Journal article
In vitro Generation of CRISPR-Cas9 Complexes with Covalently Bound Repair Templates for Genome Editing in Mammalian Cells.
-
Savić N
The Institute of Molecular Health Sciences, ETH Zurich, Zurich, Switzerland.
-
Ringnalda FC
The Institute of Molecular Health Sciences, ETH Zurich, Zurich, Switzerland.
-
Berk C
Institute for Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland.
-
Bargsten K
Department of Biochemistry, University of Zurich, Zurich, Switzerland.
-
Hall J
Institute for Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland.
-
Jinek M
Department of Biochemistry, University of Zurich, Zurich, Switzerland.
-
Schwank G
The Institute of Molecular Health Sciences, ETH Zurich, Zurich, Switzerland.
Show more…
English
The CRISPR-Cas9 system is a powerful genome-editing tool that promises application for gene editing therapies. The Cas9 nuclease is directed to the DNA by a programmable single guide (sg)RNA, and introduces a site-specific double-stranded break (DSB). In mammalian cells, DSBs are either repaired by non-homologous end joining (NHEJ), generating small insertion/deletion (indel) mutations, or by homology-directed repair (HDR). If ectopic donor templates are provided, the latter mechanism allows editing with single-nucleotide precision. The preference of mammalian cells to repair DSBs by NHEJ rather than HDR, however, limits the potential of CRISPR-Cas9 for applications where precise editing is needed. To enhance the efficiency of DSB repair by HDR from donor templates, we recently engineered a CRISPR-Cas9 system where the template DNA is bound to the Cas9 enzyme. In short, single-stranded oligonucleotides were labeled with O6-benzylguanine (BG), and covalently linked to a Cas9-SNAP-tag fusion protein to form a ribonucleoprotein-DNA (RNPD) complex consisting of the Cas9 nuclease, the sgRNA, and the repair template. Here, we provide a detailed protocol how to generate O6-benzylguanine (BG)-linked DNA repair templates, produce recombinant Cas9-SNAP-tag fusion proteins, in vitro transcribe single guide RNAs, and transfect RNPDs into various mammalian cells.
-
Language
-
-
Open access status
-
hybrid
-
Identifiers
-
-
Persistent URL
-
https://sonar.ch/global/documents/36863
Statistics
Document views: 16
File downloads: