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Abstract. We discuss the theory of Coleman families interpolating critical-slope Eisenstein series. We
apply it to study degeneration phenomena at the level of Euler systems. In particular, this allows us

to prove relations between Kato elements, Beilinson–Flach classes and diagonal cycles, and also between
Heegner cycles and elliptic units. We expect that this method could be extended to construct new instances

of Euler systems.

Contents

Introduction 1

Part A. Critical-slope Eisenstein series and their Galois modules 3
A1. Notations 3
A2. Galois representations 3
A3. Classical cohomology 4
A4. Overconvergent cohomology 5
A5. Duality and Atkin–Lehner 7
A6. P-adic families 8
A7. Nearly overconvergent cohomology 9
A8. P-adic Hodge theory 10

Part B. Euler systems and p-adic L-functions: background 12
B2. The GL2 /Q setting 13
B3. Double and triple products 14
B4. GL1 over an imaginary quadratic field 16
B5. Heegner classes 18

Part C. Critical-slope Eisenstein specialisations 19
C1. Deformation of Beilinson–Flach elements 19
C2. Deformation of diagonal cycles 23
C3. Deformation of Heegner points 27
References 29

Introduction

Overview. In the beautiful survey article [BCD+14], Bertolini et al. described several families of global
cohomology classes arising from modular curves, including the Gross–Kudla–Schoen diagonal-cycle classes
for a triple product of modular forms, and the Euler systems of Beilinson–Flach and Beilinson–Kato elements
for two and for one modular form. They noted that the latter two constructions formally behave, in many
ways, as if they were a “degenerate case” of the Gross–Kudla–Schoen classes with one or more of the cusp
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forms replaced by Eisenstein series. However, while this formal resemblance has proved very informative
as a heuristic to guide the development of the theory, making it into a rigorous mathematical statement is
not straightforward: since the Gross–Kudla–Schoen cycle extends to the triple product of the compactified
modular curves X1(N), the projection of this cycle to a non-cuspidal Hecke eigenspace is zero.

In this work, we develop an approach which allows us to make this “Eisenstein degeneration” of Euler
systems into a rigorous theory. Our approach is based on two ingredients: the theory developed in [LZ16] to
study the variation of Euler systems in Coleman families; and the existence of critical-slope Eisenstein series,
which are Eisenstein series arising as specialisations of Coleman families which are generically cuspidal.

Using this method, we show the following: if f is a Coleman family passing through a critical-slope
Eisenstein series fβ , and g,h are (cuspidal) Coleman families, then the process of “specialisation at fβ”
relates Euler systems in the following way:

(i) The Beilinson–Flach classes for f × g go to a multiple of the Beilinson–Kato classes for g. This setting
is studied in Section C1.

(ii) The triple-product classes for f ×g×h are sent to the Beilinson–Flach classes for g×h. This scenario
is presented in Section C2.

(iii) The Heegner classes for f ×λ, where λ is a (suitable) Grössencharacter of an imaginary quadratic field,
go to the elliptic-unit classes for λ. This is the content of the final section C3.

More precisely, in each case, we show that the image of the Euler system for the “larger” family is an
Euler system class for the “smaller” family, multiplied by an additional, purely local “logarithm” term (and
also by an extra p-adic L-function factor in case (ii), which can be naturally interpreted in terms of the Artin
formalism for L-functions).

Besides the intrinsic interest in relating these natural and important objects to each other, we hope that
the techniques that we develop here may be of use in constructing new Euler systems, as in forthcoming
work of Barrera et al. discussed below. We hope to pursue this further in a future work.

We have also included an extensive section (Part B) devoted to recalling the main points in the theory
for each of the Euler systems discussed in this note. We hope that this could help to reconcile the notations
used in different papers, and could help as a guide to the less experienced reader willing to gain expertise
in the area. Some of the results we present have been proved under certain simplifying assumptions, like
considering tame level 1 for the degeneration of diagonal cycles to Beilinson–Flach classes; or restricting to
class number 1 when discussing how to recover elliptic units beginning with Heegner points. Our purpose
was illustrating our method without dealing with certain technical difficulties, but of course most of these
hypotheses can be removed with some extra work.

Relation to other work. There are a number of prior works studying the specialisation of families of
p-adic L-functions and/or Euler systems at points of the eigencurve corresponding to cuspidal points of
critical slope; see for instance [LZ12] and rather more recently [BPS18].

In a slightly different direction, one can consider families of cusp forms degenerating to weight one Eisen-
stein series, which exist when the Eisenstein series is non-p-regular. This approach has the advantage that
the resulting families are ordinary, but on the other hand, the eigencurve is not smooth (or even Gorenstein)
at such points; its local geometry has been studied in detail by Pozzi [Poz19]. A forthcoming work of Barrera,
Cauchi, Molina and Rotger will use this approach, applied to diagonal cycles on triple products of quater-
nionic Shimura curves, in order to define global Galois cohomology classes associated to products of one or
two Hilbert modular forms. (This could potentially compensate for the fact that the original construction
of the Beilinson–Flach and Beilinson–Kato Euler systems does not generalise to the Hilbert case, owing to
the lack of suitable Eisenstein classes.) It will be interesting to explore the relation between their techniques
and ours once their manuscript becomes available.

Finally, a recent work of Bertolini, Darmon and Venerucci [BDV22] proves a striking conjecture of Perrin-
Riou relying on a comparison between Beilinson–Flach elements associated to weight 1 Eisenstein series and
Beilinson–Kato elements, showing the strength of this kind of techniques.

Acknowledgements. The authors would like to thank Massimo Bertolini, Kaẑım Büyükboduk, Marco
Seveso, Rodolfo Venerucci, and Sarah Zerbes for informative conversations related to this work, and Victor
Rotger for his feedback on an earlier draft. We also thank the anonymous referees for a very careful reading
of the text, whose comments notably contributed to improve the exposition of the article.
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Part A. Critical-slope Eisenstein series and their Galois modules

A1. Notations

We introduce notation for Eisenstein series, following the conventions of [BD15]. Let ψ, τ be two primitive
Dirichlet characters of conductors N1, N2, and let N = N1N2. Let r ⩾ 0 be such1 that ψ(−1)τ(−1) = (−1)r.
If r = 0, assume ψ and τ are not both trivial.

Definition A1.1. We write f = Er+2(ψ, τ) for the (classical) modular form of level N and weight r + 2
given by

Er+2(ψ, τ) = (∗) +
∑
n⩾1

qn
∑

n=d1d2
(N1,d1)=(N2,d2)=1

ψ(d1)τ(d2)d
r+1
2 ,

where (∗) is the appropriate constant defined e.g in [BD15, §1]. In particular we have aℓ(f) = ψ(ℓ)+ℓr+1τ(ℓ)
for primes ℓ ∤ N .

We have two eigenforms of level Γ1(N) ∩ Γ0(p) associated to Er+2(ψ, τ): one ordinary and one critical-
slope, with eigenvalues

α := ψ(p) and β := pr+1τ(p)

respectively. We denote these two eigenforms by fα and fβ respectively.
We shall want to study the p-adic Galois representations attached to these forms, for a prime p ∤ N . It

will be helpful to make the following definition:

Definition A1.2. We say the Eisenstein series f = Er+2(ψ, τ) is p-decent if one of the following conditions
holds:

• r > 0;
• r = 0, and for every prime ℓ | Np, either the conductor of ψ/τ is divisible by ℓ, or (ψ/τ)(ℓ) ̸= 1.

Remark A1.3. This is slightly stronger than Belläıche’s definition of “decent” [Bel12, Definition 1], since we
also make the assumption at p.

A2. Galois representations

We first fix notation for Galois characters. Let p be a prime (which will be fixed for the duration of this
paper).

Notation.

• Let ℓ be a prime. We write Frobℓ for an arithmetic Frobenius element at ℓ in Gal(Q/Q); this
depends, of course, on the choice of an embedding of Q into Qℓ, and is well-defined modulo the
inertia subgroup for this embedding.

• The p-adic cyclotomic character Gal(Q/Q) → Q×
p will be denoted by ε, so that ε(Frobℓ) = ℓ for

ℓ ̸= p.
• If χ is a Dirichlet character, we interpret χ as a character Gal(Q/Q)→ C× unramified at all primes
ℓ not dividing the conductor, and mapping Frob−1

ℓ to χ(ℓ) for all such primes ℓ.

Now let χ, ψ be Dirichlet characters, and r ⩾ 0 an integer, as in Definition A1.1; and choose an embedding
Q(ψ, τ) ↪→ L, where Q(ψ, τ) ⊂ C is the finite extension of Q generated by the values of ψ and τ , and L
is a finite extension of Qp. Hence we may regard the q-expansion coefficients an(f) of f = Er+2(ψ, τ) as
elements of L.

Theorem A2.1 (Soulé). If f is a p-decent Eisenstein series, there are exactly three isomorphism classes
of continuous Galois representations ρ : GQ → GL2(L) which are unramified at primes ℓ ∤ Np and satisfy

tr ρ(Frob−1
ℓ ) = aℓ(f). These are as follows:

(1) The semisimple representation ψ ⊕ τε−1−r.
(2) Exactly one non-split representation having τε−1−r as a subrepresentation. This representation splits

locally at ℓ for every ℓ ̸= p, but does not split at p, and is not crystalline (or even de Rham).

1We use r for the weight of our Eisenstein series, rather than the more conventional k, since k will later be the weight of a
generic form in a family passing through the Eisenstein point (so k may or may not be equal to r).
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(3) Exactly one non-split representation having ψ as a subrepresentation. This representation splits
locally at ℓ for every ℓ ̸= p, and is crystalline at p.

This follows from cases of the Bloch–Kato conjecture due to Soulé; see [BC06, §5.1] for the statement in
this form. If f is not p-decent, there will be extra representations in case (3), but we can repair the statement
by only considering representations which are assumed to be unramified (resp. crystalline) at each prime
ℓ ̸= p (resp. at ℓ = p) where the decency hypothesis fails.

Remark A2.2. The dual of the representation in (3) is the one that Belläıche describes as the “preferred
representation” associated to f [Bel12, Lemma 2.10].

A3. Classical cohomology

For an L-vector spaceM with an action of the Hecke algebra of level N and weight r+2, we letM [T = f ]
signify the maximal subspace of M on which the Hecke operators T (ℓ), U(ℓ) act as aℓ(f). Dually, we let
M [T ′ = f ] for the corresponding eigenspace for the dual Hecke operators T ′(ℓ), U ′(ℓ).

Let Y1(N) denote the modular curve classifying2 elliptic curves with a point of order N (identified with
a quotient of the upper half-plane via τ ↔

(
C/(Z+ Zτ), 1

N

)
, so the cusp ∞ is not defined over Q). We let

Y1(N) denote the modular curve over Q.

A3.1. Etale cohomology. Let HQp
be the relative Tate module of the universal elliptic curve over Y1(N),

and H ∨
Qp

for its dual (the relative étale H1). We write Vr = Symr
(
H ∨

Qp

)
⊗Qp L.

Proposition A3.1. Let f = Er+2(ψ, τ) as above. Then the eigenspaces

H1
c (Y1(N),Vr)[T = f ] and H1(Y1(N),Vr)[T = f ]

are both one-dimensional over L, but the natural map between them is 0. The group Gal(Q/Q) acts on the
former by ψ, and on the latter by τε−1−r.

Note that H1
c (Y1(N),Vr) is canonically isomorphic to the space of modular symbols SymbΓ1(N)(Vr). We

endow these spaces with Galois actions following the normalisations of [KLZ17].

Remark A3.2. If we work instead with the modular curve Y of level Γ = Γ1(N) ∩ Γ0(p), and use either
of the two p-stabilised eigenforms fα, fβ , then the resulting spaces are isomorphic to those at level N via
degeneracy maps, so the Galois actions are the same as above. That is, for ? = α or β, the spaces

H1
c (Y ,Vr)[T = f?] and H1(Y ,Vr)[T = f?]

are 1-dimensional, and isomorphic as Galois representations to ψ and τε−1−r respectively.

A3.2. De Rham cohomology. We have similar results for de Rham cohomology: the eigenspaces

H1
dR,c(Y1(N),Vr)[T = f ] and H1

dR(Y1(N),Vr)[T = f ]

are both 1-dimensional over L, but the former has its grading concentrated in degree 0, and the latter in
degree r + 1. Using the BGG complex (with and without compact supports, see [LSZ20, Prop. 2.4.1]), we
can define classical coherent-cohomology eigenclasses

ηf ∈ H1
(
X1(N)Q, ω

−r(−cusps)
)
[T = f ] and ωf ∈ H1

(
X1(N)Q, ω

r+2
)
[T = f ]

whose images span the f -eigenspaces in H1
dR,c and H1

dR respectively; these are characterised, as usual, by
the requirement that ωf be the image of the differential form associated to f , and ηf pair to 1 with ωf∗

under Serre duality. Here, f∗ is the eigenform conjugate to f .
In general ηf and ωf will not be defined over L, only over L(µN ). We can correct this by multiplying them

by a suitable Gauss sum, to make them L-rational, giving modified classes η̃f , ω̃f spanning the corresponding
spaces over L, exactly as in the cuspidal case considered in §6.1 of [KLZ20]. However, for our purposes it is
simpler to assume that L is large enough that it contains an N -th root of unity (so the Gauss sum is in L
anyway), in which case ηf and ωf are L-rational. We shall assume that L satisfies this condition henceforth.

2Throughout this discussion we shall assume N ⩾ 4, so that Y1(N) exists as a fine moduli space. The remaining cases can
be dealt with by the usual trick of passing to the moduli space of elliptic curves with a point of order N and an auxiliary full

level R structure, for some R ⩾ 3 coprime to pN , and taking invariants under the action of GL2(Z/R) on the cohomology.
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A4. Overconvergent cohomology

Let Γ = Γ1(N) ∩ Γ0(p), and Y = Y (Γ), equipped with a model over Q compatibly with the one above
for Y1(N) (so Y is the modular curve denoted Y (1, N(p)) in [Kat04]). For each integer r ⩾ 0 we have an
étale sheaf Dr on Y , corresponding to the representation of Γ on the dual space of the Tate algebra in one
variable z, with the action of Γ twisted by (a + cz)r. This also makes sense for r < 0 (and indeed for any
locally analytic character of Z×

p ).

Remark A4.1. This sheaf is the sheaf denoted Dr,m(H0)(−r) in [LZ16], with m an auxiliary parameter
(radius of analyticity); we take m = 0 and drop it from the notations.

These sheaves are normally considered as topological (Betti) sheaves, but they can be promoted to étale
sheaves on the canonical model of Y as a Z[1/Np]-scheme; cf. [AIS15, LZ16]. Note that the Hecke operators
away from p act on the cohomology of Dr, as does the operator U(p); but U ′(p) does not act on this sheaf.

As in [Bel12, §3.2], we have a specialisation morphism Dr
ρr−→ Vr, which fits into an exact sequence of

sheaves on Y ,

0 −→ D−2−r(−1− r)
θr+1

−−−→ Dr
ρr−→ Vr −→ 0,

where ρr is the natural specialisation map, (−1− r) denotes a Tate twist, and θr+1 is the dual of (r+1)-fold
differentiation.

A4.1. Compact support. A theorem due to Stevens (see [PS13, Lemma 5.2]) shows that H2
c (Y ,D−2−r) =

0, and of course H0
c (Y ,Vr) is also zero, so we obtain a short exact sequence of compactly-supported étale

cohomology spaces

(1) 0 −→ H1
c (Y ,D−2−r(−1− r))

θr+1

−−−→ H1
c (Y ,Dr)

ρr−→ H1
c (Y ,Vr) −→ 0.

This is an exact sequence of étale sheaves on SpecZ[1/Np] (equivalently, of representations of Gal(Q/Q)
unramified outside Np). The map ρr is compatible with the Hecke operators, while the map θr+1 is Hecke-
equivariant up to a twist: we have T (ℓ) ◦ θr+1 = ℓr+1θr+1 ◦ T (ℓ) for primes ℓ ∤ Np, and similarly for U(ℓ)
with ℓ | Np.

Proposition A4.2 ([Bel12, Theorem 1]). Let fβ = Ecrit
r+2(ψ, τ) be the critical-slope p-stabilisation of a

p-decent Eisenstein series Er+2(ψ, τ), as before. Then for each sign ±, the eigenspace

H1
c (Y ,Dr)[T = fβ ]

±

where complex conjugation acts by ±1 is one-dimensional.

This shows that there is an “extra” eigenspace in the kernel of the classical specialisation map ρr, and
complex conjugation acts on this space by −ε(f), where ε(f) = ψ(−1).

Definition A4.3. We define

V c(fβ) := H1
c (Y ,Dr)[T = fβ ],

which is a 2-dimensional representation of Gal(Q/Q).

In practice we are interested in a more restrictive situation. For the following result, M†
r+2(Γ)(T=fβ)

stands for the generalised eigenspace of overconvergent modular forms associated to fβ .

Definition A4.4 ([Bel12, Definition 2.14]). We say fβ is non-critical if the generalised eigenspace of over-

convergent modular forms M†
r+2(Γ)(T=fβ) associated to fβ is 1-dimensional.

Note that here the notion of being critical has to do, as in Belläıche, with the existence of a gener-
alised eigenspace. In particular, as discussed in [Bel12, §1.3, §2.2.2], critical implies critical-slope, but not
conversely. (Observe that in the notation Ecrit

r+2(ψ, τ), the superscript “crit” refers to this eigenform being
critical-slope, but it is not necessarily critical.)

Theorem A4.5 (Belläıche–Chenevier, see [BD15, Remark 1.5]). The following are equivalent:

• The form fβ is non-critical.
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• The localisation map

H1
f (Q, ψτ

−1ε1+r)→ H1
f (Qp, ψτ

−1ε1+r)

is non-zero.
• We have Lp(ψ

−1τ, r + 1) ̸= 0, where Lp denotes the Kubota–Leopoldt p-adic Dirichlet L-function.
• The Galois representation in case (3) of Theorem A2.1 is not locally split at p.

It is conjectured that these equivalent statements are always true (see the remarks loc.cit.). The following
partial result shows that they are true “often”:

Proposition A4.6.

(i) For any given ψ and τ , the Eisenstein series Ecrit
r+2(ψ, τ) is non-critical for all but finitely many integers

r ⩾ 0 satisfying the parity condition (−1)r = ψτ(−1).
(ii) If r = 0, and ψ, τ are such that the Eisenstein series Ecrit

2 (ψ, τ) is p-decent, then this form is also
non-critical.

Proof. Part (i) follows from the second of the equivalent conditions of Theorem A4.5: the p-adic L-function
Lp(ψ

−1τ, s) is not identically 0 on the components of weight space determined by the parity condition, so it
cannot vanish for infinitely many integers lying in these components.

For part (ii) we use the fact that Lp(χ, 1) ̸= 0 for any non-trivial even Dirichlet character χ, which is a
consequence of the fact that Leopoldt’s conjecture is known to hold for cyclotomic fields; see e.g. [Was97,
Corollary 5.30]. □

We assume henceforth that fβ is non-critical.

Theorem A4.7 ([Bel12, Theorem 4]).

• Both generalised eigenspaces H1
c (Y ,Dr)

±
(T=fβ)

are 1-dimensional over L.

• The ε(f)-eigenspace maps bijectively to its counterpart in H1
c (Y ,Vr).

• The −ε(f)-eigenspace is isomorphic, via the θr+1 map, to the [T = g] eigenspace in H1
c (Y ,D−2−r)

ε(f),
where g = Eord

−r (τ, ψ) (note the reversal of the order of the characters) is the unique eigenform sat-
isfying θr+1(g) = fβ.

Proposition A4.8. There is a short exact sequence of L-vector spaces

0 −→ τε−1−r −→ V c(fβ) −→ ψ −→ 0.

Proof. We know that the space V c(fβ) has a one-dimensional quotient isomorphic to ψ, by (1) and Remark
A3.2. On the other hand, also by (1), the kernel is isomorphic to the (−1− r)-th twist of the H1

c eigenspace
associated to the non-classical ordinary p-adic Eisenstein series g of weight −r. Since fβ is non-critical,

this space must be 1-dimensional. So it suffices to show that Gal(Q/Q) acts on the one-dimensional space
H1
c (Y ,D−2−r)[T = g] via τ .
We now recall (see [Oht99, (2.3.10)] for example) that if W−2−r denotes the component of weight space

containing the integer −2 − r, then there exists a p-adic family of Eisenstein series over W−2−r, whose
specialisation in a classical weight k ∈ W−2−r ∩ Z⩾0 is the classical ordinary Eisenstein series Eord

k+2(τ, ψ),

and whose specialisation at −2− r is g = Eord
−r (τ, ψ).

From the control theorem for étale cohomology in (possibly non-cuspidal) Hida families proved in [Oht99]
(which is also valid, with the same proof, for compactly-supported cohomology), it follows that there is an
open disc U around −2− r in weight space, and a finite-rank free O(U)-module with an action of GQ, whose

specialisation at a weight κ ∈ U is the eigenspace H1
c (Y ,Dκ)[T = Eord

κ+2(τ, ψ)]. By applying Remark A3.2 to
the specialisation at each integer k ⩾ 0 in U (and using the fact that such points are Zariski-dense in U), we
see that this module must be of rank 1 over O(U), and GQ acts on it by the character τ . Specialising back
to κ = −2− r we obtain the result. □

Remark A4.9. This shows that the isomorphism class of V c(fβ) must be one of the isomorphism classes (1)
or (2) in Theorem A2.1. We shall see shortly that it is in fact non-split, so it lies in the isomorphism class
(2), and is not de Rham at p.
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A4.2. Non-compact supports. We now consider the non-compactly-supported space, continuing to as-
sume fβ is p-decent and non-critical.

Definition A4.10. We define
V (fβ) = H1(Y ,Dr)[T = fβ ].

There is a canonical map H1
c (Y ,Dr) → H1(Y ,Dr); its kernel is the space of boundary modular symbols.

This gives a map of Galois representations V c(fβ)→ V (fβ).

Proposition A4.11 ([BD15, Remark 5.10]). The intersection of V c(fβ) with the boundary symbols is 1-
dimensional, and is exactly the τε−1−r subrepresentation.

Hence both eigenspaces H1(Y,Dr)[T = fβ ]
± must have dimension at least 1. In fact these dimensions

are both exactly 1, and are equal to the corresponding generalised eigenspaces, since Bellaiche’s argument
in [Bel12, Theorem 3.30] works for non-compactly-supported cohomology also. We deduce that there is a
short exact sequence of L-linear Galois representations

(2) 0 −→ ψ −→ V (fβ) −→ τε−1−r −→ 0,

so V c(fβ) and V (fβ) have isomorphic semi-simplifications; but the natural map between them is not an iso-
morphism, but rather identifies the one-dimensional ψ-isotypic quotient of V c(fβ) given by Proposition A4.8
with the one-dimensional ψ-isotypic subspace of V (fβ) given by (2).

Remark A4.12. As with V c(fβ) above, we have not yet determined whether V (fβ) is a split or non-split
extension; so it could be either of the isomorphism classes (1) or (3) of Theorem A2.1, but in either case it
is de Rham at p. We shall see shortly that it is in fact the non-split extension (3).

A5. Duality and Atkin–Lehner

As in [LZ16], there is a second family of sheaves D ′
r (denoted by the more verbose notation Dr,m(H ′

0 ) in
op.cit.), which also interpolates the standard finite-dimensional sheaves, but has an action of U ′(p) rather
than U(p). It is the sheaf D ′

r which is used for interpolating Euler system classes in families.

Remark A5.1. There is a canonical L-linear pairing between Dr and D ′
r, landing in the constant sheaf L;

but it is not perfect in general (indeed, we shall see shortly that it does not induce a perfect duality on the
fibre at a critical-slope Eisenstein point).

The two sheaves are interchanged by the Atkin–Lehner involution, modulo a twist of the Galois action;
so the above structural results for D carry over mutatis mutandis to D ′. So, for r ∈ Z⩾0, we have exact
sequences of sheaves on Y

0 −→ D ′
−2−r(1 + r)

θr+1

−−−→ D ′
r
ρr−→ V ∗

r −→ 0,

where V ∗
r is the linear dual of Vr (isomorphic to the Tate twist Vr(r)).

Definition A5.2. For fβ = Ecrit
r+2(ψ, τ) as above, we define

V (fβ)
∗ = H1(Y ,D ′

r(1))[T
′ = fβ ],

which is a 2-dimensional L-linear representation of Gal(Q/Q) fitting into an exact sequence

(3) 0→ τ−1ε1+r → V (fβ)
∗ → ψ−1 → 0.

We define V c(fβ)
∗ as the analogous space with compactly-supported rather than non-compactly-supported

cohomology, so that

(4) 0→ ψ−1 → V c(fβ)
∗ → τ−1ε1+r → 0,

and there is a natural map V c(fβ)
∗ → V (fβ)

∗ whose image is the τ−1ε1+r subrepresentation of the latter.

Remark A5.3. We have therefore defined four Galois representations V (fβ), V (fβ)
∗, V c(fβ), and V

c(fβ)
∗

associated to fβ , all of which are 2-dimensional, with natural 1-dimensional invariant subspaces; and we have
identified the Galois actions on their graded pieces.

We shall see in the next section that all four representations are non-split extensions. From this, it follows
that V (fβ)

∗ is isomorphic to the dual of V (fβ) (with both being de Rham at p), while V c(fβ)
∗ is isomorphic
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to the dual of V c(fβ) (with both being non-de Rham at p), justifying our choice of notations. However, the
pairing giving this duality is not quite the natural Poincaré duality pairing. What we obtain from a naive
application of Poincaré duality is pairings

(5) V c(fβ)× V (fβ)
∗ → L, V (fβ)× V c(fβ)∗ → L

which are not perfect, but rather factor through the 1-dimensional classical quotients of these 2-dimensional
representations.

A6. P-adic families

A6.1. Pseudocharacters. The form fβ is an overconvergent cuspidal eigenform of finite slope, so it defines
a point on the Coleman–Mazur–Buzzard cuspidal eigencurve C0 of tame level N . Moreover, our assumptions
that f be decent and non-critical imply that C0 is smooth at fβ and locally étale over weight space (see
Proposition 2.11 of [Bel12]); so we may choose a closed disc U around fβ which maps isomorphically to its
image in weight space.

We let f be the universal eigenform over U , which is an overconvergent cuspidal eigenform with coefficients
in O(U), and weight k+2 where k : Z×

p → O(U)× is the canonical character; by definition, the specialisation

of f at r ∈ U is fβ . Let us write βf ∈ O(U)× for the U(p)-eigenvalue of f , so that βf (r) = β = pr+1τ(p).
There is a canonical Galois pseudo-character tf : GQ → O(U) satisfying

tf (Frob
−1
ℓ ) = aℓ(f)

for good primes ℓ. If m is the maximal ideal of O(U) corresponding to r, then tf is reducible modulo m and
its reduction is the sum of two distinct characters. Up to shrinking U , we have the following result.

Theorem A6.1 ([BC06, Theorem 1]). The reducibility ideal of the pseudo-character tf is exactly m. □

(More precisely, this is proved in [BC06] for N = 1. However, as noted in Remark 2.9 of [Bel12], this is
purely because a construction of the eigencurve of tame level > 1 was not available in the literature at the
time [BC06] was written, and all of the arguments of op.cit. go over without change to p-decent Eisenstein
series of higher level.)

A6.2. Families of representations. We now define two specific O(U)-linear Galois representations which
both have traces equal to tf , and two more whose traces are the dual t∗f . As shown in [LZ16, §4], there exist
sheaves DU and D ′

U of O(U)-modules on Y , whose specialisations at any κ ∈ U are the sheaves Dκ and D ′
κ

considered above.

Definition A6.2. We define

V (f) := H1
ét

(
Y ,DU

)
[T = f ] V c(f) := H1

ét,c

(
Y ,DU

)
[T = f ]

V (f)∗ := H1
ét

(
Y ,D ′

U (1)
)
[T ′ = f ] V c(f)∗ := H1

ét,c

(
Y ,D ′

U (1)
)
[T ′ = f ]

It follows from the results of [AIS15, LZ16] that if fβ is non-critical, then (up to possibly shrinking U)

the module V (f) is free of rank 2 over O(U) and a direct summand of H1
ét(Y ,DU ), so we have a natural

Hecke-equivariant map

Prf : H
1
ét(Y ,DU )→ V (f);

and V (f) carries a O(U)-linear Galois representation whose trace is tf . Since tf has maximal reducibility
ideal, it follows that the fibre of V (f) at k = r, which is exactly V (fβ), must be a non-split extension. The
same applies mutatis mutandis to the other three modules, showing that all four of V (fβ), V

c(fβ), V (fβ)
∗

and V c(fβ)
∗ are non-split extensions.

Corollary A6.3.

(i) The isomorphism class of the representation V (fβ) is the unique non-split, de Rham extension in case
(3) of Theorem A2.1. The isomophism class of V c(fβ) is the non-de Rham extension in case (2) of
the theorem.

(ii) V (fβ)
∗ is isomorphic to the dual of V (fβ), and V

c(fβ)
∗ to the dual of V c(fβ).
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A6.3. Comparison of O(U)-lattices. There is a natural ‘forget supports’ map V c(f) → V (f), which
is O(U)-linear. Since this map specialises to an isomorphism at any non-critical-slope classical point, it
must be injective, with torsion cokernel; thus we may regard both V c(f) and V (f) as O(U)-lattices in
V (f) ⊗O(U) FracO(U). Shrinking our disc U further if necessary, we may assume that the cokernel is
supported at m.

Since the map V c(fβ) → V (fβ) is not the zero map, V c(f) is not contained in m · V (f). Thus we may
find a basis (e1, e2) of V (f), and an integer r ⩾ 1, such that (e1, X

re2) is a basis of V c(f), where X is a
uniformizer of m. From Theorem A6.1, we must in fact have r = 1. Thus XV (f) ⊂ V c(f), and we have a
chain of inclusions

· · · ⊃ 1
XV

c(f) ⊃ V (f) ⊃ V c(f) ⊃ XV (f) ⊃ . . .
with all of the successive quotients l-dimensional over L, and alternately equal to either ψ or τε−1−r as
Galois modules. Similarly, we have a chain

(6) · · · ⊃ 1
XV

c(f)∗ ⊃ V (f)∗ ⊃ V c(f)∗ ⊃ XV (f)∗ ⊃ . . .

with quotients alternately isomorphic to either ψ−1 or τ−1ε1+r.

A6.4. Duality. We recall the construction of the “Ohta pairing” from [LZ16, §4.3], which is a O(U)-bilinear
pairing on DU × D ′

U , taking values in the constant sheaf OU . This gives rise to a pairing of Galois repre-
sentations {−,−} : V c(f) × V (f)∗ → O(U), interpolating the Poincaré duality pairings on the classical
specialisations.

This pairing is not perfect, since the induced pairing on the fibre at m is the pairing V c(fβ)×V (fβ)
∗ → L

(which we have seen in (5) is non-perfect). However, since the Poincaré duality pairings on non-critical-
slope, cuspidal specialisations of f are perfect, the map V c(f) → HomO(U)(V (f)∗,O(U)) induced by the
Ohta pairing must be injective, with torsion cokernel. Shrinking U if needed, we may suppose the cokernel
is supported at m.

Proposition A6.4. The O(U)-submodule

{x ∈ V c(f)[1/X] : {x, y} ∈ O(U) ∀y ∈ V (f)∗}
is equal to V (f) ⊂ 1

XV
c(f), and hence the Ohta pairing extends uniquely to a perfect O(U)-linear pairing

V (f)× V (f)∗ → O(U).

Proof. Let us write W for the O(U)-lattice {x ∈ V c(f)[1/X] : {x, y} ∈ O(U) ∀y ∈ V (f)∗}. Evidently W ⊇
V c(f), and the quotient is X-torsion. The image of V c(f)/XV c(f) ∼= V c(fβ) in W/XW ∼= HomL(V (fβ)

∗, L)
is not zero: it is exactly the 1-dimensional classical quotient of V c(fβ). So the quotientW/V

c(f) is isomorphic
to O(U)/Xn, for some n.

However, since both W and V c(fβ) are GQ-invariant O(U)-lattices in V c(f)[1/X], this implies that the
action of Galois in a suitable O(U)-basis of W is upper-triangular modulo Xn; and if n ⩾ 2, this contradicts
the maximality of the reducibility ideal of the pseudocharacter tf .

Hence W is a Galois-invariant sublattice of 1
XV

c(f) containing V c(f), with both containments strict. As
V c(f)/X ∼= V c(fβ) has a unique Galois-invariant line, there is a unique such lattice, namely V (f). □

Remark A6.5. In particular, there is a uniquely determined perfect pairing V (fβ) × V (fβ)
∗ → L, refining

the result above that these representations are abstractly dual to each other.

A7. Nearly overconvergent cohomology

We summarise here some results from [LZ16, §5.2] on “nearly overconvergent étale cohomology”. The
basic object of study is the cohomology of of the sheaves D ′

U−j ⊗ Vj , for j ∈ Z⩾0, which we interpret as
“nearly overconvergent cohomology of degree j”. Here U − j denotes the image of the disc U under the map
W →W, κ 7→ κ− j, so that for every integer k ∈ U ∩Z with k ⩾ j, the fibre of D ′

U−j ⊗Vj at k surjects onto
Vk−j ⊗ Vj .

Remark A7.1. These modules are relevant to our present study because the Beilinson–Flach classes associated
to Coleman families constructed in op.cit. naturally land in these larger sheaves, rather than in the D ′

U

sheaves themselves, as we shall recall in more detail below.
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As explained loc.cit., there is a natural map of sheaves

β∗
j : D ′

U → D ′
U−j ⊗ Vj ,

compatible with the Clebsch–Gordan maps Vk ↪→ Vk−j ⊗Vj for integers k ⩾ j; and there is a map the other
way,

δ∗j : D ′
U−j ⊗ Vj → D ′

U ,

such that δ∗j ◦ β∗
j is multiplication by

(∇
j

)
∈ OU . Both of these maps are O(U)-linear, and compatible with

Hecke correspondences away from p, and with U ′(p).

Since O(U) is reduced and
(∇
j

)
̸= 0, we may make sense of the map

Pr [j] := 1

(∇j )
δ∗j : H1(Y ,D ′

U−j ⊗ Vj)→ 1

(∇j )
H1(Y ,D ′

U ),

whose specialisation at any k ⩾ j is a left inverse of β∗
j . The denominator has simple poles at all locally-

algebraic characters of degree k ∈ {0, . . . , (j− 1)}; but the residues at these poles are valued in the kernel of

specialisation on D ′
k, since the composite D ′

k−j ⊗ Vj
δ∗j−→ D ′

k → Vk is zero.
We shall need this map in the case when f is a Coleman family with one critical-slope Eisenstein fibre

in weight r, and j = r + 1. Shrinking U if necessary, we can assume that the specialisations at all points
of U which are locally-algebraic of degree 0, . . . , r are cuspidal and non-critical-slope, except possibly at r

itself. Thus Pr
[r+1]
f on cohomology takes values in 1

XV (f)∗; but its residue maps trivially into V (fβ)
∗
quo, so

in fact it factors through the slightly smaller module 1
XV

c(f)∗ ⊃ V (f)∗, where X is a uniformizer at r ∈ U
(cf. equation 6). Thus we obtain a map of Galois representations over O(U),

Pr
[r+1]
f : H1(Y ,D ′

U−(r+1) ⊗ Vr+1(1))→ 1
XV

c(f∗),

whose composite with β∗
j coincides with the natural projection map Prf : H

1(Y ,D ′
U (1))→ V (f)∗ ⊂ 1

XV
c(f)∗.

A8. P-adic Hodge theory

We now investigate the restriction of the Galois modules constructed above to the decomposition group
at p. We fix an embedding Q ↪→ Qp, so we may regard Gal(Qp/Qp) as a subgroup of Gal(Q/Q).

A8.1. Notations.

• Let R be the Robba ring over Qp, and let RU = R⊗̂OU .
• Let t ∈ R be the period for the cyclotomic character, so φ(t) = pt and γ(t) = ε(γ)t.
• For δ ∈ O(U)×, let RU (δ) be the rank 1 (φ,Γ)-module over RU generated by an element e which is
Γ-invariant and satisfies φ(e) = δe.

• For D a (φ,Γ)-module over R (or RU ), write Dcris(D) = D[1/t]Γ, with its filtration FilnDcris(D) =
(tnD)Γ; this is compatible with the usual notations for D = Dcris(V ), V crystalline.

• Let D(f)∗ = D†
rig(V (f)∗), and similarly Dc(f)∗.

A8.2. Triangulations for D(f)∗. We know that the space of homomorphisms

RU (
βf

ψ(p)τ(p)
)(1 + k)→ D(f)∗

is a finitely-generated O(U)-module, by the main theorem of [KPX14]. Thus it must be free of rank 1, since
it is clearly torsion-free, and there is a Zariski-dense set of x ∈ O(U) where the fibre is 1-dimensional. Let
F+D(f)∗ be the image of a generator of this map, and F− the quotient, so that we have a short exact
sequence

0→ F+D(f)∗ → D(f)∗ → F−D(f)∗ → 0.

Over the punctured disc U −{r}, the sub and quotient are both free of rank 1 and so the above sequence
defines a triangulation of D(f)∗.

Proposition A8.1. If fβ is non-critical, the submodule F+D(fβ)
∗ is saturated; thus F−D(f)∗ is free of

rank 1 over RU , and F±D(f)∗ define a triangulation of D(f)∗ over U .
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Proof. This follows by a comparison of filtration degrees on Dcris: if the submodule were not saturated, then
the φ = ψ(p)−1-eigenspace in Dcris(V (fβ)

∗) would be contained in Filn for some n > −1 − r, and hence

necessarily in Fil0. This would force V (fβ)
∗ to locally split at p as a direct sum, which according to Theorem

A4.5 contradicts the assumption that fβ is non-critical. □

We thus have two exact sequences “cutting across each other”, one arising from the triangulation (the
horizontal one in the diagram), and one from the global reducibility of V (fβ)

∗ (the vertical one):

0

D†(V (fβ)
∗
sub)

0 F+D(fβ)
∗ D(fβ)

∗ F−D(fβ)
∗ 0

D†(V (fβ)
∗
quo)

0

cokernel tr+1

cokernel tr+1

There is an isomorphism D†(V (fβ)
∗
quo)

∼= R(ψ(p)−1), and the lower-left dotted arrow must, therefore,

identify its source with the (φ,Γ)-stable submodule tr+1R(ψ(p)−1) of the target; and similarly for the upper
right dotted arrow. This corresponds to the fact that the map

Dcris

(
F+D(fβ)

∗)→ Dcris

(
V (fβ)

∗
quo

)
is an isomorphism on the underlying φ-modules, but shifts the filtration degree by r + 1.

Triangulations for Dc(f)∗. For Dc(f)∗, the situation is a little different: in this case, the triangulation
becomes singular in the fibre at r. More precisely, we may choose generators of the free rank 1 O(U)-modules

Hom(φ,Γ)

(
RU (βf/ψτ(p))(1 + k), Dc(f)∗

)
and Hom(φ,Γ)

(
Dc(f)∗, RU (β

−1
f ),

)
.

Then we obtain a submodule F+Dc(f)∗ and a quotient F−Dc(f)∗ which restrict to the triangulation away
from weight r, and such that the maps

F+Dc(fβ)
∗ → Dc(fβ)

∗ and Dc(fβ)
∗ → F−Dc(fβ)

∗

are nonzero, where F±Dc(fβ)
∗ are the fibres of F±Dc(f)∗ at r. If we identify V c(f)∗ with a submodule of

V (f)∗, then we deduce that

F+Dc(f)∗ = X · F+D(f)∗, F−Dc(f)∗ = F−D(f)∗,

where X is a uniformizer at r ∈ U .
However, these two maps do not define a triangulation, because the submodule F+Dc(fβ)

∗ is not sat-
urated: its image in Dc(fβ)

∗ is exactly tr+1 · D†(V c(fβ)
∗
sub). Similarly (and in fact dually), the quo-

tient map Dc(fβ)
∗ → F−Dc(fβ)

∗ has image tr+1F−Dc(fβ)
∗, which we can identify with D†(V c(fβ)

∗
quo)

∼=
11



R(pr+1/β)(r + 1). So we have an analogous “cross” as before, but the horizontal row is not exact :

0

D†(V c(fβ)
∗
sub)

0 F+Dc(fβ)
∗ Dc(fβ)

∗ F−Dc(fβ)
∗ 0

D†(V c(fβ)
∗
quo)

0

!

cokernel tr+1

!

cokernel tr+1

The lower right arrow induces an isomorphism after inverting t, and hence is an isomorphism between Dcris

modules (since Dcris(D) = D[1/t]Γ); but since the filtration on Dcris is given by (tnD)Γ, the isomorphism
shifts the filtration degrees – the filtration on Dcris(V

c(fβ)
∗
quo) is concentrated in degree −1 − r, but the

filtration on Dcris (F−Dc(fβ)
∗) is concentrated in degree 0.

A8.3. Crystalline periods. Essentially by construction, we may choose (non-canonically) an isomorphism

b+f : Dcris

(
F+D(f)∗(−1− k)

) ∼= OU .
If g is a non-critical-slope, cuspidal classical specialisation of f , with g of weight k+2 for some k ̸= r then

we have a canonical isomorphism between the fibres of the above modules at k, given by the image modulo
F− of the class in Filk+1 Dcris (V (g)) of the differential form ωg associated to g. Here we use the comparison
isomorphism between de Rham and étale cohomology crucially.

So, for each such g, there must exist a non-zero constant cg ∈ L× such that b+f specialises to cgωg.
At X = 0, we have an isomorphism

Dcris(F+D(fβ)
∗) ∼= Dcris(V (fβ)

∗
quo),

and we have a duality between V (fβ)
∗
quo and V c(fβ)quo; so we should regard b+fβ as a basis of the space

Dcris(V
c(fβ)quo) ∼= H1

dR,c(Y,Vr)[T = fβ ] = H1(X,ω−r(−cusps))[T = fβ ].

So there exists some scalar cfβ ∈ L× such that

b+fβ = cfβηfβ ,

where ηf is as defined in Section A3.2.

Remark A8.2. It is curious to note that the element b+f “generically” interpolates the Fil1 vectors ωg for

specialisations g of weight ̸= r, but at the bad weight k = r, it interpolates the Fil0 vector ηfβ instead.

Part B. Euler systems and p-adic L-functions: background

In the next few sections, we recall the Euler systems and p-adic L-functions we shall use below. We
present no new results here; but we will need to re-formulate some well-known results in minor ways, in
order to be able to compare different constructions under our “Eisenstein degeneration” formalism in the
final sections of this article.

Assumption B1.1. Throughout part B of this paper, we shall use fβ to denote a classical cuspidal p-
stabilised newform, of weight r1 + 2 for some integer r1 ⩾ 0, and non-critical slope; and we shall write
f for a Coleman family of eigenforms, over some open affinoid V1 ∋ r in weight space, specialising to fβ
in weight r1. We suppose, for convenience, that fβ is a p-stabilisation of an eigenform of prime-to-p level
whose Hecke polynomial at p has distinct roots (so fβ is a “noble eigenform” in the sense of [Han15]).
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Similarly, g,h will denote families over some affinoids V2, V3 passing through some given noble eigenforms
gβ , hβ of weights r1, r2. We shall allow ourselves to shrink the discs Vi if needed, replacing them with
arbitrarily small neighbourhoods of the ri; this allows us to assume, for instance, that all classical-weight
specialisations of our families are noble cuspidal eigenforms.

(Of course, the primary goal of this paper is precisely to study the those families which do not satisfy this
condition, and this will be the goal of part C; but firstly we shall give a systematic account of the theory in
the above setting, before explaining the modifications necessary for the critical-slope Eisenstein cases.)

B1.1. Setup. We fix an embedding Q ↪→ Qp. As in part A, we shall fix a finite extension L/Qp with

integers O. Let HΓ be the distribution algebra of Γ ∼= Z×
p (with L-coefficients), and j : Γ ↪→ H×

Γ the
universal character, which we regard as a character of the Galois group by composition with the cyclotomic
character.

Notation. Abusively we shall write H1(Q,−) for H1(GQ,S ,−) where S is a sufficiently large finite set of
primes (i.e. containing p and all primes at which the relevant representation is ramified).

For any L-linear GQ-representation V , we write V (−j) as a shorthand for V ⊗L HΓ(−j). Thus, for any
O-lattice T ⊂ V , we have a canonical isomorphism of HΓ-modules

H1(Q, V (−j)) ∼= HΓ ⊗ΛΓ
lim←−
n

H1(Q(µp∞), T ),

and similarly for GQp -representations.

B1.2. Local machinery: Coleman–Perrin-Riou maps. Let V be a crystalline L-linear representation
of GQp

. Then there is a homomorphism of HΓ-modules, the Perrin-Riou regulator,

LΓ
V : H1(Qp, V (−j)) −→ I−1HΓ ⊗L Dcris(Qp, V )

(which depends on a choice of p-power roots of unity (ζpn)n⩾1 in L, although we suppress this from the
notation); here I is a certain fractional ideal depending on the Hodge–Tate weights of V . The map LΓ

V is
characterised by a compatibility with the Bloch–Kato logarithm and dual-exponential maps for twists of V .
See [LVZ15] for explicit formulae.

If we choose a vector η ∈ Dcris(V ), and apply the above constructions to V ∗, then we obtain a Coleman
map

Colη : H1(Qp, V
∗(−j)) −→ I−1H(Γ), x 7→ ⟨LΓ

V ∗(x), η⟩.
We shall most often use this when V is unramified and non-trivial, in which case I is the unit ideal.

All three objects above – the cohomology of V (−j), the Dcris module, and the regulator map connecting
them – can also be defined more generally for crystalline (φ,Γ)-modules over the Robba ring, whether or
not they are étale.

B2. The GL2 /Q setting

The Kato Euler system of [Kat04] can be attached to a Coleman family f satisfying Assumption B1.1,
as discussed e.g. in [Han15]. However, for our purposes it suffices to restrict to the case of Hida families,
following the developments of [Och03]. We suppose our family f is new of some level N , and, as in op.cit.,
we assume that the Galois representation attached to f is residually irreducible.

B2.1. Periods. Let fk be (the newform associated to) the weight k + 2 specialisation of f , for some k ⩾ 0.
For each sign ±, the eigenspace in Betti cohomology of Y1(N) (with Q(f)-coefficients) on which the Hecke
operators act by the eigensystem of fk is one-dimensional, and we choose bases γ±f of these spaces. These

determine complex periods Ω±
fk
∈ C×.

Let V1 be the open of the weight space over which the family is defined. Then we have an O(V1)-module
V (f)∗ interpolating the Betti (or étale) cohomology eigenspaces of all specialisations of f . Up to possibly
shrinking V1, we may assume that the eigenspaces V (f)(c=±1) are free of rank 1 over O(V1), and choose bases
γ±f . In general we cannot arrange that the weight k specialisation of γ±f is defined over Q(fk) for all k; so it

is convenient to extend the definition of Ω±
fk

accordingly, so these periods now lie in the space (L⊗Q(fk)C)×.
13



Remark B2.1. For avoidance of confusion, we point out that the period we are calling Ω±
fk

corresponds to
1

λ±(k)Ω
±
fk

in the notation of [BD14, §3.2]. Hence, although the periods we have considered are elements in

(L⊗Q(fk)C)× (which will ease our subsequent discussions), it must be clear that one can easily recover more
familiar objects from them.

B2.2. The Kitagawa–Mazur p-adic L-function. Having chosen γ±f , we can define Kitagawa–Mazur-type
p-adic L-functions [Kit94]

Lp(f) ∈ O(V1 ×W),

which interpolate the critical L-values of all classical, weight ⩾ 2 specialisations of f , with the periods
determined by γ±f . More precisely, the value at (k, j), with 0 ⩽ j ⩽ k, is given by

Lp(f)(k, j) =
j!(1− βk

p1+j )(1− pj

αk
)

(−2πi)jΩ±
fk

L(fk, 1 + j),

where fk is the weight k+2 specialisation of f as above, (αk, βk) are the roots of its Hecke polynomial (with
αk corresponding to the family f), and ± = (−1)j . (Here we assume fk is new of level N , which is automatic
for k > 0; a slightly modified formula applies if k = 0 and fk is a newform of level pN and Steinberg type
at p.)

B2.3. The adjoint p-adic L-function. We shall also need the following construction. For any classical
specialisation f of f , if we define the plus and minus periods Ω±

f using Q(f)-rational basis vectors γ±f , then
the ratio

Lalg(Ad f, 1) :=
−2k−1iπ2⟨f, f⟩

Ω+
f Ω

−
f

is in Q(f)×. If we choose bases γ±f over the family as above, and use the periods for each fk determined
by these, then a construction due to Hida [Hid16] gives a p-adic adjoint L-function Lp(Ad f) ∈ O(V1)
interpolating these ratios:

Lp(Ad f)(k) =
(
1− βk

αk

)(
1− βk

pαk

)
Lalg(Ad fk, 1)

for all k ∈ V1 ∩Z⩾0 such that fk is a level N newform. In particular, recall that if f is p-distinguished, then
the congruence ideal of f is principal, and this ideal is generated by Lp(Ad f).

B2.4. Kato’s Euler system. Having chosen γ±f , we obtain a canonical Kato class

κ(f) ∈ H1(Q, V (f)∗(−j)),

which is the “p-direction” of an Euler system. Kato’s explicit reciprocity law [Kat04] establishes that the
image of that class under the Perrin-Riou map recovers the p-adic L-function.

More precisely, let F+V (f) denote the rank 1 unramified subrepresentation of V (f) over O(V1) (which
exists since f is ordinary); and let ηf ∈ Dcris(F+V (f)) be the canonical vector constructed in [KLZ17], which
is characterised by interpolating the classes ηf of Section A3.2 for each classical specialisation f of f . Then
we have 〈

LΓ
F−V (f)∗(locp κ(f)), ηf

〉
= Lp(f).

Remark B2.2. This is a slight strengthening of a result of Ochiai; see [Och03, Theorem 3.17] for the original
formulation. Ochiai’s result is a little less precise, since he chooses an arbitrary basis d of the module
Dcris(F+V (f)) (which is denoted D in op.cit.); we have used the results on Eichler–Shimura in families
proved in [KLZ17] to choose a canonical basis ηf , for which the correction terms Cp,p,d in Ochiai’s formulae
are all 1.

B3. Double and triple products

B3.1. The Rankin–Selberg setting. Now let f and g be two Coleman families satisfying Assumption B1.1,
living over discs V1, V2 in weight space.
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B3.1.1. P-adic L-functions. There is an “f -dominant” p-adic L-function Lf
p(f ,g) over V1 × V2 ×W, whose

value at (k, ℓ, j) with ℓ+1 ⩽ j ⩽ k is (⋆) · L(fk,gℓ,1+j)⟨fk,fk⟩ , where (⋆) is the usual mélange of Euler factors, powers

of i and π etc. Similarly, there is a “g-dominant” p-adic L-function Lg
p(g, f), with an interpolating range at

points with k + 1 ⩽ j ⩽ ℓ. If f is ordinary (i.e. a Hida family) then Lf
p(f ,g) is bounded.

Remark B3.1. Note that our p-adic L-functions L(f, g, s) here are imprimitive, i.e. their Dirichlet coefficients
are given by the usual straightforward formula in terms of q-expansion coefficients, cf. [KLZ17, §2.7]. This
means they may differ by finitely many Euler factors from the primitive p-adic L-function associated to the
Galois representation Vp(f)⊗Vp(g) (although this issue only arises if the levels of f and g are not coprime).

B3.1.2. Euler systems. The Beilinson–Flach Euler system of [LZ16] is attached to two modular forms, or
more generally to two Coleman families f and g. This generalizes the earlier construction of [KLZ17], where
the variation was restricted to the case of ordinary families. Consider the rank 4 module

(7) V (f ,g)∗(−j) over O(V1 × V2 ×W),

characterized by the property that on specialising at any integers (k, ℓ, j), with k ∈ V1 and ℓ ∈ V2, we recover
V (fk)

∗ ⊗ V (gℓ)
∗(−j).

Fix d ∈ Z>1 such that (d, 6S) = 1. There exists a cohomology class of Beilinson–Flach elements

dκ(f ,g) ∈ H1(Q, V (f ,g)∗(−j)),

which is the one in [LZ16, Theorem 5.4.2], where it would be denoted by dBF [f ,g]
1,1 . (Note that we have

slightly modified the notations just for being consistent with the other Euler systems, and we have written
d and not c for the auxiliary parameter to avoid any misunderstanding with the index c used to denote
compactly-support cohomology.)

The dependence on d is as follows: after tensoring with FracO(V1 × V2 ×W), the class

κ(f ,g) := C−1
d ⊗ dκ(f ,g)

is independent of d, where

(8) Cd(f ,g, j) := d2 − d(j−k1−k2)ε−1
f (d)ε−1

g (d).

B3.1.3. Reciprocity laws. With the notations used in [LZ16, §6], let D(f)∗ be the (φ,Γ)-module of V (f)∗,
and consider the rank 1 submodule F+D(f)∗ ⊂ D(f)∗ together with the corresponding quotient F−D(f)∗.
We consider the same filtration for D(g)∗. We write

F−−D(f ,g)∗ = F−D(f)∗⊗̂F−D(g)∗,

and similarly for F−+, F+−, F++. We also define F−◦D(f ,g)∗ = F−D(f)∗⊗̂D(g)∗. Proceeding as in [LZ16,
Theorem 7.1.2], the projection of dκ(f ,g) to F−−D(f ,g)∗ vanishes. Hence, the projection to F−◦ is in the
image of the injection

H1(Q,F−+D(f ,g)∗(−j)) −→ H1(Q,F−◦D(f ,g)∗(−j)).
Then the reciprocity law of Loeffler–Zerbes [LZ16, Theorem 7.1.5] establishes that the image of that class

under the Perrin-Riou map recovers the p-adic L-function.

(9) Colηf⊗ωg(locp(dκ(f ,g))) = Cd(f ,g, j) · Lf
p(f ,g).

where the Coleman map is the composition of the Perrin-Riou regulator followed by the pairing with the
appropriate differentials.

B3.2. Diagonal cycles. Let (f ,g,h) be a triple of Coleman families, living over discs V1, V2, V3 in weight
space, with all classical specialisations non-critical-slope cusp forms, as in the previous section.

We suppose the tame nebentype characters satisfy εfεgεh = 1. It follows that we may choose (non-
uniquely) a character t : Z×

p → O(V1 × V2 × V3) satisfying 2t = k1 + k2 + k3, where ki are the universal
characters into O(Vi). This imposes an additional condition on our specialisations: we shall say a point P of
V1 × V2 × V3 is an “integer point” if (k1,k2,k3) specialise at P to integers (k, ℓ,m) ⩾ −1, and, in addition,
t specialises to k+ℓ+m

2 (rather than its product with the quadratic character mod p), which amounts to
requiring that k + ℓ+m lie in a particular congruence class modulo 2(p− 1).
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B3.2.1. P-adic L-functions. Following a construction of Andreatta and Iovita [AI21], there is a f -dominant

square root p-adic L-function Lp
f (f ,g,h) over V1 × V2 × V3. The square of its value at an integer point

(k, ℓ,m) with k > ℓ +m is (⋆) · L(fk, gℓ, hm, k+ℓ+m2 + 2), where (⋆) is the usual mélange of Euler factors,

complex periods etc. (Note that with our conventions fk has weight k + 2, etc, so k+ℓ+m
2 + 2 is the centre

of the functional equation.)

Remark B3.2. In fact we shall only need this construction when the “dominant” family is an ordinary family.
In this case, the construction is actually considerably simpler, and can be carried out via the same techniques
as in the ordinary case, without need to resort to the developments of Andreatta–Iovita.

B3.2.2. Euler systems. Consider the rank 8 module

(10) V (f ,g,h)∗ := V (f)∗ ⊗ V (g)∗ ⊗ V (h)∗(−1− k1+k2+k3

2 ) over O(V1 × V2 × V3),
which is Tate self-dual. By the works of Darmon–Rotger [DR18] and Bertolini–Seveso–Venerucci [BSV22],
there is a diagonal-cycle class κ(f ,g,h) attached to the triple (f ,g,h) (and the choice of square-root
character t, which we suppress); this is a class

κ(f ,g,h) ∈ H1(Q, V (f ,g,h)∗),

introduced for instance in [BSV22, §8.1]. It is characterized by the property that on specialising at any
integer point (k, ℓ,m), with k ∈ V1, ℓ ∈ V2 and m ∈ V3 satisfying the “balanced” conditions {k ⩽ m+ ℓ, ℓ ⩽
m+k,m ⩽ k+ ℓ}, we recover the Abel–Jacobi image of the diagonal cycle for (fk, gℓ, hm) defined in [DR14].

Remark B3.3. Note that there is an omission in section 4.2 of [BSV22], where the machinery for interpolating
diagonal-cycle classes is developed: it is implicitly assumed that the Ohta pairing V (f) × V c(f)∗ → O(V1)
(formula (82) in op.cit.) is is perfect. This cannot be be true in general, since at a critical-slope Eisenstein
point it specialises to the second of the two pairings in (5) above, and we have seen that this has 1-dimensional
left and right kernels. However, the pairing does become perfect after specialising to a neighbourhood of a
noble eigenform, and hence the construction is valid when f ,g,h satisfy the conditions of Assumption B1.1;
see the erratum [BSV24] for the necessary modifications.

We shall see in Part C of this paper that the construction gives something slightly weaker, i.e. a coho-
mology class taking values in 1

XV
c(f ,g,h)∗ ⊃ V (f ,g,h)∗, when one of the families is critical-slope.

B3.2.3. Reciprocity laws. With the notations of Section B3.1.3, we may consider the (φ,Γ)-moduleD(f ,g,h)∗,
as well as its different filtrations. In particular, adapting [BSV22, Corollary 8.2] to our setting yields that
the diagonal cycle class lies in the rank four submodule (F++◦ + F+◦+ + F◦++)D(f ,g,h)∗. In particular,
the projection to F−◦◦ is in the image of the injection

H1(Q,F−++D(f ,g,h)∗) −→ H1(Q,F−◦◦D(f ,g,h)∗).

Then the reciprocity law of Bertolini–Seveso–Venerucci establishes a connection between the diagonal-
cycle class and the p-adic L-function.

Theorem B3.4. The image of that class under the corresponding Coleman map recovers the p-adic L-
function.

Colηf⊗ωg⊗ωh
(locp(κ(f ,g,h))) = Lp

f (f ,g,h).

Proof. This follows from [BSV22, Theorem A]. Although the result in loc. cit. is stated just for Hida families,
the argument remains valid in the present generality, using the p-adic L-function of Andreatta–Iovita [AI21]
and the general theory of (φ,Γ)-modules. □

B4. GL1 over an imaginary quadratic field

B4.1. Setting. We fix an imaginary quadratic field K where the prime p splits. For simplicity, we shall
always take K to have class number one. We also fix embeddings K ⊂ Q ↪→ Qp (determining a prime p of
K above p).

We write σ and σ̄ for the chosen embedding K ↪→ Qp and its complex conjugate. If a− b = 0 mod wK :=
#O×

K , then the character σaσ̄b of K× is trivial on O×
K , and thus determines an algebraic Grössencharacter

of K of conductor 1 (mapping a prime q to λaλ̄b for λ any generator of q). We abuse notation slightly by
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writing σaσ̄b for this Grössencharacter. Its infinity-type (with the conventions of [BDP13] and [JLZ21] §2.1)
is (a, b).

We let ΣK be the set of algebraic Grössencharacters of K. Define Σcrit
K = Σ

(1)
K ∪ Σ

(2)
K ⊂ ΣK to be the

disjoint union of the sets

Σ
(1)
K = {ξ ∈ ΣK of infinity type (a, b), with a ≤ 0, b ≥ 1},

Σ
(2)
K = {ξ ∈ ΣK of infinity type (a, b), with a ≥ 1, b ≤ 0}.

Thus ξ ∈ Σcrit
K if and only if s = 0 is a critical point for L(ξ−1, s).

For Ψ any algebraic Grössencharacter of K, we may define a 1-dimensional Galois representation Vp(Ψ),
on which GK acts via the composite of Ψ with the Artin map (normalised to send geometric Frobenii to
uniformizers, as in [JLZ21, §2.3.2]). In particular Vp(σσ̄) ∼= Qp(−1), and L(Vp(Ψ), s) = L(Ψ, s).

B4.2. Character spaces. Let ΓK denote the group Gal(K[p∞]/K), where K[p∞] is the ray class field mod
p∞; and let WK be the corresponding character space, so O(WK) = H(ΓK). We let jK be the universal
character Gal(Kab/K) ↠ ΓK ↪→ H(ΓK)×.

We identify an algebraic Grössencharacter ξ of K unramified outside p with the unique point of WK at
which jK specialises to Vp(ξ

−1) (note signs).

Remark B4.1. This inverse ensures that, if we identify ΓK with O×
K,p/O

×
K via the restriction of the Artin

map to O×
K,p ⊂ A×

K,f , the character x 7→ NmK/Q(x) corresponds to the cyclotomic character.

B4.3. Katz’s p-adic L-function. Let Ψ be a Grössencharacter of finite order and conductor coprime to
p, with values in L. By the work of Katz [Kat76] (see also [BDP12, Theorem 3.1]), there exists a p-adic
analytic function

LKatz
p (Ψ) :WK −→ L⊗Qp

Q̂nr
p ,

uniquely determined by the interpolation property that if ξ ∈ Σ
(2)
K is a character of conductor 1, hence

necessarily of the form σaσ̄b for some a ⩾ 1, b ⩽ 0, then we have

LKatz
p (Ψ)(ξ)

Ωa−bp

= a(ξ)× e(ξ)× f(ξ)× L(Ψξ−1, 0)

Ωa−b
,

with both sides lying in Q, where

(1) a(ξ) = (a− 1)!π−b,
(2) e(ξ) = (1− p−1Ψ−1ξ(p))(1− ξ−1Ψ(p̄)),

(3) f(ξ) = D
b/2
K 2−b,

(4) Ωp ∈ (Q̂nr
p )× is a p-adic period attached to K,

(5) Ω ∈ C× is the complex period associated with K,
(6) L(Ψξ−1, s) is Hecke’s L-function associated with Ψξ−1.

(More generally, one can state an interpolation property at all algebraic Grössencharacters ξ ∈ Σ
(2)
K of

p-power conductor – not necessary of conductor 1 – but we shall not need this more general formula here.)

B4.4. Elliptic units. Again, let Ψ be a Grössencharacter of finite order and conductor coprime to p. Let
(−)∼ denote the reflexive hull of a HΓ-module. The Euler system of elliptic units can be thought as an
element

κ(Ψ,K) ∈ H1(K,Vp(Ψ)∗(1− jK))∼,

constructed by Coates and Wiles in their seminal paper [CW77]; see [Kat04, §15] or [BCD+14, §1.2] for
more recent accounts3 By construction, the specialisation of κ(Ψ,K) at a finite-order character ξ of ΓK is
the image under the Kummer map of a linear combination of global units in an abelian extension of K.

3Note that the reflexive closure seems to have been overlooked in the latter reference; it is not needed if Ψ is ramified at
some prime away from p, but cannot be got rid of when Ψ has conductor 1. In Kato’s account this corresponds to passing from

the “smoothed” class azp∞f to its analogue without the modification a().
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Localising at p, and using the two-variable version of Perrin-Riou’s regulator defined in [LZ14], we have
a Coleman map

Colp,Ψ : H1(Kp, Vp(Ψ)∗(1− jK))→ H(ΓK),

which extends automatically to the reflexive hull. The explicit reciprocity law of Coates–Wiles links the
system of elliptic units with Katz’s two variable p-adic L-function:

Colp,Ψ

(
locp κ(Ψ,K)

)
= LKatz

p (Ψ).

B5. Heegner classes

We follow for this section the exposition of [JLZ21], which generalizes Castella’s earlier results [Cas20],
and keep the notations of the previous sections. We suppose all primes dividing N are split in K, and choose
an ideal N with OK/N ∼= Z/N . Let f be a Coleman family of tame level N defined over an affinoid disc V1.

In [JLZ21], we worked over an auxiliary rigid space Ṽ1 (essentially a piece of the eigenvariety for GU(1, 1))
parametrising conjugate-self-dual twists of the base-change of f to K. To simplify the exposition, and since
this is harmless towards our objectives of explaining the degeneration phenomena going on, we shall avoid
appealing to this construction by make the following two simplifying assumptions:

(a) K has class number one, as above, and moreover K ̸= Q(
√
−1),Q(

√
−3);

(b) f has trivial nebentype.

These simplifying hypotheses will allow us to split the parameter space up into two copies of W, one for the
“weight” variable and one for the “anticyclotomic” one.

More precisely, assumption (b) allows us to choose a character m : Z×
p → O(V1)× which is a square root

of the canonical character k, so f has weight-character k+ 2 = 2m+ 2. Slightly abusively, we write “k
2 ” for

this character. Hence the representation W = V (f)∗(−k
2 ) of GQ satisfies W ∼=W ∗(1).

Remark B5.1. Note that if k is an integer in V1, then k is necessarily even. However, the specialisation of
“k
2 ” at k might not be x 7→ xk/2; in fact this holds only if k lies in a certain congruence class mod 2(p− 1),

lifting the congruence class mod (p− 1) determined by the component of W containing V1.

Meanwhile, assumption (a) implies that the Grössencharacter χac = σ/σ̄ gives an isomorphism Γac ∼= Z×
p ,

where Γac = O×
K,p/Z

×
p is the Galois group of the maximal anticyclotomic extension unramified outside

p. Composing this with the universal character j : Z×
p → O(W)×, we obtain a universal anti-cyclotomic

character jac : GK → O(W)×, whose specialisation at j ∈ W is the character mapping arithmetic Frobenius

at a prime λ ∤ p of K to (σ(λ)/σ̄(λ))
j
.

Consider the module over O(V1 ×W) defined by

V ac(f)∗ := V (f)∗(−k
2 ) ⊗̂

L
O(W)(−jac).

The Galois representation V ac(f)∗ is characterized by the property that for any integers (k, j), with k ∈ V1
(and k in the appropriate congruence class modulo 2(p− 1)), we recover the Galois representation

V ac(f)∗(k, j) = Vp(fk × χ−1)∗, χ = σ(k/2+j)σ̄(k/2−j),

where fk is the weight k + 2 specialisation of f .

Remark B5.2. Note that (fk, χ) is a Heegner pair in the sense of [JLZ21]. This corresponds to the fact that the
character χ′ = χ ·Nm is central critical for fk, in the sense of [BDP13], so that L(f, χ−1, 1) = L(f, (χ′)−1, 0)
is a central L-value; cf. Remark 2.2.2 of [JLZ21] for the shift by 1. If −k2 ⩽ j ⩽ k

2 , then χ′ is a point of

the region Σ
(1)
cc (fk) in Figure 1 of [BDP13]. If j ⩾ k

2 + 1, it is in Σ
(2)
cc (fk). (Similarly, it is in Σ

(2′)
cc (f) if

j ⩽ −1− k
2 , but we shall not consider this region here.)

In this scenario, we have:

• a Heegner class
κ(f ,K) ∈ H1(K,V ac(f)∗)

constructed in [JLZ21] (see Theorem A), whose specialisations at (k, j) with −k2 ⩽ j ⩽ k
2 are the

Abel–Jacobi images of Heegner cycles.
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• an anticyclotomic p-adic L-function

LBDP
p (f) ∈ O(V1 ×W),

such that the square of its value at a point (k, j) with j ≥ k
2 + 1 agrees with (∗) ·L(fk/K × χ−1, 1),

where (∗) the usual combination of Euler factors.
• an explicit reciprocity law, [JLZ21, Theorem B]. To state this, we note that locp κ(f ,K) factors
through the anticyclotomic Iwasawa cohomology of a rank 1 submodule F+

p D(f)∗ ⊂ D(f)∗, where

D(f)∗ is the (φ,Γ)-module of V (f)∗ at p (cf. Theorem 6.3.4 of op.cit.). Letting F−
p D(f) denote the

quotient of D(f) dual to this, there is a canonical basis vector ωf of Dcris(F−
p D(f)), interpolating

the classes ωf for classical specialisations f of f (cf. Section A3.2), which we may use this to define
a Coleman map Colp,ωf

. The explicit reciprocity law then states that

Colp,ωf
(locp(κ(f ,K))) = (−1)(k/2+j)LBDP

p (f).

Part C. Critical-slope Eisenstein specialisations

C1. Deformation of Beilinson–Flach elements

C1.1. Setup. In this section we consider the Beilinson–Flach Euler system of [LZ16] attached to two modular
forms, or more generally to two Coleman families. This generalizes the earlier construction of [KLZ17], where
the variation was restricted to the case of ordinary families.

We review some of the notation already introduced in previous parts to make the section more self-
contained. Let f = Er+2(ψ, τ) stand for the Eisenstein series of weight r + 2 and characters (ψ, τ), and fβ
its critical-slope p-stabilisation. Under the non-criticality conditions discussed in Theorem A4.5, there is a
unique Coleman family f passing through fβ , over some affinoid disc V1 ∋ r. We may suppose that for all
integers k ∈ V1 ∩ Z⩾0 with k ̸= r, the specialisation fk is a non-critical-slope cusp form.

Meanwhile, let g be a second Coleman family over some disc V2. We suppose for simplicity that g is
ordinary. Let V (f ,g)∗ be the module defined in Section B3.1. Recall that the Galois representation V (f ,g)∗

is characterized by the property that for any integers (k, ℓ, j), with k ∈ V1 and ℓ ∈ V2, we recover

V (f ,g)∗(k, ℓ, j) = V (fk)
∗ ⊗ V (gℓ)

∗(−j),

the (−j)-th Tate twist of the tensor product of the dual Galois representations attached to fm and gℓ, as
defined in Definition A6.2 (including the case k = r, when fk = fβ). We define similarly a space V c(f ,g)∗

using V c(f)∗ in place of V (f)∗. Note that these become isomorphic after inverting X.

C1.2. Selmer vanishing. The representation V (g)∗ has a canonical rank-oneGQp
-subrepresentation F+V (g)∗,

with unramified quotient F−V (g)∗; and we have the following:

Proposition C1.1. For any integer n and Dirichlet character χ, the “Greenberg Selmer group”

H1
Gr(Q, V (g)∗(χ)(n)⊗HΓ(−j)) := ker

(
H1(Q, V (g)∗(χ)(n)⊗HΓ(−j))→ H1(Qp,F−V (g)∗(χ)(n)⊗HΓ(−j))

)
vanishes.

Proof. We may take n = 0 and χ = 1 without loss of generality. The result now follows from Kato’s theorems
[Kat04], which show that for each classical specialisation gℓ of g, the module H1(Q, V (gℓ)

∗ ⊗ HΓ(−j)) is
free of rank 1 over HΓ and contains a canonical element (Kato’s Euler system for gℓ) whose localisation at
p is mapped to the p-adic L-function of gℓ under the Perrin-Riou regulator for F−V (gℓ)

∗. Since the p-adic
L-function is not a zero-divisor, we conclude that the space H1

Gr(Q, V (gℓ)
∗⊗HΓ(−j)) vanishes for each such

gℓ.
So any element of H1

Gr(Q, V (g)∗⊗HΓ(−j)) must specialise to 0 at a Zariski-dense set of points of V2. On
the other hand, this module is contained in the full H1, which is O(V2)-torsion-free, by the exact sequence
associated to multiplication by an element of O(V2). Hence the Greenberg Selmer group vanishes. □
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Remark C1.2. It is slightly irritating that our analysis of the specialisation of Beilinson–Flach elements relies
on these Selmer-group bounds, and thus on the existence of Kato’s Euler system. This would be an obstacle
if we wanted to use the techniques of “critical-slope Eisenstein specialisations” to define new Euler systems
(rather than obtaining relations between existing Euler systems).

C1.3. Families over punctured discs.

Proposition C1.3. The cohomology H1(Q, V (f ,g)∗) is a finitely-generated module over O(V1 × V2 ×W),
and this module is X-torsion-free, where X ∈ O(V1) is a uniformizer at r.

Proof. This follows via the exact sequence of cohomology from the vanishing of H0(Q, V (f ,g)∗/X) =
H0(Q, V (fβ)

∗ ⊗ V (g)∗ ⊗HΓ(−j)). □

Theorem C1.4. Fix d ∈ Z>1 such that (d, 6S) = 1. There exists a cohomology class

dκ(f ,g) ∈ H1(Q, 1
XV

c(f ,g)∗),

with the following interpolation property:

• If (k, ℓ) are integers ⩾ 0 with k ̸= r, then we have

dκ(f ,g)(k, ℓ) = dBF [fk,gℓ] ∈ H1(Q, V (fk)
∗ ⊗ V (gℓ)

∗ ⊗HΓ(−j)),

where the element dBF [fk,gℓ] = dBF [fk,gℓ]
1,1 is as defined in Theorem 3.5.9 of [LZ16].

Proof. Compare [LZ16, Theorem 5.4.2], which is an analogous result when all integer-weight specialisations
of g are classical. In the present situation, we must be a little more circumspect, since Proposition 5.2.5

of op.cit. does not apply for k = r; so the map denoted pr
[j]
g there is not defined for j = k + 1. However,

inverting X gets rid of this problem. □

C1.4. Local properties at p.

Proposition C1.5. The image of locp (dκ(f ,g)) in H
1
(
Qp,

1
XF

−−Dc(f ,g)∗
)
is zero.

Proof. This follows from the fact that the Iwasawa cohomology is torsion-free, and the specialisations away
from X = 0 have the required vanishing property. □

C1.5. Leading terms at X = 0. In the following proposition, we consider the quotient
1
X V c(f ,g)∗

V (f ,g)∗ , which

makes sense by the discussion of Section A6.3 leading to the chain of inclusions (6).

Proposition C1.6. The image of dκ(f ,g) in the cohomology of the quotient

1
XV

c(f ,g)∗

V (f ,g)∗
∼= Qp(τ

−1)(1 + r)⊗ V (g)∗ ⊗HΓ(−j)

is zero.

Proof. Firstly, observe that the isomorphism of the statement follows from Section A6.3. We consider the
projection of this class to the local cohomology at p of the quotient F−V (g)∗. Since the (φ,Γ)-module of
V c(fβ)

∗
quo injects into F−Dc(fβ), this projection is 0, by Proposition C1.1. Hence the global class lands in

the Greenberg Selmer group, which is zero, as we have seen. □

Corollary C1.7. The class dκ(f ,g) lifts (uniquely) to H1(Q, V (f ,g)∗), and thus has a well-defined image

dκ̂(fβ ,g) ∈ H1(Q,Qp(ψ
−1)⊗ V (g)∗ ⊗HΓ(−j)).

For the following result, recall the logarithmic distribution, as introduced for instance in [BD15, §1]: for

a continuous character σ : Z×
p → Cp, the function dkσ

dzk
· zk

σ(z) is a constant, and log[k] ∈ Cp is defined to be

this constant.

Proposition C1.8. The class dκ̂(fβ ,g) is divisible by the (cyclotomic) logarithm distribution log[r+1] ∈ HΓ.
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Proof. The specialisation of dκ(f ,g) at a locally-algebraic character of Γ of degree j ∈ {0, . . . , r} factors

through the image of DU−j ⊗ TSymj in DU−(r+1) ⊗ TSym(r+1), and the maps Pr
[j]
f and Pr

[r+1]
f agree on

this image up to a non-zero scalar. Since the Pr
[j]
f for 0 ⩽ j ⩽ r do not have poles at X = 0, it follows

that the specialisations of dκ(f ,g) at triples (r, ℓ, χ), for ℓ ⩾ r and χ locally-algebraic of degree ∈ {0, . . . , r},
interpolate the projections of the classical Beilinson–Flach classes to the (Ecrit

r+2, gℓ)-eigenspaces in classical
cohomology. Since the Beilinson–Flach classes arise as suitable projections of classes in the cohomology of
X1(N)× Y1(N), these projections are always 0. By Zariski-density, the class specialises to 0 everywhere in

{r} × V2 × {χ}. Since this holds for all χ of degree up to r, and these are exactly the zeroes of log[r+1], the
result follows. □

Since the Iwasawa cohomology is torsion-free, there is a unique class

dκ(fβ ,g) ∈ H1(Q, V (g)∗(ψ−1)⊗HΓ(−j))

such that

dκ̂(fβ ,g) = log[r+1] ·dκ(fβ ,g).
Moreover, since g is ordinary, the class dκ(fβ ,g) has bounded growth and hence lies in H1(Q, V (g)∗(ψ−1)⊗
ΛΓ(−j)), where ΛΓ is the cyclotomic Iwasawa algebra. (More generally, we could carry this out with a
non-ordinary family g, and we would obtain a class with growth of order equal to the slope of g.)

C1.6. The p-adic L-function. We consider the ‘g-dominant’ p-adic L-function Lg
p(f ,g) over V1× V2×W.

The interpolation property applies also at k = r without any special complications; and here the complex
L-function factors as

(11) L(Er+2(ψ, τ), gℓ, 1 + j) = L(gℓ, ψ, 1 + j) · L(gℓ, τ, j − r).

Note that both factors on the right-hand side are critical values. Thus the restriction of Lg
p(f ,g) to the k = r

fibre is uniquely determined by its interpolation property at crystalline points (we don’t need finite-order
twists), and we have an “Artin formalism” factorisation

Lg
p(Er+2(ψ, τ),g)(j) =

Lp(g × ψ, j) · Lp(g × τ, j− 1− r)
Lp(Adg)

,

where the denominator arises from the choice of periods.

C1.7. Perrin-Riou maps. We want to relate Lg
p(f ,g) to the image of locp(dκ(f ,g)) under the projection

to F−V (g)∗. As discussed in Section B3.1.3, this factors through the natural map

H1
Iw(Qp,∞,F+−D(f ,g)∗)→ H1

Iw(Qp,∞,F◦−D(f ,g)∗),

which is injective (since H0
Iw(F−−) will be zero). Perrin-Riou’s regulator gives us a map

Colb+
f ⊗ηg =

〈
LPR
F+−(−),b+

f ⊗ ηg
〉
: H1

Iw(Qp,∞,F+−D(f ,g)∗)→ O(V1 × V2 ×W)

which interpolates the Perrin-Riou regulators for fk × gℓ for varying (k, ℓ).
Let φ−1 stand for the left inverse of the Frobenius, denoted as ψ in [KLZ17, §8.2]. More precisely,

proceeding as in loc.cit. and using Fontaine isomorphism, for z ∈ (F+−D(f ,g)∗)
φ−1=1

, this map sends z to

⟨ι((1− φ)z),b+
f ⊗ ηg⟩,

where ι is the inclusion(
F+−D(f ,g)∗

)φ−1=0
↪→
(
F+−D(f ,g)∗[1/t]

)φ−1=0
= Dcris

(
F+D(f)∗(−1− k)

)
⊗Dcris

(
F−D(g)∗

)
⊗HΓ.

For the following discussion, recall the constants introduced in A8.3. At the bad fibre, we have the relation

b+
f mod X = crt

r+1ηαfr ⊗ e−(r+1)

where en is the standard basis of Zp(n) and cr is a nonzero constant. Since multiplication by tr+1 corresponds

to multiplication by log[r+1] on the HΓ side, we conclude that

Colb+
f ⊗ηg(dκ(f ,g)) mod X = cr

〈
LPR
F−V (g)∗(ψ−1)(dκ(E

crit
ℓ+2,g)), η

α
fk
⊗ ηg

〉
.
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Theorem C1.9. We have

Colb+
f ⊗ηg(dκ(f ,g)) = cf (k) · Cd(f ,g, j) · Lg

p(f ,g),

where cf (k) is a meromorphic function on V1 alone, regular and non-vanishing at all integer weights k ⩾ −1
except possibly at k = r, where it is regular.

Proof. It follows easily from the reciprocity laws of Theorem B3.4 that the quotient

Colb+
f ⊗ηg(dκ(f ,g))/

(
Cd(f ,g, j)L

g
p(f ,g)

)
is a function of k alone, and this ratio does not vanish at any integer k ⩾ −1 where gk is classical and
cuspidal; it is equal to the fudge-factor ck defined above using the results of A8.3.

Moreover, since Lg
p(f ,g) is well-defined and non-zero along {r} × V2 ×W, we conclude that cf (k) does

not have a pole at k (although it might have a zero there). □

C1.8. Meromorphic Eichler–Shimura.

Theorem C1.10. There exists an integer n ⩾ 0, and a unique isomorphism of O(V1)-modules

ωf : Dcris

(
F+D(f)∗(−1− k)

) ∼= X−nO(V1),
whose specialisation at every k ⩾ 1 ∈ V1 with k ̸= r is the linear functional given by pairing with the
differential form ωfk assocated to the weight k + 2 specialisation of f . For this ωf , we have〈

LPR
F+−(dκ(f ,g)), ω

+
f ⊗ ηg

〉
= Cd(f ,g, j) · Lg

p(f ,g).

Proof. We simply define ωf to be the quotient b+f /cf , and n the order of vanishing of cf at k = r. □

Remark C1.11. Note that we used the family g in the construction of ωf ; but the interpolating property
relating it to the classical Eichler–Shimura isomorphism implies that it is uniquely determined by f alone.

C1.9. Leading terms when cf (r) = 0. If cf (r) ̸= 0, then we have thus constructed a class in Iwasawa
cohomology of V (g × ψ)∗ whose regulator agrees with the product of Kato’s Euler system for g × ψ, and a
shifted copy of the p-adic L-function for g × τ .

We claim that if cf (r) = 0, then in fact dκ(g,h) is divisible by X. If cf (r) = 0, then dκ(E
crit
ℓ+2,g) is in the

Selmer group with local condition F+V (g)∗. This Selmer group is 0 by Proposition C1.1. So dκ(g,h) mod X
would have to land in the cohomology of V (g)∗sub instead; but then we are seeing the projection into F−,
not F+, so by Kato’s results again (for g × τ , instead of g × ψ, this time) this is zero as well.

So we can divide out a factor of X from both dκ(f ,g) and cf (k), and repeat the argument. Since cf is
not identically 0, this must terminate after finitely many steps. Thus we have shown the following:

Proposition C1.12. Let n ⩾ 0 be the order of vanishing of cf at k = r. Then X−n
dκ̂(f ,g) is well-defined

and non-zero modulo X; and this leading term projects non-trivially into the quotient H1(Q, V (g)∗(ψ−1)⊗
HΓ(−j)). Its image under the Perrin-Riou regulator is given by

c∗f (r)Cd(fβ ,g, j) · log
[r+1] ·Lg

p(Er+2(ψ, τ),g),

where c∗f (r) ∈ L×.

We denote the resulting class by dκ̂
∗(fβ ,g), and define dκ

∗(fβ ,g) in the same way using dκ(fβ ,g) instead..

If n = 0, we have seen above that this class is divisible by log[r+1]; for n > 0 this is less obvious, but it
follows from the proof of the next theorem:

Theorem C1.13. We have

dκ̂
∗(fβ ,g) =

(
C · Cd(fβ ,g, j) log[r+1] ·Lp(g ⊗ τ, j− 1− r)

)
Lp(Adg)

· κ(g × ψ)

for some nonzero constant C ∈ L×.

Proof. Taking C = c∗f (r), it follows from Equation (11) and the previous proposition (combined with Kato’s
reciprocity law for g) that both of the cohomology classes we are considering have the same image under
the regulator; so they are equal as cohomology classes, by Proposition C1.1. □
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Remark C1.14. In terms of the class dκ
∗(fβ ,g), which already includes the logarithmic factor, the result

takes the easier form of

dκ
∗(fβ ,g) =

(C · Cd(fβ ,g, j) · Lp(g ⊗ τ, j− 1− r))
Lp(Adg)

· κ(g × ψ).

C2. Deformation of diagonal cycles

C2.1. Setup. In this section we consider the diagonal cycles of [BSV22] attached to three modular forms,
or more generally to three Coleman families.

Let f = Er+2(ψ, τ) stand for the Eisenstein series of weight r + 2 and characters (ψ, τ), with ψτ = χf .
As before, we take its critical-slope Eisenstein p-stabilisation, that we denote as Ecrit

r+2(ψ, τ) or just E
crit
k+2, if

the choice of characters is clear from the context. Let (g, h) be two modular forms of weights (ℓ+2,m+2),
levels (Ng, Nh), and nebentypes (χg, χh). We make the self-duality assumption χfχgχh = 1, and to simplify
notations, suppose that ℓ ≥ m. We further fix p-stabilisations of g and h, that we denote as gα and hα,
respectively. Under the non-criticality conditions already discussed, we may fix a triple of Coleman families
(f ,g,h) passing through (Ecrit

r+2, gα, hα) over a triple of affinoid discs (V1, V2, V3). For simplicity, we may
assume that both g and h are ordinary families, and as before, that for all integers k ∈ V1 ∩Z⩾0 with k ̸= r,
the specialisation fk is a non-critical slope cusp form.

As in Section B3.2 above, we choose a value of k1+k2+k3

2 as a family of characters over V1 × V2 × V3, and
we say a triple of integer weights (k, ℓ,m) is an “integer point” if it is compatible with this choice of square
roots.

We want to consider the diagonal class attached by the works of Darmon–Rotger [DR18] and Bertolini–
Seveso–Venerucci [BSV22] to the triple (f ,g,h), that we denote by κ(f ,g,h). Recall the module V (f ,g,h)∗ :=
V (f)∗⊗̂Qp

V (g)∗⊗̂Qp
V (h)∗ ⊗ HΓ(−1 − k1+k2+k3

2 ), defined in Section B3.2. We define similarly a space
V c(f ,g,h)∗ using V c(f)∗ instead of V (f)∗.

C2.2. Selmer vanishing. With the previous notations, consider the family of representations over O(V2 ×
V3) given by

V (g,h)∗0 :=
(
V (g)∗⊗̂QpV (h)∗

)
(−1− r+k2+k3

2 ).

Here r+k2+k3

2 is understood as a character of Z×
p via our choice above specialised at k1 = r. This has a rank

1 submodule
F++V (g,h)∗0 =

(
F+V (g)∗⊗̂Qp

F+V (h)∗
)
(−1− r+k2+k3

2 ).

Let n be an integer number, playing the role of a Tate twist (later we will take n to be either 0 or 1 + r).
We consider the two-variable p-adic L-functions Lg

p(g,h) and Lh
p (g,h) restricted to s = 2 + r+k2+k3

2 − n,
which are analytic functions on V2×V3. We denote these functions as Lg

p(g,h)|n and Lh
p (g,h)|n, respectively.

Lemma C2.1. Let n ̸= r+1
2 . Then the p-adic L-functions Lg

p(g,h)|n and Lh
p (g,h)|n are non-zero.

Proof. These are two-variable p-adic L-functions depending on the two-weight variable, and interpolating the
cyclotomic twist corresponding to a translation of t = r+1

2 −n of the central value, which is ℓ+m+3
2 . If t ≥ 1,

the non-vanishing follows from the convergence of the Euler product. The case t = 1
2 follows from results of

Shahidi [Sha81, Theorem 5.2] on non-vanishing of L-functions for GLn on the abscissa of convergence. □

Proposition C2.2. For any integer n ̸= r+1
2 and prime-to-p Dirichlet character χ, the “Greenberg Selmer

group”

H1
++(Q, V (g,h)∗0(χ)(n)) := ker

(
H1(Q, V (g,h)∗0(χ)(n))→

H1(Qp, V (g,h)∗0(χ)(n))

H1(Qp,F++(V (g,h)∗0(χ)(n)))

)
vanishes.

Proof. We can arrange χ = 1 without loss of generality. We shall compare the Greenberg Selmer group
above (defined by a “codimension 3” local condition) with the Selmer group defined by a less restrictive
“codimension 2” local condition,

H1
◦+(Q, V (g,h)∗0(χ)(n)) := ker

(
H1(Q, V (g,h)∗0(χ)(n))→

H1(Qp, V (g,h)∗0(χ)(n))

H1(Qp,F◦+(V (g,h)∗0(χ)(n)))

)
,
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where

F◦+V (g,h)∗0 =
(
V (g)∗⊗̂Qp

F+V (h)∗
)
(−1− r+k2+k3

2 ).

If (x, y) is any point (not necessarily classical) of V1 × V2 at which Lg
p(g,h)|n does not vanish, then the

theory of Beilinson–Flach elements shows that H1
◦+(Q, V (gx, hy)

∗(n)) is zero, and hence a fortiori so is
H1

++(Q, V (gx, hy)
∗(n)). Hence any element of H1

++(Q, V (g,h)∗0(n)) must specialise to 0 at a Zariski-dense
set of points of V2 × V3. On the other hand, this module is contained in the full H1, which is O(V2 × V3)-
torsion-free, by a similar argument as in the previous section. So H1

++ is the zero module. □

C2.3. Families over punctured discs. As before, we have a freeness result.

Proposition C2.3. The cohomology H1(Q, V (f ,g,h)∗) is a finitely-generated module over O(V1×V2×V3),
and this module is X-torsion free, where X ∈ O(V1) is a uniformizer at r.

Proof. This follows via the exact sequence of cohomology from the vanishing of H0(Q, V (f ,g,h)∗/X), which
is a consequence of specializing the families at different weights, thus excluding the option of having any
GQ-invariant.

Alternatively, we may see that there are noGQ-invariants by establishing the stronger statement that there
are no GQp -invariants, via the same analysis of the Hodge–Tate weights as in [KLZ17, Lemma 8.2.6]. □

Proposition C2.4. There exists a cohomology class

κ(f ,g,h) ∈ H1(Q,
1

X
V c(f ,g,h)∗),

whose fibre at any balanced integer point (k, ℓ,m) with k ̸= r is the diagonal-cycle class of Section B3.2.

Proof. As noted in Remark B3.3, the construction of cohomology classes [BSV22, §8] does not quite work
in the present setting, because the Ohta pairing V (f) × V c(f)∗ → O(V1) used in equation (82) of op.cit. is
not perfect. However, we have shown above that the Ohta pairing does induce a perfect duality between
V c(f) and 1

XV
c(f)∗ (for small enough V1); and substituting this statement for the erroneous claim in op.cit.

we obtain a cohomology class valued in 1
XV

c(f ,g,h)∗ interpolating the diagonal-cycle classes for classical
specialisations. □

Remark C2.5. For any affinoid subdomain V ′
1 ⊂ V1 not containing r, the construction of [BSV22] does apply

over V ′
1 ; and the restriction of our class κ(f ,g,h) to V ′

1 × V2 × V3 is the diagonal-cycle cohomology class
κ
(
f |V ′

1
,g,h

)
of op.cit..

C2.4. Local properties at p. Consider the rank 4 submodule

F+
balD

c(f ,g,h)∗ = (F+Dc(f)∗⊗̂F+D(g)∗⊗̂D(h)∗ + F+Dc(f)∗⊗̂D(g)∗⊗̂F+D(h)∗

+Dc(f)∗⊗̂F+D(g)∗⊗̂F+D(h)∗)(−1− k1+k2+k3

2 ).

We also consider the quotient

F−
balD

c(f ,g,h)∗ =
Dc(f ,g,h)∗

F+Dc(f ,g,h)∗
.

By construction, for weights in the balanced region, the submodule F+
bal satisfies the Panchishkin condition

(i.e. all its Hodge–Tate weights are ⩾ 1, and those of the quotient are ⩽ 0).

Proposition C2.6. The image of locp (κ(f ,g,h)) in H
1
(
Qp,

1
XF

−
balD

c(f ,g,h)∗
)
is zero.

Proof. This follows from the fact that the Galois module is torsion free, and the specialisations away from
X = 0 have the required vanishing property (as they are built from cohomology classes which satisfy the
Bloch–Kato local condition). □
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C2.5. Specialisation at X = 0.

Proposition C2.7. The image of κ(f ,g,h) in the cohomology of the quotient

1
XV

c(f ,g,h)∗

V (f ,g,h)∗
∼= V (g,h)∗0(τ

−1)(1 + r)

is zero.

Proof. The image of the balanced submodule F+
bal in this quotient is exactly the local condition defining the

Greenberg Selmer group H1
++ considered above (with χ = τ−1 and n = 1 + r). By Proposition C2.2, the

Selmer group with this local condition is zero. Hence κ(f ,g,h) must map to the zero class in this module. □

Corollary C2.8. The class κ(f ,g,h) lifts (uniquely) to H1(Q, V (f ,g,h)∗), and thus has a well defined
image in the module

κ̂(fβ ,g,h) ∈ H1
(
Q, V (g,h)∗0(ψ

−1)
)
.

Proposition C2.9. The class κ̂(fβ ,g,h) is divisible by the logarithmic distribution log[r+1]( r−k2+k3

2 ).

Proof. We identify weights with quadruples (k, ℓ,m, j) with k+ℓ+m = 2j. We claim that the class κ(f ,g,h)
vanishes at (r, ℓ,m, j) for all ℓ,m ≥ 0 such that (r, ℓ,m) is balanced, i.e. |ℓ −m| ⩽ r with ℓ +m + r even.
Indeed, the specialization of κ(f ,g,h) at one such point factors through the image of DU−j ⊗ TSymj in

DU−(r+1) ⊗ TSym(r+1), and the maps Pr
[j]
f and Pr

[r+1]
f agree on this image up to a non-zero scalar.

Since Pr
[j]
f for 0 ⩽ j ⩽ r do not have poles at X = 0, it follows that the specialisations of κ(f ,g,h) at

triples (r, ℓ,m, χ), for |ℓ−m| ⩽ r, ℓ+m+ r even and χ locally-algebraic of degree ∈ {0, . . . , r}, interpolate
the projections of the diagonal cycles to the (Ecrit

r+2, gℓ, hm)-eigenspaces in classical cohomology. Since the
diagonal classes lift to X1(N)×Y1(N)×Y1(N), these projections are always 0. By Zariski-density, the class
specialises to 0 everywhere in ({r}×V2×V3)∩ (|ℓ−m| ≤ r) with ℓ+m+ r even, and the desired divisibility
follows. □

Since the Iwasawa cohomology is torsion-free, there is a unique class

κ(fβ ,g,h) ∈ H1(Q, V (g,h)∗0(ψ
−1))

such that

κ̂(fβ ,g,h) = log[r+1]( r−k2+k3

2 ) · κ(fβ ,g,h).

Proposition C2.10. This class κ(fβ ,g,h) maps to 0 in the cohomology of the rank-one quotient Qp(ψ
−1)⊗

F−V (g)∗ ⊗F−V (h)∗.

Proof. Since κ(f ,g,h) lies in the balanced Selmer group, its image in V (f)∗⊗F−V (g)∗⊗F−V (h)∗ vanishes
identically over V1 × V2 × V3. So it is in particular zero when we specialise at k = r. □

C2.6. The p-adic L-function. We assume for the remaining of this section that the tame level of the
Eisenstein series is trivial. For the construction of the triple product p-adic L-function, the interpolation
property also applies at k = r. Because of the functional equation for the Rankin L-function and our
assumption on the tame level, there is an equality

L(Er+2(ψ, τ), gℓ, hm, 2 +
r + ℓ+m

2
) = L(gℓ, hm × ψ, 2 +

r + ℓ+m

2
)2,

where we have used that ψτχgχh = 1. Observe that the restriction of Lp
g(f ,g,h) to the region defined

by k = r is uniquely determined by the interpolation property at crystalline points, and we have then an
equality of p-adic L-functions

Lp
g(Er+2(ψ, τ),g,h) = Lg

p(g,h× ψ, 2 +
r + k2 + k3

2
).
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C2.7. Perrin-Riou maps. We can relate the previous p-adic L-function to the image of locp(κ(f ,g,h)
under the projection to F−V (g)∗ ⊗F+V (h)∗. More precisely, Perrin-Riou’s regulator gives us a map

Colb+
f ⊗ηg⊗ωh

=
〈
LPR
F+−+(−),b+

f ⊗ ηg ⊗ ωh

〉
: H1(Qp,F+−+D(f ,g,h)∗)→ O(V1 × V2 × V3)

which interpolates the Perrin-Riou regulators for fk⊗gℓ×hm. Indeed, for z ∈ (F+−+D(f ,g,h)∗)
φ−1=1

, this
map sends z to

⟨ι((1− φ)z),b+
f ⊗ ηg ⊗ ωh⟩,

where ι is now the inclusion(
F+−+D(f ,g,h)∗

)φ−1=0
↪→ Dcris

(
F+D(f)∗(−1− k1)

)
⊗Dcris

(
F−D(g)∗

)
⊗Dcris

(
F+D(h)∗(−1− k3)

)
.

Proceeding as with Beilinson–Flach classes, we conclude that

Colb+
f ⊗ηg⊗ωh

(κ(f ,g,h)) mod X = cr

〈
LPR
F−+V (g)∗⊗̂QpV (h)∗(ψ−1)

(κ(Ecrit
r+2,g,h)), η

α
fr ⊗ ηg ⊗ ωh

〉
.

The following result follows from the reciprocity law of [BSV22], with the obvious modifications to adapt
it to the Coleman case, exactly as in [LZ16].

Theorem C2.11. We have

Colb+
f ⊗ηg⊗ωh

(κ(f ,g,h)) = c(k) ·Lp
g(f ,g,h),

where c(k) is a meromorphic function on V1, regular and non-vanishing at all integer weights k ⩾ −1 except
possibly at k = r itself, where it is regular.

Proof. It follows easily from the reciprocity laws for diagonal cycles that Colb+
f ⊗ηg⊗ωh

(κ(f ,g,h))/Lg
p(f ,g,h)

is a function of k alone, and this ratio does not vanish at any integer k ⩾ −1 where fk is classical; it is equal
to the fudge-factor ck defined above using A8.3.

Moreover, since Lg
p(f ,g,h) is well-defined and non-zero along {ℓ} × V2 × V3, we conclude that c(k) does

not have a pole at k (although it might have a zero there). □

Remark C2.12. In this study we have only considered the reciprocity law for the p-adic L-function where
the dominant family is not the one passing through the critical Eisenstein series point, where some subtle
complications may arise. We expect to come back to this issue in forthcoming work.

C2.8. Leading terms. If c(r) ̸= 0, then we have thus constructed a class in the cohomology of V (g×h×ψ)∗
whose regulator agrees with that of Beilinson–Flach’s Euler system for g × h× ψ.

We claim that if c(r) = 0, then in fact κ(f ,g,h) is divisible by X. If c(r) = 0, then κ(Ecrit
ℓ+2,g,h) is in

the Selmer group with local condition F+V (g)∗⊗̂V (h)∗, which is zero following the proof of Proposition
Proposition C2.2 (considering now only one of the p-adic L-functions, and therefore a slightly different local
condition). So κ(f ,g,h) mod X would have to land in the cohomology of V (g)∗sub⊗V (h)∗ instead; but then
we are seeing the projection into F−, not F+, so by the local properties of Beilinson–Flach elements again
(for g × h× τ , instead of g × h× ψ, this time) this is zero as well.

So we can divide out a factor of X from both κ(f ,g,h) and c(k), and repeat the argument. Since c is not
identically 0 this must terminate after finitely many steps.

Proposition C2.13. Let n ⩾ 0 be the order of vanishing of cf at k = r. Then X−nκ̂(f ,g,h) is well-
defined and non-zero modulo X. This leading term projects non-trivially into the quotient H1(Q, V (g)∗ ⊗
V (h)∗(ψ−1)(−j)). Its image under the Perrin-Riou regulator is given by

c∗f (r) · log
[r+1] ·Lp

g(Er+2(ψ, τ),g,h),

where c∗f (r) ∈ L×.

We denote the resulting class by κ̂∗(fβ ,g,h). If n = 0, we have seen above that this class is divisible by

log[r+1]( r−k2+k3

2 ); for n > 0 this is less obvious, but proceeding as before it follows from the proof of the
next theorem:
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Theorem C2.14. Under the big image assumptions of [KLZ17, §11], we have

κ̂∗(fβ ,g,h) =
(
C · log[r+1]( r−k2+k3

2 )
)
· dκ(g,h× ψ),

for some nonzero constant C and where dκ(g,h × ψ) is the two-variable Beilinson–Flach class indexed by
the two weight variables.

Proof. The class obtained from the diagonal cycle lies in V (g)∗ ⊗ V (h × ψ)∗(−1 − r+k2+k3

2 ), so it lives in

the same space as the Beilinson–Flach class for j = 1+ r+k2+k3

2 . Then the d-factor is actually constant over
V2 × V3 and its value is

d2 − d−(k2+k3−2j)(εfεgψ
2)(d)−1) = d2 − d2+r(εfεgψ2)(d)−1 = d2

(
1− drτψ−1(d)

)
.

Note that the “p-decency” hypothesis implies that τψ−1 must be non-trivial if r = 0, so we can choose d such

that d2
(
1− drτψ−1(d)

)
̸= 0. Hence, we may take C = d−2

(
1− drτψ−1(d)

)−1
c∗f (r). From the previous

proposition, together with the explicit reciprocity law for Beilinson–Flach elements, both of the cohomology
classes we are considering have the same image under the regulator; so they are equal by Proposition C2.2.
Note that we need to assume the big image assumptions of [KLZ17, §11] to assure that the Selmer group
with Greenberg condition is one dimensional. □

As before, note that using instead κ̂∗(fβ ,g,h) the result takes the simpler form

κ∗(fβ ,g,h) = C · dκ(g,h× ψ).

C3. Deformation of Heegner points

C3.1. Setup. We consider the Heegner point anticyclotomic Euler system of [JLZ21], and keep the notations
of Section B4 and Section B5. Let f = Er+2(ψ, τ) stand for the Eisenstein series of weight r+2 and characters
(ψ, τ), with ψτ = 1. As before, let fβ be its critical-slope p-stabilisation. Consider the unique Coleman family
f passing through fβ over some affinoid disc V1. We continue assuming that for all integers k ∈ V1∩Z⩾0 with
k ̸= r, fk is a non-critical-slope cusp form. Recall for this section the module V ac(f)∗ defined in Section B5,
and consider in the same way V c,ac(f)∗, replacing V (f)∗ by V c(f)∗.

C3.2. Families over punctured discs.

Proposition C3.1. The cohomology H1(K,V ac(f)∗) is a finitely-generated module over O(V1 ×W), and
this module is X-torsion-free, where X ∈ O(V1) is a uniformizer at r.

Proof. This follows again via the exact sequence of cohomology from the vanishing of H0(Q, V ac(f)∗/X). □

Theorem C3.2. There exists a cohomology class

κ(f ,K) ∈ H1(K,
1

X
V c,ac(f)∗),

with the following interpolation property:

• If (k, j) are integers ⩾ 0 with k ̸= r, then we have

κ(f ,K)(k, j) = zfk,r ∈ H1(K,V (fk)
∗ ⊗ σk−j σ̄j),

where the element zfk,r is as defined in Theorem 5.3.1 of [JLZ21].

Proof. This follows from the construction of [JLZ21], with the usual changes to take into account what
happens in a neighbourhood of a critical-slope Eisenstein point. □

C3.3. Local properties at p. Recall that the choice of the embedding K ↪→ Qp singles out one of the
primes above p, that we have called p. The following result gives information about the vanishing of the
local class at p.

Proposition C3.3. The image of locp(κ(f ,K)) in H1
(
Kp,

1
XF

−Dc(f)∗
)
is zero.

Proof. This follows from the fact that the Iwasawa cohomology is torsion-free, and the specialisations away
from X = 0 have the required vanishing property. □
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C3.4. Leading terms at X = 0.

Proposition C3.4. The image of κ(f ,K) in the cohomology of the quotient
1
XV

c,ac(f)∗

V ac(f)∗
∼= Kp(τ

−1)(1 + r)⊗HΓac(−j)

is zero.

Proof. This follows from the local properties of Heegner points [JLZ21, Proposition 6.3.2] (in particular,
the fact that locp κ(f ,K) factors through the anticyclotomic Iwasawa cohomology of the rank 1 submodule
F+
p D(f)∗ ⊂ D(f)∗, as discussed in Section B5). □

Note that this result on previous sections relied on the vanishing of particular Selmer groups (and the
fact that certain Greenberg conditions were too strong). In this case, this is automatic and does not require
any reciprocity law nor any result from the theory of p-adic L-functions.

Corollary C3.5. The class κ(f ,K) lifts (uniquely) to H1(K,V ac(f)∗), and thus has a well-defined image
in the module

κ̂(fβ ,K) ∈ H1(K,Kp(ψ
−1)⊗HΓac(−j)).

Proposition C3.6. The image of κ̂(fβ ,K) in the above module is divisible by the logarithm distribution

log[r+1] ∈ HΓac .

Proof. This follows the same argument of Proposition C1.8, replacing the cyclotomic algebra with the anti-
cyclotomic one. □

Since the Iwasawa cohomology is torsion-free, there is a unique class

κ(fβ ,K) ∈ H1(K,Kp(ψ
−1)⊗HΓac(−j))

such that
κ̂(fβ ,K) = log[r+1] ·κ(fβ ,K).

C3.5. The p-adic L-function. Recall the anticyclotomic p-adic L-function LBDP
p (f), that was introduced

in Section B5 as a function over V1 × W. For this construction, the interpolation property also works at
k = r, and the complex L-functions factors as

L(Er+2(ψ, τ)/K ×χjac, 1) = L(ψ/K × σr+2+j σ̄−j , 1) ·L(τ/K × σj+1σ̄−j−r−1, 1) = L(ψ/K × σr+2+j σ̄−j , 1)2.

Note that we have used that L(τ/K × σj+1σ̄−j−r−1, 1) = L(ψ/K × σr+2+j σ̄−j , 1), which follows from the
functional equation together with the condition that ψτ = 1. This automatically gives an equality of p-adic
L-functions

LBDP
p (Er+2(ψ, τ))(χ

j
ac) = LKatz

p (ψ)(σr+2+j σ̄−j).

(Alternatively, it directly follows from the construction of [BDP13] that both functions agree.)

C3.6. Perrin-Riou maps. We want to relate the p-adic L-function LBDP
p (f) to the image of locp(κ(f ,K)).

This factors through the natural map

H1(Kp, D
ac(f)∗)→ H1(Kp,F+Dac(f)∗).

Perrin-Riou’s regulator gives a map

Colb+
f
=
〈
LPR
F+V (f)∗(−),b

+
f

〉
: H1(Kp,F+Dac(f)∗)→ O(V1 ×W)

which interpolates the Perrin-Riou regulators for fk. More precisely, for z ∈ (F+Dac(f)∗)
φ−1=1

, this map
sends z to

⟨ι((1− φ)z),b+
f ⟩,

where ι is the inclusion(
F+Dac(f)∗

)φ−1=0
↪→
(
F+Dac(f)∗[1/t]

)φ−1=0
= Dcris

(
F+Dac(f)∗(−1− k)

)
⊗HΓac .

Since multiplication by tr+1 corresponds to multiplication by log[r+1] on the HΓac side, we conclude that

Colb+
f
(κ(f ,K)) mod X = c(k)

〈
LPR
ψ−1(κ(f ,K)), ηαfk

〉
.
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Theorem C3.7. We have

Colb+
f
(κ(f ,K)) = c(k) · LBDP

p (f),

where c(k) is a meromorphic function on V1 alone, regular and non-vanishing at all integer weights k ⩾ −1
except possibly at k = r itself, where it is regular.

Proof. It follows from the reciprocity laws for Heegner points that the quotient Colb+
f
(κ(f ,K))/Lp(f ,K) is

a function of k alone, and this ratio does not vanish at any integer k ⩾ −1 where fk is classical; it is equal to
the fudge-factor ck defined above. Since LBDP

p (f) is well-defined and non-zero along {r} ×W, we conclude
that c(k) does not have a pole at k. □

C3.7. Leading terms. If c(r) ̸= 0, then we have thus constructed a class in Iwasawa cohomology of V (ψ)∗

whose regulator agrees with the Euler system of elliptic units. If c(r) = 0, then in fact κ(f ,K) is divisible
by X, so we can divide out a factor of X from both κ(f ,K) and c(k), and repeat the argument. Since c is
not identically 0 this must terminate after finitely many steps.

Proposition C3.8. Let n ⩾ 0 be the order of vanishing of cf at k = r. Then X−nκ̂(f ,K) is well-defined and
non-zero modulo X; and this leading term projects non-trivially into the quotient H1(Q,Kp(ψ

−1) ⊗HΓac).
Its image under the Perrin-Riou regulator is given by

c∗f (r) · log
[r+1] ·LBDP

p (Er+2(ψ, τ)),

where c∗f (r) ∈ L×.

We denote the resulting class by κ̂∗(fβ ,K). If n = 0, we have seen above that this class is divisible by

log[r+1]; for n > 0 this is less obvious, but it follows from the proof of the next theorem:

Theorem C3.9. We have

κ̂∗(fβ ,K) =
(
C · log[r+1] ·(−1) r

2+j
)
· κ(ψ,K)(σ−1−r−jσ̄1+j),

for some nonzero constant C, and where κ(ψ,K)(σ−1−r−jσ̄1+j) is the specialization at σ−1−r−jσ̄1+j of the
system of elliptic units defined in Section B4.

Proof. Take as before C = c∗f (r). This follows from the previous proposition, together with the explicit
reciprocity law for elliptic units, that both of the cohomology classes we are considering have the same image
under the regulator, and so they must be equal. □
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[Bel12] J. Belläıche, Critical p-adic L-functions, Invent. Math. 189 (2012), no. 1, 1–60. MR 2929082 ↑ 3, 4, 5, 6, 7, 8
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