Hydrogen Bonding of Ammonia with (H,OH)-Si(001) Revealed by Experimental and Ab Initio Photoelectron Spectroscopy.
Journal article

Hydrogen Bonding of Ammonia with (H,OH)-Si(001) Revealed by Experimental and Ab Initio Photoelectron Spectroscopy.

  • Pérez Ramírez L Sorbonne Université, CNRS, Laboratoire de Chimie Physique matière et Rayonnement, UMR 7614, 4 Place Jussieu, 75005 Paris, France.
  • Gallet JJ Sorbonne Université, CNRS, Laboratoire de Chimie Physique matière et Rayonnement, UMR 7614, 4 Place Jussieu, 75005 Paris, France.
  • Bournel F Sorbonne Université, CNRS, Laboratoire de Chimie Physique matière et Rayonnement, UMR 7614, 4 Place Jussieu, 75005 Paris, France.
  • Lim F Sorbonne Université, CNRS, Laboratoire de Chimie Physique matière et Rayonnement, UMR 7614, 4 Place Jussieu, 75005 Paris, France.
  • Carniato S Sorbonne Université, CNRS, Laboratoire de Chimie Physique matière et Rayonnement, UMR 7614, 4 Place Jussieu, 75005 Paris, France.
  • Rochet F Sorbonne Université, CNRS, Laboratoire de Chimie Physique matière et Rayonnement, UMR 7614, 4 Place Jussieu, 75005 Paris, France.
  • Yazyev OV Chaire de Simulation à l'Echelle Atomique (CSEA), Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland.
  • Pasquarello A Chaire de Simulation à l'Echelle Atomique (CSEA), Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland.
  • Magnano E IOM-CNR, Laboratorio TASC, Basovizza, 34149 Trieste, Italy.
  • Bondino F IOM-CNR, Laboratorio TASC, Basovizza, 34149 Trieste, Italy.
Show more…
  • 2020-06-04
Published in:
  • The journal of physical chemistry. A. - 2020
English Combining experimental and ab initio core-level photoelectron spectroscopy (periodic DFT and quantum chemistry calculations), we elucidated how ammonia molecules bond to the hydroxyls of the (H,OH)-Si(001) model surface at a temperature of 130 K. Indeed, theory evaluated the magnitude and direction of the N 1s (and O 1s) chemical shifts according to the nature (acceptor or donor) of the hydrogen bond and, when confronted to experiment, showed unambiguously that the probe molecule makes one acceptor and one donor bond with a pair of hydroxyls. The consistency of our approach was proved by the fact that the identified adsorption geometries are precisely those that have the largest binding strength to the surface, as calculated by periodic DFT. Real-time core-level photoemission enabled measurement of the adsorption kinetics of H-bonded ammonia and its maximum coverage (0.37 ML) under 1.5 × 10-9 mbar. Experimental desorption free energies were compared to the magnitude of the adsorption energies provided by periodic DFT calculations. Minority species were also detected on the surface. As in the case of H-bonded ammonia, DFT core-level calculations were instrumental to attribute these minority species to datively bonded ammonia molecules, associated with isolated dangling bonds remaining on the surface, and to dissociated ammonia molecules, resulting largely from beam damage.
Language
  • English
Open access status
closed
Identifiers
Persistent URL
https://sonar.ch/global/documents/187632
Statistics

Document views: 15 File downloads: