Journal article
High-throughput screening of bacterial pathogens in clinical specimens using 16S rDNA qPCR and fragment analysis.
-
Wagner K
Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland. Electronic address: karoline.wagner@usb.ch.
-
Springer B
Institute of Medical Microbiology and Hygiene, Austrian Agency for Health and Food Safety, Graz, Austria.
-
Pires VP
Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland.
-
Keller PM
Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland.
Show more…
Published in:
- Diagnostic microbiology and infectious disease. - 2019
English
Molecular-based detection of bacterial pathogens directly from clinical specimens permits rapid initiation of effective antimicrobial treatment and adequate patient management. Broad-range polymerase chain reaction (PCR) amplification of the 16S rRNA gene (16S rDNA qPCR) is used in many diagnostic laboratories as a complement to cultural identification of bacterial pathogens. However, efforts for automation of 16S rDNA PCR workflows are needed in order to reduce turnaround times and to enhance reproducibility and standardization of the technique. In this retrospective method evaluation study, clinical specimens (N = 499) from patients with suspected bacterial infections were used to evaluate 2 diagnostic semiautomated workflows for rapid bacterial pathogen detection. The workflows included automated DNA extraction (QIASymphony), 16S rDNA qPCR, fragment or melting curve analysis, and amplicon sequencing. Our results support the use of the 16S rDNA qPCR and fragment analysis workflow as it enabled rapid and accurate identification of bacterial pathogens in clinical specimens.
-
Language
-
-
Open access status
-
hybrid
-
Identifiers
-
-
Persistent URL
-
https://sonar.ch/global/documents/271128
Statistics
Document views: 10
File downloads: