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ABSTRACT
Software visualization facilitates the interactive exploration of large-
scale code bases, e.g., to rediscover the architecture of a legacy
system. Visualizations of software structure suffer from repetitive
patterns that complicate distinguishing different subsystems and
recognizing previously visited parts of an architecture.

We leverage variability-modeling techniques to "uniquify" vi-
sualizations of subsystems via custom-tailored 3D models of rec-
ognizable landmarks: For each subsystem, we derive a descriptor
and translate it to a (random but deterministic) configuration of a
feature model of variable 3D geometry to support large numbers
of different 3D models while capturing the design language of a
particular type of landmark. We devised a hybrid variant derivation
mechanism using a slots-and-hooks composition system for 3D
geometry as well as adjusting visual characteristics, e.g., material.
We demonstrate our method by creating various different trophies
as landmarks for the visualization of a software system.

CCS CONCEPTS
• Software and its engineering → Software product lines; •
Human-centered computing→ Visualization techniques.
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1 INTRODUCTION
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Software visualization represents the structure, behavior, or evolu-
tion of a software system in a visual format to foster comprehen-
sion [7]. When exploring large-scale code bases, e.g., to rediscover
the design of a legacy system, visualization, esp. of structural system
aspects, is essential for gaining an overview of a system’s architec-
ture [6, 11]. However, existing software visualization [1, 8, 10, 17, 28]
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Figure 1: Visualization of two architectural elements suffering
from hard-to-distinguish patterns (a, b) vs. the same architectural
elements “uniquified” through custom-tailored landmarks (c, d).

is hampered by a pivotal problem: The structural visualizations of
different parts of a software system are hard to differentiate due to
repetitive and complex patterns in the visual representation that
cannot easily be distinguished (see Figure 1).

The lengthy and iterative exploration of large-scale code bases
is further complicated when comparing parts of a system or re-
encountering an already visited part of a system: previously gained
insights and mental models cannot be associated.

We propose a method for 3D software visualization to "uniquify"
different parts of a software system by placing custom 3D models
of recognizable landmarks along the structural representation of a
particular part of a software system (e.g., packages, components,
subsystems). We use trophies (as awarded to winners of sports
competitions) as running example for one type of landmark (but
one could also imagine statues, towers, bridges etc.).

To aid the structural representation of (potentially very many)
parts of a system with custom 3D landmarks, we identified two
challenges: First, a large number of sufficiently distinct 3D models
is required to ensure that each different part of a system can be rep-
resented by a custom landmark. In addition, each type of landmark
follows a certain design language [15, 22] that governs potential
variations in its appearance, which has to be incorporated in the
respective variations of the 3D models.

We leverage techniques from variability engineering to “uniquify”
structural visualizations in 3D by generating distinct 3D models

https://orcid.org/0000-0002-5254-6246
https://orcid.org/0000-0003-4539-8297
https://orcid.org/0000-0003-4391-0197
https://doi.org/10.1145/3571788.3571798
https://doi.org/10.1145/3571788.3571798
https://doi.org/10.1145/3571788.3571798


VaMoS 2023, January 25–27, 2023, Odense, Denmark Adrian Hoff, Christoph Seidl, and Michele Lanza

for a large number of landmarks following a common design lan-
guage: We capture the design language of a particular landmark as
configuration logic within a feature model where each feature is
associated with partial 3D geometry or a visual characteristic of a
3D model, e.g., its material. We analyze the source code associated
with the part of a system to be visualized and map its relevant
characteristics to a configuration of the feature model. Finally, we
create a custom-tailored 3D model representing one landmark via
a hybrid variant derivation mechanism combining composition of
partial 3D geometry with transformation of visual characteristics.

While this paper describes work in progress, we provide explana-
tions and a prototype implementation1 of all constituent concepts.

2 BACKGROUND
Our work marries concepts from software visualization with tech-
niques from variability engineering.

2.1 Software Visualization
Software visualization presents a software system’s structure, be-
havior, or evolution in a visual format (using 2D and 3D visual
metaphors) to foster the comprehension of structural arrangements
and relations [7, 20, 25, 26].

2D metaphors are mostly abstract graphs, trees, and diagrams [2,
12, 23]. 3D metaphors borrow analogies from the physical world to
exploit viewers’ familiarity with real-world constructs, e.g., cities,
islands, or planets [1, 8, 10, 13, 17, 26, 28]. 3D software visualizations
can be distinguished by the medium they employ, i.e., computer
screens, augmented reality, or virtual reality [16, 18].

A fundamental purpose of software visualization is to provide
an overview of a visualized subject system, e.g., to foster top-
down exploration [4–6, 9–11, 14]. This includes the visualization
of architecture-level constructs such as packages or subsystems.
However, software systems may encompass architecture-level con-
structs with similar (but not identical) characteristics and size so
that the generative processes for creating visual representations
yield repetitive visual structures (see Figure 1). As a consequence,
the exploration process is hampered by problems with orientation
(inability to distinguish different architectural elements) and relat-
ing previously built memory models over the course of exploration
(inability to recognize previously inspected parts of a system).

2.2 Variability Engineering
A Software Product Line (SPL) [21, 24] permits structured reuse
within a highly-variable software family by exploiting common-
alities and managing variabilities of closely related variations of
software artifacts. Within an SPL, the problem space captures the
configuration logic on conceptual level, whereas the solution space
contains realization artifacts for all possible variants. Configuration
logic is represented by a variability model, e.g., a feature model,
which is a hierarchical tree of (de)selectable (optional/mandatory)
features potentially structured into alternative groups permitting
selection of at least one/exactly one feature (see Figure 3). Cross-
tree constraints (commonly formulated in propositional logic) may
further reduce the configuration space. A configuration is a valid
selection of features obeying the configuration rules imposed by the

1https://gitlab.com/immersive-software-archaeology/variable-3d-landmarks

feature model from the problem space. A variant is the realization
of a configuration as realization artifacts from the solution space.

Variant derivation translates a configuration to a variant compris-
ing the realization of one specific product. There are three principal
kinds of variant derivation [24]: Annotative methods prune a repre-
sentation comprising all possible variations (150% model) to only
the realization artifacts required for a configuration (100% model).
Compositional methods build a variant by combining constituent
pieces associated with individual features or combinations thereof.
Transformational methods modify characteristics of an existing
variant to retrieve the desired variant. While realization artifacts of
the solution space commonly consist of source code, other software
artifacts can be made subject of variability within an SPL as well,
e.g., in our case, 3D models.

3 VARIABLE 3D MODEL GENERATION
Our method utilizes concepts from variability modeling and 3D
model generation to derive "uniquifying" 3D landmarks based on a
configurable design language to be placed along otherwise similar
visual structures in software architecture visualizations. A prime
consideration for our method is to yield 3D landmarks that are
distinct, yet following a well-defined design language. In turn, this
design language needs to be expressive enough to provide distinct
landmarks for all architecture-level constructs of a visualized soft-
ware system. Figure 2 depicts a conceptual overview of our method.
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Figure 2: Overview of our method for generating "uniquifying"
landmarks from a software descriptor.

We define a configurable design language for 3D landmarks via
a feature model and partial 3D geometry 0 . We automatically
synthesize a software descriptor 1 that we use to sample a valid
configuration of the feature model 2 , and forward it to a hybrid
variant derivation mechanism 3 yielding a concrete 3D model for
a landmark. In the following, we detail each step.
0 Visual Language Definition We perceive–and model–the de-
sign system [22, 27] associated with a design language in the sense
of an SPL: While the individual visual characteristics of a 3D design
language manifest in the implementation as 3D models, the (as
of yet implicit) rules and variations permissible within a design
language constitute a form of configuration logic. In consequence,
the solution space (see Section 2.2) is comprised of individual parts
of 3D geometry (partial 3D models). In addition, the problem space
consists of a feature model that explicates design rules in the form
of permissible configurations described as (de)selectable features.
The left part of Figure 3 depicts these two artifacts using the exam-
ple of configurable trophies. The feature model defines which design
elements may be combined and the partial 3D geometry defines
how individual parts of a 3D model may be combined.

https://gitlab.com/immersive-software-archaeology/variable-3d-landmarks
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Figure 3: A feature model capturing the configuration rules of a design language (problem space) is aided with partial 3D geometry
(solution space) to retrieve custom-tailored 3D models of landmarks via a hybrid variant derivation procedure composing 3D geometry and
transforming visual characteristics, e.g., material.

To allow the combination of partial 3D geometry according to
imposed rules, we have designed a slots-and-hooks composition
system [3] for 3D models (see Figure 4). On a conceptual level,
a slot serves as an extension point for 3D geometry that defines
where and with which rotation/scale an element may be attached.
Likewise, a hook (defined in another part of 3D geometry) declares
the principle option for serving as an extension to a compatible
slot. Whether a slot of part of 3D geometry is actually bound (at all)
and, if so, with the compatible hook of which specific other part
of 3D geometry is determined via a configuration of the feature
model during variant derivation (see below). On a practical level, we
implement the slots-and-hooks composition system for 3D models
by using invisible elements of 3D geometry as markers to define
position, rotation, and scale for both slots and hooks.We established
a naming convention that identifies these markers as either slot or
hook and determine compatibility via matching names.

1 Software Descriptor Synthesis The landmarks we generate
have to be created deterministically from (the implementation of)
an architectural element and, at the same time, must be stable over
miniscule changes to the implementation. To achieve these goals
and steer the subsequent creation of a configuration (see below), we
borrow the concept of a descriptor from computer vision: A visual
descriptor is an abstract summary of visual characteristics in an
image [29] (e.g., edges) that can be sensitive to certain characteristics
(e.g., color changes) and robust against others (e.g., rotation).

We adapt the concept of a visual descriptor to design a soft-
ware descriptor for architectural elements: The software descriptor
should be robust against minor changes (e.g., creating a new at-
tribute or method within a class), yet sensitive toward major modi-
fications (e.g., removing entire classes). In addition, in our use case,
the software descriptor steers the sampling of a configuration for a
3D model and the respective landmarks should be stable for each
architectural element. Hence, creation of the software descriptor
must be deterministic, i.e., the same input of software elements
must always result in the same descriptor.

While determining the full scope of an expressive software de-
scriptor is part of our ongoing work, we illustrate the principle
use of a software descriptor: For each architectural element, we
calculate a software descriptor that is sensitive to the number of con-
tained elements (e.g., classes, structs, etc.) as well as their respective
qualified names. We devise a canonical form of the descriptor by
combining the number of elements with a hash of all fully qualified
(i.e., unambiguously identifiable) names in alphabetical order. As an
example, consider a Java package com.application consisting of

Figure 4: Example of the compositional aspect of our variant deriva-
tion. A slots-and-hooks composition mechanism combines partial
geometry based on a naming convention of the respective parts.

3 classes Model, View, and Controller. Our illustrative software
descriptor for this package starts with a 3 (number of contained
elements) followed by a hash of their concatenated fully qualified
names resulting in “32117573461” as the software descriptor.

Through this procedure, we capture relevant high-level aspects
of software constructs contained within an architectural element
while abstracting from negligible details within a deterministic and
compact representation.
2 Steered Random Configuration Sampling We derive a valid
configuration from the visual design language based on configu-
ration sampling guided by our software descriptor. Similar to the
synthesis of software descriptors, the sampling of configurations
must be deterministic, i.e., the same descriptor should always result
in the same configuration. At the same time, different software de-
scriptors should result in different configurations. However, which
specific configuration is determined for a particular software de-
scriptor is of no concern (as each represents a viable landmark).
Hence, we employ random configuration sampling but steer the
selection process by using our software descriptor as seed for the
random generator to ensure deterministic results. In our implemen-
tation1, we use the random sampling provided by FeatureIDE2.
3 Hybrid Variant Derivation To realize a configuration in the
form of a variant comprised of a custom-tailored 3D model, we
have devised a hybrid variant derivation mechanism that includes
aspects of compositional and transformational methods.

2https://featureide.github.io/

https://featureide.github.io/
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Figure 5: Example of multiple visually distinct trophies created
through variant derivation for our running example.

The compositional part of variant derivation employs the slots-
and-hooks mechanism recursively by stepping through relevant
partial 3D geometry and composing parts according to matches in
the contained slots and hooks. For instance, for each of the four
handles of the trophy variant depicted in Figure 4, the hook (and,
therefore, the associated 3D geometry) is positioned, rotated, and
scaled according to the respective slot defined in this specific kind
of cup. The order for composing slots and hooks may be arbitrary
as each will result in an identical 3D model.

The transformational part of variant derivation mutates the ap-
pearance of 3D geometry by revisiting all (previously) partial 3D
geometry and exchanging materials. For that purpose, the variant
derivation mechanism uses a selection of pre-configured materials
by matching their names according to a feature naming convention.
In our running example, we use two different types of materials
that are (primarily) visible with metallic parts of a trophy (riser,
cup, handles, lid) or with the base of the trophy, where each type
of material has two possible variations (see Figure 1).

The result of variant derivation is a concrete 3D landmark model
that developers of 3D software architecture visualizations can utilize
to "uniquify" architecture-level constructs similar to the examples
depicted in Figure 5.

4 OUTSTANDING CHALLENGES
While we have devised a prototype implementation to demonstrate
our concepts, there are outstanding challenges, which we list here
to foster academic discourse and invite potential collaborators.

Unique Configuration for each Descriptor Even though our
mapping of a software descriptor to a configuration of the feature
model is deterministic, there may be cases when two distinct de-
scriptors are mapped to the same configuration and, thus, yield
the same 3D model. In part, this is (inadvertently) by design as
the number of configurations in the problem space may be lower
than the potential number of different architecture descriptors each
representing a distinct individual architectural element. To address
this challenge, we foresee two promising directions: On conceptual
level, we strive to a-priory assess whether the configuration space
is sufficiently large to accommodate all possible architectural ele-
ments and, if not, to guide expansion of the configuration space
(e.g., in the example shown in Figure 3, that adding a new type
of lid would add 144 configurations). On practical level, we will
explore configuration options via attributes and with continuous
values (e.g., for model scale or custom colors) to further expand the

configuration space with little burden of creating new elements for
3D models.
Continuous Variation Software visualization commonly incor-
porates relations between architectural elements in the spatial ar-
rangement of the visualization [26], e.g., hierarchies of nested com-
ponents or the degree of coupling between different subsystems.
In consequence, architectural elements that are "more strongly"
related to each other are commonly collocated in the visualization.
Currently, our method creates different configurations and, thus,
visually distinct 3Dmodels for each architectural element. However,
we see great potential in exploiting the relation of architectural
elements by having landmarks of closely related architectural ele-
ments share certain visual characteristics (e.g., an area where all
landmarks have a gold material). For this purpose, we will extend
the software descriptor to incorporate hierarchy and relation of ele-
ments but will also research how to selectively vary a configuration
to achieve continuous variation for the generated 3D models.
Robustness toward Evolution While our tentative implemen-
tation of an architecture descriptor is robust against changes in
implementation details (e.g., methods and attributes), it is sensi-
tive to changes in the set of classes contained in an architectural
element and names of the contained classes. However, over the
course of software evolution, even these characteristics may change.
Currently, this would yield a different configuration and, thus, an
entirely different 3D model for a landmark so that the relation to a
previously established mental model will be harmed. To cope with
evolutionary changes, we strive to either make the software descrip-
tor robust toward certain architectural changes, so that associated
landmarks remain unchanged, or determine a method that allows
creation of largely similar configurations to that created landmarks
contain only minuscule visual differences to the previous edition.
Landmarks with Semantics In our prototype implementation,
we sample 3D models based on a random configuration of a feature
model using a software descriptor. While this allows us to deter-
ministically generate a large variety of 3D models that follow a
configurable design language, the resulting 3D model variants do
not convey characteristics of represented software elements such
as their size (e.g., by scaling landmarks), quality (e.g., by including
visual effects such as cracks, cf. [19]), or complexity (e.g., by select-
ing certain features that indicate complexity such as the complex
handle in our running example).

5 CONCLUSION & FUTUREWORK
In this paper, we exploited variability engineering techniques to
devise a method for generating custom-tailored 3D models of land-
marks to “uniquify” otherwise visually similar structures in soft-
ware architecture visualizations. Our method allows to encode the
design language of a family of 3D models within a feature model
while also permitting to leverage 3D modeling software to prepare
visually appealing (partial) 3D models.

The outstanding challenges of our work are rooted within two
fundamental areas: descriptor robustness and variant similarity.
Descriptor robustness: Our joint goals of providing unique 3D mod-
els for landmarks “uniquifying” conceptually different architec-
tural elements and ensuring a visual similarity between closely
related architectural elements are, at times, diametrically opposed.
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Accommodating both goals requires determining additional char-
acteristics to incorporate in the descriptor as well as finding a
tradeoff between characteristics the descriptor should be sensitive
to/robust against. Variant similarity: While there are methods and
measures for determining the similarity of different configurations
(i.e., selections from the feature model), our goal of achieving visual
similarity/continuity (for various use cases) requires the ability to
prognose similarity of multiple variants (e.g., visual similarity of
3D models), ideally, without having to rely on analyzing resulting
products. Our future work is aimed at researching solutions for
descriptor robustness and variant similarity to further improve the
benefits of our method for demarcating/recognizing architectural
elements in the visualization of even larger and evolving software
systems.
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