Synthesis of 3,3-Disubstituted Oxindoles by Palladium-Catalyzed Asymmetric Intramolecular α-Arylation of Amides: Reaction Development and Mechanistic Studies.
Journal article

Synthesis of 3,3-Disubstituted Oxindoles by Palladium-Catalyzed Asymmetric Intramolecular α-Arylation of Amides: Reaction Development and Mechanistic Studies.

Show more…
  • 2013-07-30
Published in:
  • Chemistry (Weinheim an der Bergstrasse, Germany). - 2013
English Palladium complexes incorporating chiral N-heterocyclic carbene (NHC) ligands catalyze the asymmetric intramolecular α-arylation of amides producing 3,3-disubstituted oxindoles. Comprehensive DFT studies have been performed to gain insight into the mechanism of this transformation. Oxidative addition is shown to be rate-determining and reductive elimination to be enantioselectivity-determining. The synthesis of seven new NHC ligands is detailed and their performance is compared. One of them, L8, containing a tBu and a 1-naphthyl group at the stereogenic centre, proved superior and was very efficient in the asymmetric synthesis of fifteen new spiro-oxindoles and three azaspiro-oxindoles often in high yields (up to 99 %) and enantioselectivities (up to 97 % ee; ee=enantiomeric excess). Three palladacycle intermediates resulting from the oxidative addition of [Pd(NHC)] into the aryl halide bond were isolated and structurally characterized (X-ray). Using these intermediates as catalysts showed alkene additives to play an important role in increasing turnover number and frequency.
Language
  • English
Open access status
closed
Identifiers
Persistent URL
https://sonar.ch/global/documents/89639
Statistics

Document views: 34 File downloads: