Journal article
1,3-Difunctionalization of Aminocyclopropanes via Dielectrophilic Intermediates.
-
Wang MM
Laboratory of Catalysis and Organic Synthesis, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, EPFL SB ISIC LCSO, BCH 4306, 1015, Lausanne, Switzerland.
-
Waser J
Laboratory of Catalysis and Organic Synthesis, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, EPFL SB ISIC LCSO, BCH 4306, 1015, Lausanne, Switzerland.
Published in:
- Angewandte Chemie (International ed. in English). - 2019
English
We report an oxidative ring-opening strategy to transform acyl, sulfonyl or carbamate protected aminocyclopropanes into 1,3-dielectrophilic carbon intermediates bearing a halide atom (Br, I) and a N,O-acetal. Replacing the alkoxy group of the N,O-acetal can be achieved under acidic conditions through an elimination-addition pathway, while substitution of the halides by nucleophiles can be done under basic conditions through a SN 2 pathway, generating a wide range of 1,3-difunctionalized propylamines. A proof of concept for asymmetric induction was realized using a chiral phosphoric acid (CPA) as catalyst, highlighting the potential of the method in enantioselective synthesis of important building blocks.
-
Language
-
-
Open access status
-
closed
-
Identifiers
-
-
Persistent URL
-
https://sonar.ch/global/documents/37832
Statistics
Document views: 19
File downloads: