasks we support (i.e., automatic bug-fixing [TWB+19a],
generation of assert statements [WTM+20], and injection of code mutants [TWB+19b]) the
authors of the original papers used an abstracted version of source code, we used the src2abs
tool by Tufano [TWB+19a] to create an abstracted version of each mined Java method. In the
abstraction process, special tokens are used to represent identifiers and literals of the input
method. For example, the first method name found (usually the one in the method signature)
will be assigned the METHOD_1 token, likewise the second method name (e.g., a method
invocation) will be represented by METHOD_2. This process continues for all the method
and variable names (VAR_X) as well as the literals (STRING_X, INT_X, FLOAT_X). Basically,
the abstract method consists of language keywords (e.g., for, if), separators (e.g., “(”, “;”,
“}”) and special tokens representing identifiers and literals. Comments and annotations are
removed during abstraction. Note that, since the tool was run on Java methods in isolation
(i.e., without providing it the whole code of the projects they belong to), src2abs raised
a parsing error in ∼600k of the ∼1.5M methods (due e.g., to missing references), leaving
us with ∼900k abstracted methods. We still consider such a dataset as sufficient for the
pre-training.

The CodeSearchNet dataset does also provide, for a subset of the considered Java source
code methods, the first sentence in their Javadoc. We extracted such a documentation using
the docstring_tokens field in CodeSearchNet, obtaining it for 499,618 of the considered
methods. We added these sentences to the pre-training dataset. This whole process resulted
in a total of 2,984,627 pre-training instances, including raw source code methods, abstracted
methods, and code comment sentences. In the obtained dataset there could be duplicates
between (i) different raw methods that become equal once abstracted, and (ii) comments
re-used across different methods. Thus, we remove duplicates, obtaining the final set of
2,672,423 instances reported in Table 3.1. This is the dataset we use for pre-training the T5
model, using the BERT-style objective function Raffel et al. used in their experiments and
consisting of randomly masking 15% of tokens (i.e., words in comments and code tokens in
the raw and abstracted code).

Table 3.1. Datasets used for the pre-training of T5.

Data sources Instances

Source code 1,569,773
Abstracted source code 766,126
Technical natural language 336,524

Total 2,672,423

Finally, since we pre-train and fine-tune the models on a software-specific dataset, we cre-

3.1 Text-to-Text-Transfer-Transformer 25

ate a new SentencePiece model [KR18] (i.e., a tokenizer for neural text processing) by training
it on the entire pre-training dataset so that the T5 model can properly handle the Java lan-
guage and its abstraction. This model implements subword units (e.g., byte-pair-encoding
BPE) and unigram language model [Kud18] to alleviate the open vocabulary problem in
neural machine translation. The pre-training of the models has been performed for 250k
steps which, using a batch size of 128 results in ∼32M of masked code instances processed
that, given the size of the pre-training dataset (see Table 3.1) correspond to ∼12 epochs.

3.1.3 Fine-tuning of T5

We detail the process used to fine-tune the T5 model. Before explaining how the training
instances are represented within each fine-tuning dataset, it is important to clarify that both
in the pre-training and in the fine tuning the T5 can handle any sort of training instance
as long as it can be formulated as a text-to-text transformation. Indeed, the T5 represents
each training dataset as a N × 2 matrix, where N is the number of instances in the dataset
and the 2 dimensions allow to express the input text and the expected output text. In the
case of pre-training, the input text is an instance (i.e., a raw method, an abstract method,
or a Javadoc comment) in which 15% of tokens have been masked, while the output text
represents the correct predictions for the masked tokens. In the four downstream tasks,
instead, the text-to-text pairs are represented as explained in the following.

3.1.4 Fine-tuning dataset

We describe the datasets we use for fine-tuning the model for the four targeted tasks. The
datasets are summarized in Table 3.2. The number of training steps performed for the dif-
ferent tasks is proportional to the size of their training dataset. Indeed, we aim at ensuring
that the same number of “epochs” is performed on each training dataset. Thus, smaller
training datasets require a lower number of steps to reach the same number of epochs of
larger datasets. In particular, we used 1.75M fine-tuning steps for the multi-task setting ∼90
epochs) and we scaled the others proportionally to reach the same number of epochs (e.g.,
∼1.41M for the code summarization task).

Table 3.2. Task-specific datasets used for fine-tuning T5.

Task Dataset Training-set Evaluation-set Test-set

Automatic Bug-Fixing
BFsmall [TWB+19a] 46,680 5,835 5,835
BFmedium [TWB+19a] 52,364 6,546 6,545

Injection of Code Mutants MGident [TWB+19b] 92,476 11,560 11,559

Generation of Asserts in Test
AGabs [WTM+20] 126,477 15,809 15,810
AGraw [WTM+20] 150,523 18,816 18,815

Code Summarization CS [HLWM20] 1,953,940 104,272 90,908

Total 2,422,460 162,838 149,472

26 Towards Automating Code-Related Tasks via Pre-trained Models of Code

Automatic Bug Fixing (BF). We use the dataset by Tufano et al. [TWB+19a]. To build
this dataset, the authors mined ∼787k bug-fixing commits from GitHub, from which they
extracted∼2.3M BFPs. After that, the code of the BFPs is abstracted to make it more suitable
for the NMT model (i.e., to reduce the vocabulary of terms used in the source code identifiers
and literals). The abstraction process is depicted in Fig. 3.1.

raw source code

abstracted code

abstracted code with idioms

public Integer getMinElement(List myList) {
 if(myList.size() >= 0) {
 return ListManager.getFirst(myList);
 }
 return 0;
}

public TYPE_1 METHOD_1 (TYPE_2 VAR_1)
{ if (VAR_1 . METHOD_2 () >= INT_1)
{ return TYPE_3 . METHOD_3 (VAR_1) ; }
return INT_1 ; }

public TYPE_1 METHOD_1 (List VAR_1)
{ if (VAR_1 . size () >= 0)
{ return TYPE_2 . METHOD_3 (VAR_1) ; }
return 0 ; }

Figure 3.1. Abstraction process [TWB+19a]

The top part of the figure represents the raw source code to abstract. The authors use a
Java lexer and a parser to represent each method as a stream of tokens, in which Java key-
words and punctuation symbols are preserved and the role of each identifier (e.g., whether
it represents a variable, method, etc.) as well as the type of a literal is discerned.

IDs are assigned to identifiers and literals by considering their position in the method
to abstract: The first variable name found will be assigned the ID of VAR_1, likewise the
second variable name will receive the ID of VAR_2. This process continues for all identifiers
as well as for the literals (e.g., STRING_X, INT_X, FLOAT_X). The output of this stage is the
code reported in the middle of Fig. 3.1 (i.e., abstracted code). Since some identifiers and
literals appear very often in the code (e.g., variables i, j, literals 0, 1, method names such
as size), those are treated as “idioms” and are not abstracted (see bottom part of Fig. 3.1,
idioms are in bold). Tufano et al. consider as idioms the top 0.005% frequent words in their
dataset. During the abstraction a mapping between the raw and the abstracted tokens is
maintained, thus allowing to reconstruct the concrete code from the abstract code generated
by the model.

The set of abstracted BFPs has been used to train and test the approach. The authors build
two different sets, namely BF Psmall , only including methods having a maximum length of
50 tokens (for a total of 58,350 instances), and BF Pmedium, including methods up to 100
tokens (65,455).

We train the model to predict the fixed versions, mf , given the buggy versions, mb. Given
the presence of two datasets, we divide the BF task in two sub-tasks, BFsmall and BFmedium,
depending on the size of the involved methods [TWB+19a].

Injection of Code Mutants (MG). For the MG task we exploited one of the two datasets

3.1 Text-to-Text-Transfer-Transformer 27

provided by Tufano et al. [TPW+19]: MGident and MGident−lit. In both datasets each instance
is represented by a triple 〈mf , mb, M〉, where, similarly to the BF datasets, mb and mf are the
buggy and fixed version of the snippet, respectively, and M represents the mapping between
the abstracted tokens and the code tokens. The first dataset (MGident) represents the most
general (and challenging) case, in which the mutated version, mb, can also contain new
tokens (i.e., identifiers, types, or method names) not contained in the version provided as
input (mf). MGident−lit, instead, only contains samples in which the mutated version contains
a subset of the tokens in the non-mutated code. In other words, MGident−lit represents a
simplified version of the task. For this reason, we decided to focus on the most general
scenario and we only use the MGident dataset.

Generation of Assertions in Test Methods (AG). For the AG task we used the dataset
provided by Watson et al. [WTM+20] containing triplets 〈T, T Mn, A〉, where T is a given
test case, T Mn is the focal method tested by T , i.e., the last method called in T before the
assert [QBO+14], and A is the assertion that must be generated (output). For such a task,
we use two versions of the dataset: AGraw, which contains the raw source code for the input
(T+T Mn) and the output (A), and AGabs, which contains the abstracted version of input and
output, i.e., src2abs(T + T Mn) and src2abs(A), respectively. These are the same datasets
used in the original paper.

Code Summarization (CS). For code summarization, we exploited the dataset provided
by Haque et al. [HLWM20] containing 2,149,120 instances, in which each instance is repre-
sented by a tuple 〈S, AS , CS , D〉, where S represents the raw source code of the method, AS
is its AST representation, CS is the code of other methods in the same file, and D is the sum-
mary of the method, i.e., the textual description that the model should generate [HLWM20].
For this specific task, we consider a variation of the original dataset to make it more coherent
with the performed pre-training. In particular, since in the pre-training we did not use any
AST representation of code, we decided to experiment with the T5 model in a more chal-
lenging scenario in which only the raw source code to summarize (i.e., S) is available to the
model. Therefore, the instances of our dataset are represented by tuples 〈S, D〉: We train
our model to predict D given only S.

3.1.5 Decoding Strategy

Once the models have been trained, different decoding strategies can be used to generate
the output token streams. T5 allows to use both greedy decoding and Beam-search. When
generating an output sequence, the greedy decoding selects, at each time step t, the symbol
having the highest probability. The main limitation of greedy decoding is that it only allows
the model to generate one possible output sequence (e.g., one possible bug fix) for a given
input (e.g., the buggy method).

Beam-search is an alternative decoding strategy previously used in many DL applica-
tions [Gra12, BLBV13, BCB14, RVY14]. Unlike greedy decoding, which keeps only a single
hypothesis during decoding, beam-search of order K , with K > 1, allows the decoder to
keep K hypotheses in parallel: At each time step t, beam-search picks the K hypotheses (i.e.,
sequences of tokens up to t) with the highest probability, allowing the model to output K

28 Towards Automating Code-Related Tasks via Pre-trained Models of Code

possible output sequences.

We used Beam-search to provide several output sequences given a single input, and re-
port results with different K values. It is worth noting that having a large K increases the
probability that one of the output sequences is correct, but, on the other hand, it also in-
creases the cost of manually analyzing the output for a user (i.e., a developer, in our context).

3.1.6 Data Balancing for the multi-task model

The datasets we use for fine-tuning have different sizes, with the one for code summarization
dominating the others (see Table 3.2). This could result in an unbalanced effectiveness of
the model on the different tasks. In our case, the model could become very effective in
summarizing code and less in the other three tasks. However, as pointed out by Arivazhagan
et al. [ABF+19], there is no free lunch in choosing the balancing strategy when training
a multi-task model, with each strategy having its pros and cons (e.g., oversampling of less
represented datasets negatively impacts the performance of the most representative task).
For this reason, we decide to experiment with both strategies. In the first strategy, we follow
the true data distribution when creating each batch. In other words, we sample instances
from the tasks in such a way that each batch during the training has a proportional number
of samples accordingly to the size of the training dataset. For the second strategy, we train
a multi-task pre-trained model using a balanced sampling strategy. In other words, we feed
the T5 model with batches of data having exactly the same number of samples per task
randomly selected during the fine-tuning.

The results we obtained confirm the findings of Arivazhagan et al. [ABF+19]. In par-
ticular, when using the first training sampling strategy (i.e., proportional sampling), the
performance of the tasks having a large training dataset (i.e., AGabs, AGraw, CS) had a boost.
In contrast, when using the second strategy (i.e., balanced sampling), the performance in-
creases for those tasks whose training dataset is small with, however, a price to pay for the
other three tasks. Nonetheless, since the observed differences in performance are not ma-
jor and each strategy has its pros and cons, we decided to discuss in this thesis the results
achieved using the proportional sampling schema, as we did in [MSC+21].

The results of the proportional sampling are available in our replication package [repg].

Table 3.3. Baselines and evaluation metrics for the tasks.

Task Baseline Accuracy@K BLEU-n ROUGE LCS

Automatic Bug-Fixing [TWB+19a] {1, 5,10, 25,50} - -
Injection of Code Mutants [TWB+19b] {1} {A} -
Generation of Asserts in Test [WTM+20] {1, 5,10, 25,50} - -
Code Summarization [HLWM20] - {1, 2,3, 4,A} {P, R, F}

3.2 Research Questions and Context 29

3.2 Research Questions and Context

We aim at investigating the performance of the T5 model on four code-related tasks: Au-
tomatic bug-fixing, Injection of code mutants, Generation of Asserts in Tests and Code Sum-
marization. The focus of our evaluation is on (i) investigating the extent to which transfer
learning is beneficial when dealing with code-related tasks, studying the impact on perfor-
mance of both pre-training and multi-task learning; and (ii) comparing the obtained results
with representative state-of-the-art techniques. The context is represented by the datasets
introduced in Section 3.1.3, i.e., the ones by Tufano et al. for bug fixing [TWB+19a] and in-
jection of mutants [TWB+19b], by Watson et al. for assert statement generation [WTM+20],
and by Haque et al. for code summarization [HLWM20]. We aim at answering the following
research questions (RQs):

• RQ1:What are the performances of the T5 model when supporting code-related tasks?
With RQ1 we aim at understanding the extent to which T5 can be used to automate
code-related tasks, investigating the performance achieved by the model on the four
experimented tasks. In the context of RQ1, we also investigate the impact of transfer
learning on performance:

– RQ1.1: What is the role of pre-training on the performances of the T5 model for the
experimented code-related tasks?

With RQ1.1 we aim at investigating the boost in performance (if any) brought by
pre-training the models on a software-specific dataset.

– RQ1.2: What is the role of multi-task learning on the performances of the T5 model
for the experimented code-related tasks? RQ1.2 analyzes the influence of the multi-
task learning (i.e., training a single model for all four tasks) on the model’s per-
formance.

• RQ2:What are the performances of T5 as compared with state-of-the-art baselines? In
RQ2 we compare the performances achieved by the T5 model against the ones achieved
by the baseline approaches. In this regard, we run T5 on the same test sets used in
the four original papers presenting automated solutions for the code-related tasks we
target.

3.2.1 Data Collection and Analysis

As explained in Section 3.1.3, we experimented with different variants of the T5: (i) no
pre-training (i.e., four models each fine-tuned for one of the supported tasks, without any
pre-training); (ii) pre-training single task (i.e., four models each fine-tuned for one of the sup-
ported tasks, with pre-training); and (iii) pre-training multi-task (i.e., one model pre-trained
and fine-tuned for all four tasks). These nine models have all been run on the test sets made
available in the works presenting our four baselines and summarized in Table 3.2. Once ob-
tained the predictions of the T5 models on the test sets related to the four tasks, we compute

30 Towards Automating Code-Related Tasks via Pre-trained Models of Code

the evaluation metrics reported in Table 3.3. We use different metrics for the different tasks,
depending on the metrics reported in the papers that introduced our baselines.

Accuracy@K measures the percentage of cases (i.e., instances in the test set) in which
the sequence predicted by the model equals the oracle sequence (i.e., perfect prediction).
Since we use beam-search, we report the results for different K values (i.e., 1, 5, 10, 25,
and 50), as done in [TWB+19a] (BF) and [WTM+20] (AG). Tufano et al. [TPW+19] do not
report results for K > 1 for the MG task. Thus, we only compute K = 1.

BLEU score (Bilingual Evaluation Understudy) [PRWZ02]measures how similar the can-
didate (predicted) and reference (oracle) texts are. Given a size n, the candidate and ref-
erence texts are broken into n-grams and the algorithm determines how many n-grams of
the candidate text appear in the reference text. The BLEU score ranges between 0 (the
sequences are completely different) and 1 (the sequences are identical). We use different
BLEU-n scores, depending on the ones used in the reference paper of the baseline (see Ta-
ble 3.3). For the CS task, we report BLEU-{1, 2, 3, 4} and their geometric mean (i.e., BLEU-
A); for the MG task we only report BLEU-A.

ROUGE (Recall-Oriented Understudy for Gisting Evaluation) is a set of metrics for evalu-
ating both automatic summarization of texts and machine translation techniques in general
[Lin04]. ROUGE metrics compare an automatically generated summary or translation with
a set of reference summaries (typically, human-produced). We use the ROUGE LCS metrics
based on the Longest Common Subsequence for the CS task [HLWM20]. Given two token
sequences, X and Y , and their respective length, m and n, it is possible to compute three
ROUGE LCS metrics: R (recall), computed as LCS(X ,Y)

m , P (precision), computed as LCS(X ,Y)
n ,

and F (F-measure), computed as the harmonic mean of P and R.

The computed metrics are used to select what the best training strategy for the T5 is
(i.e., no pre-training, pre-training single task, or pre-training multi-task). We also statistically
compare the performance of these three strategies for each task using the McNemar’s test
[McN47], which is a proportion test suitable to pairwise compare dichotomous results of
two different treatments. We statistically compare each pair of training strategy in our study
(i.e., no pre-training vs pre-training single task, no pre-training vs pre-training multi-task, pre-
training single task vs pre-training multi-task) in terms of their Accuracy@1 (i.e., perfect
predictions) for each of the four experimented tasks. To compute the test results for two
training strategies T1 and T2, we create a confusion matrix counting the number of cases
in which (i) both T1 and T2 provide a correct prediction, (ii) only T1 provides a correct
prediction, (iii) only T2 provides a correct prediction, and (iv) neither T1 nor T2 provide a
correct prediction. We complement the McNemar’s test with the Odds Ratio (OR) effect size.
Also, since we performed multiple comparisons, we adjusted the obtained p-values using the
Holm’s correction [Hol79].

The best model output of this analysis has then been used to compare the best T5 model
with the four baselines by using the performance metrics reported in Table 3.3. Moreover,
we also statistically compare the Accuracy@1 of the T5 and of the baselines using the same
procedure previously described (i.e., McNemar’s test with the OR effect size). We also per-
form a complementarity analysis: We define the sets of perfect predictions generated by the
T5 (PPT5d

) and by the baseline (PPBLd
) with a beam size K = 1. Then, for each task and

3.2 Research Questions and Context 31

dataset we compute three metrics:

Sharedd =
|PPT5d

∩ PPBLd
|

|PPT5d
∪ PPBLd

|

OnlyT5d =
|PPT5d

\ PPBLd
|

|PPT5d
∪ PPBLd

|
OnlyBLd =

|PPBLd
\ PPT5d

|
|PPT5d

∪ PPBLd
|

Sharedd measures the percentage of perfect predictions shared between the two com-
pared approaches on the dataset d, while OnlyT5d and OnlyBLd measure the percentage of
cases in which the perfect prediction is only generated by T5 or the baseline, respectively,
on the dataset d.

We also present an “inference time” analysis: we compute the time needed to run T5
on a given input. We run such an experiment on a laptop equipped with a 2.3GHz 8-core
9th-generation Intel Core i9 and 16 GB of RAM, using the CPU to run the DL model. We
do this for different beam search sizes, with K ∈ {1, 5,10, 25,50}. For each K , we report
the average inference time (in seconds) on all the instances of each task. Besides that, we
also report the training time (in hours) for the nine different models involved in our study,
i.e., no pre-training (four models, one for each task), pre-training single task (+4 models),
and pre-training multi-task (one model pre-trained and fine-tuned for all four tasks). For the
training we used a 2x2 TPU topology (8 cores) from Google Colab with a batch size of 128,
with a sequence length (for both inputs and targets) of 512 tokens.

Finally, we discuss qualitative examples of predictions generated by T5 and by the base-
lines to give a better idea to the reader about the capabilities of these models in supporting
the four code-related tasks.

3.2.2 Hyperparameter Tuning

Before running the T5 models on the test sets, we performed a hyperparameter tuning on
the evaluation sets from Table 3.2, to decide the best configuration to run. This was done for
all nine models we built (e.g., with/without pre-training, with/without multi-task learning).

For the pre-training phase, we use the default parameters defined for the T5 model
[RSR+20]. Such a phase, indeed, is task-agnostic, and hyperparameter tuning would pro-
vide limited benefits. Instead, we tried different learning rate strategies for the fine-tuning
phase. Especially, we tested four different learning rates: (i) Constant Learning Rate (C-LR):
the learning rate is fixed during the whole training; (ii) Inverse Square Root Learning Rate
(ISR-LR): the learning rate decays as the inverse square root of the training step; (iii) Slanted
Triangular Learning Rate [HR18] (ST-LR): the learning rate first linearly increases and then
linearly decays to the starting learning rate; (iv) Polynomial Decay Learning Rate (PD-LR):
the learning rate decays polynomially from an initial value to an ending value in the given
decay steps. Table 3.4 reports the specific parameters we use for each scheduling strategy.

In total, we fine-tuned 36 models (i.e., nine models with four different schedulers) for
100k steps each. To select the best configuration for each training strategy, we compute the
following metrics: for BF and AG, we compute the percentage of perfect predictions achieved
on the evaluation set with the greedy decoding strategy (Accuracy@1); for MG, we compute

32 Towards Automating Code-Related Tasks via Pre-trained Models of Code

Table 3.4. Learning-rates tested for hyperparameter tuning.

Learning Rate Type Parameters

Constant LR= 0.001

Inverse Square Root LRstarting = 0.01
Warmup= 10,000

Slanted Triangular LRstarting = 0.001
LRmax = 0.01
Ratio= 32
Cut= 0.1

Polynomial Decay LRstarting = 0.01
LRend = 0.001
Power= 0.5

Table 3.5. Overall results achieved by the T5 model for each tasks. The best configuration is high-
lighted in bold

Task Dataset Model Configuration Accuracy@1 Accuracy@5 Accuracy@10 Accuracy@25 Accuracy@50 BLEU-A

Automatic Bug-Fixing

BFsmall

no pre-training 16.70% 29.88% 34.37% 39.57% 42.86% -
pre-training single task 15.08% 32.08% 37.01% 42.51% 45.94% -
pre-training multi-task 11.61% 35.64% 43.87% 52.88% 57.70% -

BFmedium

no pre-training 10.50% 17.60% 20.53% 24.38% 27.62% -
pre-training single task 11.85% 19.41% 23.28% 28.60% 32.43% -
pre-training multi-task 3.65% 19.17% 24.66% 30.52% 35.56% -

Injection of Code Mutants MGident

no pre-training 25.78% - - - - 78.26%
pre-training single task 28.72% - - - - 78.69%
pre-training multi-task 28.92% - - - - 78.29%

Generation of Asserts in Test

AGraw

no pre-training 60.95% 59.14% 62.41% 69.05% 71.97% -
pre-training single task 68.93% 75.95% 77.70% 79.24% 80.22% -
pre-training multi-task 58.60% 66.90% 70.31% 73.19% 74.58% -

AGabs

no pre-training 47.81% 49.60% 55.04% 64.28% 68.57% -
pre-training single task 56.11% 71.26% 74.32% 76.67% 78.02% -
pre-training multi-task 44.90% 63.40% 68.23% 73.04% 73.12% -

Code Summarization CS
no pre-training 11.80% - - - - 24.67%
pre-training single task 12.02% - - - - 25.21%
pre-training multi-task 11.45% - - - - 24.90%

the BLEU score [PRWZ02]; for CS, we compute BLEU-A, the geometric average of the BLEU-
{1,2,3,4} scores [PRWZ02]. Basically, for each task we adopt one of the evaluation metrics
used in the original paper. The complete results of the hyperparameters tuning phase are
reported in our replication package [repg].

3.3 Results Discussion

We discuss our results accordingly to the formulated RQs.

3.3.1 Performance of T5 (RQ1) and impact of transfer learning on performance
(RQ1.1-RQ1.2)

Table 3.5 reports the performance achieved by the different variants of the T5 model that
we experimented with. For each task (e.g., Automatic Bug-Fixing) and for each dataset
(e.g., BFsmall), performance metrics are reported for the three adopted training strategies

3.3 Results Discussion 33

(i.e., no pre-training, pre-training single task, and pre-training multi-task). For readability
reasons, we only report the BLEU-A, but the results of the other BLEU scores (e.g., BLEU-4)
are available in our online appendix [repg].

Table 3.6 reports the results of the statistical analysis we performed using the McNemar’s
test [McN47] to identify (if any) statistical differences in terms of Accuracy@1 when using
different training strategies.

Table 3.6. McNemar’s test (adj. p-value and OR) considering only accuracy@1 matches as correct
predictions

Task Dataset Model Configuration p-value OR

Automatic Bug-Fixing

BFsmall

no pre-training vs pre-training single task < 0.001 0.77
no pre-training vs pre-training multi-task < 0.001 0.46
pre-training multi-task vs pre-training single task < 0.001 1.67

BFmedium

no pre-training vs pre-training single task < 0.001 1.56
no pre-training vs pre-training multi-task < 0.001 0.12
pre-training multi-task vs pre-training single task < 0.001 8.56

Injection of Code Mutants MGident

no pre-training vs pre-training single task < 0.001 1.51
no pre-training vs pre-training multi-task < 0.001 1.38
pre-training multi-task vs pre-training single task 0.75 0.99

Generation of Asserts in Test

AGraw

no pre-training vs pre-training single task < 0.001 3.39
no pre-training vs pre-training multi-task < 0.001 0.71
pre-training multi-task vs pre-training single task < 0.001 4.95

AGabs

no pre-training vs pre-training single task < 0.001 2.55
no pre-training vs pre-training multi-task < 0.001 0.74
pre-training multi-task vs pre-training single task < 0.001 2.93

Code Summarization CS
no pre-training vs pre-training single task < 0.001 1.13
no pre-training vs pre-training multi-task < 0.001 0.83
pre-training multi-task vs pre-training single task < 0.001 1.40

Focusing on the Accuracy@1, it is evident that there is no training strategy being the best
one across all tasks and datasets. In particular: no pre-training works better on the BFsmall
dataset for automatic bug-fixing; pre-training single task works better on the BFmedium dataset
for automatic bug-fixing, on both datasets related to the generation fo assert statements, and
for the code summarization task; finally, pre-training multi-task works better for the injection
of code mutants. Overall, the pre-training single task strategy seems to be the best performing
strategy. Indeed, even when it is not the first choice for a given task/dataset, it is the second
best-performing training strategy. Also, by looking at Table 3.6 we can observe that:

1. When pre-training single task is the best strategy, its performance in terms of Accu-
racy@1 are significantly better (p-value < 0.001) than the second best-performing
strategy, with ORs going from 1.13 (for CS) to 3.39 (AGraw). This means that chances
of getting a perfect predictions using this strategy are 13% to 339% higher when using
this strategy as compared to the second choice.

2. When pre-training single task is not the best strategy, but the second choice, the dif-
ference in Accuracy@1 is not significant when compared to pre-training multi-task for

34 Towards Automating Code-Related Tasks via Pre-trained Models of Code

MGident. The only significant difference is the one in favor of no pre-training on BFsmall,
with an OR of 0.77.

For these reasons, in our RQ2 we will compare the T5 using the pre-training single task
strategy against the baselines.

A few observations can be made based on the findings in Table 3.5. First, the additional
pre-training is, as expected, beneficial. Indeed, on five out of the six datasets the T5 performs
better with pre-training. Second, the multi-task setting did not help in most of cases. Indeed,
with the exception of MGident in which the performance of pre-training single task and pre-
training multi-task are basically the same, the single task setting performs always better. Such
a result, while surprising at a first sight, can be explained by diverse types of input/output
handled by the models across the four tasks. Indeed, (i) the datasets related to automatic
bug-fixing and AGabs include abstracted code instances as input/output; (ii) the dataset used
for code mutants and AGraw feature raw code instances as input/output; and (iii) the one
for code summarization has raw source code as input and natural language text as output.
Basically, given the different formats, the transfer learning across different tasks is likely to
hinder the model rather than helping it.

Differently, the pre-training dataset features all three input/output representations and,
thus, provides the model with a basic knowledge about all of them that, as a result, boosts
performance.

While we will discuss more in depth the performance of the T5 model when comparing
it to the considered baselines (Section 3.3.2), it is also worth commenting on the ability of
the T5 to generate correct predictions, namely outputs that are identical to the reference
ones (e.g., a method summary equal to the one manually written by developers). Quite
impressive are the performances achieved on the generation of assert statements, especially
on the dataset dealing with raw source code, in which the T5 correctly predicts 68.93% of
assert statements with a single guess (75.95% when using five guesses). The Accuracy@1
is instead much lower for the other tasks, ranging between 11.85% (fixing bugs in the most
challenging BFmedium dataset) up to 28.72% when injecting mutants. Also worth noticing is
the 12.02% of code summaries generated by the T5 that are identical to the manually written
ones. In the next subsection, together with a comparison of our model with the baselines,
we present qualitative examples of predictions generated by the T5.

3.3.2 Competitiveness of the T5 model compared to the baselines (RQ2)

We compare the results achieved by the T5 model when using the pre-training single task
strategy with the baseline we consider for each task (Table 3.3). The comparison is depicted
in Fig. 3.2, while Table 3.8 shows the results of the statistical tests, and Table 3.10 shows the
overlap metrics described in Section 3.2.1.

3.3.2.1 Automatic Bug Fixing (BF)

When using T5 for automatically fixing bugs, the accuracy achieved using a greedy decoding
strategy (K = 1) differs according to the dataset we consider. For example, the T5 model

3.3 Results Discussion 35

Delete

BFsmall BFmedium

Oracle Baseline [TWB+19a] T5 Oracle Baseline [TWB+19a] T5

Delete TypeAccess at Invocation 2,016 402 450 1,926 125 250
Delete Invocation at Block 1,444 294 326 1,315 159 240
Delete TypeAccess at ThisAccess 821 92 134 598 32 81
Delete VariableRead at Invocation 818 51 106 1,106 61 126
Delete FieldRead at BinaryOperator 479 92 100 651 66 116

Insert

BFsmall BFmedium

Oracle Baseline [TWB+19a] T5 Oracle Baseline [TWB+19a] T5

Insert Block at If 486 3 28 828 3 48
Insert Literal at BinaryOperator 468 5 27 736 0 37
Insert If at Block 406 2 22 659 0 33
Insert BinaryOperator at If 380 3 23 634 0 36
Insert VariableRead at Invocation 328 10 33 675 0 38

Move

BFsmall BFmedium

Oracle Baseline [TWB+19a] T5 Oracle Baseline [TWB+19a] T5

Move Invocation from Block to Invocation 633 17 61 1,005 4 86
Move VariableRead from Invocation to VariableRead 158 7 11 281 2 19
Move Assignment from Block to Assignment 120 0 13 209 1 19
Move Invocation from BinaryOperator to Invocation 95 7 11 183 1 14
Move BinaryOperator from BinaryOperator to BinaryOperator 68 0 2 174 0 9

Update

BFsmall BFmedium

Oracle Baseline [TWB+19a] T5 Oracle Baseline [TWB+19a] T5

Update Wra at Method 280 15 37 191 1 22
Update TypeAccess at Invocation 201 17 41 404 18 115
Update Invocation at Block 115 0 8 153 2 21
Update VariableRead at Invocation 101 1 12 226 0 19
Update BinaryOperator at If 56 3 8 148 1 12

Table 3.7. Top-20 AST operations needed to fix bugs in our dataset (see “Oracle” column) and their
presence in correct predictions generated by T5 and the baseline

achieves 15% of perfect predictions on the BFsmall dataset against 9% achieved by the base-
line, with an improvement of 6 percentage points, while in the most challenging scenario,
(i.e., BFmedium) our model obtains an improvement of 8 percentage points over the base-
line (11% vs 3%). Such improvements are statistically significant (Table 3.8) with ORs of
2.39 (BFsmall) and 6.88 (BFmedium), indicating higher chance of observing a perfect predic-
tion when using the T5 as compared to the baseline. Worth noticing is that as the beam
width increases, the performance of the T5 and of the baseline gets closer, with the baseline
performing better for K = 25 and K = 50 on BFsmall.

Looking at the overlap metrics (Table 3.10), 25.90% of perfect predictions on BFsmall and
28.78% on BFmedium are shared by the two techniques. The remaining are perfect predictions
only with T5 (53.20% on BFsmall and 36% on BFmedium) or only with the baseline (20.90%
on BFsmall and 35.16% on BFmedium). This indicates that the two approaches are comple-
mentary for the bug fixing task suggesting that further improvements could be possible by
exploiting customized ML-based bug-fixing techniques. To further look into this finding, we
analyzed the type of “code transformation” that T5 and the baseline were able to learn. With

36 Towards Automating Code-Related Tasks via Pre-trained Models of Code

Table 3.8. McNemer’s test considering the correct predictions achieved by the T5 model and the
baselines when both techniques generate only one prediction (i.e., accuracy@1)

Task Dataset (d) p-value OR

Automatic Bug-Fixing
BFsmall < 0.001 2.39
BFmedium < 0.001 6.88

Injection of Code Mutants MGident < 0.001 2.95

Generation of Asserts in Test
AGabs < 0.001 6.19
AGraw < 0.001 43.12

Code Summarization CS < 0.001 35.56

“code transformation” we refer to Abstract Syntax Tree (AST) operations needed to correctly
transform the input code into the target prediction (i.e., the AST operations performed by
developers to transform the buggy code into the fixed code). In particular, we used the
Gumtree Spoon AST Diff [FMB+14] to collect the Delete, Insert, Move and Update operations
performed on the AST nodes when fixing bugs. Then, for each of these operations, we ex-
tracted the 5 most popular ones (e.g., the five most popular Delete node operations). These
20 AST-level operations (4 types of operations × 5 most popular for each type) characterize
the successful fixing of bugs/injection of code mutants in the three datasets. The column
“Oracle” of (Table 3.7) reports such numbers. Then, we took the correct predictions gener-
ated by T5 and by the baselines and checked the extent to which those predictions feature the
“popular” AST operations that, accordingly to our oracles, are needed to properly fix bugs.
Table 3.7 reports for both techniques and both datasets (BFsmall and BFmedium) the number
of times the different AST operations were performed by the models.

Given the previously discussed superior performance of T5, it is expected to see that
it managed to correctly perform the needed AST operations more often than the baseline.
However, what is interesting is that there are specific types of operations that are not learned
by the baseline while they are successfully implemented by T5. This is especially true for
less popular operations such as the Insert ones, that require to synthesize new nodes that
were not present in the input AST. In BFmedium, four of the top-five AST Insert operations
are never applied by the baseline (see Table 3.7). Similar results are also obtained for the
Update operations, while both models work similarly well when the bug-fix mostly requires
the deletion of existing AST nodes.

3.3.2.2 Injection of Code Mutants (MG)

Looking at Fig. 3.2 we can observe that using T5 to generate mutants allows to obtain more
accurate results than the baseline, with the Accuracy@1 improving by 12 percentage points,
with 1,336 additional perfect predictions. The average BLEU score also improves by ∼0.02
on top of the very good results already obtained by the baseline (i.e., 0.77). Minor im-
provements in BLEU score can still indicate major advances in the quality of the generated
solutions [CL20]. Also in this case differences in terms of Accuracy@1 are statistically sig-
nificant, with the T5 model being more likely to generate correct solutions (OR = 2.95) as

3.3 Results Discussion 37

Figure 3.2. Performance of the T5 model against the experimented
baselines.

Automatic Bug Fixing (BF)

Generation of Asserts in Tests (AG) Code Summarization (CS)

Injection of Code Mutants (MG)

10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

5 10 15 20 25 30 35 40 50
beam width

451

AGabs
(Abstracted code)

10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

5 10 15 20 25 30 35 40 50
beam width

451

AGraw
(Raw code)

ac
cu

ra
cy

ac
cu

ra
cy

10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

9%

5 10 15 20 25 30 35 40 50
beam width

451

BFsmall
(Methods up to 50 tokens)

10%
20%
30%
40%
50%
60%
70%
80%
90%

5 10 15 20 25 30 35 40 50
beam width

451

27%

36%

45%
50%

13%
18%

24%
29%

BFmedium
(Methods up to 100 tokens)

ac
cu

ra
cy

ac
cu

ra
cy

Baseline [1] T5 [25]

23%

27%
31%

50%

65%

10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

BLEU-2
BLEU Variants

BLEU-1

BL
EU

 s
co

re

Baseline [11] T5 [25]

BLEU-3 BLEU-4 BLEU-A

10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

R
ROUGE LCS

P

RO
UG

E
sc

or
e

F

Baseline [15] T5 [25]

Baseline [1]: 17% (1,991)

T5 [25]: 29% (3,327)

Accuracy@1

15%

32%
37% 42% 45%

19%
23%

28%
32%

55% 62%56%

71%
76%74%

78%

69%

76% 77% 79% 80%

BLEU-A

Baseline [1]: 0.77

T5 [25]: 0.79

3%

18%

26%

Baseline [16] T5 [25]

11%

25%

100%

compared to the baseline approach [TWB+19b] (Table 3.8).
Differently from the bug-fixing task, for the injection of code mutants the percentage of

shared perfect predictions (Table 3.10) is slightly higher (33%) with, however, T5 being the
only one generating 50.52% of perfect predictions as compared to the 16.48% generated
exclusively by the baseline.

Similarly to what has been done in the context of the bug-fixing task, Table 3.9 reports
the top-20 AST-level operations needed to correctly inject mutants in our dataset. Note that,
differently from what observed for the bug-fixing task, injecting mutants mostly requires the
insertion of new AST nodes. The trend that we observe is, as expected, the opposite of what
we found for the bug-fixing task because the task is the same but with reversed input/output.
Indeed, the baseline seems to correctly predict the most popular Insert operations in the AST,
while it almost ignores the more rare Delete ones. T5 instead, covers all top-20 operations.

3.3.2.3 Generation of Assertions in Test Methods (AG)

T5 achieve much better performance in this task as compared to the baseline. The gap is
substantial both with (AGabs) and without (AGraw) code abstraction (Fig. 3.2). With ab-
straction, the T5 achieves a 56% accuracy at K = 1 against the 31% achieved by ATLAS
[WTM+20]. When both approaches are asked to generate multiple assert statements (i.e.,
K = 5,10, 25,50) the gap in performance ranges between 13-25 percentage points. When
using the more challenging non-abstracted dataset AGraw, T5 achieves even better results.

38 Towards Automating Code-Related Tasks via Pre-trained Models of Code

Table 3.9. Top-20 AST operations needed to inject mutants in our dataset (see “Oracle” column) and
their presence in correct predictions generated by T5 and the baseline

Delete

MGident

Oracle Baseline [TWB+19b] T5

Delete TypeAccess at Invocation 387 1 30
Delete Return at Block 327 20 64
Delete FieldRead at BinaryOperator 283 0 7
Delete FieldRead at Invocation 242 0 19
Delete Invocation at Block 236 0 15

Insert

MGident

Oracle Baseline [TWB+19b] T5

Insert TypeAccess at Invocation 6,230 1,125 1,744
Insert Invocation at Block 3,979 860 1,183
Insert TypeAccess at ThisAccess 2,219 479 722
Insert VariableRead at Invocation 2,061 245 466
Insert Block at If 1,795 485 671

Move

MGident

Oracle Baseline [TWB+19b] T5

Move Invocation from Block to Invocation 1,154 225 356
Move Invocation from Return to Invocation 283 55 105
Move Return from Block to Return 224 58 100
Move Assignment from Block to Assignment 190 26 56
Move Invocation from Invocation to Invocation 129 1 27

Update

MGident

Oracle Baseline [TWB+19b] T5

Update TypeAccess at Invocation 923 67 220
Update FieldRead at BinaryOperator 408 14 63
Update Wra at Method 264 1 31
Update TypeAccess at ThisAccess 228 10 73
Update TypeReference at Method 208 0 25

In this regard, when T5 is asked to generate only one assert statement (K = 1), the reported
accuracy is 51 percentage points higher compared to the baseline , while for larger K values
the gap in performance ranges between 51-53 percentage points. The McNemar’s test con-
firms the huge gap in performance between the two techniques, with ORs ranging between
6.19 (AGabs) and 43.12 (AGraw).

3.3 Results Discussion 39

In terms of overlap, we found a trend similar to the previously discussed task (mutants
injection): On AGabs we have 34.92% of perfect predictions shared between the two ap-
proaches, while the remaining instances are distributed between the ones only predicted
by T5 (58.87%) and the ones only predicted by the baseline (6.21%). The overlap is much
smaller on the AGraw dataset, with only 9.56% of the instances correctly predicted by both the
approaches, 89.65% of them correctly predicted only by T5, and 0.79% only by the baseline.

3.3.2.4 Code Summarization (CS)

On this task, T5 achieves a substantial increase in BLEU score as compared to the baseline.
When considering the average BLEU (BLEU-A), the improvement is of∼5 percentage points.
On the other hand, it can be noticed that the ROUGE-LCS scores achieved when using T5
are lower than the ones achieved by the baseline (∼5 percentage points lower on the F-
measure score). Thus, looking at these metrics, there is no clear winner, but T5 seems to
be at least comparable to the baseline. To have something easier to interpret, we compared
the two approaches in terms of the number of perfect predictions they generate, despite the
fact that such a metric was not used in the original paper [HLWM20]. This means counting
the comments generated by a technique that are exactly equal to the ones manually writ-
ten by humans. T5 managed to generate 12.02% of perfect predictions (10,929 instances)
against the 3.4% (3,048) of the baseline technique (over 3 × better). As expected from
previous results, the majority of the perfect predictions for this task can be done only using
T5 (93.79%). A limited percentage of perfect predictions is shared (4.79%), and a minor-
ity of instances can be only predicted through the baseline (1.42%). The McNemar’s test
highlights a statistical significance in terms of Accuracy@1, with an OR of 35.56.

Table 3.10. Overlap metrics for correct predictions generated by the T5 model and the baselines.

Task Dataset (d) Sharedd OnlyT5d OnlyBLd

Automatic Bug-Fixing
BFsmall 25.90% 53.20% 20.90%
BFmedium 28.78% 36.06% 35.16%

Injection of Code Mutants MGident 33.00% 50.52% 16.48%

Generation of Asserts in Test
AGabs 34.92% 58.87% 6.21%
AGraw 9.56% 89.65% 0.79%

Code Summarization CS 4.79% 93.79% 1.42%

3.3.3 Qualitative Analysis

To give a better idea to the reader about the capabilities of the T5 model in supporting the
four code-related tasks, Fig. 3.3 shows two examples of perfect predictions made by T5 for
each task. Each example is bordered with a dashed line and shows (i) the input provided
by the model, and (ii) the generated output. In particular, in the case of the bug-fixing,
mutants injection, and code summarization tasks, the first line shows the input and the
second the output. Concerning the generation of assert statements, the first two lines (i.e.,

40 Towards Automating Code-Related Tasks via Pre-trained Models of Code

Figure 3.3. Examples of perfect and alternative predictions

private void METHOD_1 (int VAR_1 , int offset) { switch (VAR_1) { case 0 : this . VAR_2 = offset ; break ; case 1 : this . VAR_3 = offset ; break ;
case INT_1 : this . VAR_4 = offset ; break ; case INT_2 : this . VAR_5 = offset ; break ; } }

Bug-fixing

Mutants generation
public int METHOD_1 (int a) { int index = VAR_1 [(a + 1)] ; return VAR_2 . METHOD_2 (index) ; }

public int METHOD_1 (int a) { int index = VAR_1 [a] ; return VAR_2 . METHOD_2 (index) ; }

public java.lang.String METHOD_1 (final java.lang.String VAR_1) { return STRING_1 . METHOD_2 (VAR_2 . METHOD_3 () . METHOD_4 ()) ; }

public java.lang.String METHOD_1 (final java.lang.String VAR_1) { return VAR_2 . METHOD_3 () . METHOD_4 () ; }

private void METHOD_1 (int VAR_1 , int offset) { switch (VAR_1) { case 0 : this . VAR_2 = offset ; case 1 : this . VAR_3 = offset ; case INT_1 :
this . VAR_4 = offset ; case INT_2 : this . VAR_5 = offset ; } }

// Test method

// Focal method
isValidToExecute (uk . gov . gchq . gaffer . user . User) { return (isPublic) || ((null != user) && ((isAddingUser (user))
|| ((! (isAuthsNullOrEmpty ())) && (isUserHasASharedAuth (user))))) ; }

// Test method
testClone () { org . apache . flink . api . common . accumulators . DoubleMinimum min = new org . apache . flink . api . common . accumulators .
DoubleMinimum () ; double value = 3.14159265359 ; min . add (value) ; org . apache . flink . api . common . accumulators . DoubleMinimum clone =
min . clone () ; "<AssertPlaceHolder>" ; }

getLocalValue () { return null ; }
// Focal method

org . junit . Assert . assertEquals (value , clone . getLocalValue () , 0.0)

Code summarization
public void update() { check Widget () ; Utils . paintComponentImmediately (handle) ; update (false) ; }

public void setWordWrap(int row, int column, boolean wrap) { prepareCell (row , column) ; String wrapValue = wrap ? "" : "nowrap" ; DOM .
setStyleAttribute (getElement (row, column) , "whiteSpace" , wrapValue) ; }

sets whether the specified cell will allow word wrapping of its contents

public void METHOD_1 (final long [] data , boolean length) { int VAR_1 = (data . length) * (VAR_2) ; if (length) METHOD_2 (VAR_1) ; METHOD_3
(((position) + VAR_1)) ; VAR_3 . METHOD_4 (data , VAR_4 , null , ((VAR_5) + (position)) , VAR_1) ; position += VAR_1 ;
end = ((position) > (end)) ? position : end ; }

public void METHOD_1 (final long [] data , boolean length) { int VAR_1 = data . length ; if (length) METHOD_2 (VAR_1) ; VAR_1 *= VAR_2 ;
METHOD_3 (((position) + VAR_1)) ; VAR_3 . METHOD_4 (data , VAR_4 , null , ((VAR_5) + (position)) , VAR_1) ; position += VAR_1 ;
end = ((position) > (end)) ? position : end ; }

shouldNeverValidateNullUserIV () { final uk . gov . gchq . gaffer . federatedstore . FederatedAccess access = new uk . gov . gchq . gaffer .
federatedstore . FederatedAccess . Builder () . addingUserId (null) . build () ; "<AssertPlaceHolder>" ; }

Generation of assert statements

org . junit . Assert . assertFalse (access . isValidToExecute (null))

testCase getTestCase (String implementationNumber) int index = Integer . valueOf (implementationNumber) ; int value = return getTestCase (index) ;

protected void doConfigure(HierarchicalConfiguration config) throws ConfigurationException {}

forces all outstanding paint requests for the widget

return the specific test case

override to handle config

returns the test case with the given implementation number

subclasses can override this method to perform custom configuration

Wrong but meaningful predictions for the code summarization task

those marked with “//Test method” and “//Focal method”) represent the input, while the
third line shows the generated assert statement. We highlighted in bold the most relevant
parts of the output generated by the model. The bottom part of Fig. 3.3 also shows some
“wrong” predictions (i.e., the output of the model is different from the expected target) for
the code summarization task, that we will discuss later on.

Concerning the bug-fixing task, in the first example the model adds the break statement
to each case of the switch block, thus allowing the program to break out of the switch block
after one case block is executed. In the second example, instead, it changes the execution

3.3 Results Discussion 41

order of a statement as done by developers to fix the bug.
As per the mutants injection, the first example represents an arithmetic operator deletion,

while the second is a non void method call mutation [pit]. While these transformations might
look trivial, it is worth remembering that they are considered as correct since they reproduce
real bugs that used to affect these methods. Thus, the model is basically choosing where to
mutate and what to mutate in such a way to simulate real bugs (accomplishing one of the
main goals of mutation testing).

Both examples of correct prediction we report involve the generation of an assert state-
ment including an invocation to the focal method (i.e., the main method tested by the test
method). While the first is a rather “simple” assertFalse statement, the second required
the guessing of the expected value (i.e., assertEquals).

Finally, for the code summarization, the two reported examples showcase the ability of
T5 to generate meaningful summaries equivalent to the ones manually written by develop-
ers. For this task, we also reported in the bottom part of the figure some wrong but still
meaningful predictions. In this case, the grey text represent the original summary written
by developers, while the bold one has been generated by T5. In both cases, the generated
summary is semantically equivalent and even more detailed that the manually written one.

These two examples help in discussing an important limitation of our analysis: While we
assume the correct predictions to be the only valuable outputs of T5 and of the experimented
baselines, they actually represent a lower-bound for their performance. Indeed, there are
other predictions that, even if wrong, could still be valuable for developers, such as the two
shown for the code summarization task.

3.3.4 Training and Inference Time

Table 3.11 reports the training time (in hours) for the nine models we trained. On average,
the infrastructure we used for training requires 31.5 seconds every 100 training steps which,
given our batch size = 128, means that 12,800 training instances can be processed in 31.5
seconds. Of course, multiple passes (usually referred to as epochs) are needed on the dataset
during the training. Table 3.11 shows that (i) the pre-training has a cost of∼22h that should
be added on top of the fine-tuning cost shown for each task; (ii) as expected, the training
time increases with the increase in size of the training dataset, with the code summarization
task being the most expensive in terms of training time; (iii) clearly, the multi-task setting
requires to train the model on all tasks, resulting in the highest training time (175h).

Table 3.11. Training time (hours) for the trained T5 models

Training Bug-fixing
Mutants Generation of Code

Multi-Task
generation assert statements summarization

No pre-training 6.26 5.85 17.51 123.55 -
Pre-training 28.10 27.72 39.40 145.42 175.00

Table 3.12 presents, instead, the results of the inference time analysis (i.e., the time
needed to run the model on a given input and obtain the prediction). Such analysis allows

42 Towards Automating Code-Related Tasks via Pre-trained Models of Code

to understand the extent to which such a model can be used in practice. Table 3.12 reports
the inference time in seconds for different K values (e.g., with K = 10 the reported time is
the one required by the model to generate 10 possible solutions).

Table 3.12. Inference time with different beam size values.

K BFsmall BFmedium MGident AGabs AGraw CS

1 0.72 1.86 0.94 0.73 0.53 0.20
5 1.47 3.69 1.70 1.59 1.04 0.36
10 1.91 5.26 2.20 2.64 1.52 0.48
25 3.54 11.10 4.32 5.45 3.15 0.81
50 5.99 20.90 7.60 10.24 5.45 1.45

Concerning the bug-fixing task, the time needed to generate a fix depends on the dataset,
since the complexity of the instances they feature is different. In the BFsmall dataset, the
average inference time ranges between 0.72s (K = 1) and 5.99s (K = 50), while it is larger
on the BFmedium dataset (1.86s for K = 1 and 20.90s for K = 50). For the injection of
code mutants, we observed results comparable to those of BFsmall: with K = 1 the average
inference time is 0.94s, while for K = 50 it is 7.60s. The generation of assert statement
is very fast for low values of K (0.73s for AGabs and 0.53s for AGraw with K = 1), while it
gets slower for higher values of K (10.24 for AGabs and 5.45 for AGraw with K = 50). Finally,
concerning the code summarization task, T5 takes only 0.20s for K = 1 and 1.45s for K = 50
to output code summaries for a method given as input.

Overall, considering that all the targeted tasks do not have strong real-time constraints
(e.g., a developer can wait a few seconds for the automated fixing of a bug), the inference
times should not hinder the model applicability in practice. Also, the reported inference
times were obtained by running the model on a consumer-level device and by only using
CPUs. We also computed the inference time using an Nvidia Tesla P100 GPU equipped with
16GB of VRAM. The achieved results are available in our replication package [repg]. In
summary, we observed an average decrease of inference time of ∼70% as compared to the
one obtained using the CPU.

3.4 Threats to Validity

Construct validity. Threats to construct validity concern the relationship between theory
and observation. We used existing datasets that are popular and used in the community
for both pre-training and fine-tuning our model with minimal additional processing (e.g.,
removal of duplicates after abstraction in the dataset used for the pre-training). Additionally,
we have released all of our code and models in our replication study [repg] for verification.

Internal validity. Threats to internal validity concern factors, internal to our study, that
could influence its results. Many factors can influence our results, from model architecture,
hyperparameter choices, data processing, the data itself, etc. For mitigating these issues, we
have adopted methodologies usually employed in DL-based research. Specifically, we per-

3.4 Threats to Validity 43

formed a detailed analysis of hyperparameter choices as discussed in Section 3.2.2. Concern-
ing the pre-training phase, we used the default T5 parameters selected in the original paper
[RSR+20] since we expect little margin of improvement for such a task-agnostic phase. For
the fine-tuning, due to computational feasibility reasons, we did not change the model archi-
tecture (e.g., number of layers), but we experiment with different learning rates schedulers.
We are aware that a more extensive calibration would likely produce better results. Finally,
we pre-trained the model by masking 15% of tokens (i.e., words in comments and code to-
kens in the raw and abstracted code) in the ∼2.7M instances from the pre-training dataset.
However, we did not experiment with the model after pre-training to verify whether it ac-
tually learned the languages of interest (i.e., raw source code, abstracted source code, and
technical natural language). To address this limitation, we randomly selected 3k instances
from the BFmedium test set, both in their abstract and raw representation (6k in total). We also
selected 3k code summaries from the CS dataset obtaining a dataset of 9k instances, equally
split across raw source code, abstracted source code, and technical natural language. Note
that these are instances that have not been used to pre-train the model and, thus, are un-
seen for a model only subject to pre-training. We randomly masked 15% of tokens in each of
those instances, asking the pre-trained model to predict them. T5 correctly predicted 87,139
out of the 102,711 masked tokens (i.e., 84.8% accuracy). As expected, given the different
complexity of the three “languages”, T5 achieved a higher accuracy of 90.8% when working
on abstracted code, 82.7% on raw code, and 64.6% when guessing tokens from technical
language. Overall, such results indicate that the model successfully gathered knowledge
about the languages of interest during the pre-training.

Also the quality of the employed datasets can dramatically impact the achieved results.
This is because there may be biases making the dataset not representative of the real world.
To assess the quality of our datasets we conducted various analyses around sampling bias
and data snooping as recommended by Watson et al. [WCP+22]. To this end, we conducted
an exploratory data analysis (EDA), which helps answering questions related to the relia-
bility and quality of our datasets. To accomplish this, we performed a two-fold statistical
procedure: complexity size and token distributions. In the complexity size procedure, we
count the number of tokens per dataset and data partition. Then, we present the relative
distribution in log scale. While in the token procedure, we concentrated on counting specific
tokens by popularity or special interest (e.g., i f , asser t, or public). The purpose of the EDA
is to monitor the size of datasets and its impact in the model performance. EDA’s results can
be found in our web appendix [repg].

Conclusion validity. Threats to conclusion validity concern the relationship between
evaluation and outcome. To this extent, we used appropriate statistical procedures, also
adopting p-value adjustment when multiple tests were used within the same analysis.

External validity. Threats to external validity are related to the generalizability of our
findings. Our study focused on the T5 model on four tasks using six datasets, all of which
only involved Java code. While it is unclear how our model would perform if trained on
other programming languages, excluding the abstraction component, the whole pipeline is
language agnostic and can be easily adapted to other languages for evaluating this.

We also performed an analysis of our dataset aimed at finding out the generalizability of

44 Towards Automating Code-Related Tasks via Pre-trained Models of Code

our models. This analysis assessed the level of data snooping among our datasets’ training
and test sets and how this impacts our model’s results. To accomplish this we calculate the
overlap between our fine-tuning datasets’ training and test sets by computing the pairwise
Levenshtein Distance [Lev66] between the two sets. With these distances calculated, we
computed the correlation between the distances and the performance of our model on the
different test sets. Specifically, we selected a statistically representative sample (confidence
level = 95% and confidence interval = 5%) of each training set and calculated the pairwise
Levenshtein Distance [Lev66] between it and the entirety of the test set for each fine-tuning
dataset. Next, depending on the type of performance metric (Perfect Prediction or BLEU
Score), we calculate the correlation between the minimum, median, and maximum distances
of all sampled training examples to each test example and the performance of our model on
the test set. For the perfect prediction, we use Point Biserial Correlation (PBC) [Tat54]
as it allows to compare binary and continuous data. For the BLEU score, we use Pearson
Correlation [Tat54] since both are continuous values.

Table 3.13. Correlation between training-test set similarity and test set performance.

Dataset Min Median Max

BFsmall -0.15 -0.03 0.04
BFmedium -0.05 -0.03 0.01
MGident 0.21 0.03 -0.23
AGabs -0.21 -0.14 0.29
AGraw -0.21 -0.14 0.19
CS -0.38 -0.17 -0.09

Table 3.13 shows the correlation for each dataset. As shown, there exists a negative corre-
lation between the minimum and median distances and model performance, i.e., the model
tends to perform worse as the distance between the training and test examples increases.
For the maximum distance case, there is instead a positive correlation for perfect prediction
performance, i.e., the model tends to perform better the further away the maximum training
examples are from the test examples. Such a result may be simply due to specific outliers
present in the test set (i.e., an instances being very far from the ones in the training set).
However, all the correlations we observed are quite low, supporting the generalizability of
our models.

3.5 Conclusions

We presented an empirical study aimed at investigating the usage of transfer learning for
code-related tasks. In particular, we pre-trained and fine-tuned several variants of the Text-
To-Text Transfer Transformer model with the goal of supporting four code-related tasks,
namely automatic bug-fixing, injection of code mutants, generation of assert statements in test
methods, and code summarization. We compared the performance achieved by the T5 against
state-of-the-art baselines that proposed DL-based solutions to these four tasks.

The achieved results showed that: (i) the pre-training process of the T5, as expected,

3.5 Conclusions 45

boosts its performance across all tasks; (ii) the multi-task fine-tuning (i.e., a single model
trained for different tasks) instead, does not consistently help in improving performance,
possibly due to the different types of “data” manipulated in the four tasks (i.e., raw code,
abstracted code, natural language); (iii) in its best configuration, the T5 performs better
that the baselines across all four tasks. When looking at the latter finding it is important
to remember that the baselines used for comparison are not pre-trained and, thus, they (i)
exploited less training data, and (ii) did not need the additional ∼22 hours of computation
required by the pre-training.

46 Towards Automating Code-Related Tasks via Pre-trained Models of Code

4
Evaluating the Robustness of DL-based
techniques for Generating Code

One of the long lasting dreams in software engineering research is the automated genera-
tion of source code. Towards this goal, numerous approaches have been introduced (see
Chapter 2). The release of GitHub Copilot [CTJ+21] pushed the capabilities of these tools to
whole new levels. The large-scale training performed on the OpenAI’s Codex model allows
Copilot to not limit its recommendations to few code tokens/statements the developer is
likely to write: Copilot is able to automatically synthesize entire functions just starting from
their signature and natural language descriptions.

This new generation of code recommender systems has the potential to change the way
in which developers write code [EB22] and comes with a number of questions concerning
how to effectively exploit them to maximize developers’ productivity. Intuitively, the ability
of the developer to provide “proper” inputs to the model will become central to boost the
effectiveness of its recommendations. In the concrete example of GitHub Copilot, the nat-
ural language description provided to the model to automatically generate a code function
could substantially influence the model output. This means that two developers providing
different natural language descriptions for the same function they would like to automati-
cally generate could receive two different recommendations. While this would be fine in case
the two descriptions are actually different in the semantics of what they describe, receiving
different recommendations for semantically equivalent natural language descriptions would
pose questions on the robustness and usability of DL-based code recommenders.

This is the main research question we investigate in this chapter: We study the extent
to which different semantically equivalent natural language descriptions of a function result
in different recommendations (i.e., different synthesized functions) by GitHub Copilot. The
latter is selected as representative of DL-based code recommenders since it is the de facto
state-of-the-art tool when it comes to code generation.

We collected from an initial set of 1,401 open source projects a set of 892 Java methods
that are (i) accompanied by a Doc Comment for the Javadoc tool, and (ii) exercised by a
test suite written by the project’s contributors. Then, as done in the literature [HLX+18a,
LYX+20], we considered the first sentence of the Doc Comments as a “natural language

47

48 Evaluating the Robustness of DL-based techniques for Generating Code

description” of the method. We refer to this sentence as the “original” description.
We preliminarily check whether existing automated paraphrasing techniques are suitable

for robustness testing, i.e., if they can be used to create semantically equivalent descriptions
of the methods to generate. We validate two state-of-the-art approaches in this scenario: PE-
GASUS [ZZSL20a], a DL-based paraphrasing tool, and Translation Pivoting (TP), a heuristic-
based approach. We use both techniques to generate a paraphrase for each original descrip-
tion in our dataset. Then, we manually inspect the obtained paraphrases and classified them
as semantically equivalent or not.

To answer our main research question, we generated different paraphrases for each orig-
inal description. We use the two previously described automated approaches, i.e., PEGASUS
and TP, and we also manually generated paraphrases by distributing the original descrip-
tions among four of the authors, each of which was in charge of paraphrasing a subset of
them. Therefore, for each original description, we obtain a set of semantically equivalent
paraphrased descriptions. We provided both the original and the paraphrased descriptions
as input to Copilot, asking it to generate the corresponding method body. We analyze the
percentage of cases in which the paraphrased descriptions result in a different code predic-
tion as compared to the original one, with a particular focus on the impact on the prediction
quality, e.g., cases in which the original description resulted in the recommendation of a
method passing its associated test cases while switching to a paraphrased description made
Copilot recommending a method failing its related tests.

Our results show that paraphrasing a description results in a change in the code rec-
ommendation in ∼46% of cases. The resulting changes also cause substantial variations
in the percentage of correct predictions. Such findings indicate the central role played by
the model’s input in the code recommendation and the need for testing and improving the
robustness of DL-based code generators.

Data and code used in our study are publicly available [repa].

4.1 Study Design

The goal of our study is to understand how robust is a state-of-the-art DL-based code comple-
tion approach (i.e., GitHub Copilot). We aim at answering the following research questions:

RQ0: To what extent can automated paraphrasing techniques be used to test the
robustness of DL-based code generators? Not always natural language processing tech-
niques can be used out of the box on software-related text [LZB+]. Therefore, with this
preliminary RQ, we want to understand whether existing automated techniques for gener-
ating natural language paraphrases are suitable for SE task at hand (i.e., paraphrasing a
function description).

RQ1: To what extent is the output of GitHub Copilot influenced by the code descrip-
tion provided as input by the developer? This RQ aims at understanding whether Copilot,
as a representative of DL-based code generators, is likely to generate different recommenda-
tions for different semantically equivalent natural language descriptions provided as input.

4.1 Study Design 49

In the following we detail the context for our study (Section 4.1.1) and how we collected
(Section 4.1.2) and analyzed (Section 4.1.3) the data needed to answer our RQs.

4.1.1 Context Selection

The context of our study is represented by 892 Java methods collected through the following
process. We selected all GitHub Java repositories having at least 300 commits, 50 contrib-
utors, and 25 stars. These filters have been used in an attempt to exclude personal/toy
projects.

We also excluded forked projects to avoid duplicates. The decision to focus on a single
programming language aimed instead at simplifying the non-trivial toolchain needed to run
our study. The whole repositories selection process has been performed using the GitHub
search tool by Dabic et al. [DAB21]. At this stage, we obtained 1,401 repositories.

In our experimental design, we use the passing/failing tests as a proxy to assess the
correctness of the predictions generated by Copilot. Thus, we need the projects to use a
testing framework and to be compilable. We selected all projects that used Maven as build
automation tool and for which the build of their latest release succeeded. We obtained 214
repository. By parsing the POM (Project Object Model) file1 we only considered projects hav-
ing as dependencies both jUnit [jun]— a well-known unit testing framework — and Jacoco
[jac] — a code coverage library. We analyzed the Jacoco reports and selected as methods
subject of our experiment those having at least 75% of statement coverage. This gives us con-
fidence that the related test cases exercise an acceptable number of behaviors and, therefore,
could allow to spot cases in which different generated functions for semantically-equivalent
descriptions actually behave differently. We are aware that passing tests does not imply
correctness. We discuss this aspect in Section 4.3.

Given our goal to use the method’s description as input for Copilot, we also exclude meth-
ods not having any associated Doc Comment for the Javadoc tool. Then, we process the Doc
Comment of each method in our dataset to extract from it the first sentence (i.e., from the
beginning to the first “.”). This is the same approach used in the literature when build-
ing datasets aimed at training DL-based techniques for Java code summarization (see e.g.,
[HLX+18a, LYX+20]), with the training set composed by pairs<method, code_description>,
with the latter being the first sentence of the Doc Comment. To ensure that the extracted
sentence contains enough wording for the code description, we exclude all methods hav-
ing less than 10 tokens in the extracted first sentence, since their description may not be
sufficient for synthesizing the method.

The above-described process resulted in the collection of 892 Java methods. Table 4.1
shows descriptive statistics about their characteristics in terms of number of tokens, param-
eters and cyclomatic complexity. These three together provide an idea about the complexity
of the task Copilot was asked to perform (i.e., the complexity of the methods it had to gen-
erate). Statistics about the coverage show, instead, the by-design high statement coverage
we ensure for the included methods.

1POM files are used in Maven to declare dependencies towards libraries.

50 Evaluating the Robustness of DL-based techniques for Generating Code

public class Hook implements Resultsable {

 // Start: attributes from JSON file report
 private final Result result = null;
 private final Match match = null;

 @JsonDeserialize(using = OutputsDeserializer.class)
 @JsonProperty("output")
 private final Output[] outputs = new Output[0];

 // foe Ruby reports
 private final Embedding[] embeddings = new Embedding[0];
 // End: attributes from JSON file report

 @Override
 public Result getResult() {
 return result;
 }

 /** Return the embedding vector */
 public Embedding[] getEmbeddings() {
 |
 }

 /** Checks if the hook has content meaning as it has at least
 * attachment or result with error
 * message.
 */
 public boolean hasContent() {
 if (embeddings.length > 0) {
 return true;
 }
 if (StringUtils.isNotBlank(result.getErrorMessage())) {
 return true;
 }
 // TODO: hook with 'output' should be treated
 / as empty or not?
 return false;
 }
 }

Full Context

Method to be predicted

public class Hook implements Resultsable {

 // Start: attributes from JSON file report
 private final Result result = null;
 private final Match match = null;

 @JsonDeserialize(using = OutputsDeserializer.class)
 @JsonProperty("output")
 private final Output[] outputs = new Output[0];

 // foe Ruby reports
 private final Embedding[] embeddings = new Embedding[0];
 // End: attributes from JSON file report

 @Override
 public Result getResult() {
 return result;
 }

 /** Return the embedding vector */
 public Embedding[] getEmbeddings() {
 |
 }

 }

Non Full Context

Method to be predicted

Figure 4.1. GitHub Copilot’s input for both code context representations

4.1 Study Design 51

Table 4.1. Our dataset of 892 methods from 33 repositories

Avg Median St. Dev.

Tokens 154.3 92.0 218.2
Parameters 1.6 1.0 1.2
Cyclomatic Complexity 5.3 3.0 7.6

% Coverage 96.1 100.0 6.7

4.1.2 Data Collection

To address RQ0, we experiment with two state-of-the-art paraphrasing techniques. The first
is named PEGASUS [ZZSL20a], and it is a sequence-to-sequence DL model pre-trained using
self-supervised objectives specifically tailored for abstractive text summarization and fine-
tuned for the task of paraphrasing [peg]. As for the second technique, we opted for Trans-
lation Pivoting (TP).

Such a technique relies on natural language translation services to translates the original
description o from English into a foreign language (i.e., French), obtaining oE→ F . Then,
oE→ F is translated back in the original language (oE→F→E) obtaining a paraphrase.

We provide each technique with the original description as input. TP failed to generate a
valid paraphrase (i.e., a sentence different from the original one) in 100 cases (out of 892),
while this only happened once with PEGASUS. We manually analyzed whether the valid
paraphrases we obtained were actually semantically equivalent to the original description.
For such a process, each of the 1,683 paraphrases (892 for each of the two tools minus
the 101 invalid ones) has been independently inspected by two authors who classified it as
semantically equivalent or not. Conflicts, that arisen in 11.9% (PEGASUS) and 16.54% (TP)
of cases, have been solved by a third author not involved in the first place.

Concerning RQ1, we start from the original description and we generate semantically
equivalent descriptions by (i) using the two automated tools, i.e., PEGASUS [peg] and TP,
and (ii) manually generating paraphrases. For the manual paraphrasing, we split the 892
methods together with their original description into four sets and assigned each of them
to one author. Each author was in charge of writing a semantically equivalent but different
description of the method by looking at its code and original description. This resulted
in a dataset (available in [repa]) in which, for each subject method, we have its original
and paraphrased description. In the end, for each original sentence, we had between one
and three paraphrases: paraphrasedPEGASUS, paraphrasedTP, and paraphrasedmanual. While
paraphrasedmanual is available for all the methods, paraphrasedPEGASUS and paraphrasedTP are
not. Indeed, we exclude the cases in which each of such tools failed to generate paraphrases
(1 and 100, respectively) and the ones that were not considered as semantically equivalent
in our manual check (based on the results of RQ0). The maximum number of semantically
equivalent paraphrases is 2,575 (up to 891 with PEGASUS, up to 792 with TP, and 892
manually).

The paraphrases, as well as the original description, have been used as input to Copi-
lot, simulating developers asking it to synthesize the same Java method by using different
natural language descriptions. At the time of our study, Copilot does not provide open APIs

52 Evaluating the Robustness of DL-based techniques for Generating Code

to access its services. The only way to use it is through a plugin for one of the supported
IDEs. Manually invoking Copilot for the thousands of times needed (up to 6,934, as we will
explain later) was clearly not an option. For this reason, we developed a toolchain able to
automatically invoke Copilot on the subject instances: We exploit the AppleScript language
to automate this task on a MacBook Pro, simulating the developer’s interaction with Visual
Studio Code (vscode).

For each method mi in our dataset, we created up to four different versions of the Java
file containing it (one for each of the experimented descriptions). In all such versions, we (i)
emptied mi ’s body, just leaving the opening and closing curly bracket delimiting it; and (ii)
removed the Doc Comment, replacing it with one of the four code descriptions we prepared.

Starting from these files, the automation script we implemented (available in our repli-
cation package [repa]) performs the following steps on each file Fi .

First, it opens Fi in vscode and moves the cursor within the curly brackets of the method
mi of interest. Then, it presses “return” to invoke Copilot, waiting up to 20 seconds for
its recommendation. Finally, it stores the received recommendation, that could possibly be
empty (i.e., no recommendation received). To better understand this process, the top part
of Fig. 4.1 depicts how the invocation of Copilot is performed. The gray box represents the
whole Java file (i.e., the context used by Copilot for the prediction). The emptied method
(i.e.,getEmbeddings) is framed with a black border, with the cursor indicating the position
in which Copilot is invoked. The green comment on top of the method represents one of
the descriptions we created. As it can be seen, Fig. 4.1 includes for the same Java file two
different scenarios, named Full context and Non-full context. In the Full context scenario (top
part of Fig. 4.1) we provide Copilot with the code preceding and following the emptied
method, simulating a developer adding a new method in an already existing Java file. In the
Non-full context scenario, instead, we only provide as context the code preceding the emptied
method (bottom part of Fig. 4.1), simulating a developer writing a Java file sequentially and
implementing a new method.

The basic idea behind these two scenarios is that the contextual information provided to
Copilot can play a role in its ability to predict the emptied method. Overall, the maximum
number of Copilot invocations needed for our study is 6,934 (892 original descriptions plus
up to 2,575 paraphrases, each of which for 2 context scenarios). After having collected Copi-
lot’s recommendations, we found out that sometimes they did not only include the method
we asked to generate, but also additional code (e.g., other methods). To simplify the data
analysis and to make sure we only consider one recommended method, we wrote a simple
parsing tool to only extract from the generated recommendation the first valid method (if
any).

4.1.3 Data Analysis

Concerning RQ0, we report the number and the percentage of 892 methods for which auto-
matically generated paraphrases (i.e., those generated by PEGASUS and by TP) have been
classified as semantically equivalent to the original description. This provides an idea of how
reliable these tools are when used for testing the robustness of DL-based code generators.

4.1 Study Design 53

Also, this analysis allows to exclude from RQ1 automatically generated paraphrases that are
not semantically equivalent.

To answer RQ1, we preliminarily assess how far the paraphrased descriptions are from
the original ones (i.e., the percentage of changed words) by computing the normalized token-
level Levenshtein distance [Lev66] (NTLev) between the original (do) and any paraphrased
description (dp):

N T Lev(do, dp) =
TLev(do, dp)

max({|do|, |dp|})

with TLev representing the token-level Levenshtein distance between the two descriptions.

While the original Levenshtein distance works at character-level, it can be easily gener-
alized at token-level (each unique token is represented as a specific character). In this case,
a token is a word in the text. The normalized token-level Levenshtein distance provides an
indication of the percentage of words that must be changed in the original description to
obtain a paraphrased one.

Then, we analyze the percentage of methods for which the paraphrased descriptions
result in a different method prediction as compared to the original one. When they are dif-
ferent, we also assess how far the methods obtained by using a given paraphrased description
is from the method recommended when providing the original description as input. Also in
this case we use the token-level Levenshtein distance as metric. The latter is computed with
the same formula previously reported for the natural text descriptions; in this case, however,
the tokens are not the words but the Java syntactic tokens. Thus, NTLev indicates in this
case the percentage of code tokens that must be changed to convert the method obtained
through the original description into the one recommended with one of the paraphrases.

Finally, we study the “quality” of the recommendations obtained using the different de-
scriptions both in the Full context and Non-full context scenarios. Given the sets of methods
generated from the original description and each of the paraphrasing approach considered,
we present the percentages of methods for which Copilot: (i) synthesized a method pass-
ing all the related test cases (PASS); (ii) synthesized a method that does not pass at least
one of the test cases (FAIL); (iii) generated an invalid method (i.e., with syntactic errors)
(ERROR); (iv) did not generate any method (EMPTY). Syntactic errors have been identified
as recommendations for which Java Parser [jav] did not manage to identify a valid recom-
mended method (i.e., cases in which Java Parser fails to identify a method node in the AST
generated for the obtained recommendation). On top of the passing/failing methods, we
also compute the token-level Levenshtein distance and the CodeBLEU [RGL+20] between
each synthesized method and the target one (i.e., the one originally implemented by the
developers). CodeBLEU measures how similar two methods are. Differently from the BLEU
score [PRWZ02], CodeBLEU evaluates the predicted code considering not only the overlap-
ping n-grams but also syntactic and semantic match of the two pieces of code (predicted and
reference) [RGL+20].

54 Evaluating the Robustness of DL-based techniques for Generating Code

4.1.4 Replication Package

The code and data used in our study are publicly available [repa]. In particular, we provide
(i) the dataset of manually defined and automatically generated paraphrases; (ii) the Ap-
pleScript code used to automate the Copilot triggering; (iii) the code used to compute the
CodeBLEU and the Levenshtein distance; (iv) the dataset of 892 methods and related tests
used in our study; (v) the scripts used to automatically generate the paraphrased descriptions
using PEGASUS and TP; and (vi) all raw data output of our experiments.

4.2 Results Discussion

As previously explained, in RQ1 we conducted our experiments both in the Full context and
in the Non-full context scenario. Since the obtained findings are similar, we only discuss
in the thesis the results achieved in the Full context scenario (i.e., the case in which we
provide Copilot with all code preceding and following the method object of the prediction).
The results achieved in the Non-full context scenario are available in our replication package
[repa].

4.2.1 RQ0: Evaluation of Automated Praphrase Generators

Table 4.2. Number of semantically equivalent or nonequivalent paraphrased descriptions obtained
using PEGASUS and TP.

Equivalent Nonequivalent Invalid

PEGASUS 666 (74.7%) 225 (25.2%) 1 (0.1%)
TP 688 (77.1%) 104 (11.7%) 100 (11.2%)

Table 4.2 reports the number of semantically equivalent and nonequivalent descrip-
tions obtained using the two state-of-the-art paraphrasing techniques, namely PEGASUS and
Translation Pivoting (TP), together with the number of invalid paraphrases generated. Out of
the 892 original descriptions on which they have been run, PEGASUS generated 666 (75%)
semantically equivalent descriptions, while TP went up to 688 (77%). If we do not consider
the invalid paraphrases, i.e., the cases for which the techniques do not actually provide any
paraphrase, the latter obtains ∼87% of correctly generated paraphrases.

These findings suggest that the two paraphrasing techniques can be adopted as testing
tools to assess the robustness of DL-based code recommenders. In particular, once estab-
lished a reference description (e.g., the original description in our study), these tools can
be applied to paraphrase it and verify whether, using the reference and the paraphrased
descriptions, the code recommenders generate different predictions.

4.2 Results Discussion 55

Answer to RQ0. State-of-the-art paraphrasing techniques can be used as starting point
to test the robustness of DL-based code recommenders, since they are able to generate
semantically equivalent descriptions of a reference text in up to 77% of cases.

4.2.2 RQ1: Robustness of GitHub Copilot

Results Achieved With the Original and the Automatically Generated Paraphrased Descriptions

Unit Test Results

479
463

9288 87

26 24

Original

Pegasus

PASS ERROR EMPTYFAIL

73

CodeBLEU
ALL FAIL PASS

Levenshtein Distance on Code
ALL FAIL PASS

1,441 2,747 2712,747 1,441 283Max:
0 1 00 1 0Min:

Unit Test Results

Original

495

8777 83

25 23

PASS ERROR EMPTYFAIL

77

Translation-Pivoting

509

CodeBLEU
PASSALL FAIL

Levenshtein Distance on Code
ALL FAIL PASS

1

2,625

0

165

1

1,779 175

00

1,779

Min:
Max:

0

2,625

Figure 4.2. Results achieved by Copilot when considering the Full context code representation on
paraphrasesPEGASUS and paraphrasesTP.

56 Evaluating the Robustness of DL-based techniques for Generating Code

Performance of Copilot when using the original and the paraphrased description
as input. Fig. 4.4 summarizes the performance achieved by Copilot when using the origi-
nal description (light blue) and the manually generated paraphrased description (dark blue)
as input. Similarly, we report in Fig. 4.2 the performance obtained when considering the
paraphrases generated with the two automated techniques, i.e., PEGASUS and TP (top and
bottom of Fig. 4.2, respectively). It is worth noticing that, in the latter, we only consid-
ered in the analysis the paraphrases manually considered as equivalent in RQ0, i.e., 666 for
PEGASUS and 688 for TP.

A first interesting result is that, as it can be noticed from Fig. 4.4 and Fig. 4.2, the results
obtained with the three methodologies are very similar. For this reason, to avoid repetitions,
in the following, we will mainly focus on the results obtained with the manually generated
paraphrases.

Also, as we will discuss, the quality of Copilot’s recommendations is very similar when
using the original and the paraphrased descriptions.

public void removeListener(IChemObjectListener col){
 if (chemObjectListeners == null) {
 return;
 }
 List<IChemObjectListener> listeners = lazyChemObjectListeners();
 if (listeners.contains(col)) {
 listeners.remove(col);
 }
}

Target Method

Recommended method starting from the original description
public void removeListener(IChemObjectListener col){
 if (chemObjectListeners == null) {
 return;
 }
 lazyChemObjectListeners().remove(col);
}

CodeBLEU: 0.45

PASS

Figure 4.3. Example of recommended method that passes the unit tests but reports a low CodeBLEU
score compared to the oracle (i.e., target method).

In Fig. 4.4, the bar chart in the left side reports the number of methods recommended by
Copilot (out of 892) that resulted in failing tests, passing tests, syntactic errors, and no (i.e.,
empty) recommendation. Looking at such a chart, the first thing that leaps to the eyes is
the high percentage of Java methods (∼73% for the original and ∼72% for the paraphrased
description) for which Copilot was not able to synthesize a method passing the related unit
tests.

Only ∼13% of instances (112 and 122 depending on the used description) resulted in
test-passing methods. While such a result seems to indicate limited performance of Copilot, it
must be considered the difficulty of the code generation tasks involved in our study. Indeed,
we did not ask Copilot to generate simple methods possibly implementing quite popular
routines (e.g., a method to generate an MD5 hash from a string) but rather randomly selected

4.2 Results Discussion 57

Results Achieved With the Original and the Manually Paraphrased Descriptions

Unit Test Results

652 644

122112 99

32 27

Original

Paraphrased

PASS ERROR EMPTYFAIL

96

CodeBLEU
ALL FAIL PASS

0

1,779

0

271

Levenshtein Distance on Code
ALL FAIL PASS

2,721

0 1

1,779 2,721

1 0

249

Min:
Max:

Figure 4.4. Results achieved by Copilot when considering the Full context code representation on
paraphrasesmanual.

methods that, as shown in Table 4.1, are composed, on average, by more than 150 tokens
(median = 92) and have an average cyclomatic complexity of 5.3 (median = 3.0).

Thus, we consider the successful generation of more than 110 of these methods a quite
impressive result for a code recommender. The remaining ∼15% of instances resulted either
in a parsing error (∼100 methods) or in an empty recommendation (∼30 methods).

The box plot in the middle part of Fig. 4.4 depicts the results achieved in terms of Code-
BLEU [RGL+20] computed between the recommended methods and the target one (i.e.,
the one implemented by the original developers). Higher values indicate higher similarity
between the compared methods. Instead, in the right box plot, we show the normalized
Levenshtein distance, for which lower values indicate higher similarity.

For both metrics, we depict the distributions when considering all generated predictions,
the ones failing tests, and the ones passing tests. As expected, higher (lower) values of Code-
BLEU (Levenshtein distance) are associated with test-passing methods. Indeed, for the latter,
the median CodeBLEU is ∼0.80 (Levenshtein = ∼0.10) as compared to the ∼0.40 (Leven-
shtein = ∼0.58) of test-failing methods. Despite such an expected finding, it is interesting
to notice that 25% of test-passing methods have a rather low CodeBLEU <0.50.

Fig. 4.3 shows an example of recommended method having a CodeBLEU with the target
method of 0.45 and passing the related tests. The recommended method, while substantially
different from the target, captures the basic logic implemented in it. The target method first
checks if the object chemObjectListeners is null and, if not, it proceeds removing from the
listeners list the element matching the one provided as parameter (i.e.,col). The method
synthesized by Copilot avoids the second if statement by directly performing the remove
operation after the null check.

58 Evaluating the Robustness of DL-based techniques for Generating Code

Note that there the two implementations are equivalent: The remove method of
java.util.List preliminarily checks whether the passed element is contained in the list be-
fore removing it. While the check in the original method has no functional role, together
with the introduction of the listeners variable, it might have been introduced to make the
method more readable and self-explanatory.

Similarly, Fig. 4.5 shows an example of prediction passing the tests but that, accordingly
to the Levenshtein distance, would require 165 token-level edits to match the target pre-
diction (NTLev=63%). Differently from the previous example, it is clear that, in this case,
the two methods do not have the same behavior since the recommended one also treats 3D
points, while the original one only 2D points. In other words, the tests fail to capture the
difference in the behavior. These examples provide two interesting observations. The first is
that, metrics such as CodeBLEU and Levenshtein distance may result in substantially wrong
assessments of the quality of a prediction. Indeed, while the discussed predictions have low
CodeBLEU/high Levenshtein values and, thus, would be considered as unsuccessful predic-
tions in most of the empirical evaluations, it is clear that they are valuable recommendations
for a developer, even when not 100% correct (see Fig. 4.5). This poses questions on the us-
age of these metrics in the evaluation of code recommenders. Second, also the testing-based
evaluation shows, as expected, some limitations as in the second example, in which the two
methods do not implement the same behavior but both pass the tests.

As a final note, it is also interesting to observe as 25% of test-failing predictions exhibit
high values (>∼0.60) of CodeBLEU, indicating a high code similarity that, however, does
not reflect in test-passing recommendations.

Impact of paraphrasing the input descriptions. Out of the 892 manually paraphrased
descriptions, 408 (46%) result in different code recommendations as compared to the origi-
nal description. This means that Copilot synthesizes different methods when it is provided as
input with the original description and with the manually paraphrased description, which are
supposed to summarize the same piece of code. Note that at this stage we are not focusing
on the “quality” of the obtained predictions in any way. We are just observing that different
input descriptions have indeed an impact on the recommended code. This implies that de-
velopers using different wordings to describe a needed method may end up with different
recommendations. Such differences also result in the potential loss of correct recommenda-
tions. Indeed, out of the 112 test-passing predictions obtained with the original description
and the 122 obtained with the manually paraphrased description, only 98 are in overlap,
indicating that there are 38 correct recommendations only generated either by the original
(14) or the paraphrased (24) description.

To have a deeper look into the 408 different predictions generated by Copilot with the
original and the paraphrased description, the left part of Fig. 4.6 (light blue) shows the
normalized token-level Levenshtein distance between (i) the original description and the
paraphrased description (see the boxplot labeled with “Description”), and (ii) the method
obtained using the original description and that recommended using the paraphrased de-
scription (“Code”). The “Description” boxplot depicts the percentage of words that must be
changed to convert the paraphrased description into the original one. As it can be seen, while
describing the same method, the paraphrased descriptions can be substantially different as

4.2 Results Discussion 59

public static void translateAllPositive(IAtomContainer atomCon){
 double minX = Double.MAX_VALUE;
 double minY = Double.MAX_VALUE;
 Iterator<IAtom> atoms = atomCon.atoms().iterator();
 while (atoms.hasNext()) {
 IAtom atom = (IAtom) atoms.next();
 if (atom.getPoint2d() != null) {
 if (atom.getPoint2d().x < minX) {
 minX = atom.getPoint2d().x;
 }
 if (atom.getPoint2d().y < minY) {
 minY = atom.getPoint2d().y;
 }
 }
 }
 logger.debug("Translating: minx=" + minX + ", minY=" + minY);
 translate2D(atomCon, minX * -1, minY * -1);
}

Target Method

Recommended method starting from the original description

Levenshtein distance: 165

PASSpublic static void translateAllPositive
 (IAtomContainer atomCon){
 double minX = Double.POSITIVE_INFINITY;
 double minY = Double.POSITIVE_INFINITY;
 double minZ = Double.POSITIVE_INFINITY;
 for (IAtom atom : atomCon.atoms()) {
 if (atom.getPoint2d() != null) {
 minX = Math.min(minX, atom.getPoint2d().x);
 minY = Math.min(minY, atom.getPoint2d().y);
 }
 if (atom.getPoint3d() != null) {
 minX = Math.min(minX, atom.getPoint3d().x);
 minY = Math.min(minY, atom.getPoint3d().y);
 minZ = Math.min(minZ, atom.getPoint3d().z);
 }
 }
 for (IAtom atom : atomCon.atoms()) {
 if (atom.getPoint2d() != null) {
 atom.setPoint2d(new Point2d(
 atom.getPoint2d().x - minX,
 atom.getPoint2d().y - minY));
 }
 if (atom.getPoint3d() != null) {
 atom.setPoint3d(new Point3d(
 atom.getPoint3d().x - minX,
 atom.getPoint3d().y - minY,
 atom.getPoint3d().z - minZ));
 }
 }
}

Figure 4.5. Example of recommended methods that pass the unit tests but would require 165 edit
actions to match the target method.

60 Evaluating the Robustness of DL-based techniques for Generating Code

Description

L
e
v
e
n
s
h
t
e
i
n

D
i
s
t
a
n
c
e

327 out of 666 Pegasus Paraphrased Descriptions Resulted in
Changes of the Recommended Code

Code Description

L
e
v
e
n
s
h
t
e
i
n

D
i
s
t
a
n
c
e

Code

328 out of 688 TP Paraphrased Descriptions Resulted in
Changes of the Recommended Code

L
e
v
e
n
s
h
t
e
i
n

D
i
s
t
a
n
c
e

Description Code

408 out of 892 Manually Paraphrased Descriptions Resulted in
Changes of the Recommended Code

Figure 4.6. Levenshtein distance between the original description and (i) the manually paraphrased
descriptions (left part) and (ii) the descriptions automatically paraphrased by PEGASUS (middle part)
and Translate Pivoting (right). Similarly, we report the Levenshtein distance between the method
recommended using the original description and the three paraphrases. The latter is only computed
for recommendations in which the obtained output differs.

compared to the original ones, with 50% of them requiring changes to more than 70% of
their words. Similarly, the different methods recommended in the 408 cases under analysis,
can be substantially different, with a median of ∼30% of code tokes that must be changed
to convert the recommendation obtained with the original description into the one obtained
using the paraphrased description (see the “Code” boxplot).

These findings are confirmed for the automatically paraphrased descriptions (see the
middle and the right part of Fig. 4.6 for the results achieved with the PEGASUS and TP para-
phrases, respectively). As it can be seen, the main difference as compared to the results of
the manually paraphrased description (left part of Fig. 4.6) is that TP changes a substan-
tially lower number of words in the original description as compared to PEGASUS and to
the manual paraphrasing. Such a finding is expected considering that TP just translates the
original description back and forth from English to French, thus rarely adding new words
to the sentence, something that is likely to happen using PEGASUS or by paraphrasing the
sentence manually.

Answer to RQ1. Different (but semantically equivalent) natural language descriptions
of the same method are likely to result in different code recommendations generated
by DL-based code generation models. Such differences can result in a loss of correct
recommendations (∼28% of test-passing methods can only be obtained either with the
original or the paraphrased descriptions). These findings suggest that testing the ro-
bustness of DL-based code recommenders may play an important role in ensuring their
usability and in defining possible guidelines for the developers using them.

4.3 Threats to Validity

Threats to construct validity concern the relationship between the theory and what we
observe. Concerning the performed measurements, we exploit the passing tests as a proxy
for the correctness of the recommendations generated by Copilot. We acknowledge that

4.4 Conclusions 61

passing tests does not imply code correctness. However, this it can provide hints about the
code behavior. To partially address this threat we focused our study on methods having
high statement coverage (median = 100%). Also, we complemented this analysis with the
CodeBLEU and the normalized token-level Levenshtein distance. As for the execution of our
study, we automatically invoked Copilot rather than using it as actual developers would do:
We automatically accepted the whole recommendations and did not simulate a scenario in
which a developer selects only parts of the provided recommendations. In other words, while
our automated script simulates a developer invoking Copilot for help, it cannot simulate the
different usages a developer can make of the received code recommendation.

Threats to internal validity concern factors, internal to our study, that could affect
our results. While in RQ2 we had multiple authors inspecting the semantic equivalence of
the paraphrasing generated by the automated tools, in RQ1 we relied on a single author to
paraphrase the original description. This introduces some form of subjectivity bias. However,
the whole point of our paper is that, indeed, subjectivity plays a role in the natural language
description of a function to generate and we are confident that the written descriptions
were indeed semantically equivalent to the original one. Indeed, the authors involved in the
manual paraphrasing have an average of seven years of experience in Java. Also related to
internal validity is our choice of using the first sentence of the Doc Comments as the original
natural language description. These sentences may be of low quality and not representative
of how a developer would describe a method they want to automatically generate. This could
substantially influence our findings, especially in terms of the effectiveness of Copilot (i.e.,
its ability to generate test-passing methods). However, such a threat is at least mitigated by
the fact that Copilot has also been invoked using the manually written descriptions, showing
a similar effectiveness. A final threat regards the projects used for our study.

Those are open-source projects from GitHub, and it is likely that at least some of them
have been used for training Copilot itself. In other words, the absolute actual effectiveness
reported might not be reliable. However, the objective of our study is to understand the
differences when different paraphrases are used rather than the absolute performance of
Copilot, like previous studies did (e.g., [NN22]).

Threats to external validity are related to the possibility to generalize our results. Our
study has been run on 892 methods we carefully selected as explained in Section 4.1.1.
Rather than going large-scale, we preferred to focus on methods having a high test cover-
age and a verbose first sentence in the Doc Comment. Larger investigations are needed to
corroborate or contradict our findings. Similarly, we only focused on Java methods, given
the effort required to implement the toolchain needed for our study, and in particular the
script to automatically invoke Copilot and parse its output. Running the same experiment
with other languages is part of our future agenda.

4.4 Conclusions

We investigated the extent to which DL-based code recommenders tend to synthesize dif-
ferent code components when starting from different but semantically equivalent natural
language descriptions. We selected GitHub Copilot as the tool representative of the state-

62 Evaluating the Robustness of DL-based techniques for Generating Code

of-the-art and asked it to generate 892 non-trivial Java methods starting from their natural
language description. For each method in our dataset we asked Copilot to synthesize it using:
(i) the original description, extracted as the first sentence in the Javadoc; and (ii) paraphrased
descriptions. We did this both by manually modifying the original description and by using
automated paraphrasing tools, after having assessed their reliability in this context.

We found that in ∼46% of cases semantically equivalent but different method descrip-
tions result in different code recommendations. We observed that some correct recommen-
dations can only be obtained using one of the semantically equivalent descriptions as input.

Our results highlight the importance of providing a proper code description when asking
DL-based recommenders to synthesize code. In the new era of AI-supported programming,
developers must learn how to properly describe the code components they are looking for
to maximize the effectiveness of the AI support.

Part III
Automated Log Generation

65

Inspecting log messages is a popular practice that helps developers in several software
maintenance activities such as testing [CSX+18, CSH+19], debugging [SSKM92], diagno-
sis [ZPX+19, YZP+12], and monitoring [HvH20, HZW+21]. Developers insert log state-
ments to expose and register information about the internal behavior of a software artifact
in a human-comprehensible fashion [OGX12]. The data generated is used for runtime and
post-mortem analyses. For example, when debugging, log statements can support root cause
analysis [LRW+17, GJL+16], while once the software is deployed logs can be used for per-
formance monitoring [YBdPS+18] or anomaly detection [MLZ+19, ZXL+19, DLZS17].

Researchers have proposed techniques to support developers in deciding what parts of
the system to log [YMX+10], the log level for logging statements [LSA+20, YPZ12, OGX12,
LSH17], and the structure of log messages [Li20]. While achieving great performance, these
techniques only partially support developers in logging practices. Indeed, none of them can
generate complete log statements providing to the developer (i) the location where to inject
it, (ii) the correct log level to use, and (iii) the actual log statement also featuring the needed
natural language log message.

To overcome these limitations, we presented LANCE (Log stAtemeNt reCommEnder)
[MPB22], an approach exploiting the Text-To-Text-Transfer-Transformer (T5) model [RSR+20]
to automatically generate and inject complete logging statements in Java code. We started
by pre-training our model on a set of 6,832,859 Java methods. Once pre-trained, the model
has been fine-tuned to generate complete log statements. In particular, given a Java method
as input to LANCE, we ask it to inject a complete log statement where needed. This means
that LANCE must generate a complete log statement and inject it in the proper location. In
our evaluation, we asked LANCE to automatically generate 12,020 log statements and com-
pared them to the ones manually written by developers. We found that LANCE is able to (i)
correctly predict the appropriate location of a log statement in 65.9% of cases; (ii) select a
proper log level for the statement in 66.2% of cases; and (iii) generate a completely correct
logging statement, including a meaningful natural language message in 15.2% of cases. The
results of this work have been presented in the following publications:

Using Deep Learning to Generate Complete Log Statements

Antonio Mastropaolo, Luca Pascarella, Gabriele Bavota. In Proceedings of the 44th
IEEE/ACM International Conference on Software Engineering (ICSE 2022), pp. 2279-
2290

While LANCE represented a major step ahead in log automation as compared to state-
of-the-art techniques, it suffers of two major limitations. First, it assumes that only one log
statement is needed in a Java method provided as input. This is due to the training proce-
dure we employed that asks the model to always generate a single log statement. Second,
given a Java method, LANCE cannot assess whether log statements are needed at all. In-
deed, in some cases, enough log statements may be already present in the method or, maybe,
the method does not feature statements that would benefit from logging. For this reason,
we presented an extension of LANCE, named LEONID, that combines DL and Information

66

Retrieval (IR) techniques to overcome these limitations. LEONID can not only discriminate
between methods that need log statements and those that do not but also supports the in-
jection of multiple log statements where needed. LEONID achieves a success rate of 27.27%
in correctly injecting a single log statement into Java methods (as compared to the 15.2%
of LANCE), while it succeeds in 17% of the cases when dealing with methods in need of
multiple log statements. LEONID has been presented in the following publication:

Log statements generation via deep learning: Widening the support provided
to developers

Antonio Mastropaolo, Valentina Ferrari, Luca Pascarella, Gabriele Bavota. In Pro-
ceedings of Journal of Systems and Software (JSS 2023), Volume 210(4)

In the following chapters we first discuss the literature related to the automation of log-
ging activities (Chapter 5) and then present our latest approach on log automation, namely
LEONID (Chapter 6). Chapter 6 also features a direct comparison between LEONID and
LANCE [MPB22], our first proposal for log automation.

5
Background and Related Work

We discuss the related literature revolving around approaches designed to support and au-
tomate logging activities. We omit empirical studies on logging practices [YPZ12, FZH+14,
CJ17, ZCSC19, YPZ12, ZYD+19, ZHCHL20, LSA+20], since not directly related to our re-
search.

Log message enhancement. A first family of techniques aim at recommending how to
improve the log message reported in a given log statement. Yuan et al. [YZP+12] proposed
LOGENHANCER as a prototype to automatically recommend relevant variable values for each
log statement, refactoring its message to include such values. Their evaluation on eight sys-
tems demonstrates that LOGENHANCER can reduce the set of potential root failure causes
when inspecting log messages. Liu et al. [LXL+19] tackled the same problem using, how-
ever, a customized deep learning network. Their evaluation showed that the mean average
precision of their approach is over 84%.

Ding et al. proposed LOGENTEXT [DLS22], a NMT (Neural Machine Translation) ap-
proach for improving the quality of log messages: By taking the code preceding a given log
statement, LOGENTEXT can translate it into a short textual description that can be used for
logging. In a subsequent study, Ding et al. [DTC+23] expand on LogGenText by developing
LoGenText-Plus. This improved technique breaks down the process of generating logging
text into two phases. Initially, LoGenText-Plus leverages an NMT model to create the syn-
tactic template for the intended logging text. Then, it inputs both the source code and this
generated template into another NMT model dedicated to the synthesis of logging text.

Log placement. Other researchers targeted the suggestion of the best code location
for log statements [JLL+18, LCSH18, Li20]. For example, Zhu et al. [ZHF+15] presented
LOGADVISOR, an approach to recommend where to add log statements. The evaluation of
LOGADVISOR on two Microsoft systems and two open-source projects reported an accuracy of
60% when applied on pieces of code without log statements. Yao et al. [YBdPS+18] tackled
the same problem in the specific context of monitoring the CPU usage of web-based systems,
showing that their approach helps developers when logging.

Li et al. [LCS20] proposed a deep learning framework to recommend logging locations
at the code block level. They report a 80% accuracy in suggesting logging locations using

67

68 Background and Related Work

within-project training, with slightly worse results (67%) in a cross-project setting. Cândido
et al. [CHAvD21] investigated the effectiveness of log placement techniques in an industrial
context. Their findings (e.g., 79% of accuracy) show that models trained on open source
code can be effectively used in industry.

Log level recommendation. A third family of techniques focus on recommending the
proper log level (e.g., error, warning, info) for a given log statement [YPZ12, OGX12]. Mi-
zouchi et al. [MSII19] proposed PADLA as an extension for Apache Log4j framework to auto-
matically change the log level for better record of runtime information in case of anomalies.
The DEEPLV approach proposed by Li et al. [LLCS21] uses instead a deep learning model
to recommend the level of existing log statements in methods. DEEPLV aggregates syntactic
and semantic information of the source code and showed its superiority with respect to the
state-of-the-art.

Generating complete log statements. Finally, techniques have been proposed to pro-
vide support for all logging tasks (i.e., log placement, log message creation, and log level
recommendation), allowing the automated injection of complete log statements. Xu et al.
[XCZ+24] utilize LLMs and in-context learning to facilitate all three logging tasks in a seam-
less, end-to-end manner. Specifically, they introduce UNILOG, an innovative logging frame-
work that applies the in-context learning approach to guide LLMs in task-specific knowledge
application. The findings from their experiments highlight that carefully crafted prompts for
the complete automation of logging tasks can effectively set new benchmarks in the field.

Li et al. [LHZ+24] introduce SCLOGGER, an approach using contextual information to
generate comprehensive logging statements. SCLogger makes use of static domain knowl-
edge through context-aware prompts and employs recent techniques such as chain-of-thoughts
[WWS+22]. The outcomes of their evaluation demonstrate that SCLogger surpasses the
state-of-the-art benchmarks [MPB22] in producing complete log statements.

Contribution in the area. When looking at solutions generating complete log state-
ments, we presented LANCE [MPB22] and its extension LEONID [MFPB24], detailed in
Chapter 6. LANCE was the pioneering technique in the literature to support the genera-
tion of complete log statements and represented the baseline for comparison in subsequent
proposals [LHZ+24].

6
Log Statement Generation via Deep Learning

Logging poses several challenges to software developers. First, they need to decide what
to log, by finding the right amount of log statements needed in the application without,
however, flood it with useless log statements. Second, developers must log at the proper
level, namely select the proper log level for each entry (e.g., info, warning, error). Third, log
statements must be accompanied by meaningful and informative log messages that can be
easily understood.

In our first attempt to automate logging activities [MPB22], we presented LANCE, an
approach built on top of a T5 [RSR+20] deep learning model trained to generate and inject
a complete log statement in a Java method provided as input. T5 has been pre-trained
on a set of ∼6.8M Java methods using the classic “masked language modeling” objective
[RSR+20]. In the case of LANCE, this means that during pre-training the model is provided
as input a Java method with 15% of its tokens masked and it is expected to predict the
masked tokens. Such a pre-training task provides T5 with knowledge about the language of
interest (i.e., Java). Once pre-trained, the model has been fine-tuned for the specific task of
interest. In this case, we selected ∼62k Java methods and removed from them exactly one
log statement asking the model to generate and inject it, thus deciding where to log (i.e., in
which part of the method), which log level to use, and what to log (i.e., generate a meaningful
log message in natural language). The training procedure used for LANCE resulted in two
strong limitations: First, LANCE assumes that only one log statement is needed in a Java
method provided as input, since during training we asked the model to always generate
a single log statement. Second, given a Java method, LANCE cannot assess whether log
statements are needed at all. In this chapter, we present LEONID, an approach aimed at
partially addressing these limitations.

We start replicating LANCE by training and testing it on a dataset 3.6 times larger than
the one we used originally [MPB22] (230k training instances vs 63k). Besides being larger,
the new dataset features a more variegate set of log statements. Then, we present LEONID
as an extension of LANCE able to (i) discriminate between methods needing and not needing
the injection of new log statements; and (ii) in case a need for log statements is identified,
LEONID, differently from LANCE, can decide the proper number of log statements to inject
(which can be higher than one) and properly place them in the correct position. We found

69

70 Log Statement Generation via Deep Learning

Table 6.1. State-of-the-art approaches supporting developers in logging activities

Ref. Venue Name
Log Log injection

Need for log statements
Level Position Message Single Multiple

Zhu et al. [ZHF+15] ICSE 2015 LOGADVISOR ✗ ✓ ✗ ✓ ✗ ✗
Yao et al. [YBdPS+18] ICPE 2018 LOG4PERF ✗ ✓ ✗ ✓ ✗ ✓
Mizouchi et al. [MSII19] ICPC 2019 PADLA ✓ ✗ ✗ ✓ ✓ ✗
Li et al. [LCS20] ASE 2020 ✗ ✓ ✗ ✓ ✗ ✗
Li et al. [LLCS21] ICSE 2021 DEEPLV ✓ ✓ ✗ ✓ ✗ ✗
Ding et al. [DLS22] SANER 2022 LoGenText ✗ ✗ ✓ ✓ ✗ ✗
Mastropaolo et al. [MPB22] ICSE 2022 LANCE ✓ ✓ ✓ ✓ ✗ ✗

Our work - LEONID ✓ ✓ ✓ ✓ ✓ ✓

that LEONID can correctly predict the need for log statements with an accuracy higher than
90%. Also, when log statements are needed, LEONID can generate and inject in the right
position multiple complete log statements in ∼17% of cases.

Finally, in LEONID we attempted to improve the performance achieved in the generation
of meaningful log messages by exploiting a combination of DL and Information Retrieval
(IR). Indeed, based on the results we achieved with LANCE, the generation of log messages
really looked like the Achilles’ heel of DL-based log generation. Results show that by in-
creasing the size of the training dataset, the ability of LANCE in predicting meaningful log
messages substantially improves (+100% as compared to what we reported in [MPB22]).
Instead, the combination of DL and IR we propose in LEONID only marginally improves the
results for this specific task (+5% relative improvement).

Table 6.1 shows how LEONID widened the support provided to developers in the au-
tomation of logging activities as compared to the existing state-of-the-art techniques present
at the time LEONID has been proposed.

LEONID is publicly available as a Visual Studio Code plugin. 1

6.1 LEONID

6.1.1 Datasets Needed for Training, Validation, and Testing

We start by describing the dataset used for pre-training T5 (Section 6.1.2). Then, we detail
the several fine-tuning datasets we built (featuring training, validation, and test set). The
first, aimed at replicating LANCE [MPB22], teaches T5 how to inject a single log statement in
a Java method (Section 6.1.3). The second fine-tuning dataset also focuses on the problem
of injecting a single log statement, but this time exploits IR to provide T5 with concrete
examples of log messages that might be relevant for the prediction at hand (Section 6.1.4).
This allows to compare LANCE with LEONID in the task of single log statement injection. The
third fine-tuning dataset trains LEONID for the task of multi-log statements prediction, i.e.,
injecting from 1 to n log statements in a given method (Section 6.1.5). Finally, we describe
the fine-tuning dataset to train a T5 able to discriminate between methods needing and not
needing log statements (Section 6.1.6). The datasets are summarized in Tables 6.2 and 6.3
and available in [Mas23].

1LEONID can be found at: https://marketplace.visualstudio.com/items?itemName=
AndreaMicheleZucchi.loginjector

https://marketplace.visualstudio.com/items?itemName=AndreaMicheleZucchi.loginjector
https://marketplace.visualstudio.com/items?itemName=AndreaMicheleZucchi.loginjector

6.1 LEONID 71

All datasets have been built starting from the same set of GitHub repositories that we
selected using the GHS (GitHub Search) tool by Dabić et al. [DAB21]. GHS allows to query
GitHub for projects meeting specific criteria. We used the same selection criteria exploited
in our former work on LANCE [MPB22], selecting all public non-forked Java projects having
at least 500 commits, 10 contributors, and 10 stars. These selection criteria aim at exclud-
ing personal/toy projects and reduce the chance of collecting duplicated code (non-forked
repositories). We cloned the latest snapshot of the 6,352 projects returned by GHS. We
scanned all cloned repositories to assess whether they featured a POM (Project Object Model)
or a build.gradle file. Both these files allow to declare external dependencies towards
libraries, the former using Maven, the latter Gradle. Such a check was performed since,
as a subsequent step, we verify whether projects had a dependency towards Apache Log4j
[Lognd] (i.e., a well-known Java logging library) or SLF4J (Simple Logging Facade for Java)
[QOSnd] (i.e., an abstraction for Java logging frameworks similar to Log4j). Indeed, to train
a T5 for the task of injecting complete log statement(s) in Java methods, we need examples
of methods featuring log statements. The usage of popular logging Java libraries was thus a
prerequisite for the project’s selection.

We found 3,865 projects having either a POM or a build.gradle file and 2,978 of them
featured a dependency towards at least one logging library. The overall projects’ selection
is very similar to the one we performed in [MPB22], with the main differences being the
additional mining of projects: (i) using Gradle as build system (in [MPB22] only Maven
was considered); and (ii) having a dependency towards SLF4J (in [MPB22] only Log4j was
considered). These choices help in increasing the size and variety of both the training and
the testing datasets, making the prediction more challenging.

We used srcML [src] to extracted all Java methods in the selected projects. Then, we
identified the log statements within each method (if any) and removed all methods featuring
log statements exploiting custom log levels (i.e., log levels that do not belong to any of the
two libraries we consider, but that have been defined within a specific project). The valid
log levels we considered are: FATAL, ERROR, WARN, DEBUG, INFO, and TRACE. At this point we
were left with two sets of methods: those not having any log statement and those having at
least one log statement using one of the “valid” log levels.

We run javalang [Thund] on these methods to tokenize them and excluded all those hav-
ing #tokens < 10 or #tokens ≥ 512. The upper-bound filtering has been done in previous
works [MAPB21, TPT+21, CCP+21, TWB+19b, TWB+19a] to limit the computational ex-
penses of training DL-based models. The lower-bound of 10 tokens aims at removing empty
methods. We also removed all methods containing non-ASCII characters in an attempt to ex-
clude at least some of the methods featuring log messages not written in English. Finally, to
avoid any possible overlap between the training, evaluation, and test datasets we are going
to create from the collected set of methods, we removed all exact duplicates, obtaining the
final set of 12,916,063 Java methods, of which 244,588 contain at least one log statement.

72 Log Statement Generation via Deep Learning

Table 6.2. Number of methods in the datasets used in our study

Dataset
train eval test

w/ log w/o log w/ log w/ log

Pre-training - 12,671,475 - -
Fine-tuning: Single Log Generation 229,703 - 28,763 28,698

Fine-tuning: Single Log Generation with IR 229,703 - 28,763 28,698
Fine-tuning: Multi-log Injection with IR 192,773 - 24,092 24,088

6.1.2 Pre-Training Dataset

Since the goal of pre-training is to provide T5 with general knowledge about the language of
interest (i.e., Java), we used for pre-training all methods not featuring a log statement (the
latter will be used for the fine-tuning datasets). We adopted a classic masked language model
task, which consists in randomly masking 15% of the tokens composing a training instance
(i.e., a Java method) asking the model to predict them.

Fig. 6.1 depicts the masking procedure of instances used to pre-train the model.

Pre-training instances: 12,671,475

public ContractInputAssert isMultiple() {
 isNotNull();
 final String errorMessage =
 format ("Expected actual ContractInput to
 be multiple but was not.", actual);
 if(!actual.isMultiple()){
 throw new AssertionError(errorMessage);
 }
 return this;
}

Original Java Method

public ContractInputAssert <MASK_1> {
 isNotNull();
 final <MASK_2> =
 format ("Expected actual ContractInput to
 be multiple but was not.", actual);
 if(!actual.isMultiple()){
 <MASK_3> AssertionError(errorMessage);
 }
 <MASK_4>
}

Pre-training Input

Pre-training Target<MASK_1> = isMultiple() <MASK_3> = throw new
<MASK_4> = return this;<MASK_2> = String errorMessage

Figure 6.1. Example of Pre-training instance

6.1.3 Fine-tuning Dataset: Single Log Generation

We build a fine-tuning dataset aimed at replicating what we did in the training of LANCE
[MPB22]. We process each method M having n≥ 1 log statements by removing from it one
log statement (i.e., leaving it with n−1 log statements). This allows to create a training pair

6.1 LEONID 73

Table 6.3. Number of methods in the datasets used to predict the need for log statements

Dataset
train eval test

Need No need Need No need Need No need

Fine-tuning: Need4Log (50-50) 98,848 92,126 12,257 11,468 11,627 11,627
Fine-tuning: Need4Log (75-25) 98,848 92,126 12,257 11,468 12,159 4,053
Fine-tuning: Need4Log (25-75) 98,848 92,126 12,257 11,468 3,875 11,627

Fine-tuning: Need4Log (2-98) 98,848 92,126 12,257 11,468 238 11,627

〈Ms, Mt〉 with Ms representing the input provided to the model (i.e., M with one removed
log statement) and Mt being the expected output (i.e., M in its original form, with all its
log statements). This is the dataset used to train LANCE [MPB22] and it allows to train a
model able, given a Java method as input, to inject in it one new log statement. For methods
having n> 1 (i.e., more than one log statement), we created n pairs 〈Ms, Mt〉, each of them
having one of the n log statements removed (i.e., different Ms). To ensure that after the log
statement removal our instances still featured valid Java methods, we parsed each Ms using
JavaParser [Javnd] and removed all pairs including an invalid Ms.

We split the remaining pairs into training (80%), validation (10%) and test (10%) set as
reported in Table 6.2. Training and testing a T5 model on this dataset basically means per-
forming a differentiated replication of LANCE on a 3.6× larger and more variegate (multiple
logging libraries) dataset.

6.1.4 Fine-tuning Dataset: Single Log Generation with IR

In LEONID, we combine DL and IR with the goal of boosting performance especially in the
generation of meaningful log messages. The main idea is to augment the input provided to
the model (i.e., Ms) with log messages belonging to methods similar to Ms which are featured
in the training set. For each of the 244,588 〈Ms, Mt〉 pairs in the fine-tuning dataset described
in Section 6.1.3 (this includes training, validation, and test), we identify the k most similar
pairs in the training set. The similarity between two pairs is based on the similarity of their
Ms (i.e., the method in which the log statement must be created) and it is computed using
the Jaccard similarity [Han04] index, based on the percentage of code tokens shared across
the two methods. We then use these k similar methods to extract from them examples of log
messages used in coding contexts which are similar to the Ms at hand.

Two clarifications are needed. First, independently if a given pair is in the training,
validation, or test set, we extract its k most similar pairs only from the training set. This is
needed since, while predicting the log statement to inject, the training set must be the only
knowledge available to the model (i.e., the test set must be composed of previously unseen
instances). Second, when computing the Jaccard similarity, we remove from the compared
methods all log statements, since we want to identify similar “coding contexts” that may
require similar log statements. We created three different fine-tuning datasets using different
values of k = {1, 3,5} (thus, a lower/higher number of exemplar log messages provided to
the model).

Fig. 6.2 shows an example of training instance for this fine-tuning dataset. The method

74 Log Statement Generation via Deep Learning

@Override
public void run(){
 ConcurrentHashMap<URL,ServiceListener> listeners =
 serviceListeners.get(service);

 if(listeners!=null){
 synchronized(listeners){
 for(Map.Entry<URL,ServiceListener> entry:
 listeners.entrySet(){
 ServiceListener serviceListener=entry.getValue();
 ServiceListener.notifyService(
 entry.getKey(),
 getUrl(),
 urls
);

 }
 }
 }else{
 LoggerUtil.debug(“need not notify service: ”+ service);
 }
}

Example of Augmented Input

Log statement to be generated

@Override
public void run(){
 ConcurrentHashMap<URL,NotifyListener> listeners =
 notifyListeners.get(service);

 if(listeners!=null){
 synchronized(listeners){
 for(Map.Entry<URL,NotifyListener> entry:
 listeners.entrySet(){
 NotifyListener listener=entry.getValue();
 listener.notify(getUrl(), urls);
 }
 }
 }else{
 logger.debug(“need not notify service:”+ service);
 }
}

M
E
T
H
O
D

SIMILARITY: 0.79

<log_message> “need not notify service: “ </log_message>
<similarity> 0.79 </similarity>

Figure 6.2. Example of instance in the “Single Log Generation with IR” dataset

on top represents the Ms Java method in which a log statement must be injected (i.e., the one
highlighted in red). The method is enriched with the exemplar log messages that have been
found in the k = 1 most similar method shown in the bottom. Besides the log messages, we
also provide T5 with the Jaccard similarity between the Ms at hand (top of the figure in this
case) and the method of the training set from which the exemplar log message(s) has been
extracted. This is meant to provide T5 with an additional hint in terms of which exemplar
message comes from the most similar coding context (when more messages are retrieved).

Note that the instances in this dataset are exactly the same of the one previously described
to replicate LANCE (see Table 6.2). This allows a direct comparison in terms of performance
which will provide information about the gain, if any, provided by the IR integration.

6.1 LEONID 75

6.1.5 Fine-tuning Dataset: Multi-log Injection with IR

One limitation of LANCE [MPB22] we aim at addressing in this extension is the assumption
that a Java method provided as input always requires one new log statement to be injected.

Also for this dataset, LEONID exploits a combination of DL and IR, thus we follow a
process similar to the one described in Section 6.1.4, with the main difference being the
number of log statements we ask the model to generate. Given a method M featuring n log
statements, we randomly select y log statements to remove from it, with 1 ≤ y ≤ n. This
means that we create pairs 〈Ms, Mt〉 in which Ms lacks a “random” number of log statements
that must be generated by the model to obtain the target method Mt . This makes the pre-
diction task substantially more challenging as compared to the single-log injection scenario
experimented in LANCE. Also in this case we parsed each Ms using JavaParser [Javnd] and
removed all pairs including an invalid Ms. The remaining part of the process (i.e., identi-
fying the k most similar pairs to inject examples of log messages) is the same described in
Section 6.1.4. Table 6.2 shows the distribution of instances among the training, evaluation,
and test set for this dataset as well.

6.1.6 Fine-tuning Dataset: Deciding Whether Log Statements are Needed

While the dataset described in Section 6.1.5 allows to build a model able to inject multiple
log statements in a given Java method, such a model still assumes that at least one log
statement must be injected in the input method. Thus, LEONID also includes a T5 model
trained as a binary classifier in charge of deciding whether a method provided as input
requires the addition of log statements or not. In case of affirmative answer, the method
can then be passed to the previously trained model which will decide how many and which
log statements to inject. To train such a classifier we again start from the original set of
244,588 Java methods having at least one log statement. Then, similarly to what done
in Section 6.1.5, given a method M featuring n log statements, we randomly select y log
statements to remove from it with, however, 0 ≤ y ≤ n. Thus, differently from the training
dataset used for multi-log injection, we have instances from which we did not remove any
log statement (y = 0). Then, we create a pair 〈Ms, B〉 in which Ms is the original method
M possibly lacking a random number of log statements, while B is a boolean variable that
could be equal true (i.e., Ms needs the addition of log statements, since y ≥ 1) or false (i.e.,
no log statements are needed in Ms, since y = 0). Non-parsable methods resulting after the
removal of the log statements have then been removed, as well as duplicates resulting from
different methods that, after the removal of log statements, become equal (i.e., their only
differences were the removed log statements). This process resulted in a dataset featuring
190,974 training instances (98,848 needing at least a log statement and 92,126 not needing
it), accompanied by the evaluation and test sets summarized in Table 6.3.

As it can be seen, four different versions of the test set have been created, to experiment
LEONID in different scenarios. Let us explain such a choice. The test set should be represen-
tative of the real distribution of methods needing and not needing log statements. However,
such a distribution cannot be computed in a reliable way. Indeed, one possibility we consid-
ered to build our dataset was to just consider all methods with and without log statements

76 Log Statement Generation via Deep Learning

as training instances (as opposed to work only with methods having at least a log statement
as we do). In a nutshell, the process would have been: (i) remove a random number of log
statements from the methods with at least one log statement to create instances needing logs;
and (ii) assume that all methods without log statements do not require logging. However,
assuming that all methods in a project not having log statements do not require logging is a
very strong assumption. It is indeed possible that the project’s developers just did not con-
sider yet the usage of logs in a specific method or that, in a given project, logging is not yet
a practice at all (thus all methods do not use log statements). This makes difficult a reliable
computation of the number of methods needing and not needing logging. Also, such a prob-
lem justifies our decision to create instances of methods needing/not needing a log statement
starting from all methods having at least one log statement and using the process described
above (i.e., removing a random number of statements to create instances in need of logging,
and not removing any log statement to create instances not needing logging). At least, we
are sure that these are methods for which developers considered logging (since they have at
least one log statement) and, thus, can be seen as a sort of “oracle”.

The four test sets in Table 6.3 simulate four different distributions of methods needing/not
needing log statements: balanced (50% per category), unbalanced towards needing (75%-
25%), unbalanced towards not needing (25%-75%), and strongly unbalanced towards not
needing (2%-98%). The latter is a distribution we computed based on all 12M+methods we
mined, in which 98% of methods do not have log statements, while 2% have it. As said, this
distribution is not completely reliable but, at least, gives an idea of what we found in the
mined projects.

6.1.7 Training and Hyperparameter Tuning

All training we performed have been run using a Google Colab’s 2x2, 8 cores TPU topology
with a batch size of 128. Since we use software-specific corpora for pre-training and fine-
tuning, we trained a tokenizer (i.e., a SentencePiece model [Kud18]) on 1M Java methods
randomly extracted from the pre-training dataset and 712,634 English sentences from the
C4 dataset [RSR+20]. We included English sentences since, once fine-tuned, the models may
be required to synthesize complex (natural language) log messages. We set the size of the
vocabulary to 32k word-pieces.

6.1.7.1 Pre-training

We pre-trained T5 for 500k steps on the pre-training dataset composed by 12,671,475 Java
methods (Table 6.2). Given the size of our dataset and the batch size, 500k steps correspond
to ∼5 epochs. The maximum size of the input/output was set to 512 tokens.

6.1.7.2 Hyperparameter Tuning

Once pre-trained the model, we finetune the hyperparameters of the model following the
same procedure we employed when developing LANCE. Such a procedure has been executed
for each of the fine-tuning datasets previously described. In particular, we assessed the

6.1 LEONID 77

Table 6.4. T5 hyperparameter tuning results (in bold the best learning rate)

Experiment C-LR ST-LR ISQ-LR PD-LR

Fine-tuning: Single Log Generation with IR (k = 1) 24.63% 25.92% 26.55% 26.36%
Fine-tuning: Single Log Generation with IR (k = 3) 26.25% 26.04% 26.68% 26.33%
Fine-tuning: Single Log Generation with IR (k = 5) 26.24% 25.69% 26.78% 26.33%

Fine-tuning: Multi-log Generation with IR (k = 1) 22.62% 22.19% 22.79% 22.76%
Fine-tuning: Multi-log Generation with IR (k = 3) 22.64% 22.28% 23.05% 22.59%
Fine-tuning: Multi-log Generation with IR (k = 5) 22.71% 22.14% 22.78% 22.51%

Fine-tuning: Need4Log 96.58% 96.56% 96.59% 96.62%

performance of T5 when using four different learning rate scheduler: (i) Constant Learning
Rate (C-LR): the learning rate is fixed during the whole training; (ii) Inverse Square Root
Learning Rate (ISR-LR): the learning rate decays as the inverse square root of the training
step; (iii) Slanted Triangular Learning Rate [HR18] (ST-LR): the learning rate first linearly
increases and then linearly decays to the starting learning rate; and (iv) Polynomial Decay
Learning Rate (PD-LR): the learning rate decays polynomially from an initial value to an
ending value in the given decay steps. The exact configuration of all the parameters used
for each scheduling strategy is reported in Table 6.5.

Learning Rate Type Parameters
Constant LR = 0.001
Inverse Square Root LRstarting = 0.01

Warmup = 10,000
Slanted Triangular LRstarting = 0.001

LRmax = 0.01
Ratio = 32
Cut = 0.1

Polynomial Decay LRstarting = 0.01
LRend = 0.001
Power = 0.5

Table 6.5. Configurations for the experimented learning rates

Each model has been run for 100k training steps on the fine-tuning dataset. Then, its
performance has been assessed on the evaluation set in terms of correct predictions (i.e.,
cases in which the generated output is equal to the target one).

For the generative models injecting log statements this means that they outputted the
Java method featuring all correct log statements in the expected positions. For the classifier,
it means that it correctly predicted the need for log statements in a given method. The
results achieved with each learning rate are reported in Table 6.4. Our hyperparameter
tuning required training and evaluating 28 models: For each of the 7 fine-tuning datasets
in Table 6.4 we experimented 4 different learning rates. Given the achieved results, we will
use the ISQ-LR for the generative models, and the PD-LR for the classifier when fine-tuning
the models. Concerning the “replication of LANCE” (i.e., fine-tuning T5 on the dataset Fine-

78 Log Statement Generation via Deep Learning

tuning: Single Log Generation in Table 6.2), we did not perform any hyperparameter tuning,
but relied on the best configuration reported in the original paper [MPB22], thus using the
PD-LR.

6.1.7.3 Fine-tuning

Once identified the best learning rates to use, we fine-tuned the final models using early
stopping, with checkpoints saved every 10k steps, a delta of 0.01, and a patience of 5. This
means training the model on the fine-tuning dataset and evaluating its performance (again
in terms of correct predictions) on the evaluation set every 10k. The training process stops
if a gain lower than delta (0.01) is observed at each 50k steps interval. This means that af-
ter 60k steps, the performance of the model is compared against that of the 10k checkpoint
and, if the gain in performance is lower than 0.01, the training stops and the best-performing
checkpoint up to that training step is selected. This process has been used for all models,
including the one replicating LANCE. Our replication package [Mas23] reports the conver-
gence of all models (i.e., the steps after which the early stopping criterion was met).

6.1.8 Generating Predictions

Once the T5 models have been pre-trained and fine-tuned, they can be used to generate
predictions for the targeted tasks. We generate predictions using a greedy decoding strategy,
meaning that the generated prediction is the result of selecting at each decoding step the to-
ken with the highest probability of appearing in a specific position. Thus, a single prediction
(i.e., the one maximizing the likelihood of among all the produced tokens) is generated for
an input sequence, as compared to strategies such as beam-search [FAO17] that generate
multiple predictions.

6.2 Study Design

The goal of our study is to evaluate the performance of LEONID in supporting logging activi-
ties in Java methods. We focus on three scenarios: single log injection, in which we compare
with our previous approach LANCE [MPB22]; multi-log injection; and deciding weather log
statements are needed or not in a given Java method. The context is represented by the
test datasets reported in Table 6.2 (single and multi-log injection) and Table 6.3 (deciding
whether logging is needed).

We aim at answering the following research questions:

RQ1: To what extent is LEONID able to correctly inject a single complete logging statement
in Java methods? RQ1 mirrors the study we performed when presenting LANCE. We
experiment LEONID in the same scenario presented in [MPB22]: The injection of a
single log statement in a given Java method. We compare the performance of LEONID
with that of LANCE when training and testing them on the same dataset.

6.2 Study Design 79

RQ2: To what extent is LEONID able to correctly inject multiple log statements when needed?
RQ2 tests LEONID in the more challenging scenario of injecting from 1 to n log state-
ments in a Java method, as needed.

RQ3: To what extent is LEONID able to properly decide when to inject log statements? RQ3 an-
alyzes the accuracy of LEONID in predicting whether or not log statements are needed
in a given Java method. Additionally, we assess LEONID as a whole using it to both
predict the need for log statements and, subsequently, generate and inject them (if
needed).

6.2.1 Data Collection and Analysis

To answer RQ1 we run both LEONID and LANCE against the test set described in Table 6.2
for the single log generation task. The only difference is that LANCE has been trained on the
dataset not featuring the exemplar log messages added through IR (row Fine-tuning: Sin-
gle Log Generation in Table 6.2), while LEONID exploits this information (row Fine-tuning:
Single Log Generation with IR in Table 6.2). However, the training and test instances are
exactly the same, allowing for a direct comparison. We assess the performance of the two
techniques using the same evaluation schema employed in [MPB22]. In particular, we con-
trast the predictions generated by the two models against the expected output (i.e., the Java
method provided as input with the addition of the correct log statement). Note that gen-
erating and injecting a log statement (e.g., LoggerUtil.debug("execution ok")) involves
correctly predicting several information: (i) the name of the variable used for the logging
(i.e., LoggerUtil); (ii) the log level (i.e., debug); (iii) the log message (i.e., "execution
ok"); and (iv) the position in the method in which the log statement must be injected. Thus,
when a prediction is generated, three scenarios are possible:

Correct prediction: A prediction that correctly captures all above-described informa-
tion, i.e., it matches the name used for the variable, the log level, message, and position as
written by the original developers.

Partially correct prediction: A prediction that correctly captures a subset of the needed
information (e.g., it correctly generates the log statement but injects it in the wrong position).

Wrong prediction: None of the above-described information is correctly predicted.
We answer RQ1 through the following combination of quantitative and qualitative anal-

ysis. On the quantitative side, we report for both LEONID and LANCE the percentage of
correct, partially correct, and wrong predictions. For the partially correct, we report the
percentage of cases in which each of the “log statement components” (i.e., variable name,
log level, log message, and log position) has been correctly predicted. As for the percentage
of correct and partially correct predictions, we pairwise compare them among the experi-
mented techniques, using the McNemar’s test [McN47], which is a proportion test suitable
to pairwise compare dichotomous results of two different treatments. We complement the
McNemar’s test with the Odds Ratio (OR) effect size. We use the Holm’s correction procedure
[Hol79] to account for multiple comparisons.

Concerning the quality of the log messages generated by the two techniques, looking for
exact matches (i.e., cases in which the generated log message is identical to the one written

80 Log Statement Generation via Deep Learning

by developers) is quite limitative considering that a prediction including a message different
but semantically equivalent to the target one could still be valuable. For this reason, we
also compute the following four metrics used in Natural Language Processing (NLP) for the
assessment of automatically generated text:

BLEU [PRWZ02] assesses the quality of the automatically generated text in terms of
n-grams overlap with respect to the target text. The BLEU score ranges between 0 (the
sequences are completely different) and 1 (the sequences are identical) and can be computed
considering four different values of n (i.e., BLEU-{1, 2, 3, 4}). Besides these four variants,
we also compute their geometric mean (i.e., BLEU-A).

METEOR [BL05] is a metric based on the harmonic mean of unigram precision and recall.
Compared to BLEU, METEOR uses stemming and synonyms matching to better reflect the
human perception of sentences with similar meanings. Values range from 0 to 1, with 1
being a perfect match.

ROUGE [Lin04] is a set of metrics focusing on automatic summarization tasks. We use
the ROUGE-LCS (Longest Common Subsequence) variant which returns three values: the
recall computed as LCS(X,Y)/length(X), the precision computed as LCS(X,Y)/length(Y), and
the F-measure computed as the harmonic mean of recall and precision, where X and Y rep-
resent two sequences of tokens.

LEVENSHTEIN Distance [Lev66] provides an indication of the percentage of words that
must be changed in the synthesized log message to match the target log message. This is ac-
complished by computing the normalized token-level Levenshtein distance [Lev66] (NTLev)
between the predicted log message and the target one. Such a metric can act as a proxy to
estimate the effort required to a developer in fixing a non-perfect log message suggested by
the model.

We also statistically compare the distribution of the BLEU-4 (computed at sentence level),
METEOR, ROUGE, and LEVENSHTEIN distance related to the predictions generated by LEONID
and LANCE. We assume a significance level of 95% and use the Wilcoxon signed-rank test
[Wil45], adjusting p-values using the Holm’s correction [Hol79]. The Cliff’s Delta (d) is used
as effect size [GK05] and it is considered: negligible for |d| < 0.10, small for 0.10 ≤ |d| <
0.33, medium for 0.33≤ |d|< 0.474, and large for |d| ≥ 0.474 [GK05].

On the qualitative side, we manually inspected 300 of the partially correct predictions
generated by both techniques and having all information but the log message correctly pre-
dicted. The goal of the inspection is to verify whether the generated log message, while
different from the target one, is semantically equivalent to it. To this aim, two of the au-
thors independently inspected all 600 log messages (300 for each approach), with ∼11%
(70) arisen conflicts being solved by a third author. We report the percentage of “wrong” log
messages generated by both techniques classified as semantically equivalent to the target
one.

To answer RQ2 and evaluate the extent to which LEONID is able to correctly inject mul-
tiple log statements, we run LEONID against the test set reported in Table 6.2 (see row
Fine-tuning: Multi-log Injection with IR). We then report the percentage of correct predic-
tions generated by the approach (i.e., methods for which all n log statements that LEONID
was supposed to generate and inject have been correctly predicted). In this case we do not

6.3 Results Discussion 81

compute the partially correct predictions since, if a prediction is not completely correct, it is
not possible to match the generated log statements with the target ones to compare them.
To make this concept more clear, consider the case in which LEONID was asked to generate
two log statements s1 and s2 but it only injects one statement si , being different from both
s1 and s2. We cannot know whether si should be compared with s1 or with s2 to assess the
percentage of partially correct predictions in terms of e.g., log level. For this reason, we only
focus on the predictions being 100% correct (i.e., the output method is identical to the target
one).

To answer RQ3, we run LEONID against the test sets presented in Table 6.3, reporting
the confusion matrix of the generated predictions and the corresponding accuracy, recall,
and precision. We compare these results with those of: (i) an optimistic classifier always
predicting true (i.e., the method is in need for log statements); (ii) a pessimistic classifier
always predicting false (i.e., no need for log statements); and (iii) a random classifier, ran-
domly predicting true or false for each input instance. We use the same statistical analysis
described for RQ1 to compare LEONID with the baselines.

6.3 Results Discussion

We discuss the achieved results by research question.

6.3.1 RQ1: Injecting a single log statement

Table 6.6 reports the results achieved by LEONID and LANCE, in terms of correct and partially
correct predictions for the task of single-log injection. For LEONID we only report the results
when k = 5, since this is the variant that achieved the best performance (results with k =
1 and k = 3 are available in [Mas23]). The first row of Table 6.6 shows the percentage
of correct predictions by both approaches, which is slightly higher for LEONID (+1.8% of
relative improvement, from 26.78% to 27.26%). This difference is statistically significant
(adj. p-value < 0.01) with 1.12 higher odds of obtaining a correct prediction from LEONID
as compared to LANCE.

Table 6.6. RQ1: Correct and partially correct predictions by LEONID and LANCE on the single-log
injection task

Variable Level Message Position LEONID (k=5) LANCE p-value OR

✓ ✓ ✓ ✓ 27.26% 26.78% <0.01 1.12
✓ - - - 76.45% 77.15% <0.01 0.88
- ✓ - - 73.53% 74.18% <0.01 0.91
- - ✓ - 31.55% 30.16% <0.01 1.36
- - - ✓ 82.35% 82.28% 0.71 1.01

The four subsequent rows report the cases in which one of the four log-statement com-
ponents (variable, level, message, and position) was correctly predicted (✓), independently
from whether the other three components were correct or not (−). As it can be seen, there is

82 Log Statement Generation via Deep Learning

no significant difference in the prediction of the log position, with both techniques correctly
predicting it in ∼82.3% of cases. Differences are observed for the log variable and level in
favor of LANCE (+1.0% and +0.9% relative improvement), and for the log message in favor
of LEONID (+4.6% relative improvement). The log message is the part for which we ob-
served the highest OR among all comparisons. Considering that the only difference between
LEONID and LANCE is the usage of IR, the improvement in the generation of meaningful
log messages we targeted has been at least partially achieved. The latter has, however, a
small price to pay in the correct prediction of the log variable and level. Still, for these el-
ements LEONID is able to generate a correct prediction in over 73.5% of cases, while the
correct generation of the log message still represents the Achilles’ heel of these techniques,
with 31.55% correct predictions achieved by LEONID. Thus, we believe that improvements
on the log message predictions should be favored even at the expense of losing a bit of
prediction capabilities on other elements.

Digging further into the quality of the generated log messages, Table 6.7 reports the
results computed using the four NLP metrics presented in Section 6.2 for both models (in
bold the best results). All metrics suggest that the log messages generated by LEONID are
closer to those written by humans. According to our statistical analysis (results in Table 6.8),
all these differences are statistically significant (adj. p-value < 0.001) with, however, a
negligible effect size.

Table 6.7. RQ1: Evaluation Metrics on Log Messages: LEONID vs LANCE

LANCE LEONID (k = 5)

BLEU-A [PRWZ02] 31.98 35.36
BLEU-1 47.30 50.00
BLEU-2 36.30 39.60
BLEU-3 33.90 35.00
BLEU-4 31.40 32.40

METEOR [BL05] 58.60 60.35
ROUGE-LCS [Lin04]

precision 42.57 44.68
recal l 44.04 46.01
f measure 42.19 44.33

LEVENSHTEIN [Lev66] 44.02 41.85

Also the result of our manual inspection of 300 partially correct predictions by LEONID
and by LANCE point to a similar story: We found 198 of those generated by LEONID (66%)
to report the same information of the target log message, despite being semantically dif-
ferent. The remaining 102 (34%) predictions, instead, reported a log message completely
different from the target one or not meaningful at all. For LANCE, the number of semanti-
cally equivalent log messages is slightly lower — 192 (64%) — but inline with that observed
for LEONID. Examples of different but semantically equivalent log messages generated by
LEONID are reported in Fig. 6.3. The methods labeled with “Target Java Method” represent
the “oracle”, namely the log statement that LEONID was supposed to generate. Those in-
stead labeled with “Predicted Method” represents the generated prediction being different
from the expected target but, accordingly to our manual analysis, still valid.

6.3 Results Discussion 83

private CreateRequest processPreIngestPlugins
 (CreateRequest createRequest) throws topProcessingException
{
 for(PreIngestPlugin plugin:frameworkProperties.getPreIngest())
 {
 try{
 createRequest = plugin.process(createRequest);
 }catch(PluginExecutionException e){
 LOGGER.info("Plugin processing failed.
 This is allowable. Skipping to next plugin.”,e);
 }
 }
 return createRequest;
}

Example of Meaningful predictions Made by LEONID

TARGET JAVA METHOD
private CreateRequest processPreIngestPlugins
 (CreateRequest createRequest) throws topProcessingException
{
 for(PreIngestPlugin plugin:frameworkProperties.getPreIngest())
 {
 try{
 createRequest = plugin.process(createRequest);
 }catch(PluginExecutionException e){
 LOGGER.info(PROCESSING_ERROR,e);
 }
 }
 return createRequest;
}

PREDICTED METHOD

Target Log Statement

Predicted Log Statement

TARGET JAVA METHOD
private void printLedgerMetadata(long ledgerId, LedgerMetadata md,
 boolean printMeta){
 LOG.info("ledgerID: " +
 ledgerIdFormatter.formatLedgerId(ledgerId));
 if(printMeta){
 LOG.info(md.toString());
 }
}

PREDICTED METHOD

private void printLedgerMetadata(long ledgerId, LedgerMetadata md,
 boolean printMeta){
 LOG.info("Ledger metadata for ledgerId={}, len={}",
 ledgerId, md.getLength());
 if(printMeta){
 LOG.info(md.toString());
 }
}

Target Log Statement

Predicted Log Statement

Figure 6.3. Examples of semantically equivalent log messages generated by LEONID

Answer to RQ1. The 3.6 larger training dataset (as compared to the original one we
used in [MPB22]), resulted in a boost of performance when predicting the log mes-
sage (15.20% in [MPB22] vs 30.16%). Such a result has been further improved by
LEONID, which achieves a +4.6% relative improvement (i.e., 31.55% of correctly gen-
erated log messages). All metrics used to assess the quality of the log messages gen-
erated by LEONID indicate improvements over LANCE. However, these improvements
are marginal, showing that more research is needed to further improve the automated
generation of log messages.

84 Log Statement Generation via Deep Learning

Table 6.8. RQ1: Statistical Tests: LEONID vs LANCE for NLP metrics

Comparison Metric p-value d

LEONID (k = 1) vs. LANCE

BLEU-4 <0.001 -0.022 (N)
METEOR <0.001 -0.025 (N)
ROUGE-LCS (f-measure) <0.001 -0.025 (N)
LEVENSHTEIN <0.001 +0.022 (N)

LEONID (k = 3) vs. LANCE

BLEU-4 <0.001 -0.026 (N)
METEOR <0.001 -0.029 (N)
ROUGE-LCS (f-measure) <0.001 -0.023 (N)
LEVENSHTEIN <0.001 +0.027 (N)

LEONID (k = 5) vs. LANCE

BLEU-4 <0.001 -0.026 (N)
METEOR <0.001 -0.029 (N)
ROUGE-LCS (f-measure) <0.001 -0.026 (N)
LEVENSHTEIN <0.001 +0.029 (N)

6.3.2 RQ2: Injecting multiple log statements

As explained in Section 6.2, it is not possible to compute the partially correct predictions in
the scenario of multiple log injection. Thus, we limit our discussion to the correct predictions
generated by LEONID. Independently from the value of k (i.e., the number of similar coding
contexts from which exemplar log messages are extracted), LEONID can correctly predict all
log statements to inject in a given method in >23% of cases. Also in this scenario, k = 5
is confirmed as the best configuration, with 23.51% of correct predictions. Fig. 6.4 depicts
two cases for which LEONID correctly recommended more than one log statement: four in
1 and three in 2 .

Interestingly, the drop in performance as compared to the simpler scenario of single
log injection is there but is not substantial (27.26% vs 23.51%). Remember that in this
experiment we removed from a given Java method M a random number y of log statements,
with 1≤ y ≤ n and n being the number of log statements in M . Thus, it is possible that most
of the methods in our dataset had n = 1 and, as a consequence, y = 1 (i.e., LEONID must
generate one log statement), thus making the task similar to the single-log injection. For this
reason, we inspected our test set and found indeed that 85% of methods in it featured, in
their original form, a single log statement. On top of this, there is another 6.7% of methods
which originally had more than one log statement and from which we randomly removed
y = 1 statement, thus again resulting in instances requiring the addition of a single log
statement. We clustered the instances in the test set based on the number of log statements
that LEONID was required to generate. We created two subsets: (i) one-log, having y = 1;
and (ii) at-least-two-log, y ≥ 2. The one-log subset features 91.7% of the instances in the
test set (22,104 out of 24,088) and, on those, LEONID achieves 24.1% correct predictions;
the two-log subset features 1,984 instances (8.3%), on which LEONID has a 17.0% success
rate. Thus, there is an actual performance drop when LEONID needs to predict multiple log
statements in a given method. Still, in 17% of cases, LEONID is able to inject the same log
statements manually written by developers. To give a term of comparison, in our original
paper presenting LANCE [MPB22], we reported a 15.2% success rate for the task of single-log
injection.

6.3 Results Discussion 85

Multi-Log Injection Correct Predictions

public StgMapSta findById(sernet.gs.reveng.StgMapStaId id)
{
 log.debug("getting StgMapSta instance with id: " + id);
 try{
 StgMapSta instance = (StgMapSta)sessionFactory .
 getCurrentSession().get
 ("sernet.gs.reveng.StgMapSta",id);
 if(instance == null){
 log.debug("get successful, no instance found");
 }else{
 log.debug("get successful, instance found");
 }
 return instance;
 }
 catch(RuntimeException re){
 log.error("get failed",re);
 throw re;
 }
}

public void save(MbDringlichkeit transientInstance)
{
 log.debug("saving MbDringlichkeit instance");
 try{
 getSession().save(transientInstance);
 log.debug("save successful");
 }catch (RuntimeException re){
 log.error("save failed", re);
 throw re;
 }
}

4 Log Statements have been correctly injected!

3 Log Statements have been correctly injected!

1

2

Figure 6.4. Correct predictions made by LEONID when injecting more than one log statement.

Answer to RQ2. LEONID can support the task of multiple log injection, achieving 17.0%
of correct predictions when more than one log statement must be injected. It is impor-
tant to highlight that in this task it is up to the model to infer how many log statements
are actually needed in the method given as input, making it more complex than the
single-log injection experiment even when only a single log statement must be injected.

6.3.3 RQ3: Deciding whether log statements are needed

Fig. 6.5 reports the confusion matrices for the test sets in Table 6.3, differing for the propor-
tion of need/no need instances they feature. The rows in the matrices represent the oracle
and columns the predictions. For example, the first matrix to the left indicates that out of
the 11,627 (11,013+614) methods in need for log statements, LEONID correctly identified
11,013 of them, wrongly reporting the remaining 614 as no need.

The overall accuracy of the classifier is always very high (≥0.95), indicating that most
of instances are correctly classified. Similarly, the recall for the “need” class is always ≥0.94
(see Fig. 6.5), suggesting that most of the methods in need of log statements are identified.

86 Log Statement Generation via Deep Learning

11,013 614

219 11,408

11,516 643

82 3,971

3,666 209

11,408219

230 8

219 11,408

Need4Log: 75-25 Need4Log: 25-75Need4Log: 50-50 Need4Log: 2-98

Accuracy: 0.96
Precision: 0.98

Recall: 0.94

Accuracy: 0.95
Precision: 0.99

Recall: 0.94

Accuracy: 0.97
Precision: 0.94

Recall: 0.94

Accuracy: 0.98
Precision: 0.51

Recall: 0.96

Need

Need

No
need

No need

Need

No
need

Need No need

Need

No
need

Need No need

Need

No
need

Need No need

Figure 6.5. RQ3: Results achieved by LEONID when deciding whether log statements are needed or
not in Java methods

Instead, the precision drops to 0.51 when the test set is very unbalanced towards the “no
need” class, with only 238 need instances. Indeed, every classification error weights a lot
more on the precision when the number of need instances is so low: The 219 misclassifica-
tions represent 49% — 219/(230+219) — of the instances that LEONID classifies as in need
of log statements. Given the overall very good performance achieved by LEONID, we decided
to inspect these 219 instances to understand the rationale behind the recommendation by
LEONID (i.e., add log statements). What we found is that, indeed, these are cases which are
worth the attention of the developers since they may benefit from additional logging.

Fig. 6.6 shows two examples of “no need methods” classified by LEONID as in need for ad-
ditional log statements. We added the LOG_STMT text bordered in red to indicate positions
which may benefit of logging, especially considering the other log statements present in the
method. For example, in method run 2 the developers used a log statement to document
the reason for the InterruptedException in the second try/catch, while a similar scenario
in the first try/catch is not logged. Overall, based on our manual inspection of the “false
positives”, we are confident that these could still represent valuable recommendations for
developers.

When comparing the correct predictions achieved by LEONID with those of the opti-
mistic, pessimistic, and random classifier, we always found a statistically significant differ-
ence in favor of LEONID (adj. p-value < 0.001) accompanied by an OR going from a min-
imum of 6.17 to a maximum of 1,426. The only exception is, as expected, the comparison
with the pessimistic classifier on the 2-98 test set, on which the pessimistic classifier achieves
98% of correct predictions. In this case, we found no statistically significant difference (adj.
p-value = 0.63) with LEONID (detailed results in [Mas23]).

Finally, we conducted a full-system assessment in which we integrated the classifier and
generator into a pipeline that first determines whether log statements are necessary, and if
so, the module responsible for injecting the logs is activated. Fig. 6.7 provides an overview
of how LEONID operates in an end-to-end logging scenario. In this context, the CLASSIFIER
module first determines whether log statements are required for the target method. If log
statements are necessary, the INJECTOR component inserts one or more log statements into
the provided Java method.

The achieved results showed that our end-to-end logging system can correctly inject
∼23% (5,538/24,088) log statements when needed. This must be compared with the 27.26%
achieved in RQ1 when we only assessed the generation of log statements, “providing” LEONID

6.3 Results Discussion 87

@Override
public Resource getResource(String host, String path) {
 Path p = Path.path(path);
 if (basePath != null) {
 if (p.getFirst().equals(basePath)) {
 p = p.getStripFirst();
 } else {
 return null;
 }
 }
 InputStream content =
 this.getClass().getResourceAsStream(p.toString());
 if (content == null) {

 return null;
 } else {
 log.trace("return class path resource");
 return new ClassPathResource(host, p, content);
 }
}

LOG_STMT;

PREDICTION: Need

TARGET: No need

@Override
 public void run() {
 try {
 process.waitFor();
 } catch (InterruptedException e) {

 Thread.currentThread().interrupt();
 }
 try {
 hardStop();
 } catch (InterruptedException e) {
 LOG.debug("Interrupted while
 stopping [{}] after
 process ended",
 processId.getKey(), e);
 Thread.currentThread().interrupt();
 }
}

1

2

LOG_STMT;

Examples of methods that may benefit from additional log statements

PREDICTION: Need

TARGET: No need

Figure 6.6. RQ3: Examples of methods that may benefit from further logging

only with instances that needed a log statement. Thus, while there is a slight loss in per-
formance, the achieved results confirm the ability of LEONID in automatically assessing the
need for log statements.

Answer to RQ3. LEONID can discriminate between methods needing and not needing
additional log statements, with an accuracy higher than 0.95. This allows LEONID to
both predict the need for log statements and generating them.

88 Log Statement Generation via Deep Learning

1

CLASSIFIER

LEONID
buggy code

fixed code

public MyList checkList(MyList l){
 if(l.size() < 0){
 populateList(l);
 }
 return l;
}

public MyList checkList(MyList l){
 if(l.size() < 1){
 populateList(l);
 }
 return l;
}

buggy code

fixed code

public MyList checkList(MyList l){
 if(l.size() < 0){
 populateList(l);
 }
 return l;
}

public MyList checkList(MyList l){
 if(l.size() < 1){
 populateList(l);
 }
 return l;
}

public void setEl
(Element el){
 this.element=el;
 if(this.element)
 {
 …
 }

}

INJECTOR buggy code

fixed code

public MyList checkList(MyList l){
 if(l.size() < 0){
 populateList(l);
 }
 return l;
}

public MyList checkList(MyList l){
 if(l.size() < 1){
 populateList(l);
 }
 return l;
}

buggy code

fixed code

public MyList checkList(MyList l){
 if(l.size() < 0){
 populateList(l);
 }
 return l;
}

public MyList checkList(MyList l){
 if(l.size() < 1){
 populateList(l);
 }
 return l;
}

buggy code

fixed code

public MyList checkList(MyList l){
 if(l.size() < 0){
 populateList(l);
 }
 return l;
}

public MyList checkList(MyList l){
 if(l.size() < 1){
 populateList(l);
 }
 return l;
}

buggy code

fixed code

public MyList checkList(MyList l){
 if(l.size() < 0){
 populateList(l);
 }
 return l;
}

public MyList checkList(MyList l){
 if(l.size() < 1){
 populateList(l);
 }
 return l;
}

2 3 4

public void setEl
(Element el){
 this.element=el;
 if(this.element)
 {
 …
 }

}

public void setEl
(Element el){
 this.element=el;
 if(this.element)
 {
 log.info(…);
 }

}

Figure 6.7. RQ3: Example of LEONID operating in an end-to-end logging scenario (i.e., classification
and injection).

6.4 Threats to Validity

Construct validity. The building of our fine-tuning datasets rely on the assumption that
the exploited code instances, as written by developers, represent the “correct” predictions
that the models should generate. This is especially true for the classifier aimed at predict-
ing whether log statements are needed. For example, the instances that we labeled as “not
needing log statements” are methods featuring n ≥ 1 log statements from which we did not
remove any log statement. Thus, we assume that these methods need exactly n log state-
ments (i.e., the ones injected by the developers), not one more. This is a strong assumption,
as confirmed by the examples in Fig. 6.6.

In addition, there is evidence in the literature showing that some projects may adopt
suboptimal logging practices [PFHLN22], thus again posing question on the quality of the
adopted ground truth. Future work should involve developers in the assessment of the rec-
ommendations generated by LEONID or similar techniques.

Still, using the code written by developers as oracle is a popular practice in DL for SE
[TMM+22, TWB+19a, TWB+19b, WTM+20, TDSS22].

It is important to notice that, when preparing the fine-tuning datase we removed log
statements from any location within a Java method. As a consequence, certain methods may
contain empty blocks (e.g., an empty if block that only contained the log statemet), thus
hinting the model to the right location in which the log statement should be injected (since
there is likely something missing in that unusual empty block). To address this problem,
we assessed the model’s performance on a subset of our initial test set featuring 17,455
instances (∼73% of the original test set) in which there were no empty blocks left within the
test method after removing the log statements. The results indicate that LEONID remains
competitive even in this more challenging scenario, correctly generating and injecting log
statements in 25.30% (4,416/17,455) of the test instances (as compared to the 27.26%
obtained on the full test set).

Internal validity. We performed a limited hyperparameters tuning only focused on iden-
tifying the best learning rate, while we relied on the best architecture identified by Raffel
et al. [RSR+20] for the other parameters. We acknowledge that additional tuning can re-
sult in improved performance. Also, different similarity measures used to retrieve similar

6.5 Conclusions 89

Ms from the training set may lead to different results. Our choice of the Jaccard similarity
was due to practical reasons: Since a given input method to LEONID must be compared
with all entries in the training set, we needed a very efficient similarity measure in terms
of required computational time. For example, we also implemented a variant of LEONID
exploiting CodeBLEU [RGL+20] as a similarity measure. Considering that larger and larger
training sets will be likely used in the future, a scalable solution is a must also to make
LEONID usable in practice.

External validity. Our research questions have been answered using a dataset being 3.6
times larger as compared to the dataset we originally used when proposing LANCE [MPB22].
Also, the new dataset is more variegated, featuring projects using different build systems
(as compared to the Maven-only policy we relied in [MPB22]) and having dependencies
towards different logging libraries (differently from the original Log4j-only policy we end
up using in [MPB22]). Still, we do not claim generalizability of our findings for different
populations of projects, especially those written in other programming languages. This holds
not only when looking at the performance achieved on our test set (i.e., different test sets
can yield to different results), but also when considering the usage in LEONID of information
collected via IR from the training set (i.e., the performance observed for LEONID are bounded
to the variety of data present in our training set). Additional experiments are needed to
corroborate/contradict our findings.

6.5 Conclusions

We started by discussing the limitations of LANCE [MPB22], the approach we presented at
ICSE’22 for the generation of complete log statements. LANCE always assumes that a single
log statement must be injected in a method provided as input. This is a strong assumption
considering that a method may not need logging or may need more than one log state-
ment. Thus, we presented LEONID, an extension of LANCE able to partially address these
two limitations, making a further step ahed in the automation of logging activities. Also,
we experimented in LEONID a combination of DL and IR with the goal of improving the
generation of meaningful log messages achieving, however, only limited improvements over
LANCE. In light of the results we have obtained, LEONID can ensure up to 27.27% correct
predictions, when asked to inject single log statement in Java methods. On the other hand,
when the model is requested to inject multiple logging statements, we observed that they
were correctly added in 17% of the methods. In addition, LEONID is capable of differen-
tiating between methods that necessitate additional log statements and those that do not,
achieving an accuracy surpassing 0.95.

90 Log Statement Generation via Deep Learning

Part IV
Code Summarization

93

The last part of thesis, which comprises four chapters, presents three studies we con-
ducted in the area of code summarization, i.e., creating concise, understandable descriptions
of code blocks, functions, or entire programs with the primary goal to provide developers
and programmers with insights into the behaviour of the component being summarized.

In the study presented in Chapter 8, we start from the observation that most of the DL-
based state-of-the-art techniques for code summarization (e.g., [LJM19, HLX+20b, HLWM20])
train DL models with the aim of learning how to summarize a complete function. This means
that, in the case of Java, methods are mined from open source projects and linked to the first
sentence of their Javadoc to create pairs <code, descript ion> which can be used to train
the DL model. However, this level of granularity (i.e., entire functions) might not be ideal for
supporting comprehension tasks. Although a developer might grasp the general purpose of
a method, they could struggle with understanding certain statements within it. Also, look-
ing at the datasets used in the literature to train these models, we found that the methods’
descriptions extracted from the Javadoc are usually very short. For example, the seminal
dataset by LeClair and McMillan [LM19], features an average of 7.6 words (median=8.0)
to summarize each Java method. While such short descriptions could provide a grasp about
the overall goal of the method, it is unlikely that they can actually support a developer strug-
gling to understand it. For this reason, we presented an approach for DL-based snippet-level
summarization named STUNT. Creating such a technique presented major challenges, such
as building a dataset of <snippet, descript ion> pairs (i.e., a code snippet associated with a
natural language description) that, as detailed in Chapter 8, required a major manual effort.
The work has been presented in the following publication:

Towards Summarizing Code Snippets Using Pre-Trained Transformers

Antonio Mastropaolo, Matteo Ciniselli, Luca Pascarella, Rosalia Tufano, Emad Agha-
jani, Gabriele Bavota. In In Proceedings of the 32nd IEEE/ACM International Confer-
ence on Program Comprehension (ICPC 2024), pp. To appear

Subsequently, we noted that even the most advanced code summarization techniques
proposed in the literature still exhibit performance far from the standards required for prac-
tical integration into tools for developers. For this reason, we shift the focus on the simpler
problem of code comment completion, in which the “machine” is in charge of completing a
comment that the developer starts writing, similarly to what done for code tokens by code
completion techniques [BMM09, RVY14, SLH+21, BAY20]. We present an empirical inves-
tigation comparing two techniques for comment completion, namely T5 [RSR+20] and the
n-gram model (Chapter 9). The two models are different in nature, with the T5, based
on deep learning, exploiting as information to support the completion of a comment C not
only the first tokens typed by the developer while writing C but also a “additional context”
representing code relevant for C . The n-gram model, instead, does only consider the n− 1
preceding tokens to predict the nth token. Our results show that the partially written sum-
maries (i.e., the first words written by the developer) help in boosting the performance of the
model when automatically summarizing code components. This work has been presented in
the following publication:

94

An empirical study on code comment completion

Antonio Mastropaolo, Emad Aghajani, Luca Pascarella, Gabriele Bavota. In In Pro-
ceedings of the 37th IEEE International Conference on Software Maintenance and Evo-
lution (ICSME 2021), pp. 159-170

Finally, we built on top of our experience in evaluating the performance of code summa-
rization techniques to propose a novel metric aimed at overcoming the limitations of the ones
usually adopted in the literature (Chapter 10). Truly determining whether a piece of natural
language text (e.g., one automatically generated by a DL model) serves as an effective sum-
mary for a code component would require human judgement. However, given the difficulties
of running large-scale evaluations with developers, the software engineering community bor-
rowed evaluation metrics from the Natural Language Processing (NLP) field. These include
BLEU [PRWZ02], ROUGE [Lin04], and METEOR [BL05]. These metrics have been originally
designed to act as a proxy for the quality of automatically generated text (e.g., a translation)
by comparing it with a reference (expected) text: The higher the words’ overlap between the
generated and the reference text, the higher the assessed quality. Particularly, when adopting
such metrics for code summarization, the generated summary is contrasted against a single
reference text, usually being the original comment written by developers for the code pro-
vided as input. However, basing evaluations solely on the similarity or dissimilarity between
the generated text and the original summary (i.e., the summary crafted by the developer)
proves to be unreliable for two main reasons: (i) it does not account for the suitability of
the generated summary in documenting the code, regardless of how the developer origi-
nally described it; (ii) various phrasings can express identical meanings, thus, summaries
with minimal word overlap can still effectively document the code in the same way. For
these reasons, we introduce SIDE (Summary alIgnment to coDe sEmantics), a new metric
leveraging contrastive learning [SKP15] to model the characteristics of suitable and unsuit-
able code summaries for a given code. We show that focusing on assessing the suitability of
the generated summary for the documented code ignoring the reference summary allows to
capture orthogonal aspects of summary quality as compared to state-of-the-art metrics, such
as BLEU, ROUGE, METEOR, as well as metrics based on word/sentence embeddings, Also,
SIDE is the metric having the strongest correlation with human judgment of code summary
quality. We also show that SIDE can be combined with state-of-the-art metrics to provide a
more comprehensive assessment of code summary quality. This work has been presented in
the following publication:

Evaluating Code Summarization Techniques: A New Metric and an Empirical
Characterization

Antonio Mastropaolo, Matteo Ciniselli, Massimiliano Di Penta, Gabriele Bavota. In
In Proceedings of the 46th International Conference on Software Engineering (ICSE
2024), pp. To appear

7
Background and Related Work

We discuss the literature related to snippet-level code summarization, as relevant for Chap-
ter 8, as well as the works dealing with the evaluation of code summarization techniques
(relevant for Chapter 10).

7.1 Snippet-level Code Summarization

Iyer et al. [IKCZ16] developed CODE-NN, leveraging LSTM networks [HS97] to generate nat-
ural language summaries of C# and SQL code snippets. This method was trained and tested
on a dataset automatically sourced from Stack Overflow [sta], consisting solely of accepted
answers in the form of 〈Post t i t le, Codesnippet〉 pairs. The dataset included 66,015 pairs for
C# and 32,337 for SQL. The performance evaluation revealed that when the techniques is
inputted with C# code snippets, the presence of descriptive variable names in C#—which
closely reflect the code’s intent—contributes to superior outcomes compared to generating
descriptions for SQL code snippets.

Zheng et al. [ZZLW17] developed CODE ATTENTION, an NMT-based approach using RNNs
[She18] which incorporates a unique attention module [BCB14] crafted by the researchers
to offer more adaptable code token management. This technique was both trained and
evaluated on a unique dataset, referred to as “C2CGit”, which was automatically constructed
from Java GitHub repositories. Notably, this dataset is reported to be 20 times larger than the
one utilized by Iyer et al. [IKCZ16]. The assessments performed on this extensive and more
realistic dataset showcased superior outcomes in comparison to the existing state-of-the-art
methodologies for code snippet summarization [IKCZ16].

Ye et al. [YXZ+20] unveiled CO3, an approach based on Bi-Directional Long Short-
Term Memory Network (Bi-LSTM) [HS97] and trained following a dual learning approach
[XQC+17]. This entails specializing the model on two distinct tasks: one involves summariz-
ing source code into text, and its counterpart focuses on generating code from textual input.
The method underwent training and evaluation on a dataset featuring pairs of Python and
SQL code snippets alongside their corresponding descriptions. The outcomes demonstrated
that this technique is competitive with the current state-of-the-art benchmarks in the field

95

96 Background and Related Work

[IKCZ16].
Chen et al. [CSX+18] developed a novel framework aimed at aligning natural language

with source code in a common semantic space for enhanced correlation. The framework
makes use of a Bimodal Variational AutoEncoder (BVAE) [KW13] for this purpose and has
been proven to surpass CodeNN [IKCZ16] in performance. This was observed after training
and testing the suggested technique for generating natural language descriptions for C# and
SQL code snippets, using the dataset initially compiled by Iyer et al. [IKCZ16].

Huang et al. [HHC+20] introduced RL-BLOCKCOM, a technique for code snippet summa-
rization utilizing reinforcement learning for source code documentation. The primary chal-
lenge encountered in this work was the development of a training dataset. Indeed, while
gathering <code, descript ion> pairs is straightforward for documentation at the level of
entire functions, this becomes significantly more challenging when dealing with snippet of
code. This complexity arises for several reasons: (i) not every comment within a function or
method qualifies as a description of the code, according to [PB17]; (ii) automatically asso-
ciating descriptive comments with the corresponding snippet of code is not straightforward,
especially when dealing with non-contiguous statements that require human judgment to
determine their relevance. For these reasons, Huang et al. tried to partially mitigate the
issue by exploited an approach proposed by Chen et al. [CHL+19a] to automatically de-
tect the scope of code comments. The approach exploits a combination of heuristics and
learning-based techniques to automatically identify, given a comment, the set of statements
documented by it. Using this approach, Huang et al. [HHC+20] built a dataset of ∼124k
<snippet, descript ion> pairs which has been used to train RL-BLOCKCOM, a DL model
combining reinforcement learning with a classic encoder-decoder model. RL-BLOCKCOM is
able, given a code snippet as input, to automatically document it reaching a BLEU-4 of 24.28.

Although RL-BLOCKCOM sets a new standard in the field of code snippet summarization,
outperforming benchmarks previously established [HLX+18b, ABLY18], it faces considerable
limitations mainly because of the way its training and testing datasets are compiled, adhering
to the approach proposed by Chen et al. [CHL+19a] which, as we will show in Chapter 8,
results in the construction of a noisy dataset. Also, the authors include comments as short
as two words, unlikely to aid in understanding the program.

Contribution in the area. In Chapter 8 we contribute to the area with a manually cu-
rated dataset consisting of 6,645 <snippet, descript ion> pairs, which can be used to train
DL-based snippet summarization techniques. We exploit such a dataset to build STUNT, an
approach which surpasses the performance of RL-BlockCom, the state-of-the-art technique
proposed by Huang et al. [HHC+20].

7.2 Evaluation of Code Summarization Techniques and Metrics 97

7.2 Evaluation of Code Summarization Techniques and Metrics

We detail studies that focus on investigating factors impacting the soundness of evaluations
performed to assess code summarization techniques (Section 7.2.1) as well as metrics cap-
turing code comment quality (Section 7.2.2).

7.2.1 Evaluating Code Summarization Techniques

LeClair and McMillan [LM19] discuss the implications of different preprocessing choices
made when preparing the datasets used for the evaluation of code summarization tech-
niques, e.g., splitting the training/test datasets by function vs by project. They show that the
impact of these choices can be drastic (up to ±33% of performance), and advocate for more
standard dataset preparation procedures aimed at increasing results reproducibility.

Stapleton et al. [SGL+20] present a study involving 45 university students and pro-
fessional developers, in which participants were asked to perform program comprehension
tasks on functions documented by human-written or automatically generated summaries.
They found that participants performed significantly better with human-written summaries.
Also, they show that the BLEU and ROUGE metrics computed on the automatically generated
summaries do not correlate with the participants’ performance in comprehending the docu-
mented code. This poses questions on the suitability of these metrics to assess the quality of
code summaries, at least when they are used to support program comprehension.

Gros et al. [GSDY21] discuss the basic assumption on which several code summarization
techniques are built: The code summarization problem resembles the “natural language
translation” problem, meaning that it can be seen as a “code-to-natural language translation”.
The validity of such an assumption would imply the possibility to reuse metrics successfully
applied to assess the performance of automated natural language translations (e.g., BLEU)
in the context of code summarization. The empirical findings by Gros et al. show, however,
that the two problems are substantially different. For example, while there is a strong input-
output dependence in natural language translation (i.e., similar input sentences result in
similar output translations), this is not necessarily the case for code summarization (i.e.,
similar functions could be commented in completely different ways). Gros et al. also show
that different BLEU implementations used in the literature provide substantially different
results when applied to the same dataset, affecting the ability to compare results reported
in different works.

Roy et al. [RFA21] focus on the interpretation of metrics used in code summarization, and
in particular on BLEU, ROUGE (in several different variants), METEOR, chrF [Pop15], and
BERTScore [ZKW+19]. They conducted a study with researchers and practitioners asking
them to assess the quality of 36 summaries associated with 6 code snippets (a Java method).
Each snippet had six summaries associated, one being the reference summary (i.e., the one
written by the original developers) and five resulting from different code summarization
techniques [VSP+17, LJM19, HLWM20, ABLY18, XWW+18]. The quality assessment has
been performed using an ordinal scale in the range [0, 5] [Opp92] (the higher the better)
and focusing on three different aspects of each summary: conciseness, fluency, and content

98 Background and Related Work

adequacy. Participants were not aware of which summaries were automatically generated
and which, instead, represented the reference summary. Overall, they collected 226 surveys,
for a total of 6,253 evaluations (not all participants fully completed the survey). By comput-
ing the above-listed evaluation metrics for the generated summaries and comparing them
with the human assessment, Roy et al. found that metric improvements of less than two
points do not indicate any meaningful difference in the quality of the summaries generated
by two techniques. For higher differences metrics such as METEOR become reliable proxies
for differences in summary quality, while others such as BLEU remain unreliable.

In a subsequent study, Hu et al. [HCW+22] confirmed METEOR as the metric having the
strongest correlation with the human judgment of code summary quality. Still, the achieved
correlation is lower than that observed by human raters. Haque et al. [HEBM22] criticize
the use of word overlap metrics such as BLEU and ROUGE for assessing the quality of au-
tomatically generated summaries. They observe that using word overlap ignores the fact
that (i) not all words have the same importance in a sentence; and (ii) the usage of syn-
onyms in the generated summary (e.g., using “delete” instead of “cancel” as in the reference
summary) penalizes its quality assessment, which is conceptually wrong. Starting from this
observation, they propose the usage of “semantic similarity” metrics based on word/sentence
embeddings, which can better capture the similarity between the generated and the refer-
ence summaries. They then conducted a study involving 30 professional programmers, each
of which was asked to evaluate the quality of a single summary associated with 210 Java
methods. Their findings show that embedding-based metrics such as SentenceBERT [RG19]
might be more suitable as quality assessment metrics for code summaries as compared to
word overlapping metrics such as BLEU. In our study, we also consider all code summary
quality metrics used in the work by Haque et al.

7.2.2 Assessing the Quality of Code Comments

Several works focused on the automated identification of inconsistent comments, namely
comments that are not aligned with the code they document [TYKZ07, TYZ07, TMTL12,
LCC+18, WGD+19]. While these techniques are extremely valuable, they are not suited
for the quality assessment of an automatically generated summary for the following rea-
sons. First, their output is usually a binary classification indicating whether the comment
is consistent or inconsistent, lacking one of the key characteristics of a metric, such as the
possibility to compare and rank instances.

Khamis et al. [KWR10] propose JavadocMiner, a tool measuring several metrics which
the authors consider important for the quality of Javadoc comments, e.g., readability indexes,
number of nouns in the comment, whether the Javadoc documents code entities (e.g., pa-
rameters, return types) are not implemented in the documented code, etc. This approach
exploits Javadoc-specific heuristics which cannot be generalized to the unstructured com-
ments usually generated by code summarization techniques. Also, the quality-related met-
rics have been defined by the authors and never empirically evaluated against the developers’
perception of comment quality.

Steidl et al. [SHJ13] propose a machine learning-based approach to classify code com-

7.2 Evaluation of Code Summarization Techniques and Metrics 99

ments into seven categories (i.e., copyright, header, member, inline, section, code, and task).
Also, they propose a metric named c_coeff to identify low-quality comments. The metric is
based on the percentage of words in a comment that is similar to words in the code, where
two words are considered similar if they have a Levenshtein distance lower than two (i.e.,
at most one character must be changed to convert one word into the other).

Contribution in the area. We introduce a novel metric, namely SIDE, which is grounded
on contrastive learning and it has been designed to assess whether a textual summary is ap-
propriate for a given code. Our evaluation showed that SIDE can capture a novel dimension
of summary quality and better aligns to developers’ perception of summary quality as com-
pared to all previously discussed state-of-the-art metrics.

100 Background and Related Work

8
Towards Summarizing Code Snippets

Empirical studies showed that code comprehension can take up to 70% of developers’ time
[MML15, XBL+18]. While code comments can support developers in such a process [dSAdO05],
their availability [Spi10] and consistency with the documented code [FWG07, FWGG09,
LVLVP15] cannot be taken for granted. A helping hand may come from tools proposed in
the literature to automatically document code [RRK15, RJAM17, HAMM10, SPVS11, WLT,
WYT13, MAS+13b, SPVS11, MM16, IKCZ16, APS16a, ABLL21, LJM19, HLX+20b, HLWM20,
ZWZ+20a]. The most recent techniques (e.g., [LJM19, HLX+20b, HLWM20]) train deep
learning (DL) models with the aim of learning how to summarize a given piece of code
in natural language. This requires the building of a large-scale dataset composed by pairs
<code, descript ion> that can be used to feed the model with code instances asking it to
generate their descript ion. These approaches are usually trained to work at function-level
granularity.

Having such a granularity could be, however, suboptimal to support comprehension ac-
tivities. For this reason, a few attempts have been made to automatically summarize code
snippets rather than entire functions [RRK15, WLT, WYT13, ABLL21, SPVS11, WPVS17,
HHC+20]. Most of them are based on information retrieval [RRK15, WLT, WYT13, ABLL21]
meaning that, given a code snippet CS to document, the most similar snippet to it is iden-
tified in a previously built dataset and its comments are reused to summarize CS. These
approaches, while valuable, rely on manually crafted heuristics to automatically identify the
“scope of an inner comment”, i.e., the statements that a given comment documents. For
example, one may assume that an //inline comment in Java documents all following state-
ments until a blank line is found [CHL+19b]. As we will show, such a heuristic fails in several
cases. Other techniques [SPVS11, WPVS17] exploit pre-defined templates to document code
snippets that, however, cannot generalize to all combinations of code statements one could
find.

Given the limitations of previous work, Huang et al. [HHC+20] proposed an approach
exploiting reinforcement learning to document code snippets. The first challenge they faced
was the creation of a training dataset. Indeed, while it is relatively easy to collect pairs
of <code, descript ion> when working at function-level granularity, this is not the case
for code snippets. For this reason, Huang et al. exploited an approach proposed by Chen

101

102 Towards Summarizing Code Snippets

1 Creating a dataset of documented code snippets

Collected
comments from
1.5k Java files

Third
reviewer

Comment
labelling

Comment labelling
We labeled the dataset and solved conflicts

2 SALOON: A technique for the automated linking of comments to code statements

Classification Linking
Identify summary
comment

Link the comment to
the documented code

//comment

3 STUNT: Automated generation of code snippet
summariesMining

Mined snippets and
their referred comment

SALOON

Comment generation
Given the code we generate a
comment description

//comment
555k code-

comment pairs

Figure 8.1. Approach Overview

et al. [CHL+19b] to automatically detect the scope of code comments. The approach ex-
ploits a combination of heuristics and learning-based techniques to automatically identify,
given a comment, the set of statements documented by it. Using this approach, Huang et al.
[HHC+20] built a dataset of ∼124k <snippet, descript ion> pairs which has been used to
train RL-BlockCom, a DL model combining reinforcement learning with a classic encoder-
decoder model. RL-BlockCom is able, given a code snippet as input, to automatically docu-
ment it reaching a BLEU-4 [PRWZ02] of 24.28. While being the first DL-based approach to
support code snippets’ summarization, RL-BlockCom suffers of some major limitations mostly
related to the way in which its training/test sets have been built exploiting the approach in
[CHL+19b]:

1. Simplified/unrealistic linking of code comment to the documented snippet [CHL+19b].
This is due to some of the design choices made in the scope detection approach [CHL+19b].
For example, the authors “regard the first out-of-scope statement as the demarcation point of
the scope of the comment”. This means that, accordingly to their approach, it is not possible
for a code comment to document non-contiguous statements. As we will show, our manual
validation of 6,645 instances reveals 1598 (∼27%) cases of code comments that document
non-contiguous statements. These are all cases which cannot be successfully supported by
the scope detection approach and, as a consequence, by RL-BlockCom.

2. Lack of filters to identify code summaries [CHL+19b]. Chen et al. correctly observed
that not all comments “describe” code statements. Thus, they use heuristics to remove com-
mented out code, TODO comments, IDE-generated comments, and non-text comments con-
taining dates or links. Despite these filters, using such an approach to create a training
dataset for a snippet summarization approach such as RL-BlockCom means feeding it with
comments which may not be an actual code summary of the documented snippet. For ex-
ample, when manually looking at the previously mentioned 6,645 instances, we found 33%
of them to just act as a logical split of source code (i.e., a “formatting” comment [PB17])
without providing additional information on the documented code (e.g., a comment //get
messages put on top of a method call getMessages()). These comments are useless to train
a code summarizer, but are not excluded from the RL-BlockCom training dataset.

3. The training dataset used in RL-BlockCom includes code summaries as short as two words
[HHC+20]. These are unlikely to be code summaries useful to support program comprehen-
sion.

To address these limitations, in this investigation we take all steps needed to foster the
research on snippets summarization, as depicted in Fig. 8.1. First (step 1 in Fig. 8.1), we

8.1 Building a Dataset of Documented Code Snippets 103

manually built a dataset of 6,645 <snippet, descript ion> pairs, in which we classified the
code comment (descript ion) as being or not a code summary and linked it to the docu-
mented Java statements. Such a dataset has been built by ensuring two evaluators for each
analyzed comment, with a third one solving conflicts when needed. The overall effort spent
by the six involved authors accounts for 815 man-hours. We use this dataset to fine-tune
SALOON (step 2 in Fig. 8.1), a multi-task pre-trained Text-to-Text Transfer Transformer (T5)
[RSR+20]model able to take as input an inner comment in a method and (i) classify whether
it represents a valid code summary with a 83% accuracy; and (ii) link it to the relevant code
snippets it documents with a recall/precision higher than 80%. We show that the perfor-
mance of SALOON are significantly better than the comment-to-code linking approach by
Chen et al. [CHL+19b]. Finally (step 3 in Fig. 8.1), we run SALOON on 10k GitHub Java
projects to automatically build a large-scale dataset of∼554k<snippet, descript ion> pairs.
The latter has been used to train and test STUNT, a DL-based approach taking as input a code
snippet and automatically generating its code summary. We show that STUNT performs bet-
ter than IR-based and RL-based baselines RL-BlockCom. Despite this finding, our results also
show that STUNT is not yet ready to be deployed to developers and point to more research
being needed on the task of snippet summarization.

In summary, our contributions are: (i) the largest manually built dataset in the literature
featuring classified and linked code comments; (ii) SALOON, a multi-task DL model able to
achieve state-of-the-art performance in the tasks of comment classification and linking; and
(iii) STUNT, a code snippet summarization model trained on a large-scale and more realistic
dataset as compared to the one used in the literature [HHC+20]. The dataset and all code
used to train and test the models in this work are available in our replication package [Bli].

8.1 Building a Dataset of Documented Code Snippets

We detail the process used to build a manually validated dataset featuring triplets<D, {CC},
DC> where D represents a natural language comment documenting the code snippet DC
(Documented Code) and {CC} represents the Comment Category (e.g., code summary, TODO
comment), with more than one category possibly being assigned to the comment. We later
use such a dataset to train and evaluate the model described in Section 8.2, taking as input a
comment D and automatically (i) classifying it, thus being able to check whether D is a code
summary (i.e., an actual description of the documented code) or another type of comment
(e.g., TODOs), and (ii) linking D to the corresponding documented code DC .

8.1.1 Study Design

As a first step to build our dataset we needed to collect the set of code comments D1, D2, . . . ,
Dn to manually analyze. To collect these comments, we used the web application by Dabic
et al. [DAB21] to query GitHub for all Java projects having at least 500 commits, 25 con-
tributors, 10 stars, and not being forks. These filters aim at discarding personal/toy projects
and reducing the chance of mining duplicated code. The focus on Java was dictated by the
will of accommodating the expertise of the manual validators (i.e., the authors) all having

104 Towards Summarizing Code Snippets

extensive knowledge of the Java programming language. Despite the focus on Java, our
methodology to build the dataset as well as to train the models described in the subsequent
sections is general and can be reproduced for different languages.

We randomly cloned 100 of the 1,681 projects resulting from our search on GitHub, for
a total of ∼768k Java files.

We parsed their code to identify comments within each method to manually analyze.
We ignored Javadoc comments since they document entire methods rather than code snip-
pets: We only considered single-line (starting with “//”) and multi-line (starting with “/*”)
comments as subject of our manual analysis. Also, we did not extract comments from test
methods (i.e., methods annotated with @Test) to increase the cohesiveness of our dataset
and only focus on documentation related to production code. The manual analysis has been
performed by the six authors (from now on, evaluators) through a web app we developed
to support the process.

We targeted the labeling of valid comments (i.e., excluding those removed by the above-
described procedure) within 1,500 Java files, with the idea of creating a dataset of ∼10k
triplets (<D, {CC}, DC>). The web app assigned each Java file to two evaluators who
independently labeled the comments in it. If the number of comments in a file was higher
than 10, the web app randomly selected a number of comments to label going from 10 to m,
where m was the actual number of valid comments in the file. Otherwise all comments in
the file were labeled. We opted for this process to avoid an evaluator being stuck too much
time on a single file. Also, we did not consider comments belonging to methods longer
than 1,024 tokens and made sure no duplicated methods were present in the final dataset
(i.e., the same method might be present across different files/projects). The filter on the
method length was driven by the final usage we envision for our dataset, namely training
DL-models which usually works on inputs of limited size (≤512 tokens, or even less, see e.g.,
[LXH+18, TWB+19a, MPB22, TMM+22, HLWM20, TWB+19b]). Thus, labeling instances
longer than 1,024 tokens would have been a waste of resources.

The goal of the labeling was to firstly assign the comment D to one or more categories
CCs. The starting set of categories to use was taken from the work by Pascarella et al.
[PB17] and included: summary, rationale, deprecation, usage, exception, TODO, incomplete,
commented code, formatter, and pointer. For a detailed overview of all categories, readers
are encouraged to consult [PB17]. However, as concrete examples, summary represents the
classic code description explaining what the code is about, formatter is a comment used by
developers to better organize the code into logical sections, while pointer refers to comments
linking external resources. We excluded from the original list by Pascarella et al. [PB17] the
following categories (i) directive and autogenerated since, as described by the authors, they
both concern comments automatically generated by the IDE; and (ii) license and ownership,
since this information is usually featured in Javadoc comments.

Finally, we merged the expand category into summary, since the former is defined by the
authors as a code description providing more information than a usual summary. Such a
distinction is irrelevant for our work. Besides the set of predefined categories, we also gave
the possibility to evaluators to define new categories. If an evaluator defined a new category,
it was immediately visible to all other evaluators. The following additional categories have

8.1 Building a Dataset of Documented Code Snippets 105

been defined by us: orphan, indicating a code comment not linked to any line of code, and
code example, indicating a comment describing e.g., how to invoke a specific method.

Once the category for a given comment under analysis was defined, the next step was
the linking of the comment to the documented code DC . The linking has been performed at
line-level granularity. This means, for example, that for a comment D the evaluator could
indicate lines 11, 12, and 17 as documented. Note that gaps are possible in DC (i.e., the
documented code could be composed by non-contiguous lines). Our replication package
[Bli] shows concrete examples of this scenario. Then, we started resolving conflicts arisen
from the manual analysis. Two types of conflicts are possible for each manually defined
triplet <D, {CC}, DC>: The two evaluators could have (i) selected a different set {CC}
when classifying the comment; and (ii) identified different sets of lines (DC) documented
by the comment. Out of the 6,645 manually labeled comments, 1,395 (21%) resulted in a
conflict: 1,144 were due to different comment categories selected by the evaluators; 47 to
differences in the selected DC; 204 concerned both the categories and the DC . Conflicts were
solved by a third evaluator not involved in the labeling of the conflicting instance. Overall,
we spent 815 man-hours on the labeling and conflict resolution, manually annotating 6,645
comments (with two evaluators for each of them) coming from 1,508 Java files and 85
software projects. We labeled a bit more than the target 1,500 since multiple evaluators
were working in parallel without noticing that we hit our target. The obtained dataset,
publicly available in our replication package [Bli], is briefly described in the following.

8.1.2 Dataset

Table 8.1. Dataset output of manual labeling

Category #Instances
Documented Statements
mean median sd

Summary 3,841 3.40 3.0 2.70
Formatting 2,209 2.32 2.0 2.65
Rationale 983 3.04 2.0 2.74
TODO 258 0.46 0.0 1.16
Commented Code 184 0.00 0.0 0.00
Pointer 33 2.66 2.0 5.27
Orphan 29 0.00 0.0 0.00
Code Example 9 1.77 2.5 1.48
Deprecation 7 3.14 3.0 1.34
Incomplete 2 1.5 1.5 0.70

Overall 6,645 1.83 1.60 1.80

Table 8.1 summarizes the dataset obtained as output of our analysis. We excluded from
the table the categories for which we did not find any instance (e.g., exception [PB17], likely
to be more prevalent in Javadoc comments). Since a single comment can be associated to
multiple categories (e.g., summary and rationale), the sum of the “#Instances” column does
not add up to the total number of comments we manually classified (i.e., 6,645).

106 Towards Summarizing Code Snippets

Besides reporting the categories to which the comments in our dataset belong, Table 8.1
also shows descriptive statistics related to the number of statements documented by com-
ments belonging to different categories. As expected, orphan and commented code comments
are not linked to any code statement. More than 80% of TODO comments are also not linked
to any statement, since in many cases todos are related to e.g., feature that must be imple-
mented. Similarly, the only two incomplete comments we found both of them not linked to
any code: These are partially written comments needing rework.

The most frequent category is, as expected, the summary one (3,841 instances) group-
ing comments summarizing one or more code statements (on average, 3.40 statements).
Another popular category is “formatting”, with 2,209 instances.

While one could expect no code linked to formatting comments, this is actually not the
case since we used such a category also for comments not adding new information to the doc-
umented code but just acting as a logical split of the code (e.g., a comment //get messages
put on top of a method call getMessages()).

Finally, comments explaining the rationale for implementation choices account for 983
instances. While we focus on the generation of code summaries, these instances often con-
tains interesting information that are hard to automatically synthesize and could represent
a seed for future research.

Interestingly, 1,598 of the comments in our dataset (∼27%) include “gaps” in the linked
code. This means, for example, that a comment documents lines 11, 12, and 17 (but not
lines 13-16) — see [Bli] for concrete examples. This means that approaches to automatically
link comment and code must take such a scenario into account. Motivated by these insights,
we fill this gap by creating a novel method for classifying and linking code comments, as
elucidated in Section 8.2.

8.2 Automatic Classification of Code Comments and Linkage to Doc-
umented Code

We start by presenting SALOON (claSsification And Linking Of cOmmeNts), the approach
we devised for the classification of code comments and their linking to the documented
code (Section 8.2.1). Then, we discuss the design of the study we run to assess its accuracy
(Section 8.2.5) and the achieved results (Section 8.2.7).

Once trained, SALOON can be run on hundreds of projects to build a large-scale dataset
featuring classified and linked code comments. While we could just refer to SALOON as
a “T5 model trained for comment classification and linking”, we preferred to name it to
simplify the reading when we introduce the other T5 model we train for the task of code
summarization (Section 8.3).

8.2.1 Approach Description

SALOON is built on top of T5, a DL transformer-based model [RSR+20] which, in its smaller
variant features ∼60M parameters (i.e., T5small). To avoid redundancy, we point the reader
to Chapter 3 where we extensively discuss the details of the employed model.

8.2 Automatic Classification of Code Comments and Linkage to Documented Code 107

8.2.2 Pre-training Dataset

We start from the Java CodeSearchNet dataset [HWG+19], which features∼1.6M Java meth-
ods, ∼499k of which including a Javadoc. Given the tasks we aim at supporting (i.e., auto-
matic classification of code comments and linking to the code they document), there are two
“target languages” we aim to expose to T5 during pre-training: Java code and technical nat-
ural language in the form of code comments. CodeSearchNet features both of them. We pre-
process the dataset by discarding all instances having #tokens > 1,024. During pre-training
we treat Java methods and Javadoc comments as separated instances (i.e., we ignore their
association), thus removing Java methods and Javadoc comments being longer than 1,024
tokens. Such a filter removed ∼32k instances (i.e., 31,702 methods and 178 Javadoc com-
ments). Then, we excluded instances containing non-ASCII characters as well as Javadoc
comments composed by less than 5 tokens (words), since unlikely to represent meaningful
code descriptions (∼57k instances removed). After removing duplicates, we end up with
1,870,888 pre-training instances (1,501,013 Java methods and 369,875 Javadoc).

8.2.3 Fine-tuning Dataset

Two fine-tuning datasets are needed to support the tasks we target (i.e., comment classifica-
tion and linking). For comment classification, we built a dataset composed by pairs 〈M j,Di

,
Cc〉, in which a specific inner comment Di within a method M j is linked to a category Cc
classifying it (e.g., code summary). For comment-to-code linking, we built a dataset featur-
ing pairs 〈M j,Di

, DC〉, in which DC reports the M j ’s statements documented by Di . Both
datasets have been extracted from the manually built dataset of 6,645 classified and linked
comments (Section 8.1).

Comment classification. Given the goal of our work (i.e., summarizing code snippets),
we are interested in automatically identifying comments we classified as code summary while
excluding all the others. Starting from the dataset in Table 8.1, we extracted 3,841 〈M j,Di

,
Cc〉 having Cc = code summary and 2,921 having having Cc = other. Basically, we target
the training of a binary classifier taking as input a code comment (Di) in the context of the
method it belongs to (M j) and guessing whether it is a code summary or not.

The specific input we provide to T5 is M j ’s code with special tokens <comment></comment>
surrounding the comment of interest (this is the representation of M j,Di

), and expect as out-
put either “code summary” or “other” (i.e., Cc).

Differently from the pre-training dataset, we did not need to remove sequences longer
than 1,024 tokens, since this has already been done in the first place during the building of
the dataset described in Section 8.1. We randomly split the dataset into 80% training, 10%
evaluation, and 10% test. The first row in Table 8.2 shows the number of instances in these
three sets.

Code Linking. Concerning the task of liking comments to code snippets, our training
instances are only those comments that we manually labelled as code summary. Indeed, we
are interested in linking this specific type of comments to their code. Thus, we start from
the 3,841 code summary instances to build the needed 〈M j,Di

, DC〉 pairs. Concerning the
representation of M j,Di

, it is similar to the previously discussed for the comment classification

108 Towards Summarizing Code Snippets

dataset (i.e., the method M j with special tags surrounding the inner comment of interest Di)
with the only difference being a special tag <N> preceding each statement and reporting its
line number in an incremental fashion.

As for the expected output DC (i.e., documented code), it is represented as a stream
of “<N>” tags representing the line numbers (i.e., statements) within M j linked to Di (e.g.,
<1><2><4>). Such a representation allows marking non-contiguous statements documented
by Di . The code linking fine-tuning dataset is composed by 3,841 instances split into 80%
training, 10% evaluation, and 10% test as shown in the second row of Table 8.2. Note that
to ensure a fair evaluation of the proposed approach, we split the dataset by taking into
consideration the Java class from which these methods were originally extracted.

Task Train Eval Test

Comment Classification 4,833 726 1,203
Code Linking 2,805 403 633

Table 8.2. Fine-tuning datasets

8.2.4 Training Procedure and Hyperparameters Tuning

We evaluated the performance of eight T5 models (four pre-trained and four non pre-trained)
on the evaluation set of each task in terms of correct predictions, namely cases in which the
generated output (i.e., the comment category or the documented statements) was identical
to the expected output.

We pre-train the T5 model from scratch (i.e., starting from random weights) rather than
starting from already pre-trained models for code such as CodeT5 [WWJH21], which is based
on the same architecture proposed by Raffel et al. [RSR+20] we exploit in our investigation.
Our decision is primarily motivated by the desire to have a model pre-trained on a single
programming language (Java) as opposed to a multi-language model (as CodeT5).

We pre-train T5 for 300k steps using a 2x2 TPU topology (8 cores) from Google Colab
with a batch size of 16. During pre-training, we randomly mask 15% of tokens in an instance
(i.e., Java method or Javadoc comment), asking the model to guess the masked tokens. To
avoid over-fitting, we monitored the loss function every 10k steps and stopped the training
if such value did not improve after 12 consecutive evaluations (i.e., after 120k steps, one
epoch on our pre-training dataset). We use the canonical T5small configuration [RSR+20]
during pre-training. We also used the pre-training dataset to train a SentencePiece model
(i.e., a tokenizer for neural text processing) with vocabulary size set to 32k word pieces.

We fine-tuned a pre-trained and a non pre-trained model experimenting with four dif-
ferent learning rate schedulers (thus leading to eight overall trained models).

Constant Learning Rate (C-LR) fixes the learning rate during the whole training; Inverse
Square Root Learning Rate (ISR-LR), in which the learning rate decays as the inverse square
root of the training step; Slanted Triangular Learning Rate (ST-LR), in which the learning rate
first linearly increases and then linearly decays to the starting value; and Polynomial Decay
Learning Rate (PD-LR), having the learning rate decaying polynomially from an initial value

8.2 Automatic Classification of Code Comments and Linkage to Documented Code 109

to an ending value in the given decay steps. The parameters used for the learning rates are
available in [Bli].

We fine-tuned each of the eight models for a total of 75k steps on the fine-tuning training
set of each task. We include in our replication package [Bli] a table showing the percent-
age of correct predictions (for the comment classification task), precision and recall (for the
code linking task) achieved by each of the pre-trained and non pre-trained models on the
evaluation sets.

Overall, the pre-trained models work substantially better, especially when it comes to
the code linking task. In particular, in their respective best configuration, pre-trained models
achieve (i) a 75% classification accuracy in the comment classification task as compared to
the 58% of the non pre-trained models; and (ii) 85% precision and 89% recall in the code
linking task, as compared to the 53% precision and 67% recall of the non pre-trained models.
Such a result is expected considering that the fine-tuning training datasets are quite small
due to the substantial manual effort required to build them (∼6.7k instances for comment
classification and∼3.8k for code linking). Having small fine-tuning datasets is the scenario in
which pre-training is known to bring major benefits [RJ19]. As for the learning rate, the best
results are achieved with ISR-LR when pre-training and with PD-LR when not pre-training.

To obtain the final model to use in SALOON, we fine-tuned the best performing model
(i.e., pre-trained with ISR-LR) using an early-stopping strategy in which we evaluated the
model on the evaluation sets every 5k steps, stopping when no improvements were observed
for 5 consecutive evaluations. We discuss the results achieved by SALOON as compared to
other baselines in Section 8.2.7.

8.2.5 Study Design

The goal of the study is to assess the accuracy of SALOON in the two tasks it has been
trained for: comment classification and code linking. The context is represented by the test
sets reported in Table 8.2, featuring 1,203 instances for the task of comment classification
and 633 for the task of code linking.

Concerning the comment classification task, we do not compare SALOON against any
baseline, since our goal (i.e., identifying only code summaries) is quite specific of our work.
Instead, we compare the performance of SALOON against the three following baselines for
the task of code linking (the implementation of all baselines is publicly available [Bli]).

Heuristic-1: blank line [CHL+19b]. The first baseline is a straightforward heuristic
assuming that a given //inline comment documents all following statements until a blank
line is reached.

Heuristic-2: token-based string similarity [FWG07]. The basic idea of this heuristic
is that statements sharing terms with a code comment are more likely to be documented by
it. We use the token-based string similarity by Fluri et al. [FWG07] to compute the textual
similarity between each comment in the test set and all statements in the method it belongs
to. A statement is linked to the comment if its similarity with it is higher or equal than a
threshold λ. The similarity is computed as the percentage of overlapping terms between the
two strings (i.e., comment and statement), with the terms being extracted through space

110 Towards Summarizing Code Snippets

splitting. We experiment with different values for λ, going from 0.1 (i.e., 10% of terms are
shared between the two strings) to 0.9 at steps of 0.1.

ML-based solution [CHL+19b]. The approach by Chen et al. [CHL+19b] relies on the
random forest machine learning algorithm to classify statements in a method as linked or not
to a given comment. Unfortunately, the source code of such approach is not available and,
thus, we had to reimplement it following the description in the corresponding article. In a
nutshell, the approach works as follows. The random forest uses three families of features
to characterize a given statement and classify it as linked or not to a given comment. The
first family comprises eight “code features”, capturing characteristics of the statement, such
as the statement type (e.g., if, for) and whether the statement shares method calls with the
statements preceding and following it. The second family includes four “comment features”,
focusing on characteristics of the comment of interest, such as its length and the number of
verbs/nouns it contains. Finally, the third family groups four “relationship features”, repre-
senting the relationship between the comment and the statement (e.g., textual similarity).
For a fair comparison, we train the random forest on the same training set used for SALOON.

8.2.6 Data Collection And Analysis

Concerning the comment classification task, we run SALOON on the test set and report the
accuracy of the model in classifying comments representing “code summaries”. As for the
code linking, we start computing the percentage of correct predictions, namely cases in
which all statements linked to a comment in the test set match the ones in the oracle. This
means that a comment instance correctly linked to two out of the three statements it doc-
uments is considered wrong. We also compute the recall and precision of the techniques
at statement-level. The recall is computed as TP/(TP+FN), where TP represents the set of
code-to-comment links correctly identified by a technique (i.e., a statement correctly linked
to a comment) and FN are the set of correct code-to-comment links in the oracle missed by
the approach. The precision is instead computed as TP/(TP+FP), with FP representing the
code-to-comment links wrongly reported by the approach (i.e., statements wrongly identified
as linked to the comment). We also statistically compare the techniques assuming a signif-
icance level of 95%. We compare precision and recall using the Wilcoxon signed-rank test
[Wil45]. To control for multiple pairwise comparisons (e.g., SALOON’s precision compared
with that of the three baselines), we adjust p-values with Holm’s correction [Hol79].

We estimate the magnitude of the differences using the Cliff’s Delta (d), a non-parametric
effect size measure [GK05]. We follow well-established guidelines to interpret the effect size:
negligible for |d| < 0.10, small for 0.10 ≤ |d| < 0.33, medium for 0.33 ≤ |d| < 0.474, and
large for |d| ≥ 0.474 [GK05]. As for the percentage of correct predictions, we pairwise com-
pare them among the experimented techniques, using the McNemar’s test [McN47], which
is a proportion test suitable to pairwise compare dichotomous results of two different treat-
ments. We complement the McNemar’s test with the Odds Ratio (OR) effect size. Also in this
case we use the Holm’s correction procedure [Hol79] to account for multiple comparisons.

8.2 Automatic Classification of Code Comments and Linkage to Documented Code 111

8.2.7 Results Discussion

As for the comment classification task, SALOON correctly classifies 78.05% (939/1,203) of
instances. Out of the 633 code summary comments present in the test set, 536 (84%) have
been correctly classified, while 97 have been mistakenly reported as other.

Concerning the 570 “other” comments, SALOON correctly predicted 403 (70%) of them,
wrongly reporting 167 instances as code summary. This results in a recall=0.85 and preci-
sion=0.76 when identifying a comment as a code summary. This means that by running our
approach on the comments of a previously unseen software system, we can expect to identify
85% of code summaries present in it accompanied, however, by 25% of false positives (i.e.,
non code summary comments).

Table 8.3. T5 vs baselines on the code linking task

Technique Correct Predictions Recall Precision

Blank line [CHL+19b] 0.20 0.87 0.57

Token-based similarity [FWG07]
λ=0.1 0.03 0.62 0.33
λ=0.2 0.05 0.38 0.34
λ=0.3 0.05 0.23 0.26

ML-based [CHL+19b] 0.23 0.49 0.58

SALOON 0.58 0.89 0.86

Concerning the code linking task, Table 8.3 reports the correct predictions (i.e., for a
given comment in our test set all linked statements have been correctly identified), recall,
and precision achieved by SALOON and the three baselines. Table 8.4 reports the results of
the statistical tests. For the Cliff’s Delta d we use N, S, M, and L to indicate its magnitude
from Negligible to Large.

Note that for the token-based string similarity baseline we report the results achieved
with different values of λ (i.e., minimum similarity threshold to link a code statement to a
comment).

While we also experimented with values going up to 0.9 [Bli], the recall values were too
close to 0 to consider these variants as reasonable baselines.

SALOON predicts all statements linked to a given comment in 58% of cases, against the
23% achieved by the best-performing baseline (ML-based). The blank-line technique achieves
20% of correct predictions.

The results of the statistical tests confirm the better performance ensured by SALOON in
terms of correct predictions: McNemar’s test always indicates significant differences in terms
of correct predictions accompanied by ORs indicating that SALOON has between 15.80 to
70.80 higher odds of providing a correct prediction against the baselines.

Recall and precision values confirm the superiority of SALOON for the code linking task.
In terms of recall, SALOON is able to correctly link 89% of statements in our dataset, achiev-
ing the best performance among all the experimented techniques. While the blank-line ap-
proach achieves a similar recall (87%) it pays a much higher price in terms of precision,
with a 43% false positive rates as compared to the 14% of SALOON. Note that a high recall

112 Towards Summarizing Code Snippets

Table 8.4. Code linking task: SALOON vs baselines

Comparison Metric p-value d OR

Blank line [CHL+19b] vs SALOON
Correct Predictions <0.05 - 19.28
Recall <0.05 -0.04 (N) -
Precision <0.05 -0.48 (L) -

Token sim.(0.1) [FWG07] vs SALOON
Correct Predictions <0.05 - 70.80
Recall <0.05 -0.45 (M) -
Precision <0.05 -0.75 (L) -

Token sim.(0.2) [FWG07] vs SALOON
Correct Predictions <0.05 - 37.77
Recall <0.05 -0.66 (L) -
Precision <0.05 -0.68 (L) -

Token sim.(0.3) [FWG07] vs SALOON
Correct Predictions <0.05 - 38.00
Recall <0.05 -0.80(L) -
Precision <0.05 -0.73 (L) -

ML-Based [CHL+19b] vs SALOON
Correct Predictions <0.05 - 15.80
Recall <0.05 -0.49 (L) -
Precision <0.05 -0.33 (M) -

for this heuristic is expected, considering that it links all statements following a comment
until a blank line is found. The ML-Based technique can only predict half of the correct links
(0.49) while achieving a precision score of 0.58. Accordingly to our results, the token-based
similarity heuristic does not represent a viable solution for the code linking task: The best
results are achieved when considering (λ=0.1) as a threshold, for which the technique can
ensure a recall of 0.62 and a precision of 0.33. Differences in terms of recall and precision
are always statistical significant (see Table 8.4). The effect size is in most of cases medium
or large, with the only exception of the recall test comparing T5 with the blank-line baseline,
for which a negligible effect size is reported.

To summarize, SALOON is able to identify comments representing code summaries with
a recall of 0.85 and a precision of 0.76. Also, it achieves state-of-the-art results in linking
comments to the documented code, with a recall of 0.89 and a precision of 0.86. In Sec-
tion 8.3 we explain how we exploit this model to build a large-scale dataset aimed at training
a T5 fine-tuned for the task of code snippet summarization.

8.3 Snippets Summarization Using T5

We discuss how we trained a T5 model for the task of code snippet summarization (Sec-
tion 8.3.1), the study we run to evaluate it (Section 8.3.4) and the achieved results (Sec-
tion 8.3.6). We refer to the snippet summarization approach as “STUNT” (SnippeT sUmma-
rizatioN using T5).

8.3.1 Approach Description

We rely on the same T5 architecture anticipated in Section 8.2.1 and we reuse the same
pre-trained model we built for the comment classification and code linking tasks. Indeed,
as explained in Section 8.2.2, we pre-trained the model on a dataset composed by ∼1.5M

8.3 Snippets Summarization Using T5 113

Java methods and their inner comments and ∼370k Javadoc comments. Thus, T5 has been
pre-trained to acquire knowledge about the two “target languages” relevant for the summa-
rization task as well (i.e., Java code and technical language used to summarize it). We detail
the fine-tuning dataset and the training procedure.

8.3.2 Fine-tuning Dataset

We used the GHS tool by Dabic et al. [DAB21] to query GitHub for all public non-forked Java
projects with minimum 50 commits, 5 contributors, and 10 stars. The idea of these filters
was to remove toy/personal projects while still obtaining a large set of projects to provide as
input to SALOON with the goal of identifying comments representing summaries and linking
them to the relevant code. We cloned 10k of the 18.7k projects returned by our query and
extracted their methods using srcML [CDM13].

We excluded all methods longer than 512 tokens and removed all duplicates, obtaining
a set of methods S. We also removed duplicates between our pre-training dataset and S and
between our manually labeled dataset (Section 8.1.2) and S.

Concerning the removal of duplicates between the pre-training dataset and S, this was
needed since S is our starting point to build the fine-tuning dataset for the snippet summa-
rization task from which we will also extract the test set on which STUNT will be evaluated.
Thus, we ensure that STUNT is not evaluated on already seen instances. As for the removal
of duplicates between the manually labeled dataset and S, this is due to the fact that SA-
LOON (i.e., our approach for comment classification and linking) has been trained on those
instances and we will run it on S to build the fine-tuning dataset for STUNT (i.e., for code
summarization). Running SALOON on already seen instances would inflate its performance,
and not provide a realistic picture of what can be achieved by training STUNT on a dataset
automatically built using SALOON.

From the remaining methods, we extracted all inner comments, filtering out those shorter
than 5 words (unlikely to represent a meaningful code summary). As done in previous code
summarization works [LJM19], we lowercased and stemmed the comments (using the spaCy
NLP library [spa]). Then, for each comment Di extracted from a method M j we created an
instance M j,Di

in which M j ’s code features special tokens <comment></comment> to surround
the comment of interest (Di). This means that if M j features three inner comments, three
M j,Di

instances will be created, each having a different comment (Di) “tagged”. This format
is the one expected by SALOON to automatically (i) classify Di as code summary or other,
and (ii) link Di to the relevant code statements.

The above-described process resulted in 2,210,602 M j,Di
instances that we provided as

input to SALOON, which classified 907,660 of them as code summary. Among these, SALOON
automatically linked code statements to the code summaries in ∼85% of cases (776,531).
These instances are 〈M j,DC , Di〉 pairs, where M j,DC represents the method M j with special
tokens <start><end> surrounding the statements (DC) documented by Di .

If more non-contiguous statements are documented, multiple <start><end> pairs are
injected in M j . These pairs are those needed to fine-tune STUNT for the task of snippet
summarization: the input provided to the model is M j,DC (i.e., a snippet to document) and

114 Towards Summarizing Code Snippets

the expected output is the documentation Di . To avoid favoring the model during testing,
we also removed all duplicates at snippet-level granularity. This means that if we have in
our dataset two different methods containing the same DC (i.e., the same code snippet to
document), we only keep one of them. Also, being SALOON an automated approach, it is
expected to produce wrong instances (e.g., comments linked to wrong statements) which, in
turn, will penalize the performance of STUNT. By manually inspecting a sample of the pairs in
our dataset, we noticed that one clear case of wrong instances are those in which the model
had very low confidence in identifying the documented statements thus producing random
symbols rather than the expected documented line numbers. We automatically remove those
instances, obtaining a set of 554,748 pairs, split into 80% training (443,798), 10% evaluation
(55,475), and 10% testing (55,475).

8.3.3 Training Procedure and Hyperparameters Tuning

As explained, we started from the already pre-trained T5 model. We then followed the same
hyperparameters tuning discussed in Section 8.2.4, assessing the performance of four dif-
ferent learning scheduler on the evaluation set using the BLEU-4 score [PRWZ02] as perfor-
mance metric. The BLEU-4 variant computes the BLEU score by considering the overlap of 4-
grams between the generated text (i.e., the synthesized snippet summary) and the target text
(i.e., the summary written by the original developers). This metric has been used by most of
the previous work on code summarization (see e.g., [HLWM20, ACRC20, WZS+22, LHWM20,
LBM21, LJM19, HLX+18a, HHC+20, HLX+20b, HLX+18b, IKCZ16, WZY+18, WSD+21, WLL+20,
YXZ+20, ZWZ+20b]). Each of the four models has been trained for 100k steps before its eval-
uation. C-LR (i.e., constant learning rate) provided the best performance. Data about this
evaluation are available in our replication package [Bli].

Once identified the best T5 variant, we fine-tuned it for up to 500k steps, using an early-
stopping strategy to tame over-fitting. To this aim, we monitored the BLEU-4 score achieved
on the evaluation set every 5k steps, stopping the training when no improvements were
observed after 5 consecutive evaluations.

8.3.4 Study Design

The goal is to assess the accuracy of STUNT for snippet summarization. The context is rep-
resented by (i) 55,475 〈M j,DC , Di〉 pairs identified by SALOON as described in Section 8.3.2
and belonging to the test set, and (ii) the test set made publicly available by Huang et al.
[HHC+20] when presenting RL-BlockCom, the state-of-the-art snippet summarization ap-
proach discussed at the beginning of this Chapter.

We assess the performance of STUNT against an information retrieval (IR)-based tech-
nique (i.e., IR-Jaccard) and RL-BlockCom. To explain the basic idea behind the IR-based
baseline let us remind that both our training and test set are composed by 〈M j,DC , Di〉 pairs.
Given a pair in the test set, the baseline retrieves in the training set the pair having the DC
snippet being the most similar to the one in the test set pair. This means that this pair con-
tains a documented snippet that is very similar to the one in the test set for which we have
to generate a code summary. Once identified the most similar snippet in the training set,

8.3 Snippets Summarization Using T5 115

the IR-based technique reuses its description to document the instance in the test set. This
baseline serves as a representative of works using IR to retrieve similar comments from a
given dataset, including e.g., [WYT13].

IR: Jaccard index [Han04]. IR-Jaccard identifies the most similar snippet using the
Jaccard similarity index. The latter considers the overlapping between two sets of unique
elements, representing in our case the tokens composing the documented code (DC) in the
test instance and in each of the training instances. Indeed, we need to compare each instance
in the test set to all those in the training set to find the most similar one. The similarity is
computed as the percentage of overlapping tokens between the two sets.

An additional baseline for STUNT is RL-BlockCom by Huang et al. [HHC+20]. Despite
the code being available, we did not manage to re-train their approach on our dataset. We
contacted the authors asking for help without, however, receiving answer. Thus, as an alter-
native form of comparison, we thought about training and testing STUNT on their dataset,
which is publicly available, and then comparing the summaries generated by STUNT with
those generated by RL-BlockCom. Unfortunately, the authors did not make the summaries
generated by their approach publicly available. The only viable form of comparison we found
was to (i) re-train STUNT on the training dataset made available by Huang et al. [HHC+20]
and used to train RL-BlockCom; (ii) use this trained version of STUNT to generate predic-
tions on the same test set on which RL-BlockCom has been evaluated; (iii) use the evaluation
scripts made available by Huang et al. for the computation of the sentence-level BLEU score;
and (iv) compare the achieved results with those reported in their paper. Indeed, not having
access to the summaries generated by RL-BlockCom does not allow us to double-check the
data reported in the original paper nor to compute additional metrics besides those used by
the authors (BLEU). Note also that the training/test datasets shared by Huang et al. feature
pairs 〈DC , Di〉 as compared to our 〈M j,DC , Di〉 pairs. This means that STUNT cannot ex-
ploit the contextual information of the method M j when generating the predictions on their
dataset.

8.3.5 Data Collection And Analysis

To compare the performance of our model against the two IR-based baselines, we exploit
three metrics explained in the following.

Out of those, only BLEU has been used in the comparison with RL-BlockCom for the
reasons previously explained.

BLEU [PRWZ02] assesses the quality of the automatically generated summaries by as-
signing a score between 0 and 1. In our case, 1 indicates that the natural language summary
automatically generated is identical to the one originally written by the developer. Since in
the test set we built there are no summaries shorter than 4 words, we use the BLEU-4 variant
in the comparison with the IR-based baselines. When comparing with RL-BlockCom on their
test set, we also compute BLEU-1, BLEU-2 and BLEU-3 as done by Huang et al. [HHC+20].

METEOR [BL05] is a metric based on the harmonic mean of unigram precision and
recall (the recall is weighted higher than the precision). Compared to BLEU, METEOR uses
stemming and synonyms matching to better match the human perception of sentences with

116 Towards Summarizing Code Snippets

similar meanings. Values range from 0 to 1, with 1 being a perfect match.
ROUGE [Lin04] is a set of metrics focusing on automatic summarization tasks. We

use the ROUGE-LCS (Longest Common Subsequence) variant, which identifies longest co-
occurring in sequence n-grams. ROUGE-LCS returns three values, the recall computed as
LCS(X,Y)/length(X), the precision computed as LCS(X,Y)/length(Y), and the F-measure com-
puted as the harmonic mean of recall and precision where X and Y represent two sequences
of tokens.

We also statistically compare the different approaches assuming a significance level of
95%. Also in this case we use the Wilcoxon signed-rank test [Wil45], adjusting p-values
to account for multiple comparisons (Holm’s correction procedure [Hol79]) and the Cliff’s
Delta (d) as effect size measure [GK05]. The statistical comparison was not possible with
RL-BlockCom since we only had access to the overall BLEU scores reported in the paper (i.e.,
the BLEU scores for each generated summary were not available).

8.3.6 Results

Table 8.5 compares STUNT and RL-BlockCom, using the values reported in the paper by
Huang et al. [HHC+20] as BLEU scores for RL-BlockCom. STUNT achieves better perfor-
mance for all BLEU scores, outperforming the state-of-the-art approach by a large margin
(e.g., +7 points of BLEU-4). A deeper comparison of the two techniques is not possible since
the summaries generated by RL-BlockCom are not available.

RL-Com STUNT

BLEU-1 32.18 34.17
BLEU-2 25.98 31.09
BLEU-3 24.36 30.63
BLEU-4 24.28 31.22

Table 8.5. BLEU scores: STUNT vs RL-BlockCom [HHC+20]

Table 8.6 compares STUNT against IR-Jaccard on the large-scale dataset we built. Ac-
cordingly to all metrics used in our evaluation, the gap in performance between STUNT and
the baseline (i.e., IR-Jaccard) is substantial, with at least a +11 in terms of BLEU-4, a +12
in terms of ROUGE-LCS f-measure, and a +16 in terms of METEOR score. As observed by
Roy et al. [RFA21], METEOR is “extremely reliable for differences greater than 2 points” in
assessing code summarization quality as perceived by humans (i.e., also humans are likely
to prefer STUNT’s summaries over those generated by the baselines).

The statistical analyses presented in Table 8.7 validate STUNT’s superior performance
compared to IR-Jaccard. Notably, we observe significant p-values and medium effect sizes
for BLEU-4 and ROUGE-LCS (f-measure), while METEOR demonstrates a large effect size.

While the metrics we computed provide a fair comparison among the experimented tech-
niques, they do not give a clear idea of the quality of the summaries generated by STUNT. To
this aim two of the authors manually inspected 384 randomly selected summaries generated
by STUNT for which the generated text was different from the target summary (i.e., the one
written by developers). These are cases that in a “binary quantitative evaluation” would

8.4 Threats to Validity 117

IR-Jaccard STUNT

BLEU-4 [PRWZ02] 27.43 38.42
ROUGE-LCS [Lin04]

precision 23.00 34.21
recal l 23.04 37.39
f measure 22.33 34.57

METEOR [BL05] 25.04 41.75

Table 8.6. Evaluation Metrics: STUNT vs IR-Jaccard

Table 8.7. Statistical Tests: STUNT vs IR-Jaccard

Comparison Metric p-value d

IR (Jaccard) vs STUNT
BLEU-4 <0.001 -0.451 (M)
ROUGE-LCS (f-measure) <0.001 -0.471 (M)
METEOR <0.001 -0.474 (L)

be classified as wrong predictions. The authors independently classified each summary as
meaningful or not meaningful, based on the ability of the summary to properly describe the
documented snippet. In the labeling, the two involved authors achieved a Cohen’s kappa
[Coh60] of 0.61, indicating a substantial agreement when measuring inter-rater reliability
for categorical items.

Conflicts, arisen in 71 cases and have been solved through open discussion among the
authors. We classified 224 summaries as meaningful, with some of them representing even a
better summary than the one manually written by the original developers. For example, we
found the comment if we have a frontend then we need to get the action list to be
more meaningful and detailed than the exit if we do not have a frontend written the
developer. However, we also want to highlight the ∼41% (160) of automatically generated
summaries which were not meaningful and that stress how far we still are from obtaining
a code summarizer being accurate enough to be deployed to developers (i.e., generating
correct summaries in most of cases).

8.4 Threats to Validity

We discuss the threats that could affect the validity of our findings.

Internal Validity. Building our dataset of classified and linked code comments (Sec-
tion 8.1) involved a certain degree of subjectivity. To partially address this threat, two eval-
uators independently assessed each instance and a third one solved conflicts when needed.
Still, imprecisions are possible.

We performed a limited hyperparameters tuning of the T5 models, only experimenting
with different learning rates. For example, we did not change the number of layers, but
relied on the default T5small architecture by Raffel et al. [RSR+20]. Better results could
be achieved with additional tuning. Also, relying on pre-trained code models like CodeT5
[WWJH21], might produce better results.

118 Towards Summarizing Code Snippets

Construct Validity. When experimenting with SALOON, we compared its performance
with the technique by Chen et al. [CHL+19b]. However, since their approach is not publicly
available, we had to reimplement it following the paper’s description.

We release our implementation [Bli]. Still related to the used baselines, as explained
in Section 8.3.4 we did not manage to compare STUNT (our approach for snippet summa-
rization) with RL-BlockCom [HHC+20] on our dataset. At least, we presented a comparison
performed on the dataset released by the authors.

External Validity. The manually built dataset represents the obvious bottleneck in terms
of generalizability, since it is based on the analysis of “only” 1,508 Java files and also capped
our training/evaluation of SALOON. Still, building such a dataset costed over 815 man-
hours. Also, we did not compare our technique against general purpose large language
models such as ChatGPT [cha], since designing a fair evaluation is challenging due to the
unknown training set behind these LLMs. For example, we could have tested the ability of
ChatGPT to summarize specific snippets which, however, were part of its training set together
with their related comment.

8.5 Conclusions

We targeted the problem of code snippet summarization, presenting (i) a manually labeled
dataset of ∼6.6k code comments classified in terms of information they provide (e.g., code
summary) and linked to the code statements they document; (ii) SALOON, a T5 model
trained on our manually built dataset to automatically classify and link inner comments in
Java code; and (iii) STUNT, a T5 model trained on a large-scale dataset of documented code
snippets automatically created by running SALOON on 10k Java projects.

We achieved promising results for both code linking and snippet summarization, pointing
however to the need for research in this field. Our dataset and our models, publicly released
[Bli], represent a step in that direction.

9
Supporting Code Summarization via Comment
Completion Techniques

Despite the substantial improvements brought by DL techniques in addressing the code com-
ment generation problem, the findings reported even in the most recent empirical studies
show how these techniques are still far from being useful tools for software developers. For
example, in Chapter 3 and Chapter 8 we have shown that state-of-the-art techniques struggle
to generate comments equivalent to those written by humans. In this chapter, we tackle the
simpler problem of code comment completion, in which the “machine” is in charge of com-
pleting a comment that the developer starts writing, similarly to what done for code tokens
by code completion techniques [BMM09, RVY14, SLH+21, BAY20, CCP+21].

The code comment completion problem has been firstly tackled by Ciurumelea et al.
[CPG20] in the context of Python code: They study whether a deep learning model can
predict the next word that a developer is likely to type while commenting code. This is, to
the best of our knowledge, the only work done in this area. Stemming from their idea, we
present in this thesis a large-scale study assessing the ability of a simple n-gram model and
of T5 [RSR+20] in supporting code comment completion for Java programs. As compared to
the work by Ciurumelea et al. [CPG20], besides focusing on a different context (i.e., Python
vs Java) we: (i) investigate the actual advantages brought by a DL-based model (T5) over a
simpler n-gram model that can be trained in a fraction of the time required by T5; (ii) do not
limit our study to predicting the single next word the developer is likely to type, but evaluate
how the investigated techniques perform when asked to predict longer word sequences (e.g.,
the next 10 words), providing a more advanced completion support to developers. We also
study the complementarity of the two techniques and report qualitative examples of correct
and wrong predictions to understand their strengths and limitations.

Our study has been run on a dataset composed by 497,328 Java methods with their re-
lated comments. The achieved results can be summarized as follows. First, the T5 model
outperforms the n-gram model, achieving superior performance in all the comment com-
pletion scenario we tested. Second, despite being more performant, the T5 model exploits
as input not only the first part of the comment already written by the developer (also used
by the n-gram model), but also a context representing the relevant code for the comment

119

120 Supporting Code Summarization via Comment Completion Techniques

to complete. This means that the T5 model, as we tested it, can only be used when the
developer writes the comment after the code has been already implemented (the assump-
tion made by approaches for automated code documentation [HLX+18a, IKCZ16, APS16b,
HLX+20b, HLWM20]). Thus, the applicability of the n-gram model is higher (i.e., it can be
used also when the code is not yet implemented).

9.1 T5 to Support Code Comment Completion

In this investigation, we leverage a T5 architecture (i.e., T5small) which has been detailed
extensively in Chapter 3. Therefore, we choose not to recount those specifics, and instead
begin by outlining how we configure the model to facilitate the task in question (i.e., code
comment completion)

9.1.1 Problem Definition

We instantiate the T5 to the problem of code comment completion in Java. We tackle the
problem at method-level granularity, meaning that we expect the model to learn how to
autocomplete a code comment used to document a method or part of it. In Java, a method
can be documented using a Javadoc comment (that we indicate with CJD) or inner comments
(CI). Each comment is relevant to a specific context. For example, the context of a CJD is the
entire method, while the context of an CI can be a single line or a code block.

Given a context and an incomplete comment (either a CJD or a CI), the trained model
must predict the tokens needed to complete the comment. This implies that we must build
a training dataset in which code comments are linked to the relevant part of the code they
document (i.e., the context). While this is trivial for CJD comments, a heuristic is needed
for CI comments, since they are not explicitly linked to certain statements. Section 9.1.2
describes how we built such a dataset.

We pre-train the T5 by randomly masking tokens in comments asking the model to guess
the masked tokens (Section 9.1.3). This builds the shared knowledge that we then specialize
in two fine-tuning tasks, namely Inner-commenttask and Javadoctask, consisting in predicting
the missing part of inner and Javadoc comments, respectively (Section 9.1.4).

9.1.2 Dataset Preparation

We start from the CodeSearchNet dataset [HWG+19], providing 6M functions from open-
source projects. We only focus on the Java subset, composed of ∼1.5M methods. We extract
the set of instances using the docstring (i.e., the method’s Javadoc) and function fields.
Then, we run a pre-processing aimed at preparing our dataset.

First, we discarded instances having #tokens ≥ 256, where #tokens = #function_tokens
+ #docstring_tokens (i.e., #tokens is the total number of tokens used to represent both the
method and the comments associated to it). Such a filter is needed to limit the computational
expense of training the model, and removed∼9% of instances from the dataset. Then, we ex-
cluded instances containing non ASCII characters as well as comments composed by less than

9.1 T5 to Support Code Comment Completion 121

three tokens (words), since unlikely to represent an interesting scenario for code comment
completion. We also excluded comments representing instances of self-admitted technical
debt (SATD) [PS14a] (i.e., comments documenting temporary workaround). Such a choice
was dictated by the fact that we are interested in training our model to complete comments
describing a method (or part of it) rather than comments used to document technical debt
and very likely to be project-specific. We adopted a simple heuristic to discard SATD com-
ments, excluding all comments starting with TOFIX, TODO, and FIXME. We are aware that more
complex state-of-the-art techniques for SATD detection could be used (see e.g., [RXX+19a]),
but we preferred a simpler unsupervised heuristic for our pre-processing pipeline.

We discarded commented code statements using the codetype library [cod]. Then, we
cleaned comments by replacing links with a special _LINK_ token (using the urlextract library
[url]), dates with a _NUM_ token (using the datefinder library [dat]), and references to code
components with a _REF_ token. The latter are only handled in Javadoc comments exploiting
the @link tag used to reference code elements. We further clean Javadoc comments by
stripping HTML/XML tags using the BeautifulSoup library [bso].

Then, we removed from each method all CI (inner comments) that are “orphans”, i.e., CI
followed and preceded by at least one blank line. As previously explained, to train the T5,
we need to link each comment to its context.

Javadoc comments are linked to the whole method, while for inner comments we adopt
a heuristic that would not work with orphan comments (i.e., we cannot know what lines of
code they likely document) — details in Section 9.1.4. As a last step in the processing of inner
comments, we merge in a single CI subsequent inline comments that are not interleaved by
empty lines or code statements. This is done since they likely represent a single multi-line
comment.

Type of #Instances #Instances
instance Pre-training Fine-tuning

Inner comment(s) only (D1) 45,764 33,590
Javadoc comment only (D2) 232,121 115,904
Javadoc & Inner comments (D3) 53,667 16,282

Total 331,552 165,776

Table 9.1. Instances used for pre-training and fine-tuning.

Finally, we removed duplicates, obtaining the study dataset composed of 497,328 in-
stances, with each instance being a method with its related Javadoc and/or inner comments.

We randomly split this dataset using 2/3 of it for pre-training and 1/3 for fine-tuning.
Table 9.1 shows the number of instances in each of the two datasets, distinguishing between
instances only containing inner comments (D1), only containing Javadoc (D2), and featuring
both (D3).

122 Supporting Code Summarization via Comment Completion Techniques

9.1.3 Pre-training of T5

In the pre-training phase, we use a self-supervised task similar to the one used by Raffel et al.
[RSR+20], consisting of masking tokens in natural language sentences and asking the model
to guess the masked tokens. Since we want the model to learn how to generate comments
given a certain context, we randomly mask 15% of tokens appearing in the comment-related
part of each instance (Javadoc or inner comments). Tokens representing the method code
were not masked. The pre-training has been performed for 200k steps.

We also created a new SentencePiece [KR18] (i.e., a tokenizer for neural text processing)
model by training it on the entire pre-training dataset, in such a way that it can handle both
code and comments. We set its length to 32k wordpieces.

9.1.4 Fine-tuning of T5

Once pre-trained, we fine-tune the T5 model in a multi-task setting, in which the two tasks
are represented in our case by the automatic completion of (i) Javadoc comments and (ii)
inner comments. Having a single model fine-tuned on these two strongly related tasks could
result in an effective transfer learning, in which knowledge gained by the model while learn-
ing a task (e.g., Javadoctask) can be transferred to other similar tasks (e.g., Inner-commenttask).

9.1.5 Preparing the Dataset for the Model Fine-Tuning

We further process the 165,776 instances selected for the fine-tuning (see Table 9.1) through
the following steps.

Processing Javadoc instances (datasets D2 and D3 in Table 9.1). For the Javadoctask
we assume that the context documented by a CJD is represented by the whole method.

Thus, given an instance composed by {CJD, context} (i.e., a Javadoc comment followed
by the method it documents) we simply swap the position of the two elements and add a
special separation token <sep> to delimit the comment, obtaining an instance in the form:
{context<sep>CJD<sep>}. The rationale behind this transformation is to “force” the model
to process the context before predicting the missing parts of the comment.

Once this is done, we use the method sent_tokenize from the nltk library [nlt] to split
the CJD in each instance into the y sentences composing it. Then, we take the first sentence
s1 and remove the remaining y − 1. Assuming s1 is composed by n tokens, we randomly
extract five different integers between 1 and n−1, and use them to create five variants of s1
each one having the last n−mi tokens masked, where mi is one of the five random integers.

By training the model on these five masked sentences, the learning is focused on guessing
how to finalize an incomplete sentence in a comment the developer is writing. Let us justify
and explain this process. First, we remove the y−1 following sentences because we assume
that a developer writes the comment linearly, starting from the first to the last sentence.
Thus, when the developer is writing the first sentence, the remaining y − 1 do not exist yet.
Second, at most n−1 tokens can be masked in a sentence composed by n tokens, since at least
the first token must be provided by the developer (otherwise, the task would be comment
generation rather than completion). Third, the choice of creating five different variants for

9.1 T5 to Support Code Comment Completion 123

Scroll the screen to the left.
The underlying application should have at least one scroll view belonging
to the class 'android.widget.ScrollView'.
public void scrollLeft(){

logger.entering();
WebEelement webElement = this.findElement(

 By.className(SCROLLVIEW_CLASS)
);
 swipeLeft(webElement);
 Logger.exiting();
}

S1: Scroll the screen <MASK>
…
S2: Scroll the screen to the left. The underlying application <MASK>
…

Javadoc masking

Figure 9.1. Example of the Javadoc masking process

a given sentence is a tradeoff between experimenting with a different number of masked
tokens for each sentence and considering all possible combinations of masked tokens, that
would lead to an excessive number of training instances.

Such a process is repeated for all y sentences composing the CJD, hiding the sentences
following the one under process while keeping the ones preceding it. Thus, for each instance
in our fine-tuning dataset, we create up to y*5 instances (i.e., y sentences with five different
sets of masked tokens). Less than five instances are created if CJD has less than six tokens,
since it would not be possible to mask five different sets of tokens (excluding the first one).
Fig. 9.1 shows an example of masking performed on a single instance. The original instance
is reported on top of the figure, and two sentences compose its CJD. This results in the
creation of 10 fine-tuning instances. For improved readability, Fig. 9.1 only shows one of the
instances generated for each sentence.

Processing Inner-comment instances (datasets D1 and D3 in Table 9.1). For the
Inner-commenttask the first step to perform when preparing the fine-tuning dataset is the
identification of the context relevant for a given inner method. We define the following
heuristic to identify, given an CI in a specific instance, the context that can help the model
in understanding how to support CI completion. We use Fig. 9.2 as a running example to
explain the heuristic, showing an example of instance having a single CI. Starting from the
line lCI

containing it, we expand the context both above and below it until specific conditions
are met.

In particular, while expanding above and below lCI
, we stop when we find one of the

following: (i) an empty line, (ii) a closing curly brace, or (iii) another code comment. In both
cases, we do not expand the context out of the method (e.g., if none of the above conditions
is met while expanding above lCI

, we stop at the method signature). In the example shown in
Fig. 9.2, there is no above context since we immediately hit an empty line, while the context
below is stopped when we find the first closed curly brace. It is important to clarify that
the context we identify is not necessarily the part of code documented by CI. However, our
interest is to provide the model with the relevant code surrounding CI, to allow it exploiting

124 Supporting Code Summarization via Comment Completion Techniques

public void addMBeanServers(Set<MBeanServerConnection> servers(){

 // Example of inner comment within a method
 if (!isJBoss()) {
 InitialContext ctx;
 try{
 ctx = new InitialContext();
 MbeanServer server =
 (MbeanServer) ctx.lookup(“java:comp/env/jmx/runtime”);
 if (server != null) {
 servers.add(server);
 }
 } catch (NamingException e) {
 …
 …
}

Identifying the relevant context

Figure 9.2. Identification of relevant context of an inner comment

useful information to support the comment completion. Once linked each CI to its context,
we perform the same processing previously described for the CJD instances (i.e., splitting the
comment into sentences and creating five variants of each sentence, each having a different
number of tokens masked at the end of it).

Data sources Train Eval Test

Javadoctask 1,398,135 174,624 175,084
Inner-commenttask 272,944 34,705 34,138
Total 1,671,079 209,329 209,222

Table 9.2. Instances used for the fine-tuning

9.1.6 Dataset Splitting

Table 9.2 shows the fine-tuning dataset we obtained from the above-described process. We
split it into 80%-10%-10% for train, test and validation, respectively. The dataset for the
Javadoctask dominates, in terms of size, the one for the Inner-commenttask.

This could result in an unbalanced effectiveness of the model for the two tasks. In other
words, the model could perform better on the Javadoctask and being less effective on Inner-
commenttask. However, as pointed out by Arivazhagan et al. [ABF+19], there is no free lunch
in choosing the balancing strategy when training a multi-task model, with each strategy
having its pros and cons (e.g., oversampling of less represented datasets negatively impacts
the performance of the most representative task). For this reason, we decided not to perform
any particular adaptation of our training set but to follow the true data distribution when
creating batches.

9.1 T5 to Support Code Comment Completion 125

9.1.7 Decoding Strategy

The given output layer’s values allow different possible decoding strategies to generate the
output token streams. We adopt a greedy decoding strategy since it we believe it is better
suited for the problem we are tackling. Indeed, it provides the developer with the most likely
completion (rather than with a set of completions as, for example, a beam search would do.
Indeed, with multiple options a developer would likely spend more time selecting among
different tool suggestions rather than writing the comment themself.

9.1.8 Hyperparameter Tuning

We rely on the configurations used by Mastropaolo et al. [MSC+21]. Concerning the pre-
training, we do not tune the hyperparameters of the T5 model because the pre-training step
is task-agnostic, and this would provide limited benefits. Instead, we experiment with four
different learning rates schedule for the fine-tuning phase, using the configurations reported
in Table 9.3.

Learning Rate Type Parameters

Constant (C-LR) LR= 0.001
Slanted Triangular (ST-LR) LRstarting = 0.001

LRmax = 0.01
Ratio= 32
Cut= 0.1

Inverse Square Root (ISQ-LR) LRstarting = 0.01
Warmup= 10, 000

Polynomial Decay (PD-LR) LRstarting = 0.1
LRend = 0.01
Power= 0.5

Table 9.3. Learning-rates tested for hyperparameter tuning

We fine-tune the model for 100k steps for each configuration; then, we compute the
percentage of perfect predictions (i.e., cases in which the model can correctly predict all
masked tokens in the comment) achieved on both tasks in the evaluation set. The achieved
results reported in Table 9.4 showed a slight superiority of the slanted triangular (column 2)
that we use in our study.

Task C-LR ST-LR ISQ-LR PD-LR

Javadoctask 30.77% 33.60% 31.73% 30.65%
Inner-commenttask 9.38% 10.55% 9.70% 9.51%

Table 9.4. Hyperparameter tuning results

126 Supporting Code Summarization via Comment Completion Techniques

9.2 Study Design

The goal of this study is to experiment the extent to which a T5 model and an n-gram model
can help developers in writing comments faster by supporting code comment completion.

In particular, we answer the following research question: To what extent can T5 and
n-gram models be leveraged to support the auto-completion of code comments?

We answer this research question by using the 209,222 test set instances in Table 9.2 as
a context for our study. This means that the two trained models (i.e., T5 and n-gram model)
are run on the same test set instances to predict the masked parts of code comments. The T5
model has been trained as described in Section 9.1, while in the following we explain how
we implemented and trained the n-gram models. The code and data used in our study are
publicly available [repe].

9.2.1 N -Gram Model

An n-gram model can predict a single token following the n − 1 tokens preceding it. We
publicly release the implementation of our n-gram model in Python [repe]. We trained the
n-gram model by using the same instances used to fine-tune the T5 without, however, the
masked tokens. We experimented with three different values for n (i.e., n = 3, n = 5 and
n = 7). Even though the n-gram model is meant to predict a single token given the n − 1
preceding tokens, we designed a fair comparison for the scenario in which we mask more
than one token. In particular, we use the n-gram model in the following way: Let us assume
that we are predicting, using a 3-gram model, how to complete a sentence having five tokens
T, of which the last two are masked (M): <T1, T2, T3, M4, M5>. We provide as input to the
model T2 and T3 to predict M4, obtaining the model prediction P4. Then, we use T3 and
P4 to predict M5, thus obtaining the predicted sentence <T1, T2, T3, P4, P5>. Basically, all
predictions are joined to predict multiple contiguous tokens.

We experimented with the different values of n by running the models on the evaluation
set, taking the best one (i.e., 5-gram) and comparing its performance with that of the T5
model. We report the results achieved for the 3-gram and 7-gram models in our replication
package [repe].

9.2.2 Evaluation Metrics and Data Analysis

We compare the T5 and 5-gram models using six metrics.
Perfect predictions: This metric measures the percentage of cases (i.e., instances in the

test set) in which the sequence predicted by the model equals the oracle sequence. Since
we want to investigate the extent to which the experimented techniques can actually sup-
port comment completion, we compute the perfect predictions when the technique is only
required to guess the first masked token, the first two, the first three, etc. For example, if we
assume that in the previous prediction <T1, T2, T3, P4, P5> P4 is correct while P5 is wrong,
we will consider this as a perfect prediction only when looking at the first token to predict,
and as a wrong one when looking at the first two.

9.2 Study Design 127

We compute the percentage of perfect predictions when trying to predict the first k
masked tokens, with k going from 1 to 10 at steps of 1 (i.e., 1, 2, 3, etc.) and for the most
challenging scenario in which k > 10 (i.e., more than 10 masked tokens must be correctly
predicted to consider this prediction as a perfect one).

BLEU score [PRWZ02]: This metric measures how similar the candidate (predicted)
and reference (oracle) texts are. Given a size n, the candidate and reference texts are broken
into n-grams, and the algorithm determines how many n-grams of the candidate text appear
in the reference text. The BLEU score ranges between 0 (the sequences are completely
different) and 1 (the sequences are identical). For both the tasks, we compute the BLEU-{1,
2, 3, 4} and their geometric mean (i.e., BLEU-A). Due to the way in which the BLEU-X is
computed (i.e., at least X tokens must be part of the prediction task) we only compute the
BLEU-A metric when the number of tokens for a given prediction is at least 4. As done for
perfect predictions, we report results for different values of k.

Levenshtein distance [Lev66]: To understand the effort needed by developers to con-
vert a prediction generated by the model into a correct comment, we compute the Leven-
shtein distance at word-level, i.e., the minimum number of word edits (insertions, deletions
or substitutions) needed to convert the predicted comment into the reference one. Also in
this case, we report results for different values of k.

Overlap metrics: We also compute the complementarity between the T5 and the n-gram
model. Let PPT5t

and PPNGt
be the sets of perfect predictions achieved by T5 and the n-gram

model, where t ∈ {Inner-commenttask, Javadoctask}. We compute the following metrics:

Sharedt =
|PPT5t

∩ PPNGt
|

|PPT5t
∪ PPNGt

|

OnlyT5t =
|PPT5t

\ PPNGt
|

|PPT5t
∪ PPNGt

|
OnlyNGt =

|PPNGt
\ PPT5t

|
|PPT5t

∪ PPNGt
|

Sharedt measures the percentage of perfect predictions shared between the two com-
pared approaches, while OnlyT5t and OnlyNGt measure the percentage of cases in which the
perfect prediction is only achieved by T5 or the n-gram model, respectively, on the task t.

Confidence Analysis: Both models provide, together with the generated prediction, a
score between 0 and 1 indicating the confidence of the prediction, with 1 being the maximum
confidence. We check whether the confidence of the predictions can be used as a reliable
proxy for their “quality”. If this is the case then, a possible implementation of these models
into a tool could take advantage of this proxy to automatically filter out low-confidence
predictions. For each model, we compute the confidence level for the two sets of “perfect”
and wrong predictions comparing their average confidence.

Qualitative analysis of the predictions: To better understand the strengths and weak-
nesses of the models, we analyze more closely the generated predictions. First, we check
what type of words on two models are able to correctly predict.

We do this by performing a Part-of-Speech (POS) TAG analysis. For each test set instance
we check the POS category of each masked word using 12 POS categories [PDM12] (e.g.,
adjective, adverb, noun). Then, for each POS category, we compute for both models the

128 Supporting Code Summarization via Comment Completion Techniques

10%
20%
30%
40%

60%
70%
80%
90%

100%

2 3 4 5 6 7 8 9 >10101

50%

10%
20%
30%
40%

60%
70%
80%
90%

100%

2 3 4 5 6 7 8 9 >10101

50%

Pe
rfe

ct
 p

re
di

ct
io

ns

10%
20%
30%
40%

60%
70%
80%
90%

100%

2 3 4 5 6 7 8 9 >10101

50%

O
ve
ra
ll

Ja
va
do
c

In
ne
r

50%

34%
27%

24% 21% 19% 18% 17% 16% 15% 13%

55%

38%

13%

15% 10% 7%

Perfect Predictions

5-GRAM T5
Pe

rfe
ct

 p
re

di
ct

io
ns

Pe
rfe

ct
 p

re
di

ct
io

ns

31% 27%
24% 22% 20% 19% 19% 18% 16%6% 5% 4% 4% 3%

Pe
rfe

ct
 p

re
di

ct
io

ns

26%
12% 8% 7% 5% 3%

4

BLEU-A

5%

5 6 7 8 9 10

10%

20%

30%

40%

>10

Pe
rfe

ct
 p

re
di

ct
io

ns

1
2
3
4

6
7
8
9

10

2 3 4 5 6 7 8 9 >10101

5

0.9

Levenshtein distance

Le
ve

ns
ht

ei
n

di
st

an
ce

1.7
2.7

3.6
4.5

5.5

6.5
7.4

8.4
9.3

12.5

0.5 1.1
1.7

2.5
3.2

4
4.8

5.6
6.4

7.2

9.7

Pe
rfe

ct
 p

re
di

ct
io

ns

1
2
3
4

6
7
8
9

10

2 3 4 5 6 7 8 9 >10101

5

0.8Le
ve

ns
ht

ei
n

di
st

an
ce

1.7
2.7

3.6
4.5

5.5
6.4

7.4
8.3

9.3
12.1

0.45 1 1.65
2.3

3
3.8

4.5
5.3 6

6.8

9.3

Pe
rfe

ct
 p

re
di

ct
io

ns

1
2
3
4

6
7
8
9

10

2 3 4 5 6 7 8 9 >10101

5

0.9Le
ve

ns
ht

ei
n

di
st

an
ce

1.5
2.1

6.8
7.8

9.1 12

1.8
2.8

3.8

12.7

4.8
5.8

8.8

5-GRAM T5

5-GRAM T5

5-GRAM T5

5-GRAM T5

5-GRAM T5

5-GRAM T5

BL
EU

-A

4

BLEU-A

5%

5 6 7 8 9 10

10%

20%

30%

40%

>10

5-GRAM T5

BL
EU

-A

4

BLEU-A

5%

5 6 7 8 9 10

10%

20%

30%

40%

>10

5-GRAM T5

BL
EU

-A

Tokens

0.7

2.4
3.3

4.3

5.2
6.2

7.2
8.2

Perfect Predictions

Perfect Predictions

Levenshtein distance

Levenshtein distance

6% 1%

4% 3% 3%

1% 1%
7%

4%
2% 1% 1% 1% 1% 1%

9% 7% 5% 4% 4% 3% 3% 3% 3% 3%

Tokens

Tokens

Tokens

Tokens

Tokens

Tokens

Tokens

Tokens

Figure 9.3. Performance of the T5 model against the 5-gram model

percentage of times they were able to correctly predict it. Such an analysis is useful to
understand whether the words correctly predicted by the models are mostly trivial ones (e.g.,
determiners such as “the”, “a”) or also more challenging words representing, for example,
nouns. On top of that, we discuss examples of predictions made by the two models.

A statistical comparison between the T5 and the n-gram model is performed using the
McNemar’s test [McN47] and Odds Ratios (ORs) on the perfect predictions they can gener-
ate.

9.3 Results Discussion

Fig. 9.3 depicts the results achieved by the T5 and 5-gram model in terms of perfect predic-
tions, BLEU-A score, and Levenshtein distance computed for predictions of different lengths
(k). The results for the other metrics (e.g., BLEU-1 to BLEU-4) can be found in our replica-
tion package [repe]. The middle and bottom parts of Fig. 9.3 show the results achieved in
the Javadoctask and Inner-commenttask, respectively, while the top part aggregates the results
of the two datasets.

In both the evaluated tasks (i.e., Javadoctask and Inner-commenttask) as well as overall,
T5 outperforms the 5-gram model by a significant span for all metrics considered in our
study. This is especially true when the two models are required to predict a limited number
of tokens (k ≤ 6) following the ones already written by the developer in the code com-

9.3 Results Discussion 129

ment. For example, when only the subsequent word must be predicted (i.e., k = 1), T5 can
achieve more than 50% of perfect predictions in the Javadoctask and more than 25% in the
Inner-commenttask. The 5-gram model, in both scenarios, achieves less than 16% of perfect
predictions.

The difference in performance is particularly remarkable for the Javadoctask, in which the
T5 model achieves better results compared to the Inner-commenttask. Such a finding might
be due to two important factors. First, as explained in Section 9.1.6, the fine-tuning dataset
used for the Javadoctask is larger than the one used for the Inner-commenttask, thus likely
providing more knowledge to the model about the vocabulary usually adopted by developers
in Javadoc comments and, more in general, about this specific task. Second, the Javadoc
has, by its nature, a more regular structure making use of tags (e.g., @param) that could
help the model in better predicting the comment, especially given the fact that the T5 model
exploits the relevant code context during the prediction. Still, even on the Inner-commenttask
the T5 model achieves three times more perfect predictions of the 5-gram when predicting
up to seven tokens (bottom-left corner of Fig. 9.3).

When the number of tokens to predict increases, the gap in performance between the
two approaches gets thinner. In the most complex scenario in which the models predict more
than 10 tokens in the comment, the T5 achieves, overall, 13% of perfect predictions against
the 3% of the 5-gram model.

The difference is smaller for the Inner-commenttask, with the best approach (T5) achieving
only 1% of perfect predictions.

The McNemar’s test always indicates significant differences in terms of perfect predic-
tions ensured by the T5 and the 5-gram model, with ORs ranging between 8.04 for the
Inner-commenttask and 17.56 for the Javadoctask (OR=16.79 for the overall dataset). The
better performance of T5 is confirmed by the other evaluation metrics we adopted, namely
the BELU-A and the Levenshtein distance. The BLEU-A gap is up to five times in favor of
the T5 over the 5-gram, confirming a substantial difference in performance between the two
models. On the Javadoctask, T5 always achieves a BLEU-A score higher than at least ∼16%
as compared to that achieved by the 5-gram, independently of the number of tokens the two
models are asked to predict. As already observed for the perfect predictions, the BLEU-A
gap is much smaller in the Inner-commenttask, however still showing a plus ∼5% in favor of
T5 up to six tokens. The difference in performance tends to decrease while increasing the
number of tokens to predict.

By focusing on the Levenshtein distance (right part of Fig. 9.3, the lower the better), we
can observe that, as expected, the number of token-level edits needed to convert a prediction
into the reference one tends to increase for both models when more tokens are predicted. An
analysis of both tasks (i.e., Javadoctask and Inner-commenttask) points out that T5 requires a
developer intervention in a lower number of cases than 5-gram. However, a clear conclusion
can be drawn by looking at the three graphs in the right part of Fig. 9.3: When the two
models are not able to generate a perfect prediction, the effort required by developers to
convert the prediction into the comment they actually want to write might be too high. For
example, when predicting the next five tokens the developer is likely to type, the T5 requires,
on average, to changes to 3.2 of the predicted tokens.

130 Supporting Code Summarization via Comment Completion Techniques

Task (d) Sharedt OnlyT5t OnlyBLt

Javadoctask 17.06% 75.87% 7.07%
Inner-commenttask 19.70% 67.78% 12.52%

Table 9.5. Perfect predictions overlap between T5 and 5-gram

ADJ ADV DET NOUN PRN VERB OTH

T5 5-grams

5%

10%

20%

15%

25%

30%

35%
40%
45%

ADJ ADV DET NOUN PRN VERB OTH

T5 5-grams

5%

10%

20%

15%

25%

30%

35%
40%
45%

ADJ ADV DET NOUN PRN VERB OTH

T5 5-grams

5%

10%

20%

15%

25%

30%

35%
40%
45%

Overall Javadoc Inner

Figure 9.4. Part-of-speech tag analysis: ADJ=adjective, ADV=adverb, DET=determiner,
PRN=pronoun, OTH=others which includes conjunction, number, particle, adposition, and X, where
X are words that cannot be assigned a part-of-speech category

An important point to discuss in the comparison between T5 and 5-gram is the different
datasets used for their training. Indeed, T5 benefited of a pre-training phase in which it
exploited additional code that was not made available to the 5-gram during training. Thus,
we performed an ablation study on the T5 model by removing its pre-training step and
checking to what extent its superior performances are due to the performed pre-training.
While details can be found in our replication package [repe], we can summarize our findings
as follows: The pre-training phase increases the performance of the T5 in terms of perfect
predictions in a range going from ∼0.5% to ∼2%, depending on the task and on the k value.
Thus, while pre-training is beneficial, the performance of the T5 are still better than those
of the 5-gram model even when both models are only trained on the fine-tuning dataset.

Table 9.5 reports the results of the overlap metrics we computed (see Section 9.2.2).
For the Javadoctask, only 17.06% of the perfect (i.e., correct) predictions are shared among
the two models, while 75.87% are correctly generated only by the T5 model. The 5-gram
is responsible for the remaining 7.07% of perfect predictions, that are missed by the T5.
This shows, at least for the Javadoctask, a limited (but existing) complementarity between
the models. Similar results are achieved for the Inner-commenttask. The two models share
19.70% of perfect predictions, with 67.78% of them correctly predicted by T5 only. The
5-gram model contributes the remaining 12.52% again showing some complementarity be-
tween the models.

Fig. 9.4 shows the POS analysis (i.e., percentage of correct predictions of each POS type)
that confirms the superior performance of T5 across all investigated POS categories: Inde-
pendently from the type of word to predict, the T5 outperforms the 5-gram model. Also,
the performances on the Javadoctask are, as expected, superior. Not surprisingly, determin-
ers are the ones having the highest percentage of correct predictions. Nevertheless, POS
types like nouns, adjective, and verbs which are certainly more challenging to predict still

9.3 Results Discussion 131

exhibit a good percentage of correct predictions. This analysis, combined with the previous
one showing the performance of the model at different values of k, shows that the perfect
predictions obtained by the two models (and in particular by the T5) are not only the result
of trivial single word (k = 1) predictions involving simple POS types, but also include more
challenging prediction scenarios. Fig. 9.5 reports five qualitative examples of predictions
performed by both models: the first two are successful predictions made only by the T5 for
the Javadoctask and the Inner-commenttask, respectively.

Note that for the first one, the 5-gram does not generate any prediction likely due to the
fact that the 4-gram provided as input was never encountered in the training set. The T5,
instead, correctly guesses the subsequent 12 tokens in the comment out of the 14 we masked
(thus, this is a perfect prediction when considering k = 12). The third qualitative example is
a prediction failed by both techniques, with the comment generated by the T5 model being
more similar to the reference one. Finally, the two predictions at the bottom represent cases
in which the 5-gram model correctly completes the comment while the T5 comment fails.
Also in this case the first of the two examples is taken from the Javadoctask, while the second
represents an Inner-commenttask. The complete list of predictions is publicly available [repe].

Overall, our quantitative analysis showed the superiority of the T5 model in the code
comment completion task. However, it is important to mention that the T5 model exploits
during the prediction the context we provide as input (i.e., the code likely to be relevant
for the specific comment). This means that, from a practical point of view, such a model
can be exploited for code comment completion only assuming that the developer first writes
the code and, then, the comment to document it. Clearly, this is not always the case and
limits the applicability of the T5 model we experimented with. Such a problem is instead
not present in the n-gram model, that can always be applied as long as n − 1 tokens are
present before triggering the prediction of the nth token. A tool integrated into an IDE to
support code comment completion could exploit both models: The n-gram model could be
triggered if no context can be captured for the comment being written, while the T5 can
perform the prediction when relevant code is present.

Fig. 9.6 depicts the average confidence level for perfect (continues lines) and wrong
(dashed) predictions made by the T5 (red lines) and the 5-gram (orange) model. As it
can be seen, the confidence of both models is a good proxy for the quality of the predictions.
This is particularly true for the T5, for which we can see as the correct predictions tend to
have a confidence greater than 0.5 for all k values, while the wrong predictions have con-
fidence approaching 0.0 when k increases. Thus, a threshold based on confidence could be
used in IDE tools to avoid recommending predictions likely to be wrong.

Finally, it is worth mentioning that, as compared to the task of code comment generation
(i.e., generating a comment from scratch given a code as input), the performance achieved
in terms of perfect prediction is substantially higher. Indeed, when looking at a similar
model (T5) experimented in the context of Javadoc generation, it achieved ∼10% perfect
predictions [MSC+21]. The results in Fig. 9.3 show that, depending on the length of the
prediction on the Javadoctask, for code comment completion, the same model can achieve
∼16-55% perfect predictions. Thus, it might be more feasible for such a (simpler) problem
to develop tools that can already support developers in their everyday coding activities.

132 Supporting Code Summarization via Comment Completion Techniques

Attempts to normalize a vector. If this fails, the <MASK>
public static Vector4f normalizeSafe(Vector4f v){
 try{
 return v.normalize();
 } catch(ArithmeticException ex){
 return Vector4f.ZERO;
 }
}

MASK: method catches the exception and return a zero vector of the same
 dimension instead
T5: method catches the exception and return a zero vector of the same
5-Gram: ‘’

Qualitative examples

protected void onSizeChanged(int w, int h, int oldw, int oldh) {
 super.onSizeChanged(w, h, oldw, oldh);

 // Make sure <MASK>
 if (h != old) {
 recomputeScrollPosition(h, oldh, mPageMargin, mPageMargin);
 }
}

MASK: scroll position is set correctly
T5: scroll position is set correctly
5-Gram: there is capacity for at

@return An account limit structure that <MASK>
public java.util.List<AccountLimit> getAccountLimits(){

 if (accountLimits == null) {
 accountLimits =
 new com.amazonaws.internal.SdkInternalList<AccountLimit>();
 }
 return accountLimits;
}

MASK: contain a list of AWS CloudFormation account limits and their
 values.
5-Gram: contain a list of AWS CloudFormation account limits and their
 values.
T5: describes the layer's limits.

public ByteBuffer encode(OffHeapValueHolder<V> valueHolder);
 ByteBuffer serialized;
 …
 byteBuffer.putLong(valueHolder.expirationTime());
 //represent the hits on previous versions. It is kept for
 //compatibility reasons with <MASK>
 byteBuffer.putLong(0L);
 …
 return byteBuffer;
}

MASK: previously saved data
5-Gram: previously saved data
T5: write/write

public void write(ChannelHandlerContext ctx, Object message,
 ChannelPromise promise) {
 throws Exception {
 checkState(
 state == State.PROTECTED,
 "Cannot write … %s”, state);
 }
 …
 // Just <MASK>
 pendingUnprotectedWrites.add(msg, promise);
}

MASK: add the message to the pending queue.
T5: add the first one and try again.
5-Gram: update the new credentials.

Figure 9.5. Qualitative examples.

9.4 Threats to Validity 133

1 2

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Tokens

1

0.1

3 4 5 6 7 8 9 10 >10 1 2

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

0.1

3 4 5 6 7 8 9 10 >10 1 2

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

0.1

3 4 5 6 7 8 9 10 >10

Overall

C
on
fid
en
ce

C
on
fid
en
ce

C
on
fid
en
ce

T5
Perfect predictions

5-Gram

Wrong predictions

5-Gram
T5

Javadoc Inner

T5
Perfect predictions

5-Gram

Wrong predictions

5-Gram
T5 T5

Perfect predictions

5-Gram

Wrong predictions

5-Gram
T5

Tokens Tokens

Figure 9.6. Confidence level in relation to the length of the predicted tokens

9.4 Threats to Validity

Construct validity. While building our dataset, we made three important assumptions. First,
by providing the code context as input to the T5, we assume that the comment is written by
developers when the code is already implemented, which is not always the case. Still, this
does not invalidate the reported results, but it means, from a practical point of view, that
comment completion recommendations could be triggered by the T5 only when comments
are added after the code is written. Second, when fine-tuning the T5 model, we hid from
the comment under analysis the sentences following the ones in which we masked tokens.
Thus, we are assuming that the comment is written linearly (i.e., one sentence after the
other) which, again, is not always the case. Third, in our study we use the original comment
written by developers as oracle, assuming that it represents a valuable reference for the
experimented model. Also this assumption, while done in many previous works [HLX+18a,
IKCZ16, APS16b, HLX+20b, HLWM20], might be wrong.

Internal validity. An important factor that influences DL performance is hyperparame-
ters tuning. For the pre-training phase, we used the default T5 parameters selected in the
original paper [RSR+20]. For the fine-tuning, we did not change the model architecture
(e.g., number of layers), but we experimented with different learning rates. We are aware
that a more extensive calibration would likely produce better results.

External validity. Our study involved ∼500k Java methods, thus ensuring a good gen-
eralizability at least for Java code. Our results cannot be generalized to other languages.

9.5 Conclusions

We presented an empirical study comparing two different techniques, namely the T5 and the
n-gram model, in the task of code comment completion (i.e., autocomplete a code comment
the developer started writing). The two models are different in nature, with the T5, based on
deep learning, exploiting as information to support the completion of a comment C not only
the first tokens typed by the developer while writing C but also a “context” representing code

134 Supporting Code Summarization via Comment Completion Techniques

relevant for C . The n-gram model, instead, does only consider the n−1 preceding tokens to
predict the nth token.

Our results showed the superiority of the T5, achieving significantly better prediction
performance as compared to the n-gram model. However, the simplicity of the latter and
its wider applicability (it does not require a code context as input), make the two models
potentially complementary in the implementation of a code comment completion tool.

10
A New Metric for Evaluating Code Summarization
Techniques

Empirically evaluating the quality of code summaries generated by automated approaches
is far from trivial. Indeed, assessing the extent to which a natural language text represents a
good summary for a code component would require human (developers) judgment. Given
the difficulties of running large-scale evaluations with developers, the software engineer-
ing community borrowed evaluation metrics from the Natural Language Processing (NLP)
field. These include (but are not limited to) BLEU [PRWZ02], ROUGE [Lin04], and METEOR
[BL05]. These metrics have been originally designed to act as a proxy for the quality of au-
tomatically generated text (e.g., a translation) by comparing it with a reference (expected)
text: The higher the words’ overlap between the generated and the reference text, the higher
the assessed quality.

When adopting such metrics for code summarization, the generated summary is con-
trasted against a single reference text, usually being the original comment written by devel-
opers for the code provided as input, which can be easily mined from software repositories.
However, two important issues emerge when using the NLP metrics in this context. First,
there is no guarantee that the reference text is of high quality, as also demonstrated by em-
pirical studies documenting quality issues in code comments (see e.g., [FWG07, LVLVP15,
WNBL]). Thus, computing a word overlap between the generated and the reference sum-
mary may provide misleading indications of the actual quality of the generated summary.
Second, the mined comment is only one of the possible ways to summarize the related code.
Metrics based on word overlap penalize generated summaries for being different but seman-
tically equivalent to the reference one, thus again not being good proxies for the summary
quality.

The software engineering research community is well aware of the limitations of these
metrics [RFA21, HEBM22]. In response to the second limitation previously discussed (i.e.,
capturing similarity between summaries using different wording but being semantically equiv-
alent), Haque et al. [HEBM22] proposed the usage of word/sentence embeddings to prop-
erly capture the semantic similarity across summaries, moving from word overlapping to
word-similarity measurement. While the authors show that these metrics better correlate

135

136 A New Metric for Evaluating Code Summarization Techniques

with the human judgment of code summary quality as compared to word-overlapping met-
rics (e.g., BLEU, ROUGE, METEOR), they still suffer of the first limitation we discussed, i.e.,
a high similarity to a low-quality reference summary may provide a misleading good assessment
of a generated summary.

In this research, we argue that an important factor in the assessment of summary quality
is currently ignored by the state-of-the-art metrics: “The suitability of the generated summary
for the code to document, independently from the original comment written by developers”.
To provide evidence of that, we present an empirical study that analyzes to what extent,
different metrics to assess automatically-generated code summaries correlate, and comple-
ment with each other in explaining human assessment of such summaries. More importantly,
we check for the complementarity of metrics capturing the new dimension with respect to
others.

We rely on a dataset by Roy et al. [RFA21], featuring more than 5k human evaluations
of automatically generated summaries. Particularly, the authors focus on the interpreta-
tion of metrics used in code summarization, and in particular on BLEU, ROUGE (in several
different variants), METEOR, chrF [Pop15], and BERTScore [ZKW+19]. They conducted a
study with researchers and practitioners asking them to assess the quality of 36 summaries
associated with 6 code snippets (a Java method). Each snippet had six summaries asso-
ciated, one being the reference summary (i.e., the one written by the original developers)
and five resulting from different code summarization techniques [LJM19, HLWM20, ABLY18,
XWW+18, VSP+17]. Overall, they collected 226 surveys, for a total of 6,253 evaluations (not
all participants fully completed the survey. The quality assessment has been performed using
an ordinal scale in the range [0, 5] [Opp92] (the higher the better) and focusing on three
different aspects of each summary: conciseness, fluency, and content adequacy. We relate
such evaluations to the quality assessment provided by different families of metrics.

To capture the suitability of the generated summary for the code to document we ex-
periment with (i) a simple approach relying on the word overlap between the summary
and the code [SHJ13]; (ii) a deep learning-based approach exploiting embeddings obtained
via a model pre-trained on code [WLG+23]; and (iii) SIDE (Summary alIgnment to coDe
sEmantics), a new metric leveraging contrastive learning [SKP15] to model the character-
istics of suitable and unsuitable code summaries for a given code. Our results show that
(i) focusing on assessing the suitability of the generated summary for the documented code
ignoring the reference summary allows to capture orthogonal aspects of summary quality
as compared to state-of-the-art metrics, such as BLEU, ROUGE, METEOR, Jaccard similarity,
as well as metrics based on word/sentence embeddings; and (ii) SIDE is the metric hav-
ing the strongest correlation with human judgment of code summary quality. We also show
that SIDE can be combined with state-of-the-art metrics to provide a more comprehensive
assessment of code summary quality.

10.1 SIDE

We present SIDE, our novel metric to assess whether a natural language text represents a
suitable summary for a given code. First, we provide background information about the DL

10.1 SIDE 137

model on top of which SIDE is based (Section 10.1.1), and the contrastive learning procedure
used to train it (Section 10.1.2). Then, we describe the dataset used for the model’s training
(Section 10.1.3). Finally, Section 10.1.4 provides the details (e.g., parameters) of the training
procedure.

10.1.1 MPNet in a Nutshell

MPNet (Masked and Permuted Pre-training for Language Understanding) [STQ+20] is a
Transformer [VSP+17] pre-trained model built on top of BERT [DCLT19]. Before discussing
its architecture, let us briefly introduce the notion of pre-trained models. Pre-trained Trans-
formers achieved state-of-the-art results in several Natural Language Processing (NLP) tasks
[DCLT19, YDY+19, LOG+19, RSR+20, GRL+21, YDY+19, STQ+20, LLG+20, ACRC21, ZZSL20b].
The pre-training, together with the self-attention mechanism featured in the Transformer ar-
chitecture [VSP+17], played a major role in these achievements. The idea of pre-training is
to provide the model with general knowledge about a language of interest before specializ-
ing it for a specific task. For example, let us assume we want to create an English-to-French
translator. The model can be pre-trained on a large amount of unlabelled English and French
data (e.g., articles extracted from Wikipedia) using a self-supervised training objective, such
as masked language modeling (MLM). MLM consists in randomly masking a percentage of
the tokens in a given (English or French) sentence asking the model to guess them. For ex-
ample, applying MLM to a sentence 〈T1, T2, T3, T4, T5〉 we could obtain 〈T1, M , T3, M , T5〉
(i.e., T2 and T4 have been masked). The input for the model is the masked sentence, while
the expected output are T2 and T4 as replacements for the two masked tokens. The idea
is that thanks to MLM, the model starts acquiring knowledge about the languages’ struc-
ture, preparing it to be specialized (fine-tuned) for the task of interest, namely language
translation.

The MLM pre-training objective has been adopted by several Transformer architectures,
such as BERT [DCLT19]. However, MLM suffers from a limitation: It ignores the depen-
dencies among the masked tokens, possibly limiting the learning of complex semantic rela-
tionships. To overcome this limitation, Yang et al. [YDY+19] proposed in XLNet the usage of
permuted language modeling (PLM) during pre-training. This forces the model to learn long-
range relations between tokens by guessing the correct positioning of the tokens in the whole
sentence. While the technical details can be found in the paper introducing the technique
[STQ+20], the basic idea is that at pre-training time the model is provided with a permuted
sentence featuring masked tokens and, on top of that, with original positioning information,
i.e., what was the original position of the tokens in the sentence before permutation. MPNet
managed to achieve new state-of-the-art results in several works from the NLP community
[PHSP22, MHH+22, GDX+21, HTZ+21], including those relying on contrastive learning as
training procedure [PHSP22, WCH+22], and it is the pre-trained model we specialize for the
task of classifying a textual summary as suitable or not for a given code.

In terms of architecture, MPNet builds upon the BERTbase model, which comprises 12
transformer layers with a hidden size of 768, 12 attention heads, and a total of 110M train-
able parameters. MPNet was pre-trained using the same corpora exploited for the training of

138 A New Metric for Evaluating Code Summarization Techniques

RoBERTa [LOG+19], which includes datasets such as Wikipedia and BooksCorpus [ZKZ+15],
OpenWebText [GC19], CC-News [ccn], and Stories [ccs], summing up for a total of 160GB
of textual data.

10.1.2 Contrastive Learning

Contrastive learning [SKP15] allows DL models to learn an embedding space where similar
sample pairs (i.e., pairs sharing specific features) are clustered together while dissimilar
pairs are set apart. In our context, we use contrastive learning to discriminate suitable vs
unsuitable summaries for a given source code snippet. To this aim, we need to show to the
model both positive samples (source code associated with suitable summaries) and negative
samples (source code associated with unsuitable summaries).

Several contrastive representation learning losses have been proposed in the literature
[HCL06, SKP15, Hub92, Kul97]. We employ the triplet loss [SKP15], which has been shown
to better encode the positive/negative samples as compared to other contrastive losses [CHL05].
The triplet loss function has been proposed by Schroff et al. [SKP15] and introduces the con-
cept of “anchor”. Given an anchor x , a positive (x+) and a negative (x−) sample is selected,
with the triplet loss which during training minimizes the distance between the x and x+,
while maximizing the distance between x and x−.

In our case, the anchor is the code to document, with a suitable summary representing
x+ and an unsuitable summary representing x−. In the following, we introduce the dataset
used to fine-tune MPNet for the task of interest, explaining how we generate positive and
negative samples.

10.1.3 Fine-tuning Dataset

We need to collect code instances paired with “suitable” and “unsuitable” code summaries. In
our evaluation of SIDE (Section 10.2) we will exploit a dataset from the literature featuring
developers’ evaluation of code summaries for Java methods [RFA21]. Thus, we started by
collecting Java methods accompanied by a textual summary.

We exploited the CodeSearchNet dataset [HWG+19], featuring ∼6M functions from var-
ious programming languages, including Java, and a subset of Java methods is accompanied
by a Javadoc description. Lu et al. [LGR+21] observed that the original CodeSearchNet
dataset featured instances potentially being problematic. Therefore, they created a curated
version of the dataset excluding methods that cannot be parsed, and those paired with a
Javadoc (usually, the method’s summary) having its first sentence shorter than 3 or longer
than 256 tokens, and featuring special tokens (such as 〈img〉), or not being written in En-
glish. Their refined Java subsection of the CodeSearchNet dataset comprises 181,061 pairs
of 〈method, summar y〉 which have been already split into three subsets: 164,923 training,
5,183 validation, and 10,955 testing. The summar y here is the first sentence of the Javadoc
extracted as the first paragraph of the documentation (i.e., the one delimited with the first
period) [LGR+21]. To increase the confidence in the quality of the exploited dataset and
verify whether the sentences automatically extracted from the documentation actually rep-
resent summaries of the method, two of the authors independently inspected 100 randomly

10.1 SIDE 139

selected samples from the dataset, classifying their associated documentation as “code sum-
mary” or “other”. The guideline was to classify it as a code summary if it summarizes the
intent of the method. After solving 2 cases of disagreement, 95 of the inspected documen-
tations were classified as actual summaries.

The starting assumption is that the original summary written by the developers is a posi-
tive sample when paired with its associated method. This makes for 164,923 positive samples
in our dataset. The same number of negative samples can be easily created by associating
each method with a randomly selected summary from the training set (different from the
original summary). The result is a dataset of 164,923 〈method, posi t ive, negavi te〉 triplets
featuring, for each method, a positive and a negative summary. The approach used to create
the negative samples, while simple, may associate unrelated summaries to methods, simpli-
fying the learning of the model, i.e., it becomes rather easy to discriminate between positive
and negative samples at training time. However, when assessing the quality of an automati-
cally generated summary (our final goal for SIDE), it is unlikely that the latter is completely
unrelated to the input method, even when it is of low quality. Thus, we must train SIDE
so that it is able to identify as “unsuitable” for a given method even summaries which are
plausible yet still suboptimal. These are known in the literature as hard-negative samples
[OSXJS16, SKP15].

To automatically generate these summaries, we conjecture that inner comments only
documenting a subset of the method’s statements are unsuitable as “method’s summary”.
Nevertheless, they are still likely to be related to the method, certainly more than randomly
selected summaries. Thus, we parsed the methods in the training set to extract all their inner
comments and associated each inner comment to the set of statements it documents. For
such association, we use the heuristics previously proposed in the literature, linking each
inner comment to all following statements until an empty line or a closing curly bracket is
reached [CHL+19b, HHC+20]. Comments reporting self-admitted technical debt [PS14a]
have been identified using keywords matching and excluded (we removed all comments
including one of the following words: to-do, fix-me, todo, fixme, xxx, hackme, hack-me).

Indeed, these comments do not describe the code. We then computed the percentage
of statements in the method that each comment documents, only considering actual code
statements (i.e., excluding comments and blank lines). We consider a comment as a good
hard-negative sample (i.e., a plausible method description being, however, unsuitable as a
method’s summary) if it documents less than 25% of the method’s statements. The choice of
the 25% threshold is motivated by the following assumption: if a comment describes at most
one fourth of the statements in a method, it is unlikely that it can represent a comprehensive
summary of it while still possibly documenting some of the responsibilities implemented in
the method. We managed to create a hard-negative for ∼15% (24,951) of the instances in
our training dataset, since the others did not have any inner comment matching our selection
procedure.

Our training dataset features 164,923 triplets generated using random negatives, and
61,001 triplets featuring instead hard-negatives, since each of the 24,951 methods for which
we managed to create a hard-negative can contribute with more than a single instance.

140 A New Metric for Evaluating Code Summarization Techniques

10.1.4 Training and Model Evaluation

MPNet has been trained for 10 epochs (which accounted for 141,205 training steps) using
a batch size of 16 and a maximum sequence length of 512 tokens. The sequence length acts
on the input of the model (in our case, the concatenation of a method and its summary),
cutting out longer sequences. This impacted only 4.27% of the instances in our fine-tuning
dataset. The learning rate has been warmed-up by taking into account the overall size of
the training dataset, batch size and number of epochs. This strategy, which increases the
learning rate from 0 to 2e-5 (default values when using the AdamW optimizer [LH19]) has
been previously adopted when training BERT-based models using Sentence Transformers
[RG19]

The best-performing checkpoint which we found to be the last one saved (i.e., after
141,205 training steps) has then been selected as the one maximizing the following score
(also used in previous work using contrastive learning [ZKW+20, SO21]):

To reduce the chance of overfitting, we save checkpoints every 5k training steps while us-
ing a patience of 5. Specifically, we evaluate the model on the validation set (Section 10.1.3),
which includes 5,183 positive samples (the original descriptions associated with each method)
and the same number of negative samples randomly generated as explained in Section 10.1.3.
The best-performing checkpoint has then been selected as the one maximizing the following
score (also used in previous work using contrastive learning [ZKW+20, SO21]):

∑N
i=1 CSpositivei −CSnegativei

N

where N represents the number of positive and negative samples (which in the evaluation
set is guaranteed by construction to be the same), CSpositivei represents the cosine similarity
returned by the model between the method mi and its “positive” summary, while CSnegativei
represents the cosine similarity returned between method mi and its “negative” summary.
A perfect model would return 1.0 for such a metric, reporting 1.0 as the similarity of all
positive summaries and -1.0 as the similarity of all negative summaries. We acknowledge
that our evaluation set features randomly generated negative instances that, as such, are
simple to identify by the model.

However, such a procedure is just used to select the best-performing checkpoint for SIDE,
and not for its empirical evaluation (described in Section 10.2).

10.2 Study Design

The goal of this study is to evaluate metrics used in the literature to assess the quality of code
summarization approaches, including our newly proposed metric SIDE using contrastive
learning. The quality focus is the complementarity of the considered metrics with respect
to others, and the extent to which the considered metrics would explain summary quality
assessments performed by developers. The perspective is of researchers wanting to define a
framework for the assessment of code summary quality, that can be used, for example, to
evaluate code (re)documentation approaches.

10.2 Study Design 141

The context consists of (i) the dataset by Roy et al. [RFA21] featuring more than 5k
developers’ quality assessments of automatically generated summaries; and (ii) 40 summary
evaluation metrics, including SIDE. The study addresses the following research questions:

RQ1: To what extent different metrics to evaluate the quality of source code summarization
correlate with each other? Before analyzing how metrics contribute to explaining the quality
of generated summaries, we analyze the extent to which they are related with each other,
or, instead, capture different dimensions of the dataset variability.

RQ2: To what extent different metrics to evaluate the quality of source code summarization
contribute to explain user-based evaluations? After having identified a subset of unrelated
metrics capturing the dataset variability, we analyze the extent to which these metrics con-
tribute to explaining different summarization quality indicators. This would aim at providing
a quantitative indication not only of the complementarity of the different metrics but also of
the importance of each metric to describe an extrinsic quality indicator.

10.2.1 Evaluation Dataset

We use the dataset by Roy et al. [RFA21]. As previously explained, this dataset features
humans’ evaluations of both automatically generated summaries for Java methods as well
as of the original summaries written by the methods’ developers. The latter are not suitable
for our study. Indeed, to compute some of the evaluation metrics (e.g., BLEU score), we
need an automatically-generated summary to contrast against a reference summary. Thus,
we remove from the set of 6,253 evaluations the 1,052 evaluations referring to the (manually
written) original summaries, leaving us with the dataset of 5,201 evaluations.

10.2.2 Variable Selection

The 5,201 evaluations performed by developers [RFA21] concern three quality aspects of
summaries, all rated on an ordinal scale from 0 to 5 [Opp92] (the higher the better):

• Conciseness: Assesses the degree to which the summary contains unnecessary infor-
mation.

• Fluency: Evaluates the continuity or smoothness rate in the generated summary.

• Content Adequacy: Assesses the extent to which the summary lacks information
needed to understand the code.

In addition Roy et al. [RFA21] also collected a Direct Assessment (DA) score [GBMZ13],
expressed on a scale from 0 to 100, and providing an overall quality assessment of the sum-
mary. The three quality aspects (conciseness, fluency, and content adequacy), and the DA
score represent the dependent variables of our study.

Regarding the independent variables i.e., automated evaluation metrics for code sum-
maries we considered, besides SIDE, (i) all metrics in the work by Roy et al. [RFA21], (ii)
additional metrics used in the work by Haque et al. [HEBM22], (iii) the c_coeff metric pro-
posed by Steidl et al. [SHJ13], and (iv) a baseline we define based on CodeT5+ [WLG+23]

142 A New Metric for Evaluating Code Summarization Techniques

(a Transformer pre-trained on code and English text) to compute the textual similarity be-
tween the generated summary and the code. The latter has the purpose to let us check the
actual benefits (if any) brought by the contrastive learning we adopt in SIDE as compared to
other DL-based approaches. The considered metrics, besides being a comprehensive set of
those used in the literature to assess code summarization techniques, approach the quality
assessment of code summaries in different ways.

In particular, the ones inherited from the works by Roy et al. [RFA21] and Haque et al.
[HEBM22] are conventional metrics, in the sense that they look at the similarity between
the generated summary and the reference summary. These metrics range from very simple
(e.g., word overlapping between the two summaries), to more complex ones exploiting DL-
based embeddings. Differently, c_coeff [SHJ13], CodeT5+, and SIDE look for the similarity
between the generated summary and the documented code. This is the first time such a
dimension is considered in the assessment of code summarization techniques. While several
approaches can be used to measure such a similarity, we opted for three metrics including a
“trivial” solution (i.e., the c_coeff metric exploiting word overlap), a state-of-the-art Trans-
former pre-trained model (CodeT5+), and a contrastive learning-based solution being SIDE.
For what concerns SIDE, we consider two of its variants: One exploiting hard-negatives in
the training set (as extracted using the procedure described in Section Section 10.1.3) and
one only including random negatives. This is basically an ablation study investigating the
role played by the hard-negatives on the ability of SIDE to assess the suitability of a summary
for a given code.

10.2.3 Words/characters-overlap based Metrics

BLEU (BilinguaL Evaluation Understudy) [PRWZ02] measures the similarity between
the candidate (predicted) and reference (oracle) summaries. Such a similarity assesses the
overlap in terms between the two summaries and it is defined on a scale between 0 (com-
pletely different summaries) to 1 (identical summaries). We compute the BLEU score at the
sentence level for various values of n, including n={1, 2, 3, 4}. We also compute the BLEU-A
being the geometric mean of the four BLEU variants we consider.

METEOR (Metric for Evaluation of Translation with Explicit ORdering) [BL05] is com-
puted as the harmonic mean of unigram precision and recall, with recall being assigned a
higher weight than precision. In contrast to BLEU, METEOR incorporates stemming and
synonyms matching to align more closely with human perception of similarity between sen-
tences. The METEOR score ranges from 0 to 1, with a score of 1 indicating two identical
sentences.

ROUGE (Recall-Oriented Understudy for Gisting Evaluation) [Lin04] is a set of metrics
for evaluating both automatic summarization of texts and machine translation techniques.
ROUGE metrics compare an automatically generated summary or translation with a set of
reference summaries (typically, human-produced). Similarly to Roy et al. [RFA21], we com-
pute ROUGE-N(1-4), ROUGE-L, and ROUGE-W. ROUGE-N measures the number of matching
n-grams between the generated summary and the reference summary with results reported
in terms of recall, precision and f1-score.

10.2 Study Design 143

Jaccard [Han04]measures the degree of overlap between two sets of tokens (summaries
in our case). It is calculated by dividing the size of their intersection by the size of their union,
thus obtaining a value between 0 and 1 (the higher the Jaccard, the more similar the two
summaries).

chrF (character n-gram F-score) [Pop15] measures the similarity between the generated
and the reference summaries at the character level (rather than at the word-level as done by
the above metrics), reporting the computed value using the F-score.

c_coeff [SHJ13], while still based on word overlap, focuses on the similarity between
a summary and its associated code: It computes the percentage of words in a summary
that is similar to words in the code, where two words are considered similar if they have a
Levenshtein distance lower than two.

10.2.4 Embedding-based Metrics

TF-IDF (Term frequency-inverse document frequency) [R+03] is a widely used term
weighting schema assessing the importance of a word within a document collection. In our
context, TF-IDF is used to compute the cosine similarity (TF-IDF_CS) and the Euclidean dis-
tance (TF-IDF_ED) between the terms’ vectors representing the generated and the reference
summary.

BERTScore [ZKW+19] computes sentence similarity using the embedding of the BERT
model [DCLT19], which has been trained on English textual data. We report all the BERTScores
which include, precision (BERTScore-P), recall (BERTScore-R), and F1-score (BERTScore-
F1).

SentenceBERT [RG19] employs a siamese network architecture to generate fixed-length
representations of sentences using BERT [DCLT19] as a backbone to produce the encoding.
The representations of the generated and the reference summary are compared via cosine
similarity (SentenceBERT_CS) and the Euclidean distance (SentenceBERT_ED).

InferSent [CKS+17] relies on GloVe vectors [PSM14] as pre-trained word embeddings
for the sentence pair. The embeddings are then passed through RNN encoder layers to obtain
fixed-length vector representations for each sentence. Also in this case both the cosine simi-
larity (InferSent_CS) and the Euclidean distance (InferSent_ED) are considered to contrast
the generated and the reference summary.

Universal Sentence Encoder (USE) [CYK+18] employs transformer encoders to gener-
ate context-aware representations of words within a sentence by levering the self-attention
mechanism. Both USE_CS (cosine similarity-based) and USE_ED (Euclidean distance-based)
are considered.

CodeT5+_CS [WLG+23] exploits CodeT5+, a model pre-trained on code and natural
language. We use the CodeT5+base variant (∼220M trainable parameters) to compute the
cosine similarity between the embeddings of the generated summary and the code to doc-
ument. CodeT5+_CS acts as a further baseline for SIDE which has been fully trained via
contrastive learning.

144 A New Metric for Evaluating Code Summarization Techniques

10.2.5 Analysis Methodology

In the following, we describe the study analysis methodology. The whole analysis has been
performed using the R [R C20] statistical environment. For statistical tests, we assume a
significance level α= 0.05.

To address RQ1, we first analyze the correlation between different summary evalua-
tion metrics. To avoid being constrained with linear relationships only, we leverage the
non-parametric, Spearman’s rank correlation [Con98]. To show the correlation, we cre-
ate a visual overview of correlation among metrics using the varclus function part of the R
Hmisc package [HwcfCDmo20]. The output of this procedure is a hierarchical clustering
of variables (i.e., our metrics), producing a dendogram (i.e., the clustering tree) visualizing
correlated metrics. Note that we do not use Spearman’s correlation to select uncorrelated
variables but, as explained below, the redun procedure which allow accounting for multi-
collinearity other than collinearity.

We complement the correlation analysis with a Principal Component Analysis (PCA)
[Jol86]. PCA leverages Singular Value Decomposition (SVD) to describe the underlying data
variance and covariance expressed as linear combinations of the considered variables.

To avoid having the results of the PCA being affected by collinearity, we run a variable
selection procedure using the redun function from the Hmisc package [HwcfCDmo20]. This
function performs a stepwise removal of the independent variables determining how well
each variable can be predicted by the remaining ones. The process starts by first removing
the most predictable variable and continuing subsequently until no variable among the pre-
dictors can be predicted with a given (adjusted) R2, which we set equal to 0.8. Then, before
applying PCA, we re-scale the variables in the range [0,1] using a min-max re-scaling.

The PCA on the selected variables returns the eigenvectors related to each independent
component, where the (absolute) values in correspondence of each metric indicate the im-
portance of the metric for that component. Moreover, it returns the standard deviation cap-
tured by each principal component, which indicates the importance of the component itself.
The PCA has been performed using the prcomp function of the R (default) stats package.

To address RQ2, we determine the extent to which different summary quality metrics
can complement each other to explain extrinsic quality indicators provided by users. Given
the (ordinal) scale of the dependent variables, and given that we cannot assume a linear
relation between independent and dependent variables, this analysis has been performed
by employing a multivariate logistic regression. A conventional logistic regression model
is not suitable for our analysis, because the dependent variables are not dichotomous but,
rather, expressed on a 0-5 ordinal scale [Opp92], or on a 1-100 scale (in the case of DA
score).Therefore, we use an ordered logistic regression. Given the l levels of an ordinal
variable, the ordinal logistic regression models ℓ different logits as:

ln
�

P(Y ≤ ℓ)
P(Y > ℓ)

�

= ξℓ −η1X1 − · · · −ηnXn (10.1)

where Y is the model’s dependent variable, X i the independent variables, ηi their coefficients
(estimates), and ξℓ the intercept.

10.3 Results Discussion 145

We use the polr function from the MASS package [VR02]. The interpretation of the model
estimates is similar to the ones of logistic regression, with the difference that, given an esti-
mate ηi , the OR=eηi indicates what are the increased odds of a unitary value increment for
the dependent variable given a unitary increase of an independent variable. The application
of the ordered logistic regression follows three subsequent steps, i.e., (i) variable selection,
(ii) variable re-scaling, and (iii) model building.

For the variable selection, we use the output of the redun procedure used in RQ1. Then,
given the selected variables, we re-scale them in the same range of the dependent variable
being modeled. This makes the interpretation and comparison of the model’s ORs easier.
As for the dependent variables, we leave them as they are (i.e., on a scale from 0 to 5 for
conciseness, fluency, and content adequacy, and on a scale from 1-100 for DA score).

Finally, we apply the polr procedure, relating each dependent variable to all indepen-
dent variables that were left after the redun feature selection. We report (i) fitting diagnos-
tics (in particular the Akaike Information Criterion - AIC value), (ii) independent variables
estimates, OR, and significance p-value adjusted, due to multiple factors, with the Benjamini-
Hochberg correction [BH95].

10.3 Results Discussion

RQ1: Correlation of different metrics to evaluate the quality of source code summarization

Fig. 10.1 depicts the hierarchical clustering of the independent variables output of the varclus
procedure. Note that the values on the x-axis show the square of the Spearman’s correlation
(e.g., a value of 0.64 indicates a correlation of 0.82 = 0.64).

The top-level fork of the tree splits the metrics into two different families. The first groups
all conventional metrics capturing the similarity between a generated and a reference sum-
mary, while the second includes the three metrics focusing on the relevance of the generated
comment for the documented code (i.e., CodeT5-plus_CS, c_coeff, and SIDE). This is a first
indication of the fact that the two families of metrics focus on different aspects of summary
quality.

Looking inside the sub-tree composed of conventional metrics, BLEU-1 is not correlated
with all others, not even with the other BLEU variants. While this may look counter-intuitive,
BLEU-1 focuses on single-word overlap, while its other variants look at n-grams overlap. This
usually results in much higher values for the BLEU-1 as compared to BLEU-2, BLEU-3, and
BLEU-4.

The deeper we go into the tree, the more cohesive the clusters of metrics that can be ob-
served. The three metrics looking at the documented code (i.e., CodeT5-plus_CS, c_coeff,
and SIDE) are very high in the dendogram indicating that, while they stay apart from the
other conventional metrics, the correlation among them is small, likely due to the different
underlying solutions used to assess the relevance of a generated summary for a given code.

The next step in our data analysis is to use the PCA to identify the orthogonal components
in the performed measurements. To run it, we first selected the metrics to consider using

146 A New Metric for Evaluating Code Summarization Techniques

B
LE

U
−

1
R

O
U

G
E

−
4−

R
R

O
U

G
E

−
4−

F
1

R
O

U
G

E
−

4−
P

R
O

U
G

E
−

3−
R

R
O

U
G

E
−

3−
F

1
R

O
U

G
E

−
3−

P
R

O
U

G
E

−
1−

P
R

O
U

G
E

−
L−

P
R

O
U

G
E

−
W

−
P

R
O

U
G

E
−

1−
F

1
R

O
U

G
E

−
L−

F
1

R
O

U
G

E
−

W
−

F
1

M
E

T
E

O
R

Ja
cc

ar
d

T
F

_I
D

F
_C

S
T

F
_I

D
F

_E
D

R
O

U
G

E
−

1−
R

R
O

U
G

E
−

L−
R

R
O

U
G

E
−

W
−

R
R

O
U

G
E

−
2−

R
R

O
U

G
E

−
2−

F
1

R
O

U
G

E
−

2−
P

B
E

R
T

S
co

re
−

R
B

E
R

T
S

co
re

−
P

B
E

R
T

S
co

re
−

F
1

ch
rF

B
LE

U
−

2
B

LE
U

−
4

B
LE

U
−

A
B

LE
U

−
3 In

fe
rS

en
t_

C
S

In
fe

rS
en

t_
E

D
U

S
E

_C
S

U
S

E
_E

D
S

en
te

nc
eB

E
R

T
_C

S
S

en
te

nc
eB

E
R

T
_E

D
C

od
eT

5−
pl

us
_C

S
c_

co
ef

f
S

ID
E

1.
0

0.
8

0.
6

0.
4

0.
2

0.
0

S
pe

ar
m

an
 ρ

2

Figure 10.1. RQ1 - Spearman’s correlation clustering on the independent variables with varclus

the redun function as explained in Section 10.2.5.
This process resulted only in the 10 metrics listed in Table 10.1, already providing a first

indication of the fact that the other metrics considered in our study are redundant and highly
correlated with at least one of the 10 selected. The latter include (i) four words/characters-
overlap based metrics capturing the similarity between the generated and the reference
summary (i.e., BLEU-1, ROUGE-1-P, ROUGE-4-R, and ROUGE-W-R); (ii) three embedding-based
metrics also focusing on the similarity between the generated and the reference summary
(i.e., BERTScore-R, SentenceBERT_CS, and InferSent_CS); and (iii) all three metrics focus-
ing on the similarity/relevance of the generated summary to the documented code (i.e.,
c_coeff, CodeT5-plus_CS, and SIDE).

Table 10.1 reports the results of the PCA, with 10 principal components (PCs) identi-
fied. The first row indicates the proportion of variance captured by each PC. The higher
such a value, the higher the variance in the dataset described by the PC. The second row
reports the cumulative proportion of variance when considering the first n PCs. For exam-
ple, by just using five PCs, it is possible to capture 91% of the variance in the data, i.e.,
55% (PC1) + 16% (PC2) + 8% (PC3) + 7% (PC4) + 4% (PC5). The remaining 10 rows in
Table 10.1 show the importance of each metric for each PC: The higher the absolute value,

10.3 Results Discussion 147

Table 10.1. RQ1 - PCA for the evaluated metrics

PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10

Prop. of Variance 0.55 0.16 0.08 0.07 0.04 0.03 0.02 0.02 0.01 0.01
Cumulative Prop. 0.55 0.71 0.80 0.87 0.91 0.94 0.96 0.98 0.99 1.00

BLEU-1 0.26 0.24 -0.44 0.11 -0.50 0.13 -0.44 0.45 -0.09 -0.09
BERTScore-R 0.47 0.15 -0.24 0.25 -0.18 -0.18 0.74 -0.07 0.10 -0.09

SentenceBERT_CS 0.38 -0.10 0.04 0.17 0.22 -0.68 -0.37 -0.18 -0.32 -0.18
InferSent_CS 0.23 -0.01 -0.01 0.06 0.09 -0.21 -0.17 0.10 0.54 0.75

ROUGE-1-P 0.44 0.07 -0.10 0.21 0.33 0.63 -0.17 -0.43 -0.14 0.11
ROUGE-4-R 0.41 0.26 0.38 -0.73 -0.25 0.01 -0.02 -0.14 -0.05 0.02
ROUGE-W-R 0.30 -0.04 0.36 0.06 0.44 0.15 0.05 0.64 0.19 -0.32

c_coeff 0.13 -0.47 0.53 0.39 -0.54 0.13 -0.07 -0.10 0.06 -0.01
CodeT5-plus_CS -0.00 -0.02 -0.17 -0.08 -0.03 -0.02 -0.23 -0.34 0.72 -0.53

SIDE 0.20 -0.79 -0.39 -0.39 0.03 0.07 0.08 0.10 -0.07 0.02

the higher the metric’s contribution to that PC. For each PC, we highlight with a dark back-
ground the metric(s) contributing the most to it. In particular, we highlight the metric with
the highest absolute value in the eigenvector and all those close to it (at most -5% within
the absolute value). The “5%” choice is arbitrary and just meant to simplify the results’
visualization and discussion highlighting all metrics similarly contributing to a PC. PC1 is
captured by conventional metrics looking for textual similarity between the generated and
the reference summary (mostly BERTScore and ROUGE). PC2 is instead exclusively captured
by SIDE, suggesting the importance of including metrics considering the code to document
when measuring summary quality.

The second-highest value for PC2 is obtained by using c_coeff, but it is substantially
smaller than the one associated with SIDE (0.47 vs 0.79). For PC3, c_coeff exhibits instead
the highest eigenvector.

The analysis conducted so far indicates that by just considering three metrics (e.g., BERTScore-
R, SIDE, and c_coeff) it is possible to capture 80% of the variance in the data.

Conventional metrics are also associated with PC4 (ROUGE-4-R), with c_coeff being
instead the one capturing PC5. Basically, among the top-5 PCs, 3 are mostly captured by
metrics considering the code to document in the equation.

In summary, RQ1 findings show that conventional metrics looking at the similarity be-
tween the generated and the reference summary do not correlate with those looking at the
relevance/similarity of the generated summary for/with the documented code. Also, they
only capture part of the variance in the data.

This only indicates that the metrics considering the documented code (e.g., SIDE, or
c_coeff) capture orthogonal information as compared to the conventional ones, not whether
or not they better capture code summary quality as perceived by developers.

148 A New Metric for Evaluating Code Summarization Techniques

RQ2: Contribution of different code summarization metrics in explaining user-based
evaluations

Before discussing how various metrics to assess source code summarization impact user-
based evaluations, we must anticipate that, in this section will focus exclusively on the out-
comes achieved when training SIDE using hard-negatives. Additional information about the
conducted ablation study is provided in Section 10.3.2.

Table 10.2 reports the results of the ordered logistic regression for each code summary
quality attribute (dependent variables) manually evaluated by developers (i.e., DA score,
content adequacy, conciseness, and fluency). We focus our discussion on the Odds Ratios
(ORs) of the statistically significant p-values (<0.05), which are the ones highlighted with
a black background. The interpretation of the ORs is as follows: they indicate the odds of a
unitary increment in the dependent variable given a unitary increment in the independent
variable. For example, if we look at the OR of SIDE when considering the content adequacy
as a dependent variable (1.6265), it indicates ∼62% higher odds of observing a unitary
increment in the content adequacy as perceived by developers for each unitary increment
of the SIDE value. Remember that both independent and dependent variables have been
normalized on the same scale: In the case of DA score, all variables are in the 1-100 range,
while the three other variables are in the range 0-5, since we followed the scales used in
the developers’ evaluation. This also explains the lower ORs in the DA score table. Indeed,
a unitary increase on a 1-100 range has a different magnitude as compared to a unitary
increase on a 0-5 scale.

A first observation that can be made is that SIDE is the metric having the highest OR
independently from the considered dependent variable. Also, only five metrics obtained a
significant p-value for at least one dependent variable (SIDE is always among them).

The “overall” quality of the summary (i.e., DA score) and its content adequacy as perceived
by developers is captured by five metrics: SIDE, c_coeff, CodeT5-plus_CS, SentenceBERT_CS,
and ROUGE-1-P, with SIDE and c_coeff having the highest and second-highest OR, respec-
tively, for both dependent variables. Still, conventional metrics looking at the similarity
between a generated and a reference summary also play a role in capturing code summary
quality as assessed through DA score and content adequacy.

When moving to the summary conciseness and fluency, SIDE and c_coeff confirm their
strong relationship with the human assessment (with SIDE being the best in the class), while
the conventional metrics struggle in capturing these quality aspects, with the only exception
being the ROUGE-W-R when looking at the conciseness.

Still, the OR for SIDE is 1.3844 (i.e., 38% higher odds of a unitary increment in the human
assessment of summary conciseness for a one unit increase of SIDE), while for ROUGE-W-R is
substantially lower (1.0954). The reason may lie behind the different assumptions made by
the two families of metrics. To explain this point, let us take the example of the conciseness
quality attribute. Metrics such as SIDE might learn during training that longer methods
may need longer summaries and, thus, that very long summaries for short methods may not
be appropriate. This is likely aligned with what a developer would think when judging the
conciseness of a summary. Similarly, c_coeff is likely to produce low values when a very long
summary is associated with a short method, since the denominator of the used formula (i.e.,

10.3 Results Discussion 149

Table 10.2. RQ2 - Ordered logistic regression model

Overall DA Score [RFA21]

Metric OR Value Std. Error t-value p-value
BLEU-1 0.9990 -0.0010 0.0017 -0.5822 0.6222
BERTScore-R 1.0029 0.0029 0.0023 1.2634 0.2943
SentenceBERT_CS 1.0057 0.0057 0.0020 2.8882 0.0100
InferNet_CS 0.9980 -0.0020 0.0025 -0.8064 0.5250
ROUGE-1-P 1.0058 0.0058 0.0018 3.2552 0.0033
ROUGE-4-R 1.0024 0.0024 0.0011 2.1987 0.04667
ROUGE-W-R 0.9996 -0.0004 0.0017 -0.2485 0.8040
c_coeff 1.0143 0.0142 0.0012 11.4549 <0.0001
CodeT5-plus_CS 1.0044 0.0044 0.0017 2.5383 0.0220
SIDE 1.0205 0.0203 0.0017 11.7029 <0.0001

Content Adequacy [RFA21]

Metric OR Value Std. Error t-value p-value
BLEU-1 0.9672 -0.0333 0.0347 -0.9615 0.4200
BERTScore-R 1.0525 0.0512 0.0468 1.0927 0.3929
SentenceBERT_CS 1.1121 0.1063 0.0406 2.6172 0.0225
InferNet_CS 1.0000 0.0000 0.0517 -0.0004 1.0000
ROUGE-1-P 1.0943 0.0901 0.0364 2.4733 0.0260
ROUGE-4-R 0.9914 -0.0086 0.0226 -0.3814 0.7811
ROUGE-W-R 1.0437 0.0428 0.0351 1.2202 0.3700
c_coeff 1.3729 0.3169 0.0255 12.4350 <0.0001
CodeT5-plus_CS 1.1413 0.1322 0.0358 3.6877 <0.0001
SIDE 1.6265 0.4864 0.0366 13.2942 <0.0001

Conciseness [RFA21]

Metric OR Value Std. Error t-value p-value
BLEU-1 1.0656 0.0636 0.0342 1.8576 0.1575
BERTScore-R 1.0160 0.0159 0.0470 0.3375 0.8770
SentenceBERT_CS 1.0587 0.0571 0.0403 1.4163 0.2617
InferNet_CS 1.0079 0.0079 0.0511 0.1547 0.8770
ROUGE-1-P 1.0075 0.0075 0.0359 0.2091 0.8770
ROUGE-4-R 0.9937 -0.0063 0.0228 -0.2766 0.8770
ROUGE-W-R 1.0954 0.0911 0.0346 2.6352 0.0267
c_coeff 1.2433 0.2178 0.0254 8.5798 <0.0001
CodeT5-plus_CS 1.0630 0.0611 0.0355 1.7212 0.1700
SIDE 1.3844 0.3253 0.0354 9.1835 <0.0001

Fluency [RFA21]

Metric OR Value Std. Error t-value p-value
BLEU-1 1.0650 0.0629 0.0345 1.8243 0.2267
BERTScore-R 1.0559 0.0544 0.0467 1.1638 0.4600
SentenceBERT_CS 0.9958 -0.0042 0.0404 -0.1043 0.9170
InferNet_CS 1.0543 0.0529 0.0515 1.0272 0.4600
ROUGE-1-P 1.0334 0.0329 0.0365 0.9004 0.4600
ROUGE-4-R 1.0304 0.0299 0.0229 1.3061 0.4600
ROUGE-W-R 0.9672 -0.0334 0.0347 -0.9603 0.4600
c_coeff 1.1680 0.1553 0.0253 6.1437 <0.0001
CodeT5-plus_CS 1.0249 0.0246 0.0357 0.6902 0.5444
SIDE 1.2826 0.2489 0.0359 6.9359 <0.0001

150 A New Metric for Evaluating Code Summarization Techniques

the number of terms in the summary) increases. Differently, conventional metrics would
judge a generated summary of high quality if it is similar to the reference one. Thus, if
the reference is not concise and the generated summary is similar to the reference (thus,
not concise as well), the assessed quality will be high and not aligned with the developers’
perception.

10.3.1 Qualitative Analysis

To provide further insights into the complementarity of the two families of metrics, we se-
lected four qualitative examples to discuss (Fig. 10.2). Each example features (i) the Java
method for which a summary was automatically generated; (ii) the target summary (i.e.,
the one written by developers); (iii) the generated summary; and (iv) the quality scores
assigned by the seven state-of-the-art (SOTA) metrics selected via the redun procedure (i.e.,
BLEU-1, BERTScore-R, etc.), by our SIDE metric, and in the human assessment. We selected
two examples in which SIDE provides an indication aligned with the developers’ perception
while the SOTA metrics fail, and two examples in which the opposite scenario occurs.

The first example 1 is a typical scenario in which the reference summary is of low quality
since it actually documents the fact that the method is “not yet documented”.

The generated summary, instead, provides a good description of the method accordingly
to the developers and, thus, is substantially different from the reference. This results in
low values for the SOTA metrics, while SIDE agrees with the human assessment (DA score =
0.88), assigning the generated summary 0.91/1.00. In the second 2 and third 3 examples,
SIDE is instead in disagreement with developers. In 2 , it assigns a high score (0.87) to a
correct but very generic summary, while the conventional metrics are able to assess the low
quality of the summary thanks to the presence of additional material present in the reference
but lacking in the generated summary (i.e., the example). In 3 , SIDE assigns a quite low
score to the generated summary, despite it being well-judged by humans. SOTA metrics can
instead exploit the word overlap between the generated and the reference summary, assess-
ing the summary with higher scores. Finally, 4 shows a low-quality generated summary (as
assessed by developers) which is scored with the maximum scores by state-of-the-art met-
rics, since being identical to the reference one. SIDE is instead able to identify the summary
as low quality (0.15) by contrasting it with the documented code.

In summary, our analysis suggests that a more comprehensive evaluation framework
must be considered when assessing the quality of automatically generated summaries: Con-
ventional metrics looking at the similarity between the generated and the reference summary
are not enough and should be augmented by metrics judging the suitability of a generated
summary for the code it documents, similarly to what SIDE does. The latter is the metric
more related to the human judgment of code summary quality.

10.3.2 Ablation Study - Impact of Hard-negatives

In our replication package [repc], we present a table reporting the results of the ordered
logistic regression model for each dependent variable including two variants of SIDE: One
trained using hard-negatives (i.e., the one related to the results discussed as of now) and one

10.3 Results Discussion 151

GENERATED SUMMARYREFERENCE SUMMARY

METHOD

not yet documented returns a copy of this component as
an element

public Element asElement() {
 return this.component.createCopy();
}

SCORES

BLEU-1 BertScore-R SentenceBERT_CS InferNet_CS ROUGE-1-P Rouge-4-R Rouge-W-R SIDE DA Adequacy Concise Fluency

SOTA OUR HUMAN

 0.34 0.00 0.08 0.43 0.00 0.00 0.00 0.91 88 4 4 5

1

GENERATED SUMMARYREFERENCE SUMMARY

METHOD

gets the id for this record for example
DLESE 000 000 000 001

returns the value of the element

public String getId() {
String val = "";
String vals[] = doc.getValues("idvalue");
for (int i = 0; i < vals.length; i++)

val += vals[i] + (vals.length - 1 == i ? "" : " ");
return val;

}

SCORES

BLEU-1 BertScore-R SentenceBERT_CS InferNet_CS ROUGE-1-P Rouge-4-R Rouge-W-R SIDE DA Adequacy Concise Fluency

SOTA OUR HUMAN

 0.32 -0.18 0.12 0.49 0.08 0.00 0.12 0.87 15 2 2 1

2

GENERATED SUMMARYREFERENCE SUMMARY

METHOD

handles reload of the list of
additional locations

sets the given locations as additional
locations to check then handles the
reload

protected void handleReload(ArrayList additionalLocations) {
fAdditionalLocations = additionalLocations;
handleReload();

}

SCORES

BLEU-1 BertScore-R SentenceBERT_CS InferNet_CS ROUGE-1-P Rouge-4-R Rouge-W-R SIDE DA Adequacy Concise Fluency

SOTA OUR HUMAN

 0.52 0.19 0.62 0.82 0.38 0.00 0.22 0.16 95 5 4 5

3

GENERATED SUMMARYREFERENCE SUMMARY

METHOD

this method initializes this this method initializes this

private void initialize() {
 textNumber = new Text(this, SWT.BORDER);
 super.putOnScreen(textNumber, 150, 19);
 labelNumber = new Label(this, SWT.NONE);
 labelNumber.setText("Number");
 ...
 this.setSize(new Point(354, 157));
}

SCORES

BLEU-1 BertScore-R SentenceBERT_CS InferNet_CS ROUGE-1-P Rouge-4-R Rouge-W-R SIDE DA Adequacy Concise Fluency

SOTA OUR HUMAN

 1 0.99 0.99 0.99 0.5 0.00 0.56 0.15 8 2 2 1

4

Figure 10.2. Examples from Roy et al. [RFA21] dataset

152 A New Metric for Evaluating Code Summarization Techniques

trained without hard-negatives. In short, the impact of including or not hard-negatives in the
training set is negligible, and the all findings of our study are not changed by such a design
choice (e.g., no impact on which ORs are statistically significant nor on their magnitude).
This result may be due to several reasons. First, due to our definition of hard-negatives
(i.e., comments documenting at most 25% of the method’s statements), we managed to
create hard-negatives for only ∼15% of the methods in our dataset. Thus, it is possible
that a higher coverage is needed to observe any influence on the achieved results. Second,
our definition of hard-negatives may be suboptimal, opening to better approaches aimed
at creating hard-negative samples for contrastive learning applied to software engineering
tasks.

10.4 Threats to Validity

Construct validity threats. As also detailed in the work of Roy et al. [RFA21], the considered
dependent variables reflect the user’s assessment of a summary from different perspectives
(conciseness, fluency, content adequacy, plus an overall assessment). We are aware that such an
assessment could suffer from the assessor’s error or subjectiveness. Also, we acknowledge
that the fine-tuning dataset used to train SIDE may feature some low-quality summaries
which may partially hinder its ability to assess whether a natural language text represents
a suitable summary for a given code. However, our empirical evaluation showed that SIDE
is still the metric better capturing human assessment of code summary quality, despite this
potential source of noise in its training set.

Internal validity threats. These primarily pertain to the configurations applied during
metric computation and evaluation, such as the decision to utilize cosine similarity. In addi-
tion, we recognize the potential value in exploring alternative hyperparameter settings (see
Section 10.1.4) when developing SIDE.

Also, adopting CodeT5+ as the representative state-of-the-art pre-trained model for gen-
erating 〈method, documentation〉 embeddings, and subsequently using cosine similarity for
comparison, might not reflect the best strategy for the discussed task.

Finally, the negligible impact of including hard-negative samples in the training set may
be due to the design we employed to mine hard-negatives (e.g., see the choice of the 25%
coverage to identify hard-negative comments) and further studies are needed to investigate
alternative solutions.

Conclusion validity threats. RQ1 findings show both the metrics correlation, computed
using a non-parametric procedure, and the PCA. RQ2 is based on an ordered logistic regres-
sion, suitable for variables in ordinal scale. Note that statistically significant p−values are
small enough to be unaffected by fishing and error rate.

External validity threats. The main limitation of our study is that it relies on human
evaluations from a single dataset [RFA21]. Nevertheless, such a dataset is large and features
a total of 6,253 (5,201 used in our study) evaluations from 226 different participants.

Concerning the independent variables (evaluation metrics), our study attempted to con-
sider several metrics having a different nature, some of which were used in previous work
[HEBM22, RFA21, SHJ13].

10.5 Conclusions 153

10.5 Conclusions

State-of-the-art metrics used to evaluate code summarization techniques only assess the sim-
ilarity between the generated summary and the reference one written by developers. This
implies that a generated summary, while suitable for the code to document, may be different
from the reference one (e.g., a low-quality one), and therefore scored low by these metrics.
We argue that the code to document must also be considered in the equation when scoring
automatically generated summaries, to assess whether they are suitable for such a code inde-
pendently from their similarity with the reference summary. To capture this information, we
presented SIDE, a metric exploiting contrastive learning to learn characteristics of suitable
and unsuitable summaries for a given code.

We run a study involving 40 metrics (including SIDE) investigating their complementar-
ity and the extent to which they correlate with humans’ evaluation of summary quality. Our
findings highlight the high complementarity between SIDE and the metrics focusing on the
similarity between the generated and the reference summary. SIDE is also the metric that
better describes humans’ assessment of summary quality. Also, we show that the proposed
contrastive learning-based metric captures the suitability of a summary for a given code
better than simpler solutions. Further evaluations of code summarization methods should
incorporate a broader assessment framework that includes both conventional metrics—e.g.,
the similarity between generated and reference summaries—and SIDE-like metrics, evaluat-
ing the suitability of the generated summary for the code being documented. In addition,
the findings of this study provide several opportunities for researchers, particularly in the
area of program comprehension. To this end, a key application of SIDE would involve the
identification of inconsistencies between code comments with respect to the documented
code (e.g., a method), as this could significantly improve the quality of software systems
once the code and its documentation are realigned.

154 A New Metric for Evaluating Code Summarization Techniques

Part V
Epilogue

11
Conclusions and Future Work

In this thesis, we investigated the viability of utilizing pre-trained deep learning (DL) models
for code-related tasks, with a specific focus on tasks requiring the manipulation of bi-modal
data, such as code summarization and the generation of log statements. Our preliminary
experiments with pre-trained models, documented in Chapter 3, were among the first in the
literature showing the potential of pre-trained models for code related tasks and contributed
to pave the way to several subsequent works presented by other research groups [TDSS22,
ZJW+23, NSM23, VPSO23, FCG+24, WWJH21].

We also took advantage of the achieved positive results to propose novel techniques au-
tomating tasks such as code snippet summarization (Chapter 8), code comment completion
(Chapter 9), and log injection (Chapter 6), by also learning about the difficulties in automat-
ically assessing the correctness of the recommendations generated by these models. This led
us to the proposal of a novel metric to evaluate the quality of automatically generated code
summaries (Chapter 10).

Finally, we studied the robustness of the state-of-the-art code recommender GitHub Copi-
lot in the task of code generation (Chapter 4), also characterized by bi-modal data, with code
that must be generated starting from a natural language description.

In the following we discuss the limitations of our work and future research directions.

11.1 Limitations and Future Work

11.1.1 Applicability and generalizability of our findings across various program-
ming languages and models

Our research was carried out using Java as the primary programming language, meaning that
the DL-based methods we devised were initially pre-trained and subsequently fine-tuned for
this programming language. While we expect our findings to generalize to other languages,
additional empirical investigations are needed to verify such a broad applicability.

Furthermore, our studies were framed within the context of sequence-to-sequence Trans-
former models, specifically the T5 architecture, which comprises two distinct parts: (i) an

157

158 Conclusions and Future Work

encoder and (ii) a decoder, each based on separate Transformer networks and linked to-
gether. It would be interesting to explore whether our insights remain applicable across
different model architectures, such as those that rely solely on a decoder.

11.1.2 Evaluating the perceived usefulness of our techniques

The evaluations of our techniques are mostly based on predictions performed by the trained
models on a given test set. This means that the actual usefulness of the techniques from
the developers’ perspective has not been experimented. This is part of our future work,
especially for techniques for which we also released an usable tool implementing them. An
example of this is JLOG [jlo], a tool made available for Visual Studio Code, developed on the
basis of LEONID (Chapter 6). Our goal is to exploit this tool to perform an “in-vivo” study
with developers to assess the actual benefits (if any) brought by such a tool as perceived by
developers.

11.1.3 In-context learning and prompt engineering for software-related practices

Large Language Models (LLMs) have recently showcased capabilities beyond their original
applications in natural language comprehension and generation. Key to this adaptability are
two groundbreaking approaches: “in-context learning” [DLD+22] and “prompt engineer-
ing” [WFH+23] that have empowered these models to adapt and excel in a diverse array of
domains and applications.

Within this framework, we plan to investigate how in-context learning and prompt engi-
neering can be further tailored to understand and generate code, automate documentation,
and (more in general) software engineering practices. This entails exploring the integration
of LLMs into the development environment to provide real-time assistance and feedback to
developers. We intend to undertake this analysis specifically for those areas of software en-
gineering where our research has indicated that LLMs do not meet expectations. Notably,
our recent work into CI/CD (Continuous Integration/Continuous Development) pipelines
(see Appendix:Chapter B), and the management of SATD (Self-Admitted Technical Debt)
(see Appendix:Chapter A) provide critical insights. In both scenarios, we observed that the
“pretrain-then-finetune” approach remains superior, surpassing the performance of advanced
AI-driven tools such as Copilot [cop] and ChatGPT [cha] when assisting practitioners for the
completion of Workflow files and the automated repayment of SATD.

11.1.4 Green-AI for software engineering

In Chapter 3 –Section 3.3.4 we presented the overall training time required to perform pre-
training and fine-tuning of the T5-based solution we developed. It took 175h, which equates
to 126.85kg CO2e emitted in the atmosphere. To put this number into perspective, it would
be the same amount of CO2e that a single person would emit flying 2.5 times from Paris to
London.1

1The computation is performed using a publicly available calculator for energy consumption: http://
calculator.green-algorithms.org

http://calculator.green-algorithms.org
http://calculator.green-algorithms.org

11.2 Closing Words 159

Referencing the specific details of the T5 model employed in our research, we selected
its smallest configuration, which features ∼60M parameters. In contrast, examining LLMs
such as GPT-3, which powers [cha], the training of this model demanded 14.8 days on 10,000
V100 GPUs [PGL+21]. The CO2e emissions attributed to this process amounted to 502 metric
tons, comparable to the emissions from driving 112 gasoline-powered vehicles a year.2.

Despite the substantial environmental impact associated with training these LLMs, the
inference process (i.e., prompting) has been projected to become the primary contributors
to carbon emissions, as indicated by recent research [dV23, WRG+22, CLN+23]. In light of
this and the increasing reliance on LLMs for automating software engineering practices, our
future work will explore strategies for incorporating specific software engineering principles
into LLMs prompting, with the aim to reduce the environmental footprint of utilizing such
models for software engineering tasks.

11.2 Closing Words

Our research aimed to enhance the automa-
tion of various code-related tasks, address-
ing shortcomings of existing techniques, also
considering the limitations in the empirical
evaluations reported in the literature (e.g., in-
appropriate metrics for code summarization).
Given the fast pace at which software engi-
neering automation is changing thanks to the
advent of general-purpose LLMs, it remains
challenging to predict how long-lasting many
of our findings will be. Also, as we showed,
some of the novel AI-based solutions that are
being introduced in the developers’ workflow
(e.g., Copilot) pose novel challenges for de-
velopers, such as those of crafting a proper
prompt to maximize the usefulness of these
tools. This leaves us with the question of how software engineering will change in the near
future, and how developers will need to adapt in this context. These are questions that will
inform our future research.

2https://news.climate.columbia.edu/2023/06/09/ais-growing-carbon-footprint/

https://news.climate.columbia.edu/2023/06/09/ais-growing-carbon-footprint/

160 Conclusions and Future Work

Appendices

In the appendix, we provide further details on contributions to Software Engineering that
are outside the main focus of this thesis.

Appendix A presents our investigation into managing Self-Admitted Technical Debt (SATD)
and explores the potential for its automated repayment through advanced DL-based ap-
proaches.

Towards Automatically Addressing Self-Admitted Technical Debt: How Far Are
We?

Antonio Mastropaolo, Massimiliano Di Penta, Gabriele Bavota. In Proceedings of the
38th ACM International Conference on Automated Software Engineering (ASE 2023),
pp. 585-597

Appendix B describes GH-WCOM (GitHub Workflow COMpletion) an approach able to
assist developer in completing GitHub Workflow files:

Toward Automatically Completing GitHub Workflows

Antonio Mastropaolo, Fiorella Zampetti, Massimiliano Di Penta, Gabriele Bavota. In
Proceedings of the 46th ACM/IEEE International Conference on Software Engineering
(ICSE 2024)), pp. 1-12

Appendix C outlines an empirical investigation into the performance of three data-driven
techniques in supporting automated variable renaming:

Automated variable renaming: are we there yet?

Antonio Mastropaolo, Emad Aghajani, Luca Pascarella, Gabriele Bavota. In Proceed-
ings of Journal Empirical Software Engineering (EMSE 2023), Volume 28(2)

Appendix D details an empirical study aimed at examining how developers use ChatGPT
to automate and support software engineering practices:

Unveiling ChatGPT’s Usage in Open Source Projects: A Mining-based Study

Rosalia Tufano and Antonio Mastropaolo, Federica Pepe, Ozren Dabic, Massimil-
iano Di Penta, Gabriele Bavota. In Proceedings of the 21st International Conference
on Mining Software Repositories (MSR 2024), To appear, 12 pages

163

164 Conclusions and Future Work

A
Towards Automatically Addressing Self-Admitted
Technical Debt: How Far Are We?

Technical Debt (TD) has been defined by Cunningham as “not-quite-right code” [Cun92].
Essentially, the terms refer to the debt an organization or an individual developing and re-
leasing software should repay to make it acceptable, for example in terms of functionality,
reliability, or maintainability. Oftentimes, developers achieve awareness of the TD in their
program, admitting it through comments, commit messages, or issues. This has been re-
ferred to as “Self-Admitted Technical Debt” (SATD) [PS14b]. Previous research has investi-
gated why developers annotate software as SATD, essentially to keep track of what needs to
be improved [ZFSD21]. Also, the analysis of SATD in existing programs has shown how de-
velopers take it seriously, as it gets removed in the majority of the cases [dSMASS17], even
though this often happens when the source code is completely replaced or even removed
[ZSD18]. As previous work found [BR16, FCZ+21, PS14b, ZFSD21], SATD relates to differ-
ent problems in the program, such as the need to fix bugs occurring in certain circumstances,
enhancing or even completing a feature, or improving the source code maintainability and
quality in general.

Researchers have proposed various kinds of approaches to aid developers with the man-
agement of SATD. On the one hand, while SATD comments are usually recognizable by com-
monly used keywords such as “TODO” or “FIXME”, this is not always the case. Therefore,
approaches leveraging several types of techniques ranging from simple regular expression
matching [PS14b] to shallow machine learning [dSMST17], and deep learning [RXX+19b]
have been used to identify SATD comments.

Also, some approaches recommend developers with the type of change that needs to be
carried out to address the SATD [ZSD20]. While previous work has proposed approaches to
guide developers towards paying back TD, to the best of our knowledge there is no specific
work aimed at automatically resolving (SA)TD. Indeed, this can be a direction worthwhile to
investigate, considering the significant advances in the application of generative approaches
to software-related tasks, such as code completion [CCP+21, SLH+21, SDFS20, LWLK17],
program repair [MH21a, JLT21, LPP+20b, LWN20], vulnerability patching [CKM22, FTL+22a],
or code review [TPT+21, TMM+22, LLG+22b, LLG+22a]. However, given the diversity of

165

166 Towards Automatically Addressing Self-Admitted Technical Debt: How Far Are We?

SATD, its repayment would require approaches that go beyond what has been already de-
vised for each of the aforementioned tasks. Therefore, this paper aims to answer the follow-
ing question:

Can AI-based approaches automatically repay the technical debt?

To answer this question, we investigate the extent to which neural generative approaches
based on deep learning transformers [VSP+17] can be used to repay SATD. An obvious ques-
tion that can arise is whether SATD resolution is, in the end, equivalent to program repair.
We believe there are a series of differences and challenges:

1. As also pointed out by previous work [ZFSD21], repaying (SA)TD not only means fix-
ing bugs, but it also requires to improve the code in different ways, for example enhanc-
ing a feature, making the code able to handle certain special scenarios, or adopting
alternative APIs.

2. Differently from other “buggy” code, SATD admits the presence of a problem, therefore
directly highlighting the portions of the source code that need to be repaired.

3. Neural models require a conspicuous amount of training data, which may be available
for certain tasks (e.g., code completion), and less for others, including SATD resolution.

To study how SATD can be addressed by generative models, we first created a dataset
of 5,039 SATD removal instances from 595 open-source projects by leveraging an available
tool that detects SATD removals [ACB+22]. Then, we leverage a pre-trained transformer
model (CodeT5 [WWJH21]) that previous work showed particularly effective to cope with
problems where the size of the training set is limited [FTL+22a, WYG+22]. Through dif-
ferent experiments, we test the effectiveness of several pre-training/fine-tuning strategies,
including:

1. No pre-training, fine-tuning using SATD removal instances.
2. Self-supervised pre-training followed by fine-tuning on SATD removals. Self-supervised

pre-training exploits training objectives not requiring a supervised dataset. We use the
masked language model objective [DCLT19, LOG+19], which consists in providing the
model with input sentences (e.g., an English sentence, a Java method, depending on
the language of interest) having 15% of their tokens masked, asking the model to
predict them.

3. Self-supervised and supervised pre-training followed by fine-tuning on SATD removal
instances. Supervised pre-training can be used to pre-train the model on a task similar
to the downstream one. In our case, we pre-train the model for the implementation
of generic code changes, before fine-tuning it with SATD removals.

We also experimented with the impact on the model’s performance with and without the
SATD comment. This is worthwhile to study because (i) the SATD comment may act as a
sort of prompt-tuning for the transformer [VSP+17] which has been shown to help models
pre-trained on English text (such as CodeT5); and (ii) a boost in performance motivates the
usefulness of SATD comments not only as a trace for developers [ZFSD21], but also as a way
to aid AI-based approaches. Finally, we experiment with the extent to which SATD can be
addressed by leveraging a Large Language Model (LLM) chat bot, i.e., ChatGPT [cha].

A.1 Study Definition, Design and Planning 167

Results of our study indicate that automatically addressing SATD instances is a chal-
lenging task, and the best model we experimented with is able to correctly address 2.30%
(one attempt) to 8.10% (ten attempts) of the SATD instances in our test set. Without any
pre-training, the model is not able to address any SATD instance, likely due to the limited
size of the fine-tuning dataset. Self-supervised pre-training helps in improving performance,
which is further increased when the model is also subject to supervised pre-trained on a task
(i.e., implementing generic code changes) resembling the downstream one (i.e., addressing
SATD). Finally, we experimented with three different prompts for ChatGPT, with the best one
being able to address only 1.19% of the SATD in our dataset, confirming how challenging the
tackled task is. In summary, while the studied approaches can in some cases automatically
repay SATD, there is still a long way to go to fully address this problem.

Overall, the paper contributes to the state-of-the-art on (SA)TD management and reso-
lution with:

1. An experimentation featuring seven different combinations of treatments on the use
of pre-trained neural transformers for SATD repayment;

2. Results of a study on the feasibility of using a LLM chat bot (ChatGPT) for SATD re-
payment; and

3. A replication dataset that can be also used for further experiments in this area [repf].

A.1 Study Definition, Design and Planning

The goal of this study is to evaluate DL-based solutions in automatically implementing code
changes required to address SATD in Java code. The context of the study features two deep
learning models, namely CodeT5 [WWJH21] and ChatGPT [cha], and two datasets used
for pre-training and fine-tuning the experimented models. The pre-training dataset features
generic code changes implemented by developers in open-source projects and has been pre-
sented in the work by Tufano et al. [TPW+19]. The fine-tuning dataset is a contribution of
this paper and features SATD removal changes.

In the following, we formulate the study research questions (RQs) (Section A.1.1). Then,
Section A.1.2 describes the datasets used to train and test the experimented techniques. The
latter are presented in Section A.2. We conclude by outlining the data analysis procedure in
Section A.3.

A.1.1 Research Questions

Given our overall goal (i.e., assessing the capabilities of DL-based solutions in automatically
addressing SATD), we formulate the following RQs:

RQ1: To what extent do pre-trained models of code support automated SATD repayment? In
RQ1 we fine-tune the pre-trained CodeT5 [WWJH21]model for the task of SATD repayment
and assess its performance. We also investigate the role played by the self-supervised pre-
training on CodeT5, i.e., the extent to which the self-supervised pre-training helps in fixing
SATD. RQ1 provides a starting point for our investigation, showing what performance can
be achieved by just fine-tuning an existing pre-trained model for SATD repayment.

168 Towards Automatically Addressing Self-Admitted Technical Debt: How Far Are We?

RQ2: To what extent does the infusion of “similar-task knowledge” in pre-trained models of
code benefits the automated SATD repayment? While CodeT5 [WWJH21] has been pre-trained
using the masked language model self-supervised objective, other forms of pre-training are
possible. RQ2 evaluates the effectiveness of performing a further pre-training step aimed
at instilling in the model knowledge about a task resembling the downstream one (i.e., the
SATD repayment). This means that, before fine-tuning the model for SATD repayment, we
leverage a supervised pre-training in which the model learns how to implement generic
code changes. The rationale is that this task, while different from SATD repayment, can
start driving the model’s weights toward a configuration closer to the one needed for the
downstream task.

RQ3: To what extent does the presence of “context-specific knowledge” help pre-trained mod-
els of code in the automated SATD repayment?

SATD instances can be represented as pairs 〈comment, code〉 where the comment de-
scribes the SATD to address in the code. When assessing the performance of DL-based solu-
tions in automatically addressing SATD, the 〈comment, code〉 pair represents the input of the
model which is expected to produce a revised_code addressing the technical debt. If we fac-
tor out the comment from the input the task becomes similar to those previously tackled in
the literature through DL models, such as learning generic code changes implemented by de-
velopers [TPW+19] or fixing bugs [TWB+19a, JLT21, MH21a, LPP+20b, CKM22]. For these
tasks the model’s input is just a code in which a change (e.g., a bug fix) must be implemented,
thus producing as output the revised_code. RQ3 assesses the extent to which providing the
SATD comment to the model helps to address the TD, thus investigating whether training a
SATD-specialized model is worthwhile as compared to just using a model trained to address
generic code changes without relying on the SATD comment (see e.g., [TPW+19]).

RQ4: Are general-purpose large language models zero-shot learners for SATD repayment?
In RQ4 we study whether LLMs (and, in the specific case, ChatGPT [cha]) can be considered
as out-of-the-box solutions for the automated SATD repayment. While, for what concerns
source code ChatGPT has been “seen” the entire GitHub, it has not been fine-tuned for the
specific problem of SATD repayment. A positive answer to RQ4 would indicate that research
on specialized models for SATD repayment is unlikely to be relevant/beneficial.

A.1.2 Context: Datasets

We describe the pre-training and fine-tuning datasets used in our research, which are sum-
marized in Table A.1.

A.1.2.1 Self-supervised pre-training on bi-modal data

In the first three RQs, we employ CodeT5 [WWJH21] as representative of a state-of-the-
art pre-trained model of code. CodeT5 is a Text-To-Text Transfer Transformer (T5) model
[RSR+20] pre-trained on code and natural language (i.e., code comments). Among differ-
ent transformer models we have chosen CodeT5, as it has been used successfully for several
tasks, including code summarization [WWJH21], source code generation [ZAX+22], vulner-

A.1 Study Definition, Design and Planning 169

ability patching [FTL+22a], code review automation [LLG+22a], code-to-code translation
[KABV22], and shown to outperform other models such as CodeBERT [FGT+20], PLBART
[ACRC21] and GraphCodeBERT [GRL+21].

Wang et al. [WWJH21] utilized the CodeSearchNet dataset [HWG+19] for pre-training
CodeT5 using the masked language model objective (i.e., self-supervised pre-training by
randomly masking 15% of the input asking the model to predict it). This dataset includes
functions written in six different programming languages (Go, Java, JavaScript, PHP, Python,
and Ruby). A subset of these functions also includes a top-level comment (e.g., Javadoc for
Java). In addition, Wang et al. gathered extra data from C/C# repositories hosted on GitHub.
This led to a total of 8,347,634 pre-training code functions: 3,158,313 of these functions are
paired with their documentation, while 5,189,321 consist solely of code.

A.1.2.2 Supervised pre-training on generic code changes

Tufano et al. [TPW+19] proposed the usage of NMT to learn how to automatically apply
code changes implemented by developers during pull requests (PRs). The NMT model has
been trained on a dataset featuring PRs from three Gerrit [ger] repositories: (i) oVirt, (ii)
Android, and (iii) Google.

Each of these repositories groups multiple projects (e.g., all those related to the Android
operating system), with the authors focusing on the ones written in Java. For each PR, Tufano
et al. extracted two versions of the files involved in the change diff: The version before the
PR was implemented and the version after the PR has been merged. These files have then
been parsed to extract a total of 631,307 pairs of methods 〈mb, ma〉 representing the same
method before (mb) and after (ma) the changes implemented in the PR. The idea was to
train the NMT model on these pairs to see if it was able to learn generic code changes that
developers might implement in the context of PRs.

We leverage this dataset in the context of RQ2 to investigate whether the infusion of
“similar-task knowledge” in pre-trained models of code benefits the automated SATD repay-
ment. Starting from the ∼630k pairs in the original dataset we discarded instances contain-
ing non-ASCII tokens, and those having #tokens > 1024. The latter filter is necessary to
manage the computational complexity of training large DL-models and is a common prac-
tice in the software engineering literature [MPB22, CCP+21, TMM+22, TDS+20, TPT+21,
TPW+19]. For example, in the original work by Tufano et al. [TPW+19] in which this dataset
has been created, the authors removed all pairs having #tokens > 100. Subsequently, we
eliminate duplicated pairs 〈mb, ma〉, obtaining a final dataset of 284,190 instances. We split
the processed set of methods into 90% training and 10% validation. The former will be
used to perform supervised pre-training on the task of learning generic code changes. The
latter is instead employed to identify the best-performing checkpoint while performing the
supervised pre-training.

A.1.2.3 Fine-tuning dataset of SATD removals

As a first step to build the fine-tuning dataset, we collected a list of Java repositories lever-
aging the GitHub Search tool by Dabic et al. [DAB21]. The querying user interface allows

170 Towards Automatically Addressing Self-Admitted Technical Debt: How Far Are We?

Table A.1. Number of instances included in the datasets we used to train, test and evaluate the models

Dataset Train Test Eval Overall
Generic code changes [TPW+19] 255,771 - 28,419 284,190

SATD removal 3,537 1,000 502 5,039

Total 259,308 1,000 28,921 289,229

to identify GitHub projects that meet specific selection criteria. We selected all Java projects
having at least 500 commits, 10 contributors, 10 stars, and not being forks (to reduce the
chance of mining duplicated code). The commits/contributors/stars filters aim at discarding
personal/toy projects. Instead, the decision of narrowing down the scope to only Java as a
programming language was dictated by (i) the will of reusing the previously described Java
dataset by Tufano et al. (Section A.1.2.2) for supervised pre-training, and (ii) the usage in
our toolchain of tools only supporting Java (e.g., SATDBailiff , as described in the following).
We collected 6,971 Java repositories.

To extract changes aimed at addressing SATD instances we rely on the SATDBailiff tool by
AlOmar et al. [ACB+22]. SATDBailiff can identify commits featuring the addition, removal,
or change of SATD instances in the history of Java git repositories. We are interested in min-
ing from the history of the subject Java repositories commits featuring removal events, since
those are the ones implementing changes aimed at addressing SATD and, thus, are the ones
suitable for our fine-tuning. Unfortunately, we found this extraction process to be extremely
expensive. For this reason, we set two boundaries for our data mining. First, we allowed
SATDBailiff to process each repository for at most 60 minutes. Indeed, we observed that for
some very large projects the mining procedure could go on for days. If a repository could
not be analyzed within 60 minutes, the repository was discarded from our study. Second, we
set 50 days as the maximum boundary for the mining procedure. In this period, SATDBailiff
successfully analyzed the entire history of 809 Java projects hosted on GitHub.

These 809 Java projects yielded a total of 519,440 SATD-related events including
SATD_REMOVED, SATD_ADDED, and SATD_CHANGED. We extracted the 139,803 concern-
ing SATD_REMOVED. Then, we further refined this list by only selecting instances for which
the SATD comment extracted by SATDBailiff contained specific keywords describing the pres-
ence of Self-Admitted Technical Debts: to(-)do, fix(-)me, check(-)me, hack(-)me, and xxx.
In principle, we are aware that such further filtering may reduce the dataset construction
recall and, ultimately, the dataset size. However, as the SATD detection performed by SAT-
DBailiff is based on a ML-based approach, it is inherently subject to false positives, and
we wanted to avoid experimenting with changes that were not related to SATD removal.
We have chosen the aforementioned keywords since those are well-known patterns used to
signal SATD [PS14b, CZN+22]. After this further pruning, we obtain a dataset where each in-
stance is a triplet commit_before, commit_after, and comment, where the two commits indi-
cate the version of the code affected (commit_before) by and cleaned from (commit_after)
the SATD, while comment is the code comment documenting the SATD which is linked to a
specific Java file.

A.1 Study Definition, Design and Planning 171

@Override
//TODO: need to support compound indexes
public void ensureIndex(final String key, final OrderBy orderBy)
{
 ensureIndex(key, orderBy, false);
}

 Msatd types featured within our SATD Removal Dataset

private void configureOptions() {
 LOG.debug("Auto detecting current execution environment");
 // FIXME Make it pluggable
 this.options.putExtraAttribute(
 FileIoProcessor.OPTION_EXPORTER_ENABLED,
 GenericOptionValue.AUTO.getSymbol());
}

1

2

Figure A.1. SATD removal instances in our fine-tuning dataset

We removed duplicated instances, namely those being characterized by the same triplet
(e.g., due to the same SATD fixed in the same commit in different files). This left us with
75,083 instances which could feature the SATD in any part of the impacted Java file. How-
ever, we are interested in training the DL-model to address SATDs affecting a specific method,
ignoring SATD instances related to e.g., class instance variables, import statements etc. The
reason for such a choice is two-fold. First, also the pre-training datasets are defined at
function-level granularity, thus suggesting a similar fine-tuning to take full advantage of the
knowledge acquired during pre-training. Second, providing an entire Java file as input to
the model makes the training extremely expensive, since the length of the input sequences
will grow to tens of thousands of tokens. Thus, we parsed the code file in the commit_before
to see if the SATD comment was within a method msatd or immediately above it. This was
the case for 65,380 instances.

Scenario 1 depicted in Fig. A.1 shows a SATD comment preceding the implementation
of ensureIndex method, while in 2 the comment documenting the TD is included within
the body of the configureOptions method. Based on what we have explained so far, we
work on the following assumption:

If an SATD comment is removed, the changes performed within the same commit
and in the method to which the SATD comment was attached are related to
repaying such an SATD.

Given the available dataset, our aim is to create the final training triplets
〈msatd , m f i xed , comment〉, where 〈msatd , comment〉 represents the model’s input and m f i xed
the model’s output. To achieve this goal, some additional checks are required. First, as pre-
vious work has found [ZSD18], it is possible that addressing the SATD requires the deletion
of msatd , or the implementation of other methods while leaving msatd unchanged (except
for the removal of the SATD comment). Thus, we verify that (i) a method having the exact
same name of msatd exists in commit_after, and (ii) by removing the SATD comment from
msatd we obtain a method m′satd ̸= m f i xed . The first filter guarantees that msatd still exists
in commit_after, while the second ensures that changes have been implemented in msatd
to address the SATD (obtaining m f i xed). This cleaning left us with 12,267 triplets.

172 Towards Automatically Addressing Self-Admitted Technical Debt: How Far Are We?

We manually inspected 100 triplets to look for additional problematic cases. We found
triplets characterized by “meaningless” SATD comments, such as “TODO” not followed by
anything else. These comments do not really describe a SATD and, for this reason, we de-
cided to exclude from our dataset all triplets having a comment featuring less than three
words that are unlikely to describe a SATD in enough detail to be understood (8,564 in-
stances left).

Finally, we used the code-tokenize Python library [CR22] to extract a tokenized version
of the extracted methods and removed triplets featuring methods having #tokens > 1024,
and instances that raised errors while being tokenized. After filtering, we ended up with
a total of 5,039 triplets derived from 595 Java projects, which constitute our fine-tuning
dataset. The latter is further split into 70%, 20%, and 10% for training, testing, and valida-
tion of the models, respectively. These triplets have been processed to introduce two special
tokens 〈SAT D_START 〉 and 〈SAT D_EN D〉 which serve to tag the start and end of the SATD
comment within msatd . As previous work did [FTL+22a, TMM+22], the idea is that these
tokens could help direct the model’s attention toward relevant sections of the input. Fig. A.2
depicts an example of instance from the dataset we built.

Note that we create two different versions of the SATD removal dataset, both containing
the same number of instances across training, testing, and validation.

However, while the first one also contains the SATD comment, the latter is removed in the
second one. This is necessary to address RQ3, i.e., to determine the extent to which admitting
TD would not only serve as a trace for the developers but also as an aid for automated tools.

A.2 Experimented Techniques

As we are interested to study the performance of different DL-based solutions for automati-
cally addressing SATD instances, we focus on two recently presented models, namely CodeT5
[WWJH21] and ChatGPT [cha]. For the former, we use the CodeT5base variant, featuring
220 million trainable parameters. We use the default architecture and hyperparameters of
CodeT5base featuring 12 Transformer Encoder blocks, 12 Transformer Decoder blocks, 768
hidden sizes, and 12 attention heads. The learning rate is set to 2e-5.

While CodeT5 has been specifically pre-trained and fine-tuned to support software en-
gineering tasks, ChatGPT is a general-purpose LLM designed and developed by OpenAI to
produce human-like responses for a broad spectrum of language-related tasks (e.g., question-
answering, language translation, coding tasks, etc.). There are currently two versions of
ChatGPT, one built on top of GPT-3.5 and one exploiting GPT-4.0. Given the current restric-
tions on the usage of GPT-4.0, we carried out our research using GPT-3.5 as the foundational
model for ChatGPT. Although considered “less proficient” than the chat-bot built using GPT-
4.0, the version employed for our experiments, with 154 billion parameters model (GPT-3.5),
is still in the LLM category, and it is definitely by far a larger model than CodeT5.

In the following, we detail how we used the two models to answer our RQs. In particular,
we pre-trained, fine-tuned, and queried the models using several different strategies. All
fine-tunings have been executed for a maximum of 50 epochs on the “SATD removal” dataset
(see Table A.1). To cope with overfitting, we stop the fine-tuning using an early stopping

A.2 Experimented Techniques 173

public void beforeTest(TestContext context) {
 if (beforeTest != null) {
 for (SequenceBeforeTest sequenceBeforeTest : beforeTest) {
 try {
 if (sequenceBeforeTest.shouldExecute(getName(),
 getPackageName(), null))
 <SATD_START> //TODO provide test group information <SATD_END>
 sequenceBeforeTest.execute(context);
 }
 catch (Exception e) {
 throw new CitrusRuntimeException("Before test…", e);
 }
 }
 }
}

METHOD INTRODUCING THE SATD COMMENT (Msatd)

public void beforeTest(TestContext context) {
 if (beforeTest != null) {
 for (SequenceBeforeTest sequenceBeforeTest : beforeTest) {
 try {
 if (sequenceBeforeTest.shouldExecute(getName(),
 getPackageName(), groups))
 sequenceBeforeTest.execute(context);
 }
 catch (Exception e) {
 throw new CitrusRuntimeException("Before test…", e);
 }
 }
 }
}

METHOD RESOLVING THE SATD COMMENT (Mfixed)

Figure A.2. SATD removal instance in our fine-tuning dataset

procedure assessing the loss of the model on the validation set every epoch, using a delta of
0.01 and patience of 5. This means that the training process stops if a gain lower than delta
(0.01) is observed after 5 consecutive epochs and the best-performing checkpoint up to that
training step is selected.

A.2.1 No Pre-training + Fine-tuning (RQ1)

We fine-tune on the context-specific SATD removal dataset (i.e., the one including the com-
ment documenting the SATD) a T5base model [RSR+20] (i.e., the same used for CodeT5
[WWJH21]) without any pre-training. To this aim, we start by randomly initializing the
weights of the model, which will be adjusted during the fine-tuning procedure. Such a
model serves as a baseline to assess the impact of different pre-trainings on the model’s
performance.

A.2.2 Self-supervised Pre-training + Fine-tuning (RQ1)

We start from the CodeT5 model pre-trained using a self-supervised objective (i.e., masked
language model) and fine-tune it on the context-specific SATD removal dataset.

174 Towards Automatically Addressing Self-Admitted Technical Debt: How Far Are We?

A.2.3 Self-supervised & Supervised Pre-training + Fine-tuning (RQ2 and RQ3)

Previous works in the natural language processing [ZZSL20a] and in the software engineer-
ing literature [CKM22, WLX+19] suggest that exploiting a supervised pre-training objective
that resembles the downstream task (in our case, SATD repayment) can play a positive role
on the models’ performance. For this reason, we further pre-trained CodeT5 for five epochs
using the “generic code changes” dataset described in Section A.1.2.2. Following that, we
continue fine-tuning CodeT5, which has been enhanced with domain-specific knowledge, on
the SATD removal dataset, both with and without additional context, i.e., code comments.

A.2.4 Zero-Shot Prompt Tuning (RQ4)

We designed three prompt templates aimed at querying ChatGPT for the SATD repaying task.
All prompts feature the SATD comment and the method affected by SATD (msatd):

1. Remove this SATD: {comment} from the following code {msatd}

2. Perform removal of this SATD: {comment} from this code {msatd}

3. This code {msatd} contains the following SATD: {comment} remove it

We also tried to explain ChatGPT the notion of SATD before querying it with any of the
three above-listed prompts. However, we did not observe significant changes in the output,
thus indicating that ChatGPT is “aware” of what SATD is.

A.3 Data Collection and Analysis

We run each trained CodeT5 on the 1,000 Java methods in the test set, asking it to imple-
ment the code changes needed to repay the SATD. We use the beam search decoding schema
[FAO17] to produce multiple candidate repayments for an input msatd . In the case of Chat-
GPT, we use the OpenAI APIs to query it. However, the APIs do only allow collecting a single
answer (solution) from ChatGPT.

In the following, we summarize the seven different models’ configurations we experiment
with:

• 1: No pre-training + context-specific fine-tuning, in the results referred as M0;
• 1: CodeT5 + context-specific fine-tuning, referred as M1;
• 1: CodeT5 + supervised pre-training on code changes + context-specific fine-tuning, re-

ferred as M2CC ;
• 1: CodeT5 + supervised pre-training on code changes + no-context fine-tuning, referred

as M3CC−Ablation;
• 3: ChatGPT in zero-shot learning setting × 3 prompt templates (M4T1−T3), where the

digit 1-3 indicates the used template among those described in Section A.2.4.
We assess the performance of each model using two metrics. First, the percentage of

Exact Match predictions for different beam sizes K (EM@K), namely the cases in which
the generated output is identical to the expected m f i xed . For CodeT5 we experiment with

A.4 Results 175

K equal 1, 3, 5, and 10. For the reasons previously explained, we only computed EM@1
for ChatGPT. Second, we compute the CrystalBLEU score [EP22] between the generated
predictions and the m f i xed target. CrystalBLEU measures the similarity between a candidate
(predicted code) and a reference code (oracle), similar to how the BLEU score [PRWZ02]
measures similarity between texts. However, CrystalBLEU is specifically designed for code
evaluation, while retaining desirable properties of BLEU, specifically being language-agnostic
and minimizing the effect of trivially shared n-grams, which would produce inflated results.

To better understand the extent to which the considered techniques can successfully ad-
dress SATD, we analyze the edit actions (i.e., deleting, adding, moving, or changing) to code
elements required in each SATD repayment instance. To this aim, we use the Gumtree Spoon
AST Diff [FMB+14] to gather the Delete, Insert, Move, and Update actions performed on
the source code AST nodes when SATD is being addressed. Specifically, we compute the
actual AST edit actions, i.e., those obtained by differencing the input and the target (i.e.,
ground truth) of the model.

Subsequently, we create two separate buckets. The first bucket includes all methods
where the best-performing model accurately addresses the SATD comment, while the second
bucket includes methods for which the suggested code is inconsistent with the developer’s
proposed repayment (i.e., ground truth). For both categories, we present the relative counts
of AST edit actions learned by the model (when the code suggested for addressing the SATD
is actually correct) and those where the model faces difficulties in providing a significant
implementation.

Also, we perform statistical tests to determine whether one of the experimented tech-
niques is more effective in producing code changes to address SATD. We use McNemar’s
test [McN47] (with is a proportion test for dependent samples) and Odds Ratios (ORs) on
the EMs that the techniques generate. We also statistically compare the distribution of the
CrystalBLEU scores (computed at the sentence level) for the predictions generated by each
technique by using the Wilcoxon signed-rank test [Wil45]. The Cliff’s Delta (d) is used as
effect size [GK05] and it is considered: negligible for |d| 0.10, small for 0.10 ≤ |d| < 0.33,
medium for 0.33 ≤ |d| < 0.474, and large for |d| ≥ 0.474. For all tests, we assume a sig-
nificance level of 95% and we account for multiple tests by adjusting p-values using Holm’s
correction procedure [Hol79].

Finally, we discuss examples of successfully addressed SATD comments by the top-performing
model and, at the same time, we present cases where the model was unable to pay back the
TD.

A.4 Results

Table A.2 reports the results obtained by the studied techniques when addressing SATD in-
stances from our test set. The first column (“Model”) provides a unique identifier we assigned
to each of the 7 experimented techniques described in Section A.3. The “Self-supervised
PT” and “Supervised PT” indicates whether a specific configuration we tested featured the
two types of pre-training, where the self-supervised is the one adopting the masked language
model objective and the supervised uses the generic code changes dataset to provide the model

176 Towards Automatically Addressing Self-Admitted Technical Debt: How Far Are We?

Table A.2. Exact Match (i.e., the recommended code is equal to the oracle) and CrystalBleu scores
achieved by the different techniques when addressing SATD comments. In bold we report the highest
value for both metrics when producing K=1, K=3, K=5, and K=10 candidate removals.

Model
Training Configuration Top-1 Top-3 Top-5 Top-10

Self-supervised PT Supervised PT SATD Comm. FT EM CB EM CB EM CB EM CB
M0 ✗ ✗ ✓ ✓ 0% 22.13% 0% 25.98% 0.0% 25.43% 0.0% 25.14%
M1 ✓ ✗ ✓ ✓ 2.23% 73.11% 5.40% 73.95% 6.10% 74.19% 7.20% 73.87%
M2CC ✓ ✓ ✓ ✓ 2.30% 73.41% 5.60% 74.20% 6.70% 74.28% 8.10% 74.25%
M3CC−Ablation ✓ ✓ ✗ ✓ 0.9% 72.58% 2.90% 73.48% 3.80% 73.60% 5.10% 73.50%
M4T1 ✓ ✗ ✓ ✗ 1.18% 37.30% - - - - - -
M4T2 ✓ ✗ ✓ ✗ 1.19% 49.68% - - - - - -
M4T3 ✓ ✗ ✓ ✗ 0.0% 1.70% - - - - - -

Table A.3. Comparison among different techniques for top-1 predictions: McNemar’s and Wilcoxon’s
test results.

Comparison
McNemar’s Test Wilcoxon’s Test
p-value OR p-value d

M1 vs. M0 - - <0.05 -0.86 (L)
M1 vs. M2CC >0.05 1.0 >0.05 -0.01 (N)
M3CC−Ablation vs. M2CC <0.05 8.0 <0.05 -0.01 (N)
M4T1 vs. M2 >0.05 1.38 <0.05 -0.54 (L)
M4T2 vs. M2 >0.05 1.36 <0.05 -0.43 (S)
M4T3 vs. M2 - - <0.05 -0.98 (L)

with knowledge about changing code. The “SATD Comm.” column indicates whether the
fine-tuning (or the prompting in the case of ChatGPT) included the SATD comment in the
model’s input, while the “FT” column shows which model has been fine-tuned on our “SATD
removal” dataset. Lastly, EM and CB indicate the performance of a specific configuration in
terms of (i) the percentage of predictions that are Exact Matches (EM), and (ii) the average
CrystalBLEU score (CB) [EP22] for all predictions in the test set. We present the results for
different beam sizes (K) of 1, 3, 5, and 10.

Table A.3 reports the results of the statistical tests (McNemar’s test and Wilcoxon signed-
rank test), with adjusted p-values, OR, and Cliff’s d effect size. An OR > 1, or a positive
Cliff’s d indicate that the right-side treatment outperforms the left-side one. To enhance
readability, when doing the comparisons, we arranged the treatments to display ORs ≥ 1.

A.4.1 RQ1: To what extent do pre-trained models of code support the automated
SATD repayment?

The first two rows of Table A.2 report the outcomes of the non-pre-trained model (M0)
and its counterpart using self-supervised per-training on code and technical language (M1).
While M0 is unable to address any SATD (EM = 0.0%) for all values of K , the prediction
performances of M1 range from 2.23% (K=1) to 7.20% (K=10). M1 is a CodeT5 fine-
tuned for SATD removal and our results stress the importance (and validity) of the pre-
training procedure performed on it by the original authors [WWJH21]. Also, the difference
in CrystalBLEU with respect to the non-pre-trained model (M0) is statistically significant (p-
value < 0.05), according to Wilcoxon signed-rank test, and is accompanied by a Large Cliff’s

A.4 Results 177

Delta. In the absence of EMs for M0, McNemar’s test results cannot be computed.

Answer to RQ1. The use of a self-supervised pre-trained model (CodeT5) has a signifi-
cantly positive benefit when addressing SATD, if compared to a non-pre-trained model.
The latter is unable to produce exact matches, likely due to the limited size of the fine-
tuning dataset.

A.4.2 RQ2: To what extent does the infusion of “similar-task knowledge” in pre-
trained models of code benefits the automated SATD repayment?

Instilling task-similar (i.e., code changes) knowledge into the model (M2CC , featuring both
self-supervised and supervised pre-training) results in a slight performance improvement as
compared to M1 (i.e., self-supervised pre-training only). While there is an improvement
across all beam sizes (see Table A.2), this is usually minor. For example, when only rely-
ing on the top prediction (i.e., K=1), the EMs rise from 2.23% to 2.30% which, given the
1,000 instances featured in our test set, means 7 new EM predictions. The improvement is
slightly higher when looking at higher values of K , with a +0.9% reached for K=10 (7.20%
vs. 8.10%). Upon statistically comparing both models (M1 vs. M2CC), the McNemar’s test
(Table A.3) reports a lack of significant differences (p-value > 0.05) in EM predictions be-
tween M1 and M2CC . Wilcoxon signed-rank test also suggests non-significant differences in
the distributions of CrystalBLEU scores between M1 and M2CC . Such a result is in line with
what was observed by Tufano et al. [TPB23].

They found that adopting a pre-training objective resembling the downstream task does
not always substantially help, questioning the effort needed for the additional training time.
This also seems to be the case when addressing SATD. Despite this, M2CC still is the best-
performing model we experimented with and, for this reason, we performed some additional
analyses on its predictions.

The EM predictions generated by M2CC with K=10, feature a total of 768 AST edit actions
correctly implemented by the model. Out of these, 62.36% are Delete operations (i.e., an
AST node is removed), 33.60% are Inserts (i.e., a new node is introduced into the AST),
and 2.34% and 1.70% are Move and an Update operations, respectively .

When looking at the failure cases (i.e., non-EMs), the distribution of AST edit actions that
was needed to address the SATD (but that the model failed to reproduce) we found that out
of the EMs: 32.01% are Deletions, 54.10% Insertions, 6.84% Moves, and 7.05% Updates

. Thus, are not the “types” of AST edits needed to address the SATD that discriminate
what the model can or cannot do. Given this finding, we also computed the sheer number of
AST edit actions that were needed in EMs and wrong predictions to address the SATD. The
achieved results, as expected, indicate that the model struggles in addressing SATD in need
of a high number of AST changes to be repaid. Indeed, the median number of changes that
were required to address the SATD instances that resulted in EMs is 6, as compared to the
20 of the wrong predictions (mean 9.8 vs 38.1).

Fig. A.3 illustrates four instances from our test set, including two for which M2CC was
able to successfully address the SATD (1 and 2), and two for which it failed to pay back the

178 Towards Automatically Addressing Self-Admitted Technical Debt: How Far Are We?

Figure A.3. Example of 4 SATD comments addressed by the model (2 correct and 2 wrong) for top-10
candidate recommendations.

TD (3 and 4). For the successful cases, the code on top shows the input method including
the SATD, while the one at the bottom shows how the model addressed the SATD (changes
highlighted by the yellow boxes). For the failure cases, we also report the expected target
from our dataset, namely the code showing how the developers actually addressed the SATD
(changes highlighted with grey boxes).

In 1 the SATD mentions “TODO Lowercase paradigm”. To fulfill this requirement, the
model performs two distinct AST edit actions, addressing the TD in the right location by
injecting the toLowerCase invocation. The example of scenario 2 shows how the model
addresses the SATD by replacing the reportDirectory attribute in the current instance with
resultsDirectory through a code change that involves updating two AST nodes (i.e., an Update
edit) in the if and else statements.

In scenario 3 the model fails to effectively handle the SATD comment (TODO load from
actual config) by requiring modifications to the instantiation of this.socketAddress.
The hard-coded IP address and port need to be replaced with values fetched using the config
method. The implementation of these changes is unsuccessful, as the model outputs the same

A.4 Results 179

method (Msatd) with the SATD comment removed (gray box in 3). There are a total of 21
AST edit actions to be implemented to successfully address the SATD comment, including
18 Insert operations, two Delete operations, and one Update action. When considering
scenario 4 , the SATD left by the developer requires the complete implementation of the
storeCredential method. Nonetheless, the recommendation provided by the model does not
address the SATD comment appropriately since it assumes the existence of a storeCredential
method that takes context, account, and storage as input parameters, failing to address the
TD. A successful change would have required the addition of 19 new nodes (i.e., Insert) to
the AST of the Java method storeCredential.

Answer to RQ2. Seeding task-similar knowledge (e.g., code changes) into a model
pre-trained using self-supervised task models of code only slightly improves their per-
formance. Even our best-performing model struggles in addressing SATD instances re-
quiring a large number of AST edit actions.

A.4.3 RQ3: To what extent does the presence of “context-specific knowledge” help
pre-trained models of code in the automated SATD repayment?

By comparing the results in row 4 of Table A.2 (MCC−Ablation) with those in row 3 (MCC),
we can observe the fundamental role played by the context-specific knowledge provided
as input to the model (i.e., the SATD comment) in automatically addressing TD. Admitting
TD through a comment aids the model to better perform for all considered beam sizes (K).
For example, when focusing on a single candidate solution (i.e., top-1), M3CC−Ablation can
only achieve an EM in 0.9% of cases, while M2CC does it in 2.30% of cases. When looking
at higher values of K , the gap becomes even larger, up to a +3% for K = 10 (5.10% vs.
8.10%). McNemar’s test indicates a significant difference (p-value < 0.05) between M2CC
and M3CC−Ablation, with M2CC having 8 times higher odds (OR=8) to address SATD than
M3CC−Ablation. Instead, although the differences found by Wilcoxon signed-rank test for the
CrystalBLEU are statistically significant, the effect size is negligible. The obtained results
further highlight the importance for developers to admit TD. In essence, SATD does not only
serve as a trace for themselves and for other developers [ZFSD21], but, also, as a way to
better guide automated tools in addressing TD. Furthermore, this stresses the importance of
recommending developers that TD should be admitted [ZNA+17].

Answer to RQ3. The availability of context-specific knowledge in the form of SATD
comments enhances the performance of pre-trained models of code, allowing them to
achieve a substantial increase in the percentage of automatically addressed TD. This is
a further motivation for developers to admit TD in their source code.

180 Towards Automatically Addressing Self-Admitted Technical Debt: How Far Are We?

A.4.4 RQ4: Are general-purpose large language models zero-shot learners for SATD
repayment?

The last three rows of Table A.2 report the performances achieved by ChatGPT as zero-shot
learner for addressing SATD. Two findings emerge: (i) the usage of different templates to
prompt ChatGPT for the task of SATD repayment plays a crucial role and, (ii) the perfor-
mances achieved when recommending one single candidate solution (top-1) are lower than
DL-based techniques appositely fine-tuned (M1 and M2CC) to pay back TD. As for the use
of several prompt templates, it is important to note that designing templates showing the
code first and the comment later (as did in M4T3) strongly penalize the model, resulting
in 0 EM and the lowest CrystalBLEU score across all treatments. Differently, providing the
SATD comment first and the code including such a comment later helps ChatGPT in achiev-
ing better performances, with 1.18% and 1.19% of SATD comments successfully addressed,
respectively for M4T1 and M4T2.

McNemar’s test on the top-1 recommendation indicates no significant differences (p-
value > 0.05) between M4T1 and M2CC , as well as M4T2 and M2CC . However, there are sta-
tistically significant differences when comparing the CrystalBLEU distributions of the tested
templates with M2CC . In these instances, the effect is large for M4T1 and M4T3, and small
for M4T2, where ChatGPT performed best.

Without knowing the details of ChatGPT’s implementation, it is hard to speculate on the
reasons behind such performances. Possibly, they could be related to the lack of a specific
fine-tuning for the specific task, or also to the need to generate suitable prompts.

Answer to RQ4. When used in a zero-shot setting, LLMs, and ChatGPT in particular, ex-
hibit sub-optimal performance compared to pre-trained models of code appositely tuned
for the specific task of addressing SATD. Additionally, the use of well-crafted templates
plays a crucial role for LLMs being used off-the-shelf.

A.5 Threats to Validity

Construct validity. The main issue to be considered is whether the observed SATD removals
are true positives. To mitigate this threat, we only considered cases in which the SATD
comment contained well-recognized keywords, and we manually analyzed a sample to check
for problematic cases.

To avoid training our model on instances where the SATD was removed by chance, we
excluded cases where the affected method was removed. We are, however, aware that the
latter heuristics, while mitigating some threats to construct validity, could affect the study’s
generalizability.

Internal validity. As explained in Section A.2, we used the default settings of the em-
ployed language models. Better results could be achieved with proper hyperparameter tun-
ing. The assumption we have made in Section III-B which links the removal of an SATD com-
ment with the change performed within the same method is subject to imprecision. First,

A.6 Conclusions and Future Work 181

the commit could tangle the SATD repayment with other changes. Second, the comment
removal may be out of sync with the source code change aimed at addressing the SATD.

Conclusion validity. The comparison between different techniques is supported by suit-
able statistical procedures and effect size measures. Also, the results of multiple tests have
been adjusted through Holm’s procedure [Hol79]. We are aware that the performance of
the studied approaches may change, and possibly improve, if experimenting with a larger
dataset.

External validity. Our study is limited in terms of programming language (Java) and,
more important, the SATD removal dataset is based on 1,000 instances. As stated in Sec-
tion A.2, we limit to addressing SATD that have been resolved within the same method, and
to methods not longer than 1024 tokens. As the paper aims to set—within the employed
generative models—an “upper bound” of the SATD repayment capability, we do not expect
any better results for more complex and extensive changes. Better generalizability of our
results would require studies on further and more diversified datasets.

In terms of considered models, our results are limited to the CodeT5-base [WWJH21],
as well as a zero-shot attempt done with ChatGPT [cha]. Other models having a different
size and architecture could, possibly, exhibit different results. However, in this circumstance,
our interest was to mainly show the feasibility of SATD removal and, within the same model
(CodeT5 in our case), the relative improvements with different levels of pre-training and
fine-tuning. Moreover, we acknowledge that we have not experimented with edit-specific
models, such as CoditT5 [ZPN+22b], and therefore further experimentation with such mod-
els would be desirable. At least, we partially mitigated this threat by experimenting in RQ2
a pre-training with code changes. Moreover, as explained in Section II-C, our dataset mostly
features removals and additions rather than updates and moves.

Last, but not least, also the preliminary results with ChatGPT need to be confirmed or
confuted with similar yet differently implemented tools, e.g., Google Bard [Goo23].

A.6 Conclusions and Future Work

In this paper, we investigated the use of Deep Learning (DL) models for automatically ad-
dressing technical debt (TD). To train the models, we leveraged 5,039 instances of SATD
removals mined using an existing tool [ACB+22]. Such a small number of training instances
made the pre-training of the model absolutely necessary to achieve an automated fixing of
SATD instances. Nevertheless, even the best-performing model we experimented with can
automatically repay SATD only in a minority of cases (2% to 8%). The complexity of such a
task has also been confirmed by the results achieved exploiting the state-of-the-art LLM (i.e.,
ChatGPT [cha]), that under-performed if compared to the specialized models we tested. So
far, the use of generative deep learning models has been successful for several code tasks that
require either generation of new code, or the change of existing one. Some (non-exhaustive)
examples of achieved performances are on the order of ∼14% for bug fixing (Wang et al.
[WWJH21]), of∼5% for generating a reviewed version of existing source code (Tufano et al.
[TMM+22]), and ∼23% for generating code blocks (Ciniselli et al. [CCP+21]). As far as
SATD repayment is concerned, we have observed both positive results and negative results.

182 Towards Automatically Addressing Self-Admitted Technical Debt: How Far Are We?

On the positive side, results are in line with some existing approaches for automated bug
fixing [TWB+19a].

On the negative side:
1. The level of performances achieved so far would still limit the applicability of the

proposed approach in real practice. The latter may also possibly require some expla-
nation/rationale of the changes to be performed, e.g., telling to the developer that the
change being done is enacting a refactoring action, fixing a bug, improving the code
readability, etc.

2. Such results have been obtained under the assumption that the change concern a single
method, with a limited maximum size of the considered methods, and assuming that
the removal of a SATD comment would correspond to changes aimed at addressing it.

3. Although the proposed approach was able to correctly recommend instances of SATD
repayment involving the addition of an AST (over 33% of our exact matches), the
approach may fail to introduce a totally new, unseen piece of feature, as well as it is
unlikely to be able to perform changes such as API upgrade/replacements.

The aforementioned limitations greatly stimulate future research in this area. First and
foremost, although in RQ2 we have performed a large training of CodeT5 on a dataset of
code changes, it would be worthwhile to experiment with models more specifically suited
for code edits, such as CoditT5 [ZPN+22b].

Second, although RQ4 has shown that a zero-shot instance of ChatGPT fails to support
the SATD repayment task, other investigations with LLMs are worthwhile, as those might
be able to help in supporting larger change tasks. They can go in the direction of prompt
engineering, as well as experimenting with other LLMs. Third, given the variety of the SATD
nature, it may be worthwhile to pursue the development of eclectic approaches, that first
classify the type of needed change (e.g., along the line of what SARDELE [ZSD20] does) and
then employing different models or even different approaches for each of them. Our future
work targets (i) the possibility to exploit LLMs in a few-shot learning scenario (rather than
the zero-shot we experimented with), and (ii) the definition of different mining pipelines
which could help enlarging the SATD removal dataset, possibly boosting performance.

B
Toward Automatically Completing GitHub
Workflows

Setting and maintaining a continuous integration and delivery (CI/CD) pipeline is crucial
for any software project. Indeed, CI/CD contributes to enhancing software quality and de-
velopers’ productivity [Che17], and to speed up release cycles [VYW+15]. Nevertheless,
previous research has highlighted the challenges encountered by developers in setting up
and maintaining CI/CD pipelines [Che15, HNT+17, ZVP+20, ZNDP22, SN23]. Despite the
availability of modern CI/CD infrastructures and reusable assets (e.g., GitHub actions), the
intrinsic CI/CD requirements and underlying technology of a given project may still make
this task hard [HNT+17, ZNDP22]. For example, this could be the case when a system needs
to be deployed and tested on different operating systems or even embedded devices.

The aforementioned challenges entail the need for recommender systems helping devel-
opers in setting up and maintaining CI/CD pipelines. This is also supported by a study by
Soroar et al. [SN23], reporting that ∼60% of the 90 developers they surveyed encountered
difficulties in automating workflows using GitHub actions.

It is worth mentioning that the possible solutions are somewhat similar to those related
to automated code completion, where approaches have been defined either to provide sug-
gestions about non-trivial, generic code elements (up to blocks) to be completed [CCP+21],
or more specialized suggestions, e.g., related to creating assertions [WTM+20], or repairing
vulnerabilities [CKM22, FTL+22b] and bugs [CKT+19, LWN20, LWN22b].

That being said, helping developers in setting up a CI/CD pipeline poses unique chal-
lenges. Indeed, the structure a CI/CD pipeline mixes up very specific scripting elements (e.g.,
related to configuring a server, downloading certain libraries, etc.) with some more recurring
and regular reusable elements (e.g., the actions in the case of GitHub), up to natural lan-
guage elements. Also, CI/CD pipeline contain several extremely context-specific elements,
such as paths of installation directories, or URLs of resources to download. This creates ma-
jor challenges to the use of data-driven techniques for the automated recommendations of
these elements.

This paper proposes GH-WCOM (GitHub Workflow COMpletion) an approach leveraging
Transformer models [VSP+17] to provide automated completion of GitHub workflows. To

183

184 Toward Automatically Completing GitHub Workflows

develop (and train) GH-WCOM, we have leveraged the existing body of GitHub workflows
starting from a dataset by Decan et al. [DMMG22].

To make a GitHub workflow completion possible, we have defined and implemented a
multi-step pre-processing including an abstraction of the tokens for which their verbatim
prediction would not be feasible (e.g., a very specific path in a project) while still leaving
to GH-WCOM the ability to recommend some very peculiar workflow elements such as tool
options and other scripting elements. GH-WCOM can recommend GitHub workflow comple-
tions in different modes that mimic how a developer may implement the workflow, i.e., (i)
suggesting the next statement (a GitHub step), or (ii) helping to complete a job with imple-
mentation elements once the developer has defined, in plain English, what the job should
do.

Summarizing, this paper makes the following contributions:
1. We propose GH-WCOM, which, to the best of our knowledge, is the first approach to

automatically complete CI/CD pipelines, and GitHub workflows in particular.
2. We experiment with different pre-trainings, abstraction levels, and completion scenar-

ios. Results indicate that pre-training at least on English text is required, and GH-
WCOM’s performance for correct prediction is ∼34%. The correct prediction accuracy
is correlated with the model’s confidence.

3. We report a qualitative analysis discussing the extent to which the recommendations
provided by GH-WCOM could still be helpful also when the generated output is differ-
ent from the target (expected) one. Also, we discuss how GH-WCOM is competitive
with respect to recent, popular general-purpose recommenders based on large lan-
guage models, e.g., CoPilot [cop] and ChatGPT [cha].

4. We made publicly available GH-WCOM scripts, checkpoints predictions, and the used
datasets [repc].

B.1 Background

GitHub workflows integrate CI/CD in the GitHub infrastructure. A GitHub workflow (exam-
ple in the top part of Fig. B.1, while the bottom part will be described later in the paper) is a
YAML file located under the .github/workflows (sub)directory of a repository. As specified
by the on: clause, a workflow is triggered based on some events (e.g., a push, a pull request)
and executes a series of jobs, specified after the jobs keyword (as the job named build in
the figure).

Jobs are units of execution of a CI/CD process and can run in parallel or sequentially
(if dependencies between jobs are specified) on runners. Unless they use explicit ways to
exchange information (e.g., uploading and downloading artifacts in a storage area), jobs are
independent of each other. Runners can be local or remote virtual machines or containers.
Runners and containers are specified after the job name, using the runs-on clause, and, if
containers are used, the container: and image clauses. The job in the example runs on
an Ubuntu virtual machine and uses a container from an image bringing the gcc compiler.
Each job consists of a sequence of steps. In Fig. B.1, steps are all items preceded by a dash
following the keyword steps. There are two ways to implement a step. The first (denoted

B.1 Background 185

name: CBuild

on:
 push:
 branches: [main]
 pull_request:
 branches: [main]

jobs:
 build:
 runs-on: ubuntu-latest
 container:
 image: gcc
 steps:
 - name: checking out the repository
 uses: actions/checkout@v2
 - name: Running makefile to compile the program
 run: make

Example of GitHub Workflow

{
 "name": "CBuild",
 "on": {
 "push": {
 "branches": [
 "main"
]
 },
 "pull_request": {
 "branches": [
 "main"
]
 }
 },
 "jobs": {
 "build": {
 "runs-on": "ubuntu-latest",
 "container": {
 "image": "gcc"
 }
 },
 "steps": [
 {
 "name": "checking out the repository",
 "uses": "actions/checkout@v2"
 }
 …
 }
}

JSON-like Representation

YAML Representation

Figure B.1. GitHub workflow example

by the keyword uses) is to leverage GitHub actions, i.e., reusable applications available on
GitHub that implement recurring tasks. For example, the actions/checkout@v2 is version
2 of an action checking the content of the GitHub repository branch on which the workflow
has been triggered.

The second (keyword run) consists of directly executing whatever application is available
in the virtual machine/container (e.g., apt-get to install components, gradle to run a Gradle
build). Run steps are typically used for specific tasks for which an action is not available,
or the task is so simple as to not require an action. Optionally, a step can be documented
with a textual description of its action or run command, using the name keyword. Further
information about GitHub workflows and actions is available on the GitHub documentation
[gita].

186 Toward Automatically Completing GitHub Workflows

B.2 GH-WCOM

This section describes GH-WCOM, the proposed approach to recommend GitHub workflow
completions. GH-WCOM leverages the Text-to-Text Transfer Transformer (T5) model by Raf-
fel et al. [RSR+20]. First, we pre-train T5 by experimenting with different strategies. Then,
we train the tokenizer needed by GH-WCOM and, after an hyperparameter calibration, we
fine-tune T5 with instances specifically related to the actual prediction tasks. After that, we
use the trained model for two different kinds of predictions, i.e., (i) adding the next step
in a workflow job, or (ii) completing a job whose steps have just been specified in terms of
natural language text.

In the following, after overviewing the T5 model, we describe the different steps of the
approach.

B.2.1 An overview of T5

T5 [RSR+20] is an encoder-decoder Transformer [VSP+17] designed to work in a text-to-text
setting. Whatever the generation task is, T5 can be employed as long as both the input and
the output can be represented as textual strings (e.g., translating from English to Spanish,
outputting the fixed version of a provided buggy code). We have chosen T5 given its suc-
cessful application in several code completion/generation tasks [MPB22, CCP+21, TMM+22,
WWJH21].

The training procedure of T5 is usually performed in two steps. First, the model is pre-
trained on a large-scale dataset using self-supervised training. The pre-training provides
T5 with general knowledge about the language(s) of interest. For example, assuming the
will of building an English-to-Spanish translator, we could provide as an input to the model
English and Spanish sentences having 15% of their tokens masked, with the model in charge
of predicting them. That makes the pre-training fully self-supervised.

Subsequently, the model undergoes fine-tuning, which is supervised training (e.g., pro-
viding pairs composed of an English sentence and its Spanish translation). Fine-tuning spe-
cializes the model for the task of interest.

Raffel et al. experimented with five T5 variants, differing in terms of the number of
trainable parameters: small, base, large, 3 billion, and 11 billion. Considering our computa-
tional resources and recent successful application of T5small to automate code-related tasks
[MPB22, CCP+21, TMM+22, WWJH21], we opted for the simplest architecture which still
features 60M trainable parameters, consistently with large language models used in the lit-
erature. For additional architectural details, we point the reader to the work by Raffel et al.
[RSR+20].

B.2.2 Abstraction

We conjecture (and will later experiment) that learning to autocomplete GitHub workflows
on raw text (i.e., with no preprocessing) is extremely challenging. This is mainly due to
the presence of context-specific (and often unique, i.e., they have not been seen before)
elements in the workflows, such as paths and urls. For example, the left part of Fig. B.2

B.2 GH-WCOM 187

shows a GitHub workflow featuring elements such as the ./vendor/bin/phpunit path or the
specific version of an action the user is using (e.g., actions/checkout@v2), which are likely to
hinder the completion learning. These are some of the elements we aim at abstracting with
special tokens (e.g., replacing a path with the <PATH> tag), as it can be seen in the right
part of Fig. B.2.

Such an abstraction moves the definition of these context-specific elements from T5 (now
only in charge of indicating the need for e.g., a <PATH>) to the developer. We acknowledge
that this might imply a slightly higher effort on the developer’s side who needs to “fill the
placeholders” (i.e., the special tags) in the prediction.

To define the abstraction rules, we leverage the unique set of tokens extracted from the
workflows of the projects listed in the GitHub actions dataset by Decan et al. [DMMG22].
The dataset features 67,870 GitHub repositories, 29,778 of which use GitHub workflows, and
is the one we use to create our training and testing datasets as described in Section B.2.3.
Given the list in that dataset, we were able to clone 69,040 GitHub repositories, which is
more than the 67,870 for which Decan et al. extracted workflow data. From those, we
retrieved all GitHub workflows and extracted their “tokens”. A token can be an action name,
a command to run, the option of a command, a path, etc. Out of 10,188,342 unique tokens,
284,463 appear in one workflow, i.e., are very specific, confirming our conjecture about the
need for abstraction. We randomly selected 1,000 of those tokens for manual inspection. We
clustered them based on their “type” (e.g., path, file). Such a process has been performed
by the first author, with the results checked by three other authors. Such a process led to
the definition of five categories of context-specific tokens we aim at abstracting: url (i.e.,
a reference to a web resource, such as an IP address), file (i.e., a file name/path), path
(i.e., a path to a directory or to any other resource which cannot be identified as a file since
lacking extension), version number, (i.e., the specific version of a library, language, or
other resources being used), and action version (i.e., the specific version of an action that
is used). For each category, we defined a special token acting as a placeholder during the
abstraction. Note that we distinguish between version number and action version since
we assume this could provide additional information to the model which might be useful for
the learning.

The abstraction example reported in Fig. B.2 shows how we replace the action version
of the token actions/checkout@v2 with the special <PLH> token, while files and urls
such as bin/install-wp-test.sh and 127.0.0.1 are replaced with 〈FILE〉 and 〈URL〉, re-
spectively. The code implementing our abstraction process is publicly available [repd]. In
a nutshell, we use regular expressions and heuristics to identify the token types of interest
and abstract them. The identification of files leverages, besides a regular expression, a
list of extensions we defined during the manual analysis of the tokens appearing in a single
workflow. Such a list is also provided in our replication package [repd].

To validate our choice of the specific tokens to abstract, we extracted all single-occurring
tokens in our dataset, namely those certainly representing problematic cases for any data-
driven technique. In total, we identified 23,273 distinct single-occurring tokens. Out of
these: 8,226 (37%) are paths, 8,068 (35%) are files, 2,833 (12%) are urls, and 2,334
(10%) are versions. This means that ∼93% of single-occurring tokens are abstracted by

188 Toward Automatically Completing GitHub Workflows

our procedure. This indicates that the proposed abstraction strategy is suitable to abstract
rarely-occurring tokens.

Figure B.2. Example of Raw and Abstracted Instance.

B.2.3 Training and Testing Datasets

B.2.3.1 Pre-training dataset

Since the goal of pre-training is to provide T5 with general knowledge about the language(s)
of interest, we built a pre-training dataset featuring YAML files (i.e., the language used in
GitHub workflows), and in particular both general-purpose YAML files as well as those imple-
menting GitHub actions. The former are used for various purposes, e.g., CI/CD scripts for
other infrastructures (e.g., Travis-CI) or other configuration files.

GitHub actions feature a syntax closer to workflows and therefore would provide further
knowledge during pre-training.

We collected general-purpose YAML files in two steps. First, we searched for YAML files
in the 69,040 GitHub repositories we cloned, while excluding those implementing GitHub
workflows that we will use to fine-tune the model (i.e., those contained in the ./github/-
workflows/ directory). This resulted in 443,037 general-purpose YAML files.

B.2 GH-WCOM 189

To further expand this dataset, we cloned all public non-forked repositories having at
least 100 stars and 100 commits, and created in the time range that goes from 2022-25-
01 (i.e., the day after Decan et al. built their dataset) to 2022-30-09 (the day in which we
performed the data collection). The identification of these repositories has been performed
using the GitHub search platform by Dabić et al. [DAB21].

We successfully cloned additional 1,124 GitHub repositories that are not in the dataset by
Decan et al. nor are forks of those. To create the pre-training dataset, which counts a body
of 146,006 general-purpose YAML files, we excluded duplicated instances as well as those
including non-ASCII tokens and all those having #tokens ≥ 1024. Fixing an upper-bound
in terms of the number of tokens for the model’s input helps in taming the computational
cost of training and is a common practice in the literature exploiting DL models to automate
code-related tasks [HLWM20, WXL+21, MAPB21, TPT+21, MAPB22, CCP+21].

Concerning the YAML files implementing GitHub actions, we collected 13,638 unique
examples about the usage of actions from the GitHub Marketplace [mar].

The pre-training dataset features 146,066 general-purpose YAML files and 13,638 YAML
files implementing GitHub actions. Each instance in the dataset is a pair featuring (i) a YAML
file with 15% of its tokens randomly masked, and (ii) the expected target, namely the tokens
the model is expected to predict instead of the masked ones.

B.2.3.2 Fine-tuning dataset

Our fine-tuning dataset features 73,708 GitHub workflows from the whole body of GitHub
projects made available by Decan et al. [DMMG22]. On top of those, we mined 733 work-
flows from the 1,124 GitHub repositories previously mentioned.

We removed duplicated workflows, and, as done before, all those having #tokens ≥
1024, instances containing non-ASCII characters, and those which overlap with instances
in the pre-training dataset. We were left with 17,935 unique workflows used to train and
evaluate GH-WCOM. These workflows feature an average of 54 lines (median=41) and 120
tokens (median=84).

We split the dataset into training (80%), validation (10%), and test (10%), making sure
that all the instances coming from the same project are assigned to the same subset, thus
avoiding leakage of data among the three sets. We obtained 14,348 workflows to train
the models, 1,793 for hyperparamenter tuning, and 1,794 to test the best configuration
identified. Each workflow is represented as a JSON-like object preserving the structure of
the original workflow file, as it can be seen in the bottom part of Fig. B.1.

We then fine-tune GH-WCOM to support two workflow completion scenarios. In the
first one, next step (NStask), GH-WCOM is in charge of predicting the complete nth step
a developer is likely to write in a workflow given the preceding already written tokens. A
step may or may not contain a textual description (name), and it can either consist of action
invocations (uses) or commands (run). In the second scenario, job completion (JCtask),
GH-WCOM gets as input an abstract job where only names are specified, and it is asked
to complete it step by step. Fig. B.3 helps in better understanding these two scenarios by
depicting a fine-tuning instance from our dataset.

190 Toward Automatically Completing GitHub Workflows

name: Bundle Size
on:
 pull_request:
 branches:
 - master

jobs:
 size:
 runs-on: ubuntu-latest
 env:
 CI_JOB_NUMBER: 1
 steps:
 - name: Cache node_modules
 uses: actions/cache@v1
 id: yarn-cache-node-modules
 with:
 path: node_modules
 key: ${{ runner.os }}-yarn-cache-node-modules-$
 {{ hashFiles('**/yarn.lock') }}

 - name: Yarn install
 if: steps.yarn-cache-node-modules.outputs.cache-hit != 'true'
 run: yarn install --frozen-lockfile

Workflow Raw Tokens @Original

…
jobs:
 size:
 runs-on: ubuntu-latest
 env:
 CI_JOB_NUMBER: 1
 steps:
 - name: Cache node_modules
 <TO_BE_PREDICTED>

 - name: Yarn install
 <FOR-LATER-USE>

…
jobs:
 size:
 runs-on: ubuntu-latest
 env:
 CI_JOB_NUMBER: 1
 steps:
 - <TO_BE_PREDICTED>

1 2

3

Workflow — Next Statement Task

Workflow — Job Completion Task

Figure B.3. Example of instance for fine-tuning the T5 model on both tasks, namely NStask and JCtask

Since we experiment with both the raw workflow version (i.e., no abstraction) and with
its abstracted version, we report in Fig. B.3 an example of “raw instance”. The left part of
the figure 1 shows the original GitHub workflow, while 2 depicts its version for fine-tuning
the model for NStask . In this case, we are simulating a scenario in which the developer
already wrote the first 11 lines of the workflow (i.e., up to steps:), and GH-WCOM is asked
to predict the first step of the job (i.e., uses: actions/checkout@v2). Note that we can
extract multiple (5) training instances from this workflow. Indeed, we can ask the model to
predict the first step of the job given just the preceding statements.

Then, we can ask the model to predict the second step also given the definition of the first
step, etc. Fig. B.3 3 depicts a fine-tuning instance for JCtask . In this case, we assume that
the developer wrote the skeleton of a job by only defining, when available, the job’s name it
should feature (e.g., Yarn install). The model is in charge to predict the step masked with the
<TO_BE_PREDICTED> token, while the <FOR-LATER-USE> token is used to indicate steps that
are not yet implemented. Also in this case we can build multiple fine-tuning instances from
the workflow in Fig. B.3. We can start predicting the first step in a job using the following
n− 1 for which only the name is provided; then, we can predict the second step, providing
the model with the full implementation of the first (as if the model already predicted it) and
the following partially defined n− 2 as context; etc.

Table B.1 reports the number of instances in the training, validation, and test datasets
for both completion scenarios.

Dataset train eval test

Pre-training 159,645 - -
Fine-tuning: NStask 108,900 13,009 13,630
Fine-tuning: JCtask 108,900 13,009 13,630

Table B.1. Number of instances in the used datasets

B.2 GH-WCOM 191

B.2.4 Training and Hyperparameter Tuning

All the trainings we performed have been run using a Google Colab’s 2x2, 8 cores TPU
topology with a batch size of 32 and an input and target sequence length of 1,350 and 750
tokens, respectively.

B.2.4.1 Tokenizer Training

Since our task is characterized by the presence of natural language and human-readable
data-serialization language (i.e., YAML data), we trained a new tokenizer (i.e., a Sentence-
Piece model [Kud18] with vocabulary size set to 32k word-pieces) to cope with context-
specific elements. To this extent, we use the 159,645 YAML files included in our pre-training
dataset and 712,634 English sentences from the C4 dataset [RSR+20]. The latter is a com-
mon practice in literature when developing DL-based models that are required to deal with
multi-modal data such as code and technical natural language [MPB22, WWJH21]. We in-
cluded English sentences due to the presence of technical English occurring within GitHub
workflows.

B.2.4.2 Pre-training strategies

We assess GH-WCOM in four pre-training scenarios. The first is No pre-training (T5NO−PT),
in which the model is not pre-trained, but directly fine-tuned. This means that the model
has no previous knowledge of any language and it is just trained to complete GitHub work-
flows with the available fine-tuning dataset composed by ∼109k instances. The second is
YAML pre-training (T5YL), in which the model is first pre-trained for 300k steps on a total of
159,645 YAML files including 13,638 actions from the GitHub Marketplace [mar] and then
fine-tuned on the workflow completion task. Thus, in this case the model has knowledge
of the general structure of YAML files before being then specialized on the completion task.
The third is the Natural Language Pre-training (T5NL), for which we fine-tune the publicly
available checkpoint by Raffel et al. [t5-]which has been pre-trained for 1M steps on English
sentences from the C4 dataset [RSR+20].

The fourth scenario is Natural Language+YAML Pre-training (T5NL+YL) in which we fur-
ther pre-trained the previously mentioned checkpoint for additional 300k steps on YAML
files, reaching a total of 1,3M pre-training steps (1M on English sentences + 300k on YAML
files).

B.2.4.3 Hyperparameter Tuning

Once pre-trained the models, we fine-tune the hyperparameters of the model following the
same procedure employed by Mastropaolo et al. [MSC+21].

In particular, we assessed the performance of T5 when using four different learning rate
schedulers: (i) Constant Learning Rate (C-LR): the learning rate is fixed during the whole
training; (ii) Inverse Square Root Learning Rate (ISR-LR): the learning rate decays as the in-
verse square root of the training step; (iii) Slanted Triangular Learning Rate [HR18] (ST-LR):

192 Toward Automatically Completing GitHub Workflows

the learning rate first linearly increases and then linearly decays to the starting learning rate;
and (iv) Polynomial Decay Learning Rate (PD-LR): the learning rate has a polynomial decay
from an initial value to an ending value in the given decay steps. The exact configuration of
all the parameters used for each scheduling strategy is reported in our replication package
[repd]. Such a procedure has been performed for each of the fine-tuning datasets previously
described (i.e., both tasks on raw and abstracted code).

Having four different training scenarios, four possible learning rates, two different com-
pletion contexts, and two versions of the fine-tuning dataset (i.e., abstracted and raw tokens),
the hyperparameter tuning required building and evaluating 64 models. We fine-tuned each
model (i.e., each configuration) for 100k steps. Then, we compute the percentage of correct
predictions (i.e., cases in which the model can correctly generate a recommendation) in the
evaluation set. Table B.2 reports the achieved results for each of the 64 models we fine-tuned
to find the best-performing configuration (which is reported in boldface).

Table B.2. Hyperparameters tuning results

No Pre-training

Raw Abstracted
NStask JCtask NStask JCtask

Constant (C-LR) 11.06% 19.24% 13.27% 26.73%
Inverse Square Root (ISQ-LR) 12.38% 21.13% 14.21% 27.86%
Slanted Triangular (ST-LR) 10.13% 20.95% 12.81% 26.65%
Polynomial Decay (PD-LR) 10.86% 19.01% 13.78% 25.57%

YAML Pre-training

Raw Abstracted
NStask JCtask NStask JCtask

Constant (C-LR) 16.26% 25.92% 19.05% 32.35%
Inverse Square Root (ISQ-LR) 15.77% 25.47% 18.93% 31.22%
Slanted Triangular (ST-LR) 14.26% 24.73% 18.05% 30.96%
Polynomial Decay (PD-LR) 16.15% 26.01% 19.24% 32.81%

English Pre-training [RSR+20]

Raw Abstracted
NStask JCtask NStask JCtask

Constant (C-LR) 18.35% 27.18% 22.25% 34.02%
Inverse Square Root (ISQ-LR) 18.36% 27.10% 21.70% 33.91%
Slanted Triangular (ST-LR) 17.67% 26.61% 21.70% 33.25%
Polynomial Decay (PD-LR) 18.46% 27.47% 22.30% 34.12%

YAML+English Pre-training

Raw Abstracted
NStask JCtask NStask JCtask

Constant (C-LR) 18.06% 27.40% 21.55% 32.91%
Inverse Square Root (ISQ-LR) 18.36% 28.17% 21.84% 34.62%
Slanted Triangular (ST-LR) 16.50% 25.90% 18.88% 32.11%
Polynomial Decay (PD-LR) 18.28% 27.33% 21.40% 33.36%

B.2.4.4 Fine-tuning

Once identified the best learning rates to use, we fine-tuned the final models using early
stopping to avoid overfitting. In particular, we save checkpoints every 10k steps using a
delta of 0.01, and a patience of 5. This means training the model on the fine-tuning dataset

B.3 Study Design 193

and evaluating its performance on the evaluation set every 10k. The training procedure
stops if a gain smaller than the delta (0.01) is observed at each 50k step interval and the
best-performing checkpoint up to that training step is selected. Complete data about this
process is available in our replication package [repd].

B.2.4.5 Generating Predictions

After the model has been trained, we can generate predictions for the task we aim at support-
ing using different decoding schema. To this end, we opted for a greedy decoding strategy
[SVL14] that generates the recommendation, by selecting at each decoding step the token
with the highest probability of appearing in a specific position. Thus, a single prediction is
generated for an input sequence.

B.3 Study Design

The goal of our study is to evaluate GH-WCOM. The quality focus is GH-WCOM’s ability to
provide correct predictions, as well as predictions that, while differing from the ground truth,
could still be valuable for developers. We focus on the two completion scenarios previously
described: NStask (mimicking a top-down coding adopted by the developer when writing
the workflow statement by statement), and (ii) JCtask (helping the developer to complete a
job with implementation elements given its textual description). The context consists of the
test datasets summarized in Table B.1.

The study aims at answering the following research questions:
RQ1: How does GH-WCOM perform with different pre-training strategies? RQ1 as-

sesses the impact of using different pre-training strategies when completing workflows. We
experiment with four pre-training strategies, including the lack of pre-training.

RQ2: How does GH-WCOM perform for different prediction scenarios? RQ2 tests GH-
WCOM in different prediction scenarios, i.e., next statement and job-level contextual com-
pletion with and without abstraction. We also implement a statistical language model used
as a baseline for comparison.

RQ3: To what extent “wrong” recommendations provided by GH-WCOM can be lever-
aged by developers? RQ3 gauges the extent to which “wrong” predictions (i.e., recommen-
dations different from the expected output) can still be useful to developers and thus worth
being integrated into CI/CD pipelines after minor changes.

B.3.1 Data Collection and Analysis

To address RQ1, we run the best-performing configuration for each pre-training strategy and
scenario (NStask and JCtask) against the test sets (Table B.1). Then, we compute the per-
centage of correct predictions, namely cases in which the models can synthesize completions
identical to the expected target (i.e., the code written by developers). We further assess the
quality of the predictions generated using different pre-training strategies by relying on NLP
(Natural Language Processing) metrics such as BLEU [PRWZ02] and ROUGE [Lin04].

194 Toward Automatically Completing GitHub Workflows

BLEU score (Bilingual Evaluation Understudy) [PRWZ02]measures how similar the can-
didate (predicted) and reference (oracle) texts are. Given a size n, the candidate and ref-
erence texts are broken into n-grams and the algorithm determines how many n-grams of
the candidate text appear in the reference text. The BLEU score ranges between 0 (the se-
quences are completely different) and 1 (the sequences are identical). We use the BLEU-4
variant as did in previous software engineering papers [WWJH21, WCP+22, TMM+22].

ROUGE (Recall-Oriented Understudy for Gisting Evaluation) is a set of metrics for eval-
uating both automatic summarization of texts and machine translation techniques [Lin04].
ROUGE metrics compare an automatically generated summary or translation with a set of
reference summaries (typically, human-produced). We use the ROUGE-L which computes
the length of the longest common subsequence between a generated and a reference sen-
tence.

To answer RQ2, we first select the best-performing models when supporting the comple-
tion of GitHub workflow with and without abstraction in both predictions scenario (NStask
and JCtask). Later, we assess the quality of the predictions using the same set of metrics
(i.e., correct predictions, BLEU, and ROUGE score) adopted in RQ1. As there is no previous
approach to compare GH-WCOM against, we implemented a baseline leveraging an n-gram
model which is a specific actualization of a large class of techniques that assign probabilities
to sequences of tokens (i.e., Statistical-Language-Model [Gol17]). To train such a model we
use the same set of instances used to fine-tune GH-WCOM without, however, any masked
part. We experimented with three different values of n (i.e., n=3, n=5, and n=7), with n−1
being the number of tokens on which the prediction of the next token is based upon. The
best value for n (n= 3) has been found by running the models on the evaluation sets (results
in our replication package [repc]).

The best model has then been run on the same test sets used for GH-WCOM’s assess-
ment. We do not compare GH-WCOM against the n-gram when job-level information is
provided (JCtask), since, by construction, such a technique would not leverage the addi-
tional knowledge provided (i.e., it only “looks” at the tokens preceding the ones to predict).
To explain how predictions are generated with the 3-gram model, let us assume we are com-
pleting a piece of workflow having five tokens T , of which the last two are masked (M):
〈T1, T2, T3, M4, M5〉. We provide, as input to the model, T2 and T3 to predict M4, obtain-
ing the model prediction P4. Then, we use T3 and P4 to predict M5 obtaining the predicted
sentence 〈T1, T2, T3, P4, P5〉. While GH-WCOM autonomously decides when to stop pre-
dicting tokens, this is not the case for the n-gram model in our usage scenario. We thus
defined two heuristics to stop generating tokens. First, we stop when the n-gram model
does not generate any output token given the preceding n-1.

Second, we rely on the format in which we represent the instances in our datasets: Each
instance is a JSON object and we trained all models to generate as output {target}, where
the two delimiting curly brackets are the result of our JSON-like representation. Thus, we
stop generating tokens when we reach a fully-balanced (i.e., valid) JSON object for the test
instance to predict (i.e., the n-gram generated the “closing” curly bracket and the latter does
not close a curly bracket opened in the predicted code but the JSON-related one).

We complement the quantitative evaluation by performing statistical tests aimed at as-

B.3 Study Design 195

sessing whether GH-WCOM produces better recommendations as compared to the baseline.
We use the McNemar’s test [McN47] (with is a proportion test for dependent samples) and
Odds Ratios (ORs) on the correct predictions both approaches (i.e.,GH-WCOM and n-gram)
can generate when evaluated in the NStask completion scenarios, working with both ab-
stracted and raw tokens. We also statistically compare the distribution of the BLEU-4 (com-
puted at statement level) and ROUGE, assuming a significance level of 95% and using the
Wilcoxon signed-rank test [Wil45]. The (paired) Cliff’s Delta (d) is used as effect size [GK05]
and it is considered: negligible for |d| < 0.10, small for 0.10 ≤ |d| < 0.33, medium for
0.33≤ |d|< 0.474, and large for |d| ≥ 0.474 [GK05]. Due to multiple comparisons for both
statistical tests, we adjust p-values using Holm’s correction procedure [Hol79].

As for RQ3, we perform a twofold analysis. We first assess whether the confidence of
the model in the generated predictions can be used as a reliable proxy of their “quality”.
T5 provides a score for each generated prediction which represents the log-likelihood of
the prediction. For example, having a log-likelihood of -2 means that the prediction has a
likelihood of 0.69 (ln(x) = −2 =⇒ x = 0.69). The likelihood can be interpreted as the
confidence of the model about the correctness of the prediction on a scale from 0.00 to
1.00 (the higher the better). We split the predictions generated by T5 into ten buckets at
steps of 0.1 (i.e., the lowest confidence scenario groups the predictions having confidence
between 0.0 and 0.1, the highest from 0.9 to 1.0) and report the percentage of correct and
wrong predictions within each bucket. Then, given the positive results we achieved (as we
will show, the confidence values are representative of the prediction quality), we randomly
sample 384 cases of wrong predictions having a confidence ≥0.70, with 384 representing
a statistically significant sample with a confidence level of 95% and confidence interval of
±5%.

Each sample has been manually classified by two authors with one of the following labels:

1. A minor change is required to make the suggestion usable, e.g., change an option or a
value;

2. GH-WCOM has recommended the correct action/script command, yet with wrong ar-
guments;

3. GH-WCOM has recommended the correct action/script command, yet with the wrong
name;

4. The suggestion is completely wrong, i.e.,GH-WCOM recommendation is completely
different from the ground truth.

In the labeling, the two involved authors achieved a Cohen’s kappa [Coh60] of 0.72, in-
dicating a substantial agreement when measuring inter-rater reliability for categorical items.

Conflicts, which occurred for 17.97% of inspected samples, have been solved through
open discussion among the authors.

We report the percentage of predictions assigned to each label and discuss qualitative
examples of wrong predictions which, however, might still be valuable for developers.

196 Toward Automatically Completing GitHub Workflows

B.4 Study Results

RQ1: How does GH-WCOM perform with different pre-training strategies? The re-
sults obtained by fine-tuning T5 using different pre-training strategies are presented in Ta-
ble B.3. The table shows the model’s performance in terms of correct predictions, BLEU-4,
and ROUGE-LCS (F-measure). The best model for a given combination of task (i.e., NStask
and JCtask) and evaluation metrics is reported in boldface. As expected, the T5NO−PT is
outperformed by all pre-trained models, with 11.23% and 19.74% correct predictions for
the NStask and JCtask task, respectively, when working on raw code. When abstracting
the dataset, the correct predictions for the T5NO−PT model improve—14.14% for NStask and
26.96% for JCtask —while remaining the worst configuration.

Table B.3. Comparison among different pre-training strategies in terms of correct predictions, BLEU-
4 and ROUGE-LCS (f-measure) computed at corpus level

Dataset PT-Strategy
Correct predictions BLEU 4 ROUGE-LCS
NStask JCtask NStask JCtask NStask JCtask

Raw

T5NO−PT 11.23% 19.74% 13.70% 13.80% 44.0% 54.75%
T5YL 15.85% 24.51% 14.50% 24.10% 50.09% 61.20%
T5NL [t5-] 17.47% 26.02% 23.10% 29.60% 51.78% 63.34%
T5NL+YL 17.33% 26.35% 16.40% 27.70% 51.74% 63.58%

Abstracted

T5NO−PT 14.14% 26.98% 20.40% 24.20% 46.31% 59.92%
T5YL 19.81% 32.58% 13.80% 17.0% 53.30% 64.88%
T5NL [t5-] 21.28% 33.84% 28.40% 25.90% 55.30% 66.51%
T5NL+YL 21.36% 34.23% 21.80% 18.40% 55.37% 66.54%

The results with pre-training (also) involving English documents (T5NL and T5NL+YL) are
always the best or the second-best in class, with performance very close to each other. Note-
worthy, the usefulness of pre-training on English text when dealing with software-related
tasks has been already documented in the literature [TDSS22] and is likely due to the vast
presence of English terms in the code. Both T5NL and T5NL+YL models achieve the best per-
formance on the abstracted workflows, with a percentage of correct predictions of around
21% for the NStask task and 34% for the JCtask task.

Two observations can be made here. First, in the JCtask task, T5 is more successful
thanks to the additional context provided before triggering the prediction (i.e., the skeleton
of the job defined by the developer—see Section B.2.3.2).

Second, the abstraction seems to substantially boost the model’s performance, with∼4%
of additional correct predictions for the NStask task and ∼8% in the JCtask task.

Table B.4 statistically compares the correct predictions achieved using the four different
pre-training strategies for the two tasks and the two workflow representations (raw and ab-
stract). Confirming what was said above, the performance of T5NL and T5NL+YL is always
significantly better (adjusted p-value < 0.001) compared to the non-pre-trained models
(T5NO−PT) and to the ones pre-trained using YAML files only (T5YL), with ORs going from
1.49 up to 4.88. The difference between T5NL and T5NL+YL is never statistically significant,
showing that the two models are almost equivalent. This is an important finding because it
means that an English pre-trained model can be simply fine-tuned to successfully accomplish
the task (this is way less demanding than retraining the model).

B.4 Study Results 197

Table B.4. Effect of different pre-training strategies on performance: results of McNemar’s test.

Dataset Task Comparison p-value OR

Raw Tokens

NStask

T5NL vs. T5NO−PT <0.001 4.88
T5NL vs. T5YL <0.001 1.95
T5NL vs. T5NL+YL 0.50 1.05
T5NL+YL vs T5YL <0.001 1.96

JCtask

T5NL vs. T5NO−PT <0.001 3.60
T5NL vs. T5YL <0.001 1.59
T5NL vs. T5NL+YL 0.10 0.88
T5NL+YL vs T5YL <0.001 1.74

Abstracted Tokens

NStask

T5NL vs. T5NO−PT <0.001 3.98
T5NL vs. T5YL <0.001 1.75
T5NL vs. T5NL+YL 0.69 0.96
T5NL+YL vs T5YL <0.001 1.88

JCtask

T5NL vs. T5NO−PT <0.001 3.78
T5NL vs. T5YL <0.001 1.49
T5NL vs. T5NL+YL 0.05 0.86
T5NL+YL vs T5YL <0.001 1.70

The analysis of the BLEU and ROUGE metrics shown in Table B.3 confirms the above-
described finding, i.e., pre-training always helps, in particular when leveraging English sen-
tences.

Answer to RQ1. The pre-training boosts the performance of GH-WCOM. Pre-training
with English text (possibly along with YAML files) helps to achieve the best performance.

In the following RQs we leverage the model pre-trained on English text and YAML files as
the backbone of GH-WCOM.

Figure B.4. Results achieved by GH-WCOM and the n-gram model when predicting actions for NStask

198 Toward Automatically Completing GitHub Workflows

RQ2: How does GH-WCOM perform for different prediction scenarios? Fig. B.4
depicts the results achieved by GH-WCOM and the best-performing n-gram model (3-gram)
in terms of correct predictions, BLEU-4 and ROUGE-LCS. Due to the technical limitations of
the n-gram (i.e., it only considers the n−1 preceding tokens when generating a prediction),
such a comparison has been performed only for the NStask task.

Table B.5 reports the results of the statistical comparison between the two in terms of
adjusted p-value and OR (for correct predictions) and effect size (for BLEU and ROUGE). On
both datasets, GH-WCOM achieves statistically significant better results than the baseline for
all metrics. When looking at the correct predictions the gap is of ∼11% on the raw dataset
(5.10% vs 17.33%) and∼12% on the abstracted dataset (9.28% vs 21.36%). The OR is 17.69
(raw) and 13.76 (abstract). An OR of 13.76 indicates ∼13 times higher odds of obtaining
a correct prediction using GH-WCOM. Even the comparisons in terms of BLEU and ROUGE
show the superiority of GH-WCOM both visually (Fig. B.4) and statistically (Table B.5).

GH-WCOM achieves its best performance for the JCtask task, with 34.23% of correct
predictions (see Table B.3), benefiting from the additional contextual information provided
as input. Truly, one may question the usefulness of an approach that fails 66% of the times.
Nevertheless, as a term for comparison, the DL-based approach recently proposed by Ciniselli
et al. [CCP+21] for block-level Java completion achieved ∼27% of correct predictions.

Table B.5. V s 3-gram model when generating recommendations for the NStask

Dataset Comparison Metric p-value d OR

Raw tokens GH-WCOM vs. n-gram
Correct Predictions <0.001 - 17.69
BLEU-4 <0.001 0.51 (L) -
ROUGE-LCS <0.001 0.52 (L) -

Abstracted tokens GH-WCOM vs. n-gram
Correct Predictions <0.001 - 13.76
BLEU-4 <0.001 0.49 (L) -
ROUGE-LCS <0.001 0.50 (L) -

Answer to RQ2. GH-WCOM outperforms the n-gram baseline for the NStask task on all
the considered metrics. The gap in correct predictions is >11% on both the raw and the
abstracted dataset. The best performances are achieved for the JCtask task (∼34% of
correct predictions) thanks to the additional contextual information provided as input.

RQ3: To what extent “wrong” recommendations provided by GH-WCOM can be
leveraged by developers? Fig. B.5 depicts the relationship between the percentage of cor-
rect and wrong predictions when considering their confidence. Due to space limitations, we
only focus our discussion on the most challenging scenario, namely NStask , as the findings
for JCtask are similar (complete results in [repd]). The orange line shows the percentage of
correct predictions within each confidence interval, e.g., 68.45% of predictions having con-
fidence between 0.8 and 0.9 are correct when working with the raw code. In contrast, the
red line shows the percentage of wrong predictions within each confidence bucket. Fig. B.5
shows a clear relationship between the confidence of the predictions and their likelihood of
being correct. For example, out of the 1,076 predictions generated with confidence >0.9 in

B.4 Study Results 199

the abstracted dataset, 959 (89.13%) are correct.

This result has an important practical implication: By setting a threshold on confidence, it
would be possible to filter out recommendations likely to be false positives and only notify the
developer when the model is quite confident about the generated prediction. As previously
said, the results for the JCtask are in line with those discussed for NStask . For example,
89.03% of the 2,908 predictions having confidence>0.9 are correct in the abstracted dataset.
A similar percentage is achieved on the raw dataset (89.13%).

10%
20%
30%
40%
50%
60%
70%
80%
90%
100%

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Confidence

1.00.1

Pe
rc

en
ta

ge
 o

f p
re

di
ct

io
ns

% correct predictions in the confidence interval

% wrong predictions in the confidence interval

10%
20%
30%
40%
50%
60%
70%
80%
90%
100%

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Confidence

1.00.1

Pe
rc

en
ta

ge
 o

f p
re

di
ct

io
ns

% correct predictions in the confidence interval

% wrong predictions in the confidence interval

Raw Tokens Abstracted Tokens

Figure B.5. Correct and wrong predictions by the confidence of GH-WCOM when generating recom-
mendations for NStask

Concerning the manual analysis of a sample of 384 completions “wrongly” predicted
by GH-WCOM (i.e., the prediction did not match the expected target), we found that: (i)
41.41% (159) are actually wrong, since the predicted code would implement a different
behavior than the ground-truth; (ii) in 25.52% (98) of the cases, GH-WCOM suggested the
correct action/script command yet with wrong arguments; (iii) 28.13% (108) of predictions
would require minor changes, implying, on average, changing (i.e., insertion and/or dele-
tion) ∼11 characters in the recommended output in order to align with the ground truth;
and (iv) 4.95% (19) feature a wrong or missing action name, i.e., just missing documenta-
tion. While the complete results of our manual inspection are available in our replication
package [repd], Fig. B.6 shows two concrete examples of the instances we inspected. The
left part of Fig. B.6 1 shows an example in which the whole step is correctly predicted,
with the exception of the name which is different from the expected one (Set up Python vs
Python) but still meaningful. The right part 2 depicts a case in which the only difference
between the predicted and the expected step is the version of a specific action to use (@v2 vs
@v3). In both cases, the developer is still likely to benefit from the prediction.

200 Toward Automatically Completing GitHub Workflows

Example of Recommended Actions by GHAR

- name: Python ${{ matrix.python-version }}
 uses: actions/setup-python@v2
 with:
 python-version: ${{ matrix.python-version }}

- name: Set up Python ${{ matrix.python-version }}
 uses: actions/setup-python@v2
 with:
 python-version: ${{ matrix.python-version }}

INPUT

TARGET

PREDICTION

- uses: actions/cache@v3
 id: yarn-cache
 with:
 path: ${{ steps.yarn-cache-dir-path.outputs.dir }}
 key: ${{ runner.os }}-yarn-${{
 hashFiles('**/yarn.lock') }}
 restore-keys: |
 ${{ runner.os }}-yarn-

- uses: actions/cache@v2
 id: yarn-cache
 with:
 path: ${{ steps.yarn-cache-dir-path.outputs.dir }}
 key: ${{ runner.os }}-yarn-${{
 hashFiles('**/yarn.lock') }}
 restore-keys: |
 ${{ runner.os }}-yarn-

INPUT

TARGET

PREDICTION

1 2
name: Unit Test

on:
 push:
 branches:
 - "master"
 pull_request:

jobs:
 unit-tests:
 name: Unit Tests on Node ${{ matrix.node }}
 runs-on: ubuntu-latest

 strategy:
 matrix:
 node: [16, 18]

 steps:
 - uses: actions/checkout@v2
 …
 <TO_BE_PREDICTED>

name: Daily Testing

on:
 schedule:
 # Runs "at minute 55 past every hours”
 (see https://crontab.guru)
 - cron: '5 4 * * 2,4,6'

jobs:
 build:
 runs-on: ${{ matrix.os }}

 strategy:
 fail-fast: false
 matrix:
 os: [ubuntu-latest, windows-latest]
 python-version: [3.6, 3.9]

 steps:
 - uses: actions/checkout@v2
 <TO_BE_PREDICTED>

Figure B.6. Examples of GH-WCOM’s recommended actions extracted from the manual investigation
we performed

Answer to RQ3. The confidence of the predictions can serve as a trustworthy indicator
of their correctness when auto-completing GitHub workflows; ∼50% of predictions dif-
fering from the expected target but on which the model has high confidence could still
be valuable for developers.

B.5 Threats to Validity 201

B.4.1 Why not just using a state-of-the-art chatbot or code recommender?

Large Language Models (LLMs) have opened up new possibilities even in the field of software
engineering. One such application is GitHub Copilot [cop], developed by Microsoft using the
OpenAI Codex model. Copilot is a state-of-the-art tool for recommending code completion
and generation tasks. Similarly, OpenAI’s ChatGPT [cha] showed remarkable performance
in generating human-like text responses to prompts, even for code-related tasks.

We conducted a study to investigate the potential of these techniques for supporting
auto-completion in GitHub workflows. We tested both tools on 60 instances in our test set
by randomly selecting: (i) 15 workflows with the highest confidence score for which GH-
WCOM provided correct predictions; (ii) 15 workflows with the highest confidence score
for which GH-WCOM failed to provide meaningful recommendations; (iii) 15 workflows
with the lowest confidence score for which GH-WCOM provided correct predictions; and
(iv) 15 workflows with the lowest confidence score for which GH-WCOM failed to provide
meaningful recommendations.

Concerning the high-confidence scenario, GitHub Copilot was able to provide correct
recommendations for 7 of the 15 instances successfully predicted by GH-WCOM. For 2 in-
stances, Copilot did not suggest any token, and for 6 instances, it provided incorrect recom-
mendations. In contrast, when it came to the 15 instances for which GH-WCOM generated
incorrect recommendations, Copilot correctly recommended only 2 of them and failed to
provide meaningful recommendations for the remaining 13. Regarding ChatGPT, we ob-
served that, out of the 15 instances correctly predicted by GH-WCOM, the chatbot can only
suggest 4 meaningful GitHub workflow completions, while providing incorrect action ele-
ments/scripts for the remaining 11 instances.

We then tested ChatGPT on the instances where GH-WCOM failed, we found that for 13
out of 15 workflows, the recommended actions were incorrect, and, for 2 instances, ChatGPT
was unable to respond to our query.

As for the GH-WCOM low-confidence instances, also Copilot and ChatGPT poorly per-
formed on such instances. For the 15 successful predictions generated by GH-WCOM, Copilot
succeeds in only 4 and ChatGPT in only 3 of them. Copilot and ChatGPT also fail in all 15
cases for which GH-WCOM provides a wrong output.

B.5 Threats to Validity

Construct validity. One potential threat arises from the collection of our dataset, as we
excluded workflows longer than 1,024 tokens. As mentioned earlier, it is a common practice
to limit the input size of DL models to manage training complexity effectively. We recognize
that using different thresholds could yield varying results, and we acknowledge this as a
potential limitation.

Another concern involves the extent to which the masking is representative of what pro-
grammers do during their tasks [HPGB19]. We have simulated two scenarios, NStask and
JCtask , representative of when developers write steps sequentially or code them after sketch-
ing their documentation. To evaluate the quality of the predictions, we used consolidated

202 Toward Automatically Completing GitHub Workflows

measures such as the percentage of correct predictions, BLEU-4 [PRWZ02, RGL+20], and
ROUGE score. Furthermore, we complemented such measures qualitative analyses.

In an attempt to help the model learning, we employed an abstraction schema in which
five types of tokens are abstracted with special placeholders. The goal of our abstraction
process was to identify a sort of upper-bound for the capabilities of our approach in a best
case scenario, in which all tokes being e.g., a path would be replaced with the same 〈PATH〉
placeholder. Such a simplification pushes more effort on the developer’s side while, however,
simplifying the learning, and thus representing an upper bound in terms of prediction per-
formances (with the lower bound represented by the raw predictions). We acknowledge that
alternative (and less extreme) solutions are possible; for example, distinct paths appearing
within the same workflow could be abstracted with different placeholders (e.g., 〈PATH1〉,
〈PATH2〉) with the model expected to use the same placeholder for related paths (i.e., the
same path appearing multiple times in the workflow). As part of our upcoming work agenda,
we anticipate conducting user studies to assess different abstraction techniques as alterna-
tives.

Internal validity. One key issue for DL models is the hyperparameter tuning, which we
detailed in Section B.2.3.2. We are aware that we could not consider all possible (combina-
tions of) values for that. Also, the performances of a T5 model could largely depend on how
it has been pre-trained. To mitigate this threat, we have shown how GH-WCOM works by
leveraging different pre-trainings.

Conclusion validity. To address the RQs, wherever appropriate we use suitable statistical
tests (McNemar’s test and Wilcoxon signed rank test) as well as effect size measures (OR and
Cliff’s delta). In the qualitative analysis of RQ4, we computed and reported Cohen’s kappa
inter-rater agreement.

External validity. We experiment GH-WCOM with a T5small model. We acknowledge
that our choice of the specific model architecture to use could affect the generalizability of
our findings.

For example, larger T5 versions [RSR+20] could lead to different performance. We per-
formed a minimal check of how scaling up the model could affect our findings. To this aim,
we trained a T5base model [RSR+20] using the T5NL+YL setting and the same training process
used for T5small : We further pre-trained the publicly released T5base checkpoint (pre-trained
on natural language) for 300k steps on YAML files and then fine-tuned it on the GitHub
workflows. We used the same learning rate scheduler used for T5base (i.e., ISQ-LR). The
achieved results show that scaling up the model size from 60M to 220M parameters yields
negligible improvements in comparison to T5small . When employing a T5base architecture to
recommend actions in the most demanding scenario (NStask), the difference in correct pre-
dictions is a +0.18% (21.54%) and a +0.47% (17.80%) for the raw and abstracted datasets,
respectively. When incorporating contextual information into the model (JCtask), similar
conclusions arise (up to +0.67% of correct predictions). Furthermore, while we applied
GH-WCOM for GitHub workflow completion, with proper training/fine-tuning, GH-WCOM
could be applied to CI/CD pipelines developed with different technologies, e.g., Jenkins or
GitLab.

B.6 Conclusions and Future Work 203

B.6 Conclusions and Future Work

This paper tackled the problem of automatically completing CI/CD pipeline scripts, and, in
particular, GitHub workflows. We proposed , an approach based on T5 [RSR+20] pre-trained
models to automatically recommend workflow completions in different scenarios, i.e., pre-
dicting the next step (NStask), or filling a workflow job given its textual documentation, i.e.,
the names (JCtask).

Our empirical analysis found that (i) leveraging a pre-training involving English text
(possibly complemented by YAML files) always helps, (ii) the performance of best models
range from 17.47% (NStask task) and 26.35% (JCtask task) for raw correct predictions,
to 21.36% (NStask) and 34.23% (JCtask) for abstracted correct predictions; and (iii) the
model confidence correlates with the likelihood of generating a correct prediction. Finally,
I s competitive for context-sensitive completion tasks when compared to LLM-based tools
such as CoPilot [cop] and ChatGPT [cha].

Future work aims to experiment with alternative DL models, and, possibly, incorporate
developers’ feedback in the GH-WCOM’s learning (e.g., by using reinforcement learning).

204 Toward Automatically Completing GitHub Workflows

C
Automated Variable Renaming: Are We There
Yet?

Low-quality identifiers, such as meaningless method or variable names, are a recognized
source of issues in software systems [LNB+19]. Indeed, choosing an expressive name for
a program entity is not always trivial and requires both domain and contextual knowl-
edge [Car82]. Even assuming a meaningful identifier is adopted in the first place while cod-
ing, software evolution may make the identifier not suitable anymore to represent a given
entity. Moreover, the same entity used across different code components may be named
differently, leading to inconsistent use of identifiers [LSM+17]. For these reasons, rename
refactoring has become part of developers’ routine [MHPB11], as well as a standard built-in
feature in modern integrated development environments (IDEs). While IDEs aid developers
with the mechanical aspect of rename refactoring, developers remain responsible for identi-
fying low-quality identifiers and choosing a proper rename.

To support developers in improving the quality of identifiers, several techniques have
been proposed [TR10, ABBS14, LSM+17, AZLY19]. Among those, data-driven approaches
are on the rise [ABBS14, LSM+17, AZLY19]. This is also due to the recent successful applica-
tion of these techniques in the code completion field [NNN+12, KZTC21, SDFS20, LLZJ20,
CCP+21], which is a more general formulation of the variable renaming problem. Indeed, if
a model is able to predict the next code tokens that a developer is likely to write (i.e., code
completion), then it can be used to predict a token representing an identifier. Nevertheless,
strong empirical evidence about the performance ensured by such data-driven techniques
for supporting developers in identifier renaming is still minimal.

In this work, we investigate the performance of three data-driven techniques in support-
ing automated variable renaming. We experiment with: (i) an n-gram cached language
model [HD17]; (ii) the Text-to-Text Transfer Transformer (T5) model [RSR+20], and (iii)
the Transformer-based model presented by Liu et al. [LLZJ20]. The n-gram cached language
model [HD17] has been experimented against what were state-of-the-art deep learning mod-
els in 2017, showing its ability to achieve competitive performance in modeling source code.
Thus, it represents a light-weight but competitive approach for the prediction of code tokens
(including identifiers). Since then, novel deep learning models have been proposed such as,

205

206 Automated Variable Renaming: Are We There Yet?

for example, those based on the transformer architecture [VSP+17]. Among those, T5 has
been widely studied to support code-related tasks [MSC+21, MAPB21, TMM+22, MPB22,
WWJH21, CCP+21]. Thus, it is representative of transformer-based models exploited in the
literature. Finally, the approach proposed by Liu et al. [LLZJ20] has been specifically tailored
to improve code completion performance for identifiers, known to be among the most diffi-
cult tokens to predict. These three techniques provide a good representation of the current
state-of-the-art of data-driven techniques for identifiers prediction.

All experimented models require a training set to learn how to suggest “meaningful”
identifiers. To this aim, we built a large-scale dataset composed of 1,221,193 instances,
where an instance represents a Java method with its related local variables. This dataset has
been used to train, configure (i.e., hyperparameters tuning), and perform a first assessment
of the three techniques. In particular, as done in previous works related to the automation
of code-related activities [AZLY19, TWB+19a, TPW+19, WTM+20, HLWM20, TPT+21], we
considered a prediction generated by the models as correct if it resembles the choice made
by the original developers (i.e., if the recommended variable name is the same chosen by the
developers). However, this validation assumes that the identifiers selected by the developers
are meaningful, which is not always the case.

To mitigate this issue and strengthen our evaluation, we built a second dataset using a
novel methodology we propose to increase the confidence in the dataset quality (in our case,
in the quality of the identifiers in code). In particular, we mined variable identifiers that have
been introduced or modified during a code review process (e.g., as a result of a reviewer’s
comment). These identifiers result from a shared agreement among multiple developers,
thus increasing the confidence in their meaningfulness. This second dataset is composed of
457 Java methods with their related local variables.

Finally, we created a third dataset aimed at simulating the usage of the experimented
tools for rename variable refactoring: We collected 400 Java projects in which developers
performed a rename variable refactoring. By doing so, we were able to mine 442 valid com-
mits. For each commit c in our dataset, we checked-out the system’s snapshot before (sc−1)
and after (sc) the rename variable implemented in c. Given v the variable renamed in c, we
run the three techniques on the code in sc−1 (i.e., before the rename variable refactoring) to
predict v’s identifier.

Then, we check whether the predicted identifier is the one implemented by the develop-
ers in sc . If this is the case, this means that the approach was able to successfully recommend
a rename variable refactoring for v, selecting the same identifier chosen by developers.

Our quantitative analysis shows that the Transformer-based model proposed by Liu et al.
[LLZJ20] is by far the best performing model in the literature for the task of predicting vari-
able identifiers. This confirms the effort performed by the authors that aimed at specifically
improve the performance of DL-based models in this task. This approach, named CugLM,
can correctly predict the variable identifier in ∼ 63% of cases when tested on the large scale
dataset we built. Concerning the other two datasets, the performance of all models drop,
with CugLM still ensuring the best performance with ∼ 45% of correct predictions on both
datasets.

We also investigate whether the “confidence of the predictions” generated by the three

C.1 Data-driven Variable Renaming 207

models (i.e., how “confident” the model are about the generated prediction) can be used
as a proxy for prediction quality. We found that when the confidence is particularly high
(> 90%), the predictions generated by the models, and in particular by CugLM, have a
very high chance of being correct (>80% on the large-scale dataset). This suggests that the
recommendations generated such tools, under specific conditions (i.e., high confidence) are
ready to be integrated in rename refactoring tools.

We complement the study with a qualitative analysis aimed at inspecting “wrong” pre-
dictions to (i) see whether, despite being different from the original identifier chosen by the
developer, they still represent meaningful identifiers for the variable provided as input; and
(ii) distill lessons learned from these failure cases.

Concerning the first point, it is indeed important to clarify that even wrong predictions
may be valuable for practitioners. This happens, for example, in the case in which the ap-
proach is able to recommend a valid alternative for an identifier (e.g., surname instead of last-
Name) or maybe even suggesting a better identifier, thus implicitly recommending a rename
refactoring operation. Such an analysis helps in better assessing the actual performance of
the experimented techniques.

Finally, we analyze the circumstances under which the experimented tools tend to gen-
erate correct and wrong predictions. For example, not surprisingly, we found that these
approaches are effective in recommending identifiers that they have already seen used, in a
different context, in the training set. Also, the longer the identifier to predict (e.g., in terms
of number of terms composing it), the lower the likelihood of a correct prediction.

Significance of research contribution. To the best of our knowledge, our work is the
largest study at date experimenting with the capabilities of state-of-the-art data-driven tech-
niques for variable renaming across several datasets, including two high-quality datasets we
built with the goal of increasing the confidence in the obtained results. The three datasets
we built and the code implementing the three techniques we experiment with are publicly
available [repb]. Our findings unveil the potential of these tools as support for rename refac-
toring and help in identifying gaps that can be addressed through additional research in this
field.

C.1 Data-driven Variable Renaming

In our study, we aim at assessing the effectiveness of data-driven techniques for automated
variable renaming. We focus on three techniques representative of the state-of-the-art. The
first is a statistical language model that showed its effectiveness in modeling source code
[HD17]. The second, T5 [RSR+20], is a recently proposed DL-based technique already ap-
plied to address code-related tasks [MSC+21]. The third is the Transformer-based model
presented by Liu et al. [LLZJ20] to boost code completion performance on identifiers.

Fig. C.1 depicts the scenario in which these techniques have been experimented. We
work at method-level granularity: For each local variable v declared in a method m, we
mask every v’s reference in m asking the experimented techniques to recommend a suitable
name for v. If the recommended name is different from the original one, a rename variable
recommendation can be triggered.

208 Automated Variable Renaming: Are We There Yet?

public int add(int n1, int n2){
 int s;
 s = n1+n2;
 return s;
}

variable
masking

Prediction
Model

sum

public int add(int n1, int n2){
 int <MASK>;
 <MASK> = n1+n2;
 return <MASK>;
}

Figure C.1. Variable renaming scenario

We provide an overview of the experimented techniques, pointing the reader to the pa-
pers introducing them [HD17, RSR+20, LLZJ20] for additional details. Our implementations
are based on the ones made available by the original authors of these techniques and are pub-
licly available in our replication package [repb]. The training of the techniques is detailed
in Section C.2.

C.1.1 N-gram Cached Model

Statistical language models can assess a probability of a given sequence of words. The basic
idea behind these models is that the higher the probability, the higher the “familiarity” of the
scored sequence. Such familiarity is learned by training the model on a large text corpus.
An n-gram language model predicts a single word following the n − 1 words preceding it.
In other words, n-gram models assume that the probability of a word only depends on the
previous n− 1 words.

Hellendoorn and Devanbu [HD17] discuss the limitations of n-gram models that make
them suboptimal for modeling code (e.g., the unlimited vocabulary problem due to new
words that developers can define in identifiers). To overcome these limitations, the authors
present a dynamic, hierarchically scoped, open vocabulary language model [HD17], showing
that it can outperform Recurrent Neural Networks (RNN) and LSTM in modeling code. While
Karampatsis et al. [KS19] showed that DL models can outperform the cached n-gram model,
the latter ensures good performance at a fraction of the DL models training cost, making it
a competitive baseline for code-related tasks.

C.1.2 Text-To-Text-Transfer-Transformer (T5)

The T5 model has been introduced by Raffel et al. [RSR+20] to support multitask learning in
Natural Language Processing. The idea is to reframe NLP tasks in a unified text-to-text format
in which the input and output of all tasks to support are always text strings. For example, a
single T5 model can be trained to translate across a set of different languages (e.g., English,
German) and identify the sentiment expressed in sentences written in any of those languages.
This is possible since both these tasks (i.e., translation and sentiment identification) are text-
to-text tasks, in which a text is provided as input (i.e., a sentence in a specific language for
both tasks) and another text is generated as output (i.e., the translated sentence or a label
expressing the sentiment). T5 is trained in two phases: pre-training, which allows defining
a shared knowledge-base useful for a large class of text-to-text tasks (e.g., guessing masked
words in English sentences to learn about the language), and fine-tuning, which specializes

C.2 Study Design 209

the model on a specific downstream task (e.g., learning the translation of sentences from
English to German). As previously said, T5 already showed its effectiveness in code-related
tasks [MSC+21]. However, its application to variable renaming is a premier. Among the
T5 variants proposed by Raffel et al. [RSR+20] that mostly differ in terms of architectural
complexity, we adopt the smallest one (T5small). The choice of such architecture is driven
by our limited computational resources. However, we acknowledge that bigger models have
been shown to further increase performance [RSR+20].

C.1.3 Deep-Multi-Task code completion model

Liu et al. [LLZJ20] recently proposed the Code Understanding and Generation pre-trained
Language Model (CugLM), a BERT-based model for source code modeling. Albeit under-the-
hood CugLM still features a Transformer-based network [VSP+17] as T5, such an approach
has been specifically conceived to improve the performance of language models in identifiers,
thus making it very suitable for our study on variable renaming. CugLM is pre-trained using
three objectives. The first asks the model to predict masked identifiers in code (being thus
similar to the one used in the T5 model, but focused on identifiers). The second task asks the
model to predict whether two fragments of code can follow each other in a snippet. Finally,
the third is a left-to-right language modeling task, in which the classic code completion
scenario is simulated, i.e., given some tokens (left part), guess the following token (right
part).

Once pre-trained, the model is fine-tuned for code completion in a multi-task learning
setting, in which the model has first to predict the type of the following token and, then, the
predicted type is used to foster the prediction of the token itself. As reported by the authors,
such an approach achieves state-of-the-art performance when it comes to predicting code
identifiers.

C.2 Study Design

The goal is to experiment the effectiveness of data-driven techniques in supporting auto-
mated variable renaming. The context is represented by (i) the three techniques [HD17,
RSR+20, LLZJ20] introduced in Section C.1 and (ii) three datasets we built for training and
evaluating the approaches. Our study answers the following research question: To what
extent can data-driven techniques support automated variable renaming?

C.2.1 Datasets Creation

To train and evaluate the experimented models, we built three datasets: (i) the large-scale
dataset, used to train the models, tune their parameters, and perform a first assessment of
their performance; (ii) the reviewed dataset and (iii) the developers dataset used to further
assess the performance of the experimented techniques. Our quantitative evaluation is based
on the following idea: If, given a variable, a model is able to recommend the same identifier

210 Automated Variable Renaming: Are We There Yet?

name as chosen by the original developers, then the model has the potential to generate
meaningful rename recommendations.

Clearly, there is a strong assumption here, namely that the identifier selected by the
developers is meaningful. For this reason, we have three datasets. The first one (large-
scale dataset) aims at collecting a high number of variable identifiers that are needed to
train the data-driven models and test them on a large number of data points. The second
one (reviewed dataset) focuses instead on creating a test set of high-quality identifiers for
which our assumption can be more safely accepted: These are identifiers that have been
modified or introduced during a code review process. Thus, more than one developer agreed
on the appropriateness of the chosen identifier name for the related variable. Finally, the
third dataset (developers dataset) focuses on identifiers that have been subject to a rename
refactoring operation (i.e., the developer put effort in improving the quality of the identifier
through a refactoring). Again, this increases our confidence in the quality of the considered
identifiers.

In this section, we describe the datasets we built, while Section C.2.2 details how they
have been used to train, tune, and evaluate the three models.

C.2.1.1 Large-scale Dataset

We selected projects on GitHub [Gitb] by using the search tool by Dabic et al. [DAB21]. This
tool indexes all GitHub repositories written in 13 different languages and having at least
10 stars, providing a handy querying interface [GHS] to identify projects meeting specific
selection criteria. We extracted all Java projects having at least 500 commits and at least 10
contributors. We do so as an attempt to discard toy/personal projects. We decided to focus
on a single programming language to simplify the toolchain building needed for our study.
Also, we excluded forks to reduce the risk of duplicated repositories in our dataset.

Such a process resulted in 5,369 cloned Java projects from which we selected the 1,425
using Maven1 [Mav] and having their latest snapshot being compilable. Maven allows to
quickly verify the compilability of the projects, which is needed to extract information about
types needed by one of the experimented models (i.e., CugLM). CugLM leverages identifiers’
type information to improve its predictions. To be precise and comprehensive in type resolu-
tion, we decided to rely on the JavaParser library [Javnd], running it on compilable projects.
This allows to resolve also types that are implemented in imported libraries. We provide the
tool we built for such an operation as part of our replication package [repb].

We used srcML [CDM13] to extract from each Java file contained in the 1,425 projects all
methods having #tokens ≤ 512, where #tokens represents the number of tokens composing
a function (excluding comments). The filter on the maximum length of the method is needed
to limit the computational expense of training DL-based models (similar choices have been
made in previous works [TWB+19a, HLWM20, TPT+21], with values ranging between 50
and 100 tokens). All duplicate methods have been removed from the dataset to avoid overlap
between training and test sets we built from them.

1Maven is a software project management tool that, as reported in its official webpage (https://maven.
apache.org) “can manage a project’s build, reporting and documentation from a central piece of information”.

https://maven.apache.org
https://maven.apache.org

C.2 Study Design 211

From these 1,425 repositories, we set apart 400 randomly selected projects for construct-
ing the developers dataset (described in Section C.2.1.3). Concerning the remaining 1,025,
we use ∼40% of them (418 randomly picked repositories) to build a dataset needed for the
pre-training of the T5 [RSR+20] and of the CugLM model [LLZJ20] (pre-training dataset).
Such a dataset is needed to support the pre-training phase that, as shown in the literature,
helps deep learning models to achieve better performance when dealing with code-related
tasks [TDS+20, TMM+22, MPB22, CCP+21]. Indeed, the pre-training phase conveys two
major advantages summarized as follows: (i) once the model has been pre-trained, it can
learn general representations and patterns of the language the model is working with, (ii)
the pre-trained model yields to a more robust model initialization of the neural network
weights that can then support the specialization phase (i.e., fine-tuning).

The remaining 615 projects (large-scale dataset) have been further split into training
(60%), evaluation (20%), and test (20%). The training set has been used to fine-tune the
two DL-based models (i.e., T5 and CugLM). This dataset, joined with the pre-training dataset,
has also been used to train the n-gram model. In this way, all models have been trained using
the same set of data, with the only difference being that the training is organized in two steps
(i.e., pre-training and fine-tuning) for T5 and CugLM, while it consists of a single step for the
n-gram model.

For the T5 model, we used the evaluation set to tune its hyperparameters (Section C.2.2),
since no previous work applied such a model for the task of variable renaming. Instead, for
CugLM and n-gram we used the best configurations reported in the original works presenting
them [HD17, LLZJ20]. Finally, the test set has been used to perform a first assessment of the
models’ performance.

Dataset train eval test

pre-training dataset 500,414 - -
large-scale dataset 394,574 176,944 149,261
reviewed dataset - - 457
developers dataset - - 442

Table C.1. Num. of methods in the datasets used in our study

Table C.1 shows the size of the datasets in terms of the number of extracted methods
(reviewed dataset and developers dataset are described in the following).

C.2.1.2 Reviewed Dataset

Also in this case, we selected GitHub projects using the tool by Dabic et al. [DAB21]. Since
the goal for the reviewed dataset is to mine code review data, we added on top of the selection
criteria used for the large-scale dataset a minimum of 100 pull requests per selected project.
Also in this case we only selected Maven projects having their latest snapshot successfully
compiling. We then mined from the 948 projects we obtained information related to the
code review performed in their pull requests. Let us assume that a set of files Cs is submitted
for review. A set of reviewer comments Rc can be made on Cs possibly resulting in a revised

212 Automated Variable Renaming: Are We There Yet?

version of the code Cr1
.

Such a process is iterative and can consists of several rounds each one generating a
new revised version Cri

. Eventually, if the code contribution is accepted for merging, this
concludes the review process with a set of Cf files. This whole process “transforms” Cs → Cf.
We use srcML to extract from both Cs and Cf the list of methods in them and, by performing a
diff, we identify all variables that have been introduced or modified in each method as result
of the review process (i.e., all variables that were not present in Cs but that are present in
Cf). We conjecture that the identifiers used to name these variables, being the output of a
code review process, have a higher chance of representing high quality data that can be used
to assess the performance of the experimented models.

Also in this case we removed duplicate methods both (i) within the reviewed dataset,
and (ii) between it and the previous ones (pre-training dataset and training set of large-scale
dataset), obtaining 457 methods usable as a further test set of the three techniques.

C.2.1.3 Developers’ Dataset

We run Refactoring miner [TKD20] on the history of the 400 Java repositories we previously
put aside. Refactoring miner is the state-of-the-art tool for refactoring detection in Java sys-
tems. We run it on every commit performed in the 400 projects, looking for commits in which
a Rename Variable refactoring has been performed on the local variable of a method. This
gives us, for a given commit ci , the variable name at commit ci−1 (i.e., before the refactoring)
and the renamed variable in commit ci . We use this set of commits as an additional test set
(developers dataset) to verify if, by applying the experimented techniques on the ci−1 version,
they are potentially able to recommend a rename (i.e., they suggest, for the renamed vari-
able, the identifier applied with the rename variable refactoring). After removing duplicated
methods from this dataset as well (similarly, we also removed duplicates between developers
dataset, pre-training dataset, and the training set in large-scale dataset), we ended up with
442 valid instances.

C.2.2 Training and Hyperparameters Tuning of the Techniques

C.2.2.1 N-gram model

The n-gram model has been trained on the instances in pre-training dataset ∪ large-scale
dataset. This means that all Java methods contained in pre-training dataset and in the train-
ing set of large-scale dataset have been used for learning the probability of sequences of
tokens. We use n = 3 since higher values of n have been proven to result in marginal per-
formance gains [HD17].

C.2.2.2 T5

To pre-train the T5, we use a self-supervised task similar to the one by Raffel et al. [RSR+20],
in which we randomly mask 15% of code tokens in each instance (i.e., a Java method) from
the pre-training dataset, asking the model to guess the masked tokens. Such a training is

C.2 Study Design 213

intended to give the model general knowledge about the language, such that it can perform
better on a given down-stream task (in our case, guessing the identifier of a variable). The
pre-training has been performed for 200k steps (corresponding to ∼13 epochs on our pre-
training dataset) since we did not observe any improvement going further. We used a 2x2
TPU topology (8 cores) from Google Colab to train the model with a batch size of 128. As
a learning rate, we use the Inverse Square Root with the canonical configuration [RSR+20].
We also created a new SentencePiece model (i.e., a tokenizer for neural text processing) by
training it on the entire pre-training dataset so that the T5 model can properly handle the
Java language. We set its size to 32k word pieces.

In order to find the best configuration of hyper-parameters, we rely on the same approach
used by Mastropaolo et al. [MSC+21]. Specifically, we do not tune the hyperparameters of
the T5 model for the pre-training (i.e., we use the default ones), because the pre-training
itself is task-agnostic, and tuning may provide limited benefits. Instead, we experiment with
four different learning rate schedulers for the fine-tuning phase. Since this is the first time
T5 is used for recommending identifiers, we also perform an ablation study aimed at assess-
ing the impact of pre-training on this task. Thus, we perform the hyperparameter tuning for
both the pre-trained and the non pre-trained model, experimenting with the four configu-
rations in Table C.2: constant (C-LR), slanted triangular (ST-LR), inverse square (ISQ-LR),
and polynomial (PD-LR) learning rate. We experiment the same configurations for the pre-
trained and the non-pretrained models, with the only difference being the LRstarting and LRend
of the PD-LR. Indeed, in the non pre-trained model (ablation study), we had to lower those
values to make the gradient stable (see Table C.2).

Table C.2. Hyperparameters tuning for the T5 Model

Learning Rate Parameters Pre-Trained No Pre-Trained

C-LR LR 0.001 0.001
ST-LR LRstarting 0.001 0.001

LRmax 0.01 0.01
Ratio 32 32
Cut 0.1 0.1

ISQ-LR LRstarting 0.01 0.01
Warmup 10,000 10,000

PD-LR LRstarting 0.01 0.001
LRend 0.01 0.001
Power 0.5 0.5

We fine-tune the T5 for 100k steps for each configuration. Then, we compute the per-
centage of correct predictions (i.e., cases in which the model can correctly predict the masked
variable identifier) achieved in the evaluation set. The achieved results reported in Table C.3
showed a superiority of the ST-LR (second column) for the non pre-trained model, while for
the pre-trained model, the PD-LR works slightly better. Thus, we use these two scheduler in
our study for fine-tuning the final models for 300k steps.

The fine-tuning of the T5 required some further processing to the large-scale dataset.

214 Automated Variable Renaming: Are We There Yet?

Table C.3. T5 hyperparameter tuning results

Experiment C-LR ST-LR ISQ-LR PD-LR

Pre-trained 30.74% 29.11% 30.77% 30.80%
No Pre-trained 21.18% 27.56% 26.08% 23.90%

Given a Java method m having n distinct local variables, we create n versions of it m1, m2,
. . . , mn each one having all occurrences of a specific variable masked with a special token.
Such a representation of the dataset allows to fine-tune the T5 model by providing it pairs
(m j , i j), where m j is a version of m having all occurrences of variable v j replaced with a
<MASK> token and i j is the identifier selected by the developers for v j . This allows the T5
to learn proper identifiers to name variables in specific code contexts. The same approach
has been applied on the large-scale dataset evaluation and test set, as well as on the reviewed
dataset and developers dataset. In these cases, an instance is a method with a specific variable
masked, and the trained model is used to guess the masked identifier. Table C.4 reports
the number of instances in the datasets used for the T5 model. Note that such a masking
processing was not needed for the n-gram model nor for CugLM, since they just scan the code
tokens during training, and they try to predict each code token sequentially during testing.
Still, it is important to highlight that all techniques have been trained and tested on the same
code.

train eval test

large-scale dataset 1,122,864 521,779 437,384
reviewed dataset - - 457
developers dataset - - 442

Table C.4. Instances in the datasets used for training, evaluating, testing the T5 model

C.2.2.3 CugLM

To pre-train and fine-tune the CugLM model we first retrieved the identifiers’ type informa-
tion for all code in the pre-training dataset and large-scale dataset. Then, we leveraged the
script provided by the original authors in the replication package [Cug] to obtain the final
instances in the format expected by the model. For both pre-training and fine-tuning (de-
scribed in Section C.1.3), we rely on the same hyper-parameters configuration used by the
authors in the paper presenting this technique [LLZJ20].

C.2.3 Performance Assessment

We assess the performance of the trained models against the large-scale test set, the reviewed
dataset, and the developers dataset. For each prediction made by each model, we collect a
measure acting as “confidence of the prediction”, i.e., a real number between 0.0 and 1.0
indicating how confident the model is about the prediction. For the n-gram model, such

C.2 Study Design 215

a measure is a transformation of the entropy of the predictions. Concerning the T5, we
exploited the score function to assess the model’s confidence on the provided input. The
value returned by this function ranges from minus infinity to 0 and it is the log-likelihood
(ln) of the prediction. Thus, if it is 0, it means that the likelihood of the prediction is 1 (i.e.,
the maximum confidence, since ln(1) = 0), while when it goes towards minus infinity, the
confidence tends to 0. Finally, CugLM outputs the log-prob for each predicted tokens. Hence,
we normalize this value throught the exp function.

We investigate whether the confidence of the predictions represents a good proxy for
their quality. If the confidence level is a reliable indicator of the predictions’ quality (e.g.,
90% of the predictions having c > 0.9 are correct), it can be extremely useful in the building
of recommender systems aimed at suggesting rename refactorings, since only recommenda-
tions with high confidence could be proposed to the developer. We split the predictions by
each model into ten intervals, based on their confidence c going from 0.0 to 1.0 at steps of
0.1 (i.e., first interval includes all predictions having 0 ≤ c < 0.1, last interval has 0.9 ≤
c). Then, we report for each interval the percentage of correct predictions generated by each
model in each interval. To assess the performance of the techniques overall, we also report
the percentage of correct predictions generated by the models on the entire test datasets
(i.e., by considering predictions at any confidence level).

A prediction is considered “correct” if the predicted identifier corresponds to the one
chosen by developers in the large-scale dataset and in the reviewed dataset, and if it matches
the renamed identifier in the developers dataset. However, a clarification is needed on the
way we compute the correct predictions. We explain this process through Fig. C.2, showing
the output of the experimented models, given an instance in the test sets.

int add(int n1, int n2){
 int <MASK>;
 <MASK> = n1+n2;
 return <MASK>;
}

n-gram

T5 sum

tmp, tot, sum

CugLM sum, sum, s

Figure C.2. Example of models’ outputs for a test instance

The grey box in Fig. C.2 represents an example of an instance in the test set: a function
having all references to a specific variable originally named sum masked. The T5 model,
given such an instance as input, predicts a single identifier (i.e., sum) for all three references
of the variable. Thus, for the T5, it is easy to say whether the single generated prediction
is equivalent to the identifier chosen by the developers or not. The n-gram and the CugLM
model, instead, generate three predictions, one for each of the masked instances, despite
they represent the same identifier.

Thus, for these two models, we use two approaches to compute the percentage of correct
predictions in the test sets. The first scenario, named complete-match, considers the predic-
tion as correct only if all three references to the variable are correctly predicted. Therefore,
in the example in Fig. C.2, the prediction of the CugLM model (2 out of 3) is considered

216 Automated Variable Renaming: Are We There Yet?

wrong. Similarly, the n-gram prediction (1 out of 3 correct) is considered wrong. The sec-
ond scenario, named partial-match, considers a prediction as correct if at least one of the
instances is correctly predicted (thus, in Fig. C.2 both the n-gram and the CugLM predictions
are considered correct).

We also statistically compare the performance of the models in terms of correct predic-
tions: We use the McNemar’s test [McN47], which is a proportion test suitable to pairwise
compare dichotomous results of two different treatments. We statistically compare each pair
of techniques in our study (i.e., T5 vs CugLM, T5 vs n-gram, CugLM vs n-gram). To compute
the test results for two techniques T1 and T2, we create a confusion matrix counting the
number of cases in which (i) both T1 and T2 provide a correct prediction, (ii) only T1 pro-
vides a correct prediction, (iii) only T2 provides a correct prediction, and (iv) neither T1 nor
T2 provide a correct prediction. We complement the McNemar’s test with the Odds Ratio
(OR) effect size. Also, since we performed multiple comparisons, we adjusted the obtained
p-values using the Holm’s correction [Hol79].

We also manually analyzed a sample of wrong predictions generated by the approaches
with the goal of (i) assessing whether, despite being different from the original identifiers
used by the developers, they were still meaningful; and (ii) identifying scenarios in which
the experimented techniques fail. To perform such an analysis, we selected the top-100
wrong predictions for each approach (300 in total) in terms of confidence level. Three of
the authors inspected all of them, trying to understand if the generated variable name could
have been a valid alternative for the target one, while the fourth author solved conflicts. Note
that, given 100 wrong predictions inspected for a given model, we do not check whether the
other models correctly predict these cases. This is not relevant for our analysis, since the
only goal is to understand the extent to which the “wrong” predictions generated by each
model might still be valuable for developers.

Finally, we compare the correct and wrong predictions in terms of (i) the size of the
context (i.e., number of tokens composing the method and number of times a variable is used
in the method), (ii) the length of the identifier in terms of number of characters and number
of words composing it (as obtained through camelCase splitting); (iii) the number of times
the same identifier appears in the training data. We show these distributions using boxplots
comparing the two groups of predictions (e.g., compare the length of identifiers in correct
and wrong predictions). We also compare these distributions using the Mann-Whitney test
[Con98] and the Cliff’s Delta (d) to estimate the magnitude of the differences [GK05]. We
follow well-established guidelines to interpret the effect size: negligible for |d|< 0.10, small
for 0.10≤ |d|< 0.33, medium for 0.33≤ |d|< 0.474, and large for |d| ≥ 0.474 [GK05].

C.3 Results Discussion

Table C.6 reports the results achieved by the three experimented models for each dataset in
terms of correct predictions. For T5, both pre-trained and non pre-trained versions are pre-
sented. For the n-gram and CugLM, we report the results both when using perfect match and
the partial match heuristic to compute the correct predictions, while this was not required
for the T5 for which the results should be interpreted as perfect matches.

C.3 Results Discussion 217

Before commenting on the results is also important to clarify that the cached n-gram
model [HD17] exploited, as compared to the other two models, additional information due
to the caching mechanism. Indeed, the caching allows the model to “look” at code surround-
ing the one for which tokens must be predicted (in our case, the method in which we want
to predict the variable identifier). Given a method mt in the test set, we provide its cloned
repository as “test folder” to the n-gram model, in such a way that it is leveraged by the
caching mechanism (we used the implementation from [HD17]).

Two observations can be easily made by looking at Table C.6. First, for T5, the pre-
trained model works (as expected) better than its non pre-trained version. From now on,
we focus on the pre-trained T5 in the discussion of the results. Second, consistently for all
three datasets, CugLM outperforms the other models by a significant margin. In particular,
when looking at the correct predictions (complete match), the improvement is +26% and
+53% over T5 and n-gram, respectively, in the large-scale dataset. The gap is smaller but
still substantial for the reviewed dataset (+15% and +44% for T5 and n-gram) and for the
developers dataset (+22% and +43%). The difference in performance in favor of CugLM
is always statistically significant (see Table C.5), with ORs going from 1.98 to 98.0. For
example, on the large-scale dataset the ORs indicate that CugLM has 3.54 and 23.06 higher
odds to generate a correct prediction as compared to the T5 and the n-gram model. These
results confirm the suitability of the model proposed by Liu et al. [LLZJ20] when it comes
to predicting code identifiers.

Table C.6 also shows that, as expected by construction, the percentage of correct predic-
tions generated by CugLM and by the n-gram model increases when considering the partial
match heuristic. However, for a fair comparison with the T5 model, we mostly focus our
discussion on the perfect match scenario, that is also the one used in the computation of the
statistical tests (Table C.5). The trend in performance is the same across the three datasets.
However, the accuracy of all models drops on the reviewed dataset and on the developers
dataset. Still, even in this scenario, CugLM is able to correctly recommend ∼50% of identi-
fiers.

Table C.5. McNemar’s test (adj. p-value and OR) considering complete matches as correct predic-
tions. P-t=pre-trained

Dataset Test p-value OR

large-scale dataset
CugLM vs T5 (p-t) < 0.001 3.54
CugLM vs n-gram < 0.001 23.06
T5 (p-t) vs n-gram < 0.001 6.08

reviewed dataset
CugLM vs T5 (p-t) < 0.001 1.98
CugLM vs n-gram < 0.001 98.0
T5 (p-t) vs n-gram < 0.001 10.50

developers dataset
CugLM vs T5 (p-t) < 0.001 3.90
CugLM vs n-gram < 0.001 32.50
T5 (p-t) vs n-gram < 0.001 24.25

218 Automated Variable Renaming: Are We There Yet?

Ta
bl

e
C

.6
.

C
or

re
ct

pr
ed

ic
ti

on
s:

C
-m

at
ch

in
di

ca
te

s
th

e
co

m
pl

et
e-

m
at

ch
he

ur
is

ti
c,

P-
m

at
ch

th
e

pa
rt

ia
l-m

at
ch

la
rg

e-
sc

al
e

da
ta

se
t

#
In

st
an

ce
s

n-
gr

am
(c

-m
at

ch
)

n-
gr

am
(p

-m
at

ch
)

C
ug

LM
(c

-m
at

ch
)

C
ug

LM
(p

-m
at

ch
)

T5
(n

on
pr

e-
tr

ai
ne

d)
T5

(p
re

-t
ra

in
ed

)

#
C

or
re

ct
%

C
or

re
ct

#
C

or
re

ct
%

C
or

re
ct

#
C

or
re

ct
%

C
or

re
ct

#
C

or
re

ct
%

C
or

re
ct

#
C

or
re

ct
%

C
or

re
ct

#
C

or
re

ct
%

C
or

re
ct

43
7,

38
4

46
,1

26
10

.5
4%

16
7,

86
8

38
.3

8%
27

7,
59

5
63

.4
6%

29
6,

59
0

67
.8

0%
15

3,
70

8
35

.1
4%

16
3,

36
8

37
.3

5%

re
vi

ew
ed

da
ta

se
t

#
In

st
an

ce
s

n-
gr

am
(c

-m
at

ch
)

n-
gr

am
(p

-m
at

ch
)

C
ug

LM
(c

-m
at

ch
)

C
ug

LM
(p

-m
at

ch
)

T5
(n

on
pr

e-
tr

ai
ne

d)
T5

(p
re

-t
ra

in
ed

)

#
C

or
re

ct
%

C
or

re
ct

#
C

or
re

ct
%

C
or

re
ct

#
C

or
re

ct
%

C
or

re
ct

#
C

or
re

ct
%

C
or

re
ct

#
C

or
re

ct
%

C
or

re
ct

#
C

or
re

ct
%

C
or

re
ct

45
7

20
4.

37
%

11
8

25
.8

2%
21

4
48

.3
5%

23
2

50
.7

5%
14

2
31

.0
7%

15
3

33
.4

8%

de
ve

lo
pe

rs
da

ta
se

t

#
In

st
an

ce
s

n-
gr

am
(c

-m
at

ch
)

n-
gr

am
(p

-m
at

ch
)

C
ug

LM
(c

-m
at

ch
)

C
ug

LM
(p

-m
at

ch
)

T5
(n

on
pr

e-
tr

ai
ne

d)
T5

(p
re

-t
ra

in
ed

)

#
C

or
re

ct
%

C
or

re
ct

#
C

or
re

ct
%

C
or

re
ct

#
C

or
re

ct
%

C
or

re
ct

#
C

or
re

ct
%

C
or

re
ct

#
C

or
re

ct
%

C
or

re
ct

#
C

or
re

ct
%

C
or

re
ct

44
2

8
1.

90
%

66
14

.9
3%

19
7

45
.0

2%
20

9
47

.2
8%

87
19

.6
8%

10
1

22
.8

5%

C.3 Results Discussion 219

Fig. C.3 depicts the relationship between the percentage of correct predictions and the
confidence of the models. Similarly, to Fig. C.4, the orange line represents the n-gram model,
while the purple and red lines represent CugLM and the T5 pre-trained model, respectively.
Within each confidence interval (e.g., 0.9-1.0) the line shows the percentage of correct pre-
dictions generated by the model (e.g., ∼80% of predictions having a confidence higher than
0.9 are correct for CugLM in the large-scale dataset). The achieved results show a clear trend
for all models: Higher confidence corresponds to higher prediction quality. The best per-
forming model (CugLM) is able, in the highest confidence scenario, to obtain 66% of correct
predictions on the developers dataset, 71% on the reviewed dataset, and 82% on the large-
scale dataset. These results have a strong implication for the building of rename refactoring
recommenders on top of these approaches: Giving the possibility to the user (i.e., the de-
veloper) to only receive recommendations when the model is highly confident can discard
most of the false positive recommendations.

10%
20%
30%
40%
50%
60%
70%
80%
90%
100%

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

confidence level

1.00.1

co
rr

ec
t

pr
ed

ic
ti

on
s

Large Scale

10%
20%
30%
40%
50%
60%
70%
80%
90%
100%

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.00.1

co
rr

ec
t

pr
ed

ic
ti

on
s

10%
20%
30%
40%
50%
60%
70%
80%
90%
100%

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.00.1

co
rr

ec
t

pr
ed

ic
ti

on
s

Reviewed Developers

T5(p-t) n-gram CugLM

confidence level confidence level

T5(p-t) n-gram CugLMT5(p-t) n-gram CugLM

Figure C.3. Percentage of correct predictions by confidence level

Concerning the manual analysis we performed on 100 wrong recommendations gener-
ated by each model on the large-scale dataset, a few findings can be distilled. First, the three
authors observed that the T5 was the one more frequently generating, in the set of wrong
predictions we analyzed, identifiers that were meaningful in the context in which they were
proposed (despite being different from the original identifier used by the developers). For
example, value was recommended instead of number or harvestTasks instead of tasks.
The three authors agreed on 31 meaningful identifiers proposed by the T5 in the set of 100
wrong predictions they inspected. Surprisingly, this was not the case for the other two mod-
els, despite the great performance we observed for CugLM. However, a second observation
we made partially explains such a finding: We found that several failure cases of CugLM and
of the n-gram model are due the recommendation of identifiers already used somewhere else
in the method and, thus, representing wrong recommendations. We believe this is due to the
different prediction mechanism adopted by the T5 as compared to the other two models. As
previously explained, the T5 generates a single prediction for all instances of the identifier
to predict, thus considering the whole method as a context for the prediction and inferring
that identifiers already used in the context should not be recommended.

The other two models, instead, scan the method token by token predicting each identifier
instance in isolation. This means that if an identifier x is used for the first time in the method
after the first instance of the identifier p to predict (e.g., p appears in line 2 while x appears

220 Automated Variable Renaming: Are We There Yet?

0-50

#Tokens per method

50-100 100-150 200-250 300-350 350-400 >400

co
rr

ec
t

pr
ed

ic
ti

on
s

150-200 250-300 0-50 50-100 100-150 200-250 300-350 350-400 >400

co
rr

ec
t

pr
ed

ic
ti

on
s

150-200 250-3000-50 50-100 100-150 200-250 300-350 350-400 >400

co
rr

ec
t

pr
ed

ic
ti

on
s

150-200 250-300

#Tokens per method #Tokens per method

Large Scale Reviewed Developers

T5(p-t) n-gram CugLM T5(p-t) n-gram CugLMT5(p-t) n-gram CugLM

10%

20%

50%
60%
70%
80%

90%
100%

30%

40%

10%

20%

50%
60%
70%
80%

90%
100%

30%

40%

10%

20%

50%
60%
70%
80%

90%
100%

30%

40%

Figure C.4. Percentage of correct predictions by tokens per method

in line 7), the existence of x is not considered when generating the prediction for p. This
reduces the information available to CugLM and to the n-gram model. Also, CugLM has
limitations inherited from the fixed size of its vocabulary set to the 50k most frequent tokens
[LLZJ20], which are the only ones the model can predict. This means that CugLM is likely
to fail when dealing with rare identifiers composed by several words. The T5, using the
SentencePiece tokenizer, can instead compose complex identifiers.

Finally, Fig. C.5 shows the comparison of five characteristics between correct (in green)
and wrong (in red) predictions. The comparison has been performed on the three datasets
(see labels on the right side of Fig. C.5), and for correct/wrong predictions generated by
the three models (see labels on the left side of Fig. C.5). The characteristics we inspected
are summarized at the top of Fig. C.5. For each comparison (i.e., each pair of boxplots in
Fig. C.5) we include a ∗ if the Mann-Whitney test reported a significant difference (p-value
< 0.05) and, if this is the case, the magnitude of the Cliff’s Delta is reported as well.

Concerning the length of the target identifier (#Characters per identifier and #Tokens per
identifier), the models tend to perform better on shorter identifiers, with this difference being
particularly strong for CugLM. Indeed, this is the only model for which we observed a large
effect size in the length of identifiers between correct and wrong predictions. Focusing for
example on the length in terms of number of tokens (#Tokens per identifiers), it is clear that
excluding rare exceptions, CugLM mostly succeeds for one-word identifiers. This is again
likely to be a limitation dictated by the fixed size of the vocabulary (50k tokens) that cannot
contain all possible combinations of words used in identifiers.

The size of the coding context (i.e., method) containing the identifier to predict (#Tokens
per method) does not seem to influence the correctness of the prediction, with few significant
differences accompanied by a negligible or small effect size. This is also visible by looking
at Fig. C.4, which portrays the relationship between the percentage of correct predictions
and the number of tokens composing the input method. The orange line represents the n-
gram model, while the purple and red lines represent CugLM and the T5 pre-trained model,
respectively. Within each interval (e.g., 0-50), the line shows the percentage of correct pre-
dictions generated by the model for methods having a tokens length falling in that bucket.
The only visible trend is that of CugLM on the large-scale dataset, which shows a clear down-
ward trend in correct predictions with the increase in length of the input method. This is
indeed the only scenario for which the statistical tests reported a significant differences in

C.3 Results Discussion 221

Figure C.5. Characteristics of correct (green) and wrong (red) predictions

the method length of correct and wrong predictions with a small effect size (in all other
cases, the difference is not significant or accompanied by a small effect size).

Differently, identifiers appearing in the training set tend to help the prediction (#Over-
lapping identifiers within the training set). This is particularly true for CugLM (large effect
size on all datasets), since its vocabulary is built from the training set. The boxplot for the
wrong predictions is basically composed only by outliers, with its third quartile equal 0. This
indicates that the predictions on which CugLM fails are usually those for identifiers never
seen in the training set.

Finally, the number of times that an identifier to predict appears in the context (i.e.,

222 Automated Variable Renaming: Are We There Yet?

#Occurences of identifier within methods), only has an influence for the T5 on the large-
scale dataset. However, there is no strong trend to discuss for this characteristic.

C.3.1 Implications of our Findings

Our findings have implications for practitioners and researchers. For the first, our results
show that modern DL-based techniques presented in the literature may be already suitable
to be embedded in rename refactoring engines. Clearly, they still suffer of limitations that
we will discuss later. However, especially when the confidence of their predictions is high,
the generated identifiers are often meaningful, matching the ones chosen by developers.

In terms of research, there are a number of improvements these tools can benefit from.
First, we noticed that the main weakness of the strongest approach we tested (i.e., CugLM)
is the fixed vocabulary size. Such a problem has been addressed in other models using
tokenizers such as byte pair encoding [Gag94] or the SentencePiece tokenizer exploited by
the T5. Integrating these tokenizers in CugLM (or similar techniques) could help in further
improving performance. Second, we noticed that several false-positive recommendations
could be avoided by just integrating into the models more contextual information.

For example, if the model is employed to recommend an identifier in a given location l,
other identifiers having l in their scope do not represent a viable option, since they are al-
ready in use. Similarly, the integration of type information in CugLM demonstrated the boost
of performance that can be obtained when the prediction model is provided with richer data.
Also, the employed models are predicting identifier names without exploiting information
such as (i) the original identifier name that could be improved via a rename refactoring, and
(ii) the naming convention adopted in the project. Augmenting the context provided to the
models with such information might substantially boost their prediction performance.

Finally, while we performed an extensive study about the capabilities of data-driven tech-
niques for variable renaming, our experiments have been performed in an “artificial” setting.
The (mostly positive) achieved results encourage the natural next step represented by case
studies with developers to assess their perceived usefulness of these techniques.

C.4 Threats to Validity

Construct validity. Our study is largely based on one assumption: The identifier name cho-
sen by developers is the correct one the models should predict. We addressed this threat
when building two of our datasets: (i) we ensure that the variable identifiers in the re-
viewed dataset have been checked in the context of a code review process involving multiple
developers; (ii) we built developers dataset by looking for identifiers explicitly renamed by
developers. Thus, it is more likely that those identifiers are actually meaningful.

Internal validity. An important factor that influences DL performance is hyperparame-
ters tuning. Concerning T5, for the pre-training phase we used the default T5 parameters
selected in the original paper [RSR+20] since we expect little margin of improvement for
such a task-agnostic phase. For the fine-tuning, due to feasibility reasons, we did not change
the model architecture (e.g., number of layers), but we experimented with different learning

C.5 Conclusions and Future Work 223

rates-scheduler as did before by Mastropaolo et al. [MSC+21]. For the other two techniques
we relied on the parameters proposed in the papers presenting them.

External validity. While the datasets used in our study represent hundreds of software
projects, the main threat in terms of generalizability is represented by the focus on the Java
language. It is important to notice that the experimented models are language agnostic, but
would require the implementation of different tokenizers to support specific languages.

C.5 Conclusions and Future Work

We presented a large-scale empirical study aimed at assessing the performance of data-driven
techniques for variable renaming. We experimented with three different techniques, namely
the n-gram cached language model [HD17], the T5 model [RSR+20], and the Transformer-
based model presented by Liu et al. [LLZJ20]. We show that DL-based models, especially
when considering predictions they generate with high confidence, represent a valuable sup-
port for variable rename refactoring. Our future research agenda is dictated by the implica-
tions discussed in Section C.3.1.

224 Automated Variable Renaming: Are We There Yet?

D
Unveiling ChatGPT’s Usage in Open Source
Projects: A Mining-based Study

Recommender systems for software engineers have been defined by Robillard et al. [RWZ10]
as:

“Software applications that provide information items estimated to be valuable for
a software engineering task in a given context”

Over the years, researchers have developed various forms of recommenders, aimed at
suggesting relevant code elements for a given task [NNN+12, ABBS15, WAN+21], helping
to fix bugs [XLD+17, TWB+19a, BSPC19, MH21b] and vulnerabilities [HLX+17, GWD+21,
CKM22], and even to automatically document software systems [SPVS11, MBP+15, ABLL21].

In the last decade, the increasing gain of maturity and improvement of deep learning
architectures, the availability of hardware infrastructures, and of data from forges such as
GitHub has opened the road towards the development of recommenders able not only to
better solve the aforementioned problems, but also to perform tasks for which no recom-
mender was previously thought in the past, including generating entire code blocks [SDFS20,
CCP+21], automatically reviewing source code [TPT+21, TWB+19a, LLG+22a, TPT22], or
generating scenarios for automatically reproducing issues [ZSL+22, FMB+23, BCH+23].

The advent of Large Language Models (LLMs) and, lately, of LLM-based chat bots such
as ChatGPT [cha] has opened new development landscapes. In such a context, a developer
can, from a single tool, receive help for a wide number of tasks: one can ask ChatGPT to
design an architecture, write or complete source code to achieve a given task, review and
possibly refactor/optimize existing code, repair bugs, generate tests, and so on. In other
words, today’s ChatGPT and tomorrow’s similar tools from other providers will gradually
become the main source of help for developers, essentially replacing what a colleague, user
manuals, the Web (including forums such as Stack Overflows) and, recently, code completion
specialized tools such as GitHub Copilot [cop], have done so far.

Given such a scenario, it would be worthwhile understanding how developers have lever-
aged ChatGPT so far to achieve different goals. Certainly, this goal could possibly be achieved

225

226 Unveiling ChatGPT’s Usage in Open Source Projects: A Mining-based Study

through interviews and survey questionnaires. However, we have decided to follow a radi-
cally different approach, i.e., by mining traces of ChatGPT usages in GitHub: commit mes-
sages, issues, and pull requests (PRs).

This is because on the one hand, we could observe how developers “admit” the use of
ChatGPT in their (open-source) projects, but, also, how such code is being reviewed before
being merged.

To conduct our study, we first mined all commits, issues, and PRs from GitHub that match
the keyword “ChatGPT ". Then, we extracted n-grams surrounding the word ChatGPT and
manually reviewed them for further filtering. This allowed us to filter the initial sample
to reduce the chance of false positives, e.g., an issue mentioning ChatGPT but not using it
for the automation of a task. Then, we performed an open coding based on card sorting
[Spe09] on all 1,501 candidate instances (i.e., commit/issue/PR) we identified, classifying
the ChatGPT purpose for each instance (i.e., why it was used) or discarding the instance as
a false positive.

As a result, we obtained a taxonomy of purposes for using ChatGPT in the automation
of a software-related task. The taxonomy features seven root categories and 52 categories
in total.

For each category, we discuss typical use cases, as well as implications for practitioners
and researchers. Also, we highlight and discuss scenarios for which the use of ChatGPT
turned out to be failing, counterproductive, or risky for the given activity.

All data used in our study is publicly available [TMP+23].

D.1 Study Design

The goal of the study is to unveil the purposes for which LLM recommenders are used to
support the development of open-source projects. The context consists of ChatGPT, as a
representative of state-of-the-art LLMs, and of 1,501 manually inspected commits, PRs, and
issues sampled from open source projects hosted on GitHub. Our study aims at answering
the following research question:

What are the software-related tasks for which developers document the support
received by ChatGPT?

We answer this research question by mining, from development artifacts, traces of Chat-
GPT usages. We focus on artifacts for which it is possible to perform keyword-matching
queries on GitHub. As such, we search for commit messages, PRs, and issues mentioning
ChatGPT in their textual content (Section D.1.1). We do not consider GitHub discussions, as
we are interested to analyze text directly traceable to software artifacts. Then, we manually
inspect 1,501 instances with the goal of categorizing the task(s) supported by ChatGPT (if
any) in each of them (e.g., generate tests, code review) — see Section D.1.2. The obtained
categories of tasks have then been used to derive a taxonomy of tasks supported by ChatGPT.
Such a taxonomy provides (i) developers with a comprehensive catalog of usage scenarios in
which LLM recommenders can be leveraged; and (ii) researchers with software-related tasks

D.1 Study Design 227

which could benefit from automation, possibly through specialized solutions to be developed
rather than via generic LLM recommenders such as ChatGPT.

In the following, we detail the steps behind our study design.

D.1.1 Mining Candidate Instances

The goal of this step is to identify commits, PRs, and issues in which ChatGPT has been likely
used to support one or more tasks. False positive instances (e.g., instances in which ChatGPT
was mentioned but not actually leveraged) will be discarded in a later stage.

We started by querying—on June 12, 2023—the GitHub APIs to identify all commits, PRs,
and issues containing the word “ChatGPT”. For commits, the search was performed on the
commit message/body, while for PRs and issues the target was their title and description.
The output of this step were 186,425 commits, 15,629 PRs, and 31,934 issues (233,988
overall instances). By inspecting the retrieved instances, we noticed a predominance of false
positives, mostly due to projects which integrate ChatGPT (i.e., use the ChatGPT APIs) to
offer features to their users (e.g., a chat bot) rather than using it for automating software-
related tasks.

We then performed a first filtering to automatically discard as many false positives as pos-
sible. To this aim, we extracted from the collected instances all forward/backward 2-grams
and 3-grams containing the word “ChatGPT”. For example, let us assume that a commit mes-
sage features the sentence: “Implemented matrix transposition with the help of ChatGPT”. In
this case, we extract the following backward n-grams: “of ChatGPT”, and “help of ChatGPT”.
Instead, a PRs titled Used ChatGPT to implement tests will result in the backward 2-gram
“used ChatGPT” and in the forward n-grams “ChatGPT to” and “ChatGPT to implement”.

We then sorted all extracted n-grams in ascending order of frequency, and inspected
those appearing in at least 0.02% of the instances (>1k instances). We classified each n-
gram as likely indicating the ChatGPT support in a task (e.g., “ChatGPT to generate”) or
as likely indicating false positives (e.g., “ChatGPT API integration”). This resulted in a set
of 34 relevant n-grams available in our replication package [TMP+23]. We excluded all
instances not containing at least one of such n-grams, and all those belonging to GitHub
repositories having less than 10 stars in an attempt to filter out toy projects. Finally, we
removed duplicates (e.g., duplicated commits due to forked repositories) obtaining a final
set of 1,501 instances, distributed as follows: 527 commits, 327 PRs, and 647 issues. The
1,501 manually analyzed issues, commits, and PRs belong to 732 different projects.

D.1.2 Manual Analysis and Taxonomy Definition

The goal of the manual analysis was to characterize within each of the 1,501 instances the
task(s) (partially) automated using ChatGPT. Five authors (from now on evaluators) were
involved in the manual inspection. Each instance has been independently inspected by two
evaluators. The whole process was supported by a web app we developed that implemented
the required logic and provided a handy interface to categorize the instance. For each in-
stance, the evaluator was presented with: (i) the metadata as returned by the GitHub APIs
(e.g., for a commit: its author, message, body, date, etc.); (ii) the n-gram that was matched

228 Unveiling ChatGPT’s Usage in Open Source Projects: A Mining-based Study

in that specific instance (e.g., “ChatGPT to generate”); and (iii) the link to the instance on
GitHub for an easier inspection.

The categorization required the assignment of one or more lebels to an instance, describ-
ing the automated task(s) (e.g., refactoring code, write documentation). In case the manual
inspection revealed that ChatGPT was not actually used to automate software-related tasks,
the instance was discarded.

Since there are no documented taxonomies of software-related tasks automated with the
support of LLM recommenders, we followed an open coding strategy [Spe09].

Specifically, each evaluator could introduce a new label, as they felt it was needed to
properly describe the automated task(s). After the label was added, it became available,
through the web app, to the other evaluators. While this goes against the notion of open
coding, in a scenario in which there are no pre-defined categories this helps to reduce the
chance of multiple evaluators defining similar labels to describe the same task while not
introducing a substantial bias in the process.

It is important to mention that the labeling process has not been performed in a single
shot, but rather in three rounds each involving roughly 1

3 of the instances to inspect. At the
end of each round the authors met to revise the set of labels defined up to that moment
by (i) renaming unclear labels; (ii) merging similar labels, i.e., labels describing the same
automated task but with different wordings; and (iii) agreeing on irrelevant labels, actually
indicating instances to discard (i.e., unrelated to tasks supported by ChatGPT).

Once all 1,501 instances have been inspected by two evaluators, we solved conflicts. As
for the relevance labeling, we found conflicts in 17% of the cases, with Cohen’s k = 0.64,
which is considered a strong agreement [Coh60].

For what concerns the (open-coded) categories, we found differences in 380 cases (∼25%
of instances). While such a percentage may look high, this can be easily explained by two
design choices. The first is the already mentioned lack of pre-defined categories. This im-
plies that two evaluators defining semantically equivalent but different labels to describe
an automated task (e.g., create tests vs test writing) would generate a conflict. The second
concerns our conservative definition of conflicts: We considered an instance as a conflict if
two evaluators assigned a different set of labels to the instance, even if the two sets partially
overlapped. Conflicts also arose if one of the two evaluators discarded the instance as a false
positive while the other labeled it. Each conflict has been inspected in pairs by two additional
evaluators, who discussed and solved it. In the end, 467 instances were kept and classified,
distributed as follows: 165 commits, 159 PRs, and 143 issues. The 467 classified instances
belong to 358 projects, having [min=8, 1Q=60, median=444, 3Q=3,075, max=179,567]
stars, and [min=0, 1Q=15, median=77.5, 3Q=535, max=89,252] forks.

The 45 labels defined through the above-described process have been used to build a
hierarchical taxonomy of software-related tasks for which ChatGPT provided (partial) au-
tomation. Two of the authors created a preliminary version of the taxonomy which has then
been refined in two rounds by collecting the feedback of all five authors involved in the
labeling.

D.2 Results Discussion 229

D.2 Results Discussion

Fig. D.1 depicts the taxonomy of tasks automated via ChatGPT. The taxonomy is composed
of seven trees, each grouping together related tasks: feature implementation/enhancement,
process, learning, generating/manipulating data, development environment, software quality,
and documentation. The numbers attached to each task Ti indicate, from the right to the
left, the number of commits, issues, and PRs in which we found evidence of Ti ’s automation
using ChatGPT. For example, we found a total of 110 instances (43 commits, 29 issues, and
38 PRs) in which ChatGPT has been used to automate the implementation or enhancement
of a feature.

Note that the sum of the number of instances in all tasks is greater than the total number
of valid instances we inspected (467), since one instance may have required the support of
ChatGPT for multiple tasks, e.g., generating tests and their related code comments. Also, note
that the number of instances in a parent category is not always the sum of the instances in its
child categories. For example, consider the software quality→ fixing→ supporting debugging
category: Such a task has been automated in 12 instances (11 issues and 1 PRs) and has one
child category named writing code to reproduce a bug, automated in 3 issues. The reason for
such a discrepancy is that in 12 instances it was clear that ChatGPT has been used to support
the debugging process, but only in three of those cases the classification could be even more
precise and refer to the specific task of helping to reproduce a bug.

In the following, we discuss the seven main categories of automated tasks by report-
ing qualitative examples and discussing implications for practitioners (see § icon) and re-
searchers (). We also showcase ChatGPT’s limitations when used for the automation of
the related tasks (). Due to the lack of space, we do not discuss all 52 categories in our
taxonomy, but only the main ones. However, our replication package [TMP+23] provides
the complete dataset reporting, for each category, the instances assigned to it.

D.2.1 Feature implementation/enhancement

This category features tasks related to the usage of ChatGPT as a support for implementing
and enhancing software features. We start by commenting two of its related, but differing,
subcategories: implementing a new feature and prototyping. The former refers to the usage of
ChatGPT as a support to implement a specific part of a feature that the developer is working
on. This means that the developer delegates the implementation of a specific functionality,
which is then manually integrated with the rest of the code needed for the feature. An
example is the PR #37233 from the woocommerce project [pr:23a], in which the PR author
states: “I wrote a Python script with ChatGPT to parse csv files since we need to update this
payment list quarterly”.

The latter, instead, refers to the usage of ChatGPT as a way to quickly implement either
(i) a complete feature that can be used as a starting prototype for reasoning about the ad-
dition of the new feature in the project, or (ii) the whole starting version of a project, on
which developers can work and build on top. An example of the first scenario is the PR #73
from the nix-gaming project [pr:23b] in which the contributor proposes the addition of an

230 Unveiling ChatGPT’s Usage in Open Source Projects: A Mining-based Study

spell checking

Generating/
Manipulating Data

35

010

3

automating commit/
issue/PR creation

Process

184

18114

12

release planning

010

creating commit/
issue/PR description

18104

confirming observed
bug

010

motivating the need
for a proposed

change
120

Feature
Implementation/

Enhancement
382943

feature enhancement

14422

finding an api for a
given task

020

migrating/reusing via
programming

language translation
452

implementing a new
feature

14912

prototyping

6107

user experience

11115

upgrading to latest
version of a library

101

gui-related
improvements

internationalization
support

implementing proof
of concept

697

using ChatGPT in
TDD

010

519 606

Software Quality

563744

code review

2257

fixing

162910

refactoring

13523

testing

1008

spotting bugs

302

fixing flaky test

100

generating tests

908

functional bugs

9157

performance-related

633

supporting
debugging

1110

writing code to
reproduce a bug

030

setting/
implementing a new

configuration file

Development
Environment

149

141

7

continuous
integration

1218

integrating ChatGPT
reviewing in CI

700

generating/updating
docker container

212

implementing/fixing
jobs/actions

306

how to use a library/
framework/tool

Learning

54

4474

48

program
comprehension

110

generating code
examples

062

getting familiar with
the codebase

100

database querying

011

generating API
specification

010

Documentation

331161

generating code
comments

7221

generating README

305

internationalization
support

201

generating terms of
service

100

generating user
guide

041

improving writing

21433

Figure D.1. Taxonomy of types of tasks automated via ChatGPT

D.2 Results Discussion 231

autoupdater script commenting “I don’t know if this is the right way to do it [. . .] Credits to
ChatGPT for the script”. While this PR has been approved and merged, it is representative
of those instances in which the contributor explicitly states to be unsure about what was
accomplished using ChatGPT, or even declared that they were completely unfamiliar with
coding while contributing PRs or issues — see e.g., [iss23a]: “I started to edit the files with
the support by ChatGPT— as said, I have no idea about coding”. § Similarly to what happens
when defining onboarding and contribution guidelines in open source projects [Apa, Ecl],
it may be desirable to define guidelines about contributing with AI-generated code, i.e., a
project may decide to only welcome contributions from ChatGPT by users that are confident
in assessing the correctness of the generated code.

Also, projects may need to adapt the code review process, e.g., relying less on (semi-
) automated code quality check (e.g., a linter to check code quality) when AI-generated
contributions come from users having little or no programming expertise.

 This finding is also relevant for research, as, for example, it may impact studies involv-
ing contributors of OSS (e.g., studies on newcomers similar to those of Steinmacher et al.
[SCTG16] or Zhou and Mockus [ZM10]). Related studies in the future should be careful
about surveying developers that have only submitted AI-generated contributions, as they
may not be representative of the target population of OSS developers. Clearly, the devel-
opment landscape may also significantly change, as contributors mainly relying on AI when
submitting code could become the norm.

 In general, there is a clear risk related to the ownership and understanding of code
contributed via ChatGPT, especially when it is used to contribute complete features. Such
a problem has been well-summarized in a comment of a PR we inspected [pr:23c]: “[. . .] I
want to make something clear about code suggestions done by ChatGPT: deferring to an AI bot
is not the same as code ownership [. . .] the idea that an author puts some code into a commit
and sends it means they should have an intellectual understanding of it. PR authors should own
the code they send – ownership in the sense of being able to advocate for the code”.

The consequence is that AI-generated code may require a more thorough quality assur-
ance, but also may lead to issue triaging problems and in general maintenance issues in the
absence of a real owner. Concerning the second usage scenario for prototyping (i.e., using
ChatGPT to draft the whole starting version of a project), a concrete example is the issue
#1 from the apple-notes-to-sqlite project [iss23b] titled “Initial proof of concept with
ChatGPT”.

The issue documents the conversation between the repository’s owner and ChatGPT, and
resulted in the implementation of the first prototype of an application exporting Apple notes
to SQLite. § This project counts 120 stars on GitHub at the date of writing and is a concrete
example of how ChatGPT can provide a jumpstart in software development.

Still related to prototyping, we also found one issue [iss23c] in which developers discuss
the possibility of using “ChatGPT to generate reliable code through a semi-automated Test-
Driven Development (TDD) process that incorporates feedback loops” (using ChatGPT in TDD
category in our taxonomy). § From a practitioner’s perspective, this would lead to a dif-
ferent metaphor, in which the developer is mainly in charge of writing tests letting the LLM
generate code.

232 Unveiling ChatGPT’s Usage in Open Source Projects: A Mining-based Study

 From a research perspective, this requires empirical investigations, as it has been done
in the past for conventional TDD (e.g., [BCF+21, FET+17]) thus defining a suitable process
with AI in-the-loop.

Another popular sub-category is the feature enhancement task, in which ChatGPT is used
to enhance an already existing feature (as opposed to help contributing with a new feature).
This includes generic enhancements such as writing CSS for existing web pages [iss23r] or
adding options to a feature [pr:23d], as well as more specific improvements that can be seen
in the category’s subtree. For example, we found 12 instances (6 commits + 6 PRs) in which
ChatGPT has been used for internationalization purposes [pr:23e], mostly related to trans-
lating elements in the GUI, including error messages. In some of these cases the reviewers
asked whether the contributor was actually familiar with the target language or if, instead,
they were just running ChatGPT and reporting the translation, with the risk of introducing
internationalization issues. Such a finding is relevant for researchers working on detecting
and fixing internationalization issues [EVORDO+20]. For example, ChatGPT could produce
mistakes different from those typically committed by developers who manually implement
internationalization.

The last sub-category we discuss is the one related to migrating/reusing via programming
language translation, a task supported by ChatGPT in 11 of the inspected instances. § Prac-
titioners used ChatGPT to automatically translate code snippets across languages, allowing
for possibilities of reuse that were unimaginable before (e.g., reusing code across projects
written in different languages).

An interesting example is the PR # 4559 from the garden project [pr:23f] in which the
contributor used ChatGPT to translate from Javascript to Typescript the code of a third-party
project which has not been updated in the last six years and was known to be affected by vul-
nerabilities. As documented by the contributor: “I didn’t find an easy fix . . . so I just created a
fork of [third-party project] and asked ChatGPT to convert it to Typescript, removed the depen-
dency on [third-party project] and later tweaked it to make sure that everything works”. Our
findings confirm the relevance of research targeting the automated translation of software
across programming languages [NNNN14, NNN14], but it also highlights the very strong
performance of what should be considered the state-of-the-practice and, therefore, a base-
line for comparing new approaches in this research thread. ChatGPT seems to be able to
generalize across several languages, even by translating hundreds of lines of code, see e.g.,
the Javascript to Python translation in the textual-paint project [com23a].

 At the same time, recent research has pointed out perils of ML-based language trans-
lation [MZRC23], especially because the translation may not take into account that different
programming languages may follow different programming paradigms (e.g., object oriented
vs functional), and the result could just be “Java with a Python syntax” or something simi-
lar. As Malyala et al. suggest [MZRC23], a combination of ML-based translation with static
analysis and rule-based translation could be a pragmatic road to follow.

D.2 Results Discussion 233

D.2.2 Process

The process category groups instances mentioning the usage of ChatGPT to support activities
related to the development process, e.g., release planning, or the automation of steps needed
to create commits, PRs, issues, e.g., generating a PR description.

We found a single issue in which ChatGPT has been used to come up with ideas on how
to improve a software project (release planning label in our taxonomy) [iss23d]. While this is
a single data point and should be taken as such, we found this usage of ChatGPT extremely
interesting, since it goes substantially further than what state-of-the-art tools supporting
release planning are able to do. The latter usually mine data (e.g., app reviews [CSPG17,
PSG+15, SBR+19]) to help developers summarizing the customers’ feedback and come up
with aspects to improve in the software. § ChatGPT does not require any sort of data mining
on the developer’s side and, as visible from the issue we inspected [iss23d], can be queried
for general ideas about what to improve in a software or even on how to improve a specific
feature/quality aspect of the software (e.g., “Can you suggest improvements to make the help
system more useful for data scientists?”, “Suggest ways to make the help system more useful
for developers”). The contributor confirmed that “ChatGPT came up with [. . .] pretty good
ideas”. One clear limitation is that requirement crowdsourcing may require up-to-date
sources of information (e.g., recent information about the features that competitive software
implements) which ChatGPT may not have. Also, practitioners may be afraid to prompt
ChatGPT with sensitive, market-competition-related information. To cope with both issues,
researchers may develop approaches based on Retrieval Augmentation Generation (RAG)
[LPP+20a] to combine LLMs with private or up-to-date resources.

In 32 instances developers used ChatGPT to automatically generate a commit message
(e.g., [com23b]) or a PR/issue description (e.g., [iss23e]). The automatic generation of com-
mit messages [DLZ+22, LXH+18, JAM17, WXL+21] and of PR title/descriptions [FZT+22,
LXT+19, IZT+22] has been tackled by several researchers, especially after the wide adoption
of deep learning in software engineering. While we are not aware of empirical compar-
isons performed between these tools and ChatGPT two observations can be made. First,
the instances in our dataset show an impressive capability of ChatGPT in summarizing even
complex changes spanning several files, while studies in the literature documented strong
limitations of techniques for the automated generation of commit messages, mostly target-
ing the low-hanging fruits (e.g., Add README) [LXH+18]. Second, empirical comparisons
should carefully consider which test instances to use, considering that the dataset on which
ChatGPT has been trained is not publicly available. While this does not make it possible to
ensure a lack of overlap between training and test set, an easy solution is to use very re-
cent commits/PRs/issues as test set, since those are unlikely to have been seen by the model
behind ChatGPT.

Our taxonomy also features two specializations of the creating commit/PR/issue descrip-
tion category. The first concerns a scenario in which ChatGPT has been used to confirm
an observed failure as a bug: “[failure description] asking ChatGPT suggested it to be a bug”
[iss23f]. The second represents instances in which ChatGPT was used to better motivate a
proposed change. An example of this second usage scenario is the issue #1648 from the
js-libp2p project [iss23g], being a feature request including a question posed to ChatGPT

234 Unveiling ChatGPT’s Usage in Open Source Projects: A Mining-based Study

about the usefulness of the proposed feature (“Can’t we already do this with just a libp2p
stream? Why do we need HTTP?”) with the LLM providing four disadvantages of not having
such a feature.

In other cases falling in this category, the contributor just describes a chat they had with
ChatGPT that helped them in coming up with the issue/PR (e.g., “this is a PR to improve the
way we store thumbnails in the data folder; after a nice chat with ChatGPT I discovered why
most apps do this” [pr:23g]).

 Despite the very successful applications of ChatGPT to process-related tasks, we ob-
served cases of what has been recently defined as artificial hallucination [JLF+23], namely
confident responses provided by an AI such as ChatGPT which look plausible to the hu-
man interacting with it but that are clearly wrong. This is reflected in negative reactions to
suggestions given by ChatGPT about features to improve/implement (e.g., “I can’t really do
anything about that, and it would defeat the entire purpose of [project]” [iss23h]).

D.2.3 Learning

The learning category tree mostly features issues opened by users of a software project as
a result of problems they are experiencing in using the related library/framework/tool. In
doing so, they mention their attempt to solve the faced problem by asking ChatGPT (e.g.,
[iss23i, iss23j]). This is a category of task for which ChatGPT showed clear limitations
related to the previously mentioned artificial hallucination issue. In 36 out of the 47 opened
issues, the indications provided by ChatGPT on how to solve the problem faced by the user
were wrong, resulting in negative comments either by the user itself when opening the is-
sue (e.g., “I even asked ChatGPT who made up some configuration options that do not exist”
[iss23j]) or by the developers replying to the issue (e.g., “just stop asking ChatGPT about this
thing, because the data that was used to train it only spans until 2021, which means everything
created from 2022 (including [project]) onwards is outside of its knowledge domain; If you ask
about something it doesn’t know, it will make up fake answers that don’t work at all, and fake
libraries that don’t exist” [iss23k]). Similarly to release planning, leveraging outdated
knowledge of LLMs can be risky, therefore they need to be complemented with alternative
approaches.

The learning tree also features two instances in which ChatGPT has been used to under-
stand code. In these two cases, the LLM provided useful support to the developer, even in
understanding code automatically generated by a framework by reverse engineering it: “This
code is very difficult for people to read because it is compiled by webpack. However, ChatGPT
completed reverse-engineering in a short time” [iss23l]. § This shows the potential of Chat-
GPT in supporting program comprehension and on the research side suggest investigations
aimed at assessing the impact of ChatGPT in program comprehension, as well as approaches
to support the use of third-party LLMs on private code or other software artifacts.

D.2.4 Generating/manipulating data

Developers use ChatGPT to easily generate/manipulate data. The variety of data involved
in this category includes strings appearing in the UI (e.g., “add ChatGPT suggestions to bully

D.2 Results Discussion 235

messages” [com23c], “Add extra motivational messages generated by ChatGPT” [com23d]),
fake data needed to fill templates (e.g., “add more fake data in the sample using ChatGPT”
[com23e]), or more intellectual content such as math problems for an educational project
(e.g., “use ChatGPT to generate these problems and create an initial solution” [iss23m]).

 ChatGPT seems to be particularly suited in the generation of data for which correctness
is not a strong requirement (e.g., fake data, augmenting UI-related strings handling a dialog
with the user). This makes it a suitable tool to automatically generate test inputs since even
implausibly generated inputs could represent a good opportunity to assess the robustness
to wrong inputs. However, in this scenario, several risks may arise. First, LLMs can be
subject to bias [CMYM20, CMM21] and may generate unwanted discriminatory or offensive
text. Moreover, it cannot be excluded that LLMs could be subject to adversarial attacks,
leading to the generation of unwanted outputs as it has been shown for other recommender
systems [NDD+21].

D.2.5 Development environment

This tree groups together instances in which ChatGPT has been used to support and (par-
tially) automate activities related to the development environment. The most popular ap-
plication of ChatGPT is its integration as reviewer in the continuous integration and delivery
(CI/CD) pipeline. In this scenario, ChatGPT is used to comment about contributed code and
identify bugs and/or suboptimal implementation choices (e.g., “added bot reviewer powered
with ChatGPT to help us with PR reviews” [pr:23h]). § The ChatGPT-based review is usu-
ally integrated in the continuous integration pipeline and aims at providing a first quick
feedback to the contributor, without replacing (but supporting) the human reviewer. Fur-
thermore, ChatGPT is usually combined with classic lint tools looking for issues and assessing
test coverage.

 Such an application confirms the relevance of the recent line of research related to
the automation of code review tasks [TMM+22], for which ChatGPT could become a base-
line for comparison. Future research should also consider how to properly leverage LLM-
recommenders such as ChatGPT to obtain code reviews in line with an organization/project’s
own coding styles and guidelines. A clear issue is the need for passing code to ChatGPT,
which may not be acceptable (and even forbidden) in industrial environments. In such cases,
approaches leveraging local LLMs are to be preferred.

Other tasks automated via ChatGPT concern the implementation/fixing of jobs/actions
in continuous integration scripts and the generation/updating of docker containers. While
ChatGPT can be a good aid to draft CI/CD scripts, this is one of those tasks in which the
long training time needed for LLMs and, as a consequence, their inability to be continu-
ously retrained to be updated, represents a strong limitation. Indeed, technologies such
as GitHub actions which are used to achieve CI/CD are relatively new and rapidly evolv-
ing. This resulted in PRs contributing with CI/CD scripts created with the help of ChatGPT
which, accordingly to the reviewers, were using outdated actions and commands (e.g., “the
actions used are outdated” [pr:23i]). This highlights one strong limitation of LLMs: They
might not be suitable in rapidly evolving contexts such as young technologies, programming

236 Unveiling ChatGPT’s Usage in Open Source Projects: A Mining-based Study

languages, etc.
 In these cases, it is possible that smaller, specialized models that can be quickly re-

trained might be more suitable and reliable.

D.2.6 Software quality

Software quality is the largest tree in our taxonomy in terms of number of instances (137).
This indicates that developers largely leverage ChatGPT for automating tasks related to soft-
ware quality improvement.

Refactoring operations recommended by ChatGPT are widely implemented by develop-
ers. This may include simple renaming [pr:23j] as well as more complex code transfor-
mations such as converting a recursive function into an iterative one: “Thanks to ChatGPT
for doing the recursion to iterative conversion” [com23f]. While we found a wide variety
of refactoring actions automated via ChatGPT, we observed a lack of code transformations
involving multiple files, such as extract class refactoring. This is likely due to the limited
view that ChatGPT has of the software systems, given its (current) lack of integration in the
IDE. For such cases, approaches to generate suitable prompts helping ChatGPT to produce
responses for more complex refactoring scenarios may be desirable.

Functional bugs have been fixed with the help of ChatGPT (31 instances in our taxon-
omy). In these instances we observed two of the previously discussed issues affecting the
usage of ChatGPT in open-source projects. First, ChatGPT has been used by inexperienced
programmers to submit patches, possibly with little understanding of the contributed code:
“Was getting the error . . . so I used ChatGPT to fix it, not sure how GitHub works . . . so I gonna
put it here” [iss23n]. Second, the inability of ChatGPT to cope with complex code, similar
to what we inferred looking at the automated refactorings: e.g., “Do not trust ChatGPT to
fix complex code depending on multiple files; ChatGPT has no idea of the scope nor the current
state of the codebase, so it will not be able to give a valid answer . . . ” [iss23n].

Besides the explicit bug fixes suggested by ChatGPT, the LLM is also used to support
debugging. § This mostly comes in two fashions. The first is the expected one, with a
user observing a failure in a code and asking ChatGPT what was causing it: e.g., “I asked
ChatGPT what this error could be, and the AI gave me an important clue . . . ” [iss23o]. The
second is the usage of ChatGPT to generate a minimal, reproducible example [iss23p]. As
of today, there are state-of-the-art approaches supporting the automated reproduction of
bugs [BCH+23, FMB+23, ZSL+22]. This is mainly possible because such approaches are (i)
tailored for specific categories of applications, e.g., mobile apps, and (ii) can access the whole
application code base. In the future, LLM-based approaches should be therefore able to use
such information to support the automated reproduction of bugs.

The code review subtree collects the usage of ChatGPT as a reviewer, mostly for incoming
PRs. It is worth commenting on the difference between this subtree and the previously dis-
cussed development environment→ continuous integration→ integrating ChatGPT reviewing
in CI. The latter concerns instances in which developers manifested their interest in inte-
grating ChatGPT in the CI/CD pipeline as a reviewer. The former, instead, groups instances
in which the outcome of a code review performed by ChatGPT was discussed, even when

D.2 Results Discussion 237

ChatGPT was not integrated into the workflow but queried through its user interface.
Similarly, the code review → spotting bugs differs from support debugging since in the

former the developers were not aware of the bugs found by ChatGPT, while in the latter
they used ChatGPT to help debugging after observing a failure.

Another, very relevant subtree of software quality is the one related to the automation of
testing activities. While we found an instance in which ChatGPT was used to fix flaky tests
[pr:23k], in the rest of cases (17 instances) the automated task is the generation of tests,
e.g., “includes tests, which were coded with care by ChatGPT” [pr:23l], “tests were generated by
ChatGPT and while it was not perfect it did a decent job at creating the unit tests code” [pr:23m].
 The latter is only one of the comments we found in PRs which confirm the usefulness of
ChatGPT as an aid to write tests rather than as a completely automated solution: “I have
generated the tests with the help of ChatGPT and manually checked all of them — it got a few of
them wrong or was testing impossible cases, but it did find that one edge case”. On this line,
research approaches could aim at integrating LLM-based test generation with approaches
aimed at identifying and repairing broken tests [CZVO11, DGM10, PXP+22, SYM18].

D.2.7 Documentation

The last popular application of ChatGPT we discuss (105 instances in our sample) concerns
the automated generation of software documentation. ChatGPT is used both to write docu-
mentation from scratch (38 instances) as well as to improve existing documentation (see im-
proving writing category with 58 instances). In some cases, projects’ users suggest to improve
parts of the documentation since they found it difficult to read: “I found the README.md a
bit difficult to digest, so I utilized ChatGPT to help me simplify the content. This allowed me to
better understand the library’s core features and functionality. It might be worth considering a
shorter, more concise version of the README for easier comprehension” [pr:23n].

§ It could be useful for projects’ owners, especially for non-native speakers of the lan-
guage used in the documentation, to consider the usage of ChatGPT to improve documen-
tation quality.

For what concerns the generation of documentation from scratch, ChatGPT is mostly used
for commenting code, but also for drafting terms of service [pr:23o], user guides [iss23q], and
README files [pr:23p]. Differently from what we found for tasks related to code gener-
ation, we did not observe negative reactions of projects’ owners/reviewers. This is likely
due to: (i) the excellent performance of the LLM when dealing with natural language; (ii)
the higher likelihood that the contributor posting ChatGPT-generated content has the actual
competencies to assess whether the generated output is correct (i.e., less coding skills re-
quired); (iii) the fact that, as ChatGPT generates natural language, projects’ contributors see
pretty obvious (and relatively straightforward) ways to improve/adapt it when necessary,
and therefore there is less evidence of complaints; and (iv) the lower risk related to errors
in the generation task (e.g., typos vs bugs) except, of course, for terms-of-service. An em-
pirical investigation aimed at studying the sentiment of reviewers when inspecting different
types of AI-generated contributions (e.g., code vs documentation) could help in better char-
acterizing and backing up our observation. Last, but not least, also in this case, a proper (in

238 Unveiling ChatGPT’s Usage in Open Source Projects: A Mining-based Study

some cases large) prompt may be needed by ChatGPT to generate exhaustive and correct
documentation.

This, in turn, may stimulate research on how to combine LLMs with software reverse
engineering approaches for that purpose.

D.3 Threats to Validity

Threats to construct validity concern the relationship between the theory and observation.
Studying the purpose of the use of ChatGPT in software development by mining software
repositories has an intrinsic limitation. This is because we observe only cases where develop-
ers mention ChatGPT explicitly in a commit message, issue, or PR description. There could
be other changes in which developers silently leveraged ChatGPT.

Moreover, as explained in Section D.1, we analyzed the textual content of commit mes-
sages, issues, and PRs, as they could be queried by GitHub. However, there may be other
places where ChatGPT could have been mentioned, e.g., code comments. These would re-
quire analyzing all projects’ source code and could be considered in future work.

A further threat is due to our interpretation of ChatGPT purposes of usage, by reading and
labeling commits and developers’ discussions. This classification could have been affected
by subjectiveness and imprecision. As explained in Section D.1, we mitigated this threat
by having two annotators labeling each instance independently, and, after that, having a
cooperative conflict resolution.

Threats to internal validity concern confounding factors internal to our study that could
affect our results. During the manual analysis, we explicitly excluded cases in which the
contribution of ChatGPT to a given development activity was unclear. Also, we used multiple
labels where ChatGPT was used for multiple purposes.

Threats to external validity concern the generalizabiity of our findings. Within the
construct validity threats stated above, the observed findings limit to open-source projects
hosted on GitHub only.

Therefore, our study needs to be complemented by other types of studies (e.g., interviews,
survey questionnaires, ethnographic studies) conducted in closed-source scenarios, such as
industrial environments. Moreover, we are only observing the first six months of ChatGPT
usage, and it is possible that its variety of use will largely increase in the future. Last, this
study is only limited to ChatGPT, and should be, in the future, extended to other general-
purpose chat bots that could be used in software development, e.g., including the recently-
released Google Bard [Goo23]. It is possible that some of them could adopt techniques to
circumvent limitations/risks we found for ChatGPT or, on the other hand, have limitations
that ChatGPT does not have, including the ability to access up-to-date content.

D.4 Conclusions and Future Work 239

D.4 Conclusions and Future Work

In this paper, we manually analyzed, through an open coding process, 1,501 commits, issues
and PRs from open source projects in which there was documented usage of ChatGPT for
the automation of software-related tasks. The goal was to categorize the type of support
ChatGPT provided. The result of this analysis is a taxonomy of 45 tasks (partially) auto-
mated via ChatGPT, which we discussed highlighting ChatGPT’s strengths and weaknesses
and distilling implications for practitioners and researchers. The latter, together with our
taxonomy, represent the main outcome of our study, and have been abstracted and summa-
rized in Table D.1 for easier reference. Our future work will focus on validating our findings
by (i) interviewing developers, and (ii) generalizing them to other general-purpose LLMs.

In addition, we plan to obtain evidence of the degree to which ChatGPT has proven bene-
ficial for developers in the context of software-related task. Achieving this, however, requires
the implementation of a meticulous study design with the explicit aim of mitigating biases
and addressing significant issues that may arise during the analysis. We deliberately opted
against undertaking this investigation by purely mining software repositories, as developers
may be less prone to report cases in which usage attempts of ChatGPT turned out to be a
failure.

240 Unveiling ChatGPT’s Usage in Open Source Projects: A Mining-based Study

Table D.1. Summary of implications for practitioners and researchers derived from our study

§ Insights for Practitioners

Contributions including AI-generated content

• Define guidelines for projects’ contributions including AI-generated code, e.g., a project may decide to only welcome
AI-generated code from users that are confident in assessing the correctness of the contributed code.

• Clear risk related to the ownership and understanding of code contributed via ChatGPT, especially when it is used
to contribute with a complete feature: The (human) contributor is not always able to explain or advocate for the
submitted code.

• As with any AI-based solution, the usage of ChatGPT for software-related tasks may result in artificial hallucination:
AI responses that look plausible to the user can be clearly wrong. The hard skills of developers remain essential in the
era of AI-assisted coding.

Automation possibilities offered by ChatGPT

ChatGPT can be leveraged to support very complex tasks, for which its usage has not been documented/experimented in
the literature. These include:

• Prototyping the complete first version of a project, providing a substantial jumpstart in software development.

• TDD collaboration, where the developer is mostly in charge of writing tests and delegating to LLM the code writing
task.

• Translating source code across different programming languages, thus improving code reusability.

• Release planning, suggesting ideas on how to improve a software project based on what was observed in the wild.

• Data generation, e.g., augmenting UI-related strings handling dialogs with the user.

• Debugging, from several different perspectives, including helping in locating the bug as well as in reproducing it.

Software-related tasks involving natural language

Due to its extensive training on natural language artifacts, ChatGPT is well-suited to support software-related tasks strongly
characterized by natural language, such as the generation of software documentation.

Risks related to sensible/private information

Some of the tasks automated via ChatGPT (e.g., code review) require to pass it sensible information, such as the code base
itself, which may not be acceptable in industrial environments. Practitioners must carefully consider the tradeoff of using
a publicly available LLM vs training a local LLM.

Unsuitability of ChatGPT for tasks dealing with recent technologies

ChatGPT may not be suitable for tasks requiring up-to-date technology appeared after its last retraining. LLMs leveraging
up-to-date knowledge available in the wild may obtain better results.

 Insights for Researchers

Implications for the design of empirical studies

• Empirical investigations studying OSS contributors may or may not consider representative developers that only sub-
mitted AI-generated code.

• ChatGPT must be considered as a baseline in works proposing novel recommenders for tasks where it was found to be
useful. However, as the dataset on which ChatGPT has been trained is not publicly available, it is hard to make a fair
comparison ensuring the lack of overlap between training and test set. A possible solution is to use recent data points
as test set, since those are unlikely to have been seen by the model behind ChatGPT.

Studying and enhancing AI-aided development processes

Practitioners are already leveraging ChatGPT for a variety of tasks. Nevertheless, it may be useful to (empirically) devise
AI-enabled development processes, with suitable guidelines. These include using ChatGPT (or similar tools):

• In TDD, with the developer being mostly in charge of writing tests and delegating to the LLM the production code.

• To support program comprehension, especially when newcomers onboard a project and must become familiar with its
code base.

• To generate tests.

• To automate code review.

Moreover, researchers should focus on approaches aimed at better integrating ChatGPT or similar tools in development
contexts where there is a need for:

• Understand, refactor, complete very specific code or other artifacts.

• Avoid exposing internal artifacts to the outside, e.g., using Retrieval Augmentation Generation or similar approaches.

• Repair ChatGPT-generated code and tests, or adapt them in own code base.

Questioning the suitability of existing recommenders for AI-generated code

The effectiveness of recommender systems for software engineers proposed in the literature (e.g., tools identifying and
fixing internationalization issues, APR techniques) may need to be reassessed on AI-generated code, since the latter may
have characteristics different from those of human-written code.

Bibliography

[ABBS14] Miltiadis Allamanis, Earl T. Barr, Christian Bird, and Charles Sutton. Learn-
ing natural coding conventions. In Proceedings of the 22Nd ACM SIGSOFT
International Symposium on Foundations of Software Engineering, FSE 2014,
pages 281–293, 2014.

[ABBS15] Miltiadis Allamanis, Earl T. Barr, Christian Bird, and Charles Sutton. Suggest-
ing accurate method and class names. In 10th Joint Meeting on Foundations
of Software Engineering, ESEC/FSE, pages 38–49, 2015.

[ABF+19] Naveen Arivazhagan, Ankur Bapna, Orhan Firat, Dmitry Lepikhin, Melvin
Johnson, Maxim Krikun, Mia Xu Chen, Yuan Cao, George F. Foster, Colin
Cherry, Wolfgang Macherey, Zhifeng Chen, and Yonghui Wu. Massively mul-
tilingual neural machine translation in the wild: Findings and challenges.
CoRR, abs/1907.05019, 2019.

[ABLL21] E. Aghajani, G. Bavota, M. Linares-Vásquez, and M. Lanza. Automated docu-
mentation of android apps. IEEE Transactions on Software Engineering, TSE,
47(1):204–220, 2021.

[ABLY18] Uri Alon, Shaked Brody, Omer Levy, and Eran Yahav. code2seq: Gener-
ating sequences from structured representations of code. arXiv preprint
arXiv:1808.01400, 2018.

[ACB+22] Eman Abdullah AlOmar, Ben Christians, Mihal Busho, Ahmed Hamad
AlKhalid, Ali Ouni, Christian Newman, and Mohamed Wiem Mkaouer.
Satdbailiff-mining and tracking self-admitted technical debt. Science of Com-
puter Programming, 213:102693, 2022.

[ACRC20] Wasi Uddin Ahmad, Saikat Chakraborty, Baishakhi Ray, and Kai-Wei Chang.
A transformer-based approach for source code summarization. arXiv preprint
arXiv:2005.00653, 2020.

[ACRC21] Wasi Uddin Ahmad, Saikat Chakraborty, Baishakhi Ray, and Kai-Wei Chang.
Unified pre-training for program understanding and generation. arXiv
preprint arXiv:2103.06333, 2021.

[AD22] Toufique Ahmed and Premkumar Devanbu. Few-shot training llms for
project-specific code-summarization. In Proceedings of the 37th IEEE/ACM
International Conference on Automated Software Engineering, pages 1–5,
2022.

241

242 Bibliography

[agi] Utilizing fast testing to transform java development into an agile, quick re-
lease, low risk process.

[Apa] Apache Software Foundation. Guide for new project contributors https:
//community.apache.org/contributors/. Accessed: 2023-07-08.

[APDB24] Toufique Ahmed, Kunal Suresh Pai, Premkumar Devanbu, and Earl T Barr.
Automatic semantic augmentation of language model prompts (for code
summarization). In 2024 IEEE/ACM 46th International Conference on Soft-
ware Engineering (ICSE), pages 1004–1004. IEEE Computer Society, 2024.

[APS16a] Miltiadis Allamanis, Hao Peng, and Charles Sutton. A convolutional atten-
tion network for extreme summarization of source code. In International
Conference on Machine Learning (ICML), 2016.

[APS16b] Miltiadis Allamanis, Hao Peng, and Charles A. Sutton. A convolutional
attention network for extreme summarization of source code. CoRR,
abs/1602.03001, 2016.

[ATA23] Saranya Alagarsamy, Chakkrit Tantithamthavorn, and Aldeida Aleti. A3test:
Assertion-augmented automated test case generation. arXiv preprint
arXiv:2302.10352, 2023.

[AZLY19] Uri Alon, Meital Zilberstein, Omer Levy, and Eran Yahav. code2vec: Learning
distributed representations of code. Proceedings of the ACM on Programming
Languages, 3(POPL):1–29, 2019.

[BAY20] Shaked Brody, Uri Alon, and Eran Yahav. Neural edit completion. arXiv
preprint arXiv:2005.13209, 2020.

[BCB14] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine
translation by jointly learning to align and translate. CoRR, abs/1409.0473,
2014.

[BCF+21] Maria Teresa Baldassarre, Danilo Caivano, Davide Fucci, Natalia Juristo,
Simone Romano, Giuseppe Scanniello, and Burak Turhan. Studying test-
driven development and its retainment over a six-month time span. J. Syst.
Softw., 176:110937, 2021.

[BCH+23] Carlos Bernal-Cárdenas, Nathan Cooper, Madeleine Havranek, Kevin Moran,
Oscar Chaparro, Denys Poshyvanyk, and Andrian Marcus. Translating video
recordings of complex mobile app UI gestures into replayable scenarios. IEEE
Trans. Software Eng., 49(4):1782–1803, 2023.

[BH95] Yoav Benjamini and Yosef Hochberg. Controlling the false discovery rate:
A practical and powerful approach to multiple testing. Journal of the Royal
Statistical Society. Series B (Methodological), 57(1), 1995.

https://community.apache.org/contributors/
https://community.apache.org/contributors/

Bibliography 243

[BHRV21] Berkay Berabi, Jingxuan He, Veselin Raychev, and Martin Vechev. Tfix:
Learning to fix coding errors with a text-to-text transformer. In International
Conference on Machine Learning, pages 780–791. PMLR, 2021.

[BKS18] Sahil Bhatia, Pushmeet Kohli, and Rishabh Singh. Neuro-symbolic program
corrector for introductory programming assignments. In Proceedings of the
40th International Conference on Software Engineering, pages 60–70, 2018.

[BL05] Satanjeev Banerjee and Alon Lavie. METEOR: An automatic metric for MT
evaluation with improved correlation with human judgments. In Proceedings
of the ACL Workshop on Intrinsic and Extrinsic Evaluation Measures for Ma-
chine Translation and/or Summarization, pages 65–72, Ann Arbor, Michigan,
June 2005. Association for Computational Linguistics.

[BLBV13] Nicolas Boulanger-Lewandowski, Yoshua Bengio, and Pascal Vincent. Audio
chord recognition with recurrent neural networks. In ISMIR, pages 335–340.
Citeseer, 2013.

[Bli] Double Blind. https://snippets-summarization.github.io.

[BMM09] Marcel Bruch, Martin Monperrus, and Mira Mezini. from examples to im-
prove code completion systems. In Proceedings of the 7th Joint Meeting of
the European Software Engineering Conference and the ACM SIGSOFT Sym-
posium on The Foundations of Software Engineering, ESEC/FSE 2009, pages
213–222, 2009.

[BR16] Gabriele Bavota and Barbara Russo. A large-scale empirical study on self-
admitted technical debt. In Proceedings of the 13th International Conference
on Mining Software Repositories, MSR 2016, Austin, TX, USA, May 14-22,
2016, pages 315–326, 2016.

[bso] https://www.crummy.com/software/BeautifulSoup/.

[BSPC19] Johannes Bader, Andrew Scott, Michael Pradel, and Satish Chandra.
Getafix: learning to fix bugs automatically. Proc. ACM Program. Lang.,
3(OOPSLA):159:1–159:27, 2019.

[BVLR17] David Bingham Brown, Michael Vaughn, Ben Liblit, and Thomas Reps. The
care and feeding of wild-caught mutants. In Proceedings of the 2017 11th
Joint Meeting on Foundations of Software Engineering, ESEC/FSE 2017, pages
511–522, New York, NY, USA, 2017. ACM.

[Cam18] G Ann Campbell. Cognitive complexity: An overview and evaluation. In
Proceedings of the 2018 international conference on technical debt, pages 57–
58, 2018.

[Car82] Breck Carter. On choosing identifiers. ACM Sigplan Notices, 17(5):54–59,
1982.

https://snippets-summarization.github.io
https://www.crummy.com/software/BeautifulSoup/

244 Bibliography

[ccn] Cc-news dataset. https://commoncrawl.org/2016/10/
news-dataset-available/.

[CCP+21] Matteo Ciniselli, Nathan Cooper, Luca Pascarella, Antonio Mastropaolo,
Emad Aghajani, Denys Poshyvanyk, Massimiliano Di Penta, and Gabriele
Bavota. An empirical study on the usage of transformer models for code
completion. IEEE Transactions on Software Engineering, 2021.

[ccs] Stories dataset. https://github.com/tensorflow/models/tree/
archive/research/lm_commonsense#1-download-data-files.

[CDM13] Michael L Collard, Michael John Decker, and Jonathan I Maletic. srcml:
An infrastructure for the exploration, analysis, and manipulation of source
code: A tool demonstration. In 2013 IEEE International Conference on Soft-
ware Maintenance, pages 516–519. IEEE, 2013.

[CGM+13] Antonio Carzaniga, Alessandra Gorla, Andrea Mattavelli, Nicolò Perino, and
Mauro Pezzè. Automatic recovery from runtime failures. In Proceedings of
the 2013 International Conference on Software Engineering, ICSE ’13, pages
782–791, Piscataway, NJ, USA, 2013. IEEE Press.

[cha] Chatgpt https://openai.com/blog/chatgpt.

[CHAvD21] Jeanderson Cândido, Jan Haesen, Maurício Aniche, and Arie van Deursen.
An exploratory study of log placement recommendation in an enterprise sys-
tem. IEEE/ACM 18th International Conference on Mining Software Reposito-
ries (MSR), 2021.

[CHC+23] Eason Chen, Ray Huang, Han-Shin Chen, Yuen-Hsien Tseng, and Liang-Yi
Li. Gptutor: a chatgpt-powered programming tool for code explanation. In
International Conference on Artificial Intelligence in Education, pages 321–
327. Springer, 2023.

[Che15] L. Chen. Continuous delivery: Huge benefits, but challenges too. IEEE Soft-
ware, 32(2):50–54, 2015.

[Che17] Lianping Chen. Continuous delivery: Overcoming adoption challenges.
Journal of Systems and Software, 128:72 – 86, 2017.

[CHL05] Sumit Chopra, Raia Hadsell, and Yann LeCun. Learning a similarity metric
discriminatively, with application to face verification. In 2005 IEEE computer
society conference on computer vision and pattern recognition (CVPR’05), vol-
ume 1, pages 539–546. IEEE, 2005.

[CHL+19a] Huanchao Chen, Yuan Huang, Zhiyong Liu, Xiangping Chen, Fan Zhou, and
Xiaonan Luo. Automatically detecting the scopes of source code comments.
Journal of Systems and Software, 153:45–63, 2019.

https://commoncrawl.org/2016/10/news-dataset-available/
https://commoncrawl.org/2016/10/news-dataset-available/
https://github.com/tensorflow/models/tree/archive/research/lm_commonsense#1-download-data-files
https://github.com/tensorflow/models/tree/archive/research/lm_commonsense#1-download-data-files
https://openai.com/blog/chatgpt

Bibliography 245

[CHL+19b] Huanchao Chen, Yuan Huang, Zhiyong Liu, Xiangping Chen, Fan Zhou, and
Xiaonan Luo. Automatically detecting the scopes of source code comments.
Journal of Systems and Software, JSS, 153:45–63, 2019.

[CJ17] Boyuan Chen and Zhen Ming Jack Jiang. Characterizing logging practices
in java-based open source software projects–a replication study in apache
software foundation. Empirical Software Engineering, 22(1):330–374, 2017.

[CKM22] Zimin Chen, Steve Kommrusch, and Martin Monperrus. Neural transfer
learning for repairing security vulnerabilities in c code. IEEE Transactions
on Software Engineering, 49(1):147–165, 2022.

[CKS+17] Alexis Conneau, Douwe Kiela, Holger Schwenk, Loic Barrault, and Antoine
Bordes. Supervised learning of universal sentence representations from nat-
ural language inference data. arXiv preprint arXiv:1705.02364, 2017.

[CKT+19] Zimin Chen, Steve Kommrusch, Michele Tufano, Louis-Noël Pouchet, Denys
Poshyvanyk, and Martin Monperrus. Sequencer: Sequence-to-sequence
learning for end-to-end program repair. IEEE Transactions on Software Engi-
neering, 2019.

[CL20] Isaac Caswell and Bowen Liang. Recent advances in
google translate. https://ai.googleblog.com/2020/06/
recent-advances-in-google-translate.html, 2020.

[CLN+23] Andrew A Chien, Liuzixuan Lin, Hai Nguyen, Varsha Rao, Tristan Sharma,
and Rajini Wijayawardana. Reducing the carbon impact of generative ai
inference (today and in 2035). In Proceedings of the 2nd Workshop on Sus-
tainable Computer Systems, pages 1–7, 2023.

[CMM21] Joymallya Chakraborty, Suvodeep Majumder, and Tim Menzies. Bias in ma-
chine learning software: why? how? what to do? In ESEC/FSE ’21: 29th
ACM Joint European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, pages 429–440. ACM, 2021.

[CMYM20] Joymallya Chakraborty, Suvodeep Majumder, Zhe Yu, and Tim Menzies. Fair-
way: a way to build fair ML software. In ESEC/FSE ’20: 28th ACM Joint Eu-
ropean Software Engineering Conference and Symposium on the Foundations
of Software Engineering, pages 654–665. ACM, 2020.

[cod] https://github.com/jdkato/codetype.

[Coh60] Jacob Cohen. A coefficient of agreement for nominal scales. Educational and
psychological measurement, 20(1):37–46, 1960.

[com23a] https://github.com/1j01/textual-paint/commit/e9494ddf, 2023.

[com23b] https://github.com/fluxninja/aperture/commit/70a68635, 2023.

https://ai.googleblog.com/2020/06/recent-advances-in-google-translate.html
https://ai.googleblog.com/2020/06/recent-advances-in-google-translate.html
https://github.com/jdkato/codetype
https://github.com/1j01/textual-paint/commit/e9494ddf
https://github.com/fluxninja/aperture/commit/70a68635

246 Bibliography

[com23c] https://github.com/pbui/bobbit/commit/089fc145, 2023.

[com23d] https://github.com/dodona-edu/dodona/commit/9efb97f8, 2023.

[com23e] https://github.com/reorx/jsoncv/commit/1d5f8f1d, 2023.

[com23f] https://github.com/spotlightpa/almanack/commit/955fc76b, 2023.

[Con98] W. J. Conover. Practical Nonparametric Statistics. Wiley, 3rd edition edition,
1998.

[cop] Github copilot https://copilot.github.com.

[CPG20] A. Ciurumelea, S. Proksch, and H. C. Gall. Suggesting comment completions
for python using neural language models. In 2020 IEEE 27th International
Conference on Software Analysis, Evolution and Reengineering (SANER), pages
456–467, 2020.

[CR22] Heike Wehrheim Cedric Richter. Tssb-3m: Mining single statement bugs at
massive scale. In MSR, 2022.

[CSH+19] Jinfu Chen, Weiyi Shang, Ahmed E Hassan, Yong Wang, and Jiangbin Lin.
An experience report of generating load tests using log-recovered workloads
at varying granularities of user behaviour. In 2019 34th IEEE/ACM Interna-
tional Conference on Automated Software Engineering (ASE), pages 669–681.
IEEE, 2019.

[CSPG17] Adelina Ciurumelea, Andreas Schaufelbühl, Sebastiano Panichella, and Har-
ald C. Gall. Analyzing reviews and code of mobile apps for better release
planning. In IEEE 24th International Conference on Software Analysis, Evolu-
tion and Reengineering, SANER, pages 91–102. IEEE Computer Society, 2017.

[CSX+18] Boyuan Chen, Jian Song, Peng Xu, Xing Hu, and Zhen Ming Jiang. An auto-
mated approach to estimating code coverage measures via execution logs.
In Proceedings of the 33rd ACM/IEEE International Conference on Automated
Software Engineering, pages 305–316, 2018.

[CTJ+21] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde
de Oliveira Pinto, Jared Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph,
Greg Brockman, et al. Evaluating large language models trained on code.
arXiv preprint arXiv:2107.03374, 2021.

[Cug] CugLM Model. https://github.com/LiuFang816/CugLM.

[Cun92] Ward Cunningham. The wycash portfolio management system. In Addendum
to the Proceedings on Object-Oriented Programming Systems, Languages, and
Applications, OOPSLA 1992 Addendum, Vancouver, British Columbia, Canada,
October 18-22, 1992, pages 29–30. ACM, 1992.

https://github.com/pbui/bobbit/commit/089fc145
https://github.com/dodona-edu/dodona/commit/9efb97f8
https://github.com/reorx/jsoncv/commit/1d5f8f1d
https://github.com/spotlightpa/almanack/commit/955fc76b
https://copilot.github.com
https://github.com/LiuFang816/CugLM

Bibliography 247

[CYK+18] Daniel Cer, Yinfei Yang, Sheng-yi Kong, Nan Hua, Nicole Limtiaco, Rhomni St
John, Noah Constant, Mario Guajardo-Cespedes, Steve Yuan, Chris Tar, et al.
Universal sentence encoder. arXiv preprint arXiv:1803.11175, 2018.

[CZN+22] Nathan Cassee, Fiorella Zampetti, Nicole Novielli, Alexander Serebrenik,
and Massimiliano Di Penta. Self-admitted technical debt and comments’
polarity: an empirical study. Empir. Softw. Eng., 27(6):139, 2022.

[CZVO11] Shauvik Roy Choudhary, Dan Zhao, Husayn Versee, and Alessandro Orso.
Water: Web application test repair. In Proceedings of the First International
Workshop on End-to-End Test Script Engineering, ETSE ’11, page 24–29. As-
sociation for Computing Machinery, 2011.

[DAB21] Ozren Dabic, Emad Aghajani, and Gabriele Bavota. Sampling projects in
github for msr studies. In 2021 IEEE/ACM 18th International Conference on
Mining Software Repositories (MSR), pages 560–564. IEEE, 2021.

[dat] https://github.com/akoumjian/datefinder.

[DB23] Marian Daun and Jennifer Brings. How chatgpt will change software engi-
neering education. In Proceedings of the 2023 Conference on Innovation and
Technology in Computer Science Education V. 1, pages 110–116, 2023.

[DCLT19] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT:
pre-training of deep bidirectional transformers for language understanding.
In Conference of the North American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies, NAACL-HLT, pages 4171–
4186, 2019.

[Dev] DEVINTA, an artificial assistant for software developers. http://devinta.
si.usi.ch/.

[DGM10] Brett Daniel, Tihomir Gvero, and Darko Marinov. On test repair using sym-
bolic execution. In Proceedings of the 19th International Symposium on Soft-
ware Testing and Analysis, ISSTA ’10, page 207–218. Association for Com-
puting Machinery, 2010.

[DLD+22] Qingxiu Dong, Lei Li, Damai Dai, Ce Zheng, Zhiyong Wu, Baobao Chang,
Xu Sun, Jingjing Xu, and Zhifang Sui. A survey on in-context learning. arXiv
preprint arXiv:2301.00234, 2022.

[DLS22] Zishuo Ding, Heng Li, and Weiyi Shang. Logentext: automatically generat-
ing logging texts using neural machine translation. SANER. IEEE, 2022.

[DLZ+22] Jinhao Dong, Yiling Lou, Qihao Zhu, Zeyu Sun, Zhilin Li, Wenjie Zhang, and
Dan Hao. FIRA: fine-grained graph-based code change representation for au-
tomated commit message generation. In Proceedings of the 44th International

https://github.com/akoumjian/datefinder
http://devinta.si.usi.ch/
http://devinta.si.usi.ch/

248 Bibliography

Conference on Software Engineering, ICSE ’22, page 970–981. Association for
Computing Machinery, 2022.

[DLZS17] Min Du, Feifei Li, Guineng Zheng, and Vivek Srikumar. Deeplog: Anomaly
detection and diagnosis from system logs through deep learning. In Proceed-
ings of the 2017 ACM SIGSAC Conference on Computer and Communications
Security, pages 1285–1298, 2017.

[DMMG22] Alexandre Decan, Tom Mens, Pooya Rostami Mazrae, and Mehdi Golzadeh.
On the use of github actions in software development repositories. In 2022
IEEE International Conference on Software Maintenance and Evolution (IC-
SME), pages 235–245. IEEE, 2022.

[DP22] Renzo Degiovanni and Mike Papadakis. µbert: Mutation testing using pre-
trained language models. In 2022 IEEE International Conference on Soft-
ware Testing, Verification and Validation Workshops (ICSTW), pages 160–169.
IEEE, 2022.

[DRML22] Elizabeth Dinella, Gabriel Ryan, Todd Mytkowicz, and Shuvendu K Lahiri.
Toga: A neural method for test oracle generation. In Proceedings of the 44th
International Conference on Software Engineering, pages 2130–2141, 2022.

[dSAdO05] Sergio Cozzetti B. de Souza, Nicolas Anquetil, and Káthia M. de Oliveira. A
study of the documentation essential to software maintenance. In Interna-
tional Conference on Design of Communication, pages 68–75, 2005.

[dSMASS17] Everton da S. Maldonado, Rabe Abdalkareem, Emad Shihab, and Alexan-
der Serebrenik. An empirical study on the removal of self-admitted tech-
nical debt. In 2017 IEEE International Conference on Software Maintenance
and Evolution, ICSME 2017, Shanghai, China, September 17-22, 2017, pages
238–248, 2017.

[dSMST17] Everton da S. Maldonado, Emad Shihab, and Nikolaos Tsantalis. Using natu-
ral language processing to automatically detect self-admitted technical debt.
IEEE Trans. Software Eng., 43(11):1044–1062, 2017.

[DTC+23] Zishuo Ding, Yiming Tang, Xiaoyu Cheng, Heng Li, and Weiyi Shang.
Logentext-plus: Improving neural machine translation based logging texts
generation with syntactic templates. ACM Transactions on Software Engineer-
ing and Methodology, 33(2):1–45, 2023.

[dV23] Alex de Vries. The growing energy footprint of artificial intelligence. Joule,
7(10):2191–2194, 2023.

[EB22] Neil A. Ernst and Gabriele Bavota. Ai-driven development is here: Should
you worry? IEEE Softw., 39(2):106–110, 2022.

Bibliography 249

[Ecl] Eclipse Foundation. Platform/how to contribute https://wiki.eclipse.
org/Platform/How_to_Contribute. Accessed: 2023-07-08.

[EGOK+23] Tiago Espinha Gasiba, Kaan Oguzhan, Ibrahim Kessba, Ulrike Lechner, and
Maria Pinto-Albuquerque. I’m sorry dave, i’m afraid i can’t fix your code:
On chatgpt, cybersecurity, and secure coding. In 4th International Computer
Programming Education Conference (ICPEC 2023). Schloss-Dagstuhl-Leibniz
Zentrum für Informatik, 2023.

[EP22] Aryaz Eghbali and Michael Pradel. Crystalbleu: precisely and efficiently
measuring the similarity of code. In 37th IEEE/ACM International Conference
on Automated Software Engineering, pages 1–12, 2022.

[EVORDO+20] Camilo Escobar-Velásquez, Michael Osorio-Riaño, Juan Dominguez-Osorio,
Maria Arevalo, and Mario Linares-Vásquez. An empirical study of i18n col-
lateral changes and bugs in guis of android apps. In 2020 IEEE International
Conference on Software Maintenance and Evolution (ICSME), pages 581–592,
2020.

[FA11] Gordon Fraser and Andrea Arcuri. EvoSuite: Automatic Test Suite Genera-
tion for Object-oriented Software. In Proceedings of the 19th ACM SIGSOFT
Symposium and the 13th European Conference on Foundations of Software
Engineering, ESEC/FSE ’11, pages 416–419. ACM, 2011.

[FAO17] Markus Freitag and Yaser Al-Onaizan. Beam search strategies for neural
machine translation. arXiv preprint arXiv:1702.01806, 2017.

[FCG+24] Guodong Fan, Shizhan Chen, Cuiyun Gao, Jianmao Xiao, Tao Zhang, and
Zhiyong Feng. Rapid: Zero-shot domain adaptation for code search with pre-
trained models. ACM Transactions on Software Engineering and Methodology,
2024.

[FCZ+21] Gianmarco Fucci, Nathan Cassee, Fiorella Zampetti, Nicole Novielli, Alexan-
der Serebrenik, and Massimiliano Di Penta. Waiting around or job half-done?
sentiment in self-admitted technical debt. In 18th IEEE/ACM International
Conference on Mining Software Repositories, MSR 2021, Madrid, Spain, May
17-19, 2021, pages 403–414, 2021.

[FET+17] Davide Fucci, Hakan Erdogmus, Burak Turhan, Markku Oivo, and Natalia
Juristo. A dissection of the test-driven development process: Does it really
matter to test-first or to test-last? IEEE Trans. Software Eng., 43(7):597–614,
2017.

[FGM+23] Zhiyu Fan, Xiang Gao, Martin Mirchev, Abhik Roychoudhury, and Shin Hwei
Tan. Automated repair of programs from large language models. In 2023
IEEE/ACM 45th International Conference on Software Engineering (ICSE),
pages 1469–1481. IEEE, 2023.

https://wiki.eclipse.org/Platform/How_to_Contribute
https://wiki.eclipse.org/Platform/How_to_Contribute

250 Bibliography

[FGT+20] Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng Feng, Ming
Gong, Linjun Shou, Bing Qin, Ting Liu, Daxin Jiang, et al. Codebert: A
pre-trained model for programming and natural languages. arXiv preprint
arXiv:2002.08155, 2020.

[FMB+14] Jean-Rémy Falleri, Floréal Morandat, Xavier Blanc, Matias Martinez, and
Martin Monperrus. Fine-grained and accurate source code differencing. In
Proceedings of the International Conference on Automated Software Engineer-
ing, pages 313–324, 2014.

[FMB+23] Mattia Fazzini, Kevin Moran, Carlos Bernal-Cárdenas, Tyler Wendland,
Alessandro Orso, and Denys Poshyvanyk. Enhancing mobile app bug report-
ing via real-time understanding of reproduction steps. IEEE Trans. Software
Eng., 49(3):1246–1272, 2023.

[FTL+22a] Michael Fu, Chakkrit Tantithamthavorn, Trung Le, Van Nguyen, and Dinh
Phung. Vulrepair: a t5-based automated software vulnerability repair. In
Proceedings of the 30th ACM Joint European Software Engineering Conference
and Symposium on the Foundations of Software Engineering, pages 935–947,
2022.

[FTL+22b] Michael Fu, Chakkrit Tantithamthavorn, Trung Le, Van Nguyen, and Dinh Q.
Phung. Vulrepair: a T5-based automated software vulnerability repair. In
Proceedings of the 30th ACM Joint European Software Engineering Conference
and Symposium on the Foundations of Software Engineering, ESEC/FSE 2022,
Singapore, Singapore, November 14-18, 2022, pages 935–947. ACM, 2022.

[FWG07] Beat Fluri, Michael Wursch, and Harald C Gall. Do code and comments
co-evolve? on the relation between source code and comment changes. In
14th Working Conference on Reverse Engineering (WCRE 2007), pages 70–79.
IEEE, 2007.

[FWGG09] Beat Fluri, Michael Würsch, Emanuel Giger, and Harald C. Gall. Analyzing
the co-evolution of comments and source code. Software Quality Journal,
17(4):367–394, 2009.

[FZH+14] Qiang Fu, Jieming Zhu, Wenlu Hu, Jian-Guang Lou, Rui Ding, Qingwei Lin,
Dongmei Zhang, and Tao Xie. Where do developers log? an empirical study
on logging practices in industry. In Companion Proceedings of the 36th Inter-
national Conference on Software Engineering, pages 24–33, 2014.

[FZT+22] Sen Fang, Tao Zhang, You-Shuai Tan, Zhou Xu, Zhi-Xin Yuan, and Ling-Ze
Meng. Prhan: Automated pull request description generation based on hy-
brid attention network. Journal of Systems and Software, 185:111160, 2022.

[Gag94] Philip Gage. A new algorithm for data compression. C Users J., 12(2):23?38,
1994.

Bibliography 251

[GBMZ13] Yvette Graham, Timothy Baldwin, Alistair Moffat, and Justin Zobel. Con-
tinuous measurement scales in human evaluation of machine translation.
In Proceedings of the 7th Linguistic Annotation Workshop and Interoperability
with Discourse, pages 33–41, 2013.

[GC19] Aaron Gokaslan and Vanya Cohen. Openwebtext corpus. http://
Skylion007.github.io/OpenWebTextCorpus, 2019.

[GDM+23a] Aayush Garg, Renzo Degiovanni, Facundo Molina, Maxime Cordy, Nazareno
Aguirre, Mike Papadakis, and Yves Le Traon. Enabling efficient assertion
inference. In 2023 IEEE 34th International Symposium on Software Reliability
Engineering (ISSRE), pages 623–634. IEEE, 2023.

[GDM+23b] Aayush Garg, Renzo Degiovanni, Facundo Molina, Mike Papadakis,
Nazareno Aguirre, Maxime Cordy, and Yves Le Traon. Assertion inferring
mutants. arXiv preprint arXiv:2301.12284, 2023.

[GDX+21] Haifeng Gao, Bin Dong, Yongwei Zhangand Tianxiong Xiao, Shanshan Jiang,
and Yuan Dong. An efficient method of supervised contrastive learning for
natural language understanding. In 7th International Conference on Com-
puter and Communications (ICCC), pages 1698–1704, 2021.

[ger] Gerrit.

[GGH+23] Shuzheng Gao, Cuiyun Gao, Yulan He, Jichuan Zeng, Lunyiu Nie, Xin Xia,
and Michael Lyu. Code structure–guided transformer for source code sum-
marization. ACM Transactions on Software Engineering and Methodology,
32(1):1–32, 2023.

[GHLH21] Yuxian Gu, Xu Han, Zhiyuan Liu, and Minlie Huang. Ppt: Pre-trained prompt
tuning for few-shot learning. arXiv preprint arXiv:2109.04332, 2021.

[GHS] SEART github search. https://seart-ghs.si.usi.ch.

[gita] GitHub workflows. Last accessed Feb 16, 2023.

[Gitb] Github website. https://www.github.com/.

[GJL+16] Nentawe Gurumdimma, Arshad Jhumka, Maria Liakata, Edward Chuah, and
James Browne. Crude: Combining resource usage data and error logs for
accurate error detection in large-scale distributed systems. In 2016 IEEE
35th Symposium on Reliable Distributed Systems (SRDS), pages 51–60. IEEE,
2016.

[GK05] Robert J Grissom and John J Kim. Effect sizes for research: A broad practical
approach. Lawrence Erlbaum Associates Publishers, 2005.

[Gol17] Yoav Goldberg. Neural network methods in natural language processing. Mor-
gan & Claypool Publishers, 2017.

http://Skylion007.github.io/OpenWebTextCorpus
http://Skylion007.github.io/OpenWebTextCorpus
https://seart-ghs.si.usi.ch
https://www.github.com/

252 Bibliography

[Goo23] Inc. Google. Try Bard, an AI expertiment by Google https://bard.google.
com, 2023.

[GPKS17] Rahul Gupta, Soham Pal, Aditya Kanade, and Shirish Shevade. Deepfix:
Fixing common c language errors by deep learning. In Proceedings of the
aaai conference on artificial intelligence, volume 31, 2017.

[Gra12] Alex Graves. Sequence transduction with recurrent neural networks. CoRR,
abs/1211.3711, 2012.

[GRL+21] Daya Guo, Shuo Ren, Shuai Lu, Zhangyin Feng, Duyu Tang, Shujie Liu,
Long Zhou, Nan Duan, Alexey Svyatkovskiy, Shengyu Fu, Michele Tufano,
Shao Kun Deng, Colin B. Clement, Dawn Drain, Neel Sundaresan, Jian Yin,
Daxin Jiang, and Ming Zhou. Graphcodebert: Pre-training code representa-
tions with data flow. In 9th International Conference on Learning Representa-
tions, ICLR 2021, 2021.

[GS10] Mark Gabel and Zhendong Su. A study of the uniqueness of source code.
In Proceedings of the Eighteenth ACM SIGSOFT International Symposium on
Foundations of Software Engineering, FSE ’10, pages 147–156, New York, NY,
USA, 2010. ACM.

[GSDY21] David Gros, Hariharan Sezhiyan, Prem Devanbu, and Zhou Yu. Code to
comment “translation”: Data, metrics, baselining & evaluation. In Proceed-
ings of the 35th IEEE/ACM International Conference on Automated Software
Engineering, page 746–757, 2021.

[GWD+21] Xiang Gao, Bo Wang, Gregory J. Duck, Ruyi Ji, Yingfei Xiong, and Abhik Roy-
choudhury. Beyond tests: Program vulnerability repair via crash constraint
extraction. ACM Trans. Softw. Eng. Methodol., 30(2), 2021.

[HAMM10] S. Haiduc, J. Aponte, L. Moreno, and A. Marcus. On the use of automated
text summarization techniques for summarizing source code. In 2010 17th
Working Conference on Reverse Engineering, pages 35–44, 2010.

[Han04] John M Hancock. Jaccard distance (jaccard index, jaccard similarity coeffi-
cient). Dictionary of Bioinformatics and Computational Biology, 2004.

[HCL06] Raia Hadsell, Sumit Chopra, and Yann LeCun. Dimensionality reduction by
learning an invariant mapping. In 2006 IEEE Computer Society Conference
on Computer Vision and Pattern Recognition (CVPR, pages 1735–1742, 2006.

[HCW+22] Xing Hu, Qiuyuan Chen, Haoye Wang, Xin Xia, David Lo, and Thomas Zim-
mermann. Correlating automated and human evaluation of code documen-
tation generation quality. 31(4), 2022.

https://bard.google.com
https://bard.google.com

Bibliography 253

[HD17] Vincent J. Hellendoorn and Premkumar Devanbu. Are deep neural networks
the best choice for modeling source code? In Proceedings of the 2017 11th
Joint Meeting on Foundations of Software Engineering, ESEC/FSE 2017, page
763?773, 2017.

[HEBM22] Sakib Haque, Zachary Eberhart, Aakash Bansal, and Collin McMillan. Se-
mantic similarity metrics for evaluating source code summarization. In Pro-
ceedings of the 30th IEEE/ACM International Conference on Program Compre-
hension, ICPC ’22, page 36–47, 2022.

[HHC+20] Yuan Huang, Shaohao Huang, Huanchao Chen, Xiangping Chen, Zibin
Zheng, Xiapu Luo, Nan Jia, Xinyu Hu, and Xiaocong Zhou. Towards au-
tomatically generating block comments for code snippets. Information and
Software Technology, 127:106373, 2020.

[HHH+23] Hossein Hajipour, Keno Hassler, Thorsten Holz, Lea Schönherr, and Mario
Fritz. Codelmsec benchmark: Systematically evaluating and finding se-
curity vulnerabilities in black-box code language models. arXiv preprint
arXiv:2302.04012, 2023.

[HLWM20] Sakib Haque, Alexander LeClair, Lingfei Wu, and Collin McMillan. Improved
automatic summarization of subroutines via attention to file context. In MSR
’20: 17th International Conference on Mining Software Repositories, 2020,
pages 300–310. ACM, 2020.

[HLX+17] Z. Han, X. Li, Z. Xing, H. Liu, and Z. Feng. Learning to predict severity of
software vulnerability using only vulnerability description. In 33th IEEE In-
ternational Conference on Software Maintenance and Evolution ICSME, pages
125–136, 2017.

[HLX+18a] Xing Hu, Ge Li, Xin Xia, David Lo, and Zhi Jin. Deep code comment genera-
tion. In Proceedings of the 26th Conference on Program Comprehension, ICPC
?18, page 200?210. Association for Computing Machinery, 2018.

[HLX+18b] Xing Hu, Ge Li, Xin Xia, David Lo, Shuai Lu, and Zhi Jin. Summarizing
source code with transferred api knowledge. 2018.

[HLX+20a] Xing Hu, Ge Li, Xin Xia, David Lo, and Zhi Jin. Deep code comment gen-
eration with hybrid lexical and syntactical information. Empirical Software
Engineering, 25:2179–2217, 2020.

[HLX+20b] Xing Hu, Ge Li, Xin Xia, David Lo, and Zhi Jin. Deep code comment gen-
eration with hybrid lexical and syntactical information. Springer Empirical
Software Engineering, 25:2179–2217, 2020.

[HNT+17] Michael Hilton, Nicholas Nelson, Timothy Tunnell, Darko Marinov, and
Danny Dig. Trade-offs in continuous integration: Assurance, security, and

254 Bibliography

flexibility. In Proceedings of the 25th ACM SIGSOFT International Symposium
on Foundations of Software Engineering, FSE 2017, 2017.

[Hol79] Sture Holm. A simple sequentially rejective multiple test procedure. Scan-
dinavian journal of statistics, pages 65–70, 1979.

[HPGB19] Vincent J. Hellendoorn, Sebastian Proksch, Harald C. Gall, and Alberto Bac-
chelli. When code completion fails: a case study on real-world completions.
In Proceedings of the 41st International Conference on Software Engineering,
ICSE 2019, Montreal, QC, Canada, May 25-31, 2019, pages 960–970, 2019.

[HR18] Jeremy Howard and Sebastian Ruder. Universal language model fine-tuning
for text classification. arXiv preprint arXiv:1801.06146, 2018.

[HRC19] Jacob Harer, Christopher P. Reale, and Peter Chin. Tree-transformer: A
transformer-based method for correction of tree-structured data. CoRR,
abs/1908.00449, 2019.

[HS97] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural
computation, 9(8):1735–1780, 1997.

[HSN18] Hideaki Hata, Emad Shihab, and Graham Neubig. Learning to generate cor-
rective patches using neural machine translation. CoRR, abs/1812.07170,
2018.

[HTZ+21] Junjie Huang, Duyu Tang, Wanjun Zhong, Shuai Lu, Linjun Shou, Ming
Gong, Daxin Jiang, and Nan Duan. Whiteningbert: An easy unsupervised
sentence embedding approach. In Findings of the Association for Computa-
tional Linguistics: EMNLP, pages 238–244, 2021.

[Hub92] Peter J Huber. Robust estimation of a location parameter. In Breakthroughs
in statistics: Methodology and distribution, pages 492–518, 1992.

[HvH20] Wilhelm Hasselbring and André van Hoorn. Kieker: A monitoring frame-
work for software engineering research. Software Impacts, 5:100019, 2020.

[HwcfCDmo20] Frank E Harrell Jr, with contributions from Charles Dupont, and many oth-
ers. Hmisc: Harrell Miscellaneous, 2020. R package version 4.3-1.

[HWG+19] Hamel Husain, Ho-Hsiang Wu, Tiferet Gazit, Miltiadis Allamanis, and Marc
Brockschmidt. Codesearchnet challenge: Evaluating the state of semantic
code search. CoRR, abs/1909.09436, 2019.

[HYS+22] Kai Huang, Su Yang, Hongyu Sun, Chengyi Sun, Xuejun Li, and Yuqing
Zhang. Repairing security vulnerabilities using pre-trained programming
language models. In 2022 52nd Annual IEEE/IFIP International Conference
on Dependable Systems and Networks Workshops (DSN-W), pages 111–116.
IEEE, 2022.

Bibliography 255

[HZD+22] Xu Han, Weilin Zhao, Ning Ding, Zhiyuan Liu, and Maosong Sun. Ptr:
Prompt tuning with rules for text classification. AI Open, 3:182–192, 2022.

[HZW+21] Julian Harty, Haonan Zhang, Lili Wei, Luca Pascarella, Mauricio Aniche, and
Weiyi Shang. Logging practices with mobile analytics: An empirical study
on firebase. Proceedings of the 2021 8th International Conference on Mobile
Software Engineering and Systems (MOBILESoft-2021), 2021.

[ICRJ23] Ali Reza Ibrahimzada, Yang Chen, Ryan Rong, and Reyhaneh Jabbarvand.
Automated bug generation in the era of large language models, 2023.

[IKCZ16] Srinivasan Iyer, Ioannis Konstas, Alvin Cheung, and Luke Zettlemoyer. Sum-
marizing source code using a neural attention model. In Proceedings of the
54th Annual Meeting of the Association for Computational Linguistics (Volume
1: Long Papers), pages 2073–2083, Berlin, Germany, August 2016. Associa-
tion for Computational Linguistics.

[ILN+23] Cristina Improta, Pietro Liguori, Roberto Natella, Bojan Cukic, and
Domenico Cotroneo. Enhancing robustness of ai offensive code generators
via data augmentation. arXiv preprint arXiv:2306.05079, 2023.

[Ima22] Saki Imai. Is github copilot a substitute for human pair-programming? an
empirical study. In 2022 IEEE/ACM 44th International Conference on Soft-
ware Engineering: Companion Proceedings (ICSE-Companion), pages 319–
321. IEEE, 2022.

[iss23a] https://github.com/danielgross/whatsapp-gpt/issues/68, 2023.

[iss23b] https://github.com/dogsheep/apple-notes-to-sqlite/issues/1,
2023.

[iss23c] https://github.com/pfusik/cito/issues/80, 2023.

[iss23d] https://github.com/go-go-golems/glazed/issues/50, 2023.

[iss23e] https://github.com/talent-connect/connect/issues/658, 2023.

[iss23f] https://github.com/gofiber/fiber/issues/2301, 2023.

[iss23g] https://github.com/libp2p/js-libp2p/issues/1648, 2023.

[iss23h] https://github.com/pizzaboxer/bloxstrap/issues/224, 2023.

[iss23i] https://github.com/spring-cloud/spring-cloud-stream/issues/
2643, 2023.

[iss23j] https://github.com/shaka-project/shaka-player/issues/5015, 2023.

[iss23k] https://github.com/module-federation/module-federation-examples/
issues/2942, 2023.

https://github.com/danielgross/whatsapp-gpt/issues/68
https://github.com/dogsheep/apple-notes-to-sqlite/issues/1
https://github.com/pfusik/cito/issues/80
https://github.com/go-go-golems/glazed/issues/50
https://github.com/talent-connect/connect/issues/658
https://github.com/gofiber/fiber/issues/2301
https://github.com/libp2p/js-libp2p/issues/1648
https://github.com/pizzaboxer/bloxstrap/issues/224
https://github.com/spring-cloud/spring-cloud-stream/issues/2643
https://github.com/spring-cloud/spring-cloud-stream/issues/2643
https://github.com/shaka-project/shaka-player/issues/5015
https://github.com/module-federation/module-federation-examples/issues/2942
https://github.com/module-federation/module-federation-examples/issues/2942

256 Bibliography

[iss23l] https://github.com/prosyslab-classroom/
cs348-information-security/issues/365, 2023.

[iss23m] https://github.com/sirupsen/napkin-math/issues/26, 2023.

[iss23n] https://github.com/kohya-ss/sd-webui-additional-networks/
issues/43, 2023.

[iss23o] https://github.com/rootzoll/raspiblitz/issues/3640, 2023.

[iss23p] https://github.com/puppeteer/puppeteer/issues/9959, 2023.

[iss23q] https://github.com/pwncollege/dojo/issues/132, 2023.

[iss23r] n. https://github.com/igrigorik/videospeed/issues/1035, 2023.

[IZT+22] Ivana Clairine Irsan, Ting Zhang, Ferdian Thung, David Lo, and Lingxiao
Jiang. Autoprtitle: A tool for automatic pull request title generation. In
2022 IEEE International Conference on Software Maintenance and Evolution
(ICSME), pages 454–458, 2022.

[jac] Jacoco. https://www.eclemma.org/jacoco/.

[JAM17] S. Jiang, A. Armaly, and C. McMillan. Automatically generating commit mes-
sages from diffs using neural machine translation. In 2017 32nd IEEE/ACM
International Conference on Automated Software Engineering (ASE), ASE’17,
pages 135–146, October 2017. ISSN:.

[jav] Java Parser. https://github.com/javaparser/javaparser.

[Javnd] JavaParser. Javaparser. http://javaparser.org/, n.d.

[Jes00] Jester - the junit test tester. http://jester.sourceforge.net, 2000.

[JH10] Yue Jia and Mark Harman. An analysis and survey of the development of
mutation testing. IEEE transactions on software engineering, 37(5):649–678,
2010.

[JJE14] René Just, Darioush Jalali, and Michael D. Ernst. Defects4j: A database of
existing faults to enable controlled testing studies for java programs. In Pro-
ceedings of the 2014 International Symposium on Software Testing and Anal-
ysis, ISSTA 2014, pages 437–440, New York, NY, USA, 2014. ACM.

[JLF+23] Ziwei Ji, Nayeon Lee, Rita Frieske, Tiezheng Yu, Dan Su, Yan Xu, Etsuko Ishii,
Ye Jin Bang, Andrea Madotto, and Pascale Fung. Survey of hallucination in
natural language generation. ACM Comput. Surv., 2023.

https://github.com/prosyslab-classroom/cs348-information-security/issues/365
https://github.com/prosyslab-classroom/cs348-information-security/issues/365
https://github.com/sirupsen/napkin-math/issues/26
https://github.com/kohya-ss/sd-webui-additional-networks/issues/43
https://github.com/kohya-ss/sd-webui-additional-networks/issues/43
https://github.com/rootzoll/raspiblitz/issues/3640
https://github.com/puppeteer/puppeteer/issues/9959
https://github.com/pwncollege/dojo/issues/132
https://github.com/igrigorik/videospeed/issues/1035
https://www.eclemma.org/jacoco/
https://github.com/javaparser/javaparser
http://jester.sourceforge.net

Bibliography 257

[JLL+18] Zhouyang Jia, Shanshan Li, Xiaodong Liu, Xiangke Liao, and Yunhuai Liu.
Smartlog: Place error log statement by deep understanding of log intention.
In 2018 IEEE 25th International Conference on Software Analysis, Evolution
and Reengineering (SANER), pages 61–71. IEEE, 2018.

[JLL+23] Nan Jiang, Thibaud Lutellier, Yiling Lou, Lin Tan, Dan Goldwasser, and Xi-
angyu Zhang. Knod: Domain knowledge distilled tree decoder for auto-
mated program repair. In 2023 IEEE/ACM 45th International Conference on
Software Engineering (ICSE), pages 1251–1263. IEEE, 2023.

[jlo] https://marketplace.visualstudio.com/items?itemname=andreamichelezucchi.loginjector.

[JLT21] Nan Jiang, Thibaud Lutellier, and Lin Tan. Cure: Code-aware neural ma-
chine translation for automatic program repair. In 2021 IEEE/ACM 43rd
International Conference on Software Engineering (ICSE), pages 1161–1173.
IEEE, 2021.

[Jol86] Ian T. Jolliffe. Principal Component Analysis. Springer Series in Statistics.
Springer, 1986.

[JSG+23] Harshit Joshi, José Cambronero Sanchez, Sumit Gulwani, Vu Le, Gust Ver-
bruggen, and Ivan Radiček. Repair is nearly generation: Multilingual pro-
gram repair with llms. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 37, pages 5131–5140, 2023.

[JST+23] Matthew Jin, Syed Shahriar, Michele Tufano, Xin Shi, Shuai Lu, Neel Sun-
daresan, and Alexey Svyatkovskiy. Inferfix: End-to-end program repair with
llms. In Proceedings of the 31st ACM Joint European Software Engineering
Conference and Symposium on the Foundations of Software Engineering, pages
1646–1656, 2023.

[jun] jUnit. https://junit.org/junit5/.

[KABV22] Kusum Kusum, Abrar Ahmed, C Bhuvana, and V Vivek. Unsupervised trans-
lation of programming language-a survey paper. In 2022 4th International
Conference on Advances in Computing, Communication Control and Network-
ing (ICAC3N), pages 384–388. IEEE, 2022.

[KCX+24] Jiaolong Kong, Mingfei Cheng, Xiaofei Xie, Shangqing Liu, Xiaoning Du, and
Qi Guo. Contrastrepair: Enhancing conversation-based automated program
repair via contrastive test case pairs, 2024.

[KDPT23] Ahmed Khanfir, Renzo Degiovanni, Mike Papadakis, and Yves Le Traon. Ef-
ficient mutation testing via pre-trained language models. arXiv preprint
arXiv:2301.03543, 2023.

https://junit.org/junit5/

258 Bibliography

[KR18] Taku Kudo and John Richardson. Sentencepiece: A simple and language
independent subword tokenizer and detokenizer for neural text processing.
CoRR, abs/1808.06226, 2018.

[KS19] Rafael-Michael Karampatsis and Charles A. Sutton. Maybe deep neural net-
works are the best choice for modeling source code. CoRR, abs/1903.05734,
2019.

[KS20] Rafael-Michael Karampatsis and Charles Sutton. How often do single-
statement bugs occur? the manysstubs4j dataset. In Proceedings of the 17th
International Conference on Mining Software Repositories, pages 573–577,
2020.

[Kud18] Taku Kudo. Subword regularization: Improving neural network translation
models with multiple subword candidates. arXiv preprint arXiv:1804.10959,
2018.

[Kul97] Solomon Kullback. Information theory and statistics. Courier Corporation,
1997.

[KW13] Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv
preprint arXiv:1312.6114, 2013.

[KWR10] Ninus Khamis, René Witte, and Juergen Rilling. Automatic quality assess-
ment of source code comments: The javadocminer. In Christina J. Hopfe,
Yacine Rezgui, Elisabeth Métais, Alun Preece, and Haijiang Li, editors, Nat-
ural Language Processing and Information Systems, pages 68–79, 2010.

[KZTC21] Seohyun Kim, Jinman Zhao, Yuchi Tian, and Satish Chandra. Code predic-
tion by feeding trees to transformers. pages 150–162, 2021.

[LBM21] Alexander LeClair, Aakash Bansal, and Collin McMillan. Ensemble models
for neural source code summarization of subroutines. In 2021 IEEE Inter-
national Conference on Software Maintenance and Evolution (ICSME), pages
286–297. IEEE, 2021.

[LCC+18] Zhiyong Liu, Huanchao Chen, Xiangping Chen, Xiaonan Luo, and Fan Zhou.
Automatic detection of outdated comments during code changes. In 2018
IEEE 42nd Annual Computer Software and Applications Conference (COMP-
SAC), volume 01, pages 154–163, 2018.

[LCS20] Zhenhao Li, Tse-Hsun Chen, and Weiyi Shang. Where shall we log? study-
ing and suggesting logging locations in code blocks. In Proceedings of the
35th IEEE/ACM International Conference on Automated Software Engineer-
ing, pages 361–372, 2020.

Bibliography 259

[LCSH18] Heng Li, Tse-Hsun Peter Chen, Weiyi Shang, and Ahmed E Hassan. Study-
ing software logging using topic models. Empirical Software Engineering,
23(5):2655–2694, 2018.

[Lev66] VI Levenshtein. Binary Codes Capable of Correcting Deletions, Insertions
and Reversals. Soviet Physics Doklady, 10:707, 1966.

[LGDVFW12] Claire Le Goues, Michael Dewey-Vogt, Stephanie Forrest, and Westley
Weimer. A systematic study of automated program repair: Fixing 55 out
of 105 bugs for $8 each. In 2012 34th International Conference on Software
Engineering (ICSE), pages 3–13. IEEE, 2012.

[LGR+21] Shuai Lu, Daya Guo, Shuo Ren, Junjie Huang, Alexey Svyatkovskiy, Am-
brosio Blanco, Colin Clement, Dawn Drain, Daxin Jiang, Duyu Tang, et al.
Codexglue: A machine learning benchmark dataset for code understanding
and generation. arXiv preprint arXiv:2102.04664, 2021.

[LH19] Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization.
In 7th International Conference on Learning Representations, ICLR, 2019.

[LHWM20] Alexander LeClair, Sakib Haque, Lingfei Wu, and Collin McMillan. Improved
code summarization via a graph neural network. In Proceedings of the 28th
international conference on program comprehension, pages 184–195, 2020.

[LHZ+24] Yichen Li, Yintong Huo, Renyi Zhong, Zhihan Jiang, Jinyang Liu, Junjie
Huang, Jiazhen Gu, Pinjia He, and Michael R Lyu. Go static: Contextualized
logging statement generation. arXiv preprint arXiv:2402.12958, 2024.

[Li20] Zhenhao Li. Towards providing automated supports to developers on writ-
ing logging statements. In Proceedings of the ACM/IEEE 42nd International
Conference on Software Engineering: Companion Proceedings, pages 198–201,
2020.

[Lin04] Chin-Yew Lin. Rouge: A package for automatic evaluation of summaries. In
Text summarization branches out, pages 74–81, 2004.

[LJM19] Alexander LeClair, Siyuan Jiang, and Collin McMillan. A neural model for
generating natural language summaries of program subroutines. In Proceed-
ings of the 41st International Conference on Software Engineering, ICSE ’19,
pages 795–806, 2019.

[LKB+18] Kui Liu, Dongsun Kim, Tegawendé F Bissyandé, Shin Yoo, and Yves Le Traon.
Mining fix patterns for findbugs violations. IEEE Transactions on Software
Engineering, 47(1):165–188, 2018.

[LLCS21] Zhenhao Li, Heng Li, Tse-Hsun Peter Chen, and Weiyi Shang. Deeplv: Sug-
gesting log levels using ordinal based neural networks. In 2021 IEEE/ACM

260 Bibliography

43rd International Conference on Software Engineering (ICSE), pages 1461–
1472. IEEE, 2021.

[LLF+22] Xueyang Li, Shangqing Liu, Ruitao Feng, Guozhu Meng, Xiaofei Xie, Kai
Chen, and Yang Liu. Transrepair: Context-aware program repair for compi-
lation errors. In Proceedings of the 37th IEEE/ACM International Conference
on Automated Software Engineering, pages 1–13, 2022.

[LLG+20] Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman
Mohamed, Omer Levy, Veselin Stoyanov, and Luke Zettlemoyer. BART: de-
noising for natural language generation, translation, and comprehension.
In 58th Annual Meeting of the Association for Computational Linguistics, ACL,
pages 7871–7880, 2020.

[LLG+22a] Zhiyu Li, Shuai Lu, Daya Guo, Nan Duan, Shailesh Jannu, Grant Jenks, Deep
Majumder, Jared Green, Alexey Svyatkovskiy, Shengyu Fu, et al. Automating
code review activities by large-scale pre-training. In Proceedings of the 30th
ACM Joint European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, pages 1035–1047, 2022.

[LLG+22b] Zhiyu Li, Shuai Lu, Daya Guo, Nan Duan, Shailesh Jannu, Grant Jenks, Deep
Majumder, Jared Green, Alexey Svyatkovskiy, Shengyu Fu, et al. Codere-
viewer: Pre-training for automating code review activities. arXiv preprint
arXiv:2203.09095, 2022.

[LLZJ20] Fang Liu, Ge Li, Yunfei Zhao, and Zhi Jin. Multi-task learning based pre-
trained language model for code completion. In Proceedings of the 35th
IEEE/ACM International Conference on Automated Software Engineering, ASE
2020. Association for Computing Machinery, 2020.

[LM19] Alexander LeClair and Collin McMillan. Recommendations for datasets for
source code summarization. arXiv preprint arXiv:1904.02660, 2019.

[LNB+19] Bin Lin, Csaba Nagy, Gabriele Bavota, Andrian Marcus, and Michele Lanza.
On the quality of identifiers in test code. In 2019 19th International Working
Conference on Source Code Analysis and Manipulation (SCAM), pages 204–
215. IEEE, 2019.

[LNFW12] Claire Le Goues, ThanhVu Nguyen, Stephanie Forrest, and Westley Weimer.
Genprog: A generic method for automatic software repair. IEEE Trans. Soft-
ware Eng., 38(1):54–72, 2012.

[LOG+19] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen,
Omer Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta:
A robustly optimized BERT pretraining approach. CoRR, abs/1907.11692,
2019.

Bibliography 261

[Lognd] Log4J. Apache log4j. https://logging.apache.org/log4j/2.x/, n.d.

[LOZ+21] Chen Lin, Zhichao Ouyang, Junqing Zhuang, Jianqiang Chen, Hui Li, and
Rongxin Wu. Improving code summarization with block-wise abstract syntax
tree splitting. In 2021 IEEE/ACM 29th International Conference on Program
Comprehension (ICPC), pages 184–195. IEEE, 2021.

[LPP+20a] Patrick S. H. Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir
Karpukhin, Naman Goyal, Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim
Rocktäschel, Sebastian Riedel, and Douwe Kiela. Retrieval-augmented gen-
eration for knowledge-intensive NLP tasks. In Advances in Neural Informa-
tion Processing Systems 33: Annual Conference on Neural Information Process-
ing Systems, 2020.

[LPP+20b] Thibaud Lutellier, Hung Viet Pham, Lawrence Pang, Yitong Li, Moshi Wei,
and Lin Tan. Coconut: combining context-aware neural translation models
using ensemble for program repair. In Proceedings of the 29th ACM SIGSOFT
international symposium on software testing and analysis, pages 101–114,
2020.

[LRW+17] Siyang Lu, BingBing Rao, Xiang Wei, Byungchul Tak, Long Wang, and
Liqiang Wang. Log-based abnormal task detection and root cause analy-
sis for spark. In 2017 IEEE International Conference on Web Services (ICWS),
pages 389–396. IEEE, 2017.

[LSA+20] Heng Li, Weiyi Shang, Bram Adams, Mohammed Sayagh, and Ahmed E Has-
san. A qualitative study of the benefits and costs of logging from developers’
perspectives. IEEE Transactions on Software Engineering, 2020.

[LSH17] Heng Li, Weiyi Shang, and Ahmed E Hassan. Which log level should devel-
opers choose for a new logging statement? Empirical Software Engineering,
22(4):1684–1716, 2017.

[LSM+17] Bin Lin, Simone Scalabrino, Andrea Mocci, Rocco Oliveto, Gabriele Bavota,
and Michele Lanza. Investigating the use of code analysis and nlp to promote
a consistent usage of identifiers. In 2017 IEEE 17th International Working
Conference on Source Code Analysis and Manipulation (SCAM), pages 81–90.
IEEE, 2017.

[LSZ+22] Hui Liu, Mingzhu Shen, Jiaqi Zhu, Nan Niu, Ge Li, and Lu Zhang. Deep
learning based program generation from requirements text: Are we there
yet? IEEE Transactions on Software Engineering, 48(4):1268–1289, 2022.

[LVLVP15] M. Linares-Vásquez, B. Li, C. Vendome, and D. Poshyvanyk. How do develop-
ers document database usages in source code? In 2015 30th IEEE/ACM Inter-
national Conference on Automated Software Engineering (ASE), pages 36–41,
Nov 2015.

262 Bibliography

[LWJ+22] Dongcheng Li, W Eric Wong, Mingyong Jian, Yi Geng, and Matthew Chau.
Improving search-based automatic program repair with neural machine
translation. IEEE Access, 10:51167–51175, 2022.

[LWLK17] Jian Li, Yue Wang, Michael R Lyu, and Irwin King. Code completion with
neural attention and pointer networks. arXiv preprint arXiv:1711.09573,
2017.

[LWN20] Yi Li, Shaohua Wang, and Tien N. Nguyen. Dlfix: Context-based code trans-
formation learning for automated program repair. New York, NY, USA, 2020.
Association for Computing Machinery.

[LWN22a] Yi Li, Shaohua Wang, and Tien N Nguyen. Dear: A novel deep learning-
based approach for automated program repair. In Proceedings of the 44th
international conference on software engineering, pages 511–523, 2022.

[LWN22b] Yi Li, Shaohua Wang, and Tien N. Nguyen. Dear: A novel deep learning-
based approach for automated program repair. In Proceedings of the 44th
International Conference on Software Engineering, ICSE ’22, page 511–523,
New York, NY, USA, 2022. Association for Computing Machinery.

[LWZ+19] Bohong Liu, Tao Wang, Xunhui Zhang, Qiang Fan, Gang Yin, and Jinsheng
Deng. A neural-network based code summarization approach by using
source code and its call dependencies. In Proceedings of the 11th Asia-Pacific
Symposium on Internetware, pages 1–10, 2019.

[LXH+18] Zhongxin Liu, Xin Xia, Ahmed E. Hassan, David Lo, Zhenchang Xing, and
Xinyu Wang. Neural-machine-translation-based commit message genera-
tion: How far are we? In Proceedings of the 33rd ACM/IEEE International
Conference on Automated Software Engineering, ASE 2018, pages 373–384,
2018.

[LXL+19] Zhongxin Liu, Xin Xia, David Lo, Zhenchang Xing, Ahmed E Hassan, and
Shanping Li. Which variables should i log? IEEE Transactions on Software
Engineering, 2019.

[LXT+19] Zhongxin Liu, Xin Xia, Christoph Treude, David Lo, and Shanping Li. Au-
tomatic generation of pull request descriptions. In 2019 34th IEEE/ACM
International Conference on Automated Software Engineering (ASE), pages
176–188, 2019.

[LXWZ24] Jiawei Liu, Chunqiu Steven Xia, Yuyao Wang, and Lingming Zhang. Is your
code generated by chatgpt really correct? rigorous evaluation of large lan-
guage models for code generation. Advances in Neural Information Processing
Systems, 36, 2024.

Bibliography 263

[LYTH13] Chen Liu, Jinqiu Yang, Lin Tan, and Munawar Hafiz. R2fix: Automatically
generating bug fixes from bug reports. In 2013 IEEE Sixth international con-
ference on software testing, verification and validation, pages 282–291. IEEE,
2013.

[LYX+20] Boao Li, Meng Yan, Xin Xia, Xing Hu, Ge Li, and David Lo. Deepcommenter:
a deep code comment generation tool with hybrid lexical and syntactical in-
formation. In Prem Devanbu, Myra B. Cohen, and Thomas Zimmermann,
editors, ESEC/FSE ’20: 28th ACM Joint European Software Engineering Con-
ference and Symposium on the Foundations of Software Engineering, Virtual
Event, USA, November 8-13, 2020, pages 1571–1575. ACM, 2020.

[LZ18] Yuding Liang and Kenny Q. Zhu. Automatic generation of text descriptive
comments for code blocks. In Proceedings of the Thirty-Second AAAI Confer-
ence on Artificial Intelligence and Thirtieth Innovative Applications of Artificial
Intelligence Conference and Eighth AAAI Symposium on Educational Advances
in Artificial Intelligence, AAAI’18/IAAI’18/EAAI’18. AAAI Press, 2018.

[LZB+] Bin Lin, Fiorella Zampetti, Gabriele Bavota, Massimiliano Di Penta, Michele
Lanza, and Rocco Oliveto. Sentiment analysis for software engineering: how
far can we go? In Proceedings of the 40th International Conference on Soft-
ware Engineering, ICSE 2018, Gothenburg, Sweden, May 27 - June 03, 2018,
pages 94–104.

[LZJ20] Fang Liu, Lu Zhang, and Zhi Jin. Modeling programs hierarchically with
stack-augmented lstm. Journal of Systems and Software, 164:110547, 2020.

[MAPB21] Antonio Mastropaolo, Emad Aghajani, Luca Pascarella, and Gabriele Bavota.
An empirical study on code comment completion. In 2021 IEEE International
Conference on Software Maintenance and Evolution (ICSME), pages 159–170.
IEEE, 2021.

[MAPB22] Antonio Mastropaolo, Emad Aghajani, Luca Pascarella, and Gabriele Bavota.
Automated variable renaming: Are we there yet? arXiv preprint
arXiv:2212.05738, 2022.

[mar] Github marketplace https://github.com/marketplace?type=actions.

[MAS+13a] L. Moreno, J. Aponte, G. Sridhara, A. Marcus, L. Pollock, and K. Vijay-
Shanker. Automatic generation of natural language summaries for java
classes. In 2013 21st International Conference on Program Comprehension
(ICPC), pages 23–32, 2013.

[MAS+13b] Laura Moreno, Jairo Aponte, Giriprasad Sridhara, Andrian Marcus, Lori Pol-
lock, and K Vijay-Shanker. Automatic generation of natural language sum-
maries for java classes. In 2013 21st International Conference on Program
Comprehension (ICPC), pages 23–32. IEEE, 2013.

https://github.com/marketplace?type=actions

264 Bibliography

[Mas23] Antonio Mastropaolo. Replication package, 2023. https://github.com/
antonio-mastropaolo/automating-logging-acitivities.

[Mav] Maven. https://maven.apache.org.

[MBDP+16] Laura Moreno, Gabriele Bavota, Massimiliano Di Penta, Rocco Oliveto, An-
drian Marcus, and Gerardo Canfora. Arena: an approach for the auto-
mated generation of release notes. IEEE Transactions on Software Engineer-
ing, 43(2):106–127, 2016.

[MBP+15] Laura Moreno, Gabriele Bavota, Massimiliano Di Penta, Rocco Oliveto, and
Andrian Marcus. How can I use this method? In 37th IEEE/ACM Interna-
tional Conference on Software Engineering, ICSE, pages 880–890, 2015.

[McN47] Quinn McNemar. Note on the sampling error of the difference between cor-
related proportions or percentages. Psychometrika, 12(2):153–157, 1947.

[MCP+22] Antonio Mastropaolo, Nathan Cooper, David Nader Palacio, Simone Scal-
abrino, Denys Poshyvanyk, Rocco Oliveto, and Gabriele Bavota. Using trans-
fer learning for code-related tasks. IEEE Transactions on Software Engineer-
ing, 49(4):1580–1598, 2022.

[MFPB24] Antonio Mastropaolo, Valentina Ferrari, Luca Pascarella, and Gabriele
Bavota. Log statements generation via deep learning: Widening the sup-
port provided to developers. Journal of Systems and Software, 210:111947,
2024.

[MH21a] Ehsan Mashhadi and Hadi Hemmati. Applying codebert for automated pro-
gram repair of java simple bugs. In 2021 IEEE/ACM 18th International Con-
ference on Mining Software Repositories (MSR), pages 505–509, 2021.

[MH21b] Ehsan Mashhadi and Hadi Hemmati. Applying codebert for automated pro-
gram repair of java simple bugs. In 18th IEEE/ACM International Conference
on Mining Software Repositories, MSR, pages 505–509, 2021.

[MHH+22] Alejandro Martín, Javier Huertas-Tato, Álvaro Huertas-García, Guillermo
Villar-Rodríguez, and David Camacho. Facter-check: Semi-automated
fact-checking through semantic similarity and natural language inference.
Knowl. Based Syst., 251:109265, 2022.

[MHPB11] Emerson Murphy-Hill, Chris Parnin, and Andrew P Black. How we refactor,
and how we know it. IEEE Transactions on Software Engineering, 38(1):5–18,
2011.

[MLZ+19] Weibin Meng, Ying Liu, Yichen Zhu, Shenglin Zhang, Dan Pei, Yuqing Liu,
Yihao Chen, Ruizhi Zhang, Shimin Tao, Pei Sun, et al. Loganomaly: Unsu-
pervised detection of sequential and quantitative anomalies in unstructured
logs. In IJCAI, volume 19, pages 4739–4745, 2019.

https://github.com/antonio-mastropaolo/automating-logging-acitivities
https://github.com/antonio-mastropaolo/automating-logging-acitivities
https://maven.apache.org

Bibliography 265

[MM16] P. W. McBurney and C. McMillan. Automatic source code summarization
of context for java methods. IEEE Transactions on Software Engineering,
42(2):103–119, 2016.

[MML15] Roberto Minelli, Andrea Mocci, and Michele Lanza. I know what you did last
summer: an investigation of how developers spend their time. In Andrea De
Lucia, Christian Bird, and Rocco Oliveto, editors, Proceedings of the 2015
IEEE 23rd International Conference on Program Comprehension, ICPC 2015,
Florence/Firenze, Italy, May 16-24, 2015, pages 25–35. IEEE Computer So-
ciety, 2015.

[MMTM12] Yuri Malheiros, Alan Moraes, Cleyton Trindade, and Silvio Meira. A source
code recommender system to support newcomers. In 2012 ieee 36th annual
computer xxsoftware and applications conference, pages 19–24. IEEE, 2012.

[MOK05] Yu-Seung Ma, Jeff Offutt, and Yong Rae Kwon. Mujava: An automated class
mutation system. Software Testing, Verification & Reliability, 15(2):97–133,
June 2005.

[MPB22] Antonio Mastropaolo, Luca Pascarella, and Gabriele Bavota. Using deep
learning to generate complete log statements. In 44th IEEE/ACM 44th In-
ternational Conference on Software Engineering, ICSE 2022, Pittsburgh, PA,
USA, May 25-27, 2022, pages 2279–2290. ACM, 2022.

[MRJ+19] Ali Mesbah, Andrew Rice, Emily Johnston, Nick Glorioso, and Edward Af-
tandilian. Deepdelta: Learning to repair compilation errors. In Proceedings of
the 2019 27th ACM Joint Meeting on European Software Engineering Confer-
ence and Symposium on the Foundations of Software Engineering, ESEC/FSE
2019, pages 925–936, 2019.

[MSC+21] Antonio Mastropaolo, Simone Scalabrino, Nathan Cooper, David Nader-
Palacio, Denys Poshyvanyk, Rocco Oliveto, and Gabriele Bavota. Studying
the usage of text-to-text transfer transformer to support code-related tasks.
In 43rd IEEE/ACM International Conference on Software Engineering, ICSE
2021, pages 336–347. IEEE, 2021.

[MSII19] Tsuyoshi Mizouchi, Kazumasa Shimari, Takashi Ishio, and Katsuro Inoue.
Padla: a dynamic log level adapter using online phase detection. In 2019
IEEE/ACM 27th International Conference on Program Comprehension (ICPC),
pages 135–138. IEEE, 2019.

[MZRC23] Aniketh Malyala, Katelyn Zhou, Baishakhi Ray, and Saikat Chakraborty. On
ml-based program translation: Perils and promises. In 45th International
Conference on Software Engineering, ICSE ’23, Companion Proceedings, 2023,
2023.

266 Bibliography

[NCL23] CheolWon Na, YunSeok Choi, and Jee-Hyong Lee. Dip: Dead code insertion
based black-box attack for programming language model. In Proceedings
of the 61st Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 7777–7791, 2023.

[NDD+21] Phuong T. Nguyen, Claudio Di Sipio, Juri Di Rocco, Massimiliano Di Penta,
and Davide Di Ruscio. Adversarial attacks to API recommender systems:
Time to wake up and smell the coffee f . In 36th IEEE/ACM International
Conference on Automated Software Engineering, ASE 2021, pages 253–265,
2021.

[NLN+22] Changan Niu, Chuanyi Li, Vincent Ng, Jidong Ge, Liguo Huang, and Bin Luo.
Spt-code: Sequence-to-sequence pre-training for learning source code rep-
resentations. In Proceedings of the 44th international conference on software
engineering, pages 2006–2018, 2022.

[nlt] https://www.nltk.org.

[NN22] Nhan Nguyen and Sarah Nadi. An empirical evaluation of github copilot’s
code suggestions. In 2022 IEEE/ACM 19th International Conference on Min-
ing Software Repositories (MSR), pages 1–5. IEEE, 2022.

[NNN+12] A. T. Nguyen, T. T. Nguyen, H. A. Nguyen, A. Tamrawi, H. V. Nguyen, J. Al-
Kofahi, and T. N. Nguyen. Graph-based pattern-oriented, context-sensitive
source code completion. In 2012 34th International Conference on Software
Engineering (ICSE), pages 69–79, 2012.

[NNN+13] Hoan Anh Nguyen, Anh Tuan Nguyen, Tung Thanh Nguyen, Tien N. Nguyen,
and Hridesh Rajan. A study of repetitiveness of code changes in software
evolution. In Proceedings of the 28th IEEE/ACM International Conference on
Automated Software Engineering, ASE’13, pages 180–190, Piscataway, NJ,
USA, 2013. IEEE Press.

[NNN14] Anh Tuan Nguyen, Tung Thanh Nguyen, and Tien N. Nguyen. Migrating code
with statistical machine translation. In Companion Proceedings of the 36th
International Conference on Software Engineering, ICSE Companion 2014,
pages 544–547, 2014.

[NNNN14] Anh Tuan Nguyen, Hoan Anh Nguyen, Tung Thanh Nguyen, and Tien N.
Nguyen. Statistical learning approach for mining API usage mappings for
code migration. In 29th IEEE/ACM International Conference on Automated
Software Engineering, ASE, pages 457–468, 2014.

[NSM23] Noor Nashid, Mifta Sintaha, and Ali Mesbah. Retrieval-based prompt selec-
tion for code-related few-shot learning. In 2023 IEEE/ACM 45th Interna-
tional Conference on Software Engineering (ICSE), pages 2450–2462. IEEE,
2023.

https://www.nltk.org

Bibliography 267

[OGX12] Adam Oliner, Archana Ganapathi, and Wei Xu. Advances and challenges in
log analysis. Communications of the ACM, 55(2):55–61, 2012.

[ON15] Keiron O’Shea and Ryan Nash. An introduction to convolutional neural net-
works. CoRR, abs/1511.08458, 2015.

[Opp92] A. N. Oppenheim. Questionnaire Design, Interviewing and Attitude Measure-
ment. Pinter Publishers, 1992.

[OSXJS16] Hyun Oh Song, Yu Xiang, Stefanie Jegelka, and Silvio Savarese. Deep metric
learning via lifted structured feature embedding. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 4004–4012,
2016.

[PAT+21] Hammond Pearce, Baleegh Ahmad, Benjamin Tan, Brendan Dolan-Gavitt,
and Ramesh Karri. An empirical cybersecurity evaluation of github copilot’s
code contributions. arXiv preprint arXiv:2108.09293, 2021.

[PB17] Luca Pascarella and Alberto Bacchelli. Classifying code comments in java
open-source software systems. In 2017 IEEE/ACM 14th International Con-
ference on Mining Software Repositories (MSR), pages 227–237. IEEE, 2017.

[PDE07] Carlos Pacheco and Michael D. Ernst. Randoop: Feedback-directed random
testing for java. In OOPSLA’07, pages 815–816, 01 2007.

[PDM12] Slav Petrov, Dipanjan Das, and Ryan McDonald. A universal part-of-speech
tagset. In Proceedings of the Eighth International Conference on Language Re-
sources and Evaluation (LREC’12), pages 2089–2096, Istanbul, Turkey, May
2012. European Language Resources Association (ELRA).

[peg] PEGASUS fine-tuned for paraphrasing. https://huggingface.co/
tuner007/pegasus_paraphrase.

[PFHLN22] Keyur Patel, João Faccin, Abdelwahab Hamou-Lhadj, and Ingrid Nunes.
The sense of logging in the linux kernel. Empirical Software Engineering,
27(6):153, 2022.

[PGL+21] David Patterson, Joseph Gonzalez, Quoc Le, Chen Liang, Lluis-Miquel
Munguia, Daniel Rothchild, David So, Maud Texier, and Jeff Dean.
Carbon emissions and large neural network training. arXiv preprint
arXiv:2104.10350, 2021.

[PHSP22] Lin Pan, Chung-Wei Hang, Avirup Sil, and Saloni Potdar. Improved text
classification via contrastive adversarial training. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 36, pages 11130–11138, 2022.

[pit] Pit - real world mutation testing https://pitest.org.

https://huggingface.co/tuner007/pegasus_paraphrase
https://huggingface.co/tuner007/pegasus_paraphrase
https://pitest.org

268 Bibliography

[PIT10] Pit. http://pitest.org/, 2010.

[Pop15] Maja Popović. chrf: character n-gram f-score for automatic mt evaluation.
In Proceedings of the tenth workshop on statistical machine translation, pages
392–395, 2015.

[PP09] Derrin Pierret and Denys Poshyvanyk. An empirical exploration of regular-
ities in open-source software lexicons. In The 17th IEEE International Con-
ference on Program Comprehension, ICPC 2009, Vancouver, British Columbia,
Canada, May 17-19, 2009, pages 228–232, 2009.

[PP21] Jibesh Patra and Michael Pradel. Semantic bug seeding: a learning-based
approach for creating realistic bugs. In Proceedings of the 29th ACM Joint
Meeting on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, pages 906–918, 2021.

[pr:23a] https://github.com/woocommerce/woocommerce/pull/37233, 2023.

[pr:23b] https://github.com/fufexan/nix-gaming/pull/73, 2023.

[pr:23c] https://github.com/typescript-eslint/typescript-eslint/pull/
6915, 2023.

[pr:23d] https://github.com/greenshot/greenshot/pull/484, 2023.

[pr:23e] https://github.com/vcmi/vcmi/pull/1659, 2023.

[pr:23f] https://github.com/garden-io/garden/pull/4553, 2023.

[pr:23g] https://github.com/spacedriveapp/spacedrive/pull/925, 2023.

[pr:23h] https://github.com/hubtype/botonic/pull/2491, 2023.

[pr:23i] https://github.com/kvas-it/pytest-console-scripts/pull/76,
2023.

[pr:23j] https://github.com/kkdai/chatgpt/pull/4, 2023.

[pr:23k] https://github.com/kiali/kiali/pull/5973, 2023.

[pr:23l] https://github.com/shilomagen/passport-extension/pull/16, 2023.

[pr:23m] https://github.com/kyverno/kyverno/pull/5834, 2023.

[pr:23n] https://github.com/failfa-st/hyv/pull/1, 2023.

[pr:23o] https://github.com/robherley/snips.sh/pull/17, 2023.

[pr:23p] https://github.com/az-digital/az_quickstart/pull/2226, 2023.

http://pitest.org/
https://github.com/woocommerce/woocommerce/pull/37233
https://github.com/fufexan/nix-gaming/pull/73
https://github.com/typescript-eslint/typescript-eslint/pull/6915
https://github.com/typescript-eslint/typescript-eslint/pull/6915
https://github.com/greenshot/greenshot/pull/484
https://github.com/vcmi/vcmi/pull/1659
https://github.com/garden-io/garden/pull/4553
https://github.com/spacedriveapp/spacedrive/pull/925
https://github.com/hubtype/botonic/pull/2491
https://github.com/kvas-it/pytest-console-scripts/pull/76
https://github.com/kkdai/chatgpt/pull/4
https://github.com/kiali/kiali/pull/5973
https://github.com/shilomagen/passport-extension/pull/16
https://github.com/kyverno/kyverno/pull/5834
https://github.com/failfa-st/hyv/pull/1
https://github.com/robherley/snips.sh/pull/17
https://github.com/az-digital/az_quickstart/pull/2226

Bibliography 269

[PRWZ02] Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. Bleu: A
method for automatic evaluation of machine translation. In Proceedings of
the 40th Annual Meeting on Association for Computational Linguistics, ACL
’02, pages 311–318, 2002.

[PS14a] A. Potdar and E. Shihab. An exploratory study on self-admitted technical
debt. In 2014 IEEE International Conference on Software Maintenance and
Evolution, pages 91–100, 2014.

[PS14b] Aniket Potdar and Emad Shihab. An exploratory study on self-admitted tech-
nical debt. In 30th IEEE International Conference on Software Maintenance
and Evolution, Victoria, BC, Canada, September 29 - October 3, 2014, pages
91–100. IEEE Computer Society, 2014.

[PSG+15] Sebastiano Panichella, Andrea Di Sorbo, Emitza Guzman, Corrado Aaron
Visaggio, Gerardo Canfora, and Harald C. Gall. How can i improve my app?
classifying user reviews for software maintenance and evolution. In IEEE In-
ternational Conference on Software Maintenance and Evolution, ICSME, pages
281–290. IEEE Computer Society, 2015.

[PSM14] Jeffrey Pennington, Richard Socher, and Christopher D Manning. Glove:
Global vectors for word representation. In Proceedings of the 2014 conference
on empirical methods in natural language processing (EMNLP), pages 1532–
1543, 2014.

[PXP+22] Minxue Pan, Tongtong Xu, Yu Pei, Zhong Li, Tian Zhang, and Xuandong Li.
Gui-guided test script repair for mobile apps. IEEE Transactions on Software
Engineering, 48(3):910–929, 2022.

[QBO+14] Abdallah Qusef, Gabriele Bavota, Rocco Oliveto, Andrea De Lucia, and Dave
Binkley. Recovering test-to-code traceability using slicing and textual anal-
ysis. J. Syst. Softw., 88(C):147–168, February 2014.

[QOSnd] QOS.ch. Simple logging facade for java (slf4j). https://www.slf4j.org/, n.d.

[R C20] R Core Team. R: A Language and Environment for Statistical Computing,
2020.

[R+03] Juan Ramos et al. Using tf-idf to determine word relevance in document
queries. In Proc. of the 1st instructional conf. on machine learning, volume
242, pages 29–48, 2003.

[repa] Replication package. https://github.com/antonio-mastropaolo/
robustness-copilot.

[repb] Replication package. https://github.com/antonio-mastropaolo/
automatic-variable-renaming.

https://github.com/antonio-mastropaolo/robustness-copilot
https://github.com/antonio-mastropaolo/robustness-copilot
https://github.com/antonio-mastropaolo/automatic-variable-renaming
https://github.com/antonio-mastropaolo/automatic-variable-renaming

270 Bibliography

[repc] Replication package https://github.com/antonio-mastropaolo/
code-summarization-metric/tree/main.

[repd] Replication package https://github.com/antonio-mastropaolo/
GH-WCOM.

[repe] Replication package https://github.com/antonio-mastropaolo/
ICSME2021-Completion.

[repf] Replication package https://github.com/antonio-mastropaolo/
SATD-Removal.

[repg] Replication package https://github.com/antonio-mastropaolo/
TransferLearning4Code.

[RFA21] Devjeet Roy, Sarah Fakhoury, and Venera Arnaoudova. Reassessing auto-
matic evaluation metrics for code summarization tasks. In 29th ACM Joint
Meeting on European Software Engineering Conference and the ACM/SIG-
SOFT Symposium on the Foundations of Software Engineering, ESEC-FSE, page
1105–1116, 2021.

[RG19] Nils Reimers and Iryna Gurevych. Sentence-bert: Sentence embeddings us-
ing siamese bert-networks. arXiv preprint arXiv:1908.10084, 2019.

[RGL+20] Shuo Ren, Daya Guo, Shuai Lu, Long Zhou, Shujie Liu, Duyu Tang, Neel
Sundaresan, Ming Zhou, Ambrosio Blanco, and Shuai Ma. Codebleu: a
method for automatic evaluation of code synthesis. CoRR, abs/2009.10297,
2020.

[RJ19] Romain Robbes and Andrea Janes. Leveraging small software engineering
data sets with pre-trained neural networks. In Anita Sarma and Leonardo
Murta, editors, Proceedings of the 41st International Conference on Software
Engineering: New Ideas and Emerging Results, ICSE (NIER) 2019, Montreal,
QC, Canada, May 29-31, 2019, pages 29–32. IEEE / ACM, 2019.

[RJAM17] Paige Rodeghero, Siyuan Jiang, Ameer Armaly, and Collin McMillan. De-
tecting user story information in developer-client conversations to generate
extractive summaries. In Proceedings of the 39th International Conference on
Software Engineering, ICSE ?17, page 49?59, 2017.

[RRK15] M. M. Rahman, C. K. Roy, and I. Keivanloo. Recommending insightful com-
ments for source code using crowdsourced knowledge. In 2015 IEEE 15th
International Working Conference on Source Code Analysis and Manipulation
(SCAM), pages 81–90, 2015.

[RSR+20] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang,
Michael Matena, Yanqi Zhou, Wei Li, and Peter J Liu. Exploring the limits

https://github.com/antonio-mastropaolo/code-summarization-metric/tree/main
https://github.com/antonio-mastropaolo/code-summarization-metric/tree/main
https://github.com/antonio-mastropaolo/GH-WCOM
https://github.com/antonio-mastropaolo/GH-WCOM
https://github.com/antonio-mastropaolo/ICSME2021-Completion
https://github.com/antonio-mastropaolo/ICSME2021-Completion
https://github.com/antonio-mastropaolo/SATD-Removal
https://github.com/antonio-mastropaolo/SATD-Removal
https://github.com/antonio-mastropaolo/TransferLearning4Code
https://github.com/antonio-mastropaolo/TransferLearning4Code

Bibliography 271

of transfer learning with a unified text-to-text transformer. The Journal of
Machine Learning Research, 21(1):5485–5551, 2020.

[RVY14] Veselin Raychev, Martin Vechev, and Eran Yahav. Code completion with sta-
tistical language models. In Proceedings of the 35th ACM SIGPLAN Conference
on Programming Language Design and Implementation, PLDI ’14, pages 419–
428, New York, NY, USA, 2014. ACM.

[RWZ10] Martin P. Robillard, Robert J. Walker, and Thomas Zimmermann. Recom-
mendation systems for software engineering. IEEE Softw., 27(4):80–86,
2010.

[RXX+19a] Xiaoxue Ren, Zhenchang Xing, Xin Xia, David Lo, Xinyu Wang, and John
Grundy. Neural network-based detection of self-admitted technical debt:
From performance to explainability. ACM Trans. Softw. Eng. Methodol.,
28(3):15, 2019.

[RXX+19b] Xiaoxue Ren, Zhenchang Xing, Xin Xia, David Lo, Xinyu Wang, and John
Grundy. Neural network-based detection of self-admitted technical debt:
From performance to explainability. ACM Trans. Softw. Eng. Methodol.,
28(3):15, 2019.

[SBR+19] Simone Scalabrino, Gabriele Bavota, Barbara Russo, Massimiliano Di Penta,
and Rocco Oliveto. Listening to the crowd for the release planning of mobile
apps. IEEE Trans. Software Eng., 45(1):68–86, 2019.

[SBR21] Dominik Sobania, Martin Briesch, and Franz Rothlauf. Choose your pro-
gramming copilot: A comparison of the program synthesis performance of
github copilot and genetic programming. arXiv preprint arXiv:2111.07875,
2021.

[SCTG16] Igor Steinmacher, Tayana Uchôa Conte, Christoph Treude, and Marco Au-
rélio Gerosa. Overcoming open source project entry barriers with a portal
for newcomers. In Proceedings of the 38th International Conference on Soft-
ware Engineering, ICSE 2016, pages 273–284. ACM, 2016.

[SDFS20] Alexey Svyatkovskiy, Shao Kun Deng, Shengyu Fu, and Neel Sundaresan.
Intellicode compose: Code generation using transformer. In Proceedings of
the 28th ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering, pages 1433–1443,
2020.

[SDLLR15] Stelios Sidiroglou-Douskos, Eric Lahtinen, Fan Long, and Martin Rinard. Au-
tomatic error elimination by horizontal code transfer across multiple appli-
cations. SIGPLAN Not., 50(6):43–54, June 2015.

272 Bibliography

[SGL+20] Sean Stapleton, Yashmeet Gambhir, Alexander LeClair, Zachary Eberhart,
Westley Weimer, Kevin Leach, and Yu Huang. A human study of compre-
hension and code summarization. In Proceedings of the 28th International
Conference on Program Comprehension, ICPC ’20, page 2–13, 2020.

[Sha15] Sina Shamshiri. Automated Unit Test Generation for Evolving Software.
In Proceedings of the 2015 10th Joint Meeting on Foundations of Software
Engineering, FSE’15, pages 1038–1041, Bergamo, Italy, 2015. ACM.

[She18] Alex Sherstinsky. Fundamentals of recurrent neural network (RNN) and long
short-term memory (LSTM) network. CoRR, abs/1808.03314, 2018.

[SHJ13] Daniela Steidl, Benjamin Hummel, and Elmar Juergens. Quality analysis of
source code comments. In 2013 21st International Conference on Program
Comprehension (ICPC), pages 83–92, 2013.

[SKP15] Florian Schroff, Dmitry Kalenichenko, and James Philbin. Facenet: A uni-
fied embedding for face recognition and clustering. In IEEE Conference on
Computer Vision and Pattern Recognition, CVPR, pages 815–823, 2015.

[SKY+19] Yusuke Shido, Yasuaki Kobayashi, Akihiro Yamamoto, Atsushi Miyamoto,
and Tadayuki Matsumura. Automatic source code summarization with ex-
tended tree-lstm. In 2019 International Joint Conference on Neural Networks
(IJCNN), pages 1–8. IEEE, 2019.

[SLH+21] Alexey Svyatkovskiy, Sebastian Lee, Anna Hadjitofi, Maik Riechert, Ju-
liana Vicente Franco, and Miltiadis Allamanis. Fast and memory-efficient
neural code completion. In 2021 IEEE/ACM 18th International Conference
on Mining Software Repositories (MSR), pages 329–340. IEEE, 2021.

[SN23] Sk Golam Saroar and Maleknaz Nayebi. Developers’ perception of github
actions: A survey analysis. arXiv preprint arXiv:2303.04084, 2023.

[SO21] Hadeel Saadany and Constantin Orasan. Bleu, meteor, bertscore: Evaluation
of metrics performance in assessing critical translation errors in sentiment-
oriented text. CoRR, abs/2109.14250, 2021.

[spa] Spacy. https://spacy.io.

[Spe09] Donna Spencer. Card sorting: Designing usable categories. Rosenfeld Media,
2009.

[Spi10] D. Spinellis. Code documentation. IEEE Software, 27(4):18–19, July 2010.

[SPV11a] G. Sridhara, L. Pollock, and K. Vijay-Shanker. Automatically detecting and
describing high level actions within methods. In 2011 33rd International
Conference on Software Engineering (ICSE), pages 101–110, 2011.

https://spacy.io

Bibliography 273

[SPV11b] G. Sridhara, L. Pollock, and K. Vijay-Shanker. Generating parameter com-
ments and integrating with method summaries. In 2011 IEEE 19th Interna-
tional Conference on Program Comprehension, pages 71–80, 2011.

[SPVS11] Giriprasad Sridhara, Lori Pollock, and K Vijay-Shanker. Automatically de-
tecting and describing high level actions within methods. In 2011 33rd In-
ternational Conference on Software Engineering (ICSE), pages 101–110. IEEE,
2011.

[src] ScrML Website. https://www.srcml.org/.

[SS20] Timo Schick and Hinrich Schütze. Exploiting cloze questions for few
shot text classification and natural language inference. arXiv preprint
arXiv:2001.07676, 2020.

[SSKM92] Mahadev Satyanarayanan, David C Steere, Masashi Kudo, and Hank Mash-
burn. Transparent logging as a technique for debugging complex distributed
systems. In Proceedings of the 5th workshop on ACM SIGOPS European work-
shop: Models and paradigms for distributed systems structuring, pages 1–3,
1992.

[sta] Stack Overflow. https://stackoverflow.com.

[STQ+20] Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, and Tie-Yan Liu. Mpnet: Masked
and permuted pre-training for language understanding. In Advances in Neu-
ral Information Processing Systems 33: Annual Conference on Neural Informa-
tion Processing Systems, 2020.

[SVL14] Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. Sequence to sequence learning
with neural networks. CoRR, abs/1409.3215, 2014.

[SYM18] Andrea Stocco, Rahulkrishna Yandrapally, and Ali Mesbah. Visual web test
repair. In Proceedings of the 2018 26th ACM Joint Meeting on European Soft-
ware Engineering Conference and Symposium on the Foundations of Software
Engineering, ESEC/FSE 2018, page 503–514. Association for Computing Ma-
chinery, 2018.

[SZ09] David Schuler and Andreas Zeller. Javalanche: efficient mutation testing for
java. In Proceedings of the 7th joint meeting of the European Software Engi-
neering Conference and the ACM SIGSOFT International Symposium on Foun-
dations of Software Engineering, 2009, Amsterdam, The Netherlands, August
24-28, 2009, pages 297–298, 2009.

[SZFS19] Alexey Svyatkovskiy, Ying Zhao, Shengyu Fu, and Neel Sundaresan. Pythia:
Ai-assisted code completion system. In Proceedings of the 25th ACM SIGKDD
international conference on knowledge discovery & data mining, pages 2727–
2735, 2019.

https://www.srcml.org/
https://stackoverflow.com

274 Bibliography

[t5-] T5 public checkpoint gs://t5-data/pretrained_models/small.

[Tat54] Robert F Tate. Correlation between a discrete and a continuous variable.
point-biserial correlation. The Annals of mathematical statistics, 25(3):603–
607, 1954.

[TCZ+22] Zhao Tian, Junjie Chen, Qihao Zhu, Junjie Yang, and Lingming Zhang.
Learning to construct better mutation faults. In Proceedings of the 37th
IEEE/ACM International Conference on Automated Software Engineering,
pages 1–13, 2022.

[TDS+20] Michele Tufano, Dawn Drain, Alexey Svyatkovskiy, Shao Kun Deng, and Neel
Sundaresan. Unit test case generation with transformers. arXiv preprint
arXiv:2009.05617, 2020.

[TDSS22] Michele Tufano, Dawn Drain, Alexey Svyatkovskiy, and Neel Sundaresan.
Generating accurate assert statements for unit test cases using pretrained
transformers. pages 54–64, 2022.

[Thund] Chris Thunes. javalang. https://pypi.org/project/javalang/, n.d.

[TKD20] Nikolaos Tsantalis, Ameya Ketkar, and Danny Dig. Refactoringminer 2.0.
IEEE Transactions on Software Engineering, 2020.

[TKW+20] Michele Tufano, Jason Kimko, Shiya Wang, Cody Watson, Gabriele Bavota,
Massimiliano Di Penta, and Denys Poshyvanyk. Deepmutation: A neural
mutation tool. In Proceedings of the ACM/IEEE 42nd International Conference
on Software Engineering: Companion Proceedings, pages 29–32, 2020.

[TLB+21] Ben Tang, Bin Li, Lili Bo, Xiaoxue Wu, Sicong Cao, and Xiaobing Sun. Grasp:
Graph-to-sequence learning for automated program repair. In 2021 IEEE
21st International Conference on Software Quality, Reliability and Security
(QRS), pages 819–828. IEEE, 2021.

[TMC+21] Maria Tsimpoukelli, Jacob L Menick, Serkan Cabi, SM Eslami, Oriol Vinyals,
and Felix Hill. Multimodal few-shot learning with frozen language models.
Advances in Neural Information Processing Systems, 34:200–212, 2021.

[TMM+22] Rosalia Tufano, Simone Masiero, Antonio Mastropaolo, Luca Pascarella,
Denys Poshyvanyk, and Gabriele Bavota. Using pre-trained models to boost
code review automation. In 44th IEEE/ACM 44th International Conference
on Software Engineering, ICSE 2022, Pittsburgh, PA, USA, May 25-27, 2022,
pages 2291–2302. ACM, 2022.

[TMP+23] Rosalia Tufano, Antonio Mastropaolo, Federica Pepe, Ozren Dabić, Massim-
iliano Di Penta, and Gabriele Bavota. Replication package https://github.
com/unveilingchatgptsusage/unveilingchatgptsusage, 2023.

gs://t5-data/pretrained_models/small
https://github.com/unveilingchatgptsusage/unveilingchatgptsusage
https://github.com/unveilingchatgptsusage/unveilingchatgptsusage

Bibliography 275

[TMP+24] Rosalia Tufano, Antonio Mastropaolo, Federica Pepe, Ozren Dabić, Massi-
miliano Di Penta, and Gabriele Bavota. Unveiling chatgpt’s usage in open
source projects: A mining-based study, 2024.

[TMTL12] Shin Hwei Tan, Darko Marinov, Lin Tan, and Gary T. Leavens. @tcomment:
Testing javadoc comments to detect comment-code inconsistencies. In 2012
IEEE Fifth International Conference on Software Testing, Verification and Vali-
dation, pages 260–269, 2012.

[TPB23] Rosalia Tufano, Luca Pascarella, and Gabriele Bavota. Automating code-
related tasks through transformers: The impact of pre-training. In 45th
IEEE/ACM 44th International Conference on Software Engineering, ICSE 2023,
page To appear, 2023.

[TPT+21] Rosalia Tufano, Luca Pascarella, Michele Tufano, Denys Poshyvanyk, and
Gabriele Bavota. Towards automating code review activities. In 2021
IEEE/ACM 43rd International Conference on Software Engineering (ICSE),
pages 163–174. IEEE, 2021.

[TPT22] Patanamon Thongtanunam, Chanathip Pornprasit, and Chakkrit Tan-
tithamthavorn. Autotransform: Automated code transformation to support
modern code review process. In 2022 IEEE/ACM 44th International Confer-
ence on Software Engineering (ICSE), pages 237–248, 2022.

[TPW+19] Michele Tufano, Jevgenija Pantiuchina, Cody Watson, Gabriele Bavota, and
Denys Poshyvanyk. On learning meaningful code changes via neural ma-
chine translation. In Proceedings of the 41st International Conference on Soft-
ware Engineering, ICSE 2019, Montreal, QC, Canada, May 25-31, 2019, pages
25–36, 2019.

[TR10] Andreas Thies and Christian Roth. Recommending rename refactorings. In
Proceedings of RSSE 2010 (2nd International Workshop on Recommendation
Systems for Software Engineering), pages 1–5. ACM, 2010.

[TWB+19a] Michele Tufano, Cody Watson, Gabriele Bavota, Massimiliano Di Penta, Mar-
tin White, and Denys Poshyvanyk. An empirical study on learning bug-fixing
patches in the wild via neural machine translation. ACM Trans. Softw. Eng.
Methodol., 28(4):19:1–19:29, 2019.

[TWB+19b] Michele Tufano, Cody Watson, Gabriele Bavota, Massimiliano Di Penta, Mar-
tin White, and Denys Poshyvanyk. Learning how to mutate source code from
bug-fixes. In 2019 IEEE International Conference on Software Maintenance
and Evolution, ICSME 2019, Cleveland, OH, USA, September 29 - October 4,
2019, pages 301–312, 2019.

[Two] Reel Two. Jumble. http://jumble.sourceforge.net.

http://jumble.sourceforge.net

276 Bibliography

[TYKZ07] Lin Tan, Ding Yuan, Gopal Krishna, and Yuanyuan Zhou. /*icomment: bugs
or bad comments?*/. In 21st ACM Symposium on Operating Systems Princi-
ples, SOSP, pages 145–158, 2007.

[TYZ07] Lin Tan, Ding Yuan, and Yuanyuan Zhou. Hotcomments: How to make
program comments more useful? In Galen C. Hunt, editor, Proceedings of
HotOS’07: 11th Workshop on Hot Topics in Operating Systems. USENIX Asso-
ciation, 2007.

[url] https://pypi.org/project/urlextract/.

[VPSO23] Antonio Vitale, Valentina Piantadosi, Simone Scalabrino, and Rocco Oliveto.
Using deep learning to automatically improve code readability. In 2023
38th IEEE/ACM International Conference on Automated Software Engineering
(ASE), pages 573–584. IEEE, 2023.

[VR02] W. N. Venables and B. D. Ripley. Modern Applied Statistics with S. Springer,
New York, fourth edition, 2002. ISBN 0-387-95457-0.

[VSP+17] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you
need. CoRR, abs/1706.03762, 2017.

[VYW+15] Bogdan Vasilescu, Yue Yu, Huaimin Wang, Premkumar T. Devanbu, and
Vladimir Filkov. Quality and productivity outcomes relating to continuous
integration in github. In ESEC/SIGSOFT FSE, pages 805–816. ACM, 2015.

[VZG22] Priyan Vaithilingam, Tianyi Zhang, and Elena L Glassman. Expectation vs.
experience: Evaluating the usability of code generation tools powered by
large language models. In CHI Conference on Human Factors in Computing
Systems Extended Abstracts, pages 1–7, 2022.

[WAN+21] Fengcai Wen, Emad Aghajani, Csaba Nagy, Michele Lanza, and Gabriele
Bavota. Siri, write the next method. In 43rd IEEE/ACM International Con-
ference on Software Engineering, ICSE, pages 138–149, 2021.

[WCH+22] Feng Wei, Zhenbo Chen, Zhenghong Hao, Fengxin Yang, Hua Wei, Bing Han,
and Sheng Guo. Semi-supervised clustering with contrastive learning for
discovering new intents. arXiv preprint arXiv:2201.07604, 2022.

[WCP+22] Cody Watson, Nathan Cooper, David Nader Palacio, Kevin Moran, and Denys
Poshyvanyk. A systematic literature review on the use of deep learning in
software engineering research. ACM Transactions on Software Engineering
and Methodology (TOSEM), 31(2):1–58, 2022.

[WFH+23] Jules White, Quchen Fu, Sam Hays, Michael Sandborn, Carlos Olea, Henry
Gilbert, Ashraf Elnashar, Jesse Spencer-Smith, and Douglas C. Schmidt. A
prompt pattern catalog to enhance prompt engineering with chatgpt, 2023.

https://pypi.org/project/urlextract/

Bibliography 277

[WGD+19] Deze Wang, Yong Guo, Wei Dong, Zhiming Wang, Haoran Liu, and Shan-
shan Li. Deep code-comment understanding and assessment. IEEE Access,
7:174200–174209, 2019.

[Wil45] Frank Wilcoxon. Individual comparisons by ranking methods. Biometrics
Bulletin, 1(6):80–83, 1945.

[WLG+23] Yue Wang, Hung Le, Akhilesh Deepak Gotmare, Nghi D. Q. Bui, Junnan Li,
and Steven C. H. Hoi. Codet5+: Open code large language models for code
understanding and generation, 2023.

[WLL+20] Bolin Wei, Yongmin Li, Ge Li, Xin Xia, and Zhi Jin. Retrieve and refine:
exemplar-based neural comment generation. In 2020 35th IEEE/ACM Inter-
national Conference on Automated Software Engineering (ASE), pages 349–
360. IEEE, 2020.

[WLT] Edmund Wong, Taiyue Liu, and Lin Tan. CloCom: Mining existing source
code for automatic comment generation. In Software Analysis, Evolution and
Reengineering (SANER), 2015, pages 380–389.

[WLX+19] Bolin Wei, Ge Li, Xin Xia, Zhiyi Fu, and Zhi Jin. Code generation as a dual
task of code summarization. Advances in neural information processing sys-
tems, 32, 2019.

[WNBL] Fengcai Wen, Csaba Nagy, Gabriele Bavota, and Michele Lanza. A large-scale
empirical study on code-comment inconsistencies. In Proceedings of the 27th
International Conference on Program Comprehension, ICPC 2019, pages 53–
64.

[WPVS17] Xiaoran Wang, Lori Pollock, and K Vijay-Shanker. Automatically generating
natural language descriptions for object-related statement sequences. In
2017 IEEE 24th International Conference on Software Analysis, Evolution and
Reengineering (SANER), pages 205–216. IEEE, 2017.

[WRG+22] Carole-Jean Wu, Ramya Raghavendra, Udit Gupta, Bilge Acun, Newsha
Ardalani, Kiwan Maeng, Gloria Chang, Fiona Aga, Jinshi Huang, Charles
Bai, et al. Sustainable ai: Environmental implications, challenges and op-
portunities. Proceedings of Machine Learning and Systems, 4:795–813, 2022.

[WSD+21] Yanlin Wang, Ensheng Shi, Lun Du, Xiaodi Yang, Yuxuan Hu, Shi Han,
Hongyu Zhang, and Dongmei Zhang. Cocosum: Contextual code sum-
marization with multi-relational graph neural network. arXiv preprint
arXiv:2107.01933, 2021.

[WSM+18] Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and
Samuel R Bowman. Glue: A multi-task benchmark and analysis platform for
natural language understanding. arXiv preprint arXiv:1804.07461, 2018.

278 Bibliography

[WTM+20] Cody Watson, Michele Tufano, Kevin Moran, Gabriele Bavota, and Denys
Poshyvanyk. On learning meaningful assert statements for unit test cases.
In Proceedings of the ACM/IEEE 42nd International Conference on Software
Engineering, pages 1398–1409, 2020.

[WWJH21] Yue Wang, Weishi Wang, Shafiq Joty, and Steven C.H. Hoi. CodeT5:
Identifier-aware unified pre-trained encoder-decoder models for code un-
derstanding and generation. In Proceedings of the 2021 Conference on Empir-
ical Methods in Natural Language Processing, pages 8696–8708, Online and
Punta Cana, Dominican Republic, November 2021. Association for Compu-
tational Linguistics.

[WWJH23] Weishi Wang, Yue Wang, Shafiq Joty, and Steven CH Hoi. Rap-gen: Retrieval-
augmented patch generation with codet5 for automatic program repair. In
Proceedings of the 31st ACM Joint European Software Engineering Conference
and Symposium on the Foundations of Software Engineering, pages 146–158,
2023.

[WWS+22] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi,
Quoc V Le, Denny Zhou, et al. Chain-of-thought prompting elicits reasoning
in large language models. Advances in neural information processing systems,
35:24824–24837, 2022.

[WXL+21] Haoye Wang, Xin Xia, David Lo, Qiang He, Xinyu Wang, and John Grundy.
Context-aware retrieval-based deep commit message generation. ACM
Transactions on Software Engineering and Methodology (TOSEM), 30(4):1–
30, 2021.

[WXZ23] Yuxiang Wei, Chunqiu Steven Xia, and Lingming Zhang. Copiloting the copi-
lots: Fusing large language models with completion engines for automated
program repair. In Proceedings of the 31st ACM Joint European Software Engi-
neering Conference and Symposium on the Foundations of Software Engineer-
ing, pages 172–184, 2023.

[WYG+22] Chaozheng Wang, Yuanhang Yang, Cuiyun Gao, Yun Peng, Hongyu Zhang,
and Michael R Lyu. No more fine-tuning? an experimental evaluation of
prompt tuning in code intelligence. In Proceedings of the 30th ACM Joint Eu-
ropean Software Engineering Conference and Symposium on the Foundations
of Software Engineering, pages 382–394, 2022.

[WYT13] Edmund Wong, Jinqiu Yang, and Lin Tan. Autocomment: Mining ques-
tion and answer sites for automatic comment generation. In 2013 28th
IEEE/ACM International Conference on Automated Software Engineering
(ASE), pages 562–567. IEEE, 2013.

Bibliography 279

[WZL+20] Ruyun Wang, Hanwen Zhang, Guoliang Lu, Lei Lyu, and Chen Lyu. Fret:
Functional reinforced transformer with bert for code summarization. IEEE
Access, 8:135591–135604, 2020.

[WZS+20] Wenhua Wang, Yuqun Zhang, Yulei Sui, Yao Wan, Zhou Zhao, Jian Wu, S Yu
Philip, and Guandong Xu. Reinforcement-learning-guided source code sum-
marization using hierarchical attention. IEEE Transactions on software Engi-
neering, 48(1):102–119, 2020.

[WZS+22] Wenhua Wang, Yuqun Zhang, Yulei Sui, Yao Wan, Zhou Zhao, Jian Wu,
Philip S. Yu, and Guandong Xu. Reinforcement-learning-guided source code
summarization using hierarchical attention. IEEE Transactions on Software
Engineering, 48(1):102–119, 2022.

[WZY+18] Yao Wan, Zhou Zhao, Min Yang, Guandong Xu, Haochao Ying, Jian Wu,
and Philip S Yu. Improving automatic source code summarization via deep
reinforcement learning. In Proceedings of the 33rd ACM/IEEE international
conference on automated software engineering, pages 397–407, 2018.

[WZZX20] Wenhua Wang, Yuqun Zhang, Zhengran Zeng, and Guandong Xu. Transˆ 3:
A transformer-based framework for unifying code summarization and code
search. arXiv preprint arXiv:2003.03238, 2020.

[XBL+18] X. Xia, L. Bao, D. Lo, Z. Xing, A. E. Hassan, and S. Li. Measuring program
comprehension: A large-scale field study with professionals. IEEE Transac-
tions on Software Engineering, pages 951–976, 2018.

[XCZ+24] Junjielong Xu, Ziang Cui, Yuan Zhao, Xu Zhang, Shilin He, Pinjia He, Liqun
Li, Yu Kang, Qingwei Lin, Yingnong Dang, et al. Unilog: Automatic log-
ging via llm and in-context learning. In Proceedings of the 46th IEEE/ACM
International Conference on Software Engineering, pages 1–12, 2024.

[XLD+17] Xin Xia, David Lo, Ying Ding, Jafar M. Al-Kofahi, Tien N. Nguyen, and Xinyu
Wang. Improving automated bug triaging with specialized topic model. IEEE
Trans. Software Eng., 43(3):272–297, 2017.

[XQC+17] Yingce Xia, Tao Qin, Wei Chen, Jiang Bian, Nenghai Yu, and Tie-Yan Liu.
Dual supervised learning. In International conference on machine learning,
pages 3789–3798. PMLR, 2017.

[XWW+18] Kun Xu, Lingfei Wu, Zhiguo Wang, Yansong Feng, Michael Witbrock, and
Vadim Sheinin. Graph2seq: Graph to sequence learning with attention-
based neural networks. arXiv preprint arXiv:1804.00823, 2018.

[XWX22] Xuezheng Xu, Xudong Wang, and Jingling Xue. M3v: Multi-modal multi-
view context embedding for repair operator prediction. In 2022 IEEE/ACM
International Symposium on Code Generation and Optimization (CGO), pages
266–277. IEEE, 2022.

280 Bibliography

[XYSZ21] Rui Xie, Wei Ye, Jinan Sun, and Shikun Zhang. Exploiting method names to
improve code summarization: A deliberation multi-task learning approach.
In 2021 IEEE/ACM 29th International Conference on Program Comprehension
(ICPC), pages 138–148. IEEE, 2021.

[XZ23] Chunqiu Steven Xia and Lingming Zhang. Keep the conversation going:
Fixing 162 out of 337 bugs for $0.42 each using chatgpt. arXiv preprint
arXiv:2304.00385, 2023.

[YBdPS+18] Kundi Yao, Guilherme B. de Pádua, Weiyi Shang, Steve Sporea, Andrei Toma,
and Sarah Sajedi. Log4perf: Suggesting logging locations for web-based
systems’ performance monitoring. In Proceedings of the 2018 ACM/SPEC
International Conference on Performance Engineering, pages 127–138, 2018.

[YDY+19] Zhilin Yang, Zihang Dai, Yiming Yang, Jaime G. Carbonell, Ruslan Salakhut-
dinov, and Quoc V. Le. Xlnet: Generalized autoregressive pretraining for
language understanding. In Advances in Neural Information Processing Sys-
tems 32: Annual Conference on Neural Information Processing Systems, pages
5754–5764, 2019.

[YL20] Michihiro Yasunaga and Percy Liang. Graph-based, self-supervised program
repair from diagnostic feedback. In International Conference on Machine
Learning, pages 10799–10808. PMLR, 2020.

[YL21] Michihiro Yasunaga and Percy Liang. Break-it-fix-it: Unsupervised learning
for program repair. In International conference on machine learning, pages
11941–11952. PMLR, 2021.

[YLGS] Shangbo Yun, Shuhuai Lin, Xiaodong Gu, and Beijun Shen. Project-specific
code summarization with in-context learning. Available at SSRN 4705650.

[YMX+10] Ding Yuan, Haohui Mai, Weiwei Xiong, Lin Tan, Yuanyuan Zhou, and
Shankar Pasupathy. Sherlog: error diagnosis by connecting clues from run-
time logs. In Proceedings of the fifteenth International Conference on Architec-
tural support for programming languages and operating systems, pages 143–
154, 2010.

[YPZ12] Ding Yuan, Soyeon Park, and Yuanyuan Zhou. Characterizing logging prac-
tices in open-source software. In 2012 34th International Conference on Soft-
ware Engineering (ICSE), pages 102–112. IEEE, 2012.

[YSHL22] Zhou Yang, Jieke Shi, Junda He, and David Lo. Natural attack for pre-trained
models of code. In Proceedings of the 44th International Conference on Soft-
ware Engineering, pages 1482–1493, 2022.

[YWCS18] Ziyu Yao, Daniel S Weld, Wei-Peng Chen, and Huan Sun. Staqc: A system-
atically mined question-code dataset from stack overflow. In Proceedings of
the 2018 World Wide Web Conference, pages 1693–1703, 2018.

Bibliography 281

[YXF+23] Wenhao Ye, Jun Xia, Shuo Feng, Xiangyu Zhong, Shuai Yuan, and Zhitao
Guan. Fixgpt: A novel three-tier deep learning model for automated pro-
gram repair. In 2023 8th International Conference on Data Science in Cy-
berspace (DSC), pages 499–505. IEEE, 2023.

[YXZ+20] Wei Ye, Rui Xie, Jinglei Zhang, Tianxiang Hu, Xiaoyin Wang, and Shikun
Zhang. Leveraging code generation to improve code retrieval and summa-
rization via dual learning. In Proceedings of The Web Conference 2020, pages
2309–2319, 2020.

[YZH+22] Wei Yuan, Quanjun Zhang, Tieke He, Chunrong Fang, Nguyen Quoc Viet
Hung, Xiaodong Hao, and Hongzhi Yin. Circle: continual repair across pro-
gramming languages. In Proceedings of the 31st ACM SIGSOFT international
symposium on software testing and analysis, pages 678–690, 2022.

[YZP+12] Ding Yuan, Jing Zheng, Soyeon Park, Yuanyuan Zhou, and Stefan Savage.
Improving software diagnosability via log enhancement. ACM Transactions
on Computer Systems (TOCS), 30(1):1–28, 2012.

[ZAX+22] Shuyan Zhou, Uri Alon, Frank F Xu, Zhengbao Jiang, and Graham Neubig.
Docprompting: Generating code by retrieving the docs. In The Eleventh In-
ternational Conference on Learning Representations, 2022.

[ZCG+22] Jialu Zhang, José Cambronero, Sumit Gulwani, Vu Le, Ruzica Piskac, Gus-
tavo Soares, and Gust Verbruggen. Repairing bugs in python assignments
using large language models. arXiv preprint arXiv:2209.14876, 2022.

[ZCH+20] Jie Zhou, Ganqu Cui, Shengding Hu, Zhengyan Zhang, Cheng Yang, Zhiyuan
Liu, Lifeng Wang, Changcheng Li, and Maosong Sun. Graph neural net-
works: A review of methods and applications. AI open, 1:57–81, 2020.

[ZCSC19] Yi Zeng, Jinfu Chen, Weiyi Shang, and Tse-Hsun Peter Chen. Studying the
characteristics of logging practices in mobile apps: a case study on f-droid.
Empirical Software Engineering, 24(6):3394–3434, 2019.

[ZFSD21] Fiorella Zampetti, Gianmarco Fucci, Alexander Serebrenik, and Massimil-
iano Di Penta. Self-admitted technical debt practices: a comparison between
industry and open-source. Empir. Softw. Eng., 26(6):131, 2021.

[ZHCHL20] Rui Zhou, Mohammad Hamdaqa, Haipeng Cai, and Abdelwahab Hamou-
Lhadj. Mobilogleak: a preliminary study on data leakage caused by poor
logging practices. In 2020 IEEE 27th International Conference on Software
Analysis, Evolution and Reengineering (SANER), pages 577–581. IEEE, 2020.

[ZHF+15] Jieming Zhu, Pinjia He, Qiang Fu, Hongyu Zhang, Michael R Lyu, and Dong-
mei Zhang. Learning to log: Helping developers make informed logging de-
cisions. In 2015 IEEE/ACM 37th IEEE International Conference on Software
Engineering, volume 1, pages 415–425. IEEE, 2015.

282 Bibliography

[ZJW+23] Yuwei Zhang, Zhi Jin, Zejun Wang, Ying Xing, and Ge Li. Saga:
Summarization-guided assert statement generation. arXiv preprint
arXiv:2305.14808, 2023.

[ZKL+22] Albert Ziegler, Eirini Kalliamvakou, X Alice Li, Andrew Rice, Devon Rifkin,
Shawn Simister, Ganesh Sittampalam, and Edward Aftandilian. Productiv-
ity assessment of neural code completion. In Proceedings of the 6th ACM
SIGPLAN International Symposium on Machine Programming, pages 21–29,
2022.

[ZKW+19] Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q Weinberger, and Yoav
Artzi. Bertscore: Evaluating text generation with bert. arXiv preprint
arXiv:1904.09675, 2019.

[ZKW+20] Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q. Weinberger, and Yoav
Artzi. Bertscore: Evaluating text generation with BERT. In 8th International
Conference on Learning Representations, ICLR, 2020.

[ZKZ+15] Yukun Zhu, Ryan Kiros, Richard S. Zemel, Ruslan Salakhutdinov, Raquel Ur-
tasun, Antonio Torralba, and Sanja Fidler. Aligning books and movies: To-
wards story-like visual explanations by watching movies and reading books.
In 2015 IEEE International Conference on Computer Vision, ICCV, pages 19–
27, 2015.

[ZLJX23] Yuwei Zhang, Ge Li, Zhi Jin, and Ying Xing. Neural program repair with
program dependence analysis and effective filter mechanism. arXiv preprint
arXiv:2305.09315, 2023.

[ZM10] Minghui Zhou and Audris Mockus. Growth of newcomer competence: chal-
lenges of globalization. In Proceedings of the Workshop on Future of Software
Engineering Research, FoSER 2010, at the 18th ACM SIGSOFT International
Symposium on Foundations of Software Engineering, pages 443–448. ACM,
2010.

[ZNA+17] Fiorella Zampetti, Cedric Noiseux, Giuliano Antoniol, Foutse Khomh, and
Massimiliano Di Penta. Recommending when design technical debt should
be self-admitted. In 2017 IEEE International Conference on Software Mainte-
nance and Evolution, ICSME 2017, Shanghai, China, September 17-22, 2017,
pages 216–226, 2017.

[ZNDP22] Fiorella Zampetti, Vittoria Nardone, and Massimiliano Di Penta. Problems
and solutions in applying continuous integration and delivery to 20 open-
source cyber-physical systems. In Proceedings of the 19th International Con-
ference on Mining Software Repositories, pages 646–657, 2022.

[ZPN+22a] Jiyang Zhang, Sheena Panthaplackel, Pengyu Nie, Junyi Jessy Li, and Milos
Gligoric. Coditt5: Pretraining for source code and natural language editing.

Bibliography 283

In Proceedings of the 37th IEEE/ACM International Conference on Automated
Software Engineering, pages 1–12, 2022.

[ZPN+22b] Jiyang Zhang, Sheena Panthaplackel, Pengyu Nie, Junyi Jessy Li, and Milos
Gligoric. CoditT5: pretraining for source code and natural language editing.
In 37th IEEE/ACM International Conference on Automated Software Engineer-
ing, ASE 2022, Rochester, MI, USA, October 10-14, 2022, pages 22:1–22:12.
ACM, 2022.

[ZPX+19] Xiang Zhou, Xin Peng, Tao Xie, Jun Sun, Chao Ji, Dewei Liu, Qilin Xiang,
and Chuan He. Latent error prediction and fault localization for microser-
vice applications by learning from system trace logs. In Proceedings of the
2019 27th ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering, pages 683–694,
2019.

[ZSD18] Fiorella Zampetti, Alexander Serebrenik, and Massimiliano Di Penta. Was
self-admitted technical debt removal a real removal?: an in-depth perspec-
tive. In Proceedings of the 15th International Conference on Mining Software
Repositories, MSR 2018, Gothenburg, Sweden, May 28-29, 2018, pages 526–
536. ACM, 2018.

[ZSD20] Fiorella Zampetti, Alexander Serebrenik, and Massimiliano Di Penta. Auto-
matically learning patterns for self-admitted technical debt removal. In 27th
IEEE International Conference on Software Analysis, Evolution and Reengineer-
ing, SANER 2020, London, ON, Canada, February 18-21, 2020, pages 355–
366. IEEE, 2020.

[ZSL+22] Yu Zhao, Ting Su, Yang Liu, Wei Zheng, Xiaoxue Wu, Ramakanth Kavuluru,
William G. J. Halfond, and Tingting Yu. Recdroid+: Automated end-to-end
crash reproduction from bug reports for android apps. ACM Trans. Softw.
Eng. Methodol., 31(3):36:1–36:33, 2022.

[ZSX+21] Qihao Zhu, Zeyu Sun, Yuan-an Xiao, Wenjie Zhang, Kang Yuan, Yingfei
Xiong, and Lu Zhang. A syntax-guided edit decoder for neural program
repair. In Proceedings of the 29th ACM joint meeting on European software
engineering conference and symposium on the foundations of software engi-
neering, pages 341–353, 2021.

[ZSZ+23] Qihao Zhu, Zeyu Sun, Wenjie Zhang, Yingfei Xiong, and Lu Zhang. Tare:
Type-aware neural program repair. In 2023 IEEE/ACM 45th International
Conference on Software Engineering (ICSE), pages 1443–1455. IEEE, 2023.

[ZVP+20] Fiorella Zampetti, Carmine Vassallo, Sebastiano Panichella, Gerardo Can-
fora, Harald Gall, and Massimiliano Di Penta. An empirical characterization
of bad practices in continuous integration. Empirical Software Engineering,
25:1095–1135, 2020.

284 Bibliography

[ZWZ+20a] Jian Zhang, Xu Wang, Hongyu Zhang, Hailong Sun, and Xudong Liu.
Retrieval-based neural source code summarization. In 2020 IEEE/ACM 42nd
International Conference on Software Engineering (ICSE), pages 1385–1397,
2020.

[ZWZ+20b] Jian Zhang, Xu Wang, Hongyu Zhang, Hailong Sun, and Xudong Liu.
Retrieval-based neural source code summarization. In 2020 IEEE/ACM 42nd
International Conference on Software Engineering (ICSE), pages 1385–1397.
IEEE, 2020.

[ZXL+19] Xu Zhang, Yong Xu, Qingwei Lin, Bo Qiao, Hongyu Zhang, Yingnong Dang,
Chunyu Xie, Xinsheng Yang, Qian Cheng, Ze Li, et al. Robust log-based
anomaly detection on unstable log data. In Proceedings of the 2019 27th ACM
Joint Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering, pages 807–817, 2019.

[ZYD+19] Chen Zhi, Jianwei Yin, Shuiguang Deng, Maoxin Ye, Min Fu, and Tao Xie.
An exploratory study of logging configuration practice in java. In 2019 IEEE
International Conference on Software Maintenance and Evolution (ICSME),
pages 459–469. IEEE, 2019.

[ZYY+19] Yu Zhou, Xin Yan, Wenhua Yang, Taolue Chen, and Zhiqiu Huang. Aug-
menting java method comments generation with context information based
on neural networks. Journal of Systems and Software, 156:328–340, 2019.

[ZZLW17] Wenhao Zheng, Hong-Yu Zhou, Ming Li, and Jianxin Wu. Code attention:
Translating code to comments by exploiting domain features. arXiv preprint
arXiv:1709.07642, 2017.

[ZZSL20a] Jingqing Zhang, Yao Zhao, Mohammad Saleh, and Peter Liu. Pegasus: Pre-
training with extracted gap-sentences for abstractive summarization. In
International Conference on Machine Learning, pages 11328–11339. PMLR,
2020.

[ZZSL20b] Jingqing Zhang, Yao Zhao, Mohammad Saleh, and Peter J. Liu. PEGASUS:
pre-training with extracted gap-sentences for abstractive summarization. In
37th International Conference on Machine Learning, ICML, pages 11328–
11339, 2020.

	Contents
	I Prologue
	Introduction
	Thesis Statement
	Research Contributions
	Automating Code-related Tasks via Pre-trained Models
	Improving the Evaluation of Code Summarization Techniques
	Evaluating the Robustness of DL-based techniques for Generating Code

	Outline

	II Empirical Investigations About the Usage of DL-based Solutions for Code-Related Tasks
	Background and Related Work
	Automated Bug-Fixing
	Source Code Mutation
	Generation of Assert Statements
	Method-level Code Summarization
	Strength and Weaknesses of AI-driven Solutions for Software Developers

	Towards Automating Code-Related Tasks via Pre-trained Models of Code
	Text-to-Text-Transfer-Transformer
	An Overview of T5
	Pre-training of T5
	Fine-tuning of T5
	Fine-tuning dataset
	Decoding Strategy
	Data Balancing for the multi-task model

	Research Questions and Context
	Data Collection and Analysis
	Hyperparameter Tuning

	Results Discussion
	Performance of T5 (RQ1) and impact of transfer learning on performance (RQ1.1-RQ1.2)
	Competitiveness of the T5 model compared to the baselines (RQ2)
	Qualitative Analysis
	Training and Inference Time

	Threats to Validity
	Conclusions

	Evaluating the Robustness of DL-based techniques for Generating Code
	Study Design
	Context Selection
	Data Collection
	Data Analysis
	Replication Package

	Results Discussion
	RQ0: Evaluation of Automated Praphrase Generators
	RQ1: Robustness of GitHub Copilot

	Threats to Validity
	Conclusions

	III Automated Log Generation
	Background and Related Work
	Log Statement Generation via Deep Learning
	LEONID
	Datasets Needed for Training, Validation, and Testing
	Pre-Training Dataset
	Fine-tuning Dataset: Single Log Generation
	Fine-tuning Dataset: Single Log Generation with IR
	Fine-tuning Dataset: Multi-log Injection with IR
	Fine-tuning Dataset: Deciding Whether Log Statements are Needed
	Training and Hyperparameter Tuning
	Generating Predictions

	Study Design
	Data Collection and Analysis

	Results Discussion
	RQ1: Injecting a single log statement
	RQ2: Injecting multiple log statements
	RQ3: Deciding whether log statements are needed

	Threats to Validity
	Conclusions

	IV Code Summarization
	Background and Related Work
	Snippet-level Code Summarization
	Evaluation of Code Summarization Techniques and Metrics
	Evaluating Code Summarization Techniques
	Assessing the Quality of Code Comments

	Towards Summarizing Code Snippets
	Building a Dataset of Documented Code Snippets
	Study Design
	Dataset

	Automatic Classification of Code Comments and Linkage to Documented Code
	Approach Description
	Pre-training Dataset
	Fine-tuning Dataset
	Training Procedure and Hyperparameters Tuning
	Study Design
	Data Collection And Analysis
	Results Discussion

	Snippets Summarization Using T5
	Approach Description
	Fine-tuning Dataset
	Training Procedure and Hyperparameters Tuning
	Study Design
	Data Collection And Analysis
	Results

	Threats to Validity
	Conclusions

	Supporting Code Summarization via Comment Completion Techniques
	T5 to Support Code Comment Completion
	Problem Definition
	Dataset Preparation
	Pre-training of T5
	Fine-tuning of T5
	Preparing the Dataset for the Model Fine-Tuning
	Dataset Splitting
	Decoding Strategy
	Hyperparameter Tuning

	Study Design
	N-Gram Model
	Evaluation Metrics and Data Analysis

	Results Discussion
	Threats to Validity
	Conclusions

	A New Metric for Evaluating Code Summarization Techniques
	SIDE
	MPNet in a Nutshell
	Contrastive Learning
	Fine-tuning Dataset
	Training and Model Evaluation

	Study Design
	Evaluation Dataset
	Variable Selection
	Words/characters-overlap based Metrics
	Embedding-based Metrics
	Analysis Methodology

	Results Discussion
	Qualitative Analysis
	Ablation Study - Impact of Hard-negatives

	Threats to Validity
	Conclusions

	V Epilogue
	Conclusions and Future Work
	Limitations and Future Work
	Applicability and generalizability of our findings across various programming languages and models
	Evaluating the perceived usefulness of our techniques
	In-context learning and prompt engineering for software-related practices
	Green-AI for software engineering

	Closing Words

	Appendices

