VALAIS
Hes: s Oi/ WALLIS
Haute Ecolg de_Gestion 3
Hochschule fiir Wirtschaft

Filiere Informatique de gestion
Studiengang Wirtschaftsinformatik

University of Applied Sciences and Arts Western Switzerland
Business Information Technology

IT Infrastructure
Automation

August 2021

Written by : Bruchez Jonas
Professor in charge : Barmaz Xavier
Submitted August 3, 2021

University of Applied Sciences and Arts

Abstract

The purpose of this document is to define the state of the art regarding information technology
infrastructure automation. Nowadays, companies need a way to automate their infrastructure to
reduce their expenses and avoid wasting time. System administrators could then work with more
efficiency and focus on solving challenges in the company that actually require human intervention.
An overview and analysis of the main existing open-source automation software available on the
market has been performed with the objective of defining what kind of software a company should
choose depending on their needs. The analysis showed that Ansible and Puppet were the most ideal
software according to the criteria established. An in-depth lab has been established using the selected
software. The installation guide explains the different steps required to set up the environment and
the configuration guide offers a detailed example configuration using each software. The lab revealed
a large difference between the use of Ansible and Puppet. The quality and amount of information
found about Ansible online was greatly superior and the ease of use was even more obvious than
expected.

Keywords : Automation, Infrastructure as Code, Configuration management, Server/Agents

Hes ¢

University of Applied

Western Switzerland

Foreword

This thesis was written as the final work of my Bachelor studies in Business Information Technology.
The information technology infrastructure may be of significant size in a company and operators need
tools to help them save time on repetitive tasks that do not necessarily require insight from them. The
subject of this report is the analysis and testing of different software providing these tools and
determine the best solution regarding infrastructure automation currently.

The difficulty encountered was to select the right information among contradictory comparisons
among the references used to write this report. It is also important to note that software and hardware
both evolve very quickly, therefore we cannot ensure that the conclusion and results reached will still

apply in few years.

This report has been written with the assumption that the reader has a basic understanding of
information technology infrastructure and Linux architecture.

The research, analysis and testing took place from May 2021 to August 2021.
USB Flash Drive Structure

You will find, attached to this report, a USB flash drive containing the following files :
e (01 Report
e 02_lInstallation_Guide

e (03_Configuration_Guide
e 04 Poster

Special Thanks

| would like to thank Mr. Xavier Barmaz, professor at the University of Applied Sciences of Western
Switzerland, for following my work and giving me great advice.

Table of Contents

Y« ot]
FOrEWOKM ... s s s s s s s s s s s s s s s s s s [}
USB Flash Drive StrUCTUrEccooviiiiiiiiiiiiii i s s s [}
SPECIAI TRANKS..... ittt ittt tiraseeetrasestetressssstressssssssssssssssnssssssssssssssanssssssanssssssnnes]l
Table Of CONLENTES ...ttt e e e s s e s s s e e e snaae s sss s s e e s nnnaes v
List Of TAbIES c.ceeueeniiiiieee e e s vil
LiSE Of FIBUI@S ..uiiieneiiiiiiiiiiiiniiiiieniiis it iiraseeetiassseetrssssestesssssssssssssssessssssesssssssssssssssssssssssssnsssns Vil
List Of ADBreviations.......cceeeuuiiiiiiiiiiiieiinii i e e s s X
3o T T 1 oY 1
1. State Of the Art ... s e 2
00t R I B 10 = 1 U AU T TSP UP SRR 2
1.2, Infrastructure AUTOMATIONcoiiiiiiiee et 2
1.2.1. D=V T o T3 3
1.2.2. INFrastrUCtUre @S COUB ...couuiiiiiiiiieet ettt s s b st 3
1.2.3. T[T 0'0] o o] =1 Vol YR 4
1.2.4. Procedural Vs DeClaratiVecoueeviieiieiieee ettt e 4
1.2.5. Mutable vs IMMULADIEcooiiii s 5
1.2.6. ABENT VS AGENTIESS....cii ettt e e e e e ta e e e et re e e e e ta e e e enraeea e e 5
1.2.7. CloUd AUEOMATION ..ottt sttt st e e sre e s e b b eree 5
1.2.8. NEtWOrk AUTOMATION.....eiitiiitieiii ettt st 6
1.2.9. Best Practices for IT AUTOMAtioNc.ooiiiiiiiierii et 6

2. SOFtWAre ANQAIYSISccuueeiiiiieiiiiie it rrrreee e rr e eesenas s ssseeas s s sesasssssenssssseennssssrnnassssnennnsssnennns 7
S OO0] g ol=] o] £ 7
2.1.1. OPEN-SOUICE SOTEWAIEeiiiiiiiiee ettt re e e e e e e st ree e e e e e e s e e sranraeeeeaeeas 7
2.1.2. Y 5 OO OU OO UPRRUPRPRORIN 7
2.1.3. RS A ettt ettt et h et ettt a b a bt et e e ehe e ehe e e aeeeate e bt e ehe e eheenatenaeeeaeas 9
2.1.4. WINRIM L.ttt e e ettt et e e e e s bt e te e e e et b eaeeee e e nnteeeaeeeeeannan 9
2.1.5. A A 9
2.1.6. RUDIY et e e e e e e e e e e e e —— e e e e e e e e e a———aeae e e e e nararaaeaeeeannnrraaees 10

2.2 ANSIDIE e et e e s r e e e s e e b ee e nre e s neeenareeas 12
2.2.1. A ol o 11 =T U < T TP OO UUTUPSPP 12
2.2.2. INSTAIATION L.ttt s sr e s s 13
2.2.3. [01V7=T o 1 (o] oV A 13
2.2.4, o 21 o T Yo T4 UR TR 13

2.2.5. CONAITIONAIS ...ttt ettt et et sre e 16
2.2.6. [WoTo] o 3 TP 17
2.2.7 ROIES ..ttt ettt et e e b e e shr e sttt e bt e s et e nr e b ee s nreesareeeanee 18
2.2.8. IMIOAUIBS ...ttt st e et e e s e s it e st e e s bt e e sbeeesaseesnreeenneeeearees 19
2.2.9. (670700701 - o To L3PPSR U PRSPPI 19
0 L B IF- T o V- (U - T BRSSP 22
D 1Y o Y1 o] L= o o 1R 22
2,212, ANSIDIE CONS...eeeeeeteeeie ettt ettt e sttt esbe e st e b e e sat e e be e e nr e e s reeeanreenane 23
2.2.13. When to USE ANSIDIE.....coeeiiie e s 23
2.3 B ettt ettt bbbt bt et e b e bt e b e she e st e e be e bt e b e bt e shaeeaeas 24
2.3.1. A ol o 11 =T U < T TP U URTTPSPP 24
2.3.2. Chef WOIKSTatioN.cooeiiiie ettt s s s e s sneee s 25
2.3.3. CREE SEIVET .ttt sb e st sttt e b e e ne e s e 26
2.3.4. CREF ClIENT ettt s st st s b e e b e sreesaees 26
2.3.5. INSTAIIATION 1.t s e sre e 26
2.3.6. Y=ol | o= N 28
2.3.7. COOKDOOKS ...ttt st s st s e e sre e st e s 28
2.3.8. LT o =T Ve [V g ol [T PR 31
2.3.9. CONAITIONAIS ...ttt ettt ettt st st bt sre e 33
B 201 K IR o To o LI PP UPPPPUPPPPPPPRE 34
D 20 N O - 1 o V< (U - 1= D PP PP PP PP PPPPPTPPPPP 34
D T B =Y i o o 1SRN 35
2.3.13. Chef CONS ettt e st esht e e b et e nr e e r e e e nreeaane 35
2.3.14. When tO USE Chef ... ettt s s s s e s e e snee e 35
S VT o o Y=Y 36
2.4.1. A ol o 11 =T o U < T T U UP T UUTPSPP 36
2.4.2. INSTAIATION .t sr e s e 37
2.4.3. IMIOTUIBS ...ttt st sttt e s e st e e st e e s e e e e sreeesabeesnreeennreeeareas 38
2.4.4. [0 Yo o 13 43
2.4.5. I T - = 44
2.4.6. (U] o] o1 o] o 33 44
2.4.7. (VT o] o1 afofo] o K3 TP TP 44
2.4.8. WHhEN L0 USE PUPPET ... eeiiee ittt ettt e e e be e e e entrae e setaeeesrnraeaeeans 45
P T Y- || TSP PP OP PR PRTPRUSUROPN 46
25.1. APCNIEECTUNE ... e sttt sre e s e st e e 46
2.5.2. INSTAIIATION 1.t st e 47
2.5.3. (60T 49104 =T 0 o L3OO OO PSSO PP PPN 49

2.5.4. SEALS it 50
2.5.5. ENVIFONMENTS .eeiiiiiiiiiiiiiii e e s 52
2.5.6. B 1o o 35 11T SR UPUPTOE 52
2.5.7. PHILAIS ettt ettt sttt st e s b e e et e e sre e e re e e sraeeeareas 54
2.5.8. 16073 To [4Te] g =1 -3 H P PP PO PRTUUPROPUPROPRRPPO 55
2.5.9. [0 Yo o 13 55
2.5.10. FOIMMUIAS ottt ettt ettt ettt ettt e bt e s bt e et e e s b e s anbeesabeeenteesabeesaneeesneeaas 56
T N R I T o V- (U - T BRSSP 56
T Y- 1 |] o T USSR 57
2.5.13. SAIt CONS ettt et s et e e she e e s b e e e b e e e nnr e e e nreesareeeas 57
2.5.14. WhHEN 0 USE SAIT ..eeiiiiiiiiie ettt ettt s s s sbe e st e e sneeea 57

2.6, TEITAFOIM oot e st e e s b e e s b e e et e st e e b e e e nr e e s b e e e anreeeane 58
2.6.1. APCNIEECTUNE ...ttt et sr e s e st sane e 58
2.6.2. INSTAIIATION 1.t s e sre e 59
2.6.3. ConfigUIation fil@.....cii e e e 61
2.6.4. SEALE FIlE e e e e s 62
2.6.5. LKL A=) (o] a0 1 o] LI PR 62
2.6.6. TITAfOrM CONS ..ttt sttt st st et e sre e s e sanesane e 63
2.6.7. When t0 USE TerrafOrm ...ccc.ee ittt 63

3. SOftWare COMPAriSON.......ccuuueeiieeeneerienncerteneneerernnsssrernssssrennnssseennsssessnnssssseensssseesnsssssennsssnnens 64
3.1. Summary of Software CharacteriStiCsuucviiiiiiiiee it e e e aaaee s 64
3.1.1. Software characteristics tablecoviiiiiiii e 65

3.2, Criteria DefiNitioN coo.eei i e 66
3.2.1. DECISION MATEIX . eeieiiieiie e e s e s e e s e s e 67

3.3, SYNthesis Of the rESUILSuuiiiiiie e e e e e e e e e e e rreee s 68
4, SOftWAre TeSHING ..cccvuuiiiiiiiiiiiiiiiiiiiieiieaiisieeaesteeassstesssssntesssssstesssssstsssssssssnssssssenssssssanses 69
4.1, Selected SOFtWAIE...c..uii ettt s s et r e s seee e neas 69
A =153 [0 Y =0 ol =T o - 1 o o TN 69
4.3, CONCIUSION ettt ettt e s bt e s bt e s bee e sabeesne e e saneesreeesaseesnees 70
LT =1 =T =T o= 71
FXTL 11T T=T ol T 1 o T o PPN 75

\

List of Tables

Table 1 - Software characteristics definitioN....cccooceeeeeeeeeeeeee e 64
Table 2 - SOftWAre CharaCteIISTICS ...uuuueeeee e s s s s e s nas 65
Table 3 - Criteria defiNiTiON. ... e s s s e s ennsnsnnns 66
R] o) (2 A D LYol 1 {o Y W 1 0 1= L) O 67

List of Figures

Figure 1 - DevOps architecture (Krebsbach, 2016)c..ooiccuiiiiiccieeeeciee et ereae e 3
FIGUIE 2 - SSH CONNEXION ...t e e e e e s e e e e e san 8
Figure 3 - SSH layers (AleKSiC, 2020)........uui it ee ettt eeteee e e et e e e e tree e e eeteeesesbbeeeesssseeeeeseeaeenns 8
Figure 4 - Simplified RSA diagram (javainterviewpoint, 2019).........ccceceiiieiiiiieeeiceee e e e 9
Figure 5 - YAML structure (Ansible Documentation, N.d.)cccceeeiiiiiiiiiiiee e, 10
Figure 6 - Ruby structure (Chef Documentation, N.d.)ccocciiiiiiiie e 11
Figure 7 - Ansible architecture (Ansible Verwendungsszenarien, N.d.)cccccveeeeiiieeeciiieeeecieee e, 12
Figure 8 - Ansible inventory file @Xampleuee e e e 13
Figure 9 - PIaybooK @XaMPIEcoiiiiiiii ettt e et et e e e et a e e s e b e e e anaaae e e enbaeeenneaees 14
Figure 10 - Ansible variables @XamPle.......cco i et a e e aeean 15
Figure 11 - Playbook successfully @Xecuted 1c..ovvviiiiiiiiiiiiiecciee e e 15
Figure 12 - Playbook successfully @XeCUted 2eevviiiiiiiiieiieceee et 16
Figure 13 - Display ANSIDIE faCts.......oiiiiciiiiiciiiecceee et e e e e s e ara e e e e raee s 17
Figure 14 - Ansible distribution facteeiiiiiioieee e e e e 17
FIgure 15 - CONAILIONS @NA/OF w.iiuriieiiieetee ettt ettt ete e e etae e et e e taeeeaseeebseeesseeeresensseesaes 17
Figure 16 - Ansible user creation (ClasSiC)ccuiiiiiiuiie et ree ettt e e e err e e e et 17
Figure 17 - Ansible user creation (I00)cccuie oottt ettt e eeeare e e e e ere e e e e enraeeas 18
Figure 18 - Ansible role structure (Domont, 2021)ccceiiiiiiiee et ee e e e s aeae e 19
Figure 19 - ansible ad hoc command eXample..........eeeviiieeeciiiieeec e ee e e 19
Figure 20 - ansible-config @Xample....... .o e e 20
Figure 21 - ansible-console @XamPIe e e e e e e e r e e e e e eaaa 20
Figure 22 - ansible-doC @XamPle........ . i e e e e e et e e e e e e e e e ebrarae e e e e e e eeanes 20
Figure 23 - ansible-galaxy eXamPleueeeiiii oo e e e e r e e e e e e eanns 21
Figure 24 - ansible-inventory @Xample ... et e e e e e e e aae s 21
Figure 25 - Ansible procedural [anguage eXampleccueeiiiiiee i 22
Figure 26 - Chef architecture (Gaba, 2021)cccocuiiieieiieie et e e e e s ra e e e s aaaee s 24
Figure 27 - Supported OS for a Chef workstation (Chef Downloads, n.d.)........cccceoeviiiiiiieeniiieeccee. 25

VI

Figure 28 - ChEf-rePO SLIUCTUIEuviiiiciieec ettt eree e e et e et e e e st e e e s e e e e easbaeeeenreeeennnsaeens 25
Figure 29 - .Chef rePO StIUCTUIE.......uii ettt et e e ae e et e e e st ae e e etreeeesnteeeesaneaees 25
Figure 30 - Supported OS for a Chef server (Chef Downloads, N.d.).....cccceeeeviieieiiiiieeecieeeeeceee e, 26
Figure 31 - Supported OS for a Chef client (Chef Downloads, Nn.d.)ccccceeeiiiiiiiiiiiecie e, 26
Figure 32 - scp command to fetch .pem filesuueiieeiii i 27
FIUIre 33 - CONTig.rD file. e e e e e e e e e e e e aee e e e eeaaen 28
Figure 34 - knife ssl fetch comMmMaNndooooiiie e e e e e e 28
Figure 35 - COOKDOOK CreatioN ..ccccciiiceiiiieeeeee ettt e e e e e e e brt e e e e e e e e e nbaeeeaeeeeeeanns 29
FIUIE 36 - DEfaUIL FECIPE ... ettt ettt e e e e et te e e e e e e s et b teeeeaeesesnbtasaeeeeaeeannes 29
Figure 37 - Apache installation rECIPEuuiiiii i e e e e e e e e e e e e e 30
Figure 38 - CoOkbook UPIoAded 0 VCS......cooi ettt s e e e e e ra e e e ee e e e eeaans 30
Figure 39 - Apache installation 0N the NOAEuuiiieiii e 30
Figure 40 - activate_httpd.rb rECIPE.......eeiie e e e raeean 31
Figure 41 - knife node run_list add cOMMaANdooiiiiiiiiiiiiiiceccee e e 31
Figure 42 - depends KEYWOIduuiii ittt e e vt ee e et e e s bae e e s tae e e e anbe e e e enseaeeeennneeas 32
Figure 43 - include_recipe KEYWOIooiiiiiii ittt ettt e e e e sar e e e s e e e e eaneaee s 32
Figure 44 - Apache installation depending on platform (Chef Documentation, n.d.).......ccccccceeeennneen. 33
Figure 45 - Check platform condition (Chef Documentation, n.d.)......ccoceieiiiieieniiieiecee e 33
Figure 46 - Loop over array of package names (Chef Documentation, n.d.)ccccoueeeeiieeeeccieeeccneenn. 34
Figure 47 - Chef procedural language example (Chef Documentation, n.d.).....cccccoeeeeicieeeeniieeeecnnenn. 34
Figure 48 - Puppet architecture (Simplilearn, 2021)ooeeiviieiiiiieee e e vae e e erae e 36
Figure 49 - Puppet server-agent process (Puppet Documentation, n.d.)ccccceeeviieeeeiiieeeeccieee e, 37
Figure 50 - /etc/hosts file example 0n @ PUPPEt MaASTeIeiecuiieeiee ettt 37
Figure 51 - Puppet master approving nodes certificatesccccveieeeeiiiieieie e 38
Figure 52 - PUPPEt COUE SLIUCTUIE........uviiiieiee ettt e e ecree e e e e e e e etee e e e e e e s et e eeeeaeeeeaanreaaeesaeennnn 38
FIUIE 53 - INIt PP fIl0 ceeeeeiceeeeee e ee e e e e e e st e e e e e e e e e sttt teeeeeaeeesanstnreeeeeeaeessnns 39
TN gl I - o 10 o K o o I] (PSRN 40
FIUIE 55 - SSN. PP fIl8 ceiiiieee e e e e e e e e et e e e e e e e e s annbeeeeeeee s e annraaseeaaeennnns 40
Figure 56 - Site.pp file SAMPIE ..eeeeeee e e e e e e e e e rar e e ae e e e eeanns 41
Figure 57 - puppet apply COMMANGooiiiiii e e e e e et rre e e e e e e e s nbterae e e e eeeeeanes 41
Figure 58 - iptables command before catalog updateoueeeeeiiiecciiiee e 42
Figure 59 - Node uUpdate USING PUPPEL......coiiiiiie ettt ettt estte et e e et e e e e v e e e s eaaaaee s e snreeeenaneaee s 42
Figure 60 - iptables command after catalog UpPdateccoccuvveieiiiiii i 43
Figure 61 - Puppet loop example (Puppet Documentation, N.d.)cccccoeeeeniiieeiiciiiee e, 43
Figure 62 - Puppet declarative [anguage eXampleccueeiiiiieeiciiiecccie e 44
Figure 63 - Salt architecture (Salt system architecture, 2021)......cccceeeccieeeieiiiee e 46
FIgUre 64 - Salt Master filE .o i et e e et e e e b e e e e abae e e earaeeas 47

Figure 65 - Salt minion file (Master ProPerty) ... e aee s 47
Figure 66 - salt-key command with UNaccepted KeY.........oiiiiriiiiiiiiieciee e 47
Figure 67 - salt-call command with MINION K@Ycceeiiiiie e 48
Figure 68 - Salt minion file (master_finger Property) ... 48
Figure 69 - Salt master validating the minion's key fingerprintccccoveieii e, 48
Figure 70 - salt-run manage.up COMMANGuuiiiiiiee e cecccciiree e e e eccctreee e e e e e e e srteree e e e s e e eesnstnreeeeeeaeessnns 49
Figure 71 - MiINion's Srains [iST.....eee ittt eere e e e e e ere e e e s e e e arraaaeaaeeenanan 49
Figure 72 - pkg.install command 1 ...t e e e e e st rre e e e e e e e e nnrrre e e e e e e e eennns 49
Figure 73 - pkg.install command 2oooiiiiiiee e e et e e e e e e et a e e e e e e e e eeanes 50
Figure 74 - Minion's Packages liStuiviiiiiiiccciie e e e e st rre e e e e e e e e snntereeeeeeeeeennns 50
Figure 75 - service.start COMMAaNG..........oeiiiiiii et e e e e e eerareeee e e e eesnrareeeeeeasananes 50
Figure 76 - iNStall_VIMLSIS L ...uueriiiii ittt ee e e e e ettt e e e e ee e s tateaeeeaeeesnstasaeeeeeeeennnes 51
Figure 77 - state.apply COMMANG.....coooiiiiiiiiiee et e e et e e e v e e e e arae e s e nareeeesneaees 51
Figure 78 - iNSTall_VIMLSIS 2eoiiiiiiiee ettt e e et ae e e et e e et ae e e etaa e e e s nteeeesaneaee s 51
Figure 79 - vimrc configuration file copied to the MinioN.........ccccccver i, 52
Figure 80 - /Srv STrUCTUIrE @XaMPIE L.ciiuiiiiicieeiiecree et ettt ettt e et e eaesreeabeebeesreesabesaveeaseenreenressaeens 52
Figure 81 - /srv/salt struCtUre @XamMPIe......iccviciiiecieeeiectecre ettt et etee e eere e steestaestvesaveeaveenseenteenanens 52
Figure 82 - top.sIS file @XAMPIE.......eeiieeeee e e e arae s 53
Figure 83 - Create _USEI.SIS fil@. i i e et e e e e e e eabre e e e e anee s 53
Figure 84 - /Srv STrUCTUIE @XAMPIE 2 .eiuiiiie ettt ettt ettt ete e st e e aesbeebeebeesaeesavesaseeareesreeasessseans 54
Figure 85 - top.sls file example in /SrV/PIllar....c...oeeii ittt eve bt 54
FIGUIE 86 - PWA.SIS Tl . .uuiiiiciiiee et e e et e e st e e e e eaabaee e e aae e e e anbaeeeearaeen 54
Figure 87 - create_user.sls file With Pillar ... e 55
Figure 88 - Salt condition example (SaltStack, N.d.)....ccceiiiiiiie e e e 55
Figure 89 - Salt loop example (SaltStack, N.d.)cccuee e 56
Figure 90 - Salt declarative language example (SaltStack, n.d.).....ccccoeeiiiieeiiiiiieceee e, 56
Figure 91 - Terraform architecture (Janashia, 2020)...........cccuiiiieiiiieeciiie et e 58
Figure 92 - terraform command 0N LINUXooeeiiiiiieee e cecccttee e e ee et ree e e e e e e e e nnrare e e e e e e e eeanes 59
Figure 93 - Terraform executable file location added to the path.........cccceeiieiiiiiiii e, 60
Figure 94 - terraform command 0N WiINAOWS.........cueeeiiiiiiciiiiiie ettt e e scccirreee e e e e e e s srrasee e e e e e e eeanes 60
Figure 95 - Terraform configuration file @eXample ... e 61
Figure 96 - Terraform state file SAmMPIE......coeeiir i e 62
Figure 97 - Testing SCeNArio SCNEMIAuiiiiiiiiii ettt et e e e e s e aae e e e s are e e e saneaee s 70

List of Abbreviations

API Application Programming Interface
DevOps Development / Operations

DSL Domain Specific Language

DNS Domain Name Service

FQDN Fully Qualified Domain Name
GUID Globally Unique Identifier

HCL HashiCorp Configuration Language
HTML HyperText Markup Language

laC Infrastructure as Code

IT Information Technology

JSON JavaScript Object Notation

00s Open-Source Software

(01 Operating System

PC Personal Computer

PEM Privacy Enhanced Mail

RHEL Red Hat Enterprise Linux

RSA Rivest-Shamir-Adleman (protocol)
sQL Structured Query Language

SSH Secure Shell Protocol

SSL Secure Sockets Layer

TCP Transmission Control Protocol
VCS Version Control System

VM Virtual Machine

WinRM Windows Remote Management
WSL Windows Subsystem for Linux
YAML YAML Ain’t Markup Language (previously Yet Another Markup Language)

Introduction

Nowadays, companies are starting to work with an increasing number of software, infrastructures
and devices, allowing always more possibilities to organize their Information Technology (IT)
environment. However, the more complex and numerous the possibilities, the harder it is to set it all
up or to simply keep track of all processes running through a company. Automation grants considerably
more control over the whole IT infrastructure and system administrators gain a lot of time using the
right tools to execute tasks that would otherwise be long and repetitive.

Therefore, plenty of automation software were created to help with this issue. They allow system
administrators to create scripts executing repeatable instructions and processes to drastically reduce
the human interaction with IT systems. For instance, a server with this kind of software installed would
be able to manage other servers on the same network by installing, updating or deploying applications,
modules, etc.

The goal of this Bachelor’s thesis is to identify software that can be used for automation, analyse
and test their features and capabilities and, in the end, pick the most interesting ones to compare them
in a more complex testing scenario. The final objective being the discovery of the “best” open-source
software available to this day according to a certain set of criteria and conditions.

To achieve this goal, we use the abundant documentation found on the Internet as well as the
books available on the intranet of the University of Applied Sciences. All sources are available in the
references at the end of this report. Furthermore, in order to test all software, we use Oracle VM
VirtualBox, an open-source tool allowing users to create and manage virtual machines. Manipulating
this tool proves to be very convenient to quickly set up a network environment where tests can be
easily performed.

Hes-so

University of Applied Sciences

1. State of the Art

1.1.IT Infrastructure

The IT infrastructure can quickly become too complex to manage easily. Let us first define what we
designate to be part of the IT infrastructure in a company :

e Hardware

Hardware includes servers, personal computers (PCs) as well as networking equipment such as
routers, switches, etc.

e Software

Software refers to applications and operating systems (OS) running on any piece of hardware. We
also include virtual machines (VMs) as they emulate operating systems using hardware resources.

o Networking

Networking makes hardware and software communicate inside and outside of the company. A
company network requires configuration (using routers and switches as mentioned above), internet
connectivity, firewalls and other security measures. In summary, a network links the whole
infrastructure together and helps it communicate with the outside world.

1.2. Infrastructure Automation

In the past, operators had to manage their IT infrastructure manually, which was a difficult process
as they needed to configure all servers within a company themselves. This fact alone tells us that
managing such an infrastructure was very expensive, slow and even inconsistent as no one is safe from
making a mistake nearly impossible to spot easily in such a long and repetitive process. Manual
maintenance of these same servers was also further increasing the total costs.

Automation is the act of orchestrating processes and writing configuration scripts that will operate
and act on managed nodes without human intervention. A node is defined as a machine whose
configuration is automated by a server hosting a configuration management software.

Automation is not about replacing human operators, but instead to free them from long and
repetitive tasks so they can focus on more complex issues of their everyday work that require actual
insight from them, rather than logical rules that can be scripted.

As for every repetitive task, automation also reduces the number of potential human errors and
provides more consistent reliability on a company IT infrastructure.

Hes: so

University of Applied Sciences and Arts
Western Switzerland

1.2.1. DevOps

DevOps (Development & Operations) is a set of practices combining Development and IT operations
within a company.

COLLABORAT/G,

Figure 1 - DevOps architecture (Krebsbach, 2016)

DevOps works as follows : On the left side of the diagram above is the development part (Plan &
Build), and on the right side the IT operations management part (Deploy & Operate). These two sectors
work together in a DevOps scenario by communicating constantly with each other.

The dev team provides continuous integration, which is the practice of automating the integration
of changes made to the code from multiple developers into a single software project. On the other

hand, the IT operators give them continuous feedback from customers on the software deployed.

Using DevOps is a good practice and has proven very efficient for IT companies, although its success
depends on the team’s ability to adapt and respect the procedures.

Automation software are usually built to work well with DevOps.
1.2.2. Infrastructure as Code
Infrastructure as Code (laC) is the practice of codifying and managing the IT infrastructure with

software, rather than through physical hardware components. It simply means to automate all tasks
related to the IT infrastructure using tools and programs.

Most automation software provide IaC, but not necessarily on the same level. We can differentiate
three main categories of tasks that can be automated when a new application must be deployed in a
company :

1. Infrastructure provisioning : Setup and maintain new servers, apply network configuration.

2. Configuration management : Install and maintain software and packages required to deploy the
new application.

3. Application deployment : Deploy and maintain the new application on servers to start the DevOps
workflow.

Each category can then be separated in two phases, the initial setup phase, which simply is the
initial configuration of each category mentioned above, and the maintaining phase, which as its name
implies requires maintenance of the infrastructure and installed software to manage changes and
updates. To each software can be attributed a main category, although it is common for an application
to offer features coming from more than one category.

1.2.3. Idempotence

laC is an important practice for the DevOps process, as it provides idempotence. From the official
Microsoft documentation website, “idempotence is the property that a deployment command always
sets the target environment into the same configuration, regardless of the environment's starting
state. Idempotency is achieved by either automatically configuring an existing target or by discarding
the existing target and recreating a fresh environment.” (Jacobs & Kaim, 2021). That definition implies
that each same execution in an environment provides the same result. For instance, if we attempt to
install an application that does not exist in an environment but exists in another instance of that
environment, the end result will be the same : The application is installed. The software installation
will not be executed twice. This helps companies tracking states and bugs resulting therefrom more
easily.

1.2.4. Procedural vs Declarative

In 1aC, there are two possibilities for the configuration in all three categories : procedural language
(also called imperative language) and declarative language. Procedural language refers to classic
logical code, specifying each instruction a program must go through to reach its goal. On the other
hand, declarative language is the fact of telling the program what needs to be done by specifying the
final state only and let it find a way to generate the necessary steps to finish the configuration
according to specific rules and restrictions (the outcome is specified while the process is not).

The software we talk about are either procedural or declarative. Declarative language is often
preferred as it gives abstraction. Furthermore, if a step using procedural language fails, we would have
to handle the whole configuration and consider what did succeed, which can quickly become

complicated. A declarative language would not have this problem ; no matter how many times a
declarative script is run, the environment will stay the same, as only the outcome is specified.

1.2.5. Mutable vs Immutable

There are mutable and immutable IaC tools. Mutable refers to an infrastructure that needs to be
updated when needed, while immutable refers to the need of replacing the old IaC at each new
deployment to guarantee an exact set of specifications that can be expected. The latter is better for
testing and usually the preferred method with DevOps.

Mutable 1aC tools introduce more risk, as updates may not fully succeed. It also adds more
complexity because of that potential risk because an important update requires to understand the
state of a machine before and after the change, and any partial update failure would create a new
unknown state to manage.

Immutable laC tools almost never update the infrastructure, but instead create a whole new
environment and apply the desired configuration. The traffic can then be redirected to the new
instance and, when no issues remain, the old instance can be disposed of. However, as the old machine
is destroyed, the data on it should be externalized (in a database for instance) to avoid any losses.

1.2.6. Agent vs Agentless

Finally, we also talk about agent and agentless tools. An agentless tool does not require any agents
to be installed on the nodes it manages. This is practical if nodes do not support the installation of
software on them, such as older networking equipment. However, an agentless system has the
disadvantage of having no way for the managed nodes to report back after the execution of a
configuration on them.

Agentless tools are push-based, which means that the server pushes the configuration onto the
nodes. On the other hand, agent tools are usually pull-based because the agents installed on the nodes
automatically pull configuration updates regularly.

1.2.7. Cloud Automation

Cloud automation refers to the help of technology to reduce human assistance for processes
present in the Cloud. We can define the Cloud as the Internet and all the data, software and services
that can be accessed remotely via servers.

When IT teams have to manage both on-site and cloud-based environments, it quickly becomes
complicated and expensive. The main difference between standard IT infrastructure automation and
Cloud automation is that the latter is more specific to the automation of online components, such as
websites, web services and databases running in the Cloud.

Hes-so

University of Applied Sciences

1.2.8. Network Automation

Network automation refers to the help of technology to reduce human assistance to setup and
manage the networking infrastructure of a company.

Automating a network infrastructure can be very convenient to avoid complicated steps that
require operators to travel around company buildings to manually configure routers, switches and
other networking equipment. Manual configuration often leads to errors and inconsistencies, and due
to the distant placement and organization of networking components, it is difficult to manage and
time-consuming to troubleshoot.

1.2.9. Best Practices for IT Automation

Nowadays, companies that wish to use an automation software must consider the different notions
we have described to determine what architecture suits them best depending on their current
resources and needs.

Furthermore, when managing and maintaining an infrastructure in a company, standard practices
are always generally the same. It applies to automation as well :

e Document all processes and comment configuration files.

e Keep a clear and understandable directory structure and naming conventions.
e Setup a Version Control System (VCS) to avoid data loss.

e Use available tools and prevention to hide sensitive data and improve security.

Hes-so

University of Applied Sciences

2. Software Analysis

The main automation software used nowadays have been analysed and tested to discover the most
useful in a given situation.

Note that not all functionalities are presented, it is only meant to be an overview of each software
architecture and features with pros, cons and analysis in regard to the notions we have developed in

the last section.

A few generic definitions have been written for your convenience, as they are important terms and
concepts that are mentioned quite a few times in this report.

2.1. Concepts

2.1.1. Open-source software

Open-source software (OOS) defines software whose copyright holders (developer company)
grants users the rights to use and modify the software as well as its source code without limitations.

For instance, the open-source operating system Linux was first released in 1991, although many
developers decided to create their own version of the OS as the source-code was available to anyone.
Many Linux distributions exist today (Ubuntu, Debian, openSUSE, Kali, etc.).

Open-source is usually free, although it is possible that the company behind it asks for payment in
exchange for technical support.

2.1.2. SSH
Secure Shell Protocol (SSH) is a security network protocol working over the Transmission Control

Protocol (TCP) allowing secure communication over any unsecure network. Once the client connects
to a server using SSH, that server can be controlled like a local computer.

Hes: so

University of Applied Sciences and Arts
Western Switzerland

e@nodemanager:

[-m mac
tion]

nager:
Ll

the web) with: remctl enable

p—

w w

w

A ww

e e i i e
ol ol

0 0 0o oo

w

el el ol el

o o

Figure 2 - SSH connexion

In the example above, a connexion is performed on a server in the same network with the IP address
“192.168.122.5”. The “-I” argument allows us to choose which user to use on the node we connect to.

Transport Layer

Connection
Layer

Figure 3 - SSH layers (Aleksic, 2020)

SSH is essentially composed of three layers. The transport layer ensures a secure communication
between the client and the host for the whole duration of the communication using encryption and
decryption. The authentication layer authenticates the client to the server, either using a password or
a set of SSH keys. The connection layer manages the communication between the machines after the

authentication and closes the connexion at the end of an SSH session.

On Linux distributions, when a connexion is made for the first time on a new host, the latter is saved

in a hosts file (Location : ~/.ssh/known_hosts).

2.1.3. RSA

The Rivest-Shamir-Adleman (RSA) protocol is an asymmetric algorithm used in IT security. RSA
encrypts messages with a public key. Messages may only be decrypted with a private key, which is kept
secret.

Plain Text —»B —p | CipherText — ﬁ —p | Plain Text

Encryption Decryption
Both Keys are different

/\

Reuplent s Reuplent s
Public Key Private Key

Figure 4 - Simplified RSA diagram (javainterviewpoint, 2019)

The public key is established with a mathematical function using the product of two very large prime
numbers. On the other hand, the private key is built with the actual prime numbers. It is nearly
impossible to find the private key with the public key unless spending a near infinite amount of time
or waiting for quantum computers capable of breaking RSA.

2.1.4. WinRM

Windows Remote Management (WinRM) is an implementation of the WS-Management Protocol,
developed by Microsoft and used to exchange information between Windows servers or to control a
Windows server from a Linux client.

2.1.5. YAML

“YAML Ain’t Markup Language” (YAML) is a data-serialization language whose precise syntax makes
it easily readable by both humans and computers. Such a file uses indentation with white spaces to
indicate if elements are nested or not. Indentation, colons and dashes are the three main syntax
components of YAML files.

The YAML language is mostly used to write configuration files.

Hes: so

University of Applied Sciences and Arts
Western Switzerland

Employee records
- martin:
name: Martin D'vloper
job: Developer
skills:
- python
- perl
- pascal
- tabitha:
name: Tabitha Bitumen
job: Developer
skills:
- lisp
- fortran
- erlang

Figure 5 - YAML structure (Ansible Documentation, n.d.)

Above is an example of a simple YAML file taken from the official Ansible documentation. We clearly
see a resemblance with the JavaScript Object Notation (JSON) language.

2.1.6. Ruby

Ruby is an open-source, high-level and object-oriented programming language. It is more complex
and allows more detailed operations than YAML as the latter does not compare to an actual
programming language.

10

Hes: so

University of Applied Sciences and Arts
Western Switzerland

mysql_service 'default' do
port '3306'
initial_root_password 'm3y3sqlrOot’
action [:create, :start]

end

mysql_database 'wordpress_demo' do
connection connection_info
action :create

end

mysql_database_user 'wordpress_user' do
connection connection_info
database_name 'wordpress_demo'
password 'wOrdpr3ssdem0®'
privileges [:create, :delete, :select, :update, :insert]
action :grant

end

Figure 6 - Ruby structure (Chef Documentation, n.d.)

Above is a sample of code from the official Chef documentation depicting actions performed on a
Structured Query Language (SQL) service.

11

Hes: so

University of Applied Sciences and Arts
Western Switzerland

2.2. Ansible

2.2.1. Architecture

Ansible is an open-source configuration management software. It was created in 2012 and is owned
by the software company Red Hat since 2015. The software is written in the Python programming
language. Furthermore, Ansible is agentless, which means no agents need to be installed on the
physical or virtual devices managed. Instead, a new connexion will be opened using SSH from a server
using Ansible to any of the linked devices.

Ansible’s architecture works as follows : A main server with Ansible installed on it is able to
communicate with other Linux machines using SSH and with Windows machines using WinRM. Note
that since Ansible 2.8, an experimental feature allows the use of SSH to manage Windows servers as
well, although that feature is experimental and may not work properly.

The main server (“control node” or “node manager”) may then execute commands or scripts
(“playbooks”) on all the devices (“nodes”) specified in a list of hosts (“inventory”).

) BN

& Ansible Automation Engine

ANSIBLE

Playbooks Inventory Modules Roles API

Control node

Figure 7 - Ansible architecture (Ansible Verwendungsszenarien, n.d.)

The automation is performed using scripts and tools such as playbooks, inventory files, modules
and roles.

Ansible is Python-based and uses Jinja2, a templating language necessary to write more complex
scripts.

The professional Ansible version, named “Ansible Tower” is free to use to manage up to 10 nodes.
This version provides support from Ansible as well as a graphical user interface.

12

Hes: so

University of Applied Sciences and Arts
Western Switzerland

2.2.2. |Installation

Installing Ansible is not too complicated, although it may change slightly depending on the OS
version of the node manager. The installation can be made with a few commands ensuring the
presence of a few required packages as well.

Ansible is agentless as mentioned before, so there are no agents to install on the nodes. However,

the fact that WinRM is necessary to communicate with Windows machines makes the configuration
more complicated than with Linux nodes.

2.2.3. Inventory

The inventory file defines the hosts affected by the execution of Ansible playbooks. Hosts may be
put together into groups using square brackets (“[]”).

GNU nano 3.2 inventory.ini

[production]
main.example.com

[test]

test.example.com

[hosts]
192.168.122.5
192.168.122.6j}

Figure 8 - Ansible inventory file example

For instance, in the inventory file above, three groups have been set up : “production”, “test” and
“hosts”. It would now be possible to execute commands on the server “main.example.com” by
specifying that host in a playbook. It would also be possible to install a program on all machines in the
“hosts” group.

2.2.4. Playbooks

A playbook is a YAML script used to organize tasks that need to be run on any number of managed
servers. It orchestrates how, at what time and which modules should be executed.

Ansible reads the YAML syntax to understand what it needs to execute and on which servers.

13

Hes: so

University of Applied Sciences and Arts
Western Switzerland

: Update web servers
5. apache
root

Ensure apache is at the latest version

1

e: httpd
e: latest
: Ensure apache is running
e: httpd
. started

Figure 9 - Playbook example

Above is an example of a simple playbook file. On row 2, a name is given to a “play”.

On row 3, we choose which hosts will be affected by the current “play”. We can indicate a group of
hosts, a hostname or an IP address directly.

On row 4, the keyword “remote_user” defines which user the server we are connecting to will be
using to execute the different tasks.

After specifying the identity and connexion details, we can now look at the actual tasks to be
performed in this case, starting on row 6.

On row 7, the keyword “name” is present again, although this time it defines a task that we want
to execute on the node. In this case, we want to ensure that the web server Apache is at its latest
version on the server.

On row 8, we specify which module the server should use as we need a certain tool to execute that
specific task. In this case, the package manager “yum” is used. It is one of the tools to get, install and
delete packages and is mainly used on operating systems managed by the Red Hat company.

On row 9 and 10, we state the name of the service we want to install “HTTPd” which stands for
“Hypertext Transfer Protocol daemon”. That program is also known as “Apache” or “Apache Web
Server”. Finally, we indicate the Apache version we want to install (if not present) or update to (if
already present) ; “latest” means the latest stable version of the software.

14

Hes: so

University of Applied Sciences and Arts
Western Switzerland

On rows 11 to 14, another task is present to ensure that Apache is in the state “running” using the
Linux command “service”.

Note that it is possible to declare variables at the top of a playbook :

vars:
country: USA
region:

- nhortheast
southeast
midwest

Figure 10 - Ansible variables example

The variables can then be used. For instance, using the example above, “country” would return
“USA” and “region[2]” would return “midwest”.

To run a playbook, we use the command “ansible-playbook” :

ansible-playbook -i inventory.ini playbook.yml --ask-pass

Where “-i” specifies the inventory file and “--ask-pass” corresponds to the password of the user
specified in the playbook (root in our case).

(ansible2.9) ansible@nodemanager:~$ ansible-playbook -i inventory.ini playbook.yml --ask-pass
/home/ansible/ansible2.9/local/lib/python2.7/site-packages/ansible/parsing/vault/__init .py:41: CryptographyDeprec
ationWarning: Python 2 is no longer supported by the Python core team. Support for it is now deprecated in cryptogr
aphy, and will be removed in the next release.

from cryptography.exceptions import InvalidSignature
SSH password:

PLAY [Update web Servers] sk skkskokokskoksk ok koo ok ok ook ok ok ook ok ok ok shok ok ok ook ok ok sk ok sk ok ok ko ok ok o ko ok sk ook ok ok sk ok ok ok ok ko

TASK [Gathering Facts] kst korookofoorohkok ok dof ok dok ol ok koo tokokof ok skokok ok ok sk ot ko ok sk ok ok

MASK [Ensure apache 1s at the latest Version] %33k sk sk 3ok 3 ok o ook ok ok ok ko e 5 ok X
changed [httpl]

TASK [Ensure apache is running] skkskkokssksk sk ko o sk ok odok o sk sk ko skofok ok ok ook sk sk ok skofsk sk ok skok sk

changed: [httpl]

PLAY RECAP 5% sk sk sk s ok sk sk sk s she sk sk ok sk sk sk e sk sk sk ok e s sk sk sk st sk sk s sk ok sk sk sk 2 <ok ok sk ke sk sk sk sk ok ok sk ok ke sk sk sk ok ok sk sk sk ke sk sk ke ok sk ok sk sk ke ok ok ok ok ok

httpl H ch 1=: unreachable=0 failed=0 skipped=0 rescued=0 ignored=0

(ansible2.9) ansible@nodemanager:~$

Figure 11 - Playbook successfully executed 1

As we can see in the “play recap”, the playbook has been executed successfully on all hosts in the
“apache” group (only one in this example, a web server whose hostname is “http1”).

We can see the name of each task that has been performed with the status related to it :

o ok : If the execution of a task was successful.
o changed : If the state of the target server was modified by a task (installation, update, etc.).

o unreachable : If the target server was unreachable (most likely a login or authentication issue).

15

Hes: so

University of Applied Sciences and Arts
Western Switzerland

o failed : If a task was considered to be a failure according to conditions in the playbook.
o skipped : If a task was skipped according to conditions in the playbook.

o rescued : If an error occurred in a block of code but a “rescue” task solved the problem (considered
successful).

e ignored : If an unsuccessful task was considered to be ignored in the playbook.

If the same playbook is run again, we would get the following output :
P LAY [U pd a -t e -...M-eb servers] 3 e e s o e e ol s e e e e e 3 o 3R 3 3 o 3k o

T AS K [G a t i-l E r— i n g F a C t S] e R L R R S S N

[Ensure apache is at the latest version] ***

[E n S u I.-e a pa C h e 1 S I-u n r-l l !-vl g] e e e S S S

R E C A P o e afe e o o e oe ofe e o e e ofe e ofe e e ofe e e ol e afe Mo e Do e e o e ofe e e ok

changed=0

Figure 12 - Playbook successfully executed 2

We can see that the playbook was executed correctly, and nothing changed on the server as the
modifications have already been taken into account with the previous command.

This was a simple example, but there are plenty of other possibilities with Ansible to get the most
optimized automation depending on our needs.

2.2.5. Conditionals

Using the “when” keyword, a condition can be applied to a task. For example, a task can be
executed only when a certain service is enabled. It is also possible to use the “ansible_facts” variable,
which helps to decide whether to execute a task or not based on a fact. A fact corresponds to an
attribute of the node.

16

Hes: so

University of Applied Sciences and Arts
Western Switzerland

Display available facts

: ansible_facts

Figure 13 - Display Ansible facts

We can display all the available facts of a machine with the “ansible_facts” variable like in the
picture above. Ansible then shows all facts directly in the console.

Shut down Cent0S systems

/sbin/shutdown -t now
ansible_facts['distribution'] == "Cent0S"

Figure 14 - Ansible distribution fact

In the picture above for instance, we use the “distribution” fact to shut down all machines selected
if their OS distribution is “Cent0S”.

Playbooks can be enhanced with “and”, ”or” and “when” to add more than one condition to a single
task like in the example below.

: Shut down CentOS 6 and Debian 7 systenms

: /sbin/shutdown -t now

: (ansible_facts['distribution'] == "Cent0S" and ansible_facts['distribution_major_version'] == "6") or
(ansible_facts['distribution'] == "Debian" and ansible_facts['distribution_major_version'] == "7")

Figure 15 - Conditions and/or

2.2.6. Loops

Ansible provides the “loop” keyword to execute a task multiple times.

: Add user testuserl

: present

: Add user testuser2

: present

Figure 16 - Ansible user creation (classic)

17

Hes: so

University of Applied Sciences and Arts
Western Switzerland

: Add several users

;. present

L]
L]

- testuserl
- testuser2

Figure 17 - Ansible user creation (loop)

Above are two samples of code doing the exact same thing : Creating two new users. On the second
picture however, we use a loop on row 6 that iterates through the elements of the list below it. The
code from row 2 to 5 then repeats itself, replacing the “{{ item }}” variable by the value of each element
of the list. A list can also be provided in a separate variables file.

More complex loops are also available, such as the possibility to repeat a task a certain number of
times until a condition is met or iterating over a nested list. More information can be found in the
official Ansible documentation.

2.2.7. Roles

A role is a tree structure composed of directories and YAML configuration files. Roles are used to
group multiple tasks together into one container (role) to optimize the automation with an organized
directory structure allowing dependencies. If a role structure is generic enough, it can be shared with
other users so they can use the same role in their own Ansible architecture. In the same way, an
external role can be imported if it fits our needs and does not need too many changes to be used
efficiently in our automation.

A role can be created manually by simply using the Linux command “mkdir” (“make directory”) to

set up a directory named “roles” containing each of the different roles we want to use. Below is an
example of a role that would be contained in the “roles” folder.

18

Hes: so

University of Applied Sciences and Arts
Western Switzerland

D files
l_:l tasks

D handlers

I:I defaults

[2:] meta

Figure 18 - Ansible role structure (Domont, 2021)

Ansible also provides the possibility to use the command “ansible-galaxy” to create roles. Ansible
Galaxy is a free online repository for finding and downloading roles and collections that can be used in
an automation.

2.2.8. Modules

Ansible includes a great number of modules (module library) that can be executed through
playbooks or directly on the nodes. Users can also write their own modules.

A module is a small piece of code that can be run from a command line or in a playbook task. For
instance, commands such as “yum” or “reboot” are modules that are managed by Ansible if present.

2.2.9. Commands

Below are the main commands provided by the Ansible software to manage remote nodes and use
other tools.

o ansible : Run a single task on a set of nodes (depending on inventory file selected).

(ansible2.9) ansible@nodemanager:~$%$ ansible -i inventory.ini all -a "reboot" -f 10 -u root --ask-pass
/home/ansible/ansible2.9/local/lib/python2.7/site-packages/ansible/parsing/vault/ init .py:41: Crypt
ographyDeprecationWarning: Python 2 is no longer supported by the Python core team. Support for it is
now deprecated in cryptography, and will be removed in the next release.

from cryptography.exceptions import InvalidSignature
SSH password:

(ansible2.9) ansible@nodemanager:-$

Figure 19 - ansible ad hoc command example

19

Hes: so

University of Applied Sciences and Arts
Western Switzerland

¢ ansible-config : Display configuration settings.

(ansible2.9) ansible@nodemanager:—-$ ansible-config --version
/home/ansible/ansible2.9/1local/lib/python2.7/site-packages/ansible/parsing/vault/__init__ .py:41: Crypt
ographyDeprecationWarning: Python 2 is no longer supported by the Python core team. Support for it is
now deprecated in cryptography, and will be removed in the next release.

from cryptography.exceptions import InvalidSignature
ansible-config 2.9.0

config file =
configured module search path = [u'/home/ansible/.ansible/plugins/modules', u'/usr/share/ansible/plu
gins/modules']
ansible python module location = /home/ansible/ansible2.9/local/lib/python2.7/site-packages/ansible
executable location = /home/ansible/ansible2.9/bin/ansible-config
python version = 2.7.16 (default, Oct 10 2019, 22:02:15) [GCC 8.3.0]
(ansible2.9) ansible@nodemanager:-$ I

Figure 20 - ansible-config example

o ansible-console : Execute commands directly on a set of nodes (depending on inventory file
selected).

(ansible2.9) ansible@nodemanager:~$ ansible-console -i inventory.ini -u root --ask-pass

/home/ansible/ansible2.9/local/lib/python2.7/site-packages/ansible/parsing/vault/ init

:41: CryptographyDeprecationWarning: Python 2 is no longer supported by the Python core
Support for it is now deprecated in cryptography, and will be removed in the next relqg
from cryptography.exceptions import InvalidSignature

SSH password:

Welcome to the ansible console.

Type help or ? to list commands.

root@all (2)[f:5]% touch hello.txt

root@al

Figure 21 - ansible-console example

o ansible-doc : Display information on any module.

(ansible2.9) ansible@nodemanager:—$ ansible-doc yum
/home/ansible/ansible2.9/local/lib/python2.7/site-packages/ansible/parsing/vault/__init__ .py:41: Crypt
ographyDeprecationWarning: Python 2 is no longer supported by the Python core team. Support for it is
now deprecated in cryptography, and will be removed in the next release.

from cryptography.exceptions import InvalidSignature
> YUM (/home/ansible/ansible2.9/1local/lib/python2.7/site-packages/ansible/modules/packaging/os/yum.

Installs, upgrade, downgrades, removes, and lists packages and groups
with the “yum' package manager. This module only works on Python 2. If
you require Python 3 support see the [dnf] module.

Figure 22 - ansible-doc example

e ansible-galaxy : Create and manage roles using the repository for Ansible roles and collections
(Ansible Galaxy).

20

Hes: so

University of Applied Sciences and Arts
Western Switzerland

(ansible2.9) ansible@nodemanager:-~/ es$ ansible-galaxy init testRolel
/home/ansible/ansible2.9/1local/lib/python2.//s1te-packages/ansible/parsing/vault/ init .py:41: Crypt
ographyDeprecationWarning: Python 2 is no longer supported by the Python core team. Support for it is
now deprecated in cryptography, and will be removed in the next release.
from cryptography.exceptions import InvalidSignature
- Role testRolel was created successfully
(ansible2.9) ansible@nodemanager:—/ 54
total 16
drwxr-xr-x 5 ansible ansible 4096 Jun
drwxr-xr-x 3 ansible ansible 4096 Jun
drwxr-xr-x 5 ansible ansible 4096 Jun

drwxr-xr-x 10 ansible ansible 4096 Jul

(ansible2.9) ansible@nodemanager:- -1 testRolel/
total 36
drwxr-xr-x 2 ansible ansible 4096 Jul
drwxr-xr-x 2 ansible ansible 4096 Jul
drwxr-xr-x 2 ansible ansible 4096 Jul
drwxr-xr-x 2 ansible ansible 4096 Jul
-rw-r--r-- 1 ansible ansible 1328 Jul
drwxr-xr-x 2 ansible ansible 4096 Jul
2
2
2
)

155
oD

README . md

drwxr-xr-x ansible ansible 4096 Jul
drwxr-xr-x ansible ansible 4096 Jul
drwxr-xr-x ansible ansible 4096 Jul
(ansible2.9) ansible@nodemanager:—/ro

(LS RO O 0 R, R) |

Figure 23 - ansible-galaxy example

e ansible-inventory : Display inventory information in a JSON format.

(ansible2.9) ansible@nodemanager:-~$ ansible-inventory -i inventoryl.ini --list
/home/ansible/ansible2.9/local/lib/python2.7/site-packages/ansible/parsing/vau
.py:41: CryptographyDeprecationwWarning: Python 2 is no longer supported by tk
core team. Support for it is now deprecated in cryptography, and will be remo
e next release.
from cryptography.exceptions import InvalidSignature
{

" _meta": {
"hostvars": {}
}

HEli s of

Yehildren®: [
"hosts",
"producti
Stest®,
"ungrouped"

1
}l
Hhastsili:]
"hosts": [
Y192 168 . 1225,
"192.168.122.6"
1
Lo
"production": {
Yhosts" @ [
"main.example.com"
]

}l
Stest
"hosts": [
"test.example.com"

Figure 24 - ansible-inventory example

e ansible-playbook : Execute a playbook.

o ansible-pull : Pull a remote copy of ansible on each managed server if a VCS has been set up. This
can be used to change the default push architecture to a pull architecture.

e ansible-vault : Encrypt or decrypt Ansible structured data files.

21

Hes: so

University of Applied Sciences and Arts
Western Switzerland

2.2.10. Language

Ansible uses a procedural language, which means that each step to achieve a goal must be specified.

Ensure apache is at the latest version

: httpd
te: latest
Ensure apache is running

httpd
started

Figure 25 - Ansible procedural language example

In the sample of code above, we can clearly see the specific instructions used in playbooks. Each

”n u

step to achieve a goal is written in detail. The command to use (“yum”, “service”) is specified with the

package name and state as well.

Ansible scripts run using parallel execution on the agents by default.

2.2.11. Ansible pros
e Easy to learn and configure

Ansible’s architecture is easy to understand and learn. The YAML configuration files are simple to
read and allow operators to quickly start writing code. Ansible is also easy and fast to install, configure

and manage.

o Agentless

Ansible does not rely on any “agents”, which means nothing needs to be installed on the nodes. It
works as a “push configuration”, the server pushes commands on the nodes directly (different from
“pull configuration”). The lack of any agents also allows easy management for older networking devices
for which it may be difficult or impossible to install specific software on.

e Ansible Galaxy service

As mentioned previously, Ansible Galaxy is a repository for predefined and custom roles and

collections that a user can download into his Ansible configuration directly. The command “ansible-

galaxy” also offers an easy way to create new roles.

22

e Good documentation

The official Ansible website offers a good documentation on the software with good explanations
and examples. It is however not as complete as other software created beforehand.

2.2.12. Ansible cons

e Limited support for Windows

Ansible cannot run on a Windows machine. Ansible may only manage Windows machines from a
Linux host, although it is less convenient that managing Linux machines. However, it is possible to
manage nodes with Ansible on a Windows OS using the Windows Subsystem for Linux (WSL).

e YAML configuration files

While YAML is easy to learn, superior to JSON for configuration services and even supports
comments directly in the files, it still is a difficult language to debug, and you have with Ansible no way
to know if a specific task will fail until it is executed. Actual programming languages such as Ruby are
more powerful in that regard and can handle more complex tasks.

2.2.13. When to use Ansible

Ansible is a fair choice for a company that wants a software that is easy to install, configure and
manage. The complexity is however limited due to the YAML language being a data serialization
language rather than a programming language.

Furthermore, if operators do not know or do not necessarily have the time to learn a new
programming language such as Ruby, Ansible offers a system using YAML configuration files, which are
very simple to handle even for a non-programmer.

The fact that Ansible is agentless permits a one-way communication with the agents, which requires
less resources. It is also preferable if the company possesses older networking equipment that does
not support the installation of any agents on them (routers and switches for instance). Managed nodes
have however no way to report back to the server in case of a failure on them that Ansible did not
detect directly after the playbook execution.

Ansible’s infrastructure as code is procedural, which may require more complex management in
terms of scaling, but the simplicity of YAML compensates for that.

Ansible is owned by Red Hat, which can make it a better choice for a company if Red Hat products

are already being used in their infrastructure, such as Red Hat Enterprise Linux (RHEL) and CentOS
operating systems.

23

Hes: so

University of Applied Sciences and Arts
Western Switzerland

2.3.Chef

2.3.1. Architecture

Chef (previously known as Opscode) is an open-source configuration management software
developed by the company of the same name and written in the Ruby programming language. It was
initially released in 2009 and uses a Ruby-based domain-specific language (DSL). A DSL, as its name
implies, is specialized to a particular use.

Users can either use Chef Infra, which is the main automation platform whose architecture is
described below, or chef-solo, a command line tool that does not require the configuration of a Chef
Infra server. However, because of that fact, chef-solo does not provide centralized distribution of
“cookbooks” (collection of configuration files) to the nodes (No need for a main server, only a
workstation).

Using Chef Infra, a system administrator would typically work from their workstation and issue
commands from there and upload configuration files (“cookbooks”) to a server. The latter would then

load these “cookbooks” to the correct nodes that request a configuration update.

Chef is not agentless like Ansible, thus a Chef client must be installed on all managed nodes.

Wiorksiation
Server

Mode

Figure 26 - Chef architecture (Gaba, 2021)

To show the different features of this software, we will use chef Infra in the different examples.

The professional Chef version, named “Chef Enterprise” is free to use to manage up to 5 nodes, 2
users, and with no support included.

24

Hes: so

University of Applied Sciences and Arts
Western Switzerland

2.3.2. Chef Workstation

A Chef workstation is where a user may create recipes, attributes, templates and other components
to produce cookbooks. The Chef workstation may be installed on a Linux, macOS or Windows machine.

Red Hat Enterprise

Amazon Linux Debian GNU/Linux Ubuntu Linux Windows

Linux/CentOS

Figure 27 - Supported OS for a Chef workstation (Chef Downloads, n.d.)

The workstation contains a directory named “chef-repo”, which is where cookbooks can be created
and managed. Any components contained in a cookbook are also stored there. This directory is very
important and as such a VCS should be configured to avoid any data loss and gain version control.

jonas@workstation:~/
total 48
drwxr-xr-x
drwxr-xr-x 1
drwxr-xr-x
-Mw=-r==-r=--
-MW=r==r=-
drwxr-xr-x
drwxr-xr-x
drwxr-xr-x

jonas jonas 128

jonas jonas 100 . .

jonas jonas 108 .chef

jonas jonas :01 chefignore
jonas jonas 101 .chef-repo.txt
jonas jonas 108 ¢ <
jonas jonas :01

jonas jonas 114 . ;
-rwW-r--r-- jonas jonas :08 .gitignore
-Ir'wW-r--r-- jonas jonas 201 ISEEENSE
drwxr-xr-x jonas jonas < 101 p es
-rw-r--r-- jonas jonas G :01 README.md
jonas@workstation:~/ ~epo$

=N R =00 WA =W

Figure 28 - chef-repo structure

“.chef” contains various Privacy Enhanced Mail (PEM) files, which consist of private keys imported
from the Chef server. They were created along with the user and the organization directly on the Chef
server. This hidden directory (starting with “.”) also contains another folder named “trusted_certs”
with certificate (CRT) files that the workstation trusts. We will talk more about these certificates in the
“Installation” section below. Finally, “.chef” contains its unique globally unique identifier (GUID) and a
“config.rb” file written in Ruby containing information about the Chef server.

jonas@workstation:~/chef-r /.chefT$

otal 20
jonas jonas 1678 Jul 11 - admin.pem
jonas jonas 36 Jut 1l : chef guid

jonas jonas 477 Jul 11] config.rb

jonas jonas 1674 Jul 2 org.pem
rwXxr-Xr-Xx jonas jonas 14 tru :
jonas@workstation:~/chef-i :

Figure 29 - .chef repo structure

25

[«
°
University of Applied S

Wester

s and Arts

witzerland

Going back to the parent folder “chef-repo”, we can now take a look at the “cookbooks” directory.
It contains all components needed in the making of a cookbook. We will talk more about these in the
“Cookbooks” section below.

The main command used on a Chef workstation is “knife”. It is used as an interface between the
workstation and the Chef server and helps managing nodes, cookbooks, recipes, roles, and other

resources.

2.3.3. Chef Server

The Chef server is the link between the workstations and the nodes. Communication is ensured
using public key encryption to guarantee that only trusted machines can communicate with the Chef
server. The Chef server may only be installed on a Linux machine.

Amazon Linux Red Hat Enterprise Linux/CentOS SUSE Linux Enterprise Server Ubuntu Linux

Figure 30 - Supported OS for a Chef server (Chef Downloads, n.d.)

|”

We can use the command “chef-server-ctl” with any existing subcommand to execute configuration

and maintenance tasks on the Chef server.

2.3.4. Chef Client

A Chef client is what needs to be installed on all nodes that must be managed by Chef. The Chef
client may be installed on a Linux, macOS or Windows machine.

Amazon DPebian Red Hat SUSE Linux

Linux GNU/Linux

Enterprise FreeBSD macOS Enterprise Solaris Windows
Linux/CentOS Server

Figure 31 - Supported OS for a Chef client (Chef Downloads, n.d.)

2.3.5. |Installation

Installing Chef requires more time than with Ansible, as the architecture is more complex.

First, the Chef workstation, server and clients must be installed on all machines that are part of our
Chef architecture. Note that it is possible to have more than one workstation.

e Chef Server

The Chef server needs to be linked to a workstation and nodes it manages. To achieve this goal, we
use different users. The only existing user after the Chef server installation is the default superuser

Il'

named “pivotal”, although we can create our own using the following command :

sudo chef-server-ctl user-create [username] [firstname] [lastname] [emadil] ‘[password]’ --
filename ~/.chef/[username].pem

26

Hes-so

University of Applied Scien
Western

s and Arts

witzerland

We also need an organization which to add our new user. An organization is the top-level entity for
role-based access in the Chef server. It can be done using the following command :

sudo chef-server-ctl org-create [org name] “[org full name]” --association_user [username] --
filename ~/.chef/[org name].pem

The .pem files created will be passed to the workstation later.

e Chef Workstation

On the Chef workstation, the first step is to create a chef directory using the following command :

chef generate repo chef-repo

The DNS (or the “/etc/hosts” file as a temporary measure) needs to be configured so that the
workstation can communicate with the server and nodes.

An RSA key-pair must be created to gain access to the Chef server :

ssh-keygen -b 4096

The public key is then sent to the server :

ssh-copy-id [Chef username]@[server ip address]

Inside the recently created “chef-repo”, the hidden subdirectory “.chef” needs to be added to store
the RSA private keys that we can fetch from the Chef server (user and organization keys).

jonas@workstation:~/chef-repo$ scp jonas@l192.168.122.9:~/.chef/*.pem /home/jonas/chef-repo/.chef

admin. pem 100% 1678 1.2MB/s 00:00
org.pem 100% 1674 1.2MB/s 00:00

Figure 32 - scp command to fetch .pem files

A VCS, such as Git, should be added too to manage the chef-repo.

27

Hes: so

University of Applied Sciences and Arts
Western Switzerland

Then, a “.chef/config.rb” file must be created. It will contain information allowing the
communication with the Chef server using the keys we transferred earlier.

GNU nano 3.2 .chef/config.rb

log location
node name
client key

validation client

validation Kkey

chef server url

cache type

cache options(=> "#{ENV[1}
cookbook path ["#{current_dir}

Figure 33 - config.rb file

Finally, we can copy the self-signed Secure Sockets Layer (SSL) certificates from the server
generated at the installation of the Chef server. This will add that certificate to the trusted authorities
of the workstation.
jonas@workstation:~/chef $ knife ssl fetch

ARNING: Certificates f chefserver.com will be fetched and placed in your trusted cert
directory (/home/jonas/chef-repo/.chef/trusted certs).

Knife has no means to verify these are the correct certificates. You should

verify the authenticity of these certificates after downloading.
Adding certificate for nodemanager in /home/jonas/chef-repo/.chef/trusted certs/nodemanager.crt
jonas@workstation:~/ f-repo$

Figure 34 - knife ssl fetch command

e Chef Nodes

The Chef client should ideally be installed from the Chef workstation using the “knife bootstrap”
command :

knife bootstrap [node IP address] -x root -P [password] --node-name [node name]

SSH must be installed and enabled on each node.

2.3.6. Recipes

A recipe is a set of instructions written in Ruby for one specific task. For instance, a recipe can be
configured to deploy custom software to any managed nodes.

2.3.7. Cookbooks

A cookbook is a collection of recipes, attributes, resources, templates, libraries and any other
components allowing the creation of a functioning system. It can be compared to an Ansible role.

28

Hes: so

University of Applied Sciences and Arts
Western Switzerland
Users do not necessarily have to write all the code themselves ; they can also download existing
cookbooks and reuse them. For instance, a Cisco cookbook exists with plenty of recipes allowing the
management of Cisco devices such as routers or switches.

Cookbooks are usually created on a workstation or downloaded from the Chef Supermarket
(repository of cookbooks). These configurations are pushed to the Chef server, and then pulled by the
different nodes using the Chef client installed on them.

If we now take an example, let us imagine we have a Chef workstation (Debian), a Chef server
(Debian) and a Chef client (CentQS), all present in the same network.

We can create a new cookbook from the workstation using the “chef generate cookbook”
command.

jonas@workstation: ~, - 1 J s$ chef generate cookbook examplel
Generating cookbook examplel
- Ensuring correct cookbook content

Your cookbook is ready. Type "cd examplel’ to enter it.

There are several commands you can run to get started locally developing and tes
ting your cookbook.
Type "delivery local --help’ to see a full list of local testing commands.

Why not start by writing an InSpec test? Tests for the default recipe are stored
ditil

test/integration/default/default test.rb

If you'd prefer to dive right in, the default recipe can be found at:
recipes/default.rb

jonas@workstation:- cd examplel/
jonas@workstation:~ f-rep ookbo ylel$ 1s

CHANGELOG.md Kkitchen.ym metadata.rb README.md te

chefignore LICENSE Policyfile
jonas@workstation:~/chef ool

Figure 35 - Cookbook creation

The “recipes” folder is already created with a ruby file named “default.rb” inside.

jonas@workstation:~/
total 4

-rw-r--r-- 1 jonas jonas 141 Jul 11 21:37 default.rb
jonas@workstation:—, f e

Figure 36 - Default recipe

29

Hes: so

University of Applied Sciences and Arts
Western Switzerland

We can edit this file to install the Apache server.

package
action

Figure 37 - Apache installation recipe

Once the recipe is ready, we can upload the whole cookbook to the VCS we set up.

jonas@workstation:~/ $ knife cookbook upload examplel
Uploading examplel 0.1.0]

Uploaded 1 cookbook.

jonas@workstation:~/ $ knife cookbook 1list

examplel 0.1.0

jonas@workstation:- $

Figure 38 - Cookbook uploaded to VCS

Then, we add the recipe (from our cookbook “examplel”) to the run-list. A run-list contains all
necessary recipes to configure a node into a desired state.

jonas@workstation:~, $ knife node run_list add nodel "recipe[examplel]"

recipel[examplel]

jonas@workstation:- po$ knife ssh 'name:nodel' 'sudo chef-client' -x root
root@nodel's password:

Starting Chef Infra Client, version 17.2.29

Patents: https://www.chef.io/patents

resolving cookbooks for run list: ["examplel"]

Synchronizing Cookbooks:

- examplel (0.1.0)
Installing Cookbook Gems:

Compiling Cookbooks. ..
Converging 1 resources
Recipe: examplel::default
* dnf_package[httpd] action install
install version 0:2.4.37-39.module el8.4.0+778+c970deab.x86 64 of package httpd

Running handlers:

Runnina handlers complete

Chef Infra Client finished, 1/1 resources updated in 12 seconds
jonas@workstation:~/c re N |

Figure 39 - Apache installation on the node

Finally, we can run the command “sudo chef-client” on the node so that the latter will synchronize
its status with the Chef server, executing any recipes on its run-list.

Every time a change is made to any component, the cookbook must be uploaded again to the Chef
server so that nodes can pull changes with the “chef-client” command.

30

Hes: so

University of Applied Sciences and Arts
Western Switzerland

For instance, if we decide to add the recipe below :

GNU nano 3.2 activate httpd.rb

service
action [

Figure 40 - activate_httpd.rb recipe

We would need to run the following command again :

knife cookbook upload examplel

And then, we need to specify which file to add to our run-list as it is not the default recipe :

jonas@workstation:~/chef-repo$ knife node run list add nodel "recipel[examplel::activate httpd]"

recipe[examplel: :activate httpd]
jonas@workstation:~/chef-repo$

Figure 41 - knife node run_list add command

Obviously, many recipes can be added to the run-list at the same time. Recipes will then be
executed in a certain order starting with the first one added to that run-list.

2.3.8. Dependencies

A cookbook can have a dependency on a recipe that is located in another cookbook ; in that case,
the dependency must be declared in the “metadata.rb” file located in that cookbook folder.

If we imagine the following folder structure on our Chef workstation :

e cookbooks
o examplel
= recipes
e install_httpd.rb
o example2
= recipes
e activate_httpd.rb
= metadata.rb

31

Hes: so

University of Applied Sciences and Arts
Western Switzerland
We could, using dependencies, add only the “activate_httpd.rb” recipe to the run-list even if
Apache has not been installed on the node yet by using the keyword “depends” in the “metadata.rb”
file of the “example2” cookbook :

GNU nano 3.2 example2/metadata.rb

name

maintainer
maintainer email
license

description
version
chef version

depends

Figure 42 - depends keyword

This way, it is then possible to use the “include_recipe” keyword in a recipe file to run a script from

another cookbook :

GNU nano 3.2 example2/recipes/activate httpd.rb

include recipe

service
action [
end

Figure 43 - include_recipe keyword

If the recipe above is added to the run-list alone, Chef will first execute the “install_httpd” recipe
from the other cookbook.

32

2.3.9. Conditionals

Conditionals are made possible using keywords such as “case”,

Hes: so

University of Applied Sciences and Arts
Western Switzerland

” o

if”, “else” and “when”.

package 'apache2

when 'centos',
package_name
when 'debian',
package_name
when "arch'
package_name
end

action

end

case node['platform']

‘install

' do

'redhat', 'fedora', 'suse'
"httpd'
"'ubuntu’

'apache2'

"apache'

Figure 44 - Apache installation depending on platform (Chef Documentation, n.d.)

In the picture above taken from the official Chef documentation, we can see a recipe for the

installation of Apache. We check the OS platform of each node and install Apache using the right

package name depending on that platform name.

if platform?('debian’',

"ubuntu')

Figure 45 - Check platform condition (Chef Documentation, n.d.)

Above is a more standard condition, checking the node’s OS platform again.

“elsif” and “unless” keywords are also

available for convenience to simplify the code when needed

33

Hes: so

University of Applied Sciences and Arts
Western Switzerland

2.3.10. Loops

Loops are made possible using the keyword “.each”.

['apache2', 'apache2-mpm'].each do |p|
package p

end

Figure 46 - Loop over array of package names (Chef Documentation, n.d.)

In the picture above, we are looping through a two-elements array, and we can execute code for
each of those elements, named “p” for “package” in this example.

The keyword “for” does not exist in the native version of Chef.

2.3.11. Language

Chef uses a procedural language, which means that each step to achieve a goal must be specified.

package 'httpd' do

action :install

end

ruby_block 'randomly_choose_language' do

block do
if Random.rand > 0.5
node.run_state['scripting_language'] = 'php'
else
node.run_state['scripting_language'] = 'perl!'
end
end
end

Figure 47 - Chef procedural language example (Chef Documentation, n.d.)

As we can see in the picture above, we notice the very structured syntax and pattern indicating a
procedural language. Indeed, the instructions are very precise and complete to achieve a particular
goal. For instance : We specify the package “httpd”, then we have the action of installing that package.
We also see if/else blocks containing detailed steps and instructions.

Chef scripts run using sequential execution on the agents by default.

34

2.3.12. Chef pros

e Ruby DSL

As Ruby is an actual programming language, more complex automation scenarios can be imagined
and implemented more easily, which makes it superior to languages such as YAML and JSON.

e Complete documentation

The official Chef website offers a complete documentation on the software with good explanations
and examples.

o Chef Supermarket

The Chef repository provides a great range of cookbooks that can be easily imported in a
configuration.

2.3.13. Chef cons
e Lengthy initial configuration
The initial configuration of Chef takes time as we need to setup a main Chef server, workstations,
and install clients on all managed nodes. The whole architecture must then be able to communicate,
a goal achieved only after setting up certificates and trusted authorities. So, the configuration is not as
easy as other agentless software may be. A VCS is also mandatory by default to upload files from a
workstation to the main server.

e Not very intuitive

Chef is a software that requires time to learn, especially if users are not familiar with Ruby, which
itself must be thoroughly learnt to be used with efficiency.

2.3.14. When to use Chef

Companies that already have operators knowing the Ruby language could use Chef without too
many issues.

The procedural language makes it easier to use for programmers, but system administrators can
use it as well if they do not mind the learning curve of Ruby.

The server/agents architecture allows a two-way communication, which means that agents will

constantly check for configuration updates, the disadvantage being the reduction of flexibility if simple
commands need to be executed on a small number of machines.

35

Hes: so

University of Applied Sciences and Arts
Western Switzerland

2.4. Puppet
2.4.1. Architecture

Puppet is an open-source configuration management software developed by the company of the
same name and written in Ruby. It was initially released in 2005 and uses its own unique DSL, using
the “.pp” extension for its configuration files. Puppet also provides a resource application
programming interface (API) to write Ruby functions.

Puppet shares similarities with Chef. It also works with a server/agents architecture and is not
agentless as well. The server is called the “master” or “Puppet master”, an operator can use it to issue
commands. Puppet does not require a workstation like Chef does. Many master servers may be
configured in case the main master server goes down.

r<b o P a’ Client 1
7
=]
@ :
Agent

T E’ Ciient 2

Master Nan Y =N

-
Agent

6 Client 3

Figure 48 - Puppet architecture (Simplilearn, 2021)

The architecture works as follows : A client node (slave) sends “facts” (properties) about itself to
the primary server (master), requesting a “catalog”. The server then compiles and sends the node’s
catalog to the client. A catalog can be defined as the desired state for a node. Once the agent receives
it, it compares the catalog to the node’s state by checking each resource described and make necessary
changes. Finally, the agent sends a report back to the server that can be read by an operator.

36

Agent

3. Report 1. Facts 2. Catalog

4. Report e

Primary Server

Figure 49 - Puppet server-agent process (Puppet Documentation, n.d.)
The professional Puppet version, named “Puppet Enterprise” is free to use to manage up to 10

nodes.

2.4.2. Installation

After a simple installation of the Puppet server on the master and Puppet clients on the nodes, all
nodes must be authenticated by the master before exchanging configuration files. This can be done by
first setting up the “/etc/hosts” file of all machines.

localhost
puppetmaster.puppet.com puppetmaster

.122.17 nodel.puppet.com nodel
J22.5 node2.puppet.com node2

ip6-localhost 1p6-loopback
ip6-localnet
ip6-mcastprefix
ip6-allnodes
ip6-allrouters

Figure 50 - /etc/hosts file example on a Puppet master

All nodes must also have an entry for the Puppet master in their own hosts file.

37

University of Appliec

iH es-so

The nodes may then request a connexion to the Puppet master. They can automatically generate a
new certificate that the master will have to sign using its fully qualified domain name (FQDN).

root@puppetmaster:~#
root@puppetmaster:~# /opt/puppetlabs/bin/puppetserver ca list
Certificates:
.puppet.com (SHA256) 5C:31:48:84:A8:30:56:88:70:D3:AD:E9:37:AF:F4:E4:BC:3A
tFF:D6:F5:1F:6P:47:21:FE4:31:DEE>S
.puppet.com (SHA256) 10:71:2D:A4:24:4F:53:7D:38:CF:71:38:12:60:2C:8E:24:0F
:7F:1B:13:EC:60:C9:AF:1A:3D:63:D9
root@puppetmaster:~# /opt/puppetlabs/bin/puppetserver ca sign --certname nodel.puppet.com,
node2.puppet.com
Successfully signed certificate request for nodel.puppet.com
Successfully signed certificate request for node2.puppet.com
root@puppetmaster:~# |}

Figure 51 - Puppet master approving nodes certificates

Once these steps have been performed, configuration files can be written on the Puppet master
and pulled by the nodes.

2.4.3. Modules
A module represents a specific series of tasks in a Puppet infrastructure. It can be compared to a
role (Ansible) or cookbook (Chef). In the Puppet file structure, a module is a directory containing files,

libraries, functions, tasks, etc.

Each file that contains code is called a “manifest” and ends with the “.pp” extension.

environment.conf
hiera.yaml

L— site.pp

O directories, 3 files

Figure 52 - Puppet code structure

Above is the default code architecture. The main environment, “production”, contains three
folders : “data”, “manifests” and “modules”. The first one contains various data files. The second
directory usually contains the main manifest, also called the site manifest, which is the starting point

38

in the making of the catalog. The third directory contains all modules, including manifest files for
specific configuration tasks.

The “modules” directory outside of the “environments” folder was used in previous Puppet
versions, there are no real reason to use it.

In the example above, three modules are present. The “stdlib” module is a default library provided
by Puppet containing resources that can be automatically loaded by other modules. The other two
modules are “accounts” and “firewall”. The first one has been created manually to set up a limited
user and group on the Puppet master as well as on the nodes. The root user has also been disabled for
security purposes. The second module was downloaded from the Puppet Forge, a repository of
modules that can be compared to Ansible Galaxy or the Chef Supermarket. It is possible to download
a module from the Puppet Forge using the following command :

puppet module install [module name]

As stated earlier, manifests are written in a specific DSL unique to Puppet.

dlass accounts {

Srootgroup = Sosfamily ? {
'Debian' => 'sudo',
'RedHat' => 'wheel',
default => warning('This distribution is not supported by the Accounts module'),

}

include accounts::groups
include accounts::ssh

user { 'admin':
ensure => present,
home => '/home/admin’,
shell => '/bin/bash',
managehome => true,
gid => 'admins',
groups "Srootgroup”,
password '$15DMv2TcYx$13cSkTzkGWMIgn7zDuluke',

Figure 53 - init.pp file

Above is an example of a file named “init.pp”, a manifest from the “accounts” module.

We define a class “accounts” containing user and group information.

We then declare a “Srootgroup” variable (starting with “$”). We want to create a new limited user
with administrator privileges, but the group name might be different depending on the OS of a node,
which is why we create a variable to check the OS family “fact” of each node. A condition is used to set
either “sudo” or “wheel” as the superuser group.

VAN

Note that the keywords “if” and “else”, “unless” and “case” can also be used to manifest conditions.

39

Next, two “include” keywords call other manifests ensuring the creation of the “admins” group as
well as the installation of the OpenSSH service. The code from the two manifests below can then be
executed before the rest of the code from the “accounts” class.

GNU nano 5.4 accounts/manifests/groups.pp
lass accounts::groups {

group { 'admins':
ensure => present,

}

Figure 54 - groups.pp file

GNU nano 5.4 accounts/manifests/ssh.

class accounts::ssh {

Ssshname = Sosfamily ? {
'Debian’ => 'ssh',
'RedHat' => 'sshd',
default => warning('This distribution is not supported by the Accounts module'),

}

file { '/etc/ssh/sshd_config':
ensure => present,
source => 'puppet:///modules/accounts/sshd_config',

}

service { "$sshname":
hasrestart => true,

}

i

Figure 55 - ssh.pp file

Finally, in the example of the “init.pp” file, the last part creates a user resource that will be created
on the nodes, named “admin”.

40

node 'nodel.puppet.com' {
include accounts

resources { 'firewall':
purge == true,

Firewall {
before => (Class['firewall::post'],
require => Class['firewall::pre'],

}

class { ['firewall::pre', 'firewall::post']:
}
node 'node2.puppet.com' {

include accounts

resources { 'firewall':
purge => true,

}

Firewall {
before => Class['firewall::post'],
require => Class['firewall::pre'],

}

class { ['firewall::pre', 'firewall::post']: }

Figure 56 - site.pp file sample

Once the different modules have been configured, the main or site manifest can be established.
We can see both nodes specified above (“nodel” and “node2”) as well as what modules need to be

applied to them (“accounts” and “firewall”).

Using the “puppet apply” command, it is possible to apply a module on the local machine.

2 $ sudo /opt/pu
ppetlabs/bin/puppet apply site.pp

Figure 57 - puppet apply command

Agents can pull changes using the “puppet agent -t” command. Agents automatically pull updates
every 30 minutes by default.

41

root@nodel:~# iptables -L
Chain INPUT (policy ACCEPT)
target prot opt source destination

Chain FORWARD (policy ACCEPT)
target prot opt source destination

Chain OUTPUT (policy ACCEPT)
target prot opt source destination

Figure 58 - iptables command before catalog update

In the picture above, the “iptables -L” command is executed. It displays the firewall configuration

on the node.

root@nodel:~# /opt/puppetlabs/bin/puppet agent -t

/Stage[main]/Accounts: :Groups/Group[admins]/ensure: created
/Stage[main]/Accounts::Ssh/File[/etc/ssh/sshd_config]/ensure: defined co
'{sha256}841b2fca83718b63307e3a5aa2486ab3b2afaef4e06e39406698f7102faf94

/Stage[main]/Accounts/User[admin]/ensure: created
/Stage[main]/Firewall::Pre/Firewall[000 lo traffic]/ensure: created
/Stage[main]/Firewall::Pre/Firewall[001 reject non-lo]/ensure: created

: /Stage[main]/Firewall::Pre/Firewall[002 accept established]/ensure: crea

: /Stage[main]/Firewall::Pre/Firewall[003 allow outbound]/ensure: created
/Stage[main]/Firewall: :Pre/Firewall[004 allow icmp]/ensure: created

: /Stage[main]/Firewall::Pre/Firewall[005 Allow SSH]/ensure: created
/Stage[main]/Firewall: :Pre/Firewall[006 HTTP/HTTPS connections]/ensure:

/Stage[main]/Firewall: :Post/Firewall[999 drop all]/ensure: created
: Applied catalog in 1.74 seconds

Figure 59 - Node update using Puppet

In the picture above, the catalog for the current node is being fetched from the Puppet master. The
Puppet client then updates the node to the desired configuration from the “firewall” module we used.

42

root@nodel:~# iptables -L
Chain INPUT (policy ACCEPT)
target prot opt source destination
ACCEPT all -- anywhere anywhere /* 000 lo traffic
*
REJECT all -- anywhere localhost/8 /* 001 reject non-
lo */ reject-with icmp-port-unreachable
ACCEPT all -- anywhere anywhere state RELATED,ESTA
BLISHED /* 002 accept established */

icmp -- anywhere anywhere /* 004 allow icmp

tcp -- anywhere anywhere multiport dports s
sh /* 005 Allow SSH */
ACCEPT tcp -- anywhere anywhere multiport dports h
ttp,https /* 006 HTTP/HTTPS connections */
DROP all -- anywhere anywhere /* 999 drop all */

Chain FORWARD (policy ACCEPT)
target prot opt source destination

Chain OUTPUT (policy ACCEPT)
prot opt source destination
-- anywhere anywhere /* 003 allow outbo

Figure 60 - iptables command after catalog update

If the “iptables -L” command is executed again after the change, we can see that the firewall
configuration has been correctly updated. The new user “admin” has also been created and the root
user has been disabled when connecting remotely to the nodes.

We will not go into more details here as the Puppet documentation is clear enough and this report

is not meant to be an in-depth tutorial. This example simply shows the specific DSL used by Puppet
with variables, conditions, and dependencies.

2.4.4. Loops

Puppet does not support native “for” loops. However, the “.each” keyword is available.

$binaries = ['facter', 'hiera', 'mco’', 'puppet', 'puppetserver']

$binaries.each |String $binary| {
file {"/usr/bin/${binary}":
ensure => link,
target => "/opt/puppetlabs/bin/${binary}",

Figure 61 - Puppet loop example (Puppet Documentation, n.d.)

In the example above, symbolic links are created to reference different files or folders. A loop is set
up around the “Sbinaries” array with the “.each” keyword. The “Sbinary” variable created can be used
in the block to ensure the creation of the link for each string in the array.

43

. Hes 50

2.4.5. Language

Puppet uses a declarative language, which means that only the desired state is specified, with no
detailed steps to reach that goal.

user { 'admin':
ensure present,
home '/home/admin’,
shell '/bin/bash’',

managehome true,

gid 'admins',

groups "Srootgroup”,

password 'S1S$DMv2TcYx$13cSkTzkGWMIgn7zDuluko',

Figure 62 - Puppet declarative language example

In the example code above, we can see a desired state, which is the creation of an “admin” user,
and the corresponding restrictions.

Puppet scripts run using sequential execution on the agents by default.

2.4.6. Puppet pros

e Puppet DSL

The Puppet DSL combined with Ruby functions allows more complexity than languages such as
YAML or JSON.

e Complete documentation

The official Puppet website offers a complete documentation on the software with good
explanations and examples.

e Puppet Forge

The Puppet repository provides a great number of modules to download and import directly in a
configuration.

2.4.7. Puppet cons

e Lengthy initial configuration

The initial configuration of Puppet takes time as we need to setup the Puppet master and install
agents on the nodes. The Puppet master must then sign the nodes certificates to enable

44

communication. The initial configuration is different from Chef, but like the latter, Puppet is not easy
to set up.

e Not very intuitive

Puppet’s architecture is pretty hard to assimilate. The configuration language is complex to learn,
although Ruby is only mandatory to write more advanced functions.

2.4.8. When to use Puppet

Puppet uses a declarative configuration language, which improves scalability opportunities.
Declarative language is generally used more by system administrators and less by programmers, the
latter usually work with procedural language.

Puppet is a fair choice if operators are comfortable with declarative language and do not want to
spend time learning a programming language. Ruby fundamentals are still necessary to use the
software to its full potential as its DSL is less powerful without the Ruby functions API.

The initial configuration takes some time, but the server/agents architecture provides a convenient

way to update managed nodes as they automatically pull updates from the catalog on start-up and
every 30 minutes by default.

45

2.5.Salt

2.5.1. Architecture

Hes: so

University of Applied Sciences and Arts
Western Switzerland

SaltStack (or Salt) is an open-source configuration management software developed by the
company of the same name in 2011. The virtualization technology company VMware bought Salt in
October 2020 and provides full support for it since March 2021. The software is written in Python and

uses the YAML language for its configuration files.

Salt works with a server/agent architecture. A main server, called “master”, communicates with the

managed nodes, named “minions”.

Salt Architecture
Modular & flexible

CLOUD
VMWARE

AWS
DIGITALOCEAN

Y

FILE SERVER
0 FILE
GITFS
MASTER /W s

RETURNER

@
00O

BEACON GRAINS

RETURNER

e
00O

BEACON GRAINS

RETURNER

@
00O

BEACON GRAINS

WHEEL AUTH
=20 —(¥)— 05
KEY Ve, PAM
SALT MINE/ \PILLAR
RUNNER REACTOR @ @ ENGINE API
e
LOGSTASH
I I Y I I
EVENT BUS ?TQ
0MQ / TORNADO / SSH 0MQ / TORNADO / SSH
MINION MINION MINION MINION
WINDOWS LINUX PROXY MINION LEGACY OS

RETURNER

=)
00

BEACON GRAINS

Figure 63 - Salt architecture (Salt system architecture, 2021)

Above is the official Salt architecture diagram taken from the VMware website. The Salt master can
be installed on any Linux system, and the Salt minions may be either Windows, Linux or MacOS

machines.

A node’s property, such as the current operating system for instance,

is called “grain”. Grains can

be used to define groups of Salt minions that need configuring. Minions can be configured with

commands or states.

46

University of Applied Sciences and Arts
Western Switzerland

2.5.2. |Installation

The installation of Salt is not as easy as with agentless software such as Ansible ; it shares more
similarities with Chef and Puppet in that regard. The first step is to install the Salt-master and the Salt-
minion packages on the machines and edit their hosts files to allow them to communicate using
hostnames or FQDNSs.

GNU nano 3.2 /etc/salt/master

interftace: 192 .168 122 .19

Figure 64 - Salt master file

Once the installation of the packages is complete, the master configuration file, located in
“/etc/salt”, needs to be edited to specify the Salt master’s IP address near the top of the file. The salt-
master service must be restarted.

GNU nano 5.4 /etc/salt/minion

master: 192.168.122.19

Figure 65 - Salt minion file (master property)

Respectively, the “/etc/salt/minion” configuration file must be edited on all minions to specify the
Salt master’s IP address. The salt-minion service must be restarted.

Once both services have been enabled with the correct configuration, it is possible to list the
minions’ key fingerprints from the Salt master.

jonas@saltmaster:~$ sudo salt-key --finger-all

al

jonas@saltmaster:~$ |

Figure 66 - salt-key command with unaccepted key

47

Hes-so

University of Applied Sciences and Arts

Western Switzerland

We can see in the picture above the local keys from the Salt master as well as the unaccepted key
from the minion requesting to be linked.

$ sudo systemctl restart salt-minion
$ sudo salt-call key.finger --local

N |

Figure 67 - salt-call command with minion key

We can see that the key fingerprint of the minion matches with the one listed by the Salt master.

GNU nano 5.4 /etc/salt/minion

master_finger: '02:a9:cf:dd:e9:53:02:e5:86:6d:bc:e2:c48

Figure 68 - Salt minion file (master_finger property)
The “master.pub” key must then be reported in the minion file to be authenticated by the server.

jonas@saltmaster:~$ sudo salt-key -A
he following keys are going to be accepted:

Proceed? [n/Y] y

Key for minion saltminion accepted.
jonas@saltmaster:~$

jonas@saltmaster:~$ sudo salt-key --finger-all
Local Keys:

rccepted Keys:

jonas@saltmaster:~$

Figure 69 - Salt master validating the minion's key fingerprint

Finally, the key fingerprint can be accepted by the Salt master and the automated configuration of
the minions is now possible.

48

Hes: so

University of Applied Sciences and Arts
Western Switzerland

2.5.3. Commands

The Salt master may list all minions with the “salt-run manage.up” command :

jonas@saltmaster:~$%$ sudo salt-run manage.up

jonas@saltmaster:~$ |}

Figure 70 - salt-run manage.up command

It is also possible to list a minion’s properties, called “grains” as stated before. Note that to run a
command on all minions, an asterisk can be used between single quotes (“*’). To run a command on a
specific minion, the hostname must be specified between single quotes.

jonas@saltmaster:~$ sudo salt '*' grains.items

Figure 71 - Minion's grains list

Using the “pkg.install” module, the Salt master automatically recognizes the operating system of its
nodes and controls the distribution’s package manager. This means that the correct command is
automatically used to install new packages on the managed nodes (apt, yum, etc.).

jonas@saltmaster:~$ sudo salt '*' pkg.install apache2

Figure 72 - pkg.install command 1

49

Hes: so

University of Applied Sciences and Arts
Western Switzerland

If the same command is run again, no changes are applied.

jonas@saltmaster:~$ sudo salt '*' pkg.install apache2

jonas@saltmaster:~$ |

Figure 73 - pkg.install command 2

Just like the grains, we can also display the packages installed on the minions.

jonas@saltmaster:~$ sudo salt 'saltminion' pkg.list pkgs

Figure 74 - Minion's packages list

The “service” command allows to manage a specific service.

jonas@saltmaster:~$ sudo salt 'saltminion' service.start apache2

True
jonas@saltmaster:~$

Figure 75 - service.start command

2.5.4. States

A Salt State corresponds to a file written in YAML describing a state we want a group of minions to
be in. It can be compared to a playbook (Ansible), recipe (Chef) or manifest (Puppet). These files are
usually placed in the “/srv/salt” directory.

50

Hes: so

University of Applied Sciences and Arts
Western Switzerland

GNU nano 3.2 install vim.sls

vim:

pkg.installed

Figure 76 - install_vim.sls 1

In the picture above, you can see a simple example of a State file, using the “.sls” extension (for
“Salt State file”) to be recognized by Salt. We indicate that we want the “vim” package to be installed
on the minions affected by this script.

jonas@saltmaster:/srv/salt$ sudo salt 'saltminion' state.apply install vim

Figure 77 - state.apply command

Any Salt State can then be applied to a group of minions. Note that the “.sls” extension must not
be specified in the command (“install_vim” and not “install_vim.sls”).

GNU nano 3.2 install vim.sls

vim:
pkg.installed: []

/etc/vim/vimrc:
file.managed:

source: salt://vimrc
mode: 644

user: root

group: root

Figure 78 - install_vim.sls 2

Configuration files may also be copied to the minions. In the picture above, we specify that we want
a file named “vimrc” (located in “/etc/vim”) created from the existing file on the server (“/srv/salt” on
the Salt master) and copied to the minion to use the same configuration.

51

Hes: so

University of Applied Sciences and Arts
Western Switzerland

:$ cat /etc/vim/vimrc
Configured on the Salt master

All system-wide defaults are set in $VIMRU

al= ()) ur= () =10 ala alll

Figure 79 - vimrc configuration file copied to the minion

If we run the script again, the file is created on the minion and replaces any file with the same name
if it exists.

2.5.5. Environments

An environment refers to a top-level Salt directory. However, there can be more than one

environment.

jonas@saltmaster:/srv$
total 16

drwXr-xr-Xx root root
drwxr-xr-x root root
drwxXr-xr-x root root
drwXr-xr-x root root
jonas@saltmaster:/srv$

Figure 80 - /srv structure example 1

For instance, we can create an environment for production and another one for testing purposes.
Each environment is isolated unless explicit references are used.

2.5.6. Top files

A top file is a “.sls” file that contains mapping information between groups of minions and which
tasks should be run on them.

jonas@saltmaster: /s 1lt$ 1s
total 12
-rw-r--r-- 1 root root 150 Jul 03:02 create user.sls

-rw-r--r-- 1 root root 138 Jul 01:18 postgresql.sls
-rw-r--r-- 1 root root 31 Jul 02:40 top.sls
jonas@saltmaster: /srv/salt$

Figure 81 - /srv/salt structure example

There can only be one top file per directory. We have one in the example above in the default “salt”
environment. A top file always starts with “base:” and is present in the top directory of an

environment.

52

Hes: so

University of Applied Sciences and Arts
Western Switzerland

GNU nano 3.2 top.sls

- create user

'*web* ' ;
- apache
- python

L kdx
- mysql

Figure 82 - top.sls file example

In this example, we created a simple top file with three groups : The asterisk symbol means that all
minions will see the “create_user” State run on them, “*web*” means that all minions containing
“web” in their FQDN will be impacted, and the same principle applies to the “*db*” group.

GNU nano 3.2 create user.sls

testuser:
user.present:
fullname: Jonas Bruchez
shell: /bin/bash

home: /home/testuserl
password: password
groups:

- sudo

Figure 83 - create_user.sls file

Above is the “create_user.sls” file, which creates a simple user named “testuser”.
Next, we can simply type the following command :
salt ‘¥ state.apply

There is no need to specify which file to run, as Salt knows to look by default into the top file of the

environment. Our user is then created on all nodes.

53

Hes: so

University of Applied Sciences and Arts
Western Switzerland

2.5.7. Pillars

A pillar is a file made to contain sensitive information that would not be secure in a standard State
file. Pillar information is transmitted only to minions that need it, hiding it from other minions even if
they are affected by the same configuration State, as only the reference to a pillar would be visible in
it.

As you may have noticed in the file “create_user.sls”, we wrote the password in plain text. We can
use pillars to fix that.

jonas@saltmaster:/srv$ 1ls -1
total 8
drwxr-xr-x 2 root root 4096 Jul 16 03:02

drwxr-xr-x 2 root root 4096 Jul 16 03:44
jonas@saltmaster:/srvs i

Figure 84 - /srv structure example 2

We need to create a new folder that needs to be named “pillar” by default. Inside, we create two
files, named “top.sls” and “pwd.sls”.

GNU nano 3.2 top.sls

Figure 85 - top.sls file example in /srv/pillar

The top file contains the “base” keyword, an asterisk indicating that all minions will save this pillar
information in this example, and the script containing the information we want.

GNU nano 3.2 pwd.sls

password: p@ssword

Figure 86 - pwd.sls file

In “pwd.sls”, we have our variable named “password”.

54

Hes: so

University of Applied Sciences and Arts
Western Switzerland

GNU nano 3.2 create user.sls

testuser:
user.present:
fullname: Jonas Bruchez
shell: /bin/bash

home: /home/testuserl

password: {{ pillar|'password'] }}
groups:

- sudo

Figure 87 - create_user.sls file with pillar

We can edit our “create_user.sls” file to hide the password and use the variable we set in the pillar.
The variable will be sent only to minions that need it.

2.5.8. Conditionals

Conditions can be used in Salt States using the “if”, “else”, “elif” and “endif” statements.

apache:
pkg.installed:
{% if grains['os'] == 'RedHat® %}
- name: httpd
{% elif grains['os'] == "Ubuntu®' %}
- name: apache2
{% endif %}

Figure 88 - Salt condition example (SaltStack, n.d.)

In this example from the official Salt documentation, a minion’s OS is being checked to ensure that
the correct package name is used for the installation.

2.5.9. Loops

Salt State files support loops, using the “for”, “in” and “endfor” statements.

55

Hes so

University of Applied Sciences and Arts
Western Switzerland

{% for usr in ['moe','larry','curly'] %}
{{ usr 1

user.present
{% endfor %}

Figure 89 - Salt loop example (SaltStack, n.d.)

In the example above, the code runs through an array of three strings and stores them temporally
in the “usr” variable to check if that string is an existing username.

2.5.10. Formulas

Formulas are pre-written Salt States. They can be used for many different tasks and any of them
can be downloaded from the official SaltStack GitHub account. It is also possible to create custom
formulas using the provided template.

2.5.11. Language

Salt uses a declarative language, which means that only the desired state is specified, with no
detailed steps to reach that goal.

apache:
pkg.installed: []
service.running:
- watch:
- pkg: apache
- file: /etc/httpd/conf/httpd.conf
- user: apache
user.present:
- uid: 87
- gid: &7
- home: /fvar/www/hitml
- shell: /bin/nologin
- require:
- group: apache
group.present:
- gid: &7
- require:
- pkg: apache

Figure 90 - Salt declarative language example (SaltStack, n.d.)

In the example above, we clearly see the same declarative pattern used with Puppet. The only
difference being the fact that Salt uses the YAML declarative language like Ansible.

56

Salt scripts run using parallel execution on the agents by default.

2.5.12. Salt pros

e Simple management

The initial configuration is not too complicated, and the infrastructure is clear.

e Configuration language

YAML is a language easy to understand and learn, even for non-programmers.

2.5.13. Salt cons
e YAML configuration files
Like Ansible, the complexity of YAML is limited compared to programming languages such as Ruby.
e Lacking documentation
The Salt documentation is sadly less organized and sometimes lacking compared to other
documentations. This might be because of the recent takeover of Salt by VMware ; we find
documentation about the software on their website as well as on the Salt Project website which can
make it confusing.

e Less popular than other software

A problem with Salt is that there is less information available on the Internet as the community is
significantly smaller.

2.5.14. When to use Salt

Salt was released fairly recently compared to other automation software and chose a more flexible
and simple approach that is easy to understand.

Salt uses YAML, which is a language that system administrators tend to use more rather than
standard programming languages such as Ruby.

57

University of Applied Sciences and Arts

Western Switzerland

2.6.Terraform

2.6.1. Architecture

Terraform is an open-source infrastructure provisioning software developed by the company
HashiCorp in 2014. The software is written in the Go programming language. It uses the HashiCorp

“u

Configuration Language (HCL) with the “.tf” extension for its configuration files. That language is

inspired by Nginx (web server) configuration files.

Terraform is different from the four previous software described. It is mainly an infrastructure
provisioning software, rather than a configuration management software. This implies that the use of
Terraform is focused on the automation of the provisioning of the infrastructure, rather than on its
configuration. For instance, it can be convenient for users that are looking to prepare their
infrastructure so they can then deploy their application on it. Terraform is considered to be an laC tool
for Cloud environments.

Terraform Architecture 2 main components

P 2 input sources:

current state VS desired state (config file)

'ﬁ'\

PROVIDERS:

AWS | Azure | [laaS]

TF-Config Kubernetes | [PaaS]
/ Fastly | [Saa5]
Plan: What needs to be
_ created/updated/destroyed?
current desired
state state

Figure 91 - Terraform architecture (Janashia, 2020)

The architecture of Terraform works as follows : Its core is a statically-compiled binary written in
Go, this means that the build has a predictable behaviour as all bindings are performed at compile time
(and not at running time). It is completely agentless.

The core needs two components as input to create a provisioning plan : the Terraform
configuration and the state. The Terraform configuration refers to the HCL files written by a user
specifying what needs to be created and provisioned, and what the final state should be. The state
refers to the current state of the infrastructure, if any ; this is needed for Terraform to update an
instance of the infrastructure when needed, however the instance is usually recreated as the software

58

Hes: so

University of Applied Sciences and Arts
Western Switzerland
chooses an immutable approach. The state file is also useful to store bindings and dependencies
between remote objects and the infrastructure using them.

With the configuration and state files, Terraform computes the most optimal way to obtain the
desired environment state described. To reach that goal, providers are used to implement resources
that Terraform can manage. Providers are distributed separately and are independent from Terraform.

Providers and pre-written reusable configuration (modules) can be chosen from the Terraform
online repository, called “Terraform Registry”.

2.6.2. |Installation

As stated above, Terraform is agentless, which makes its installation fast and easy. The software
can be downloaded from the official Terraform website. It may be installed on a Windows, macOS or
Linux machine.

Once downloaded, the file must be unzipped. It contains an executable that can be run as a
command on Linux systems.

jonas@nodemanager:~/ m$ 1s -1

total 78816

-rwxr-xr-x 1 jonas jonas 80702567 Jul 7 18:43 terraform

jonas@nodemanager 1 f $ echo 'export PATH="$PATH:$HOME/terraform"' >> ~/.profile
jonas@nodemanager $ source ~/.profile

jonas@nodemanager:~/te yrm$ terraform

Usage: terraform [global options] <subcommand> [args]

The available commands for execution are listed below.
The primary workflow commands are given first, followed by
less common or more advanced commands.

Figure 92 - terraform command on Linux

59

On Windows, once added to the path, Terraform commands are recognized and can be input in the
command line or PowerShell.

User variables for Jonas

Vanable Value

ChocolateyLastPathUpdate 132333294826478586

Intelll) IDEA CAProgram Files\JetBrains\Intelli) IDEA 2019.1\bin

OneDrive ChUsers\Jonas\OneDrive

Path CAUsersJonas\AppData\Local\Microsofti WindowsApps,CAPr...

Or_DEVi ; : ;

G Edit environment variable s

TEMP

T™P
C\Users\Jonas\AppData\Local\Microsoff\WindowsApps New
C\Program Files\JetBrains\|ntellt) IDEA 2019.1\bin
ChUsers\Jonas\AppData\Roaming\npm Edit
Ci\Users\Jonash.dotnet\tools

System var| | %USERPROFILES:\AppData\LocalMicrosoft\WindowsApps T
; Ch\Users\Jonas\AppDatat\Local\ Yamibin

Variable : ;)

_ C\Users\Jonas\.android\flutter\bin

Chocolaf| Delete

I %USERPROFILES dotnet\tools
ComSpe I"'f‘ Eias = l
. CAProgram Files\Terraform

DriverDa —

ESET_OP Move Up

NUMBE

Figure 93 - Terraform executable file location added to the path

:\Users\Jonas>terraform
sage: terraform [global options] <subcommand> [args]

he available commands for execution are listed below.

he primary workflow commands are given first, followed by
less common or more advanced commands.

Figure 94 - terraform command on Windows

60

Hes-:

University of Applied Sc

Wes

2.6.3. Configuration file

The main Terraform configuration file is divided in several distinct parts, describing which providers
to use, which resources to create and how. We are describing how we want our infrastructure to look
like (declarative language).

docker = {
source
version

name
keep_locally

"docker_container"
image docker_image. . latest
name e 1°

{
internal
external

Figure 95 - Terraform configuration file example

Above is a simple example of a Terraform configuration. We are using Docker as a provider to create
a Nginx web server. We distinct the “terraform” block that contains general settings including the
providers that Terraform will use, the “provider” block that configures a specified provider, and the
“resource” block used to describe a component of the infrastructure. There can be several providers
and resources.

If a configuration file is edited, the infrastructure can be updated or recreated.

61

Hes-:

University of Applied Sc
Wes

2.6.4. Statefile

Once the user is satisfied with the configuration, the latter can be applied and executed. Terraform
indicates precisely what will be created and, once it is done, will update the state contained in the
“tfstate” file.

"version": 4,

"terraform_version": "1.0.2",

"serial": 22,

"lineage": "ab6303a9-d@f4-7bab-1dba-403947c92ab8",
"outputs": {},

"resources": [

{
"mode": "managed",
"type": "docker_container",
"name": "nginx",
"provider": "provider[\"registry.terraform.io/kreuzwerker/docker\"]",
"instances": [

{

Figure 96 - Terraform state file sample

2.6.5. Terraform pros

e HCL configuration files

The HCL declarative language offers a clear and human-friendly way of provisioning an
infrastructure.

¢ Immutable architecture

Terraform’s immutable architecture allows applications to be deployed on a precise and stable
environment.

e Providers

The plugins available from a very large number of providers offers a lot of choices and possibilities
for an infrastructure.

o Agentless

Terraform is only needed as a command line tool on one machine, no other instances of the
software need to be installed anywhere else.

62

2.6.6. Terraform cons

e Software limitations

While Terraform does its job well in collaboration with plenty of providers, its capabilities are still
considerably limited to infrastructure provisioning and does not provide as many features as a

configuration management software would. This is why Terraform is often used along with a
configuration management tool.

2.6.7. When to use Terraform
Terraform should be used by companies wishing to provision their cloud-based infrastructure and
manage it using the software’s immutable approach. Because of that fact, the company should have

its data stored remotely.

The software is particularly useful when a lot of tests are being performed on a deployed application
and the environment needs to be the same at every iteration to provide the best comparison results.

63

3. Software Comparison

3.1. Summary of Software Characteristics

All software analysed are similar in some ways and different in others. They serve the same purpose

of automation, but their functionalities and complexity vary.

Characteristic

Definition

Open-source

Defines if the software is open-source or not.

Tool type

The type of service provided by the software.

Programming language

The language the software is written in.

Configuration language

The language used to create and manage configuration files.

Language type

Defines if the software uses a procedural or declarative language.

Architecture

Defines if the software uses agents on managed nodes or not.

Server Compatibility

Operating systems the server may be installed on.

Agent Compatibility

Operating systems the agents may be installed on (server/agents).

Operating systems supported as nodes (agentless).

Infrastructure

Defines if the software works with a mutable or immutable
infrastructure pattern.

Scalability

Defines if the software supports scalability.

Module repository

Module repository provided by the developers, if any.

Table 1 - Software characteristics definition

The following table has been created as a summary of facts about all presented software. All

software are open-source and have a free version available, although user interfaces and support are

provided with a paid subscription.

64

3.1.1. Software characteristics table

Hes:

Ansible

Chef

Puppet

Salt

Terraform

Open-source

Yes

Yes

Yes

Yes

Yes

Tool type

Configuration

Configuration

Configuration

Configuration

Infrastructure provisioning

management management management management
Programming language Python Ruby Ruby Python Go
Configuration language YAML Ruby-based DSL Puppet DSL YAML HCL
Language type Procedural Procedural Declarative Declarative Declarative
Architecture Agentless Server/Agent Server/Agent Server/Agent Agentless
Server Compatibility Linux Linux Linux Linux Linux / Mac / Windows

Nodes Compatibility

Linux / Mac / Windows

Linux / Mac / Windows

Linux / Mac / Windows

Linux / Mac / Windows

Linux / Mac / Windows

Infrastructure Mutable Mutable Mutable Mutable Immutable
Scalability Yes Yes Yes Yes Yes

. . SaltStack Formulas ;
Module repository Ansible Galaxy Chef Supermarket Puppet Forge Terraform Registry

(GitHub)

Table 2 - Software characteristics

65

Hes s

3.2. Criteria Definition

Only Ansible, Chef, Puppet and Salt are compared. Terraform serves a similar automation purpose
but is not comparable with the others as it is the only software focusing on infrastructure provisioning.

To compare all software with the most neutral point of view, a decision matrix has been created
with the results explained below in the synthesis. To each criterion is attributed a value from 0 to 2.

e (0if the software does not meet expectations.
e 1 if the software partially meets expectations.
o 2 if the software fully meets expectations.

The two software with the most points at the end are used for further testing. The guides on how
to reproduce it (installation and configuration) can be found attached to this report.

The weight of each criterion defines its importance, as they are not all crucial. A high weight
represents a higher importance, going from 1 to 3. The weight has been decided depending on what
we determined are the most important aspects companies are looking for when getting a new

software.
Criterion Definition Weight
Implementation | The initial installation and configuration are easily performed. 2
o The architecture and configuration language are accessible to new
Accessibility 3

users.

. The architecture and configuration language allows powerful
Complexity . . . 3
operations and provides enough complexity.

Compatibility The software supports a large variety of operating systems. 2
Scalability The software architecture offers good scalability opportunities. 2
Performance The software is performant, and its operations are done quickly. 2
Module . . g

. The software provides a well-organized remote module repository. 1
repository
Documentation | The documentation provided is clear and complete. 1

The developer and community are largely present online and
Support . . 1
provide considerable support.

Table 3 - Criteria definition

66

Hes

3.2.1. Decision matrix

Implementation | Accessibility Complexity | Compatibility Scalability Performance rel\:l)Zji::;y Documentation Support Total
Weight 2 3 3 2 2 2 1 1 1
Ansible 2 4 2 6 1 3 2 4 2 4 2 4 2 2 1 1 2 2 30
Chef 1 2 0 0 2 6 2 4 2 4 1 2 2 2 2 2 2 2 24
Puppet 1 2 1 3 2 6 2 4 2 4 1 2 2 2 2 2 2 2 27
Salt 1 2 2 6 1 3 2 4 2 4 1 2 1 1 1 1 1 1 24

Table 4 - Decision matrix

67

3.3. Synthesis of the results

Looking at each criterion from left to right, we first have the implementation representing how easy
and fast it is to perform the initial installation and configuration of the software. Ansible is the winner
in that category, as its agentless architecture makes its installation really quick without the need to
care about any agents. Other software in that category are more similar and require longer
management before the communication can be established between the server and agents.

Regarding the accessibility, Ansible and Salt definitely are the easiest tools to manage due to their
configuration language being YAML. Puppet provides its own language specific for its configuration,
which makes the troubleshooting easier and does not require the user to learn Ruby. On the other
hand, Chef uses a Ruby-based DSL and a procedural language which makes it the harder to learn,
especially for non-programmers.

The complexity that the configuration language allows is also important ; Chef and Puppet both
possess a powerful language inspired by an actual programming language, Ruby, which makes that
complexity possible more easily and optimally than with YAML.

All software have great compatibility besides the limitations making the server side only available
on Linux machines.

Likewise, their scalability opportunities are great and makes the expansion from a few servers to a
hundred easy due to the nature of their architecture.

Next, the performance is slightly better with Ansible, which does not need to run any agents on the
nodes. The other three are pretty similar with negligible differences in that regard.

Each software possesses a remote module repository where it is possible to download reusable
modules to include in a particular project. Salt simply lacks the functionality to search efficiently
because it has a GitHub repository rather than a proprietary repository.

Chef and Puppet both are more mature than Ansible and Salt, therefore their documentations are
more complete than the other two. As a reminder, Chef and Puppet were initially released respectively
in 2009 and 2005, while Ansible and Salt were released later respectively in 2011 and 2012.

Finally, each software offers a good support if companies pay for it. If we ignore that fact to strictly
focus on a purely free usage of the tools, we notice that the online presence of Salt is smaller compared
to the others three. Chef and Puppet both have a solid userbase because of their age, and Ansible too
due to its increasing success the past few years.

As a conclusion to this analysis, it is important to note that in the end, there are no better or worse
software because each of them targets a different userbase. We did however establish a ranking based
on the facts we explained in this report for each software. According to our analysis, Ansible comes
first with 30 points, Puppet second with 27 points, and last come Chef and Salt with 24 points.

68

Hes-

University of Applied Sciences and Arts

Western Switzerland

4. Software Testing

4.1.Selected Software

Following the analysis, the software selected for the establishment of virtual labs are Ansible and
Puppet.

4.2.Testing Scenario

The objective is to create a reproducible scenario with Ansible and Puppet defined by specific use
cases. The guides can be found attached to this report, they are named :

e 02_lInstallation_Guide
e 03_Configuration_Guide

For each software, the steps for the installation and use cases for the configuration are the
following :
1. Installation

a. Installation of VirtualBox

b. Creation of several virtual machines

c. Configuration of subnetworks for each environment

d. Installation of the operating systems on the virtual machines

e. Installation of the configuration management software

2. Configuration
a. Creation of a simple user
b. Configuration of a Nginx web server
c. Configuration of a MySQL database

d. Deployment of updates and upgrades

69

Node Manager / Puppet Master
Configuration files

192.168.*.5
Node 1 (Debian) Node 2 (Windows)
New user ’ New user
Nginx web server A Requests MySQL Workbench
MySQL database
192.168.*%.4 192.168.*.6

Figure 97 - Testing scenario schema

In the picture above, we observe the final structure of each lab. The node manager (Ansible) and
Puppet master configure both nodes remotely. The verification then takes place with requests from
the Windows node to the Debian node to make sure that everything works as intended.

4.3. Conclusion

After more in-depth testing, it has been established that Ansible was superior in several ways. The
information found about the software online was of better quality and more abundant than Puppet’s.
The ease of use of the configuration language was even more obvious than expected ; there was very
few research needed to execute the use cases in the Ansible environment, while the Puppet
environment requested a lot more work. This can be explained by the difficulty to learn the language
as well as the fact that it provides a lot of functionalities through modules from the Puppet Forge ;
Ansible has more native functionalities, at least in the scope of the testing that took place.

For all the functionalities Ansible has demonstrated, it would currently be our favourite choice for

an implementation of a configuration management software in a company.

70

Western Switzerlan

5. References

Aleksic, M. (2020, December 17). How Does SSH Work. Retrieved from PhoenixNAP:
https://phoenixnap.com/kb/how-does-ssh-work

Alfke, M., Franceschi, A., Frank, F., Pastor, J. S., & Uphillis, T. (2017). Puppet: Mastering Infrastructure
Automation. Packt Publishing.

Ansible. (n.d.). Retrieved from Ansible Website: https://www.ansible.com/
Ansible Documentation. (n.d.). Retrieved from Ansible Documentation: https://docs.ansible.com/

Ansible Verwendungsszenarien. (n.d.). Retrieved from Kreyman:
https://www.kreyman.de/index.php/cloud-microsoft-azure-aws-amazon-web-services/213-
ansible-verwendungsszenarien

Bigelow, S. J. (2020, November). Infrastructure as code. Retrieved from SearchITOperations:
https://searchitoperations.techtarget.com/definition/Infrastructure-as-Code-IAC

Bruce, S. (2020, December 18). Ansible vs Chef: Which Configuration Management Tool Is Best?
Retrieved from Career Karma: https://careerkarma.com/blog/ansible-vs-chef/

Chef Documentation. (n.d.). Retrieved from Chef Documentation: https://docs.chef.io/
Chef Downloads. (n.d.). Retrieved from Chef: https://downloads.chef.io/

Dadgar, A. (2018, November 15). What is Mutable vs. Inmutable Infrastructure? Retrieved from
HashiCorp: https://www.hashicorp.com/resources/what-is-mutable-vs-immutable-
infrastructure

DevOps principles. (n.d.). Retrieved from Atlassian: https://www.atlassian.com/devops/what-is-
devops

Dharmalingam, N. (2019, November 5). Advantages and Disadvantages of Ansible. Retrieved from
Whizlabs: https://www.whizlabs.com/blog/ansible-advantages-and-disadvantages/

Dharmalingam, N. (2020, February 11). Chef vs Puppet vs Ansible. Retrieved from Whizlabs:
https://www.whizlabs.com/blog/chef-vs-puppet-vs-ansible/

Dharmalingam, N. (2020, February 19). Introduction to Chef. Retrieved from Whizlabs:
https://www.whizlabs.com/blog/chef-introduction/

Domain-specific language. (2021, May 28). Retrieved from Wikipedia:
https://en.wikipedia.org/wiki/Domain-specific_language

Domont, A. (2021, May 12). Utilisez Ansible pour automatiser vos tdches de configuration. Retrieved
from OpenClassrooms: https://openclassrooms.com/en/courses/2035796-utilisez-ansible-
pour-automatiser-vos-taches-de-configuration

Ewart, J., Marschall, M., & Waud, E. (2017). Chef: Powerful Infrastructure Automation. Packt
Publishing.

Gaba, I. (2021, April 1). What Is Chef: Here's What You Need to Know. Retrieved from Simplilearn:
https://www.simplilearn.com/tutorials/chef-tutorial/what-is-chef

71

University of Applied Sciences and Arts
HashiCorp. (n.d.). Explore our tutorials to automate your workflows. Retrieved from HashiCorp Learn:
https://learn.hashicorp.com/

HashiCorp. (n.d.). Packer Documentation. Retrieved from HashiCorp: https://www.packer.io/docs

HashiCorp. (n.d.). Vagrant Documentation. Retrieved from HashiCorp:
https://www.vagrantup.com/docs

Henderson, B. (2018, April 24). Connecting to a Windows Host. Retrieved from Ansible:
https://www.ansible.com/blog/connecting-to-a-windows-host

Infrastructure as code. (2021, June 15). Retrieved from Wikipedia:
https://en.wikipedia.org/wiki/Infrastructure_as_code

Jacobs, M., & Kaim, E. (2021, May 12). What is Infrastructure as Code? Retrieved from Microsoft
Documentation: https://docs.microsoft.com/en-us/devops/deliver/what-is-infrastructure-as-
code

Janashia, N. (2020, July 4). Terraform simply explained. Retrieved from DEV Community:
https://dev.to/techworld_with_nana/terraform-simply-explained-m

javainterviewpoint. (2019, March 11). Java RSA Encryption and Decryption Example | ECB Mode +
4096 Bits + OAEPWITHSHA-512ANDMGF1PADDING. Retrieved from Java Interview Point:
https://www.javainterviewpoint.com/rsa-encryption-and-decryption/

Johari, A. (2019, November 26). Chef vs Puppet vs Ansible vs Saltstack: Which Works Best For You?
Retrieved from Edureka: https://www.edureka.co/blog/chef-vs-puppet-vs-ansible-vs-
saltstack/

Krebsbach, H. (2016, November 9). Picking the right tools for DevOps communication. Retrieved from
Atlassian: https://www.atlassian.com/blog/devops/picking-right-tools-devops-
communication

Krout, E. (2021, May 21). A Beginner's Guide to Chef. Retrieved from Linode:
https://www.linode.com/docs/guides/beginners-guide-chef/

Linode. (2020, October 7). Getting Started with Salt - Basic Installation and Setup. Retrieved from
Linode: https://www.linode.com/docs/guides/getting-started-with-salt-basic-installation-
and-setup/

Linode. (2020, October 7). How To Install a Chef Server Workstation on Ubuntu 18.04. Retrieved from
Linode: https://www.linode.com/docs/guides/install-a-chef-server-workstation-on-ubuntu-
18-04/

Linode. (2021, June 11). Getting Started with Puppet - Basic Installation and Setup. Retrieved from
Linode: https://www.linode.com/docs/guides/getting-started-with-puppet-6-1-basic-
installation-and-setup/

Lyman, J. (2020, October 7). Getting Started With Ansible - Basic Installation and Setup. Retrieved
from Linode: https://www.linode.com/docs/guides/getting-started-with-ansible/

Myers, C. (2016). Learning SaltStack : build, manage, and secure your infrastructure by utilizing the
power of SaltStack. Packt Publishing.

72

OpenSSH/SSH Protocols. (2020, November 9). Retrieved from Wikibooks:
https://en.wikibooks.org/wiki/OpenSSH/SSH_Protocols

Puppet. (n.d.). Retrieved from Puppet Website: https://puppet.com/
Puppet Documentation. (n.d.). Retrieved from Puppet Documentation: https://puppet.com/docs/

RedHat. (n.d.). What is cloud automation? Retrieved from RedHat:
https://www.redhat.com/en/topics/automation/what-is-cloud-automation

RedHat. (n.d.). What is provisioning? Retrieved from RedHat:
https://www.redhat.com/en/topics/automation/what-is-provisioning

RSA (cryptosystem). (2021, June 8). Retrieved from Wikipedia:
https://en.wikipedia.org/wiki/RSA_(cryptosystem)

Ruby (programming language). (2021, July 5). Retrieved from Wikipedia:
https://en.wikipedia.org/wiki/Ruby_(programming_language)

Salt Project. (n.d.). Retrieved from Salt Project Website: https://saltproject.io/

Salt system architecture. (2021, April 13). Retrieved from VMware Documentation:
https://docs.vmware.com/en/vRealize-Automation/8.4/install-configure-saltstack-
config/GUID-8FC70D95-3317-4324-A5BD-D213CE9BO029E.html

SaltStack. (n.d.). Salt Project Documentation. Retrieved from Salt Project Documentation:
https://docs.saltproject.io/en/latest/

Shirinkin, K. (2017). Getting started with Terraform : manage production infrastructure as a code.
Packt Publishing.

Simplilearn. (2021, February 9). What is Puppet: Components and Writing Manifests Explained.
Retrieved from Simplilearn: https://www.simplilearn.com/what-is-puppet-article

Srivastava, D. (2021, February 12). Chef vs. Puppet vs. Ansible vs. Saltstack: A Complete Comparison.
Retrieved from Medium: https://medium.com/successivetech/chef-vs-puppet-vs-ansible-vs-
saltstack-a-complete-comparison-9af8f1790c0d

Strutt, S. (2018, November 13). Choosing an Infrastructure as Code tool. Retrieved from IBM:
https://www.ibm.com/cloud/blog/chef-ansible-puppet-terraform

Terra, J. (2021, April 12). Ansible vs Chef: What's the Difference? Retrieved from Simplilearn:
https://www.simplilearn.com/ansible-vs-chef-differences-article

Terraform. (n.d.). Retrieved from Terraform Website: https://www.terraform.io/

Terraform. (n.d.). Terraform Documentation. Retrieved from Terraform Documentation:
https://www.terraform.io/docs/index.html

UpGuard. (2020, October 19). Ansible vs Chef Updated for 2020 [Infographic]. Retrieved from
UpGuard: https://www.upguard.com/blog/ansible-vs-chef

UpGuard. (2020, August 2020). Chef vs Salt: Which One to Choose? Retrieved from UpGuard:
https://www.upguard.com/blog/salt-vs-chef

73

University of Applied

Veritis. (n.d.). Chef Vs Puppet Vs Ansible — Comparison of DevOps Configuration Management Tools.
Retrieved from Veritis: https://www.veritis.com/blog/chef-vs-puppet-vs-ansible-comparison-
of-devops-management-tools/

VMware Documentation. (n.d.). Retrieved from VMware Documentation: https://docs.vmware.com/

Wikipedia. (2021, June 21). Secure Shell Protocol. Retrieved from Wikipedia:
https://en.wikipedia.org/wiki/Secure_Shell_Protocol

Windows Remote Management. (2018, May 31). Retrieved from Microsoft:
https://docs.microsoft.com/en-us/windows/win32/winrm/portal

YAMIL. (2021, June 23). Retrieved from Wikipedia: https://en.wikipedia.org/wiki/YAML

74

Hes

University of Applied Sc

Weste

Author’s Declaration

| hereby certify that | have written the present Bachelor’s thesis on my own, without any help other
than listed in the reference section, and that | have not used any sources other than the ones
specifically mentioned. | will not give any copies of this report to anyone without the authorisation of
both the RF and the supervisor of the Bachelor’s thesis. This does not include the persons who have
provided me with the key information required for writing this thesis and which are listed hereafter :

Xavier Barmaz

August 3, 2021
Jonas Bruchez

75

