Steady-state evoked potentials distinguish brain mechanisms of self-paced versus synchronization finger tapping.
-
De Pretto M
Faculty of Psychology and Educational Sciences, Department of Psychology, University of Geneva, 40 Boulevard du Pont-d'Arve, CH-1211 Geneva, Switzerland; Neurology Unit, Medicine Department, Faculty of Sciences, University of Fribourg, Chemin du Musée 5, CH-1700 Fribourg, Switzerland; School of Philosophy, Psychology and Language Sciences, Department of Psychology, University of Edinburgh, 7 George Square, Edinburgh EH8 9JZ, UK. Electronic address: Michael.DePretto@unifr.ch.
-
Deiber MP
Psychiatry Department, Division of Psychiatric Specialties, University Hospitals of Geneva, 20 bis rue de Lausanne, CH-1201 Geneva, Switzerland; NCCR Synapsy, 9 Chemin des Mines, CH-1202 Geneva, Switzerland.
-
James CE
Faculty of Psychology and Educational Sciences, Department of Psychology, University of Geneva, 40 Boulevard du Pont-d'Arve, CH-1211 Geneva, Switzerland; School of Health Sciences Geneva, HES-SO University of Applied Sciences and Arts Western Switzerland, 47 Avenue de Champel, CH-1206 Geneva, Switzerland.
Published in:
- Human movement science. - 2018
English
Sensorimotor synchronization (SMS) requires aligning motor actions to external events and represents a core part of both musical and dance performances. In the current study, to isolate the brain mechanisms involved in synchronizing finger tapping with a musical beat, we compared SMS to pure self-paced finger tapping and listen-only conditions at different tempi. We analyzed EEG data using frequency domain steady-state evoked potentials (SSEPs) to identify sustained electrophysiological brain activity during repetitive tasks. Behavioral results revealed different timing modes between SMS and self-paced finger tapping, associated with distinct scalp topographies, thus suggesting different underlying brain sources. After subtraction of the listen-only brain activity, SMS was compared to self-paced finger tapping. Resulting source estimations showed stronger activation of the left inferior frontal gyrus during SMS, and stronger activation of the bilateral inferior parietal lobule during self-paced finger tapping. These results point to the left inferior frontal gyrus as a pivot for perception-action coupling. We discuss our findings in the context of the ongoing debate about SSEPs interpretation given the variety of brain events contributing to SSEPs and similar EEG frequency responses.
-
Language
-
-
Open access status
-
green
-
Identifiers
-
-
Persistent URL
-
https://sonar.ch/global/documents/46640
Statistics
Document views: 25
File downloads: